Skip to content

Instantly share code, notes, and snippets.

@sile
sile / main.md
Last active December 29, 2025 12:04
2025年の趣味開発環境

2025年の趣味開発環境

2025年は趣味開発環境の変化が大きかったので備忘録として残しておく。

前提:

  • 趣味開発はほぼ毎日している
  • 開発するのはコマンドラインツールやライブラリが多い
  • 言語はほぼRust
  • 開発はほぼAndroid上
@sile
sile / stars.md
Created May 5, 2022 06:09
2022/05/05時点でのリポジトリのスター数

starzを使って集計:

前回: 2019/04/10

$ starz sile

Total: 2087

jsone                      ★  250
@sile
sile / config.gin
Last active April 8, 2020 08:55
Example: gin-config with optuna
train.batch_size = 10
train.learning_rate = 0.1
@sile
sile / random.py
Last active January 27, 2020 15:36
Kurobako blog: random.py
# A solver implementation based on Random Search algorithm.
from kurobako import problem
from kurobako import solver
import numpy as np
class RandomSolverFactory(solver.SolverFactory):
def specification(self):
return solver.SolverSpec(name='Random Search')
def create_solver(self, seed, problem):
@sile
sile / sa.py
Created January 27, 2020 15:29
Kurobako blog: sa.py
# A solver implementation based on Simulated Annealing algorithm.
from kurobako import solver
from kurobako.solver.optuna import OptunaSolverFactory
import optuna
class SimulatedAnnealingSampler(optuna.BaseSampler):
# Please refer to
# https://github.com/optuna/optuna/blob/v1.0.0/examples/samplers/simulated_annealing_sampler.py
# for the implementation.
...
@sile
sile / custom-solvers.sh
Created January 27, 2020 15:28
Kurobako blog: custom-solvers.sh
$ kurobako solver command python random.py > solvers.json
$ kurobako solver command python sa.py >> solvers.json
$ kurobako studies --problems $(cat problems.json) --solvers $(cat solvers.json) | kurobako run > result.json
@sile
sile / report.md
Created January 27, 2020 15:27
Kurobako blog: report.md

Benchmark Result Report

  • Report ID: ecb7024f149c2653a906f600d048eac2658f94bc2cfc8e50bfd7356c0fb1e29b
  • Kurobako Version: 0.1.3
  • Number of Solvers: 4
  • Number of Problems: 2
  • Metrics Precedence: best value -> AUC

Please refer to ["A Strategy for Ranking Optimizers using Multiple Criteria"][Dewancker, Ian, et al., 2016] for the ranking strategy used in this report.

@sile
sile / basic-benchmark.sh
Last active September 24, 2020 00:58
kurobako blog: basic-benchmark.sh
# 1. Download kurobako binary.
$ curl -L https://github.com/sile/kurobako/releases/download/0.2.6/kurobako-0.2.6.linux-amd64 -o kurobako
$ chmod +x kurobako && sudo mv kurobako /usr/local/bin/
# 2. Download the data file for HPOBench (note that the file size is about 700MB).
$ curl -OL http://ml4aad.org/wp-content/uploads/2019/01/fcnet_tabular_benchmarks.tar.gz
$ tar xf fcnet_tabular_benchmarks.tar.gz && cd fcnet_tabular_benchmarks/
# 3. Specify problems used in this benchmark.
#

Benchmark Result Report

  • Report ID: 4ba0c3ff34e08ddaac04387c13628701e21fd683a713b496b3f78c3d541beac9
  • Kurobako Version: 0.1.3
  • Number of Solvers: 3
  • Number of Problems: 4
  • Metrics Precedence: best value -> AUC

Please refer to ["A Strategy for Ranking Optimizers using Multiple Criteria"][Dewancker, Ian, et al., 2016] for the ranking strategy used in this report.

The aim of this benchmark is to compare the performances of Optuna's pruners (i.e., NopPruner, MedianPruner, SuccessiveHalvingPruner and the ongoing HyperbandPruner). All of the pruners were used by the default settings in this benchmark.

The commands to execute this benchmark.

// (1) Downloads `kurobako` (BBO benchmark tool) binary.
$ curl -L https://github.com/sile/kurobako/releases/download/0.1.3/kurobako-0.1.3.linux-amd64 -o kurobako
$ chmod +x kurobako && sudo mv kurobako /usr/local/bin/

// (2) Downloads data files of HPOBench. (notice that the total size is over 700MB)
$ curl -OL http://ml4aad.org/wp-content/uploads/2019/01/fcnet_tabular_benchmarks.tar.gz