Visual Studio Code for Education – https://vscodeedu.com
Educator Community – https://community.vscodeedu.com
Online course – https://learn.microsoft.com/en-us/training/modules/visual-studio-code-education-introduction
Visual Studio Code for Education – https://vscodeedu.com
Educator Community – https://community.vscodeedu.com
Online course – https://learn.microsoft.com/en-us/training/modules/visual-studio-code-education-introduction
Audience: Software engineer with a computer science background
Goal: Learn modern LLMs on a technical and foundational level with practical implementation
Time Commitment: 1–2 hours/day
Approach: Mixed theory and coding, compact but deep plan
Focus: Free resources prioritized, including YouTube, articles, and open-access papers
| {"name":"python4","settings":"{\"settings\":\"{\\n \\\"workbench.statusBar.visible\\\": false,\\n\\t\\\"workbench.layoutControl.enabled\\\": false,\\n \\\"window.title\\\": \\\"VSCode - Learn\\\",\\n \\\"window.menuBarVisibility\\\": \\\"toggle\\\",\\n \\\"editor.inlineSuggest.enabled\\\": true,\\n}\"}","globalState":"{\"storage\":{\"workbench.panel.markers.hidden\":\"[{\\\"id\\\":\\\"workbench.panel.markers.view\\\",\\\"isHidden\\\":false}]\",\"workbench.panel.output.hidden\":\"[{\\\"id\\\":\\\"workbench.panel.output\\\",\\\"isHidden\\\":false}]\",\"terminal.hidden\":\"[{\\\"id\\\":\\\"terminal\\\",\\\"isHidden\\\":false}]\",\"workbench.explorer.views.state.hidden\":\"[{\\\"id\\\":\\\"outline\\\",\\\"isHidden\\\":false},{\\\"id\\\":\\\"timeline\\\",\\\"isHidden\\\":false},{\\\"id\\\":\\\"workbench.explorer.openEditorsView\\\",\\\"isHidden\\\":true},{\\\"id\\\":\\\"workbench.explorer.emptyView\\\",\\\"isHidden\\\":false},{\\\"id\\\":\\\"npm\\\",\\\"isHidden\\\":true}]\",\"workbench.scm.views.state |
| using System; | |
| using System.Collections; | |
| using System.Collections.Generic; | |
| namespace Streamable | |
| { | |
| public class Sequence<T, U> : IEnumerable<T>, IEnumerator<T> | |
| { | |
| private readonly Func<T, U, ulong, (T element, U state, bool isLast)> formulae; | |
| private readonly T firstElement; |
| using System; | |
| using System.Collections; | |
| using System.Collections.Generic; | |
| namespace Streamable | |
| { | |
| public class Sequence<T> : IEnumerable<T>, IEnumerator<T> | |
| { | |
| private readonly Func<T, ulong, (T nextElement, bool isLast)> formulae; | |
| private readonly T firstElement; |
A user’s project will be stored in the following way:
[folder] Project A
- [folder] metadata
- [file] project.json
- [file] file1.json
- [file] file2.json
...
- [folder] project_git (the git repo)
| for index, row in dataFrame.iterrows(): | |
| if row[dataMeasure] == 'Projected Inventory': | |
| for str in list(my_dataframe.columns.values): | |
| pprint(str) |
| // Implementation of the same neural network in Scala front end | |
| package lantern | |
| ... | |
| def snippet(a: Rep[String]): Rep[Unit] = { | |
| ... | |
| val train_loader = new DataLoader(...) | |
| // initialize all parameters |
| # Adapt PyTorch implementation for our python front end | |
| from pylms import lms, stage, stageTensor # add our snek-lms module | |
| from pylms.rep import Rep # add our snek-lms module | |
| @lms # add anotation for snek-lms | |
| def run(dummy): | |
| ... | |
| train_loader = torch.utils.data.DataLoader(...) |
| # PyTorch implementation of 2 linear layers | |
| def run(): | |
| ... | |
| train_loader = torch.utils.data.DataLoader(...) | |
| class Net(nn.Module): | |
| def __init__(self): | |
| super(Net, self).__init__() | |
| self.fc1 = nn.Linear(784, 50) |