Created
October 7, 2024 11:11
-
-
Save mkhludnev/20ed5fa84325b35962867a256faa0974 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import logging | |
| import os | |
| from qdrant_client import QdrantClient, AsyncQdrantClient | |
| from llama_index.vector_stores.qdrant import QdrantVectorStore | |
| from llama_index.core.indices.vector_store.base import VectorStoreIndex | |
| from llama_index.core.schema import Document | |
| qdrant_client = QdrantClient(url=os.environ['QDRANT_URL'], | |
| api_key=os.environ['QDRANT_API_KEY'], # ,prefer_grpc=True, grpc_port=30080 | |
| timeout=600 | |
| ) | |
| qdrant_async = AsyncQdrantClient(url=os.environ['QDRANT_URL'], | |
| api_key=os.environ['QDRANT_API_KEY'], # ,prefer_grpc=True,grpc_port=30080 | |
| timeout=600 | |
| ) | |
| from llama_index.embeddings.langchain import LangchainEmbedding | |
| from langchain_community.embeddings.localai import LocalAIEmbeddings | |
| logging.basicConfig(level=logging.DEBUG, | |
| format='%(asctime)s.%(msecs)03d - %(name)s/%(levelname)s - %(message)s', | |
| datefmt='%Y-%m-%d %H:%M:%S') | |
| vector_store = QdrantVectorStore( | |
| "pydv9991_test", | |
| client=qdrant_client, | |
| aclient=qdrant_async, | |
| # prefer_grpc=True, | |
| # enable_hybrid=True, | |
| # fastembed_sparse_model=FastEmbedSparse(model_name="Qdrant/bm42-all-minilm-l6-v2-attentions"), | |
| batch_size=64, | |
| ) | |
| rag_object = VectorStoreIndex.from_vector_store( | |
| vector_store=vector_store, | |
| use_async=True, | |
| show_progress=True, | |
| embed_model= LangchainEmbedding(LocalAIEmbeddings(model=os.environ['EMBEDDINGS_MODEL'], | |
| openai_api_base=os.environ['EMBEDDINGS_URL'], | |
| openai_api_key=os.environ['EMBEDDINGS_KEY'],)) | |
| # quantization_config=models.ScalarQuantization( | |
| # scalar=models.ScalarQuantizationConfig( | |
| # type=models.ScalarType.INT8, | |
| # always_ram=True, | |
| # ), | |
| # ), | |
| # optimizers_config=models.OptimizersConfigDiff(default_segment_number=16), | |
| # hnsw_config=models.HnswConfigDiff(on_disk=False), | |
| ) | |
| rag_object.build_index_from_nodes([Document(text="whatever "+"lorem ipsum dolor sit amet"*i) for i in range(10)]) | |
| print(rag_object.index_struct.nodes_dict) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment