Created
January 28, 2026 08:25
-
-
Save sepiabrown/80f244e8a4770a3379a863934240220a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def find_optimal_threshold(y_true, y_scores, priority='sensitivity', min_value=0.95): | |
| """ | |
| Find optimal threshold with constrained optimization. | |
| Parameters | |
| ---------- | |
| y_true : array-like | |
| Ground truth labels (0 or 1) | |
| y_scores : array-like | |
| Predicted probabilities or continuous scores | |
| priority : str, 'sensitivity' or 'specificity' | |
| The metric to constrain (must be >= min_value) | |
| min_value : float | |
| Minimum acceptable value for the priority metric | |
| Returns | |
| ------- | |
| dict with threshold, sensitivity, specificity, fpr | |
| """ | |
| fpr, tpr, thresholds = roc_curve(y_true, y_scores) | |
| specificity = 1 - fpr | |
| if priority == 'sensitivity': | |
| constrained = tpr | |
| to_maximize = specificity | |
| constrained_name = 'sensitivity' | |
| maximize_name = 'specificity' | |
| elif priority == 'specificity': | |
| constrained = specificity | |
| to_maximize = tpr | |
| constrained_name = 'specificity' | |
| maximize_name = 'sensitivity' | |
| else: | |
| raise ValueError("priority must be 'sensitivity' or 'specificity'") | |
| valid_mask = constrained >= min_value | |
| if not valid_mask.any(): | |
| print(f"Warning: No threshold achieves {constrained_name} >= {min_value}") | |
| print(f"Max achievable {constrained_name}: {constrained.max():.4f}") | |
| best_idx = np.argmax(constrained) | |
| else: | |
| valid_indices = np.where(valid_mask)[0] | |
| best_idx = valid_indices[np.argmax(to_maximize[valid_mask])] | |
| return { | |
| 'threshold': thresholds[best_idx], | |
| 'sensitivity': tpr[best_idx], | |
| 'specificity': specificity[best_idx], | |
| 'fpr': fpr[best_idx], | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment