Last active
June 12, 2020 14:45
-
-
Save mrksr/6f020d6ce75ece9e0e1df16df21ef47a to your computer and use it in GitHub Desktop.
gpflow-predict-partial
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import tensorflow as tf | |
| from GPflow.gpr import GPR | |
| from GPflow.param import AutoFlow | |
| from GPflow._settings import settings | |
| float_type = settings.dtypes.float_type | |
| class PartialGPR(GPR): | |
| def build_predict(self, Xnew, full_cov=False, kx_kern=None): | |
| """ | |
| Xnew is a data matrix, point at which we want to predict | |
| This method computes | |
| p(F* | Y ) | |
| where F* are points on the GP at Xnew, Y are noisy observations at X. | |
| """ | |
| if kx_kern is None: | |
| kx_kern = self.kern | |
| Kx = kx_kern.K(self.X, Xnew) | |
| K = self.kern.K(self.X) + tf.eye(tf.shape(self.X)[0], dtype=float_type) * self.likelihood.variance | |
| L = tf.cholesky(K) | |
| A = tf.matrix_triangular_solve(L, Kx, lower=True) | |
| V = tf.matrix_triangular_solve(L, self.Y - self.mean_function(self.X)) | |
| fmean = tf.matmul(A, V, transpose_a=True) + self.mean_function(Xnew) | |
| if full_cov: | |
| fvar = self.kern.K(Xnew) - tf.matmul(A, A, transpose_a=True) | |
| shape = tf.stack([1, 1, tf.shape(self.Y)[1]]) | |
| fvar = tf.tile(tf.expand_dims(fvar, 2), shape) | |
| else: | |
| fvar = self.kern.Kdiag(Xnew) - tf.reduce_sum(tf.square(A), 0) | |
| fvar = tf.tile(tf.reshape(fvar, (-1, 1)), [1, tf.shape(self.Y)[1]]) | |
| return fmean, fvar | |
| @AutoFlow(Xnew=(float_type, [None, None])) | |
| def predict_f_partial(self, Xnew, full_cov=False, kern=None): | |
| return self.build_predict(Xnew, full_cov, kern) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment