11/3に行うRAMにて実施するTutorialです.
全体の流れは以下に示すとおりです.
- Dockerを使ってElasticsearch
- Dockerを使ってMoloch
- Molochでpcapを解析
- 解析結果を眺める
| /* | |
| * Your Stylesheet | |
| * | |
| * This stylesheet is loaded when Atom starts up and is reloaded automatically | |
| * when it is changed and saved. | |
| * | |
| * Add your own CSS or Less to fully customize Atom. | |
| * If you are unfamiliar with Less, you can read more about it here: | |
| * http://lesscss.org | |
| */ |
| import numpy as np | |
| import colorlover as cl | |
| def convert_colorscale_format(colorscale): | |
| plotly_colorscale = [] | |
| for index, sec_value in enumerate(np.linspace(0, 1, len(colorscale))): | |
| plotly_colorscale.append([sec_value, colorscale[index]]) | |
| return plotly_colorscale |
| import plotly.graph_objs as go | |
| from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot | |
| import numpy as np | |
| import colorlover as cl | |
| N = 10000 | |
| cluster_id = [np.random.randint(N/1000) for val in range(N)] | |
| trace = go.Scattergl( | |
| x = np.random.randn(N), |
| import plotly.graph_objs as go | |
| from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot | |
| import numpy as np | |
| N = 10000 | |
| cluster_id = [np.random.randint(N/1000) for val in range(N)] | |
| trace = go.Scattergl( | |
| x = np.random.randn(N), | |
| y = np.random.randn(N), | |
| mode = 'markers', | |
| marker = dict( |
| import plotly.graph_objs as go | |
| from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot | |
| import numpy as np | |
| import colorlover as cl | |
| def convert_colorscale_format(colorscale): | |
| plotly_colorscale = [] | |
| for index, sec_value in enumerate(np.linspace(0, 1, len(colorscale))): | |
| plotly_colorscale.append([sec_value, colorscale[index]]) | |
| return plotly_colorscale | |
| # %% |
| from elasticsearch import Elasticsearch | |
| es = Elasticsearch(['elasticsearch:9200']) | |
| response = es.search( | |
| index="sessions2-181016", | |
| body={ | |
| "size": 0, | |
| "query": { | |
| "bool": { | |
| "filter": { | |
| "bool": { |
| server.host: "0.0.0.0" | |
| elasticsearch.url: "http://elasticsearch:9200" |
| name: base | |
| channels: | |
| - anaconda | |
| - activisiongamescience | |
| - conda-forge | |
| - defaults | |
| dependencies: | |
| - geoip2=2.2.0=py36_0 | |
| - libmaxminddb=1.1.4=0 | |
| - maxminddb=1.2.0=py36_0 |
| version: '2' | |
| services: | |
| kibana: | |
| image: docker.elastic.co/kibana/kibana:6.4.2 | |
| container_name: kibana | |
| volumes: | |
| - ./kibana.yml:/usr/share/kibana/config/kibana.yml | |
| ports: | |
| - 5601:5601 | |
| networks: |