This project demonstrates global optimization techniques using SciPy on the Eggholder function, a complex mathematical function commonly used for testing optimization algorithms.
The Eggholder function is a challenging optimization problem with many local minima, making it an excellent benchmark for testing global optimization algorithms.


Global minimum: f(x*) = -959.6407, at x* = (512, 404.2319)
This implementation:
- Visualizes the Eggholder function in 3D
- Generates a dataset of function values
- Compares two global optimization methods: SHGO and Dual Annealing
- Sorts and displays results
- optimization_ex.py - Main script that visualizes and optimizes the Eggholder function
pip install -r requirements.txtpython3 optimization_ex.pyThis will:
- Generate a 3D plot of the Eggholder function (closes automatically after 5 seconds)
- Create
dataset.txtcontaining X1, X2, Y1 coordinates - Sort the dataset by the objective function value
- Run two optimization algorithms and compare results
pytest
