Skip to content

Instantly share code, notes, and snippets.

@vritant24
Last active March 29, 2018 22:48
Show Gist options
  • Select an option

  • Save vritant24/3076deeb6946ac6958a717a92324d671 to your computer and use it in GitHub Desktop.

Select an option

Save vritant24/3076deeb6946ac6958a717a92324d671 to your computer and use it in GitHub Desktop.
# Adapt PyTorch implementation for our python front end
# Adapt PyTorch implementation for our python front end
from pylms import lms, stage, stageTensor # add our snek-lms module
from pylms.rep import Rep # add our snek-lms module
@lms # add anotation for snek-lms
def run(dummy):
...
train_loader = torch.utils.data.DataLoader(...)
fc1 = nn.Linear(784, 50)
fc2 = nn.Linear(50, 10)
def forward(x):
x1 = x.view(-1, 784)
x2 = F.relu(fc1(x1))
x3 = fc2(x2)
return F.log_softmax(x3, dim=1)
optimizer = optim.SGD(...)
def train(epoch):
for batch_idx, (data, target) in enumerate(train_loader):
...
loss.backward()
optimizer.step()
if (((batch_idx + 1) % args.log_interval) == 0):
print_time_and_loss()
idx = 0
while idx < args.epochs:
idx = idx + 1
train(idx)
@stage # add anotation and bootstrapping
def runX(x):
return run(x)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment