Created
February 11, 2026 18:11
-
-
Save tripplyons/295ed53887a797756a06150c366478da to your computer and use it in GitHub Desktop.
Issue with expected Gated DeltaNet prefill output for MLSys26 FlashInfer-Bench Contest
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # run with `uv run reprex.py` | |
| # /// script | |
| # requires-python = ">=3.10" | |
| # dependencies = ["numpy", "packaging", "safetensors", "torch"] | |
| # /// | |
| import json | |
| import subprocess | |
| from pathlib import Path | |
| import torch | |
| from safetensors.torch import load_file | |
| DATASET_REPO = "https://huggingface.co/datasets/flashinfer-ai/mlsys26-contest" | |
| UUID = "c4349ccd-2d92-471e-8c7e-8ae218ea77b1" | |
| def ensure_dataset() -> Path: | |
| target = Path.cwd() / "mlsys26-contest" | |
| if not target.exists(): | |
| subprocess.run(["git", "clone", DATASET_REPO, str(target)], check=True) | |
| subprocess.run(["git", "-C", str(target), "lfs", "pull"], check=True) | |
| return target | |
| root = ensure_dataset() | |
| defn = json.loads( | |
| (root / "definitions/gdn/gdn_prefill_qk4_v8_d128_k_last.json").read_text() | |
| ) | |
| ns: dict = {} | |
| exec(defn["reference"], ns) | |
| run = ns["run"] | |
| wl = next( | |
| json.loads(x)["workload"] | |
| for x in ( | |
| root / "workloads/gdn/gdn_prefill_qk4_v8_d128_k_last.jsonl" | |
| ).read_text().splitlines() | |
| if UUID in x | |
| ) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| T = wl["axes"]["total_seq_len"] | |
| N = wl["axes"]["num_seqs"] | |
| q = torch.randn((T, 4, 128), dtype=torch.bfloat16, device=device) | |
| k = torch.randn((T, 4, 128), dtype=torch.bfloat16, device=device) | |
| v = torch.randn((T, 8, 128), dtype=torch.bfloat16, device=device) | |
| state = torch.randn((N, 8, 128, 128), dtype=torch.float32, device=device) | |
| s = load_file(root / wl["inputs"]["A_log"]["path"].replace("./", "")) | |
| A_log = s["A_log"].to(device=device, dtype=torch.float32) | |
| a = s["a"].to(device=device, dtype=torch.bfloat16) | |
| dt_bias = s["dt_bias"].to(device=device, dtype=torch.float32) | |
| b = s["b"].to(device=device, dtype=torch.bfloat16) | |
| cu_seqlens = s["cu_seqlens"].to(device=device, dtype=torch.int64) | |
| scale = float(wl["inputs"]["scale"]["value"]) | |
| out, _ = run(q, k, v, state, A_log, a, dt_bias, b, cu_seqlens, scale) | |
| stds = out.float().flatten(1).std(dim=1, unbiased=False) | |
| print("token,std") | |
| for i, x in enumerate(stds.tolist()): | |
| print(f"{i},{x:.6e}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment