Skip to content

Instantly share code, notes, and snippets.

@gnoliyil
Created April 22, 2019 21:43
Show Gist options
  • Select an option

  • Save gnoliyil/d3a1d854684c37e6b1e2c8d8b6a570c9 to your computer and use it in GitHub Desktop.

Select an option

Save gnoliyil/d3a1d854684c37e6b1e2c8d8b6a570c9 to your computer and use it in GitHub Desktop.
Torch RNN Classifier (modified)
import numpy as np
from operator import itemgetter
import torch
import torch.nn as nn
import torch.utils.data
from torch_model_base import TorchModelBase
from utils import progress_bar
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Spring 2019"
class TorchRNNDataset(torch.utils.data.Dataset):
def __init__(self, sequences, seq_lengths, y):
assert len(sequences) == len(y)
assert len(sequences) == len(seq_lengths)
self.sequences = sequences
self.seq_lengths = seq_lengths
self.y = y
@staticmethod
def collate_fn(batch):
X, seq_lengths, y = zip(*batch)
X = torch.nn.utils.rnn.pad_sequence(X, batch_first=True)
seq_lengths = torch.tensor(seq_lengths, dtype=torch.long)
y = torch.tensor(y, dtype=torch.long)
return X, seq_lengths, y
def __len__(self):
return len(self.sequences)
def __getitem__(self, idx):
return (self.sequences[idx], self.seq_lengths[idx], self.y[idx])
class TorchRNNClassifierModel(nn.Module):
def __init__(self,
vocab_size,
embed_dim,
embedding,
use_embedding,
hidden_dim,
hidden_activation,
output_dim,
num_layers,
bidirectional,
dropout,
device):
super(TorchRNNClassifierModel, self).__init__()
self.use_embedding = use_embedding
self.device = device
self.embed_dim = embed_dim
self.bidirectional = bidirectional
# Graph
if self.use_embedding:
self.embedding = self._define_embedding(
embedding, vocab_size, self.embed_dim)
self.embed_dim = self.embedding.embedding_dim
if not (isinstance(hidden_dim, list) or isinstance(hidden_dim, tuple)):
hidden_dim = [hidden_dim, ]
self.rnn = nn.LSTM(
input_size=self.embed_dim,
hidden_size=hidden_dim[0],
num_layers=num_layers,
batch_first=True,
bidirectional=bidirectional)
if bidirectional:
classifier_dim = [dim * 2 for dim in hidden_dim]
else:
classifier_dim = hidden_dim[:]
classifiers = []
for i in range(len(classifier_dim) - 1):
classifiers.append(nn.Linear(classifier_dim[i], classifier_dim[i + 1]))
classifiers.append(nn.Dropout(dropout))
classifiers.append(hidden_activation)
classifiers.append(nn.Linear(classifier_dim[-1], output_dim))
self.classifier_layer = nn.Sequential(*classifiers)
def forward(self, X, seq_lengths):
state = self.rnn_forward(X, seq_lengths, self.rnn)
logits = self.classifier_layer(state)
return logits
def rnn_forward(self, X, seq_lengths, rnn):
X = torch.nn.utils.rnn.pad_sequence(X, batch_first=True)
X = X.to(self.device, non_blocking=True)
seq_lengths = seq_lengths.to(self.device)
seq_lengths, sort_idx = seq_lengths.sort(0, descending=True)
X = X[sort_idx]
if self.use_embedding:
embs = self.embedding(X)
else:
embs = X
embs = torch.nn.utils.rnn.pack_padded_sequence(
embs, batch_first=True, lengths=seq_lengths)
outputs, state = rnn(embs)
state = self.get_batch_final_states(state)
if self.bidirectional:
state = torch.cat((state[0], state[1]), dim=1)
_, unsort_idx = sort_idx.sort(0)
state = state[unsort_idx]
return state
def get_batch_final_states(self, state):
if self.rnn.__class__.__name__ == 'LSTM':
return state[0].squeeze(0)
else:
return state.squeeze(0)
@staticmethod
def _define_embedding(embedding, vocab_size, embed_dim):
if embedding is None:
return nn.Embedding(vocab_size, embed_dim)
else:
embedding = torch.tensor(embedding, dtype=torch.float)
return nn.Embedding.from_pretrained(embedding)
class TorchRNNClassifier(TorchModelBase):
"""LSTM-based Recurrent Neural Network for classification problems.
The network will work for any kind of classification task.
Parameters
----------
vocab : list of str
This should be the vocabulary. It needs to be aligned with
`embedding` in the sense that the ith element of vocab
should be represented by the ith row of `embedding`. Ignored
if `use_embedding=False`.
embedding : np.array or None
Each row represents a word in `vocab`, as described above.
use_embedding : bool
If True, then incoming examples are presumed to be lists of
elements of the vocabulary. If False, then they are presumed
to be lists of vectors. In this case, the `embedding` and
`embed_dim` arguments are ignored, since no embedding is needed
and `embed_dim` is set by the nature of the incoming vectors.
embed_dim : int
Dimensionality for the initial embeddings. This is ignored
if `embedding` is not None, as a specified value there
determines this value. Also ignored if `use_embedding=False`.
hidden_dim : int
Dimensionality of the hidden layer.
bidirectional : bool
If True, then the final hidden states from passes in both
directions are used.
hidden_activation : vectorized activation function
The non-linear activation function used by the network for the
hidden layer. Default `nn.Tanh()`.
max_iter : int
Maximum number of training epochs.
eta : float
Learning rate.
optimizer : PyTorch optimizer
Default is `torch.optim.Adam`.
l2_strength : float
L2 regularization strength. Default 0 is no regularization.
device : 'cpu' or 'cuda'
The default is to use 'cuda' iff available
num_layers : int, default = 1
number of layers
"""
def __init__(self,
vocab,
embedding=None,
use_embedding=True,
embed_dim=50,
bidirectional=False,
num_layers=1,
dropout=0,
**kwargs):
self.vocab = vocab
self.embedding = embedding
self.use_embedding = use_embedding
self.embed_dim = embed_dim
self.bidirectional = bidirectional
self.num_layers = num_layers
self.dropout = dropout
super(TorchRNNClassifier, self).__init__(**kwargs)
def build_dataset(self, X, y):
X, seq_lengths = self._prepare_dataset(X)
return TorchRNNDataset(X, seq_lengths, y)
def build_graph(self):
return TorchRNNClassifierModel(
vocab_size=len(self.vocab),
embedding=self.embedding,
use_embedding=self.use_embedding,
embed_dim=self.embed_dim,
hidden_dim=self.hidden_dim,
hidden_activation=self.hidden_activation,
output_dim=self.n_classes_,
bidirectional=self.bidirectional,
num_layers=self.num_layers,
dropout=self.dropout,
device=self.device)
def fit(self, X, y, **kwargs):
"""Standard `fit` method.
Parameters
----------
X : np.array
y : array-like
kwargs : dict
For passing other parameters. If 'X_dev' is included,
then performance is monitored every 10 epochs; use
`dev_iter` to control this number.
Returns
-------
self
"""
# Incremental performance:
X_dev = kwargs.get('X_dev')
if X_dev is not None:
dev_iter = kwargs.get('dev_iter', 10)
# Data prep:
self.classes_ = sorted(set(y))
self.n_classes_ = len(self.classes_)
class2index = dict(zip(self.classes_, range(self.n_classes_)))
y = [class2index[label] for label in y]
dataset = self.build_dataset(X, y)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=self.batch_size,
shuffle=True,
drop_last=False,
pin_memory=True,
collate_fn=dataset.collate_fn)
if not self.use_embedding:
# Infer `embed_dim` from `X` in this case:
self.embed_dim = X[0][0].shape[0]
# Graph:
self.model = self.build_graph()
self.model.to(self.device)
self.model.train()
# Make sure this value is up-to-date; self.`model` might change
# it if it creates an embedding:
self.embed_dim = self.model.embed_dim
# Optimization:
loss = nn.CrossEntropyLoss()
optimizer = self.optimizer(
self.model.parameters(),
lr=self.eta,
weight_decay=self.l2_strength)
# Train:
for iteration in range(1, self.max_iter+1):
epoch_error = 0.0
for X_batch, batch_seq_lengths, y_batch in dataloader:
y_batch = y_batch.to(self.device, non_blocking=True)
batch_preds = self.model(X_batch, batch_seq_lengths)
err = loss(batch_preds, y_batch)
epoch_error += err.item()
# Backprop:
optimizer.zero_grad()
err.backward()
optimizer.step()
# Incremental predictions where possible:
if X_dev is not None and iteration > 0 and iteration % dev_iter == 0:
self.dev_predictions[iteration] = self.predict(X_dev)
self.errors.append(epoch_error)
progress_bar("Finished epoch {} of {}; error is {}".format(
iteration, self.max_iter, epoch_error))
return self
def predict_proba(self, X):
"""Predicted probabilities for the examples in `X`.
Parameters
----------
X : np.array
Returns
-------
np.array with shape (len(X), self.n_classes_)
"""
self.model.eval()
with torch.no_grad():
X, seq_lengths = self._prepare_dataset(X)
preds = self.model(X, seq_lengths)
preds = torch.softmax(preds, dim=1).cpu().numpy()
return preds
def predict(self, X):
"""Predicted labels for the examples in `X`. These are converted
from the integers that PyTorch needs back to their original
values in `self.classes_`.
Parameters
----------
X : np.array
Returns
-------
list of length len(X)
"""
probs = self.predict_proba(X)
return [self.classes_[i] for i in probs.argmax(axis=1)]
def _prepare_dataset(self, X):
"""Internal method for preprocessing a set of examples. If
`self.use_embedding=True`, then `X` is transformed into a list
of lists of indices. Otherwise, `X` is assumed to already
contain the vectors we want to process. In both situations,
we measure the lengths of the sequences in `X`.
Parameters
----------
X : list of lists of tokens, or list of np.array of vectors
Returns
-------
list of lists of ints, or list of np.array of vectors,
and `torch.LongTensor` of sequence lengths.
"""
new_X = []
seq_lengths = []
if self.use_embedding:
index = dict(zip(self.vocab, range(len(self.vocab))))
unk_index = index['$UNK']
for ex in X:
seq = [index.get(w, unk_index) for w in ex]
seq = torch.tensor(seq, dtype=torch.long)
new_X.append(seq)
seq_lengths.append(len(seq))
else:
new_X = [torch.FloatTensor(ex) for ex in X]
seq_lengths = [len(ex) for ex in X]
return new_X, torch.LongTensor(seq_lengths)
def simple_example(initial_embedding=False, use_embedding=True):
vocab = ['a', 'b', '$UNK']
# No b before an a
train = [
[list('ab'), 'good'],
[list('aab'), 'good'],
[list('abb'), 'good'],
[list('aabb'), 'good'],
[list('ba'), 'bad'],
[list('baa'), 'bad'],
[list('bba'), 'bad'],
[list('bbaa'), 'bad'],
[list('aba'), 'bad']
]
test = [
[list('baaa'), 'bad'],
[list('abaa'), 'bad'],
[list('bbaa'), 'bad'],
[list('aaab'), 'good'],
[list('aaabb'), 'good']
]
if initial_embedding:
import numpy as np
# `embed_dim=60` to make sure that it gets changed internally:
embedding = np.random.uniform(
low=-1.0, high=1.0, size=(len(vocab), 60))
else:
embedding = None
mod = TorchRNNClassifier(
vocab=vocab,
max_iter=100,
embed_dim=50,
embedding=embedding,
use_embedding=use_embedding,
bidirectional=False,
hidden_dim=50)
X, y = zip(*train)
X_test, y_test = zip(*test)
# Just to illustrate how we can process incoming sequences of
# vectors, we create an embedding and use it to preprocess the
# train and test sets:
if not use_embedding:
import numpy as np
from copy import copy
# `embed_dim=60` to make sure that it gets changed internally:
embedding = np.random.uniform(
low=-1.0, high=1.0, size=(len(vocab), 60))
X = [[embedding[vocab.index(w)] for w in ex] for ex in X]
# So we can display the examples sensibly:
X_test_orig = copy(X_test)
X_test = [[embedding[vocab.index(w)] for w in ex] for ex in X_test]
else:
X_test_orig = X_test
mod.fit(X, y)
preds = mod.predict(X_test)
print("\nPredictions:")
for ex, pred, gold in zip(X_test_orig, preds, y_test):
score = "correct" if pred == gold else "incorrect"
print("{0:>6} - predicted: {1:>4}; actual: {2:>4} - {3}".format(
"".join(ex), pred, gold, score))
if __name__ == '__main__':
simple_example()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment