Created
August 18, 2024 10:40
-
-
Save suchmememanyskill/5c56d76f1a13aed860c494ef293bcb68 to your computer and use it in GitHub Desktop.
Script that creates an ESPHome filter based on 2 sensors (one reference, one target). Input is a history graph from home assistant ("Download Data")
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import csv, sys, datetime, numpy | |
| if len(sys.argv) <= 1: | |
| print(f"{sys.argv[0]} data.csv step[default=0.1] reference_sensor[default=None]") | |
| exit() | |
| csv_file_path = sys.argv[1] | |
| step = float(sys.argv[2]) if len(sys.argv) >= 3 else 0.1 | |
| first = True | |
| class Sensor: | |
| def __init__(self, name): | |
| self.name = name | |
| self.data = [] | |
| def add_row(self, time, value): | |
| if value == "unavailable": | |
| return | |
| self.data.append({"datetime": datetime.datetime.strptime(time, "%Y-%m-%dT%H:%M:%S.%fZ"), "value": float(value)}) | |
| def closest_value(self, time : datetime): | |
| prev_value = 99999999999 | |
| for x in self.data: | |
| cur_value = abs((time - x['datetime']).total_seconds()) | |
| if cur_value < prev_value: | |
| prev_value = cur_value | |
| else: | |
| return (cur_value, x["value"]) | |
| return (prev_value, self.data[-1]["value"]) | |
| class ValueSetForSensor: | |
| def __init__(self, reference : float, sensor : Sensor): | |
| self.values_near_reference = [] | |
| self.reference = round(reference, 1) | |
| self.sensor = sensor | |
| def add(self, value : float): | |
| self.values_near_reference.append(value) | |
| def avg(self): | |
| return sum(self.values_near_reference) / len(self.values_near_reference) | |
| def is_empty(self): | |
| return len(self.values_near_reference) <= 0 | |
| def advice(self): | |
| return (self.reference, round(self.avg(), 1)) | |
| def __str__(self) -> str: | |
| mi = min(self.values_near_reference) | |
| ma = max(self.values_near_reference) | |
| return f"Sensor: {self.sensor.name}, Reference value: {self.reference}, Min: {mi}, Max: {ma}, Avg: {self.avg():.2f}, Delta: {ma - mi:.2f}" | |
| sensors : dict[str, Sensor] = {} | |
| if len(sys.argv) >= 4: | |
| sensors[sys.argv[3]] = Sensor(sys.argv[3]) | |
| with open(csv_file_path, 'r') as csv_file: | |
| for row in csv.reader(csv_file): | |
| if first: | |
| first = False | |
| continue | |
| print(row) | |
| if row[0] not in sensors: | |
| sensors[row[0]] = Sensor(row[0]) | |
| sensors[row[0]].add_row(row[2], row[1]) | |
| reference_sensor = sensors[list(sensors.keys())[0]] | |
| sensor_calibrations : dict[str, list[ValueSetForSensor]] = {} | |
| for i, (sensor_name, sensor) in enumerate(sensors.items()): | |
| if sensor_name == reference_sensor.name: | |
| continue | |
| ref_min = min([x["value"] for x in sensor.data]) | |
| ref_max = max([x["value"] for x in sensor.data]) | |
| start = (step - (ref_min % step)) + ref_min | |
| cur = start | |
| while (cur < ref_max): | |
| cur_min = cur - (step / 2) | |
| cur_max = cur + (step / 2) | |
| value_set = ValueSetForSensor(cur, sensor) | |
| for x in sensor.data: | |
| reference_sensor_value = x["value"] | |
| reference_sensor_value_datetime = x["datetime"] | |
| if reference_sensor_value >= cur_min and reference_sensor_value < cur_max: | |
| closest_value = reference_sensor.closest_value(reference_sensor_value_datetime) | |
| value_set.add(closest_value[1]) | |
| if not value_set.is_empty(): | |
| print(str(value_set)) | |
| if sensor_name not in sensor_calibrations: | |
| sensor_calibrations[sensor_name] = [] | |
| sensor_calibrations[sensor_name].append(value_set) | |
| cur += step | |
| for x in sensor_calibrations: | |
| print() | |
| advices : dict[float, list[float]] = {} | |
| for y in sensor_calibrations[x]: | |
| advice = y.advice() | |
| if advice[0] not in advices: | |
| advices[advice[0]] = [] | |
| advices[advice[0]].append(advice[1]) | |
| advices_summed : dict [float, float] = {} | |
| for y in advices: | |
| advices_summed[y] = round(sum(advices[y]) / len(advices[y]), 1) | |
| deltas = [advices_summed[y] - y for y in advices_summed] | |
| average_delta_of_deltas = round(sum(deltas) / len(deltas), 1) | |
| fifth_percentile = numpy.percentile(deltas, 5) | |
| ninety_fifth_percentile = numpy.percentile(deltas, 95) | |
| delta = abs(ninety_fifth_percentile - fifth_percentile) | |
| print(f"For sensor {x}, constant (Precision: {delta:0.1f}):") | |
| print("filters:") | |
| print(f" - offset: {average_delta_of_deltas:0.1f}") | |
| print() | |
| print(f"For sensor {x}, linear:") | |
| print("filters:") | |
| print(" - calibrate_linear:") | |
| print(" method: exact") | |
| print(" datapoints:") | |
| for y in advices_summed: | |
| print(f" - {y} -> {advices_summed[y]}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment