初嘗命令列的滋味。
首先,我們將這篇文章會介紹的基礎命令全數列出:
pwd # print working directory
| from sqlalchemy import create_engine | |
| from urllib.parse import quote | |
| import sqlite3 | |
| import pandas as pd | |
| password = "YOURPASSWORD" | |
| db_name = "YOURDBNAME" | |
| table_name = "YOURTABLENAME" | |
| connection_url = "mysql+pymysql://root:{0}@localhost:3306/{1}".format(quote(password), db_name) | |
| engine = create_engine(connection_url) |
| (base)~$ conda install mamba -n base -c conda-forge | |
| (base)~$ source activate xeus-sql | |
| (xeus-sql)~$ mamba install xeus-sql jupyterlab -c conda-forge | |
| (xeus-sql)~$ jupyter notebook |
| (base)~$ R | |
| > install.packages('IRkernel') | |
| > IRkernel::installspec(user = FALSE) | |
| > q() |
| (base)~$ conda install jupyter | |
| (base)~$ jupyter --version |
| pwd # print working directory | |
| mkdir folder_name # make directory | |
| ls # list directory and file | |
| cd folder_name # changing directory | |
| touch file_name # create file | |
| mv file_name file_name # move file | |
| cp file_name file_name # copy file | |
| rm file_name file_name # remove file | |
| clear # clear command line, ctrl-L | |
| # up-arrow / down-arrow for history commands |
| import pandas as pd | |
| from urllib.parse import quote_plus | |
| from string import ascii_uppercase | |
| import re | |
| class TaiwanElection2020: | |
| def __init__(self): | |
| self._counties = ['宜蘭縣', '彰化縣', '金門縣', '桃園市', '苗栗縣', '臺南市', '雲林縣', '南投縣', '高雄市', '臺北市', '新北市', '花蓮縣', '新竹市', '新竹縣', '基隆市', '連江縣', '嘉義縣', '嘉義市', '屏東縣', '澎湖縣', '臺東縣', '臺中市'] | |
| def tidy_dataframe(self, df): | |
| # updating columns attributes |
| import pandas as pd | |
| import datetime as dt | |
| today = dt.date.today() | |
| day_delta = dt.timedelta(1) | |
| while True: | |
| try: | |
| today_str = today.strftime('%m-%d-%Y') | |
| print("嘗試載入 {} 的資料...".format(today_str)) | |
| csv_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/{}.csv'.format(today_str) |
| get_actual_historic_prices <- function(adjusted_prices, split_date_periods, split_ratios) { | |
| n_splits <- length(split_ratios) | |
| #xts_list <- list() | |
| actual_historic_prices <- adjusted_prices[split_date_periods[n_splits + 1]] | |
| for (i in n_splits:1) { | |
| single_xts <- adjusted_prices[split_date_periods[[i]]] / prod(split_ratios[n_splits:i]) | |
| #actual_historic_prices <- rbind.xts(actual_historic_prices, single_xts) | |
| actual_historic_prices <- rbind.xts(actual_historic_prices, single_xts) | |
| } | |
| return(actual_historic_prices) |