You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This is an OPML version of the HN Popularity Contest results for 2025, for importing into RSS feed readers.
Plug: if you want to find content related to your interests from thousands of obscure blogs and noisy sources like HN Newest, check out Scour. It's a free, personalized content feed I work on where you define your interests in your own words and it ranks content based on how closely related it is to those topics.
Unminified prompts and tool definitions for Claude Code
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Claude Code is a Beta product per Anthropic's Commercial Terms of Service.
// By using Claude Code, you agree that all code acceptance or rejection decisions you make,
// and the associated conversations in context, constitute Feedback under Anthropic's Commercial Terms,
// and may be used to improve Anthropic's products, including training models.
// You are responsible for reviewing any code suggestions before use.
// (c) Anthropic PBC. All rights reserved. Use is subject to Anthropic's Commercial Terms of Service (https://www.anthropic.com/legal/commercial-terms).
With the release of the ChatGPT model and followup large language models (LLMs), there was a lot of discussion of the importance of "RLHF training", that is, "reinforcement learning from human feedback".
I was puzzled for a while as to why RL (Reinforcement Learning) is better than learning from demonstrations (a.k.a supervised learning) for training language models. Shouldn't learning from demonstrations (or, in language model terminology "instruction fine tuning", learning to immitate human written answers) be sufficient? I came up with a theoretical argument that was somewhat convincing. But I came to realize there is an additional argumment which not only supports the case of RL training, but also requires it, in particular for models like ChatGPT. This additional argument is spelled out in (the first half of) a talk by John Schulman from OpenAI. This post pretty much