Skip to content

Instantly share code, notes, and snippets.

@schroneko
Created January 6, 2025 06:07
Show Gist options
  • Select an option

  • Save schroneko/8a64cd7c585442f0e6ee361703a6e362 to your computer and use it in GitHub Desktop.

Select an option

Save schroneko/8a64cd7c585442f0e6ee361703a6e362 to your computer and use it in GitHub Desktop.
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
# 畳み込み層
self.conv1 = nn.Conv2d(1, 32, 3, padding=1)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
# 全結合層
self.fc1 = nn.Linear(64 * 7 * 7, 100)
self.fc2 = nn.Linear(100, 200)
self.fc3 = nn.Linear(200, 10)
# ドロップアウト
self.dropout = nn.Dropout(0.5)
def forward(self, x):
# 畳み込み層1
x = self.conv1(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
# 畳み込み層2
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
# 全結合層への変換
x = x.view(-1, 64 * 7 * 7)
# 全結合層1
x = self.fc1(x)
x = F.relu(x)
x = self.dropout(x)
# 全結合層2
x = self.fc2(x)
x = F.relu(x)
x = self.dropout(x)
# 出力層
x = self.fc3(x)
return F.log_softmax(x, dim=1)
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(f'Train Epoch {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} '
f'({100. * batch_idx / len(train_loader):.0f}%)]\tLoss {loss.item():.6f}')
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print(f'\nTest set: Average loss {test_loss:.4f}, '
f'Accuracy {correct}/{len(test_loader.dataset)} '
f'({100. * correct / len(test_loader.dataset):.2f}%)\n')
def main():
# デバイスの設定
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# データローダーの設定
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=100, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=100, shuffle=True)
# モデルの設定
model = ConvNet().to(device)
# オプティマイザの設定(モメンタム付きSGD)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
# 学習の実行
for epoch in range(10):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment