Created
December 29, 2025 04:50
-
-
Save strnan/6d66d0e88d7c0408913c4092938159e5 to your computer and use it in GitHub Desktop.
Distributed training strategy submission
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import os | |
| import math | |
| import torch | |
| import torch.distributed as dist | |
| import torch.nn.utils as nn_utils | |
| from copy import deepcopy | |
| from dataclasses import dataclass | |
| from typing import Dict, Any, Type | |
| from abc import ABC, abstractmethod | |
| def init_dist(): | |
| if dist.is_initialized(): | |
| return | |
| dist.init_process_group(backend="gloo", init_method="env://") | |
| def get_rank(): | |
| return int(os.environ["RANK"]) | |
| def get_world(): | |
| return int(os.environ["WORLD_SIZE"]) | |
| def broadcast(t, src=0): | |
| dist.broadcast(t, src) | |
| def all_reduce(t): | |
| dist.all_reduce(t) | |
| @dataclass | |
| class OptimSpec: | |
| cls: Type[torch.optim.Optimizer] | |
| kwargs: Dict[str, Any] | |
| def build(self, model): | |
| return self.cls(model.parameters(), **self.kwargs) | |
| class Strategy(ABC): | |
| def __init__(self): | |
| self.max_steps = 100 | |
| def _init_node(self, model): | |
| self.model = model | |
| self.rank = get_rank() | |
| self.world = get_world() | |
| self.local_step = 0 | |
| @abstractmethod | |
| def step(self): | |
| self.local_step += 1 | |
| def zero_grad(self): | |
| self.optim.zero_grad(set_to_none=True) | |
| class CommunicationModule(ABC): | |
| @abstractmethod | |
| def _init_node(self, model): | |
| pass | |
| @abstractmethod | |
| def communicate(self, model, step): | |
| pass | |
| class CommunicateOptimizeStrategy(Strategy): | |
| def __init__(self, modules, optim_spec, max_norm=1.0): | |
| super().__init__() | |
| self.modules = modules | |
| self.optim_spec = optim_spec | |
| self.max_norm = max_norm | |
| for m in modules: | |
| m.strategy = self | |
| def _init_node(self, model): | |
| super()._init_node(model) | |
| self.optim = self.optim_spec.build(model) | |
| for m in self.modules: | |
| m._init_node(model) | |
| def step(self): | |
| nn_utils.clip_grad_norm_(self.model.parameters(), self.max_norm) | |
| self.optim.step() | |
| for m in self.modules: | |
| m.communicate(self.model, self.local_step) | |
| self.local_step += 1 | |
| class GradientEnergyRouter: | |
| def __init__(self): | |
| pass | |
| def ratio(self, step): | |
| if step < 20: | |
| return 0.03 | |
| if step < 50: | |
| return 0.02 | |
| return 0.012 | |
| def select(self, g, step): | |
| r = self.ratio(step) | |
| flat = g.view(-1) | |
| k = max(1, int(flat.numel() * r)) | |
| idx = torch.topk(flat.abs(), k).indices | |
| mask = torch.zeros_like(flat) | |
| mask[idx] = 1 | |
| return (flat * mask).view_as(g) | |
| class GSERDiLoCo(CommunicationModule): | |
| def __init__(self, base_H=12): | |
| self.base_H = base_H | |
| self.router = GradientEnergyRouter() | |
| self.energy_ema = None | |
| self.error = {} | |
| def _init_node(self, model): | |
| self.rank = get_rank() | |
| self.world = get_world() | |
| if self.rank == 0: | |
| self.master = deepcopy(model).cpu() | |
| self.outer_optim = torch.optim.SGD( | |
| self.master.parameters(), | |
| lr=0.35, | |
| momentum=0.9 | |
| ) | |
| for n, p in model.named_parameters(): | |
| self.error[n] = torch.zeros_like(p.data) | |
| def _energy(self, model): | |
| e = torch.tensor(0.0, device=next(model.parameters()).device) | |
| for p in model.parameters(): | |
| if p.grad is not None: | |
| e += (p.grad ** 2).sum() | |
| all_reduce(e) | |
| return math.sqrt(e.item()) | |
| def communicate(self, model, step): | |
| energy = self._energy(model) | |
| if self.energy_ema is None: | |
| self.energy_ema = energy | |
| else: | |
| self.energy_ema = 0.9 * self.energy_ema + 0.1 * energy | |
| ratio = self.energy_ema / (energy + 1e-8) | |
| ratio = max(0.5, min(2.0, ratio)) | |
| H = int(self.base_H * ratio) | |
| if step < 30: | |
| H = max(4, min(10, H)) | |
| else: | |
| H = max(8, min(25, H)) | |
| if step % H != 0 or self.world == 1: | |
| return | |
| for name, p in model.named_parameters(): | |
| g = p.grad + self.error[name] | |
| sparse = self.router.select(g, step) | |
| self.error[name] = g - sparse | |
| all_reduce(sparse) | |
| p.grad = sparse / self.world | |
| if self.rank == 0: | |
| self.outer_optim.zero_grad() | |
| for mp, lp in zip(self.master.parameters(), model.parameters()): | |
| mp.grad = mp.data - lp.data.cpu() | |
| self.outer_optim.step() | |
| for p in model.parameters(): | |
| broadcast(p.data, 0) | |
| STRATEGY = CommunicateOptimizeStrategy( | |
| modules=[GSERDiLoCo()], | |
| optim_spec=OptimSpec(torch.optim.AdamW, {"lr": 1e-3}), | |
| max_norm=1.0 | |
| ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment