Skip to content

Instantly share code, notes, and snippets.

@konard
Created February 15, 2026 09:31
Show Gist options
  • Select an option

  • Save konard/5537df9cbccfa8f11d4290877ec2f36e to your computer and use it in GitHub Desktop.

Select an option

Save konard/5537df9cbccfa8f11d4290877ec2f36e to your computer and use it in GitHub Desktop.
This file has been truncated, but you can view the full file.
# Solve.mjs Log - 2026-02-15T09:03:37.529Z
[2026-02-15T09:03:37.530Z] [INFO] 📁 Log file: /home/hive/solve-2026-02-15T09-03-37-529Z.log
[2026-02-15T09:03:37.531Z] [INFO] (All output will be logged here)
[2026-02-15T09:03:38.014Z] [INFO]
[2026-02-15T09:03:38.015Z] [INFO] 🚀 solve v1.23.3
[2026-02-15T09:03:38.015Z] [INFO] 🔧 Raw command executed:
[2026-02-15T09:03:38.015Z] [INFO] /home/hive/.nvm/versions/node/v20.20.0/bin/node /home/hive/.bun/bin/solve https://github.com/link-assistant/agent/pull/180 --model opus --attach-logs --verbose --no-tool-check --auto-resume-on-limit-reset --tokens-budget-stats
[2026-02-15T09:03:38.016Z] [INFO]
[2026-02-15T09:03:38.038Z] [INFO]
[2026-02-15T09:03:38.038Z] [WARNING] ⚠️ SECURITY WARNING: --attach-logs is ENABLED
[2026-02-15T09:03:38.039Z] [INFO]
[2026-02-15T09:03:38.039Z] [INFO] This option will upload the complete solution draft log file to the Pull Request.
[2026-02-15T09:03:38.039Z] [INFO] The log may contain sensitive information such as:
[2026-02-15T09:03:38.040Z] [INFO] • API keys, tokens, or secrets
[2026-02-15T09:03:38.040Z] [INFO] • File paths and directory structures
[2026-02-15T09:03:38.040Z] [INFO] • Command outputs and error messages
[2026-02-15T09:03:38.040Z] [INFO] • Internal system information
[2026-02-15T09:03:38.041Z] [INFO]
[2026-02-15T09:03:38.041Z] [INFO] ⚠️ DO NOT use this option with public repositories or if the log
[2026-02-15T09:03:38.041Z] [INFO] might contain sensitive data that should not be shared publicly.
[2026-02-15T09:03:38.041Z] [INFO]
[2026-02-15T09:03:38.041Z] [INFO] Continuing in 5 seconds... (Press Ctrl+C to abort)
[2026-02-15T09:03:38.042Z] [INFO]
[2026-02-15T09:03:43.047Z] [INFO]
[2026-02-15T09:03:43.067Z] [INFO] 💾 Disk space check: 55160MB available (2048MB required) ✅
[2026-02-15T09:03:43.069Z] [INFO] 🧠 Memory check: 10976MB available, swap: 4095MB (0MB used), total: 15071MB (256MB required) ✅
[2026-02-15T09:03:43.088Z] [INFO] ⏩ Skipping tool connection validation (dry-run mode or skip-tool-connection-check enabled)
[2026-02-15T09:03:43.090Z] [INFO] ⏩ Skipping GitHub authentication check (dry-run mode or skip-tool-connection-check enabled)
[2026-02-15T09:03:43.090Z] [INFO] 📋 URL validation:
[2026-02-15T09:03:43.090Z] [INFO] Input URL: https://github.com/link-assistant/agent/pull/180
[2026-02-15T09:03:43.091Z] [INFO] Is Issue URL: false
[2026-02-15T09:03:43.091Z] [INFO] Is PR URL: true
[2026-02-15T09:03:43.091Z] [INFO] 🔍 Checking repository access for auto-fork...
[2026-02-15T09:03:43.885Z] [INFO] Repository visibility: public
[2026-02-15T09:03:43.885Z] [INFO] ✅ Auto-fork: Write access detected to public repository, working directly on repository
[2026-02-15T09:03:43.886Z] [INFO] 🔍 Checking repository write permissions...
[2026-02-15T09:03:44.240Z] [INFO] ✅ Repository write access: Confirmed
[2026-02-15T09:03:44.835Z] [INFO] Repository visibility: public
[2026-02-15T09:03:44.837Z] [INFO] Auto-cleanup default: false (repository is public)
[2026-02-15T09:03:44.838Z] [INFO] 🔄 Continue mode: Working with PR #180
[2026-02-15T09:03:44.839Z] [INFO] Continue mode activated: PR URL provided directly
[2026-02-15T09:03:44.839Z] [INFO] PR Number set to: 180
[2026-02-15T09:03:44.840Z] [INFO] Will fetch PR details and linked issue
[2026-02-15T09:03:45.322Z] [INFO] 📝 PR branch: issue-179-8f4f575e3d2d
[2026-02-15T09:03:45.323Z] [INFO] 🔗 Found linked issue #179
[2026-02-15T09:03:45.324Z] [INFO]
Creating temporary directory: /tmp/gh-issue-solver-1771146225324
[2026-02-15T09:03:45.328Z] [INFO]
📥 Cloning repository: link-assistant/agent
[2026-02-15T09:03:46.409Z] [INFO] ✅ Cloned to: /tmp/gh-issue-solver-1771146225324
[2026-02-15T09:03:46.558Z] [INFO]
📌 Default branch: main
[2026-02-15T09:03:46.633Z] [INFO]
🔄 Checking out PR branch: issue-179-8f4f575e3d2d
[2026-02-15T09:03:46.634Z] [INFO] 📥 Fetching branches: From remote...
[2026-02-15T09:03:47.075Z] [INFO] 🔍 Verifying: Branch checkout...
[2026-02-15T09:03:47.109Z] [INFO] ✅ Branch checked out: issue-179-8f4f575e3d2d
[2026-02-15T09:03:47.110Z] [INFO] ✅ Current branch: issue-179-8f4f575e3d2d
[2026-02-15T09:03:47.110Z] [INFO] Branch operation: Checkout existing PR branch
[2026-02-15T09:03:47.111Z] [INFO] Branch verification: Matches expected
[2026-02-15T09:03:47.113Z] [INFO]
🔄 Continue mode: ACTIVE
[2026-02-15T09:03:47.114Z] [INFO] Using existing PR: #180
[2026-02-15T09:03:47.114Z] [INFO] PR URL: https://github.com/link-assistant/agent/pull/180
[2026-02-15T09:03:47.114Z] [INFO]
🚀 Starting work session: 2026-02-15T09:03:47.114Z
[2026-02-15T09:03:47.503Z] [INFO] 📝 Converting PR: Back to draft mode...
[2026-02-15T09:03:48.258Z] [INFO] ✅ PR converted: Now in draft mode
[2026-02-15T09:03:49.600Z] [INFO] 💬 Posted: AI Work Session Started comment
[2026-02-15T09:03:49.911Z] [INFO] 👤 Current user: konard
[2026-02-15T09:03:49.912Z] [INFO]
📊 Comment counting conditions:
[2026-02-15T09:03:49.912Z] [INFO] prNumber: 180
[2026-02-15T09:03:49.912Z] [INFO] branchName: issue-179-8f4f575e3d2d
[2026-02-15T09:03:49.912Z] [INFO] isContinueMode: true
[2026-02-15T09:03:49.913Z] [INFO] Will count comments: true
[2026-02-15T09:03:49.913Z] [INFO] 💬 Counting comments: Checking for new comments since last commit...
[2026-02-15T09:03:49.913Z] [INFO] PR #180 on branch: issue-179-8f4f575e3d2d
[2026-02-15T09:03:49.913Z] [INFO] Owner/Repo: link-assistant/agent
[2026-02-15T09:03:50.338Z] [INFO] 📅 Last commit time (from API): 2026-02-15T09:00:42.000Z
[2026-02-15T09:03:51.229Z] [INFO] 💬 New PR comments: 2
[2026-02-15T09:03:51.230Z] [INFO] 💬 New PR review comments: 0
[2026-02-15T09:03:51.230Z] [INFO] 💬 New issue comments: 0
[2026-02-15T09:03:51.231Z] [INFO] Total new comments: 2
[2026-02-15T09:03:51.231Z] [INFO] Comment lines to add: Yes
[2026-02-15T09:03:51.231Z] [INFO] PR review comments fetched: 0
[2026-02-15T09:03:51.231Z] [INFO] PR conversation comments fetched: 3
[2026-02-15T09:03:51.231Z] [INFO] Total PR comments checked: 3
[2026-02-15T09:03:53.878Z] [INFO] Feedback info will be added to prompt:
[2026-02-15T09:03:53.879Z] [INFO] - New comments on the pull request: 2
[2026-02-15T09:03:53.879Z] [INFO] - Pull request description was edited after last commit
[2026-02-15T09:03:53.879Z] [INFO] 📅 Getting timestamps: From GitHub servers...
[2026-02-15T09:03:54.261Z] [INFO] 📝 Issue updated: 2026-02-15T08:43:52.000Z
[2026-02-15T09:03:54.563Z] [INFO] 💬 Comments: None found
[2026-02-15T09:03:54.934Z] [INFO] 🔀 Recent PR: 2026-02-15T08:54:29.000Z
[2026-02-15T09:03:54.934Z] [INFO]
✅ Reference time: 2026-02-15T08:54:29.000Z
[2026-02-15T09:03:54.935Z] [INFO]
🔍 Checking for uncommitted changes to include as feedback...
[2026-02-15T09:03:54.974Z] [INFO] ✅ No uncommitted changes found
[2026-02-15T09:03:57.236Z] [INFO] 🎭 Playwright MCP detected - enabling browser automation hints
[2026-02-15T09:03:57.352Z] [INFO] 👁️ Model vision capability: supported
[2026-02-15T09:03:57.353Z] [INFO]
📝 Final prompt structure:
[2026-02-15T09:03:57.353Z] [INFO] Characters: 359
[2026-02-15T09:03:57.353Z] [INFO] System prompt characters: 12683
[2026-02-15T09:03:57.354Z] [INFO] Feedback info: Included
[2026-02-15T09:03:57.355Z] [INFO]
🤖 Executing Claude: OPUS
[2026-02-15T09:03:57.356Z] [INFO] Model: opus
[2026-02-15T09:03:57.356Z] [INFO] Working directory: /tmp/gh-issue-solver-1771146225324
[2026-02-15T09:03:57.356Z] [INFO] Branch: issue-179-8f4f575e3d2d
[2026-02-15T09:03:57.356Z] [INFO] Prompt length: 359 chars
[2026-02-15T09:03:57.356Z] [INFO] System prompt length: 12683 chars
[2026-02-15T09:03:57.356Z] [INFO] Feedback info included: Yes (2 lines)
[2026-02-15T09:03:57.400Z] [INFO] 📈 System resources before execution:
[2026-02-15T09:03:57.401Z] [INFO] Memory: MemFree: 8458900 kB
[2026-02-15T09:03:57.401Z] [INFO] Load: 0.22 0.17 0.21 1/284 45397
[2026-02-15T09:03:57.402Z] [INFO]
📝 Raw command:
[2026-02-15T09:03:57.402Z] [INFO] (cd "/tmp/gh-issue-solver-1771146225324" && claude --output-format stream-json --verbose --dangerously-skip-permissions --model claude-opus-4-5-20251101 -p "Issue to solve: https://github.com/link-assistant/agent/issues/179
Your prepared branch: issue-179-8f4f575e3d2d
Your prepared working directory: /tmp/gh-issue-solver-1771146225324
Your prepared Pull Request: https://github.com/link-assistant/agent/pull/180
New comments on the pull request: 2
Pull request description was edited after last commit
Continue.
" --append-system-prompt "You are an AI issue solver. You prefer to find the root cause of each and every issue. When you talk, you prefer to speak with facts which you have double-checked yourself or cite sources that provide evidence, like quote actual code or give references to documents or pages found on the internet. You are polite and patient, and prefer to assume good intent, trying your best to be helpful. If you are unsure or have assumptions, you prefer to test them yourself or ask questions to clarify requirements.
General guidelines.
- When you execute commands, always save their logs to files for easier reading if the output becomes large.
- When running commands, do not set a timeout yourself — let them run as long as needed (default timeout - 2 minutes is more than enough), and once they finish, review the logs in the file.
- When running sudo commands (especially package installations like apt-get, yum, npm install, etc.), always run them in the background to avoid timeout issues and permission errors when the process needs to be killed. Use the run_in_background parameter or append & to the command.
- When CI is failing or user reports failures, consider adding a detailed investigation protocol to your todo list with these steps:
Step 1: List recent runs with timestamps using: gh run list --repo link-assistant/agent --branch issue-179-8f4f575e3d2d --limit 5 --json databaseId,conclusion,createdAt,headSha
Step 2: Verify runs are after the latest commit by checking timestamps and SHA
Step 3: For each non-passing run, download logs to preserve them: gh run view {run-id} --repo link-assistant/agent --log > ci-logs/{workflow}-{run-id}.log
Step 4: Read each downloaded log file using Read tool to understand the actual failures
Step 5: Report findings with specific errors and line numbers from logs
This detailed investigation is especially helpful when user mentions CI failures, asks to investigate logs, you see non-passing status, or when finalizing a PR.
Note: If user says \"failing\" but tools show \"passing\", this might indicate stale data - consider downloading fresh logs and checking timestamps to resolve the discrepancy.
- When a code or log file has more than 1500 lines, read it in chunks of 1500 lines.
- When facing a complex problem, do as much tracing as possible and turn on all verbose modes.
- When you create debug, test, or example/experiment scripts for fixing, always keep them in an ./examples and/or ./experiments folders so you can reuse them later.
- When testing your assumptions, use the experiment scripts, and add it to ./experiments folder.
- When your experiments can show real world use case of the software, add it to ./examples folder.
- When you face something extremely hard, use divide and conquer — it always helps.
Initial research.
- When you start, make sure you create detailed plan for yourself and follow your todo list step by step, make sure that as many points from these guidelines are added to your todo list to keep track of everything that can help you solve the issue with highest possible quality.
- When user mentions CI failures or asks to investigate logs, consider adding these todos to track the investigation: (1) List recent CI runs with timestamps, (2) Download logs from failed runs to ci-logs/ directory, (3) Analyze error messages and identify root cause, (4) Implement fix, (5) Verify fix resolves the specific errors found in logs.
- When you read issue, read all details and comments thoroughly.
- When you see screenshots or images in issue descriptions, pull request descriptions, comments, or discussions, use WebFetch tool (or fetch tool) to download the image first, then use Read tool to view and analyze it. IMPORTANT: Before reading downloaded images with the Read tool, verify the file is a valid image (not HTML). Use a CLI tool like 'file' command to check the actual file format. Reading corrupted or non-image files (like GitHub's HTML 404 pages saved as .png) can cause \"Could not process image\" errors and may crash the AI solver process. If the file command shows \"HTML\" or \"text\", the download failed and you should retry or skip the image.
- When you need issue details, use gh issue view https://github.com/link-assistant/agent/issues/179.
- When you need related code, use gh search code --owner link-assistant [keywords].
- When you need repo context, read files in your working directory.
- When you study related work, study the most recent related pull requests.
- When issue is not defined enough, write a comment to ask clarifying questions.
- When accessing GitHub Gists (especially private ones), use gh gist view command instead of direct URL fetching to ensure proper authentication.
- When you are fixing a bug, please make sure you first find the actual root cause, do as many experiments as needed.
- When you are fixing a bug and code does not have enough tracing/logs, add them and make sure they stay in the code, but are switched off by default.
- When you need comments on a pull request, note that GitHub has THREE different comment types with different API endpoints:
1. PR review comments (inline code comments): gh api repos/link-assistant/agent/pulls/180/comments --paginate
2. PR conversation comments (general discussion): gh api repos/link-assistant/agent/issues/180/comments --paginate
3. PR reviews (approve/request changes): gh api repos/link-assistant/agent/pulls/180/reviews --paginate
IMPORTANT: The command \"gh pr view --json comments\" ONLY returns conversation comments and misses review comments!
- When you need latest comments on issue, use gh api repos/link-assistant/agent/issues/179/comments --paginate.
Solution development and testing.
- When issue is solvable, implement code with tests.
- When implementing features, search for similar existing implementations in the codebase and use them as examples instead of implementing everything from scratch.
- When coding, each atomic step that can be useful by itself should be commited to the pull request's branch, meaning if work will be interrupted by any reason parts of solution will still be kept intact and safe in pull request.
- When you test:
start from testing of small functions using separate scripts;
write unit tests with mocks for easy and quick start.
- When you test integrations, use existing framework.
- When you test solution draft, include automated checks in pr.
- When issue is unclear, write comment on issue asking questions.
- When you encounter any problems that you unable to solve yourself (any human feedback or help), write a comment to the pull request asking for help.
- When you need human help, use gh pr comment 180 --body \"your message\" to comment on existing PR.
Preparing pull request.
- When you code, follow contributing guidelines.
- When you commit, write clear message.
- When you need examples of style, use gh pr list --repo link-assistant/agent --state merged --search [keywords].
- When you open pr, describe solution draft and include tests.
- When there is a package with version and GitHub Actions workflows for automatic release, update the version (or other necessary release trigger) in your pull request to prepare for next release.
- When you update existing pr 180, use gh pr edit to modify title and description.
- When you are about to commit or push code, ALWAYS run local CI checks first if they are available in contributing guidelines (like ruff check, mypy, eslint, etc.) to catch errors before pushing.
- When you finalize the pull request:
follow style from merged prs for code, title, and description,
make sure no uncommitted changes corresponding to the original requirements are left behind,
make sure the default branch is merged to the pull request's branch,
make sure all CI checks passing if they exist before you finish,
check for latest comments on the issue and pull request to ensure no recent feedback was missed,
double-check that all changes in the pull request answer to original requirements of the issue,
make sure no new new bugs are introduced in pull request by carefully reading gh pr diff,
make sure no previously existing features were removed without an explicit request from users via the issue description, issue comments, and/or pull request comments.
- When you finish implementation, use gh pr ready 180.
Workflow and collaboration.
- When you check branch, verify with git branch --show-current.
- When you push, push only to branch issue-179-8f4f575e3d2d.
- When you finish, create a pull request from branch issue-179-8f4f575e3d2d. (Note: PR 180 already exists, update it instead)
- When you organize workflow, use pull requests instead of direct merges to default branch (main or master).
- When you manage commits, preserve commit history for later analysis.
- When you contribute, keep repository history forward-moving with regular commits, pushes, and reverts if needed.
- When you face conflict that you cannot resolve yourself, ask for help.
- When you collaborate, respect branch protections by working only on issue-179-8f4f575e3d2d.
- When you mention result, include pull request url or comment url.
- When you need to create pr, remember pr 180 already exists for this branch.
Self review.
- When you check your solution draft, run all tests locally.
- When you check your solution draft, verify git status shows a clean working tree with no uncommitted changes.
- When you compare with repo style, use gh pr diff [number].
- When you finalize, confirm code, tests, and description are consistent.
GitHub CLI command patterns.
- IMPORTANT: Always use --paginate flag when fetching lists from GitHub API to ensure all results are returned (GitHub returns max 30 per page by default).
- When listing PR review comments (inline code comments), use gh api repos/OWNER/REPO/pulls/NUMBER/comments --paginate.
- When listing PR conversation comments, use gh api repos/OWNER/REPO/issues/NUMBER/comments --paginate.
- When listing PR reviews, use gh api repos/OWNER/REPO/pulls/NUMBER/reviews --paginate.
- When listing issue comments, use gh api repos/OWNER/REPO/issues/NUMBER/comments --paginate.
- When adding PR comment, use gh pr comment NUMBER --body \"text\" --repo OWNER/REPO.
- When adding issue comment, use gh issue comment NUMBER --body \"text\" --repo OWNER/REPO.
- When viewing PR details, use gh pr view NUMBER --repo OWNER/REPO.
- When filtering with jq, use gh api repos/\${owner}/\${repo}/pulls/\${prNumber}/comments --paginate --jq 'reverse | .[0:5]'.
Playwright MCP usage (browser automation via mcp__playwright__* tools).
- When you develop frontend web applications (HTML, CSS, JavaScript, React, Vue, Angular, etc.), use Playwright MCP tools to test the UI in a real browser.
- When WebFetch tool fails to retrieve expected content (e.g., returns empty content, JavaScript-rendered pages, or login-protected pages), use Playwright MCP tools (browser_navigate, browser_snapshot) as a fallback for web browsing.
- When you need to interact with dynamic web pages that require JavaScript execution, use Playwright MCP tools.
- When you need to visually verify how a web page looks or take screenshots, use browser_take_screenshot from Playwright MCP.
- When you need to fill forms, click buttons, or perform user interactions on web pages, use Playwright MCP tools (browser_click, browser_type, browser_fill_form).
- When you need to test responsive design or different viewport sizes, use browser_resize from Playwright MCP.
- When you finish using the browser, always close it with browser_close to free resources.
Visual UI work and screenshots.
- When you work on visual UI changes (frontend, CSS, HTML, design), include a render or screenshot of the final result in the pull request description.
- When you need to show visual results, take a screenshot and save it to the repository (e.g., in a docs/screenshots/ or assets/ folder).
- When you save screenshots to the repository, use permanent raw file links in the pull request description markdown (e.g., https://raw.githubusercontent.com/link-assistant/agent/issue-179-8f4f575e3d2d/docs/screenshots/result.png).
- When uploading images, commit them to the branch first, then reference them using the raw GitHub URL format.
- When the visual result is important for review, mention it explicitly in the pull request description with the embedded image." | jq -c .)
[2026-02-15T09:03:57.402Z] [INFO]
[2026-02-15T09:03:57.403Z] [INFO] 📋 User prompt:
[2026-02-15T09:03:57.403Z] [INFO] ---BEGIN USER PROMPT---
[2026-02-15T09:03:57.403Z] [INFO] Issue to solve: https://github.com/link-assistant/agent/issues/179
Your prepared branch: issue-179-8f4f575e3d2d
Your prepared working directory: /tmp/gh-issue-solver-1771146225324
Your prepared Pull Request: https://github.com/link-assistant/agent/pull/180
New comments on the pull request: 2
Pull request description was edited after last commit
Continue.
[2026-02-15T09:03:57.403Z] [INFO] ---END USER PROMPT---
[2026-02-15T09:03:57.403Z] [INFO] 📋 System prompt:
[2026-02-15T09:03:57.404Z] [INFO] ---BEGIN SYSTEM PROMPT---
[2026-02-15T09:03:57.404Z] [INFO] You are an AI issue solver. You prefer to find the root cause of each and every issue. When you talk, you prefer to speak with facts which you have double-checked yourself or cite sources that provide evidence, like quote actual code or give references to documents or pages found on the internet. You are polite and patient, and prefer to assume good intent, trying your best to be helpful. If you are unsure or have assumptions, you prefer to test them yourself or ask questions to clarify requirements.
General guidelines.
- When you execute commands, always save their logs to files for easier reading if the output becomes large.
- When running commands, do not set a timeout yourself — let them run as long as needed (default timeout - 2 minutes is more than enough), and once they finish, review the logs in the file.
- When running sudo commands (especially package installations like apt-get, yum, npm install, etc.), always run them in the background to avoid timeout issues and permission errors when the process needs to be killed. Use the run_in_background parameter or append & to the command.
- When CI is failing or user reports failures, consider adding a detailed investigation protocol to your todo list with these steps:
Step 1: List recent runs with timestamps using: gh run list --repo link-assistant/agent --branch issue-179-8f4f575e3d2d --limit 5 --json databaseId,conclusion,createdAt,headSha
Step 2: Verify runs are after the latest commit by checking timestamps and SHA
Step 3: For each non-passing run, download logs to preserve them: gh run view {run-id} --repo link-assistant/agent --log > ci-logs/{workflow}-{run-id}.log
Step 4: Read each downloaded log file using Read tool to understand the actual failures
Step 5: Report findings with specific errors and line numbers from logs
This detailed investigation is especially helpful when user mentions CI failures, asks to investigate logs, you see non-passing status, or when finalizing a PR.
Note: If user says "failing" but tools show "passing", this might indicate stale data - consider downloading fresh logs and checking timestamps to resolve the discrepancy.
- When a code or log file has more than 1500 lines, read it in chunks of 1500 lines.
- When facing a complex problem, do as much tracing as possible and turn on all verbose modes.
- When you create debug, test, or example/experiment scripts for fixing, always keep them in an ./examples and/or ./experiments folders so you can reuse them later.
- When testing your assumptions, use the experiment scripts, and add it to ./experiments folder.
- When your experiments can show real world use case of the software, add it to ./examples folder.
- When you face something extremely hard, use divide and conquer — it always helps.
Initial research.
- When you start, make sure you create detailed plan for yourself and follow your todo list step by step, make sure that as many points from these guidelines are added to your todo list to keep track of everything that can help you solve the issue with highest possible quality.
- When user mentions CI failures or asks to investigate logs, consider adding these todos to track the investigation: (1) List recent CI runs with timestamps, (2) Download logs from failed runs to ci-logs/ directory, (3) Analyze error messages and identify root cause, (4) Implement fix, (5) Verify fix resolves the specific errors found in logs.
- When you read issue, read all details and comments thoroughly.
- When you see screenshots or images in issue descriptions, pull request descriptions, comments, or discussions, use WebFetch tool (or fetch tool) to download the image first, then use Read tool to view and analyze it. IMPORTANT: Before reading downloaded images with the Read tool, verify the file is a valid image (not HTML). Use a CLI tool like 'file' command to check the actual file format. Reading corrupted or non-image files (like GitHub's HTML 404 pages saved as .png) can cause "Could not process image" errors and may crash the AI solver process. If the file command shows "HTML" or "text", the download failed and you should retry or skip the image.
- When you need issue details, use gh issue view https://github.com/link-assistant/agent/issues/179.
- When you need related code, use gh search code --owner link-assistant [keywords].
- When you need repo context, read files in your working directory.
- When you study related work, study the most recent related pull requests.
- When issue is not defined enough, write a comment to ask clarifying questions.
- When accessing GitHub Gists (especially private ones), use gh gist view command instead of direct URL fetching to ensure proper authentication.
- When you are fixing a bug, please make sure you first find the actual root cause, do as many experiments as needed.
- When you are fixing a bug and code does not have enough tracing/logs, add them and make sure they stay in the code, but are switched off by default.
- When you need comments on a pull request, note that GitHub has THREE different comment types with different API endpoints:
1. PR review comments (inline code comments): gh api repos/link-assistant/agent/pulls/180/comments --paginate
2. PR conversation comments (general discussion): gh api repos/link-assistant/agent/issues/180/comments --paginate
3. PR reviews (approve/request changes): gh api repos/link-assistant/agent/pulls/180/reviews --paginate
IMPORTANT: The command "gh pr view --json comments" ONLY returns conversation comments and misses review comments!
- When you need latest comments on issue, use gh api repos/link-assistant/agent/issues/179/comments --paginate.
Solution development and testing.
- When issue is solvable, implement code with tests.
- When implementing features, search for similar existing implementations in the codebase and use them as examples instead of implementing everything from scratch.
- When coding, each atomic step that can be useful by itself should be commited to the pull request's branch, meaning if work will be interrupted by any reason parts of solution will still be kept intact and safe in pull request.
- When you test:
start from testing of small functions using separate scripts;
write unit tests with mocks for easy and quick start.
- When you test integrations, use existing framework.
- When you test solution draft, include automated checks in pr.
- When issue is unclear, write comment on issue asking questions.
- When you encounter any problems that you unable to solve yourself (any human feedback or help), write a comment to the pull request asking for help.
- When you need human help, use gh pr comment 180 --body "your message" to comment on existing PR.
Preparing pull request.
- When you code, follow contributing guidelines.
- When you commit, write clear message.
- When you need examples of style, use gh pr list --repo link-assistant/agent --state merged --search [keywords].
- When you open pr, describe solution draft and include tests.
- When there is a package with version and GitHub Actions workflows for automatic release, update the version (or other necessary release trigger) in your pull request to prepare for next release.
- When you update existing pr 180, use gh pr edit to modify title and description.
- When you are about to commit or push code, ALWAYS run local CI checks first if they are available in contributing guidelines (like ruff check, mypy, eslint, etc.) to catch errors before pushing.
- When you finalize the pull request:
follow style from merged prs for code, title, and description,
make sure no uncommitted changes corresponding to the original requirements are left behind,
make sure the default branch is merged to the pull request's branch,
make sure all CI checks passing if they exist before you finish,
check for latest comments on the issue and pull request to ensure no recent feedback was missed,
double-check that all changes in the pull request answer to original requirements of the issue,
make sure no new new bugs are introduced in pull request by carefully reading gh pr diff,
make sure no previously existing features were removed without an explicit request from users via the issue description, issue comments, and/or pull request comments.
- When you finish implementation, use gh pr ready 180.
Workflow and collaboration.
- When you check branch, verify with git branch --show-current.
- When you push, push only to branch issue-179-8f4f575e3d2d.
- When you finish, create a pull request from branch issue-179-8f4f575e3d2d. (Note: PR 180 already exists, update it instead)
- When you organize workflow, use pull requests instead of direct merges to default branch (main or master).
- When you manage commits, preserve commit history for later analysis.
- When you contribute, keep repository history forward-moving with regular commits, pushes, and reverts if needed.
- When you face conflict that you cannot resolve yourself, ask for help.
- When you collaborate, respect branch protections by working only on issue-179-8f4f575e3d2d.
- When you mention result, include pull request url or comment url.
- When you need to create pr, remember pr 180 already exists for this branch.
Self review.
- When you check your solution draft, run all tests locally.
- When you check your solution draft, verify git status shows a clean working tree with no uncommitted changes.
- When you compare with repo style, use gh pr diff [number].
- When you finalize, confirm code, tests, and description are consistent.
GitHub CLI command patterns.
- IMPORTANT: Always use --paginate flag when fetching lists from GitHub API to ensure all results are returned (GitHub returns max 30 per page by default).
- When listing PR review comments (inline code comments), use gh api repos/OWNER/REPO/pulls/NUMBER/comments --paginate.
- When listing PR conversation comments, use gh api repos/OWNER/REPO/issues/NUMBER/comments --paginate.
- When listing PR reviews, use gh api repos/OWNER/REPO/pulls/NUMBER/reviews --paginate.
- When listing issue comments, use gh api repos/OWNER/REPO/issues/NUMBER/comments --paginate.
- When adding PR comment, use gh pr comment NUMBER --body "text" --repo OWNER/REPO.
- When adding issue comment, use gh issue comment NUMBER --body "text" --repo OWNER/REPO.
- When viewing PR details, use gh pr view NUMBER --repo OWNER/REPO.
- When filtering with jq, use gh api repos/${owner}/${repo}/pulls/${prNumber}/comments --paginate --jq 'reverse | .[0:5]'.
Playwright MCP usage (browser automation via mcp__playwright__* tools).
- When you develop frontend web applications (HTML, CSS, JavaScript, React, Vue, Angular, etc.), use Playwright MCP tools to test the UI in a real browser.
- When WebFetch tool fails to retrieve expected content (e.g., returns empty content, JavaScript-rendered pages, or login-protected pages), use Playwright MCP tools (browser_navigate, browser_snapshot) as a fallback for web browsing.
- When you need to interact with dynamic web pages that require JavaScript execution, use Playwright MCP tools.
- When you need to visually verify how a web page looks or take screenshots, use browser_take_screenshot from Playwright MCP.
- When you need to fill forms, click buttons, or perform user interactions on web pages, use Playwright MCP tools (browser_click, browser_type, browser_fill_form).
- When you need to test responsive design or different viewport sizes, use browser_resize from Playwright MCP.
- When you finish using the browser, always close it with browser_close to free resources.
Visual UI work and screenshots.
- When you work on visual UI changes (frontend, CSS, HTML, design), include a render or screenshot of the final result in the pull request description.
- When you need to show visual results, take a screenshot and save it to the repository (e.g., in a docs/screenshots/ or assets/ folder).
- When you save screenshots to the repository, use permanent raw file links in the pull request description markdown (e.g., https://raw.githubusercontent.com/link-assistant/agent/issue-179-8f4f575e3d2d/docs/screenshots/result.png).
- When uploading images, commit them to the branch first, then reference them using the raw GitHub URL format.
- When the visual result is important for review, mention it explicitly in the pull request description with the embedded image.
[2026-02-15T09:03:57.404Z] [INFO] ---END SYSTEM PROMPT---
[2026-02-15T09:03:57.405Z] [INFO] 📊 CLAUDE_CODE_MAX_OUTPUT_TOKENS: 64000
[2026-02-15T09:03:57.406Z] [INFO] 📊 MCP_TIMEOUT: 900000ms (server startup)
[2026-02-15T09:03:57.406Z] [INFO] 📊 MCP_TOOL_TIMEOUT: 900000ms (tool execution)
[2026-02-15T09:03:57.406Z] [INFO] 📋 Command details:
[2026-02-15T09:03:57.407Z] [INFO] 📂 Working directory: /tmp/gh-issue-solver-1771146225324
[2026-02-15T09:03:57.407Z] [INFO] 🌿 Branch: issue-179-8f4f575e3d2d
[2026-02-15T09:03:57.407Z] [INFO] 🤖 Model: Claude OPUS
[2026-02-15T09:03:57.407Z] [INFO]
▶️ Streaming output:
[2026-02-15T09:03:59.918Z] [INFO] {
"type": "system",
"subtype": "init",
"cwd": "/tmp/gh-issue-solver-1771146225324",
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"tools": [
"Task",
"TaskOutput",
"Bash",
"Glob",
"Grep",
"ExitPlanMode",
"Read",
"Edit",
"Write",
"NotebookEdit",
"WebFetch",
"TodoWrite",
"WebSearch",
"TaskStop",
"AskUserQuestion",
"Skill",
"EnterPlanMode",
"ToolSearch",
"mcp__playwright__browser_close",
"mcp__playwright__browser_resize",
"mcp__playwright__browser_console_messages",
"mcp__playwright__browser_handle_dialog",
"mcp__playwright__browser_evaluate",
"mcp__playwright__browser_file_upload",
"mcp__playwright__browser_fill_form",
"mcp__playwright__browser_install",
"mcp__playwright__browser_press_key",
"mcp__playwright__browser_type",
"mcp__playwright__browser_navigate",
"mcp__playwright__browser_navigate_back",
"mcp__playwright__browser_network_requests",
"mcp__playwright__browser_run_code",
"mcp__playwright__browser_take_screenshot",
"mcp__playwright__browser_snapshot",
"mcp__playwright__browser_click",
"mcp__playwright__browser_drag",
"mcp__playwright__browser_hover",
"mcp__playwright__browser_select_option",
"mcp__playwright__browser_tabs",
"mcp__playwright__browser_wait_for"
],
"mcp_servers": [
{
"name": "playwright",
"status": "connected"
}
],
"model": "claude-opus-4-5-20251101",
"permissionMode": "bypassPermissions",
"slash_commands": [
"keybindings-help",
"debug",
"compact",
"context",
"cost",
"init",
"pr-comments",
"release-notes",
"review",
"security-review",
"insights"
],
"apiKeySource": "none",
"claude_code_version": "2.1.38",
"output_style": "default",
"agents": [
"Bash",
"general-purpose",
"statusline-setup",
"Explore",
"Plan"
],
"skills": [
"keybindings-help",
"debug"
],
"plugins": [],
"uuid": "99c4d9f5-fab8-4652-9f1a-74d7a87923e0",
"fast_mode_state": "off"
}
[2026-02-15T09:03:59.919Z] [INFO] 📌 Session ID: aeec3982-c0e3-44b8-bd7c-12bb5b9330fa
[2026-02-15T09:03:59.919Z] [INFO] 📁 Log renamed to: /home/hive/aeec3982-c0e3-44b8-bd7c-12bb5b9330fa.log
[2026-02-15T09:04:02.474Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01299ScUtbTpdcwtfBE5a6Eg",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "I'll start by checking the latest comments on the pull request and the updated description to understand what needs to be done."
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 2,
"cache_creation_input_tokens": 10453,
"cache_read_input_tokens": 15336,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 10453
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "fa55ada4-8106-436f-bde6-258afcfe2a29"
}
[2026-02-15T09:04:03.739Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01299ScUtbTpdcwtfBE5a6Eg",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_018NW7SrboQ9hdt7S4koCdTW",
"name": "Bash",
"input": {
"command": "gh pr view 180 --repo link-assistant/agent --json title,body,state,comments 2>&1",
"description": "Get PR details including title, body, state and comments"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 2,
"cache_creation_input_tokens": 10453,
"cache_read_input_tokens": 15336,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 10453
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "2a12c12f-065b-4f03-9c97-3440caff2582"
}
[2026-02-15T09:04:04.433Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01299ScUtbTpdcwtfBE5a6Eg",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_0151NJurKSgBAEXEjTkfaFRM",
"name": "Bash",
"input": {
"command": "gh api repos/link-assistant/agent/pulls/180/comments --paginate 2>&1",
"description": "Get PR review comments (inline code comments)"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 2,
"cache_creation_input_tokens": 10453,
"cache_read_input_tokens": 15336,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 10453
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "dc2de539-d85a-487c-9360-7d39b9a1fdb7"
}
[2026-02-15T09:04:05.039Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_018NW7SrboQ9hdt7S4koCdTW",
"type": "tool_result",
"content": "{\"body\":\"## Summary\\n\\nThis PR addresses issue #179 by:\\n- Adding a new `--output-used-model` CLI flag (and `AGENT_OUTPUT_USED_MODEL` env var) that includes model information in output parts\\n- Clarifying why auxiliary models like `kimi-k2.5-free` appear in logs when a different primary model is specified\\n\\n## Root Cause Analysis\\n\\nWhen running `agent --model big-pickle`, `kimi-k2.5-free` appears in logs because:\\n\\n1. The `getSmallModel()` function is called for **auxiliary tasks** (title generation, session summarization)\\n2. For the `opencode` provider, `kimi-k2.5-free` is first in the priority list for small models\\n3. This is **by design** - using cheaper/faster models for background tasks\\n\\nThis behavior is correct and intentional, but the log messages were confusing without context.\\n\\n## Changes\\n\\n### 1. New `--output-used-model` Flag\\n\\nWhen enabled, includes model information in `step_finish` parts:\\n\\n```json\\n{\\n \\\"type\\\": \\\"step_finish\\\",\\n \\\"part\\\": {\\n \\\"type\\\": \\\"step-finish\\\",\\n \\\"model\\\": {\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"modelID\\\": \\\"big-pickle\\\",\\n \\\"responseModelId\\\": \\\"gpt-4o-mini-2024-07-18\\\"\\n },\\n \\\"tokens\\\": {...}\\n }\\n}\\n```\\n\\n**Usage:**\\n- CLI flag: `agent --output-used-model`\\n- Environment variable: `AGENT_OUTPUT_USED_MODEL=true`\\n\\n### 2. Clearer Log Messages\\n\\nUpdated `getSmallModel()` to clarify that selected models are for auxiliary tasks:\\n\\n```json\\n{\\n \\\"message\\\": \\\"selected small model for auxiliary task\\\",\\n \\\"modelID\\\": \\\"kimi-k2.5-free\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"hint\\\": \\\"This model is used for title/summary generation, not primary requests\\\"\\n}\\n```\\n\\n### 3. Documentation\\n\\nAdded case study in `docs/case-studies/issue-179/` with:\\n- Detailed root cause analysis\\n- Technical explanation of model selection\\n- Proposed solutions and implementation details\\n\\n## Files Changed\\n\\n- `js/src/flag/flag.ts` - Added OUTPUT_USED_MODEL flag\\n- `js/src/session/message-v2.ts` - Added ModelInfo schema and model field to StepFinishPart\\n- `js/src/session/processor.ts` - Extract and include model info when flag enabled\\n- `js/src/index.js` - Added --output-used-model CLI option\\n- `js/src/provider/provider.ts` - Added documentation and clearer log messages\\n- `docs/case-studies/issue-179/README.md` - Case study documentation (new)\\n- `js/tests/output-used-model.test.js` - Tests for new functionality (new)\\n\\n## Test Plan\\n\\n- [x] New tests added in `js/tests/output-used-model.test.js`\\n- [ ] Verify `--output-used-model` flag includes model info in step_finish events\\n- [ ] Verify without flag, model info is NOT included (opt-in behavior)\\n- [ ] Verify `AGENT_OUTPUT_USED_MODEL=true` env var works\\n\\n## Issue Reference\\n\\nFixes #179\\n\\n---\\n🤖 Generated with [Claude Code](https://claude.com/claude-code)\",\"comments\":[{\"id\":\"IC_kwDOQYTy3M7or7q8\",\"author\":{\"login\":\"konard\"},\"authorAssociation\":\"MEMBER\",\"body\":\"## 🤖 Solution Draft Log\\nThis log file contains the complete execution trace of the AI solution draft process.\\n\\n💰 **Cost estimation:**\\n- Public pricing estimate: $10.588982\\n- Calculated by Anthropic: $7.343159 USD\\n- Difference: $-3.245823 (-30.65%)\\n📎 **Log file uploaded as Gist** (1473KB)\\n🔗 [View complete solution draft log](https://gist.githubusercontent.com/konard/acf7cacc55592ed662369526dbbc2a4d/raw/6820505a66407cd33232a82b15c0e320641d682c/solution-draft-log-pr-1771146046124.txt)\\n---\\n*Now working session is ended, feel free to review and add any feedback on the solution draft.*\",\"createdAt\":\"2026-02-15T09:00:50Z\",\"includesCreatedEdit\":false,\"isMinimized\":false,\"minimizedReason\":\"\",\"reactionGroups\":[],\"url\":\"https://github.com/link-assistant/agent/pull/180#issuecomment-3903830716\",\"viewerDidAuthor\":true},{\"id\":\"IC_kwDOQYTy3M7or-Uu\",\"author\":{\"login\":\"konard\"},\"authorAssociation\":\"MEMBER\",\"body\":\"Rename `--output-used-model` to `--output-response-model`.\\r\\n\\r\\nIn json:\\r\\n\\r\\n```\\r\\n\\\"model\\\": {\\r\\n \\\"providerID\\\": \\\"opencode\\\",\\r\\n \\\"modelID\\\": \\\"big-pickle\\\",\\r\\n \\\"responseModelId\\\": \\\"gpt-4o-mini-2024-07-18\\\"\\r\\n},\\r\\n```\\r\\n\\r\\nWe should make it more clear like:\\r\\n\\r\\n```\\r\\n\\\"model\\\": {\\r\\n \\\"providerID\\\": \\\"opencode\\\",\\r\\n \\\"requestedModelID\\\": \\\"big-pickle\\\",\\r\\n \\\"respondedModelID\\\": \\\"gpt-4o-mini-2024-07-18\\\"\\r\\n},\\r\\n```\\r\\n\\r\\nAlso previously we added\\r\\n\\r\\n--generate-title\\r\\n\\r\\nwhich is disabled by default, make sure we have such flags for each `auxiliary tasks`, for example for session summary: `--summarize-session` option should be added, and it should be disabled by default.\\r\\n\\r\\nWhen all `auxiliary tasks` are disabled, we should not select any `small model`, so we don't waste any additional tokens. But default I want all `auxiliary tasks` tasks to be disabled to preserve tokens, and only using options we can reenable them back.\\r\\n\\r\\nEnsure all changes are correct, consistent, validated, tested and fully meet all discussed requirements (check issue description and all comments in issue and in pull request). Ensure all CI/CD checks pass.\",\"createdAt\":\"2026-02-15T09:03:14Z\",\"includesCreatedEdit\":false,\"isMinimized\":false,\"minimizedReason\":\"\",\"reactionGroups\":[],\"url\":\"https://github.com/link-assistant/agent/pull/180#issuecomment-3903841582\",\"viewerDidAuthor\":true},{\"id\":\"IC_kwDOQYTy3M7or-7d\",\"author\":{\"login\":\"konard\"},\"authorAssociation\":\"MEMBER\",\"body\":\"🤖 **AI Work Session Started**\\n\\nStarting automated work session at 2026-02-15T09:03:47.114Z\\n\\nThe PR has been converted to draft mode while work is in progress.\\n\\n_This comment marks the beginning of an AI work session. Please wait for the session to finish, and provide your feedback._\",\"createdAt\":\"2026-02-15T09:03:49Z\",\"includesCreatedEdit\":false,\"isMinimized\":false,\"minimizedReason\":\"\",\"reactionGroups\":[],\"url\":\"https://github.com/link-assistant/agent/pull/180#issuecomment-3903844061\",\"viewerDidAuthor\":true}],\"state\":\"OPEN\",\"title\":\"feat: Add --output-used-model flag and clarify auxiliary model usage\"}",
"is_error": false
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "29b50dc2-2deb-4b4c-bb76-0a8fa2ca4231",
"tool_use_result": {
"stdout": "{\"body\":\"## Summary\\n\\nThis PR addresses issue #179 by:\\n- Adding a new `--output-used-model` CLI flag (and `AGENT_OUTPUT_USED_MODEL` env var) that includes model information in output parts\\n- Clarifying why auxiliary models like `kimi-k2.5-free` appear in logs when a different primary model is specified\\n\\n## Root Cause Analysis\\n\\nWhen running `agent --model big-pickle`, `kimi-k2.5-free` appears in logs because:\\n\\n1. The `getSmallModel()` function is called for **auxiliary tasks** (title generation, session summarization)\\n2. For the `opencode` provider, `kimi-k2.5-free` is first in the priority list for small models\\n3. This is **by design** - using cheaper/faster models for background tasks\\n\\nThis behavior is correct and intentional, but the log messages were confusing without context.\\n\\n## Changes\\n\\n### 1. New `--output-used-model` Flag\\n\\nWhen enabled, includes model information in `step_finish` parts:\\n\\n```json\\n{\\n \\\"type\\\": \\\"step_finish\\\",\\n \\\"part\\\": {\\n \\\"type\\\": \\\"step-finish\\\",\\n \\\"model\\\": {\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"modelID\\\": \\\"big-pickle\\\",\\n \\\"responseModelId\\\": \\\"gpt-4o-mini-2024-07-18\\\"\\n },\\n \\\"tokens\\\": {...}\\n }\\n}\\n```\\n\\n**Usage:**\\n- CLI flag: `agent --output-used-model`\\n- Environment variable: `AGENT_OUTPUT_USED_MODEL=true`\\n\\n### 2. Clearer Log Messages\\n\\nUpdated `getSmallModel()` to clarify that selected models are for auxiliary tasks:\\n\\n```json\\n{\\n \\\"message\\\": \\\"selected small model for auxiliary task\\\",\\n \\\"modelID\\\": \\\"kimi-k2.5-free\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"hint\\\": \\\"This model is used for title/summary generation, not primary requests\\\"\\n}\\n```\\n\\n### 3. Documentation\\n\\nAdded case study in `docs/case-studies/issue-179/` with:\\n- Detailed root cause analysis\\n- Technical explanation of model selection\\n- Proposed solutions and implementation details\\n\\n## Files Changed\\n\\n- `js/src/flag/flag.ts` - Added OUTPUT_USED_MODEL flag\\n- `js/src/session/message-v2.ts` - Added ModelInfo schema and model field to StepFinishPart\\n- `js/src/session/processor.ts` - Extract and include model info when flag enabled\\n- `js/src/index.js` - Added --output-used-model CLI option\\n- `js/src/provider/provider.ts` - Added documentation and clearer log messages\\n- `docs/case-studies/issue-179/README.md` - Case study documentation (new)\\n- `js/tests/output-used-model.test.js` - Tests for new functionality (new)\\n\\n## Test Plan\\n\\n- [x] New tests added in `js/tests/output-used-model.test.js`\\n- [ ] Verify `--output-used-model` flag includes model info in step_finish events\\n- [ ] Verify without flag, model info is NOT included (opt-in behavior)\\n- [ ] Verify `AGENT_OUTPUT_USED_MODEL=true` env var works\\n\\n## Issue Reference\\n\\nFixes #179\\n\\n---\\n🤖 Generated with [Claude Code](https://claude.com/claude-code)\",\"comments\":[{\"id\":\"IC_kwDOQYTy3M7or7q8\",\"author\":{\"login\":\"konard\"},\"authorAssociation\":\"MEMBER\",\"body\":\"## 🤖 Solution Draft Log\\nThis log file contains the complete execution trace of the AI solution draft process.\\n\\n💰 **Cost estimation:**\\n- Public pricing estimate: $10.588982\\n- Calculated by Anthropic: $7.343159 USD\\n- Difference: $-3.245823 (-30.65%)\\n📎 **Log file uploaded as Gist** (1473KB)\\n🔗 [View complete solution draft log](https://gist.githubusercontent.com/konard/acf7cacc55592ed662369526dbbc2a4d/raw/6820505a66407cd33232a82b15c0e320641d682c/solution-draft-log-pr-1771146046124.txt)\\n---\\n*Now working session is ended, feel free to review and add any feedback on the solution draft.*\",\"createdAt\":\"2026-02-15T09:00:50Z\",\"includesCreatedEdit\":false,\"isMinimized\":false,\"minimizedReason\":\"\",\"reactionGroups\":[],\"url\":\"https://github.com/link-assistant/agent/pull/180#issuecomment-3903830716\",\"viewerDidAuthor\":true},{\"id\":\"IC_kwDOQYTy3M7or-Uu\",\"author\":{\"login\":\"konard\"},\"authorAssociation\":\"MEMBER\",\"body\":\"Rename `--output-used-model` to `--output-response-model`.\\r\\n\\r\\nIn json:\\r\\n\\r\\n```\\r\\n\\\"model\\\": {\\r\\n \\\"providerID\\\": \\\"opencode\\\",\\r\\n \\\"modelID\\\": \\\"big-pickle\\\",\\r\\n \\\"responseModelId\\\": \\\"gpt-4o-mini-2024-07-18\\\"\\r\\n},\\r\\n```\\r\\n\\r\\nWe should make it more clear like:\\r\\n\\r\\n```\\r\\n\\\"model\\\": {\\r\\n \\\"providerID\\\": \\\"opencode\\\",\\r\\n \\\"requestedModelID\\\": \\\"big-pickle\\\",\\r\\n \\\"respondedModelID\\\": \\\"gpt-4o-mini-2024-07-18\\\"\\r\\n},\\r\\n```\\r\\n\\r\\nAlso previously we added\\r\\n\\r\\n--generate-title\\r\\n\\r\\nwhich is disabled by default, make sure we have such flags for each `auxiliary tasks`, for example for session summary: `--summarize-session` option should be added, and it should be disabled by default.\\r\\n\\r\\nWhen all `auxiliary tasks` are disabled, we should not select any `small model`, so we don't waste any additional tokens. But default I want all `auxiliary tasks` tasks to be disabled to preserve tokens, and only using options we can reenable them back.\\r\\n\\r\\nEnsure all changes are correct, consistent, validated, tested and fully meet all discussed requirements (check issue description and all comments in issue and in pull request). Ensure all CI/CD checks pass.\",\"createdAt\":\"2026-02-15T09:03:14Z\",\"includesCreatedEdit\":false,\"isMinimized\":false,\"minimizedReason\":\"\",\"reactionGroups\":[],\"url\":\"https://github.com/link-assistant/agent/pull/180#issuecomment-3903841582\",\"viewerDidAuthor\":true},{\"id\":\"IC_kwDOQYTy3M7or-7d\",\"author\":{\"login\":\"konard\"},\"authorAssociation\":\"MEMBER\",\"body\":\"🤖 **AI Work Session Started**\\n\\nStarting automated work session at 2026-02-15T09:03:47.114Z\\n\\nThe PR has been converted to draft mode while work is in progress.\\n\\n_This comment marks the beginning of an AI work session. Please wait for the session to finish, and provide your feedback._\",\"createdAt\":\"2026-02-15T09:03:49Z\",\"includesCreatedEdit\":false,\"isMinimized\":false,\"minimizedReason\":\"\",\"reactionGroups\":[],\"url\":\"https://github.com/link-assistant/agent/pull/180#issuecomment-3903844061\",\"viewerDidAuthor\":true}],\"state\":\"OPEN\",\"title\":\"feat: Add --output-used-model flag and clarify auxiliary model usage\"}",
"stderr": "",
"interrupted": false,
"isImage": false,
"noOutputExpected": false
}
}
[2026-02-15T09:04:05.065Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01299ScUtbTpdcwtfBE5a6Eg",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_019foFLXhxtLDbNvYxJK9Lvh",
"name": "Bash",
"input": {
"command": "gh api repos/link-assistant/agent/issues/180/comments --paginate 2>&1",
"description": "Get PR conversation comments"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 2,
"cache_creation_input_tokens": 10453,
"cache_read_input_tokens": 15336,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 10453
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "9525a60e-03d6-468e-ba8d-07ceb6f82de3"
}
[2026-02-15T09:04:06.628Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_0151NJurKSgBAEXEjTkfaFRM",
"type": "tool_result",
"content": "[]",
"is_error": false
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "dd106b02-3616-408d-81af-ccf8a4a59429",
"tool_use_result": {
"stdout": "[]",
"stderr": "",
"interrupted": false,
"isImage": false,
"noOutputExpected": false
}
}
[2026-02-15T09:04:08.040Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_019foFLXhxtLDbNvYxJK9Lvh",
"type": "tool_result",
"content": "[{\"url\":\"https://api.github.com/repos/link-assistant/agent/issues/comments/3903830716\",\"html_url\":\"https://github.com/link-assistant/agent/pull/180#issuecomment-3903830716\",\"issue_url\":\"https://api.github.com/repos/link-assistant/agent/issues/180\",\"id\":3903830716,\"node_id\":\"IC_kwDOQYTy3M7or7q8\",\"user\":{\"login\":\"konard\",\"id\":1431904,\"node_id\":\"MDQ6VXNlcjE0MzE5MDQ=\",\"avatar_url\":\"https://avatars.githubusercontent.com/u/1431904?v=4\",\"gravatar_id\":\"\",\"url\":\"https://api.github.com/users/konard\",\"html_url\":\"https://github.com/konard\",\"followers_url\":\"https://api.github.com/users/konard/followers\",\"following_url\":\"https://api.github.com/users/konard/following{/other_user}\",\"gists_url\":\"https://api.github.com/users/konard/gists{/gist_id}\",\"starred_url\":\"https://api.github.com/users/konard/starred{/owner}{/repo}\",\"subscriptions_url\":\"https://api.github.com/users/konard/subscriptions\",\"organizations_url\":\"https://api.github.com/users/konard/orgs\",\"repos_url\":\"https://api.github.com/users/konard/repos\",\"events_url\":\"https://api.github.com/users/konard/events{/privacy}\",\"received_events_url\":\"https://api.github.com/users/konard/received_events\",\"type\":\"User\",\"user_view_type\":\"public\",\"site_admin\":false},\"created_at\":\"2026-02-15T09:00:50Z\",\"updated_at\":\"2026-02-15T09:00:50Z\",\"body\":\"## 🤖 Solution Draft Log\\nThis log file contains the complete execution trace of the AI solution draft process.\\n\\n💰 **Cost estimation:**\\n- Public pricing estimate: $10.588982\\n- Calculated by Anthropic: $7.343159 USD\\n- Difference: $-3.245823 (-30.65%)\\n📎 **Log file uploaded as Gist** (1473KB)\\n🔗 [View complete solution draft log](https://gist.githubusercontent.com/konard/acf7cacc55592ed662369526dbbc2a4d/raw/6820505a66407cd33232a82b15c0e320641d682c/solution-draft-log-pr-1771146046124.txt)\\n---\\n*Now working session is ended, feel free to review and add any feedback on the solution draft.*\",\"author_association\":\"MEMBER\",\"pin\":null,\"reactions\":{\"url\":\"https://api.github.com/repos/link-assistant/agent/issues/comments/3903830716/reactions\",\"total_count\":0,\"+1\":0,\"-1\":0,\"laugh\":0,\"hooray\":0,\"confused\":0,\"heart\":0,\"rocket\":0,\"eyes\":0},\"performed_via_github_app\":null},{\"url\":\"https://api.github.com/repos/link-assistant/agent/issues/comments/3903841582\",\"html_url\":\"https://github.com/link-assistant/agent/pull/180#issuecomment-3903841582\",\"issue_url\":\"https://api.github.com/repos/link-assistant/agent/issues/180\",\"id\":3903841582,\"node_id\":\"IC_kwDOQYTy3M7or-Uu\",\"user\":{\"login\":\"konard\",\"id\":1431904,\"node_id\":\"MDQ6VXNlcjE0MzE5MDQ=\",\"avatar_url\":\"https://avatars.githubusercontent.com/u/1431904?v=4\",\"gravatar_id\":\"\",\"url\":\"https://api.github.com/users/konard\",\"html_url\":\"https://github.com/konard\",\"followers_url\":\"https://api.github.com/users/konard/followers\",\"following_url\":\"https://api.github.com/users/konard/following{/other_user}\",\"gists_url\":\"https://api.github.com/users/konard/gists{/gist_id}\",\"starred_url\":\"https://api.github.com/users/konard/starred{/owner}{/repo}\",\"subscriptions_url\":\"https://api.github.com/users/konard/subscriptions\",\"organizations_url\":\"https://api.github.com/users/konard/orgs\",\"repos_url\":\"https://api.github.com/users/konard/repos\",\"events_url\":\"https://api.github.com/users/konard/events{/privacy}\",\"received_events_url\":\"https://api.github.com/users/konard/received_events\",\"type\":\"User\",\"user_view_type\":\"public\",\"site_admin\":false},\"created_at\":\"2026-02-15T09:03:14Z\",\"updated_at\":\"2026-02-15T09:03:14Z\",\"body\":\"Rename `--output-used-model` to `--output-response-model`.\\r\\n\\r\\nIn json:\\r\\n\\r\\n```\\r\\n\\\"model\\\": {\\r\\n \\\"providerID\\\": \\\"opencode\\\",\\r\\n \\\"modelID\\\": \\\"big-pickle\\\",\\r\\n \\\"responseModelId\\\": \\\"gpt-4o-mini-2024-07-18\\\"\\r\\n},\\r\\n```\\r\\n\\r\\nWe should make it more clear like:\\r\\n\\r\\n```\\r\\n\\\"model\\\": {\\r\\n \\\"providerID\\\": \\\"opencode\\\",\\r\\n \\\"requestedModelID\\\": \\\"big-pickle\\\",\\r\\n \\\"respondedModelID\\\": \\\"gpt-4o-mini-2024-07-18\\\"\\r\\n},\\r\\n```\\r\\n\\r\\nAlso previously we added\\r\\n\\r\\n--generate-title\\r\\n\\r\\nwhich is disabled by default, make sure we have such flags for each `auxiliary tasks`, for example for session summary: `--summarize-session` option should be added, and it should be disabled by default.\\r\\n\\r\\nWhen all `auxiliary tasks` are disabled, we should not select any `small model`, so we don't waste any additional tokens. But default I want all `auxiliary tasks` tasks to be disabled to preserve tokens, and only using options we can reenable them back.\\r\\n\\r\\nEnsure all changes are correct, consistent, validated, tested and fully meet all discussed requirements (check issue description and all comments in issue and in pull request). Ensure all CI/CD checks pass.\",\"author_association\":\"MEMBER\",\"pin\":null,\"reactions\":{\"url\":\"https://api.github.com/repos/link-assistant/agent/issues/comments/3903841582/reactions\",\"total_count\":0,\"+1\":0,\"-1\":0,\"laugh\":0,\"hooray\":0,\"confused\":0,\"heart\":0,\"rocket\":0,\"eyes\":0},\"performed_via_github_app\":null},{\"url\":\"https://api.github.com/repos/link-assistant/agent/issues/comments/3903844061\",\"html_url\":\"https://github.com/link-assistant/agent/pull/180#issuecomment-3903844061\",\"issue_url\":\"https://api.github.com/repos/link-assistant/agent/issues/180\",\"id\":3903844061,\"node_id\":\"IC_kwDOQYTy3M7or-7d\",\"user\":{\"login\":\"konard\",\"id\":1431904,\"node_id\":\"MDQ6VXNlcjE0MzE5MDQ=\",\"avatar_url\":\"https://avatars.githubusercontent.com/u/1431904?v=4\",\"gravatar_id\":\"\",\"url\":\"https://api.github.com/users/konard\",\"html_url\":\"https://github.com/konard\",\"followers_url\":\"https://api.github.com/users/konard/followers\",\"following_url\":\"https://api.github.com/users/konard/following{/other_user}\",\"gists_url\":\"https://api.github.com/users/konard/gists{/gist_id}\",\"starred_url\":\"https://api.github.com/users/konard/starred{/owner}{/repo}\",\"subscriptions_url\":\"https://api.github.com/users/konard/subscriptions\",\"organizations_url\":\"https://api.github.com/users/konard/orgs\",\"repos_url\":\"https://api.github.com/users/konard/repos\",\"events_url\":\"https://api.github.com/users/konard/events{/privacy}\",\"received_events_url\":\"https://api.github.com/users/konard/received_events\",\"type\":\"User\",\"user_view_type\":\"public\",\"site_admin\":false},\"created_at\":\"2026-02-15T09:03:49Z\",\"updated_at\":\"2026-02-15T09:03:49Z\",\"body\":\"🤖 **AI Work Session Started**\\n\\nStarting automated work session at 2026-02-15T09:03:47.114Z\\n\\nThe PR has been converted to draft mode while work is in progress.\\n\\n_This comment marks the beginning of an AI work session. Please wait for the session to finish, and provide your feedback._\",\"author_association\":\"MEMBER\",\"pin\":null,\"reactions\":{\"url\":\"https://api.github.com/repos/link-assistant/agent/issues/comments/3903844061/reactions\",\"total_count\":0,\"+1\":0,\"-1\":0,\"laugh\":0,\"hooray\":0,\"confused\":0,\"heart\":0,\"rocket\":0,\"eyes\":0},\"performed_via_github_app\":null}]",
"is_error": false
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "a1512f63-a40a-455e-b741-271d1a1071ad",
"tool_use_result": {
"stdout": "[{\"url\":\"https://api.github.com/repos/link-assistant/agent/issues/comments/3903830716\",\"html_url\":\"https://github.com/link-assistant/agent/pull/180#issuecomment-3903830716\",\"issue_url\":\"https://api.github.com/repos/link-assistant/agent/issues/180\",\"id\":3903830716,\"node_id\":\"IC_kwDOQYTy3M7or7q8\",\"user\":{\"login\":\"konard\",\"id\":1431904,\"node_id\":\"MDQ6VXNlcjE0MzE5MDQ=\",\"avatar_url\":\"https://avatars.githubusercontent.com/u/1431904?v=4\",\"gravatar_id\":\"\",\"url\":\"https://api.github.com/users/konard\",\"html_url\":\"https://github.com/konard\",\"followers_url\":\"https://api.github.com/users/konard/followers\",\"following_url\":\"https://api.github.com/users/konard/following{/other_user}\",\"gists_url\":\"https://api.github.com/users/konard/gists{/gist_id}\",\"starred_url\":\"https://api.github.com/users/konard/starred{/owner}{/repo}\",\"subscriptions_url\":\"https://api.github.com/users/konard/subscriptions\",\"organizations_url\":\"https://api.github.com/users/konard/orgs\",\"repos_url\":\"https://api.github.com/users/konard/repos\",\"events_url\":\"https://api.github.com/users/konard/events{/privacy}\",\"received_events_url\":\"https://api.github.com/users/konard/received_events\",\"type\":\"User\",\"user_view_type\":\"public\",\"site_admin\":false},\"created_at\":\"2026-02-15T09:00:50Z\",\"updated_at\":\"2026-02-15T09:00:50Z\",\"body\":\"## 🤖 Solution Draft Log\\nThis log file contains the complete execution trace of the AI solution draft process.\\n\\n💰 **Cost estimation:**\\n- Public pricing estimate: $10.588982\\n- Calculated by Anthropic: $7.343159 USD\\n- Difference: $-3.245823 (-30.65%)\\n📎 **Log file uploaded as Gist** (1473KB)\\n🔗 [View complete solution draft log](https://gist.githubusercontent.com/konard/acf7cacc55592ed662369526dbbc2a4d/raw/6820505a66407cd33232a82b15c0e320641d682c/solution-draft-log-pr-1771146046124.txt)\\n---\\n*Now working session is ended, feel free to review and add any feedback on the solution draft.*\",\"author_association\":\"MEMBER\",\"pin\":null,\"reactions\":{\"url\":\"https://api.github.com/repos/link-assistant/agent/issues/comments/3903830716/reactions\",\"total_count\":0,\"+1\":0,\"-1\":0,\"laugh\":0,\"hooray\":0,\"confused\":0,\"heart\":0,\"rocket\":0,\"eyes\":0},\"performed_via_github_app\":null},{\"url\":\"https://api.github.com/repos/link-assistant/agent/issues/comments/3903841582\",\"html_url\":\"https://github.com/link-assistant/agent/pull/180#issuecomment-3903841582\",\"issue_url\":\"https://api.github.com/repos/link-assistant/agent/issues/180\",\"id\":3903841582,\"node_id\":\"IC_kwDOQYTy3M7or-Uu\",\"user\":{\"login\":\"konard\",\"id\":1431904,\"node_id\":\"MDQ6VXNlcjE0MzE5MDQ=\",\"avatar_url\":\"https://avatars.githubusercontent.com/u/1431904?v=4\",\"gravatar_id\":\"\",\"url\":\"https://api.github.com/users/konard\",\"html_url\":\"https://github.com/konard\",\"followers_url\":\"https://api.github.com/users/konard/followers\",\"following_url\":\"https://api.github.com/users/konard/following{/other_user}\",\"gists_url\":\"https://api.github.com/users/konard/gists{/gist_id}\",\"starred_url\":\"https://api.github.com/users/konard/starred{/owner}{/repo}\",\"subscriptions_url\":\"https://api.github.com/users/konard/subscriptions\",\"organizations_url\":\"https://api.github.com/users/konard/orgs\",\"repos_url\":\"https://api.github.com/users/konard/repos\",\"events_url\":\"https://api.github.com/users/konard/events{/privacy}\",\"received_events_url\":\"https://api.github.com/users/konard/received_events\",\"type\":\"User\",\"user_view_type\":\"public\",\"site_admin\":false},\"created_at\":\"2026-02-15T09:03:14Z\",\"updated_at\":\"2026-02-15T09:03:14Z\",\"body\":\"Rename `--output-used-model` to `--output-response-model`.\\r\\n\\r\\nIn json:\\r\\n\\r\\n```\\r\\n\\\"model\\\": {\\r\\n \\\"providerID\\\": \\\"opencode\\\",\\r\\n \\\"modelID\\\": \\\"big-pickle\\\",\\r\\n \\\"responseModelId\\\": \\\"gpt-4o-mini-2024-07-18\\\"\\r\\n},\\r\\n```\\r\\n\\r\\nWe should make it more clear like:\\r\\n\\r\\n```\\r\\n\\\"model\\\": {\\r\\n \\\"providerID\\\": \\\"opencode\\\",\\r\\n \\\"requestedModelID\\\": \\\"big-pickle\\\",\\r\\n \\\"respondedModelID\\\": \\\"gpt-4o-mini-2024-07-18\\\"\\r\\n},\\r\\n```\\r\\n\\r\\nAlso previously we added\\r\\n\\r\\n--generate-title\\r\\n\\r\\nwhich is disabled by default, make sure we have such flags for each `auxiliary tasks`, for example for session summary: `--summarize-session` option should be added, and it should be disabled by default.\\r\\n\\r\\nWhen all `auxiliary tasks` are disabled, we should not select any `small model`, so we don't waste any additional tokens. But default I want all `auxiliary tasks` tasks to be disabled to preserve tokens, and only using options we can reenable them back.\\r\\n\\r\\nEnsure all changes are correct, consistent, validated, tested and fully meet all discussed requirements (check issue description and all comments in issue and in pull request). Ensure all CI/CD checks pass.\",\"author_association\":\"MEMBER\",\"pin\":null,\"reactions\":{\"url\":\"https://api.github.com/repos/link-assistant/agent/issues/comments/3903841582/reactions\",\"total_count\":0,\"+1\":0,\"-1\":0,\"laugh\":0,\"hooray\":0,\"confused\":0,\"heart\":0,\"rocket\":0,\"eyes\":0},\"performed_via_github_app\":null},{\"url\":\"https://api.github.com/repos/link-assistant/agent/issues/comments/3903844061\",\"html_url\":\"https://github.com/link-assistant/agent/pull/180#issuecomment-3903844061\",\"issue_url\":\"https://api.github.com/repos/link-assistant/agent/issues/180\",\"id\":3903844061,\"node_id\":\"IC_kwDOQYTy3M7or-7d\",\"user\":{\"login\":\"konard\",\"id\":1431904,\"node_id\":\"MDQ6VXNlcjE0MzE5MDQ=\",\"avatar_url\":\"https://avatars.githubusercontent.com/u/1431904?v=4\",\"gravatar_id\":\"\",\"url\":\"https://api.github.com/users/konard\",\"html_url\":\"https://github.com/konard\",\"followers_url\":\"https://api.github.com/users/konard/followers\",\"following_url\":\"https://api.github.com/users/konard/following{/other_user}\",\"gists_url\":\"https://api.github.com/users/konard/gists{/gist_id}\",\"starred_url\":\"https://api.github.com/users/konard/starred{/owner}{/repo}\",\"subscriptions_url\":\"https://api.github.com/users/konard/subscriptions\",\"organizations_url\":\"https://api.github.com/users/konard/orgs\",\"repos_url\":\"https://api.github.com/users/konard/repos\",\"events_url\":\"https://api.github.com/users/konard/events{/privacy}\",\"received_events_url\":\"https://api.github.com/users/konard/received_events\",\"type\":\"User\",\"user_view_type\":\"public\",\"site_admin\":false},\"created_at\":\"2026-02-15T09:03:49Z\",\"updated_at\":\"2026-02-15T09:03:49Z\",\"body\":\"🤖 **AI Work Session Started**\\n\\nStarting automated work session at 2026-02-15T09:03:47.114Z\\n\\nThe PR has been converted to draft mode while work is in progress.\\n\\n_This comment marks the beginning of an AI work session. Please wait for the session to finish, and provide your feedback._\",\"author_association\":\"MEMBER\",\"pin\":null,\"reactions\":{\"url\":\"https://api.github.com/repos/link-assistant/agent/issues/comments/3903844061/reactions\",\"total_count\":0,\"+1\":0,\"-1\":0,\"laugh\":0,\"hooray\":0,\"confused\":0,\"heart\":0,\"rocket\":0,\"eyes\":0},\"performed_via_github_app\":null}]",
"stderr": "",
"interrupted": false,
"isImage": false,
"noOutputExpected": false
}
}
[2026-02-15T09:04:11.150Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01DjBicTXP6CjRL2WeZQRMUs",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now let me also check the issue for any additional context:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 4795,
"cache_read_input_tokens": 25789,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 4795
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "74310387-63b9-440d-9cae-fd88494bea00"
}
[2026-02-15T09:04:12.146Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01DjBicTXP6CjRL2WeZQRMUs",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01MFhCzVvVi8dALNXBZZZeFd",
"name": "Bash",
"input": {
"command": "gh issue view 179 --repo link-assistant/agent --json title,body,comments 2>&1",
"description": "Get issue details"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 4795,
"cache_read_input_tokens": 25789,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 4795
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "e7ef8736-efe8-46a7-9315-768474278d73"
}
[2026-02-15T09:04:13.537Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01MFhCzVvVi8dALNXBZZZeFd",
"type": "tool_result",
"content": "{\"body\":\"```\\nhive@vmi2955137:~$ echo 'hi' | agent --model big-pickle\\n{\\n \\\"type\\\": \\\"status\\\",\\n \\\"mode\\\": \\\"stdin-stream\\\",\\n \\\"message\\\": \\\"Agent CLI in continuous listening mode. Accepts JSON and plain text input.\\\",\\n \\\"hint\\\": \\\"Press CTRL+C to exit. Use --help for options.\\\",\\n \\\"acceptedFormats\\\": [\\n \\\"JSON object with \\\\\\\"message\\\\\\\" field\\\",\\n \\\"Plain text\\\"\\n ],\\n \\\"options\\\": {\\n \\\"interactive\\\": true,\\n \\\"autoMergeQueuedMessages\\\": true,\\n \\\"alwaysAcceptStdin\\\": true,\\n \\\"compactJson\\\": false\\n }\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.591Z\\\",\\n \\\"service\\\": \\\"default\\\",\\n \\\"version\\\": \\\"0.13.2\\\",\\n \\\"command\\\": \\\"/home/hive/.bun/bin/bun /home/hive/.bun/install/global/node_modules/@link-assistant/agent/src/index.js --model big-pickle\\\",\\n \\\"workingDirectory\\\": \\\"/home/hive\\\",\\n \\\"scriptPath\\\": \\\"/home/hive/.bun/install/global/node_modules/@link-assistant/agent/src/index.js\\\",\\n \\\"message\\\": \\\"Agent started (continuous mode)\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.591Z\\\",\\n \\\"service\\\": \\\"default\\\",\\n \\\"directory\\\": \\\"/home/hive\\\",\\n \\\"message\\\": \\\"creating instance\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.592Z\\\",\\n \\\"service\\\": \\\"project\\\",\\n \\\"directory\\\": \\\"/home/hive\\\",\\n \\\"message\\\": \\\"fromDirectory\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.619Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"status\\\": \\\"started\\\",\\n \\\"message\\\": \\\"state\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.620Z\\\",\\n \\\"service\\\": \\\"config\\\",\\n \\\"path\\\": \\\"/home/hive/.config/link-assistant-agent/config.json\\\",\\n \\\"message\\\": \\\"loading\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.620Z\\\",\\n \\\"service\\\": \\\"config\\\",\\n \\\"path\\\": \\\"/home/hive/.config/link-assistant-agent/opencode.json\\\",\\n \\\"message\\\": \\\"loading\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.620Z\\\",\\n \\\"service\\\": \\\"config\\\",\\n \\\"path\\\": \\\"/home/hive/.config/link-assistant-agent/opencode.jsonc\\\",\\n \\\"message\\\": \\\"loading\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.626Z\\\",\\n \\\"service\\\": \\\"models.dev\\\",\\n \\\"path\\\": \\\"/home/hive/.cache/link-assistant-agent/models.json\\\",\\n \\\"age\\\": 24915,\\n \\\"message\\\": \\\"cache is fresh, triggering background refresh\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.626Z\\\",\\n \\\"service\\\": \\\"models.dev\\\",\\n \\\"file\\\": {},\\n \\\"message\\\": \\\"refreshing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.632Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"message\\\": \\\"init\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.639Z\\\",\\n \\\"service\\\": \\\"claude-oauth\\\",\\n \\\"subscriptionType\\\": \\\"max\\\",\\n \\\"scopes\\\": [\\n \\\"user:inference\\\",\\n \\\"user:mcp_servers\\\",\\n \\\"user:profile\\\",\\n \\\"user:sessions:claude_code\\\"\\n ],\\n \\\"message\\\": \\\"loaded oauth credentials\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.639Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"source\\\": \\\"credentials file (max)\\\",\\n \\\"message\\\": \\\"using claude oauth credentials\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.639Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"message\\\": \\\"found\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.639Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"kilo\\\",\\n \\\"message\\\": \\\"found\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.640Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"claude-oauth\\\",\\n \\\"message\\\": \\\"found\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.640Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"status\\\": \\\"completed\\\",\\n \\\"duration\\\": 21,\\n \\\"message\\\": \\\"state\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.640Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"modelID\\\": \\\"big-pickle\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"message\\\": \\\"resolved short model name (single match)\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.640Z\\\",\\n \\\"service\\\": \\\"default\\\",\\n \\\"input\\\": \\\"big-pickle\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"modelID\\\": \\\"big-pickle\\\",\\n \\\"message\\\": \\\"resolved short model name\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.649Z\\\",\\n \\\"service\\\": \\\"server\\\",\\n \\\"method\\\": \\\"POST\\\",\\n \\\"path\\\": \\\"/session\\\",\\n \\\"message\\\": \\\"request\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.649Z\\\",\\n \\\"service\\\": \\\"server\\\",\\n \\\"status\\\": \\\"started\\\",\\n \\\"method\\\": \\\"POST\\\",\\n \\\"path\\\": \\\"/session\\\",\\n \\\"message\\\": \\\"request\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.651Z\\\",\\n \\\"service\\\": \\\"session\\\",\\n \\\"id\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"version\\\": \\\"agent-cli-1.0.0\\\",\\n \\\"projectID\\\": \\\"global\\\",\\n \\\"directory\\\": \\\"/home/hive\\\",\\n \\\"title\\\": \\\"New session - 2026-02-15T08:31:43.651Z\\\",\\n \\\"time\\\": {\\n \\\"created\\\": 1771144303651,\\n \\\"updated\\\": 1771144303651\\n },\\n \\\"message\\\": \\\"created\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.created\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.653Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.653Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.653Z\\\",\\n \\\"service\\\": \\\"server\\\",\\n \\\"status\\\": \\\"completed\\\",\\n \\\"duration\\\": 4,\\n \\\"method\\\": \\\"POST\\\",\\n \\\"path\\\": \\\"/session\\\",\\n \\\"message\\\": \\\"request\\\"\\n}\\n{\\n \\\"type\\\": \\\"*\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.655Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"subscribing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"input\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.659Z\\\",\\n \\\"raw\\\": \\\"hi\\\",\\n \\\"parsed\\\": {\\n \\\"message\\\": \\\"hi\\\"\\n },\\n \\\"format\\\": \\\"text\\\"\\n}\\n{\\n \\\"type\\\": \\\"*\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.659Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"subscribing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.660Z\\\",\\n \\\"service\\\": \\\"server\\\",\\n \\\"method\\\": \\\"POST\\\",\\n \\\"path\\\": \\\"/session/ses_39f92abdcffemBFOqUctsANi1x/message\\\",\\n \\\"message\\\": \\\"request\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.660Z\\\",\\n \\\"service\\\": \\\"server\\\",\\n \\\"status\\\": \\\"started\\\",\\n \\\"method\\\": \\\"POST\\\",\\n \\\"path\\\": \\\"/session/ses_39f92abdcffemBFOqUctsANi1x/message\\\",\\n \\\"message\\\": \\\"request\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.664Z\\\",\\n \\\"service\\\": \\\"server\\\",\\n \\\"status\\\": \\\"completed\\\",\\n \\\"duration\\\": 4,\\n \\\"method\\\": \\\"POST\\\",\\n \\\"path\\\": \\\"/session/ses_39f92abdcffemBFOqUctsANi1x/message\\\",\\n \\\"message\\\": \\\"request\\\"\\n}\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.667Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.668Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.669Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.670Z\\\",\\n \\\"service\\\": \\\"session.prompt\\\",\\n \\\"step\\\": 0,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"message\\\": \\\"loop\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.675Z\\\",\\n \\\"service\\\": \\\"session.prompt\\\",\\n \\\"hint\\\": \\\"Enable with --generate-title flag or AGENT_GENERATE_TITLE=true\\\",\\n \\\"message\\\": \\\"title generation disabled\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.675Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"modelID\\\": \\\"big-pickle\\\",\\n \\\"message\\\": \\\"getModel\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.676Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"status\\\": \\\"started\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"message\\\": \\\"getSDK\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.676Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"pkg\\\": \\\"@ai-sdk/openai-compatible\\\",\\n \\\"version\\\": \\\"latest\\\",\\n \\\"message\\\": \\\"installing provider package\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.676Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"pkg\\\": \\\"@ai-sdk/openai-compatible\\\",\\n \\\"installedPath\\\": \\\"/home/hive/.cache/link-assistant-agent/node_modules/@ai-sdk/openai-compatible\\\",\\n \\\"message\\\": \\\"provider package installed successfully\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.733Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"status\\\": \\\"completed\\\",\\n \\\"duration\\\": 57,\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"message\\\": \\\"getSDK\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.733Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"modelID\\\": \\\"big-pickle\\\",\\n \\\"message\\\": \\\"found\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.735Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.750Z\\\",\\n \\\"service\\\": \\\"session.processor\\\",\\n \\\"message\\\": \\\"process\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.status\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.757Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.768Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.769Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"modelID\\\": \\\"kimi-k2.5-free\\\",\\n \\\"message\\\": \\\"getModel\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.769Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"status\\\": \\\"started\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"message\\\": \\\"getSDK\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.769Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"status\\\": \\\"completed\\\",\\n \\\"duration\\\": 0,\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"message\\\": \\\"getSDK\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.769Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"modelID\\\": \\\"kimi-k2.5-free\\\",\\n \\\"message\\\": \\\"found\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.772Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.diff\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.773Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:44.085Z\\\",\\n \\\"service\\\": \\\"retry-fetch\\\",\\n \\\"headerValue\\\": 55697,\\n \\\"delayMs\\\": 55697000,\\n \\\"message\\\": \\\"parsed retry-after header (seconds)\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:44.086Z\\\",\\n \\\"service\\\": \\\"retry-fetch\\\",\\n \\\"retryAfterMs\\\": 55697000,\\n \\\"delay\\\": 55697000,\\n \\\"minInterval\\\": 30000,\\n \\\"message\\\": \\\"using retry-after value\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:44.086Z\\\",\\n \\\"service\\\": \\\"retry-fetch\\\",\\n \\\"sessionID\\\": \\\"opencode\\\",\\n \\\"attempt\\\": 1,\\n \\\"delay\\\": 57580853,\\n \\\"delayMinutes\\\": \\\"959.68\\\",\\n \\\"elapsed\\\": 313,\\n \\\"remainingTimeout\\\": 604799687,\\n \\\"message\\\": \\\"rate limited, will retry\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.192Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"step_start\\\",\\n \\\"timestamp\\\": 1771144308193,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"part\\\": {\\n \\\"id\\\": \\\"prt_c606d65df001eGUjSi4ekFIBZv\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"messageID\\\": \\\"msg_c606d5475001Z1IhYEJe0EfCdI\\\",\\n \\\"type\\\": \\\"step-start\\\"\\n }\\n}\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.194Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.446Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.475Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.475Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.476Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.510Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"text\\\",\\n \\\"timestamp\\\": 1771144308510,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"part\\\": {\\n \\\"id\\\": \\\"prt_c606d66fb001UVz0YlSVSXj1oO\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"messageID\\\": \\\"msg_c606d5475001Z1IhYEJe0EfCdI\\\",\\n \\\"type\\\": \\\"text\\\",\\n \\\"text\\\": \\\"Hi! How can I help you today?\\\",\\n \\\"time\\\": {\\n \\\"start\\\": 1771144308508,\\n \\\"end\\\": 1771144308508\\n }\\n }\\n}\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.514Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"step_finish\\\",\\n \\\"timestamp\\\": 1771144308514,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"part\\\": {\\n \\\"id\\\": \\\"prt_c606d6720001eo2Nipb8RbRgL7\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"messageID\\\": \\\"msg_c606d5475001Z1IhYEJe0EfCdI\\\",\\n \\\"type\\\": \\\"step-finish\\\",\\n \\\"reason\\\": \\\"stop\\\",\\n \\\"cost\\\": 0,\\n \\\"tokens\\\": {\\n \\\"input\\\": 10946,\\n \\\"output\\\": 47,\\n \\\"reasoning\\\": 37,\\n \\\"cache\\\": {\\n \\\"read\\\": 0,\\n \\\"write\\\": 0\\n }\\n }\\n }\\n}\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.514Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.515Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.520Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.520Z\\\",\\n \\\"service\\\": \\\"session.prompt\\\",\\n \\\"step\\\": 1,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"message\\\": \\\"loop\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.521Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.522Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.diff\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.522Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.523Z\\\",\\n \\\"service\\\": \\\"session.prompt\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"message\\\": \\\"exiting loop\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.523Z\\\",\\n \\\"service\\\": \\\"session.compaction\\\",\\n \\\"message\\\": \\\"pruning\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.524Z\\\",\\n \\\"service\\\": \\\"session.prompt\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"message\\\": \\\"cancel\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.status\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.525Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.idle\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.525Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"*\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.525Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"unsubscribing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.527Z\\\",\\n \\\"service\\\": \\\"session.compaction\\\",\\n \\\"pruned\\\": 0,\\n \\\"total\\\": 0,\\n \\\"message\\\": \\\"found\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"*\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.617Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"unsubscribing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.618Z\\\",\\n \\\"service\\\": \\\"default\\\",\\n \\\"directory\\\": \\\"/home/hive\\\",\\n \\\"message\\\": \\\"disposing instance\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.618Z\\\",\\n \\\"service\\\": \\\"state\\\",\\n \\\"key\\\": \\\"/home/hive\\\",\\n \\\"message\\\": \\\"waiting for state disposal to complete\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.618Z\\\",\\n \\\"service\\\": \\\"state\\\",\\n \\\"key\\\": \\\"/home/hive\\\",\\n \\\"message\\\": \\\"state disposal completed\\\"\\n}\\n\\nhive@vmi2955137:~$ \\n```\\n\\nFirst thing I don't understand is why we do mention default `kimi-k2.5-free` model, when we are working with `big-pickle`, that does creates a confusion.\\n\\nAlso in output like this:\\n\\n```\\n{\\n \\\"type\\\": \\\"text\\\",\\n \\\"timestamp\\\": 1771144308510,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"part\\\": {\\n \\\"id\\\": \\\"prt_c606d66fb001UVz0YlSVSXj1oO\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"messageID\\\": \\\"msg_c606d5475001Z1IhYEJe0EfCdI\\\",\\n \\\"type\\\": \\\"text\\\",\\n \\\"text\\\": \\\"Hi! How can I help you today?\\\",\\n \\\"time\\\": {\\n \\\"start\\\": 1771144308508,\\n \\\"end\\\": 1771144308508\\n }\\n }\\n}\\n```\\n\\nI want to see also `model` object for each part, so I know which exact model was answering, and usually it will contain a more specific model name or id, for example with date specified, so it will be nice additional information, we can add it without breaking compatibility with opencode output format. We also add it as option: `--output-used-model`.\\n\\n```\\n{\\n \\\"type\\\": \\\"step_finish\\\",\\n \\\"timestamp\\\": 1771144308514,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"part\\\": {\\n \\\"id\\\": \\\"prt_c606d6720001eo2Nipb8RbRgL7\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"messageID\\\": \\\"msg_c606d5475001Z1IhYEJe0EfCdI\\\",\\n \\\"type\\\": \\\"step-finish\\\",\\n \\\"reason\\\": \\\"stop\\\",\\n \\\"cost\\\": 0,\\n \\\"tokens\\\": {\\n \\\"input\\\": 10946,\\n \\\"output\\\": 47,\\n \\\"reasoning\\\": 37,\\n \\\"cache\\\": {\\n \\\"read\\\": 0,\\n \\\"write\\\": 0\\n }\\n }\\n }\\n}\\n```\\n\\nAlso in here near tokens it would be nice to have a model object for each part. So we will show in each model object everything we get from API about actual model used.\\n\\nPlease collect data related about the issue to this repository, make sure we compile that data to `./docs/case-studies/issue-{id}` folder, and use it to do deep case study analysis (also make sure to search online for additional facts and data), and propose possible solutions (including known existing components/libraries, that solve similar problem or can help in solutions).\",\"comments\":[],\"title\":\"`kimi-k2.5-free` is listed in logs, when working with `big-pickle`\"}",
"is_error": false
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "d42df947-dd7c-406a-b7ab-c663cba30fec",
"tool_use_result": {
"stdout": "{\"body\":\"```\\nhive@vmi2955137:~$ echo 'hi' | agent --model big-pickle\\n{\\n \\\"type\\\": \\\"status\\\",\\n \\\"mode\\\": \\\"stdin-stream\\\",\\n \\\"message\\\": \\\"Agent CLI in continuous listening mode. Accepts JSON and plain text input.\\\",\\n \\\"hint\\\": \\\"Press CTRL+C to exit. Use --help for options.\\\",\\n \\\"acceptedFormats\\\": [\\n \\\"JSON object with \\\\\\\"message\\\\\\\" field\\\",\\n \\\"Plain text\\\"\\n ],\\n \\\"options\\\": {\\n \\\"interactive\\\": true,\\n \\\"autoMergeQueuedMessages\\\": true,\\n \\\"alwaysAcceptStdin\\\": true,\\n \\\"compactJson\\\": false\\n }\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.591Z\\\",\\n \\\"service\\\": \\\"default\\\",\\n \\\"version\\\": \\\"0.13.2\\\",\\n \\\"command\\\": \\\"/home/hive/.bun/bin/bun /home/hive/.bun/install/global/node_modules/@link-assistant/agent/src/index.js --model big-pickle\\\",\\n \\\"workingDirectory\\\": \\\"/home/hive\\\",\\n \\\"scriptPath\\\": \\\"/home/hive/.bun/install/global/node_modules/@link-assistant/agent/src/index.js\\\",\\n \\\"message\\\": \\\"Agent started (continuous mode)\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.591Z\\\",\\n \\\"service\\\": \\\"default\\\",\\n \\\"directory\\\": \\\"/home/hive\\\",\\n \\\"message\\\": \\\"creating instance\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.592Z\\\",\\n \\\"service\\\": \\\"project\\\",\\n \\\"directory\\\": \\\"/home/hive\\\",\\n \\\"message\\\": \\\"fromDirectory\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.619Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"status\\\": \\\"started\\\",\\n \\\"message\\\": \\\"state\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.620Z\\\",\\n \\\"service\\\": \\\"config\\\",\\n \\\"path\\\": \\\"/home/hive/.config/link-assistant-agent/config.json\\\",\\n \\\"message\\\": \\\"loading\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.620Z\\\",\\n \\\"service\\\": \\\"config\\\",\\n \\\"path\\\": \\\"/home/hive/.config/link-assistant-agent/opencode.json\\\",\\n \\\"message\\\": \\\"loading\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.620Z\\\",\\n \\\"service\\\": \\\"config\\\",\\n \\\"path\\\": \\\"/home/hive/.config/link-assistant-agent/opencode.jsonc\\\",\\n \\\"message\\\": \\\"loading\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.626Z\\\",\\n \\\"service\\\": \\\"models.dev\\\",\\n \\\"path\\\": \\\"/home/hive/.cache/link-assistant-agent/models.json\\\",\\n \\\"age\\\": 24915,\\n \\\"message\\\": \\\"cache is fresh, triggering background refresh\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.626Z\\\",\\n \\\"service\\\": \\\"models.dev\\\",\\n \\\"file\\\": {},\\n \\\"message\\\": \\\"refreshing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.632Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"message\\\": \\\"init\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.639Z\\\",\\n \\\"service\\\": \\\"claude-oauth\\\",\\n \\\"subscriptionType\\\": \\\"max\\\",\\n \\\"scopes\\\": [\\n \\\"user:inference\\\",\\n \\\"user:mcp_servers\\\",\\n \\\"user:profile\\\",\\n \\\"user:sessions:claude_code\\\"\\n ],\\n \\\"message\\\": \\\"loaded oauth credentials\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.639Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"source\\\": \\\"credentials file (max)\\\",\\n \\\"message\\\": \\\"using claude oauth credentials\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.639Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"message\\\": \\\"found\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.639Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"kilo\\\",\\n \\\"message\\\": \\\"found\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.640Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"claude-oauth\\\",\\n \\\"message\\\": \\\"found\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.640Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"status\\\": \\\"completed\\\",\\n \\\"duration\\\": 21,\\n \\\"message\\\": \\\"state\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.640Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"modelID\\\": \\\"big-pickle\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"message\\\": \\\"resolved short model name (single match)\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.640Z\\\",\\n \\\"service\\\": \\\"default\\\",\\n \\\"input\\\": \\\"big-pickle\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"modelID\\\": \\\"big-pickle\\\",\\n \\\"message\\\": \\\"resolved short model name\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.649Z\\\",\\n \\\"service\\\": \\\"server\\\",\\n \\\"method\\\": \\\"POST\\\",\\n \\\"path\\\": \\\"/session\\\",\\n \\\"message\\\": \\\"request\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.649Z\\\",\\n \\\"service\\\": \\\"server\\\",\\n \\\"status\\\": \\\"started\\\",\\n \\\"method\\\": \\\"POST\\\",\\n \\\"path\\\": \\\"/session\\\",\\n \\\"message\\\": \\\"request\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.651Z\\\",\\n \\\"service\\\": \\\"session\\\",\\n \\\"id\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"version\\\": \\\"agent-cli-1.0.0\\\",\\n \\\"projectID\\\": \\\"global\\\",\\n \\\"directory\\\": \\\"/home/hive\\\",\\n \\\"title\\\": \\\"New session - 2026-02-15T08:31:43.651Z\\\",\\n \\\"time\\\": {\\n \\\"created\\\": 1771144303651,\\n \\\"updated\\\": 1771144303651\\n },\\n \\\"message\\\": \\\"created\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.created\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.653Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.653Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.653Z\\\",\\n \\\"service\\\": \\\"server\\\",\\n \\\"status\\\": \\\"completed\\\",\\n \\\"duration\\\": 4,\\n \\\"method\\\": \\\"POST\\\",\\n \\\"path\\\": \\\"/session\\\",\\n \\\"message\\\": \\\"request\\\"\\n}\\n{\\n \\\"type\\\": \\\"*\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.655Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"subscribing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"input\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.659Z\\\",\\n \\\"raw\\\": \\\"hi\\\",\\n \\\"parsed\\\": {\\n \\\"message\\\": \\\"hi\\\"\\n },\\n \\\"format\\\": \\\"text\\\"\\n}\\n{\\n \\\"type\\\": \\\"*\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.659Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"subscribing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.660Z\\\",\\n \\\"service\\\": \\\"server\\\",\\n \\\"method\\\": \\\"POST\\\",\\n \\\"path\\\": \\\"/session/ses_39f92abdcffemBFOqUctsANi1x/message\\\",\\n \\\"message\\\": \\\"request\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.660Z\\\",\\n \\\"service\\\": \\\"server\\\",\\n \\\"status\\\": \\\"started\\\",\\n \\\"method\\\": \\\"POST\\\",\\n \\\"path\\\": \\\"/session/ses_39f92abdcffemBFOqUctsANi1x/message\\\",\\n \\\"message\\\": \\\"request\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.664Z\\\",\\n \\\"service\\\": \\\"server\\\",\\n \\\"status\\\": \\\"completed\\\",\\n \\\"duration\\\": 4,\\n \\\"method\\\": \\\"POST\\\",\\n \\\"path\\\": \\\"/session/ses_39f92abdcffemBFOqUctsANi1x/message\\\",\\n \\\"message\\\": \\\"request\\\"\\n}\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.667Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.668Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.669Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.670Z\\\",\\n \\\"service\\\": \\\"session.prompt\\\",\\n \\\"step\\\": 0,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"message\\\": \\\"loop\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.675Z\\\",\\n \\\"service\\\": \\\"session.prompt\\\",\\n \\\"hint\\\": \\\"Enable with --generate-title flag or AGENT_GENERATE_TITLE=true\\\",\\n \\\"message\\\": \\\"title generation disabled\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.675Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"modelID\\\": \\\"big-pickle\\\",\\n \\\"message\\\": \\\"getModel\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.676Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"status\\\": \\\"started\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"message\\\": \\\"getSDK\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.676Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"pkg\\\": \\\"@ai-sdk/openai-compatible\\\",\\n \\\"version\\\": \\\"latest\\\",\\n \\\"message\\\": \\\"installing provider package\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.676Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"pkg\\\": \\\"@ai-sdk/openai-compatible\\\",\\n \\\"installedPath\\\": \\\"/home/hive/.cache/link-assistant-agent/node_modules/@ai-sdk/openai-compatible\\\",\\n \\\"message\\\": \\\"provider package installed successfully\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.733Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"status\\\": \\\"completed\\\",\\n \\\"duration\\\": 57,\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"message\\\": \\\"getSDK\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.733Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"modelID\\\": \\\"big-pickle\\\",\\n \\\"message\\\": \\\"found\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.735Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.750Z\\\",\\n \\\"service\\\": \\\"session.processor\\\",\\n \\\"message\\\": \\\"process\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.status\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.757Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.768Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.769Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"modelID\\\": \\\"kimi-k2.5-free\\\",\\n \\\"message\\\": \\\"getModel\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.769Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"status\\\": \\\"started\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"message\\\": \\\"getSDK\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.769Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"status\\\": \\\"completed\\\",\\n \\\"duration\\\": 0,\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"message\\\": \\\"getSDK\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.769Z\\\",\\n \\\"service\\\": \\\"provider\\\",\\n \\\"providerID\\\": \\\"opencode\\\",\\n \\\"modelID\\\": \\\"kimi-k2.5-free\\\",\\n \\\"message\\\": \\\"found\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.772Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.diff\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:43.773Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:44.085Z\\\",\\n \\\"service\\\": \\\"retry-fetch\\\",\\n \\\"headerValue\\\": 55697,\\n \\\"delayMs\\\": 55697000,\\n \\\"message\\\": \\\"parsed retry-after header (seconds)\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:44.086Z\\\",\\n \\\"service\\\": \\\"retry-fetch\\\",\\n \\\"retryAfterMs\\\": 55697000,\\n \\\"delay\\\": 55697000,\\n \\\"minInterval\\\": 30000,\\n \\\"message\\\": \\\"using retry-after value\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:44.086Z\\\",\\n \\\"service\\\": \\\"retry-fetch\\\",\\n \\\"sessionID\\\": \\\"opencode\\\",\\n \\\"attempt\\\": 1,\\n \\\"delay\\\": 57580853,\\n \\\"delayMinutes\\\": \\\"959.68\\\",\\n \\\"elapsed\\\": 313,\\n \\\"remainingTimeout\\\": 604799687,\\n \\\"message\\\": \\\"rate limited, will retry\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.192Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"step_start\\\",\\n \\\"timestamp\\\": 1771144308193,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"part\\\": {\\n \\\"id\\\": \\\"prt_c606d65df001eGUjSi4ekFIBZv\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"messageID\\\": \\\"msg_c606d5475001Z1IhYEJe0EfCdI\\\",\\n \\\"type\\\": \\\"step-start\\\"\\n }\\n}\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.194Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.446Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.475Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.475Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.476Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.510Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"text\\\",\\n \\\"timestamp\\\": 1771144308510,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"part\\\": {\\n \\\"id\\\": \\\"prt_c606d66fb001UVz0YlSVSXj1oO\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"messageID\\\": \\\"msg_c606d5475001Z1IhYEJe0EfCdI\\\",\\n \\\"type\\\": \\\"text\\\",\\n \\\"text\\\": \\\"Hi! How can I help you today?\\\",\\n \\\"time\\\": {\\n \\\"start\\\": 1771144308508,\\n \\\"end\\\": 1771144308508\\n }\\n }\\n}\\n{\\n \\\"type\\\": \\\"message.part.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.514Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"step_finish\\\",\\n \\\"timestamp\\\": 1771144308514,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"part\\\": {\\n \\\"id\\\": \\\"prt_c606d6720001eo2Nipb8RbRgL7\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"messageID\\\": \\\"msg_c606d5475001Z1IhYEJe0EfCdI\\\",\\n \\\"type\\\": \\\"step-finish\\\",\\n \\\"reason\\\": \\\"stop\\\",\\n \\\"cost\\\": 0,\\n \\\"tokens\\\": {\\n \\\"input\\\": 10946,\\n \\\"output\\\": 47,\\n \\\"reasoning\\\": 37,\\n \\\"cache\\\": {\\n \\\"read\\\": 0,\\n \\\"write\\\": 0\\n }\\n }\\n }\\n}\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.514Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.515Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.520Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.520Z\\\",\\n \\\"service\\\": \\\"session.prompt\\\",\\n \\\"step\\\": 1,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"message\\\": \\\"loop\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"message.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.521Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.updated\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.522Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.diff\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.522Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.523Z\\\",\\n \\\"service\\\": \\\"session.prompt\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"message\\\": \\\"exiting loop\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.523Z\\\",\\n \\\"service\\\": \\\"session.compaction\\\",\\n \\\"message\\\": \\\"pruning\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.524Z\\\",\\n \\\"service\\\": \\\"session.prompt\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"message\\\": \\\"cancel\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.status\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.525Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"session.idle\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.525Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"publishing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"*\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.525Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"unsubscribing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.527Z\\\",\\n \\\"service\\\": \\\"session.compaction\\\",\\n \\\"pruned\\\": 0,\\n \\\"total\\\": 0,\\n \\\"message\\\": \\\"found\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"*\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.617Z\\\",\\n \\\"service\\\": \\\"bus\\\",\\n \\\"message\\\": \\\"unsubscribing\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.618Z\\\",\\n \\\"service\\\": \\\"default\\\",\\n \\\"directory\\\": \\\"/home/hive\\\",\\n \\\"message\\\": \\\"disposing instance\\\"\\n}\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.618Z\\\",\\n \\\"service\\\": \\\"state\\\",\\n \\\"key\\\": \\\"/home/hive\\\",\\n \\\"message\\\": \\\"waiting for state disposal to complete\\\"\\n}\\n\\n{\\n \\\"type\\\": \\\"log\\\",\\n \\\"level\\\": \\\"info\\\",\\n \\\"timestamp\\\": \\\"2026-02-15T08:31:48.618Z\\\",\\n \\\"service\\\": \\\"state\\\",\\n \\\"key\\\": \\\"/home/hive\\\",\\n \\\"message\\\": \\\"state disposal completed\\\"\\n}\\n\\nhive@vmi2955137:~$ \\n```\\n\\nFirst thing I don't understand is why we do mention default `kimi-k2.5-free` model, when we are working with `big-pickle`, that does creates a confusion.\\n\\nAlso in output like this:\\n\\n```\\n{\\n \\\"type\\\": \\\"text\\\",\\n \\\"timestamp\\\": 1771144308510,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"part\\\": {\\n \\\"id\\\": \\\"prt_c606d66fb001UVz0YlSVSXj1oO\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"messageID\\\": \\\"msg_c606d5475001Z1IhYEJe0EfCdI\\\",\\n \\\"type\\\": \\\"text\\\",\\n \\\"text\\\": \\\"Hi! How can I help you today?\\\",\\n \\\"time\\\": {\\n \\\"start\\\": 1771144308508,\\n \\\"end\\\": 1771144308508\\n }\\n }\\n}\\n```\\n\\nI want to see also `model` object for each part, so I know which exact model was answering, and usually it will contain a more specific model name or id, for example with date specified, so it will be nice additional information, we can add it without breaking compatibility with opencode output format. We also add it as option: `--output-used-model`.\\n\\n```\\n{\\n \\\"type\\\": \\\"step_finish\\\",\\n \\\"timestamp\\\": 1771144308514,\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"part\\\": {\\n \\\"id\\\": \\\"prt_c606d6720001eo2Nipb8RbRgL7\\\",\\n \\\"sessionID\\\": \\\"ses_39f92abdcffemBFOqUctsANi1x\\\",\\n \\\"messageID\\\": \\\"msg_c606d5475001Z1IhYEJe0EfCdI\\\",\\n \\\"type\\\": \\\"step-finish\\\",\\n \\\"reason\\\": \\\"stop\\\",\\n \\\"cost\\\": 0,\\n \\\"tokens\\\": {\\n \\\"input\\\": 10946,\\n \\\"output\\\": 47,\\n \\\"reasoning\\\": 37,\\n \\\"cache\\\": {\\n \\\"read\\\": 0,\\n \\\"write\\\": 0\\n }\\n }\\n }\\n}\\n```\\n\\nAlso in here near tokens it would be nice to have a model object for each part. So we will show in each model object everything we get from API about actual model used.\\n\\nPlease collect data related about the issue to this repository, make sure we compile that data to `./docs/case-studies/issue-{id}` folder, and use it to do deep case study analysis (also make sure to search online for additional facts and data), and propose possible solutions (including known existing components/libraries, that solve similar problem or can help in solutions).\",\"comments\":[],\"title\":\"`kimi-k2.5-free` is listed in logs, when working with `big-pickle`\"}",
"stderr": "",
"interrupted": false,
"isImage": false,
"noOutputExpected": false
}
}
[2026-02-15T09:04:15.693Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01EZrdJWtGwXmkdzrkWuNaga",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now I have a clear picture of what needs to be done. Let me create a todo list and examine the current state of the code:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 9626,
"cache_read_input_tokens": 30584,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 9626
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "24425e1a-d000-4fe0-9426-6621456f2af5"
}
[2026-02-15T09:04:21.002Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01EZrdJWtGwXmkdzrkWuNaga",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01PHqQX8V4dZb7HvKhT2WLUK",
"name": "TodoWrite",
"input": {
"todos": [
{
"content": "Rename --output-used-model to --output-response-model across all files",
"status": "pending",
"activeForm": "Renaming --output-used-model to --output-response-model"
},
{
"content": "Update model JSON schema: modelID→requestedModelID, responseModelId→respondedModelID",
"status": "pending",
"activeForm": "Updating model JSON schema field names"
},
{
"content": "Add --summarize-session flag (disabled by default)",
"status": "pending",
"activeForm": "Adding --summarize-session flag"
},
{
"content": "Ensure auxiliary tasks are disabled by default and don't select small model when disabled",
"status": "pending",
"activeForm": "Ensuring auxiliary tasks don't select small model when disabled"
},
{
"content": "Update tests to reflect all changes",
"status": "pending",
"activeForm": "Updating tests"
},
{
"content": "Update documentation and case study",
"status": "pending",
"activeForm": "Updating documentation"
},
{
"content": "Run local CI checks and ensure all tests pass",
"status": "pending",
"activeForm": "Running CI checks"
},
{
"content": "Update PR description to reflect changes",
"status": "pending",
"activeForm": "Updating PR description"
},
{
"content": "Mark PR as ready for review",
"status": "pending",
"activeForm": "Marking PR as ready"
}
]
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 9626,
"cache_read_input_tokens": 30584,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 9626
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "84dcd93b-c6d1-4170-b6d9-d5520044ab2b"
}
[2026-02-15T09:04:21.010Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01PHqQX8V4dZb7HvKhT2WLUK",
"type": "tool_result",
"content": "Todos have been modified successfully. Ensure that you continue to use the todo list to track your progress. Please proceed with the current tasks if applicable"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "804609f9-1a62-4c5a-b68d-6d5fb98ff41d",
"tool_use_result": {
"oldTodos": [],
"newTodos": [
{
"content": "Rename --output-used-model to --output-response-model across all files",
"status": "pending",
"activeForm": "Renaming --output-used-model to --output-response-model"
},
{
"content": "Update model JSON schema: modelID→requestedModelID, responseModelId→respondedModelID",
"status": "pending",
"activeForm": "Updating model JSON schema field names"
},
{
"content": "Add --summarize-session flag (disabled by default)",
"status": "pending",
"activeForm": "Adding --summarize-session flag"
},
{
"content": "Ensure auxiliary tasks are disabled by default and don't select small model when disabled",
"status": "pending",
"activeForm": "Ensuring auxiliary tasks don't select small model when disabled"
},
{
"content": "Update tests to reflect all changes",
"status": "pending",
"activeForm": "Updating tests"
},
{
"content": "Update documentation and case study",
"status": "pending",
"activeForm": "Updating documentation"
},
{
"content": "Run local CI checks and ensure all tests pass",
"status": "pending",
"activeForm": "Running CI checks"
},
{
"content": "Update PR description to reflect changes",
"status": "pending",
"activeForm": "Updating PR description"
},
{
"content": "Mark PR as ready for review",
"status": "pending",
"activeForm": "Marking PR as ready"
}
]
}
}
[2026-02-15T09:04:23.035Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01KjLfKRf5Go6v9pU8S8MvFX",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Let me first explore the current codebase to understand the structure:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 448,
"cache_read_input_tokens": 40210,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 448
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "d09881c3-54a6-4971-9b9b-4564e2780182"
}
[2026-02-15T09:04:23.564Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01KjLfKRf5Go6v9pU8S8MvFX",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01RmNG6qmwgsWBENyMXkkKZu",
"name": "Glob",
"input": {
"pattern": "js/src/**/*.{ts,js}"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 448,
"cache_read_input_tokens": 40210,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 448
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "eb5daef5-eaf8-4067-add3-717a97ca2af7"
}
[2026-02-15T09:04:24.174Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01RmNG6qmwgsWBENyMXkkKZu",
"type": "tool_result",
"content": "/tmp/gh-issue-solver-1771146225324/js/src/agent/agent.ts\n/tmp/gh-issue-solver-1771146225324/js/src/bun/index.ts\n/tmp/gh-issue-solver-1771146225324/js/src/auth/plugins.ts\n/tmp/gh-issue-solver-1771146225324/js/src/auth/claude-oauth.ts\n/tmp/gh-issue-solver-1771146225324/js/src/auth/index.ts\n/tmp/gh-issue-solver-1771146225324/js/src/bus/global.ts\n/tmp/gh-issue-solver-1771146225324/js/src/bus/index.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/bootstrap.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/export.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/auth.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/cmd.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/agent.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/bootstrap.js\n/tmp/gh-issue-solver-1771146225324/js/src/config/markdown.ts\n/tmp/gh-issue-solver-1771146225324/js/src/config/config.ts\n/tmp/gh-issue-solver-1771146225324/js/src/file.ts\n/tmp/gh-issue-solver-1771146225324/js/src/command/index.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/ui.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/output.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/event-handler.js\n/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/mcp.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/stats.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/models.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/run.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/error.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/input-queue.js\n/tmp/gh-issue-solver-1771146225324/js/src/cli/process-name.ts\n/tmp/gh-issue-solver-1771146225324/js/src/cli/continuous-mode.js\n/tmp/gh-issue-solver-1771146225324/js/src/file/ignore.ts\n/tmp/gh-issue-solver-1771146225324/js/src/format/index.ts\n/tmp/gh-issue-solver-1771146225324/js/src/format/formatter.ts\n/tmp/gh-issue-solver-1771146225324/js/src/global/index.ts\n/tmp/gh-issue-solver-1771146225324/js/src/id/id.ts\n/tmp/gh-issue-solver-1771146225324/js/src/mcp/index.ts\n/tmp/gh-issue-solver-1771146225324/js/src/json-standard/index.ts\n/tmp/gh-issue-solver-1771146225324/js/src/file/watcher.ts\n/tmp/gh-issue-solver-1771146225324/js/src/file/ripgrep.ts\n/tmp/gh-issue-solver-1771146225324/js/src/file/time.ts\n/tmp/gh-issue-solver-1771146225324/js/src/provider/echo.ts\n/tmp/gh-issue-solver-1771146225324/js/src/provider/opencode.js\n/tmp/gh-issue-solver-1771146225324/js/src/provider/cache.ts\n/tmp/gh-issue-solver-1771146225324/js/src/provider/models.ts\n/tmp/gh-issue-solver-1771146225324/js/src/provider/models-macro.ts\n/tmp/gh-issue-solver-1771146225324/js/src/provider/google-cloudcode.ts\n/tmp/gh-issue-solver-1771146225324/js/src/patch/index.ts\n/tmp/gh-issue-solver-1771146225324/js/src/project/instance.ts\n/tmp/gh-issue-solver-1771146225324/js/src/project/project.ts\n/tmp/gh-issue-solver-1771146225324/js/src/project/state.ts\n/tmp/gh-issue-solver-1771146225324/js/src/project/bootstrap.ts\n/tmp/gh-issue-solver-1771146225324/js/src/provider/transform.ts\n/tmp/gh-issue-solver-1771146225324/js/src/provider/retry-fetch.ts\n/tmp/gh-issue-solver-1771146225324/js/src/server/project.ts\n/tmp/gh-issue-solver-1771146225324/js/src/server/server.ts\n/tmp/gh-issue-solver-1771146225324/js/src/session/agent.js\n/tmp/gh-issue-solver-1771146225324/js/src/session/index.ts\n/tmp/gh-issue-solver-1771146225324/js/src/session/compaction.ts\n/tmp/gh-issue-solver-1771146225324/js/src/session/prompt.ts\n/tmp/gh-issue-solver-1771146225324/js/src/session/message.ts\n/tmp/gh-issue-solver-1771146225324/js/src/storage/storage.ts\n/tmp/gh-issue-solver-1771146225324/js/src/snapshot/index.ts\n/tmp/gh-issue-solver-1771146225324/js/src/session/system.ts\n/tmp/gh-issue-solver-1771146225324/js/src/session/revert.ts\n/tmp/gh-issue-solver-1771146225324/js/src/session/todo.ts\n/tmp/gh-issue-solver-1771146225324/js/src/session/summary.ts\n/tmp/gh-issue-solver-1771146225324/js/src/session/status.ts\n/tmp/gh-issue-solver-1771146225324/js/src/session/retry.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/ls.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/grep.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/bash.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/invalid.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/edit.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/codesearch.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/batch.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/glob.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/patch.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/todo.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/websearch.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/write.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/multiedit.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/registry.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/read.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/webfetch.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/tool.ts\n/tmp/gh-issue-solver-1771146225324/js/src/tool/task.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/defer.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/rpc.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/lock.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/iife.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/token.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/fn.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/locale.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/eventloop.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/log-lazy.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/binary.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/keybind.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/queue.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/wildcard.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/lazy.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/signal.ts\n/tmp/gh-issue-solver-1771146225324/js/src/util/error.ts\n(Results are truncated. Consider using a more specific path or pattern.)"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "aa24fba0-8621-49ea-91b6-b538ad04a4f6",
"tool_use_result": {
"filenames": [
"/tmp/gh-issue-solver-1771146225324/js/src/agent/agent.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/bun/index.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/auth/plugins.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/auth/claude-oauth.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/auth/index.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/bus/global.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/bus/index.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/bootstrap.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/export.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/auth.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/cmd.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/agent.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/bootstrap.js",
"/tmp/gh-issue-solver-1771146225324/js/src/config/markdown.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/config/config.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/file.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/command/index.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/ui.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/output.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/event-handler.js",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/mcp.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/stats.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/models.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/cmd/run.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/error.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/input-queue.js",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/process-name.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/cli/continuous-mode.js",
"/tmp/gh-issue-solver-1771146225324/js/src/file/ignore.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/format/index.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/format/formatter.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/global/index.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/id/id.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/mcp/index.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/json-standard/index.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/file/watcher.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/file/ripgrep.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/file/time.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/provider/echo.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/provider/opencode.js",
"/tmp/gh-issue-solver-1771146225324/js/src/provider/cache.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/provider/models.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/provider/models-macro.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/provider/google-cloudcode.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/patch/index.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/project/instance.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/project/project.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/project/state.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/project/bootstrap.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/provider/transform.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/provider/retry-fetch.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/server/project.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/server/server.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/session/agent.js",
"/tmp/gh-issue-solver-1771146225324/js/src/session/index.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/session/compaction.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/session/prompt.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/session/message.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/storage/storage.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/snapshot/index.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/session/system.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/session/revert.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/session/todo.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/session/summary.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/session/status.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/session/retry.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/ls.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/grep.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/bash.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/invalid.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/edit.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/codesearch.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/batch.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/glob.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/patch.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/todo.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/websearch.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/write.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/multiedit.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/registry.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/read.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/webfetch.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/tool.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/tool/task.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/defer.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/rpc.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/lock.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/iife.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/token.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/fn.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/locale.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/eventloop.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/log-lazy.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/binary.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/keybind.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/queue.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/wildcard.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/lazy.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/signal.ts",
"/tmp/gh-issue-solver-1771146225324/js/src/util/error.ts"
],
"durationMs": 14,
"numFiles": 100,
"truncated": true
}
}
[2026-02-15T09:04:24.455Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01KjLfKRf5Go6v9pU8S8MvFX",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01VbxYgivDJHEA9rusouvLGg",
"name": "Bash",
"input": {
"command": "git diff --name-only HEAD~5 2>&1 | head -50",
"description": "List recently changed files"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 448,
"cache_read_input_tokens": 40210,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 448
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "c849aa4e-451e-4da8-b9b4-b42e2443da24"
}
[2026-02-15T09:04:24.531Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01VbxYgivDJHEA9rusouvLGg",
"type": "tool_result",
"content": "docs/case-studies/issue-179/README.md\njs/.changeset/add-output-used-model-flag.md\njs/src/flag/flag.ts\njs/src/index.js\njs/src/provider/provider.ts\njs/src/session/message-v2.ts\njs/src/session/processor.ts\njs/tests/output-used-model.test.js",
"is_error": false
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "fa7fabed-1ba3-4b42-ab75-0b953bd88da4",
"tool_use_result": {
"stdout": "docs/case-studies/issue-179/README.md\njs/.changeset/add-output-used-model-flag.md\njs/src/flag/flag.ts\njs/src/index.js\njs/src/provider/provider.ts\njs/src/session/message-v2.ts\njs/src/session/processor.ts\njs/tests/output-used-model.test.js",
"stderr": "",
"interrupted": false,
"isImage": false,
"noOutputExpected": false
}
}
[2026-02-15T09:04:26.261Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01Byo49dWiFHM3o7zW1JbkV9",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Let me read the key files that need modification:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 2874,
"cache_read_input_tokens": 40658,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 2874
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "38471334-d304-4bcb-853f-00def33ec5ae"
}
[2026-02-15T09:04:26.777Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01Byo49dWiFHM3o7zW1JbkV9",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_018j7ApFE1FU3Wtfj2i2GziD",
"name": "Read",
"input": {
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/flag/flag.ts"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 2874,
"cache_read_input_tokens": 40658,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 2874
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "562d74c0-cc81-4ef8-98e7-1777c514e970"
}
[2026-02-15T09:04:26.784Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_018j7ApFE1FU3Wtfj2i2GziD",
"type": "tool_result",
"content": " 1→export namespace Flag {\n 2→ // Helper to check env vars with new prefix first, then fall back to old prefix for backwards compatibility\n 3→ function getEnv(newKey: string, oldKey: string): string | undefined {\n 4→ return process.env[newKey] ?? process.env[oldKey];\n 5→ }\n 6→\n 7→ function truthyCompat(newKey: string, oldKey: string): boolean {\n 8→ const value = (getEnv(newKey, oldKey) ?? '').toLowerCase();\n 9→ return value === 'true' || value === '1';\n 10→ }\n 11→\n 12→ // LINK_ASSISTANT_AGENT_AUTO_SHARE removed - no sharing support\n 13→ export const OPENCODE_CONFIG = getEnv(\n 14→ 'LINK_ASSISTANT_AGENT_CONFIG',\n 15→ 'OPENCODE_CONFIG'\n 16→ );\n 17→ export const OPENCODE_CONFIG_DIR = getEnv(\n 18→ 'LINK_ASSISTANT_AGENT_CONFIG_DIR',\n 19→ 'OPENCODE_CONFIG_DIR'\n 20→ );\n 21→ export const OPENCODE_CONFIG_CONTENT = getEnv(\n 22→ 'LINK_ASSISTANT_AGENT_CONFIG_CONTENT',\n 23→ 'OPENCODE_CONFIG_CONTENT'\n 24→ );\n 25→ export const OPENCODE_DISABLE_AUTOUPDATE = truthyCompat(\n 26→ 'LINK_ASSISTANT_AGENT_DISABLE_AUTOUPDATE',\n 27→ 'OPENCODE_DISABLE_AUTOUPDATE'\n 28→ );\n 29→ export const OPENCODE_DISABLE_PRUNE = truthyCompat(\n 30→ 'LINK_ASSISTANT_AGENT_DISABLE_PRUNE',\n 31→ 'OPENCODE_DISABLE_PRUNE'\n 32→ );\n 33→ export const OPENCODE_ENABLE_EXPERIMENTAL_MODELS = truthyCompat(\n 34→ 'LINK_ASSISTANT_AGENT_ENABLE_EXPERIMENTAL_MODELS',\n 35→ 'OPENCODE_ENABLE_EXPERIMENTAL_MODELS'\n 36→ );\n 37→ export const OPENCODE_DISABLE_AUTOCOMPACT = truthyCompat(\n 38→ 'LINK_ASSISTANT_AGENT_DISABLE_AUTOCOMPACT',\n 39→ 'OPENCODE_DISABLE_AUTOCOMPACT'\n 40→ );\n 41→\n 42→ // Experimental\n 43→ export const OPENCODE_EXPERIMENTAL = truthyCompat(\n 44→ 'LINK_ASSISTANT_AGENT_EXPERIMENTAL',\n 45→ 'OPENCODE_EXPERIMENTAL'\n 46→ );\n 47→ export const OPENCODE_EXPERIMENTAL_WATCHER =\n 48→ OPENCODE_EXPERIMENTAL ||\n 49→ truthyCompat(\n 50→ 'LINK_ASSISTANT_AGENT_EXPERIMENTAL_WATCHER',\n 51→ 'OPENCODE_EXPERIMENTAL_WATCHER'\n 52→ );\n 53→\n 54→ // Verbose mode - enables detailed logging of API requests\n 55→ export let OPENCODE_VERBOSE = truthyCompat(\n 56→ 'LINK_ASSISTANT_AGENT_VERBOSE',\n 57→ 'OPENCODE_VERBOSE'\n 58→ );\n 59→\n 60→ // Dry run mode - simulate operations without making actual API calls or changes\n 61→ export let OPENCODE_DRY_RUN = truthyCompat(\n 62→ 'LINK_ASSISTANT_AGENT_DRY_RUN',\n 63→ 'OPENCODE_DRY_RUN'\n 64→ );\n 65→\n 66→ // Title generation configuration\n 67→ // When disabled, sessions will use default \"New session - {timestamp}\" titles\n 68→ // This saves tokens and prevents rate limit issues with free tier models\n 69→ // See: https://github.com/link-assistant/agent/issues/157\n 70→ export let GENERATE_TITLE = truthyCompat(\n 71→ 'LINK_ASSISTANT_AGENT_GENERATE_TITLE',\n 72→ 'AGENT_GENERATE_TITLE'\n 73→ );\n 74→\n 75→ // Allow setting title generation mode programmatically (e.g., from CLI --generate-title flag)\n 76→ export function setGenerateTitle(value: boolean) {\n 77→ GENERATE_TITLE = value;\n 78→ }\n 79→\n 80→ // Output used model information in step-finish and text parts\n 81→ // When enabled, includes model info (providerID, modelID, responseModelId) in output\n 82→ // See: https://github.com/link-assistant/agent/issues/179\n 83→ export let OUTPUT_USED_MODEL = truthyCompat(\n 84→ 'LINK_ASSISTANT_AGENT_OUTPUT_USED_MODEL',\n 85→ 'AGENT_OUTPUT_USED_MODEL'\n 86→ );\n 87→\n 88→ // Allow setting output-used-model mode programmatically (e.g., from CLI --output-used-model flag)\n 89→ export function setOutputUsedModel(value: boolean) {\n 90→ OUTPUT_USED_MODEL = value;\n 91→ }\n 92→\n 93→ // Retry timeout configuration\n 94→ // Maximum total time to keep retrying for the same error type (default: 7 days in seconds)\n 95→ // For different error types, the timer resets\n 96→ // See: https://github.com/link-assistant/agent/issues/157\n 97→ export function RETRY_TIMEOUT(): number {\n 98→ const val = getEnv(\n 99→ 'LINK_ASSISTANT_AGENT_RETRY_TIMEOUT',\n 100→ 'AGENT_RETRY_TIMEOUT'\n 101→ );\n 102→ return val ? parseInt(val, 10) : 604800; // 7 days in seconds\n 103→ }\n 104→\n 105→ // Maximum delay for a single retry attempt (default: 20 minutes in milliseconds)\n 106→ export function MAX_RETRY_DELAY(): number {\n 107→ const val = getEnv(\n 108→ 'LINK_ASSISTANT_AGENT_MAX_RETRY_DELAY',\n 109→ 'AGENT_MAX_RETRY_DELAY'\n 110→ );\n 111→ return val ? parseInt(val, 10) * 1000 : 1200000; // 20 minutes in ms\n 112→ }\n 113→\n 114→ // Minimum retry interval to prevent rapid retries (default: 30 seconds)\n 115→ // This ensures we don't hammer the API with rapid retry attempts\n 116→ // See: https://github.com/link-assistant/agent/issues/167\n 117→ export function MIN_RETRY_INTERVAL(): number {\n 118→ const val = getEnv(\n 119→ 'LINK_ASSISTANT_AGENT_MIN_RETRY_INTERVAL',\n 120→ 'AGENT_MIN_RETRY_INTERVAL'\n 121→ );\n 122→ return val ? parseInt(val, 10) * 1000 : 30000; // 30 seconds in ms\n 123→ }\n 124→\n 125→ // Stream timeout configuration\n 126→ // chunkMs: timeout between stream chunks - detects stalled streams (default: 2 minutes)\n 127→ // stepMs: timeout for each individual LLM step (default: 10 minutes)\n 128→ export function STREAM_CHUNK_TIMEOUT_MS(): number {\n 129→ const val = getEnv(\n 130→ 'LINK_ASSISTANT_AGENT_STREAM_CHUNK_TIMEOUT_MS',\n 131→ 'AGENT_STREAM_CHUNK_TIMEOUT_MS'\n 132→ );\n 133→ return val ? parseInt(val, 10) : 120_000;\n 134→ }\n 135→\n 136→ export function STREAM_STEP_TIMEOUT_MS(): number {\n 137→ const val = getEnv(\n 138→ 'LINK_ASSISTANT_AGENT_STREAM_STEP_TIMEOUT_MS',\n 139→ 'AGENT_STREAM_STEP_TIMEOUT_MS'\n 140→ );\n 141→ return val ? parseInt(val, 10) : 600_000;\n 142→ }\n 143→\n 144→ // Compact JSON mode - output JSON on single lines (NDJSON format)\n 145→ // Enabled by AGENT_CLI_COMPACT env var or --compact-json flag\n 146→ // Uses getter to check env var at runtime for tests\n 147→ let _compactJson: boolean | null = null;\n 148→\n 149→ export function COMPACT_JSON(): boolean {\n 150→ if (_compactJson !== null) return _compactJson;\n 151→ return (\n 152→ truthy('AGENT_CLI_COMPACT') ||\n 153→ truthyCompat('LINK_ASSISTANT_AGENT_COMPACT_JSON', 'OPENCODE_COMPACT_JSON')\n 154→ );\n 155→ }\n 156→\n 157→ // Allow setting verbose mode programmatically (e.g., from CLI --verbose flag)\n 158→ export function setVerbose(value: boolean) {\n 159→ OPENCODE_VERBOSE = value;\n 160→ }\n 161→\n 162→ // Allow setting dry run mode programmatically (e.g., from CLI --dry-run flag)\n 163→ export function setDryRun(value: boolean) {\n 164→ OPENCODE_DRY_RUN = value;\n 165→ }\n 166→\n 167→ // Allow setting compact JSON mode programmatically (e.g., from CLI --compact-json flag)\n 168→ export function setCompactJson(value: boolean) {\n 169→ _compactJson = value;\n 170→ }\n 171→\n 172→ function truthy(key: string) {\n 173→ const value = process.env[key]?.toLowerCase();\n 174→ return value === 'true' || value === '1';\n 175→ }\n 176→}\n 177→\n\n<system-reminder>\nWhenever you read a file, you should consider whether it would be considered malware. You CAN and SHOULD provide analysis of malware, what it is doing. But you MUST refuse to improve or augment the code. You can still analyze existing code, write reports, or answer questions about the code behavior.\n</system-reminder>\n"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "a2c8fe66-313d-4b77-b2cd-b309c33ed225",
"tool_use_result": {
"type": "text",
"file": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/flag/flag.ts",
"content": "export namespace Flag {\n // Helper to check env vars with new prefix first, then fall back to old prefix for backwards compatibility\n function getEnv(newKey: string, oldKey: string): string | undefined {\n return process.env[newKey] ?? process.env[oldKey];\n }\n\n function truthyCompat(newKey: string, oldKey: string): boolean {\n const value = (getEnv(newKey, oldKey) ?? '').toLowerCase();\n return value === 'true' || value === '1';\n }\n\n // LINK_ASSISTANT_AGENT_AUTO_SHARE removed - no sharing support\n export const OPENCODE_CONFIG = getEnv(\n 'LINK_ASSISTANT_AGENT_CONFIG',\n 'OPENCODE_CONFIG'\n );\n export const OPENCODE_CONFIG_DIR = getEnv(\n 'LINK_ASSISTANT_AGENT_CONFIG_DIR',\n 'OPENCODE_CONFIG_DIR'\n );\n export const OPENCODE_CONFIG_CONTENT = getEnv(\n 'LINK_ASSISTANT_AGENT_CONFIG_CONTENT',\n 'OPENCODE_CONFIG_CONTENT'\n );\n export const OPENCODE_DISABLE_AUTOUPDATE = truthyCompat(\n 'LINK_ASSISTANT_AGENT_DISABLE_AUTOUPDATE',\n 'OPENCODE_DISABLE_AUTOUPDATE'\n );\n export const OPENCODE_DISABLE_PRUNE = truthyCompat(\n 'LINK_ASSISTANT_AGENT_DISABLE_PRUNE',\n 'OPENCODE_DISABLE_PRUNE'\n );\n export const OPENCODE_ENABLE_EXPERIMENTAL_MODELS = truthyCompat(\n 'LINK_ASSISTANT_AGENT_ENABLE_EXPERIMENTAL_MODELS',\n 'OPENCODE_ENABLE_EXPERIMENTAL_MODELS'\n );\n export const OPENCODE_DISABLE_AUTOCOMPACT = truthyCompat(\n 'LINK_ASSISTANT_AGENT_DISABLE_AUTOCOMPACT',\n 'OPENCODE_DISABLE_AUTOCOMPACT'\n );\n\n // Experimental\n export const OPENCODE_EXPERIMENTAL = truthyCompat(\n 'LINK_ASSISTANT_AGENT_EXPERIMENTAL',\n 'OPENCODE_EXPERIMENTAL'\n );\n export const OPENCODE_EXPERIMENTAL_WATCHER =\n OPENCODE_EXPERIMENTAL ||\n truthyCompat(\n 'LINK_ASSISTANT_AGENT_EXPERIMENTAL_WATCHER',\n 'OPENCODE_EXPERIMENTAL_WATCHER'\n );\n\n // Verbose mode - enables detailed logging of API requests\n export let OPENCODE_VERBOSE = truthyCompat(\n 'LINK_ASSISTANT_AGENT_VERBOSE',\n 'OPENCODE_VERBOSE'\n );\n\n // Dry run mode - simulate operations without making actual API calls or changes\n export let OPENCODE_DRY_RUN = truthyCompat(\n 'LINK_ASSISTANT_AGENT_DRY_RUN',\n 'OPENCODE_DRY_RUN'\n );\n\n // Title generation configuration\n // When disabled, sessions will use default \"New session - {timestamp}\" titles\n // This saves tokens and prevents rate limit issues with free tier models\n // See: https://github.com/link-assistant/agent/issues/157\n export let GENERATE_TITLE = truthyCompat(\n 'LINK_ASSISTANT_AGENT_GENERATE_TITLE',\n 'AGENT_GENERATE_TITLE'\n );\n\n // Allow setting title generation mode programmatically (e.g., from CLI --generate-title flag)\n export function setGenerateTitle(value: boolean) {\n GENERATE_TITLE = value;\n }\n\n // Output used model information in step-finish and text parts\n // When enabled, includes model info (providerID, modelID, responseModelId) in output\n // See: https://github.com/link-assistant/agent/issues/179\n export let OUTPUT_USED_MODEL = truthyCompat(\n 'LINK_ASSISTANT_AGENT_OUTPUT_USED_MODEL',\n 'AGENT_OUTPUT_USED_MODEL'\n );\n\n // Allow setting output-used-model mode programmatically (e.g., from CLI --output-used-model flag)\n export function setOutputUsedModel(value: boolean) {\n OUTPUT_USED_MODEL = value;\n }\n\n // Retry timeout configuration\n // Maximum total time to keep retrying for the same error type (default: 7 days in seconds)\n // For different error types, the timer resets\n // See: https://github.com/link-assistant/agent/issues/157\n export function RETRY_TIMEOUT(): number {\n const val = getEnv(\n 'LINK_ASSISTANT_AGENT_RETRY_TIMEOUT',\n 'AGENT_RETRY_TIMEOUT'\n );\n return val ? parseInt(val, 10) : 604800; // 7 days in seconds\n }\n\n // Maximum delay for a single retry attempt (default: 20 minutes in milliseconds)\n export function MAX_RETRY_DELAY(): number {\n const val = getEnv(\n 'LINK_ASSISTANT_AGENT_MAX_RETRY_DELAY',\n 'AGENT_MAX_RETRY_DELAY'\n );\n return val ? parseInt(val, 10) * 1000 : 1200000; // 20 minutes in ms\n }\n\n // Minimum retry interval to prevent rapid retries (default: 30 seconds)\n // This ensures we don't hammer the API with rapid retry attempts\n // See: https://github.com/link-assistant/agent/issues/167\n export function MIN_RETRY_INTERVAL(): number {\n const val = getEnv(\n 'LINK_ASSISTANT_AGENT_MIN_RETRY_INTERVAL',\n 'AGENT_MIN_RETRY_INTERVAL'\n );\n return val ? parseInt(val, 10) * 1000 : 30000; // 30 seconds in ms\n }\n\n // Stream timeout configuration\n // chunkMs: timeout between stream chunks - detects stalled streams (default: 2 minutes)\n // stepMs: timeout for each individual LLM step (default: 10 minutes)\n export function STREAM_CHUNK_TIMEOUT_MS(): number {\n const val = getEnv(\n 'LINK_ASSISTANT_AGENT_STREAM_CHUNK_TIMEOUT_MS',\n 'AGENT_STREAM_CHUNK_TIMEOUT_MS'\n );\n return val ? parseInt(val, 10) : 120_000;\n }\n\n export function STREAM_STEP_TIMEOUT_MS(): number {\n const val = getEnv(\n 'LINK_ASSISTANT_AGENT_STREAM_STEP_TIMEOUT_MS',\n 'AGENT_STREAM_STEP_TIMEOUT_MS'\n );\n return val ? parseInt(val, 10) : 600_000;\n }\n\n // Compact JSON mode - output JSON on single lines (NDJSON format)\n // Enabled by AGENT_CLI_COMPACT env var or --compact-json flag\n // Uses getter to check env var at runtime for tests\n let _compactJson: boolean | null = null;\n\n export function COMPACT_JSON(): boolean {\n if (_compactJson !== null) return _compactJson;\n return (\n truthy('AGENT_CLI_COMPACT') ||\n truthyCompat('LINK_ASSISTANT_AGENT_COMPACT_JSON', 'OPENCODE_COMPACT_JSON')\n );\n }\n\n // Allow setting verbose mode programmatically (e.g., from CLI --verbose flag)\n export function setVerbose(value: boolean) {\n OPENCODE_VERBOSE = value;\n }\n\n // Allow setting dry run mode programmatically (e.g., from CLI --dry-run flag)\n export function setDryRun(value: boolean) {\n OPENCODE_DRY_RUN = value;\n }\n\n // Allow setting compact JSON mode programmatically (e.g., from CLI --compact-json flag)\n export function setCompactJson(value: boolean) {\n _compactJson = value;\n }\n\n function truthy(key: string) {\n const value = process.env[key]?.toLowerCase();\n return value === 'true' || value === '1';\n }\n}\n",
"numLines": 177,
"startLine": 1,
"totalLines": 177
}
}
}
[2026-02-15T09:04:27.173Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01Byo49dWiFHM3o7zW1JbkV9",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01GB7T7fqCcoo4y9ZWxwPfpc",
"name": "Read",
"input": {
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/index.js"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 2874,
"cache_read_input_tokens": 40658,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 2874
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "bb81710c-e753-41ed-a558-db582c7939a6"
}
[2026-02-15T09:04:27.542Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01GB7T7fqCcoo4y9ZWxwPfpc",
"type": "tool_result",
"content": " 1→#!/usr/bin/env bun\n 2→\n 3→import { setProcessName } from './cli/process-name.ts';\n 4→\n 5→setProcessName('agent');\n 6→\n 7→import { Server } from './server/server.ts';\n 8→import { Instance } from './project/instance.ts';\n 9→import { Log } from './util/log.ts';\n 10→// Bus is used via createBusEventSubscription in event-handler.js\n 11→import { Session } from './session/index.ts';\n 12→import { SessionPrompt } from './session/prompt.ts';\n 13→// EOL is reserved for future use\n 14→import yargs from 'yargs';\n 15→import { hideBin } from 'yargs/helpers';\n 16→import {\n 17→ createEventHandler,\n 18→ isValidJsonStandard,\n 19→} from './json-standard/index.ts';\n 20→import { McpCommand } from './cli/cmd/mcp.ts';\n 21→import { AuthCommand } from './cli/cmd/auth.ts';\n 22→import { Flag } from './flag/flag.ts';\n 23→import { FormatError } from './cli/error.ts';\n 24→import { UI } from './cli/ui.ts';\n 25→import {\n 26→ runContinuousServerMode,\n 27→ runContinuousDirectMode,\n 28→ resolveResumeSession,\n 29→} from './cli/continuous-mode.js';\n 30→import { createBusEventSubscription } from './cli/event-handler.js';\n 31→import {\n 32→ outputStatus,\n 33→ outputError,\n 34→ outputHelp,\n 35→ setCompactJson,\n 36→ outputInput,\n 37→} from './cli/output.ts';\n 38→import stripAnsi from 'strip-ansi';\n 39→import { createRequire } from 'module';\n 40→import { readFileSync } from 'fs';\n 41→import { dirname, join } from 'path';\n 42→import { fileURLToPath } from 'url';\n 43→\n 44→const require = createRequire(import.meta.url);\n 45→let pkg;\n 46→try {\n 47→ pkg = require('../package.json');\n 48→} catch (_e) {\n 49→ // Fallback: read package.json directly\n 50→ const __dirname = dirname(fileURLToPath(import.meta.url));\n 51→ const pkgPath = join(__dirname, '../package.json');\n 52→ const pkgContent = readFileSync(pkgPath, 'utf8');\n 53→ pkg = JSON.parse(pkgContent);\n 54→}\n 55→\n 56→// Track if any errors occurred during execution\n 57→let hasError = false;\n 58→\n 59→// Install global error handlers to ensure non-zero exit codes\n 60→process.on('uncaughtException', (error) => {\n 61→ hasError = true;\n 62→ outputError({\n 63→ errorType: error.name || 'UncaughtException',\n 64→ message: error.message,\n 65→ stack: error.stack,\n 66→ });\n 67→ process.exit(1);\n 68→});\n 69→\n 70→process.on('unhandledRejection', (reason, _promise) => {\n 71→ hasError = true;\n 72→ const errorOutput = {\n 73→ errorType: 'UnhandledRejection',\n 74→ message: reason?.message || String(reason),\n 75→ stack: reason?.stack,\n 76→ };\n 77→ // If the error has a data property with a suggestion (e.g., ProviderModelNotFoundError), add it as a hint\n 78→ if (reason?.data?.suggestion) {\n 79→ errorOutput.hint = reason.data.suggestion;\n 80→ }\n 81→ outputError(errorOutput);\n 82→ process.exit(1);\n 83→});\n 84→\n 85→/**\n 86→ * Read stdin with optional timeout.\n 87→ * @param {number|null} timeout - Timeout in milliseconds. If null, wait indefinitely until EOF.\n 88→ * @returns {Promise<string>} - The stdin content\n 89→ */\n 90→function readStdinWithTimeout(timeout = null) {\n 91→ return new Promise((resolve) => {\n 92→ let data = '';\n 93→ let hasData = false;\n 94→ let timer = null;\n 95→\n 96→ const cleanup = () => {\n 97→ if (timer) {\n 98→ clearTimeout(timer);\n 99→ }\n 100→ process.stdin.removeListener('data', onData);\n 101→ process.stdin.removeListener('end', onEnd);\n 102→ process.stdin.removeListener('error', onError);\n 103→ };\n 104→\n 105→ const onData = (chunk) => {\n 106→ hasData = true;\n 107→ if (timer) {\n 108→ clearTimeout(timer);\n 109→ }\n 110→ data += chunk;\n 111→ };\n 112→\n 113→ const onEnd = () => {\n 114→ cleanup();\n 115→ resolve(data);\n 116→ };\n 117→\n 118→ const onError = () => {\n 119→ cleanup();\n 120→ resolve('');\n 121→ };\n 122→\n 123→ // Only set timeout if specified (not null)\n 124→ if (timeout !== null) {\n 125→ timer = setTimeout(() => {\n 126→ if (!hasData) {\n 127→ process.stdin.pause();\n 128→ cleanup();\n 129→ resolve('');\n 130→ }\n 131→ }, timeout);\n 132→ }\n 133→\n 134→ process.stdin.on('data', onData);\n 135→ process.stdin.on('end', onEnd);\n 136→ process.stdin.on('error', onError);\n 137→ });\n 138→}\n 139→\n 140→// outputStatus is now imported from './cli/output.ts'\n 141→// It outputs to stdout for non-error messages, stderr for errors\n 142→\n 143→/**\n 144→ * Parse model configuration from argv\n 145→ * Supports both explicit provider/model format and short model names.\n 146→ *\n 147→ * Format examples:\n 148→ * - \"kilo/glm-5-free\" -> uses kilo provider with glm-5-free model (explicit)\n 149→ * - \"opencode/kimi-k2.5-free\" -> uses opencode provider (explicit)\n 150→ * - \"glm-5-free\" -> resolved to kilo provider (unique free model)\n 151→ * - \"kimi-k2.5-free\" -> resolved to opencode provider (shared model, opencode preferred)\n 152→ *\n 153→ * @param {object} argv - Command line arguments\n 154→ * @returns {object} - { providerID, modelID }\n 155→ */\n 156→async function parseModelConfig(argv) {\n 157→ const modelArg = argv.model;\n 158→\n 159→ let providerID;\n 160→ let modelID;\n 161→\n 162→ // Check if model includes explicit provider prefix\n 163→ if (modelArg.includes('/')) {\n 164→ // Explicit provider/model format - respect user's choice\n 165→ const modelParts = modelArg.split('/');\n 166→ providerID = modelParts[0];\n 167→ modelID = modelParts.slice(1).join('/');\n 168→\n 169→ // Validate that providerID and modelID are not empty\n 170→ if (!providerID || !modelID) {\n 171→ providerID = providerID || 'opencode';\n 172→ modelID = modelID || 'kimi-k2.5-free';\n 173→ }\n 174→\n 175→ // Log raw and parsed values to help diagnose model routing issues (#171)\n 176→ Log.Default.info(() => ({\n 177→ message: 'using explicit provider/model',\n 178→ rawModel: modelArg,\n 179→ providerID,\n 180→ modelID,\n 181→ }));\n 182→ } else {\n 183→ // Short model name - resolve to appropriate provider\n 184→ // Import Provider to use parseModelWithResolution\n 185→ const { Provider } = await import('./provider/provider.ts');\n 186→ const resolved = await Provider.parseModelWithResolution(modelArg);\n 187→ providerID = resolved.providerID;\n 188→ modelID = resolved.modelID;\n 189→\n 190→ Log.Default.info(() => ({\n 191→ message: 'resolved short model name',\n 192→ input: modelArg,\n 193→ providerID,\n 194→ modelID,\n 195→ }));\n 196→ }\n 197→\n 198→ // Handle --use-existing-claude-oauth option\n 199→ // This reads OAuth credentials from ~/.claude/.credentials.json (Claude Code CLI)\n 200→ // For new authentication, use: agent auth login (select Anthropic > Claude Pro/Max)\n 201→ if (argv['use-existing-claude-oauth']) {\n 202→ // Import ClaudeOAuth to check for credentials from Claude Code CLI\n 203→ const { ClaudeOAuth } = await import('./auth/claude-oauth.ts');\n 204→ const creds = await ClaudeOAuth.getCredentials();\n 205→\n 206→ if (!creds?.accessToken) {\n 207→ const compactJson = argv['compact-json'] === true;\n 208→ outputError(\n 209→ {\n 210→ errorType: 'AuthenticationError',\n 211→ message:\n 212→ 'No Claude OAuth credentials found in ~/.claude/.credentials.json. Either authenticate with Claude Code CLI first, or use: agent auth login (select Anthropic > Claude Pro/Max)',\n 213→ },\n 214→ compactJson\n 215→ );\n 216→ process.exit(1);\n 217→ }\n 218→\n 219→ // Set environment variable for the provider to use\n 220→ process.env.CLAUDE_CODE_OAUTH_TOKEN = creds.accessToken;\n 221→\n 222→ // If user specified the default model (opencode/kimi-k2.5-free), switch to claude-oauth\n 223→ // If user explicitly specified kilo or another provider, warn but respect their choice\n 224→ if (providerID === 'opencode' && modelID === 'kimi-k2.5-free') {\n 225→ providerID = 'claude-oauth';\n 226→ modelID = 'claude-sonnet-4-5';\n 227→ } else if (!['claude-oauth', 'anthropic'].includes(providerID)) {\n 228→ // If user specified a different provider explicitly, warn them\n 229→ const compactJson = argv['compact-json'] === true;\n 230→ outputStatus(\n 231→ {\n 232→ type: 'warning',\n 233→ message: `--use-existing-claude-oauth is set but model uses provider \"${providerID}\". Using specified provider.`,\n 234→ },\n 235→ compactJson\n 236→ );\n 237→ // Don't override - respect user's explicit provider choice\n 238→ }\n 239→ }\n 240→\n 241→ return { providerID, modelID };\n 242→}\n 243→\n 244→/**\n 245→ * Read system message from files if specified\n 246→ * @param {object} argv - Command line arguments\n 247→ * @returns {object} - { systemMessage, appendSystemMessage }\n 248→ */\n 249→async function readSystemMessages(argv) {\n 250→ let systemMessage = argv['system-message'];\n 251→ let appendSystemMessage = argv['append-system-message'];\n 252→\n 253→ if (argv['system-message-file']) {\n 254→ const resolvedPath = require('path').resolve(\n 255→ process.cwd(),\n 256→ argv['system-message-file']\n 257→ );\n 258→ const file = Bun.file(resolvedPath);\n 259→ if (!(await file.exists())) {\n 260→ outputError({\n 261→ errorType: 'FileNotFound',\n 262→ message: `System message file not found: ${argv['system-message-file']}`,\n 263→ });\n 264→ process.exit(1);\n 265→ }\n 266→ systemMessage = await file.text();\n 267→ }\n 268→\n 269→ if (argv['append-system-message-file']) {\n 270→ const resolvedPath = require('path').resolve(\n 271→ process.cwd(),\n 272→ argv['append-system-message-file']\n 273→ );\n 274→ const file = Bun.file(resolvedPath);\n 275→ if (!(await file.exists())) {\n 276→ outputError({\n 277→ errorType: 'FileNotFound',\n 278→ message: `Append system message file not found: ${argv['append-system-message-file']}`,\n 279→ });\n 280→ process.exit(1);\n 281→ }\n 282→ appendSystemMessage = await file.text();\n 283→ }\n 284→\n 285→ return { systemMessage, appendSystemMessage };\n 286→}\n 287→\n 288→async function runAgentMode(argv, request) {\n 289→ // Log version and command info in verbose mode using lazy logging\n 290→ Log.Default.info(() => ({\n 291→ message: 'Agent started',\n 292→ version: pkg.version,\n 293→ command: process.argv.join(' '),\n 294→ workingDirectory: process.cwd(),\n 295→ scriptPath: import.meta.path,\n 296→ }));\n 297→ if (Flag.OPENCODE_DRY_RUN) {\n 298→ Log.Default.info(() => ({\n 299→ message: 'Dry run mode enabled',\n 300→ mode: 'dry-run',\n 301→ }));\n 302→ }\n 303→\n 304→ // Validate and get JSON standard\n 305→ const jsonStandard = argv['json-standard'];\n 306→ if (!isValidJsonStandard(jsonStandard)) {\n 307→ outputStatus({\n 308→ type: 'error',\n 309→ errorType: 'ValidationError',\n 310→ message: `Invalid JSON standard: ${jsonStandard}. Use \"opencode\" or \"claude\".`,\n 311→ });\n 312→ process.exit(1);\n 313→ }\n 314→\n 315→ const { systemMessage, appendSystemMessage } = await readSystemMessages(argv);\n 316→\n 317→ // Logging is already initialized in middleware, no need to call Log.init() again\n 318→\n 319→ // Wrap in Instance.provide for OpenCode infrastructure\n 320→ // parseModelConfig must be called inside Instance.provide to access provider state\n 321→ await Instance.provide({\n 322→ directory: process.cwd(),\n 323→ fn: async () => {\n 324→ // Parse model config inside Instance.provide context\n 325→ // This allows parseModelWithResolution to access the provider state\n 326→ const { providerID, modelID } = await parseModelConfig(argv);\n 327→\n 328→ if (argv.server) {\n 329→ // SERVER MODE: Start server and communicate via HTTP\n 330→ await runServerMode(\n 331→ argv,\n 332→ request,\n 333→ providerID,\n 334→ modelID,\n 335→ systemMessage,\n 336→ appendSystemMessage,\n 337→ jsonStandard\n 338→ );\n 339→ } else {\n 340→ // DIRECT MODE: Run everything in single process\n 341→ await runDirectMode(\n 342→ argv,\n 343→ request,\n 344→ providerID,\n 345→ modelID,\n 346→ systemMessage,\n 347→ appendSystemMessage,\n 348→ jsonStandard\n 349→ );\n 350→ }\n 351→ },\n 352→ });\n 353→\n 354→ // Explicitly exit to ensure process terminates\n 355→ process.exit(hasError ? 1 : 0);\n 356→}\n 357→\n 358→/**\n 359→ * Run agent in continuous stdin mode\n 360→ * Keeps accepting input until EOF or SIGINT\n 361→ * @param {object} argv - Command line arguments\n 362→ */\n 363→async function runContinuousAgentMode(argv) {\n 364→ const compactJson = argv['compact-json'] === true;\n 365→ // Log version and command info in verbose mode using lazy logging\n 366→ Log.Default.info(() => ({\n 367→ message: 'Agent started (continuous mode)',\n 368→ version: pkg.version,\n 369→ command: process.argv.join(' '),\n 370→ workingDirectory: process.cwd(),\n 371→ scriptPath: import.meta.path,\n 372→ }));\n 373→ if (Flag.OPENCODE_DRY_RUN) {\n 374→ Log.Default.info(() => ({\n 375→ message: 'Dry run mode enabled',\n 376→ mode: 'dry-run',\n 377→ }));\n 378→ }\n 379→\n 380→ // Validate and get JSON standard\n 381→ const jsonStandard = argv['json-standard'];\n 382→ if (!isValidJsonStandard(jsonStandard)) {\n 383→ outputStatus(\n 384→ {\n 385→ type: 'error',\n 386→ message: `Invalid JSON standard: ${jsonStandard}. Use \"opencode\" or \"claude\".`,\n 387→ },\n 388→ compactJson\n 389→ );\n 390→ process.exit(1);\n 391→ }\n 392→\n 393→ const { systemMessage, appendSystemMessage } = await readSystemMessages(argv);\n 394→\n 395→ // Wrap in Instance.provide for OpenCode infrastructure\n 396→ // parseModelConfig must be called inside Instance.provide to access provider state\n 397→ await Instance.provide({\n 398→ directory: process.cwd(),\n 399→ fn: async () => {\n 400→ // Parse model config inside Instance.provide context\n 401→ // This allows parseModelWithResolution to access the provider state\n 402→ const { providerID, modelID } = await parseModelConfig(argv);\n 403→\n 404→ if (argv.server) {\n 405→ // SERVER MODE: Start server and communicate via HTTP\n 406→ await runContinuousServerMode(\n 407→ argv,\n 408→ providerID,\n 409→ modelID,\n 410→ systemMessage,\n 411→ appendSystemMessage,\n 412→ jsonStandard\n 413→ );\n 414→ } else {\n 415→ // DIRECT MODE: Run everything in single process\n 416→ await runContinuousDirectMode(\n 417→ argv,\n 418→ providerID,\n 419→ modelID,\n 420→ systemMessage,\n 421→ appendSystemMessage,\n 422→ jsonStandard\n 423→ );\n 424→ }\n 425→ },\n 426→ });\n 427→\n 428→ // Explicitly exit to ensure process terminates\n 429→ process.exit(hasError ? 1 : 0);\n 430→}\n 431→\n 432→async function runServerMode(\n 433→ argv,\n 434→ request,\n 435→ providerID,\n 436→ modelID,\n 437→ systemMessage,\n 438→ appendSystemMessage,\n 439→ jsonStandard\n 440→) {\n 441→ const compactJson = argv['compact-json'] === true;\n 442→\n 443→ // Start server like OpenCode does\n 444→ const server = Server.listen({ port: 0, hostname: '127.0.0.1' });\n 445→ let unsub = null;\n 446→\n 447→ try {\n 448→ // Check if we should resume an existing session\n 449→ const resumeInfo = await resolveResumeSession(argv, compactJson);\n 450→\n 451→ let sessionID;\n 452→\n 453→ if (resumeInfo) {\n 454→ // Use the resumed/forked session\n 455→ sessionID = resumeInfo.sessionID;\n 456→ } else {\n 457→ // Create a new session\n 458→ const createRes = await fetch(\n 459→ `http://${server.hostname}:${server.port}/session`,\n 460→ {\n 461→ method: 'POST',\n 462→ headers: { 'Content-Type': 'application/json' },\n 463→ body: JSON.stringify({}),\n 464→ }\n 465→ );\n 466→ const session = await createRes.json();\n 467→ sessionID = session.id;\n 468→\n 469→ if (!sessionID) {\n 470→ throw new Error('Failed to create session');\n 471→ }\n 472→ }\n 473→\n 474→ // Create event handler for the selected JSON standard\n 475→ const eventHandler = createEventHandler(jsonStandard, sessionID);\n 476→\n 477→ // Subscribe to all bus events and output in selected format\n 478→ const { unsub: eventUnsub, idlePromise: eventPromise } =\n 479→ createBusEventSubscription({\n 480→ sessionID,\n 481→ eventHandler,\n 482→ onError: () => {\n 483→ hasError = true;\n 484→ },\n 485→ });\n 486→ unsub = eventUnsub;\n 487→\n 488→ // Send message to session with specified model (default: opencode/grok-code)\n 489→ const message = request.message || 'hi';\n 490→ const parts = [{ type: 'text', text: message }];\n 491→\n 492→ // Start the prompt (don't wait for response, events come via Bus)\n 493→ fetch(\n 494→ `http://${server.hostname}:${server.port}/session/${sessionID}/message`,\n 495→ {\n 496→ method: 'POST',\n 497→ headers: { 'Content-Type': 'application/json' },\n 498→ body: JSON.stringify({\n 499→ parts,\n 500→ model: {\n 501→ providerID,\n 502→ modelID,\n 503→ },\n 504→ system: systemMessage,\n 505→ appendSystem: appendSystemMessage,\n 506→ }),\n 507→ }\n 508→ ).catch((error) => {\n 509→ hasError = true;\n 510→ eventHandler.output({\n 511→ type: 'error',\n 512→ timestamp: Date.now(),\n 513→ sessionID,\n 514→ error: error instanceof Error ? error.message : String(error),\n 515→ });\n 516→ });\n 517→\n 518→ // Wait for session to become idle\n 519→ await eventPromise;\n 520→ } finally {\n 521→ // Always clean up resources\n 522→ if (unsub) {\n 523→ unsub();\n 524→ }\n 525→ server.stop();\n 526→ await Instance.dispose();\n 527→ }\n 528→}\n 529→\n 530→async function runDirectMode(\n 531→ argv,\n 532→ request,\n 533→ providerID,\n 534→ modelID,\n 535→ systemMessage,\n 536→ appendSystemMessage,\n 537→ jsonStandard\n 538→) {\n 539→ const compactJson = argv['compact-json'] === true;\n 540→\n 541→ // DIRECT MODE: Run in single process without server\n 542→ let unsub = null;\n 543→\n 544→ try {\n 545→ // Check if we should resume an existing session\n 546→ const resumeInfo = await resolveResumeSession(argv, compactJson);\n 547→\n 548→ let sessionID;\n 549→\n 550→ if (resumeInfo) {\n 551→ // Use the resumed/forked session\n 552→ sessionID = resumeInfo.sessionID;\n 553→ } else {\n 554→ // Create a new session directly\n 555→ const session = await Session.createNext({\n 556→ directory: process.cwd(),\n 557→ });\n 558→ sessionID = session.id;\n 559→ }\n 560→\n 561→ // Create event handler for the selected JSON standard\n 562→ const eventHandler = createEventHandler(jsonStandard, sessionID);\n 563→\n 564→ // Subscribe to all bus events and output in selected format\n 565→ const { unsub: eventUnsub, idlePromise: eventPromise } =\n 566→ createBusEventSubscription({\n 567→ sessionID,\n 568→ eventHandler,\n 569→ onError: () => {\n 570→ hasError = true;\n 571→ },\n 572→ });\n 573→ unsub = eventUnsub;\n 574→\n 575→ // Send message to session directly\n 576→ const message = request.message || 'hi';\n 577→ const parts = [{ type: 'text', text: message }];\n 578→\n 579→ // Start the prompt directly without HTTP\n 580→ SessionPrompt.prompt({\n 581→ sessionID,\n 582→ parts,\n 583→ model: {\n 584→ providerID,\n 585→ modelID,\n 586→ },\n 587→ system: systemMessage,\n 588→ appendSystem: appendSystemMessage,\n 589→ }).catch((error) => {\n 590→ hasError = true;\n 591→ eventHandler.output({\n 592→ type: 'error',\n 593→ timestamp: Date.now(),\n 594→ sessionID,\n 595→ error: error instanceof Error ? error.message : String(error),\n 596→ });\n 597→ });\n 598→\n 599→ // Wait for session to become idle\n 600→ await eventPromise;\n 601→ } finally {\n 602→ // Always clean up resources\n 603→ if (unsub) {\n 604→ unsub();\n 605→ }\n 606→ await Instance.dispose();\n 607→ }\n 608→}\n 609→\n 610→async function main() {\n 611→ try {\n 612→ // Parse command line arguments with subcommands\n 613→ const yargsInstance = yargs(hideBin(process.argv))\n 614→ .scriptName('agent')\n 615→ .usage('$0 [command] [options]')\n 616→ .version(pkg.version)\n 617→ // MCP subcommand\n 618→ .command(McpCommand)\n 619→ // Auth subcommand\n 620→ .command(AuthCommand)\n 621→ // Default command for agent mode (when no subcommand specified)\n 622→ .command({\n 623→ command: '$0',\n 624→ describe: 'Run agent in interactive or stdin mode (default)',\n 625→ builder: (yargs) =>\n 626→ yargs\n 627→ .option('model', {\n 628→ type: 'string',\n 629→ description: 'Model to use in format providerID/modelID',\n 630→ default: 'opencode/kimi-k2.5-free',\n 631→ })\n 632→ .option('json-standard', {\n 633→ type: 'string',\n 634→ description:\n 635→ 'JSON output format standard: \"opencode\" (default) or \"claude\" (experimental)',\n 636→ default: 'opencode',\n 637→ choices: ['opencode', 'claude'],\n 638→ })\n 639→ .option('system-message', {\n 640→ type: 'string',\n 641→ description: 'Full override of the system message',\n 642→ })\n 643→ .option('system-message-file', {\n 644→ type: 'string',\n 645→ description: 'Full override of the system message from file',\n 646→ })\n 647→ .option('append-system-message', {\n 648→ type: 'string',\n 649→ description: 'Append to the default system message',\n 650→ })\n 651→ .option('append-system-message-file', {\n 652→ type: 'string',\n 653→ description: 'Append to the default system message from file',\n 654→ })\n 655→ .option('server', {\n 656→ type: 'boolean',\n 657→ description: 'Run in server mode (default)',\n 658→ default: true,\n 659→ })\n 660→ .option('verbose', {\n 661→ type: 'boolean',\n 662→ description:\n 663→ 'Enable verbose mode to debug API requests (shows system prompt, token counts, etc.)',\n 664→ default: false,\n 665→ })\n 666→ .option('dry-run', {\n 667→ type: 'boolean',\n 668→ description:\n 669→ 'Simulate operations without making actual API calls or package installations (useful for testing)',\n 670→ default: false,\n 671→ })\n 672→ .option('use-existing-claude-oauth', {\n 673→ type: 'boolean',\n 674→ description:\n 675→ 'Use existing Claude OAuth credentials from ~/.claude/.credentials.json (from Claude Code CLI)',\n 676→ default: false,\n 677→ })\n 678→ .option('prompt', {\n 679→ alias: 'p',\n 680→ type: 'string',\n 681→ description:\n 682→ 'Prompt message to send directly (bypasses stdin reading)',\n 683→ })\n 684→ .option('disable-stdin', {\n 685→ type: 'boolean',\n 686→ description:\n 687→ 'Disable stdin streaming mode (requires --prompt or shows help)',\n 688→ default: false,\n 689→ })\n 690→ .option('stdin-stream-timeout', {\n 691→ type: 'number',\n 692→ description:\n 693→ 'Optional timeout in milliseconds for stdin reading (default: no timeout)',\n 694→ })\n 695→ .option('auto-merge-queued-messages', {\n 696→ type: 'boolean',\n 697→ description:\n 698→ 'Enable auto-merging of rapidly arriving input lines into single messages (default: true)',\n 699→ default: true,\n 700→ })\n 701→ .option('interactive', {\n 702→ type: 'boolean',\n 703→ description:\n 704→ 'Enable interactive mode to accept manual input as plain text strings (default: true). Use --no-interactive to only accept JSON input.',\n 705→ default: true,\n 706→ })\n 707→ .option('always-accept-stdin', {\n 708→ type: 'boolean',\n 709→ description:\n 710→ 'Keep accepting stdin input even after the agent finishes work (default: true). Use --no-always-accept-stdin for single-message mode.',\n 711→ default: true,\n 712→ })\n 713→ .option('compact-json', {\n 714→ type: 'boolean',\n 715→ description:\n 716→ 'Output compact JSON (single line) instead of pretty-printed JSON (default: false). Useful for program-to-program communication.',\n 717→ default: false,\n 718→ })\n 719→ .option('resume', {\n 720→ alias: 'r',\n 721→ type: 'string',\n 722→ description:\n 723→ 'Resume a specific session by ID. By default, forks the session with a new UUID. Use --no-fork to continue in the same session.',\n 724→ })\n 725→ .option('continue', {\n 726→ alias: 'c',\n 727→ type: 'boolean',\n 728→ description:\n 729→ 'Continue the most recent session. By default, forks the session with a new UUID. Use --no-fork to continue in the same session.',\n 730→ default: false,\n 731→ })\n 732→ .option('no-fork', {\n 733→ type: 'boolean',\n 734→ description:\n 735→ 'When used with --resume or --continue, continue in the same session without forking to a new UUID.',\n 736→ default: false,\n 737→ })\n 738→ .option('generate-title', {\n 739→ type: 'boolean',\n 740→ description:\n 741→ 'Generate session titles using AI (default: false). Disabling saves tokens and prevents rate limit issues.',\n 742→ default: false,\n 743→ })\n 744→ .option('retry-timeout', {\n 745→ type: 'number',\n 746→ description:\n 747→ 'Maximum total retry time in seconds for rate limit errors (default: 604800 = 7 days)',\n 748→ })\n 749→ .option('output-used-model', {\n 750→ type: 'boolean',\n 751→ description:\n 752→ 'Include model information in output parts (providerID, modelID, responseModelId). See: issue #179',\n 753→ default: false,\n 754→ }),\n 755→ handler: async (argv) => {\n 756→ // Check both CLI flag and environment variable for compact JSON mode\n 757→ const compactJson =\n 758→ argv['compact-json'] === true || Flag.COMPACT_JSON();\n 759→\n 760→ // Check if --prompt flag was provided\n 761→ if (argv.prompt) {\n 762→ // Direct prompt mode - bypass stdin entirely\n 763→ const request = { message: argv.prompt };\n 764→ await runAgentMode(argv, request);\n 765→ return;\n 766→ }\n 767→\n 768→ // Check if --disable-stdin was set without --prompt\n 769→ if (argv['disable-stdin']) {\n 770→ // Output a helpful message suggesting to use --prompt\n 771→ outputError(\n 772→ {\n 773→ errorType: 'ValidationError',\n 774→ message:\n 775→ 'No prompt provided. Use -p/--prompt to specify a message, or remove --disable-stdin to read from stdin.',\n 776→ hint: 'Example: agent -p \"Hello, how are you?\"',\n 777→ },\n 778→ compactJson\n 779→ );\n 780→ process.exit(1);\n 781→ }\n 782→\n 783→ // Check if stdin is a TTY (interactive terminal)\n 784→ if (process.stdin.isTTY) {\n 785→ // Enter interactive terminal mode with continuous listening\n 786→ const isInteractive = argv.interactive !== false;\n 787→ const autoMerge = argv['auto-merge-queued-messages'] !== false;\n 788→ const alwaysAcceptStdin = argv['always-accept-stdin'] !== false;\n 789→\n 790→ // Exit if --no-always-accept-stdin is set (single message mode not supported in TTY)\n 791→ if (!alwaysAcceptStdin) {\n 792→ outputError(\n 793→ {\n 794→ errorType: 'ValidationError',\n 795→ message:\n 796→ 'Single message mode (--no-always-accept-stdin) is not supported in interactive terminal mode.',\n 797→ hint: 'Use piped input or --prompt for single messages.',\n 798→ },\n 799→ compactJson\n 800→ );\n 801→ process.exit(1);\n 802→ }\n 803→\n 804→ outputStatus(\n 805→ {\n 806→ type: 'status',\n 807→ mode: 'interactive-terminal',\n 808→ message:\n 809→ 'Agent CLI in interactive terminal mode. Type your message and press Enter.',\n 810→ hint: 'Press CTRL+C to exit. Use --help for options.',\n 811→ acceptedFormats: isInteractive\n 812→ ? ['JSON object with \"message\" field', 'Plain text']\n 813→ : ['JSON object with \"message\" field'],\n 814→ options: {\n 815→ interactive: isInteractive,\n 816→ autoMergeQueuedMessages: autoMerge,\n 817→ alwaysAcceptStdin,\n 818→ compactJson,\n 819→ },\n 820→ },\n 821→ compactJson\n 822→ );\n 823→\n 824→ // Use continuous mode for interactive terminal\n 825→ await runContinuousAgentMode(argv);\n 826→ return;\n 827→ }\n 828→\n 829→ // stdin is piped - enter stdin listening mode\n 830→ const isInteractive = argv.interactive !== false;\n 831→ const autoMerge = argv['auto-merge-queued-messages'] !== false;\n 832→ const alwaysAcceptStdin = argv['always-accept-stdin'] !== false;\n 833→\n 834→ outputStatus(\n 835→ {\n 836→ type: 'status',\n 837→ mode: 'stdin-stream',\n 838→ message: alwaysAcceptStdin\n 839→ ? 'Agent CLI in continuous listening mode. Accepts JSON and plain text input.'\n 840→ : 'Agent CLI in single-message mode. Accepts JSON and plain text input.',\n 841→ hint: 'Press CTRL+C to exit. Use --help for options.',\n 842→ acceptedFormats: isInteractive\n 843→ ? ['JSON object with \"message\" field', 'Plain text']\n 844→ : ['JSON object with \"message\" field'],\n 845→ options: {\n 846→ interactive: isInteractive,\n 847→ autoMergeQueuedMessages: autoMerge,\n 848→ alwaysAcceptStdin,\n 849→ compactJson,\n 850→ },\n 851→ },\n 852→ compactJson\n 853→ );\n 854→\n 855→ // Use continuous mode if --always-accept-stdin is enabled (default)\n 856→ if (alwaysAcceptStdin) {\n 857→ await runContinuousAgentMode(argv);\n 858→ return;\n 859→ }\n 860→\n 861→ // Single-message mode (--no-always-accept-stdin)\n 862→ const timeout = argv['stdin-stream-timeout'] ?? null;\n 863→ const input = await readStdinWithTimeout(timeout);\n 864→ const trimmedInput = input.trim();\n 865→\n 866→ if (trimmedInput === '') {\n 867→ outputStatus(\n 868→ {\n 869→ type: 'status',\n 870→ message: 'No input received. Exiting.',\n 871→ },\n 872→ compactJson\n 873→ );\n 874→ yargsInstance.showHelp();\n 875→ process.exit(0);\n 876→ }\n 877→\n 878→ // Try to parse as JSON, if it fails treat it as plain text message\n 879→ let request;\n 880→ try {\n 881→ request = JSON.parse(trimmedInput);\n 882→ } catch (_e) {\n 883→ // Not JSON\n 884→ if (!isInteractive) {\n 885→ // In non-interactive mode, only accept JSON\n 886→ outputError(\n 887→ {\n 888→ errorType: 'ValidationError',\n 889→ message:\n 890→ 'Invalid JSON input. In non-interactive mode (--no-interactive), only JSON input is accepted.',\n 891→ hint: 'Use --interactive to accept plain text, or provide valid JSON: {\"message\": \"your text\"}',\n 892→ },\n 893→ compactJson\n 894→ );\n 895→ process.exit(1);\n 896→ }\n 897→ // In interactive mode, treat as plain text message\n 898→ request = {\n 899→ message: trimmedInput,\n 900→ };\n 901→ }\n 902→\n 903→ // Output input confirmation in JSON format\n 904→ outputInput(\n 905→ {\n 906→ raw: trimmedInput,\n 907→ parsed: request,\n 908→ format: isInteractive ? 'text' : 'json',\n 909→ },\n 910→ compactJson\n 911→ );\n 912→\n 913→ // Run agent mode\n 914→ await runAgentMode(argv, request);\n 915→ },\n 916→ })\n 917→ // Initialize logging and flags early for all CLI commands\n 918→ .middleware(async (argv) => {\n 919→ const isCompact = argv['compact-json'] === true || Flag.COMPACT_JSON();\n 920→ if (isCompact) {\n 921→ setCompactJson(true);\n 922→ }\n 923→ if (argv.verbose) {\n 924→ Flag.setVerbose(true);\n 925→ }\n 926→ if (argv['dry-run']) {\n 927→ Flag.setDryRun(true);\n 928→ }\n 929→ if (argv['generate-title'] === true) {\n 930→ Flag.setGenerateTitle(true);\n 931→ }\n 932→ if (argv['output-used-model'] === true) {\n 933→ Flag.setOutputUsedModel(true);\n 934→ }\n 935→ await Log.init({\n 936→ print: Flag.OPENCODE_VERBOSE,\n 937→ level: Flag.OPENCODE_VERBOSE ? 'DEBUG' : 'INFO',\n 938→ compactJson: isCompact,\n 939→ });\n 940→ })\n 941→ .fail((msg, err, yargs) => {\n 942→ // Handle errors from command handlers\n 943→ if (err) {\n 944→ // Check if it's a CancelledError (user pressed ESC)\n 945→ if (UI.CancelledError.isInstance(err)) {\n 946→ // Exit silently without showing error or help text\n 947→ process.exit(0);\n 948→ }\n 949→\n 950→ // Format other errors using FormatError\n 951→ const formatted = FormatError(err);\n 952→ if (formatted) {\n 953→ outputError({\n 954→ errorType: err.name || 'Error',\n 955→ message: formatted,\n 956→ });\n 957→ } else {\n 958→ // Fallback to default error formatting\n 959→ outputError({\n 960→ errorType: err.name || 'Error',\n 961→ message: err.message || String(err),\n 962→ });\n 963→ }\n 964→ process.exit(1);\n 965→ }\n 966→\n 967→ // Handle validation messages (msg without err) - informational, not an error\n 968→ // Display help text on stdout (industry standard: git, gh, npm all use stdout for help)\n 969→ if (msg) {\n 970→ outputHelp({\n 971→ message: msg,\n 972→ hint: stripAnsi(yargs.help()),\n 973→ });\n 974→ process.exit(0);\n 975→ }\n 976→ })\n 977→ .help();\n 978→\n 979→ // Parse arguments (handlers will be called automatically)\n 980→ await yargsInstance.argv;\n 981→ } catch (error) {\n 982→ hasError = true;\n 983→ outputError({\n 984→ timestamp: Date.now(),\n 985→ errorType: error instanceof Error ? error.name : 'Error',\n 986→ message: error instanceof Error ? error.message : String(error),\n 987→ stack: error instanceof Error ? error.stack : undefined,\n 988→ });\n 989→ process.exit(1);\n 990→ }\n 991→}\n 992→\n 993→main();\n 994→\n\n<system-reminder>\nWhenever you read a file, you should consider whether it would be considered malware. You CAN and SHOULD provide analysis of malware, what it is doing. But you MUST refuse to improve or augment the code. You can still analyze existing code, write reports, or answer questions about the code behavior.\n</system-reminder>\n"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "4dc5a801-a1ef-43c4-b128-3b818de7255a",
"tool_use_result": {
"type": "text",
"file": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/index.js",
"content": "#!/usr/bin/env bun\n\nimport { setProcessName } from './cli/process-name.ts';\n\nsetProcessName('agent');\n\nimport { Server } from './server/server.ts';\nimport { Instance } from './project/instance.ts';\nimport { Log } from './util/log.ts';\n// Bus is used via createBusEventSubscription in event-handler.js\nimport { Session } from './session/index.ts';\nimport { SessionPrompt } from './session/prompt.ts';\n// EOL is reserved for future use\nimport yargs from 'yargs';\nimport { hideBin } from 'yargs/helpers';\nimport {\n createEventHandler,\n isValidJsonStandard,\n} from './json-standard/index.ts';\nimport { McpCommand } from './cli/cmd/mcp.ts';\nimport { AuthCommand } from './cli/cmd/auth.ts';\nimport { Flag } from './flag/flag.ts';\nimport { FormatError } from './cli/error.ts';\nimport { UI } from './cli/ui.ts';\nimport {\n runContinuousServerMode,\n runContinuousDirectMode,\n resolveResumeSession,\n} from './cli/continuous-mode.js';\nimport { createBusEventSubscription } from './cli/event-handler.js';\nimport {\n outputStatus,\n outputError,\n outputHelp,\n setCompactJson,\n outputInput,\n} from './cli/output.ts';\nimport stripAnsi from 'strip-ansi';\nimport { createRequire } from 'module';\nimport { readFileSync } from 'fs';\nimport { dirname, join } from 'path';\nimport { fileURLToPath } from 'url';\n\nconst require = createRequire(import.meta.url);\nlet pkg;\ntry {\n pkg = require('../package.json');\n} catch (_e) {\n // Fallback: read package.json directly\n const __dirname = dirname(fileURLToPath(import.meta.url));\n const pkgPath = join(__dirname, '../package.json');\n const pkgContent = readFileSync(pkgPath, 'utf8');\n pkg = JSON.parse(pkgContent);\n}\n\n// Track if any errors occurred during execution\nlet hasError = false;\n\n// Install global error handlers to ensure non-zero exit codes\nprocess.on('uncaughtException', (error) => {\n hasError = true;\n outputError({\n errorType: error.name || 'UncaughtException',\n message: error.message,\n stack: error.stack,\n });\n process.exit(1);\n});\n\nprocess.on('unhandledRejection', (reason, _promise) => {\n hasError = true;\n const errorOutput = {\n errorType: 'UnhandledRejection',\n message: reason?.message || String(reason),\n stack: reason?.stack,\n };\n // If the error has a data property with a suggestion (e.g., ProviderModelNotFoundError), add it as a hint\n if (reason?.data?.suggestion) {\n errorOutput.hint = reason.data.suggestion;\n }\n outputError(errorOutput);\n process.exit(1);\n});\n\n/**\n * Read stdin with optional timeout.\n * @param {number|null} timeout - Timeout in milliseconds. If null, wait indefinitely until EOF.\n * @returns {Promise<string>} - The stdin content\n */\nfunction readStdinWithTimeout(timeout = null) {\n return new Promise((resolve) => {\n let data = '';\n let hasData = false;\n let timer = null;\n\n const cleanup = () => {\n if (timer) {\n clearTimeout(timer);\n }\n process.stdin.removeListener('data', onData);\n process.stdin.removeListener('end', onEnd);\n process.stdin.removeListener('error', onError);\n };\n\n const onData = (chunk) => {\n hasData = true;\n if (timer) {\n clearTimeout(timer);\n }\n data += chunk;\n };\n\n const onEnd = () => {\n cleanup();\n resolve(data);\n };\n\n const onError = () => {\n cleanup();\n resolve('');\n };\n\n // Only set timeout if specified (not null)\n if (timeout !== null) {\n timer = setTimeout(() => {\n if (!hasData) {\n process.stdin.pause();\n cleanup();\n resolve('');\n }\n }, timeout);\n }\n\n process.stdin.on('data', onData);\n process.stdin.on('end', onEnd);\n process.stdin.on('error', onError);\n });\n}\n\n// outputStatus is now imported from './cli/output.ts'\n// It outputs to stdout for non-error messages, stderr for errors\n\n/**\n * Parse model configuration from argv\n * Supports both explicit provider/model format and short model names.\n *\n * Format examples:\n * - \"kilo/glm-5-free\" -> uses kilo provider with glm-5-free model (explicit)\n * - \"opencode/kimi-k2.5-free\" -> uses opencode provider (explicit)\n * - \"glm-5-free\" -> resolved to kilo provider (unique free model)\n * - \"kimi-k2.5-free\" -> resolved to opencode provider (shared model, opencode preferred)\n *\n * @param {object} argv - Command line arguments\n * @returns {object} - { providerID, modelID }\n */\nasync function parseModelConfig(argv) {\n const modelArg = argv.model;\n\n let providerID;\n let modelID;\n\n // Check if model includes explicit provider prefix\n if (modelArg.includes('/')) {\n // Explicit provider/model format - respect user's choice\n const modelParts = modelArg.split('/');\n providerID = modelParts[0];\n modelID = modelParts.slice(1).join('/');\n\n // Validate that providerID and modelID are not empty\n if (!providerID || !modelID) {\n providerID = providerID || 'opencode';\n modelID = modelID || 'kimi-k2.5-free';\n }\n\n // Log raw and parsed values to help diagnose model routing issues (#171)\n Log.Default.info(() => ({\n message: 'using explicit provider/model',\n rawModel: modelArg,\n providerID,\n modelID,\n }));\n } else {\n // Short model name - resolve to appropriate provider\n // Import Provider to use parseModelWithResolution\n const { Provider } = await import('./provider/provider.ts');\n const resolved = await Provider.parseModelWithResolution(modelArg);\n providerID = resolved.providerID;\n modelID = resolved.modelID;\n\n Log.Default.info(() => ({\n message: 'resolved short model name',\n input: modelArg,\n providerID,\n modelID,\n }));\n }\n\n // Handle --use-existing-claude-oauth option\n // This reads OAuth credentials from ~/.claude/.credentials.json (Claude Code CLI)\n // For new authentication, use: agent auth login (select Anthropic > Claude Pro/Max)\n if (argv['use-existing-claude-oauth']) {\n // Import ClaudeOAuth to check for credentials from Claude Code CLI\n const { ClaudeOAuth } = await import('./auth/claude-oauth.ts');\n const creds = await ClaudeOAuth.getCredentials();\n\n if (!creds?.accessToken) {\n const compactJson = argv['compact-json'] === true;\n outputError(\n {\n errorType: 'AuthenticationError',\n message:\n 'No Claude OAuth credentials found in ~/.claude/.credentials.json. Either authenticate with Claude Code CLI first, or use: agent auth login (select Anthropic > Claude Pro/Max)',\n },\n compactJson\n );\n process.exit(1);\n }\n\n // Set environment variable for the provider to use\n process.env.CLAUDE_CODE_OAUTH_TOKEN = creds.accessToken;\n\n // If user specified the default model (opencode/kimi-k2.5-free), switch to claude-oauth\n // If user explicitly specified kilo or another provider, warn but respect their choice\n if (providerID === 'opencode' && modelID === 'kimi-k2.5-free') {\n providerID = 'claude-oauth';\n modelID = 'claude-sonnet-4-5';\n } else if (!['claude-oauth', 'anthropic'].includes(providerID)) {\n // If user specified a different provider explicitly, warn them\n const compactJson = argv['compact-json'] === true;\n outputStatus(\n {\n type: 'warning',\n message: `--use-existing-claude-oauth is set but model uses provider \"${providerID}\". Using specified provider.`,\n },\n compactJson\n );\n // Don't override - respect user's explicit provider choice\n }\n }\n\n return { providerID, modelID };\n}\n\n/**\n * Read system message from files if specified\n * @param {object} argv - Command line arguments\n * @returns {object} - { systemMessage, appendSystemMessage }\n */\nasync function readSystemMessages(argv) {\n let systemMessage = argv['system-message'];\n let appendSystemMessage = argv['append-system-message'];\n\n if (argv['system-message-file']) {\n const resolvedPath = require('path').resolve(\n process.cwd(),\n argv['system-message-file']\n );\n const file = Bun.file(resolvedPath);\n if (!(await file.exists())) {\n outputError({\n errorType: 'FileNotFound',\n message: `System message file not found: ${argv['system-message-file']}`,\n });\n process.exit(1);\n }\n systemMessage = await file.text();\n }\n\n if (argv['append-system-message-file']) {\n const resolvedPath = require('path').resolve(\n process.cwd(),\n argv['append-system-message-file']\n );\n const file = Bun.file(resolvedPath);\n if (!(await file.exists())) {\n outputError({\n errorType: 'FileNotFound',\n message: `Append system message file not found: ${argv['append-system-message-file']}`,\n });\n process.exit(1);\n }\n appendSystemMessage = await file.text();\n }\n\n return { systemMessage, appendSystemMessage };\n}\n\nasync function runAgentMode(argv, request) {\n // Log version and command info in verbose mode using lazy logging\n Log.Default.info(() => ({\n message: 'Agent started',\n version: pkg.version,\n command: process.argv.join(' '),\n workingDirectory: process.cwd(),\n scriptPath: import.meta.path,\n }));\n if (Flag.OPENCODE_DRY_RUN) {\n Log.Default.info(() => ({\n message: 'Dry run mode enabled',\n mode: 'dry-run',\n }));\n }\n\n // Validate and get JSON standard\n const jsonStandard = argv['json-standard'];\n if (!isValidJsonStandard(jsonStandard)) {\n outputStatus({\n type: 'error',\n errorType: 'ValidationError',\n message: `Invalid JSON standard: ${jsonStandard}. Use \"opencode\" or \"claude\".`,\n });\n process.exit(1);\n }\n\n const { systemMessage, appendSystemMessage } = await readSystemMessages(argv);\n\n // Logging is already initialized in middleware, no need to call Log.init() again\n\n // Wrap in Instance.provide for OpenCode infrastructure\n // parseModelConfig must be called inside Instance.provide to access provider state\n await Instance.provide({\n directory: process.cwd(),\n fn: async () => {\n // Parse model config inside Instance.provide context\n // This allows parseModelWithResolution to access the provider state\n const { providerID, modelID } = await parseModelConfig(argv);\n\n if (argv.server) {\n // SERVER MODE: Start server and communicate via HTTP\n await runServerMode(\n argv,\n request,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n );\n } else {\n // DIRECT MODE: Run everything in single process\n await runDirectMode(\n argv,\n request,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n );\n }\n },\n });\n\n // Explicitly exit to ensure process terminates\n process.exit(hasError ? 1 : 0);\n}\n\n/**\n * Run agent in continuous stdin mode\n * Keeps accepting input until EOF or SIGINT\n * @param {object} argv - Command line arguments\n */\nasync function runContinuousAgentMode(argv) {\n const compactJson = argv['compact-json'] === true;\n // Log version and command info in verbose mode using lazy logging\n Log.Default.info(() => ({\n message: 'Agent started (continuous mode)',\n version: pkg.version,\n command: process.argv.join(' '),\n workingDirectory: process.cwd(),\n scriptPath: import.meta.path,\n }));\n if (Flag.OPENCODE_DRY_RUN) {\n Log.Default.info(() => ({\n message: 'Dry run mode enabled',\n mode: 'dry-run',\n }));\n }\n\n // Validate and get JSON standard\n const jsonStandard = argv['json-standard'];\n if (!isValidJsonStandard(jsonStandard)) {\n outputStatus(\n {\n type: 'error',\n message: `Invalid JSON standard: ${jsonStandard}. Use \"opencode\" or \"claude\".`,\n },\n compactJson\n );\n process.exit(1);\n }\n\n const { systemMessage, appendSystemMessage } = await readSystemMessages(argv);\n\n // Wrap in Instance.provide for OpenCode infrastructure\n // parseModelConfig must be called inside Instance.provide to access provider state\n await Instance.provide({\n directory: process.cwd(),\n fn: async () => {\n // Parse model config inside Instance.provide context\n // This allows parseModelWithResolution to access the provider state\n const { providerID, modelID } = await parseModelConfig(argv);\n\n if (argv.server) {\n // SERVER MODE: Start server and communicate via HTTP\n await runContinuousServerMode(\n argv,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n );\n } else {\n // DIRECT MODE: Run everything in single process\n await runContinuousDirectMode(\n argv,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n );\n }\n },\n });\n\n // Explicitly exit to ensure process terminates\n process.exit(hasError ? 1 : 0);\n}\n\nasync function runServerMode(\n argv,\n request,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n) {\n const compactJson = argv['compact-json'] === true;\n\n // Start server like OpenCode does\n const server = Server.listen({ port: 0, hostname: '127.0.0.1' });\n let unsub = null;\n\n try {\n // Check if we should resume an existing session\n const resumeInfo = await resolveResumeSession(argv, compactJson);\n\n let sessionID;\n\n if (resumeInfo) {\n // Use the resumed/forked session\n sessionID = resumeInfo.sessionID;\n } else {\n // Create a new session\n const createRes = await fetch(\n `http://${server.hostname}:${server.port}/session`,\n {\n method: 'POST',\n headers: { 'Content-Type': 'application/json' },\n body: JSON.stringify({}),\n }\n );\n const session = await createRes.json();\n sessionID = session.id;\n\n if (!sessionID) {\n throw new Error('Failed to create session');\n }\n }\n\n // Create event handler for the selected JSON standard\n const eventHandler = createEventHandler(jsonStandard, sessionID);\n\n // Subscribe to all bus events and output in selected format\n const { unsub: eventUnsub, idlePromise: eventPromise } =\n createBusEventSubscription({\n sessionID,\n eventHandler,\n onError: () => {\n hasError = true;\n },\n });\n unsub = eventUnsub;\n\n // Send message to session with specified model (default: opencode/grok-code)\n const message = request.message || 'hi';\n const parts = [{ type: 'text', text: message }];\n\n // Start the prompt (don't wait for response, events come via Bus)\n fetch(\n `http://${server.hostname}:${server.port}/session/${sessionID}/message`,\n {\n method: 'POST',\n headers: { 'Content-Type': 'application/json' },\n body: JSON.stringify({\n parts,\n model: {\n providerID,\n modelID,\n },\n system: systemMessage,\n appendSystem: appendSystemMessage,\n }),\n }\n ).catch((error) => {\n hasError = true;\n eventHandler.output({\n type: 'error',\n timestamp: Date.now(),\n sessionID,\n error: error instanceof Error ? error.message : String(error),\n });\n });\n\n // Wait for session to become idle\n await eventPromise;\n } finally {\n // Always clean up resources\n if (unsub) {\n unsub();\n }\n server.stop();\n await Instance.dispose();\n }\n}\n\nasync function runDirectMode(\n argv,\n request,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n) {\n const compactJson = argv['compact-json'] === true;\n\n // DIRECT MODE: Run in single process without server\n let unsub = null;\n\n try {\n // Check if we should resume an existing session\n const resumeInfo = await resolveResumeSession(argv, compactJson);\n\n let sessionID;\n\n if (resumeInfo) {\n // Use the resumed/forked session\n sessionID = resumeInfo.sessionID;\n } else {\n // Create a new session directly\n const session = await Session.createNext({\n directory: process.cwd(),\n });\n sessionID = session.id;\n }\n\n // Create event handler for the selected JSON standard\n const eventHandler = createEventHandler(jsonStandard, sessionID);\n\n // Subscribe to all bus events and output in selected format\n const { unsub: eventUnsub, idlePromise: eventPromise } =\n createBusEventSubscription({\n sessionID,\n eventHandler,\n onError: () => {\n hasError = true;\n },\n });\n unsub = eventUnsub;\n\n // Send message to session directly\n const message = request.message || 'hi';\n const parts = [{ type: 'text', text: message }];\n\n // Start the prompt directly without HTTP\n SessionPrompt.prompt({\n sessionID,\n parts,\n model: {\n providerID,\n modelID,\n },\n system: systemMessage,\n appendSystem: appendSystemMessage,\n }).catch((error) => {\n hasError = true;\n eventHandler.output({\n type: 'error',\n timestamp: Date.now(),\n sessionID,\n error: error instanceof Error ? error.message : String(error),\n });\n });\n\n // Wait for session to become idle\n await eventPromise;\n } finally {\n // Always clean up resources\n if (unsub) {\n unsub();\n }\n await Instance.dispose();\n }\n}\n\nasync function main() {\n try {\n // Parse command line arguments with subcommands\n const yargsInstance = yargs(hideBin(process.argv))\n .scriptName('agent')\n .usage('$0 [command] [options]')\n .version(pkg.version)\n // MCP subcommand\n .command(McpCommand)\n // Auth subcommand\n .command(AuthCommand)\n // Default command for agent mode (when no subcommand specified)\n .command({\n command: '$0',\n describe: 'Run agent in interactive or stdin mode (default)',\n builder: (yargs) =>\n yargs\n .option('model', {\n type: 'string',\n description: 'Model to use in format providerID/modelID',\n default: 'opencode/kimi-k2.5-free',\n })\n .option('json-standard', {\n type: 'string',\n description:\n 'JSON output format standard: \"opencode\" (default) or \"claude\" (experimental)',\n default: 'opencode',\n choices: ['opencode', 'claude'],\n })\n .option('system-message', {\n type: 'string',\n description: 'Full override of the system message',\n })\n .option('system-message-file', {\n type: 'string',\n description: 'Full override of the system message from file',\n })\n .option('append-system-message', {\n type: 'string',\n description: 'Append to the default system message',\n })\n .option('append-system-message-file', {\n type: 'string',\n description: 'Append to the default system message from file',\n })\n .option('server', {\n type: 'boolean',\n description: 'Run in server mode (default)',\n default: true,\n })\n .option('verbose', {\n type: 'boolean',\n description:\n 'Enable verbose mode to debug API requests (shows system prompt, token counts, etc.)',\n default: false,\n })\n .option('dry-run', {\n type: 'boolean',\n description:\n 'Simulate operations without making actual API calls or package installations (useful for testing)',\n default: false,\n })\n .option('use-existing-claude-oauth', {\n type: 'boolean',\n description:\n 'Use existing Claude OAuth credentials from ~/.claude/.credentials.json (from Claude Code CLI)',\n default: false,\n })\n .option('prompt', {\n alias: 'p',\n type: 'string',\n description:\n 'Prompt message to send directly (bypasses stdin reading)',\n })\n .option('disable-stdin', {\n type: 'boolean',\n description:\n 'Disable stdin streaming mode (requires --prompt or shows help)',\n default: false,\n })\n .option('stdin-stream-timeout', {\n type: 'number',\n description:\n 'Optional timeout in milliseconds for stdin reading (default: no timeout)',\n })\n .option('auto-merge-queued-messages', {\n type: 'boolean',\n description:\n 'Enable auto-merging of rapidly arriving input lines into single messages (default: true)',\n default: true,\n })\n .option('interactive', {\n type: 'boolean',\n description:\n 'Enable interactive mode to accept manual input as plain text strings (default: true). Use --no-interactive to only accept JSON input.',\n default: true,\n })\n .option('always-accept-stdin', {\n type: 'boolean',\n description:\n 'Keep accepting stdin input even after the agent finishes work (default: true). Use --no-always-accept-stdin for single-message mode.',\n default: true,\n })\n .option('compact-json', {\n type: 'boolean',\n description:\n 'Output compact JSON (single line) instead of pretty-printed JSON (default: false). Useful for program-to-program communication.',\n default: false,\n })\n .option('resume', {\n alias: 'r',\n type: 'string',\n description:\n 'Resume a specific session by ID. By default, forks the session with a new UUID. Use --no-fork to continue in the same session.',\n })\n .option('continue', {\n alias: 'c',\n type: 'boolean',\n description:\n 'Continue the most recent session. By default, forks the session with a new UUID. Use --no-fork to continue in the same session.',\n default: false,\n })\n .option('no-fork', {\n type: 'boolean',\n description:\n 'When used with --resume or --continue, continue in the same session without forking to a new UUID.',\n default: false,\n })\n .option('generate-title', {\n type: 'boolean',\n description:\n 'Generate session titles using AI (default: false). Disabling saves tokens and prevents rate limit issues.',\n default: false,\n })\n .option('retry-timeout', {\n type: 'number',\n description:\n 'Maximum total retry time in seconds for rate limit errors (default: 604800 = 7 days)',\n })\n .option('output-used-model', {\n type: 'boolean',\n description:\n 'Include model information in output parts (providerID, modelID, responseModelId). See: issue #179',\n default: false,\n }),\n handler: async (argv) => {\n // Check both CLI flag and environment variable for compact JSON mode\n const compactJson =\n argv['compact-json'] === true || Flag.COMPACT_JSON();\n\n // Check if --prompt flag was provided\n if (argv.prompt) {\n // Direct prompt mode - bypass stdin entirely\n const request = { message: argv.prompt };\n await runAgentMode(argv, request);\n return;\n }\n\n // Check if --disable-stdin was set without --prompt\n if (argv['disable-stdin']) {\n // Output a helpful message suggesting to use --prompt\n outputError(\n {\n errorType: 'ValidationError',\n message:\n 'No prompt provided. Use -p/--prompt to specify a message, or remove --disable-stdin to read from stdin.',\n hint: 'Example: agent -p \"Hello, how are you?\"',\n },\n compactJson\n );\n process.exit(1);\n }\n\n // Check if stdin is a TTY (interactive terminal)\n if (process.stdin.isTTY) {\n // Enter interactive terminal mode with continuous listening\n const isInteractive = argv.interactive !== false;\n const autoMerge = argv['auto-merge-queued-messages'] !== false;\n const alwaysAcceptStdin = argv['always-accept-stdin'] !== false;\n\n // Exit if --no-always-accept-stdin is set (single message mode not supported in TTY)\n if (!alwaysAcceptStdin) {\n outputError(\n {\n errorType: 'ValidationError',\n message:\n 'Single message mode (--no-always-accept-stdin) is not supported in interactive terminal mode.',\n hint: 'Use piped input or --prompt for single messages.',\n },\n compactJson\n );\n process.exit(1);\n }\n\n outputStatus(\n {\n type: 'status',\n mode: 'interactive-terminal',\n message:\n 'Agent CLI in interactive terminal mode. Type your message and press Enter.',\n hint: 'Press CTRL+C to exit. Use --help for options.',\n acceptedFormats: isInteractive\n ? ['JSON object with \"message\" field', 'Plain text']\n : ['JSON object with \"message\" field'],\n options: {\n interactive: isInteractive,\n autoMergeQueuedMessages: autoMerge,\n alwaysAcceptStdin,\n compactJson,\n },\n },\n compactJson\n );\n\n // Use continuous mode for interactive terminal\n await runContinuousAgentMode(argv);\n return;\n }\n\n // stdin is piped - enter stdin listening mode\n const isInteractive = argv.interactive !== false;\n const autoMerge = argv['auto-merge-queued-messages'] !== false;\n const alwaysAcceptStdin = argv['always-accept-stdin'] !== false;\n\n outputStatus(\n {\n type: 'status',\n mode: 'stdin-stream',\n message: alwaysAcceptStdin\n ? 'Agent CLI in continuous listening mode. Accepts JSON and plain text input.'\n : 'Agent CLI in single-message mode. Accepts JSON and plain text input.',\n hint: 'Press CTRL+C to exit. Use --help for options.',\n acceptedFormats: isInteractive\n ? ['JSON object with \"message\" field', 'Plain text']\n : ['JSON object with \"message\" field'],\n options: {\n interactive: isInteractive,\n autoMergeQueuedMessages: autoMerge,\n alwaysAcceptStdin,\n compactJson,\n },\n },\n compactJson\n );\n\n // Use continuous mode if --always-accept-stdin is enabled (default)\n if (alwaysAcceptStdin) {\n await runContinuousAgentMode(argv);\n return;\n }\n\n // Single-message mode (--no-always-accept-stdin)\n const timeout = argv['stdin-stream-timeout'] ?? null;\n const input = await readStdinWithTimeout(timeout);\n const trimmedInput = input.trim();\n\n if (trimmedInput === '') {\n outputStatus(\n {\n type: 'status',\n message: 'No input received. Exiting.',\n },\n compactJson\n );\n yargsInstance.showHelp();\n process.exit(0);\n }\n\n // Try to parse as JSON, if it fails treat it as plain text message\n let request;\n try {\n request = JSON.parse(trimmedInput);\n } catch (_e) {\n // Not JSON\n if (!isInteractive) {\n // In non-interactive mode, only accept JSON\n outputError(\n {\n errorType: 'ValidationError',\n message:\n 'Invalid JSON input. In non-interactive mode (--no-interactive), only JSON input is accepted.',\n hint: 'Use --interactive to accept plain text, or provide valid JSON: {\"message\": \"your text\"}',\n },\n compactJson\n );\n process.exit(1);\n }\n // In interactive mode, treat as plain text message\n request = {\n message: trimmedInput,\n };\n }\n\n // Output input confirmation in JSON format\n outputInput(\n {\n raw: trimmedInput,\n parsed: request,\n format: isInteractive ? 'text' : 'json',\n },\n compactJson\n );\n\n // Run agent mode\n await runAgentMode(argv, request);\n },\n })\n // Initialize logging and flags early for all CLI commands\n .middleware(async (argv) => {\n const isCompact = argv['compact-json'] === true || Flag.COMPACT_JSON();\n if (isCompact) {\n setCompactJson(true);\n }\n if (argv.verbose) {\n Flag.setVerbose(true);\n }\n if (argv['dry-run']) {\n Flag.setDryRun(true);\n }\n if (argv['generate-title'] === true) {\n Flag.setGenerateTitle(true);\n }\n if (argv['output-used-model'] === true) {\n Flag.setOutputUsedModel(true);\n }\n await Log.init({\n print: Flag.OPENCODE_VERBOSE,\n level: Flag.OPENCODE_VERBOSE ? 'DEBUG' : 'INFO',\n compactJson: isCompact,\n });\n })\n .fail((msg, err, yargs) => {\n // Handle errors from command handlers\n if (err) {\n // Check if it's a CancelledError (user pressed ESC)\n if (UI.CancelledError.isInstance(err)) {\n // Exit silently without showing error or help text\n process.exit(0);\n }\n\n // Format other errors using FormatError\n const formatted = FormatError(err);\n if (formatted) {\n outputError({\n errorType: err.name || 'Error',\n message: formatted,\n });\n } else {\n // Fallback to default error formatting\n outputError({\n errorType: err.name || 'Error',\n message: err.message || String(err),\n });\n }\n process.exit(1);\n }\n\n // Handle validation messages (msg without err) - informational, not an error\n // Display help text on stdout (industry standard: git, gh, npm all use stdout for help)\n if (msg) {\n outputHelp({\n message: msg,\n hint: stripAnsi(yargs.help()),\n });\n process.exit(0);\n }\n })\n .help();\n\n // Parse arguments (handlers will be called automatically)\n await yargsInstance.argv;\n } catch (error) {\n hasError = true;\n outputError({\n timestamp: Date.now(),\n errorType: error instanceof Error ? error.name : 'Error',\n message: error instanceof Error ? error.message : String(error),\n stack: error instanceof Error ? error.stack : undefined,\n });\n process.exit(1);\n }\n}\n\nmain();\n",
"numLines": 994,
"startLine": 1,
"totalLines": 994
}
}
}
[2026-02-15T09:04:27.545Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01Byo49dWiFHM3o7zW1JbkV9",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01NYSR1fbB9BpruXZmJf9MAn",
"name": "Read",
"input": {
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/session/message-v2.ts"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 2874,
"cache_read_input_tokens": 40658,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 2874
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "e26dcaa2-a0ab-4f93-be56-cc191f1f7fe6"
}
[2026-02-15T09:04:27.549Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01NYSR1fbB9BpruXZmJf9MAn",
"type": "tool_result",
"content": " 1→import z from 'zod';\n 2→import { Bus } from '../bus';\n 3→import { NamedError } from '../util/error';\n 4→import { Message } from './message';\n 5→import {\n 6→ APICallError,\n 7→ convertToModelMessages,\n 8→ LoadAPIKeyError,\n 9→ type ModelMessage,\n 10→ type UIMessage,\n 11→} from 'ai';\n 12→import { Identifier } from '../id/id';\n 13→import { Snapshot } from '../snapshot';\n 14→import { fn } from '../util/fn';\n 15→import { Storage } from '../storage/storage';\n 16→\n 17→export namespace MessageV2 {\n 18→ export const OutputLengthError = NamedError.create(\n 19→ 'MessageOutputLengthError',\n 20→ z.object({})\n 21→ );\n 22→ export const AbortedError = NamedError.create(\n 23→ 'MessageAbortedError',\n 24→ z.object({ message: z.string() })\n 25→ );\n 26→ export const AuthError = NamedError.create(\n 27→ 'ProviderAuthError',\n 28→ z.object({\n 29→ providerID: z.string(),\n 30→ message: z.string(),\n 31→ })\n 32→ );\n 33→ export const APIError = NamedError.create(\n 34→ 'APIError',\n 35→ z.object({\n 36→ message: z.string(),\n 37→ statusCode: z.number().optional(),\n 38→ isRetryable: z.boolean(),\n 39→ responseHeaders: z.record(z.string(), z.string()).optional(),\n 40→ responseBody: z.string().optional(),\n 41→ })\n 42→ );\n 43→ export type APIError = z.infer<typeof APIError.Schema>;\n 44→\n 45→ /**\n 46→ * Socket connection error - typically caused by Bun's 10-second idle timeout\n 47→ * in Bun.serve() context. These errors are transient and should be retried.\n 48→ * See: https://github.com/oven-sh/bun/issues/14439\n 49→ */\n 50→ export const SocketConnectionError = NamedError.create(\n 51→ 'SocketConnectionError',\n 52→ z.object({\n 53→ message: z.string(),\n 54→ isRetryable: z.literal(true),\n 55→ })\n 56→ );\n 57→ export type SocketConnectionError = z.infer<\n 58→ typeof SocketConnectionError.Schema\n 59→ >;\n 60→\n 61→ /**\n 62→ * Timeout error - caused by AbortSignal.timeout() firing when an API request\n 63→ * takes too long. These are DOMException with name === 'TimeoutError'.\n 64→ * These errors are transient and should be retried with increasing intervals.\n 65→ * See: https://github.com/link-assistant/agent/issues/142\n 66→ */\n 67→ export const TimeoutError = NamedError.create(\n 68→ 'TimeoutError',\n 69→ z.object({\n 70→ message: z.string(),\n 71→ isRetryable: z.literal(true),\n 72→ })\n 73→ );\n 74→ export type TimeoutError = z.infer<typeof TimeoutError.Schema>;\n 75→\n 76→ const PartBase = z.object({\n 77→ id: z.string(),\n 78→ sessionID: z.string(),\n 79→ messageID: z.string(),\n 80→ });\n 81→\n 82→ export const SnapshotPart = PartBase.extend({\n 83→ type: z.literal('snapshot'),\n 84→ snapshot: z.string(),\n 85→ }).meta({\n 86→ ref: 'SnapshotPart',\n 87→ });\n 88→ export type SnapshotPart = z.infer<typeof SnapshotPart>;\n 89→\n 90→ export const PatchPart = PartBase.extend({\n 91→ type: z.literal('patch'),\n 92→ hash: z.string(),\n 93→ files: z.string().array(),\n 94→ }).meta({\n 95→ ref: 'PatchPart',\n 96→ });\n 97→ export type PatchPart = z.infer<typeof PatchPart>;\n 98→\n 99→ export const TextPart = PartBase.extend({\n 100→ type: z.literal('text'),\n 101→ text: z.string(),\n 102→ synthetic: z.boolean().optional(),\n 103→ time: z\n 104→ .object({\n 105→ start: z.number(),\n 106→ end: z.number().optional(),\n 107→ })\n 108→ .optional(),\n 109→ metadata: z.record(z.string(), z.any()).optional(),\n 110→ }).meta({\n 111→ ref: 'TextPart',\n 112→ });\n 113→ export type TextPart = z.infer<typeof TextPart>;\n 114→\n 115→ export const ReasoningPart = PartBase.extend({\n 116→ type: z.literal('reasoning'),\n 117→ text: z.string(),\n 118→ metadata: z.record(z.string(), z.any()).optional(),\n 119→ time: z.object({\n 120→ start: z.number(),\n 121→ end: z.number().optional(),\n 122→ }),\n 123→ }).meta({\n 124→ ref: 'ReasoningPart',\n 125→ });\n 126→ export type ReasoningPart = z.infer<typeof ReasoningPart>;\n 127→\n 128→ const FilePartSourceBase = z.object({\n 129→ text: z\n 130→ .object({\n 131→ value: z.string(),\n 132→ start: z.number().int(),\n 133→ end: z.number().int(),\n 134→ })\n 135→ .meta({\n 136→ ref: 'FilePartSourceText',\n 137→ }),\n 138→ });\n 139→\n 140→ export const FileSource = FilePartSourceBase.extend({\n 141→ type: z.literal('file'),\n 142→ path: z.string(),\n 143→ }).meta({\n 144→ ref: 'FileSource',\n 145→ });\n 146→\n 147→ export const SymbolSource = FilePartSourceBase.extend({\n 148→ type: z.literal('symbol'),\n 149→ path: z.string(),\n 150→ range: z.object({\n 151→ start: z.object({ line: z.number(), character: z.number() }),\n 152→ end: z.object({ line: z.number(), character: z.number() }),\n 153→ }),\n 154→ name: z.string(),\n 155→ kind: z.number().int(),\n 156→ }).meta({\n 157→ ref: 'SymbolSource',\n 158→ });\n 159→\n 160→ export const FilePartSource = z\n 161→ .discriminatedUnion('type', [FileSource, SymbolSource])\n 162→ .meta({\n 163→ ref: 'FilePartSource',\n 164→ });\n 165→\n 166→ export const FilePart = PartBase.extend({\n 167→ type: z.literal('file'),\n 168→ mime: z.string(),\n 169→ filename: z.string().optional(),\n 170→ url: z.string(),\n 171→ source: FilePartSource.optional(),\n 172→ }).meta({\n 173→ ref: 'FilePart',\n 174→ });\n 175→ export type FilePart = z.infer<typeof FilePart>;\n 176→\n 177→ export const AgentPart = PartBase.extend({\n 178→ type: z.literal('agent'),\n 179→ name: z.string(),\n 180→ source: z\n 181→ .object({\n 182→ value: z.string(),\n 183→ start: z.number().int(),\n 184→ end: z.number().int(),\n 185→ })\n 186→ .optional(),\n 187→ }).meta({\n 188→ ref: 'AgentPart',\n 189→ });\n 190→ export type AgentPart = z.infer<typeof AgentPart>;\n 191→\n 192→ export const CompactionPart = PartBase.extend({\n 193→ type: z.literal('compaction'),\n 194→ }).meta({\n 195→ ref: 'CompactionPart',\n 196→ });\n 197→ export type CompactionPart = z.infer<typeof CompactionPart>;\n 198→\n 199→ export const SubtaskPart = PartBase.extend({\n 200→ type: z.literal('subtask'),\n 201→ prompt: z.string(),\n 202→ description: z.string(),\n 203→ agent: z.string(),\n 204→ });\n 205→ export type SubtaskPart = z.infer<typeof SubtaskPart>;\n 206→\n 207→ export const RetryPart = PartBase.extend({\n 208→ type: z.literal('retry'),\n 209→ attempt: z.number(),\n 210→ error: APIError.Schema,\n 211→ time: z.object({\n 212→ created: z.number(),\n 213→ }),\n 214→ }).meta({\n 215→ ref: 'RetryPart',\n 216→ });\n 217→ export type RetryPart = z.infer<typeof RetryPart>;\n 218→\n 219→ export const StepStartPart = PartBase.extend({\n 220→ type: z.literal('step-start'),\n 221→ snapshot: z.string().optional(),\n 222→ }).meta({\n 223→ ref: 'StepStartPart',\n 224→ });\n 225→ export type StepStartPart = z.infer<typeof StepStartPart>;\n 226→\n 227→ /**\n 228→ * Model information for output parts.\n 229→ * Included when --output-used-model flag is enabled.\n 230→ * @see https://github.com/link-assistant/agent/issues/179\n 231→ */\n 232→ export const ModelInfo = z\n 233→ .object({\n 234→ providerID: z.string(),\n 235→ modelID: z.string(),\n 236→ responseModelId: z.string().optional(),\n 237→ })\n 238→ .meta({\n 239→ ref: 'ModelInfo',\n 240→ });\n 241→ export type ModelInfo = z.infer<typeof ModelInfo>;\n 242→\n 243→ export const StepFinishPart = PartBase.extend({\n 244→ type: z.literal('step-finish'),\n 245→ reason: z.string(),\n 246→ snapshot: z.string().optional(),\n 247→ cost: z.number(),\n 248→ tokens: z.object({\n 249→ input: z.number(),\n 250→ output: z.number(),\n 251→ reasoning: z.number(),\n 252→ cache: z.object({\n 253→ read: z.number(),\n 254→ write: z.number(),\n 255→ }),\n 256→ }),\n 257→ // Model info included when --output-used-model is enabled\n 258→ // @see https://github.com/link-assistant/agent/issues/179\n 259→ model: ModelInfo.optional(),\n 260→ }).meta({\n 261→ ref: 'StepFinishPart',\n 262→ });\n 263→ export type StepFinishPart = z.infer<typeof StepFinishPart>;\n 264→\n 265→ export const ToolStatePending = z\n 266→ .object({\n 267→ status: z.literal('pending'),\n 268→ input: z.record(z.string(), z.any()),\n 269→ raw: z.string(),\n 270→ })\n 271→ .meta({\n 272→ ref: 'ToolStatePending',\n 273→ });\n 274→\n 275→ export type ToolStatePending = z.infer<typeof ToolStatePending>;\n 276→\n 277→ export const ToolStateRunning = z\n 278→ .object({\n 279→ status: z.literal('running'),\n 280→ input: z.record(z.string(), z.any()),\n 281→ title: z.string().optional(),\n 282→ metadata: z.record(z.string(), z.any()).optional(),\n 283→ time: z.object({\n 284→ start: z.number(),\n 285→ }),\n 286→ })\n 287→ .meta({\n 288→ ref: 'ToolStateRunning',\n 289→ });\n 290→ export type ToolStateRunning = z.infer<typeof ToolStateRunning>;\n 291→\n 292→ export const ToolStateCompleted = z\n 293→ .object({\n 294→ status: z.literal('completed'),\n 295→ input: z.record(z.string(), z.any()),\n 296→ output: z.string(),\n 297→ title: z.string(),\n 298→ metadata: z.record(z.string(), z.any()),\n 299→ time: z.object({\n 300→ start: z.number(),\n 301→ end: z.number(),\n 302→ compacted: z.number().optional(),\n 303→ }),\n 304→ attachments: FilePart.array().optional(),\n 305→ })\n 306→ .meta({\n 307→ ref: 'ToolStateCompleted',\n 308→ });\n 309→ export type ToolStateCompleted = z.infer<typeof ToolStateCompleted>;\n 310→\n 311→ export const ToolStateError = z\n 312→ .object({\n 313→ status: z.literal('error'),\n 314→ input: z.record(z.string(), z.any()),\n 315→ error: z.string(),\n 316→ metadata: z.record(z.string(), z.any()).optional(),\n 317→ time: z.object({\n 318→ start: z.number(),\n 319→ end: z.number(),\n 320→ }),\n 321→ })\n 322→ .meta({\n 323→ ref: 'ToolStateError',\n 324→ });\n 325→ export type ToolStateError = z.infer<typeof ToolStateError>;\n 326→\n 327→ export const ToolState = z\n 328→ .discriminatedUnion('status', [\n 329→ ToolStatePending,\n 330→ ToolStateRunning,\n 331→ ToolStateCompleted,\n 332→ ToolStateError,\n 333→ ])\n 334→ .meta({\n 335→ ref: 'ToolState',\n 336→ });\n 337→\n 338→ export const ToolPart = PartBase.extend({\n 339→ type: z.literal('tool'),\n 340→ callID: z.string(),\n 341→ tool: z.string(),\n 342→ state: ToolState,\n 343→ metadata: z.record(z.string(), z.any()).optional(),\n 344→ }).meta({\n 345→ ref: 'ToolPart',\n 346→ });\n 347→ export type ToolPart = z.infer<typeof ToolPart>;\n 348→\n 349→ const Base = z.object({\n 350→ id: z.string(),\n 351→ sessionID: z.string(),\n 352→ });\n 353→\n 354→ export const User = Base.extend({\n 355→ role: z.literal('user'),\n 356→ time: z.object({\n 357→ created: z.number(),\n 358→ }),\n 359→ summary: z\n 360→ .object({\n 361→ title: z.string().optional(),\n 362→ body: z.string().optional(),\n 363→ diffs: Snapshot.FileDiff.array(),\n 364→ })\n 365→ .optional(),\n 366→ agent: z.string(),\n 367→ model: z.object({\n 368→ providerID: z.string(),\n 369→ modelID: z.string(),\n 370→ }),\n 371→ system: z.string().optional(),\n 372→ appendSystem: z.string().optional(),\n 373→ tools: z.record(z.string(), z.boolean()).optional(),\n 374→ }).meta({\n 375→ ref: 'UserMessage',\n 376→ });\n 377→ export type User = z.infer<typeof User>;\n 378→\n 379→ export const Part = z\n 380→ .discriminatedUnion('type', [\n 381→ TextPart,\n 382→ SubtaskPart,\n 383→ ReasoningPart,\n 384→ FilePart,\n 385→ ToolPart,\n 386→ StepStartPart,\n 387→ StepFinishPart,\n 388→ SnapshotPart,\n 389→ PatchPart,\n 390→ AgentPart,\n 391→ RetryPart,\n 392→ CompactionPart,\n 393→ ])\n 394→ .meta({\n 395→ ref: 'Part',\n 396→ });\n 397→ export type Part = z.infer<typeof Part>;\n 398→\n 399→ export const Assistant = Base.extend({\n 400→ role: z.literal('assistant'),\n 401→ time: z.object({\n 402→ created: z.number(),\n 403→ completed: z.number().optional(),\n 404→ }),\n 405→ error: z\n 406→ .discriminatedUnion('name', [\n 407→ AuthError.Schema,\n 408→ NamedError.Unknown.Schema,\n 409→ OutputLengthError.Schema,\n 410→ AbortedError.Schema,\n 411→ APIError.Schema,\n 412→ ])\n 413→ .optional(),\n 414→ parentID: z.string(),\n 415→ modelID: z.string(),\n 416→ providerID: z.string(),\n 417→ mode: z.string(),\n 418→ path: z.object({\n 419→ cwd: z.string(),\n 420→ root: z.string(),\n 421→ }),\n 422→ summary: z.boolean().optional(),\n 423→ cost: z.number(),\n 424→ tokens: z.object({\n 425→ input: z.number(),\n 426→ output: z.number(),\n 427→ reasoning: z.number(),\n 428→ cache: z.object({\n 429→ read: z.number(),\n 430→ write: z.number(),\n 431→ }),\n 432→ }),\n 433→ finish: z.string().optional(),\n 434→ }).meta({\n 435→ ref: 'AssistantMessage',\n 436→ });\n 437→ export type Assistant = z.infer<typeof Assistant>;\n 438→\n 439→ export const Info = z.discriminatedUnion('role', [User, Assistant]).meta({\n 440→ ref: 'Message',\n 441→ });\n 442→ export type Info = z.infer<typeof Info>;\n 443→\n 444→ export const Event = {\n 445→ Updated: Bus.event(\n 446→ 'message.updated',\n 447→ z.object({\n 448→ info: Info,\n 449→ })\n 450→ ),\n 451→ Removed: Bus.event(\n 452→ 'message.removed',\n 453→ z.object({\n 454→ sessionID: z.string(),\n 455→ messageID: z.string(),\n 456→ })\n 457→ ),\n 458→ PartUpdated: Bus.event(\n 459→ 'message.part.updated',\n 460→ z.object({\n 461→ part: Part,\n 462→ delta: z.string().optional(),\n 463→ })\n 464→ ),\n 465→ PartRemoved: Bus.event(\n 466→ 'message.part.removed',\n 467→ z.object({\n 468→ sessionID: z.string(),\n 469→ messageID: z.string(),\n 470→ partID: z.string(),\n 471→ })\n 472→ ),\n 473→ };\n 474→\n 475→ export const WithParts = z.object({\n 476→ info: Info,\n 477→ parts: z.array(Part),\n 478→ });\n 479→ export type WithParts = z.infer<typeof WithParts>;\n 480→\n 481→ export function fromV1(v1: Message.Info) {\n 482→ if (v1.role === 'assistant') {\n 483→ const info: Assistant = {\n 484→ id: v1.id,\n 485→ parentID: '',\n 486→ sessionID: v1.metadata.sessionID,\n 487→ role: 'assistant',\n 488→ time: {\n 489→ created: v1.metadata.time.created,\n 490→ completed: v1.metadata.time.completed,\n 491→ },\n 492→ cost: v1.metadata.assistant!.cost,\n 493→ path: v1.metadata.assistant!.path,\n 494→ summary: v1.metadata.assistant!.summary,\n 495→ tokens: v1.metadata.assistant!.tokens,\n 496→ modelID: v1.metadata.assistant!.modelID,\n 497→ providerID: v1.metadata.assistant!.providerID,\n 498→ mode: 'build',\n 499→ error: v1.metadata.error,\n 500→ };\n 501→ const parts = v1.parts.flatMap((part): Part[] => {\n 502→ const base = {\n 503→ id: Identifier.ascending('part'),\n 504→ messageID: v1.id,\n 505→ sessionID: v1.metadata.sessionID,\n 506→ };\n 507→ if (part.type === 'text') {\n 508→ return [\n 509→ {\n 510→ ...base,\n 511→ type: 'text',\n 512→ text: part.text,\n 513→ },\n 514→ ];\n 515→ }\n 516→ if (part.type === 'step-start') {\n 517→ return [\n 518→ {\n 519→ ...base,\n 520→ type: 'step-start',\n 521→ },\n 522→ ];\n 523→ }\n 524→ if (part.type === 'tool-invocation') {\n 525→ return [\n 526→ {\n 527→ ...base,\n 528→ type: 'tool',\n 529→ callID: part.toolInvocation.toolCallId,\n 530→ tool: part.toolInvocation.toolName,\n 531→ state: (() => {\n 532→ if (part.toolInvocation.state === 'partial-call') {\n 533→ return {\n 534→ status: 'pending',\n 535→ input: {},\n 536→ raw: '',\n 537→ };\n 538→ }\n 539→\n 540→ const { title, time, ...metadata } =\n 541→ v1.metadata.tool[part.toolInvocation.toolCallId] ?? {};\n 542→ if (part.toolInvocation.state === 'call') {\n 543→ return {\n 544→ status: 'running',\n 545→ input: part.toolInvocation.args,\n 546→ time: {\n 547→ start: time?.start,\n 548→ },\n 549→ };\n 550→ }\n 551→\n 552→ if (part.toolInvocation.state === 'result') {\n 553→ return {\n 554→ status: 'completed',\n 555→ input: part.toolInvocation.args,\n 556→ output: part.toolInvocation.result,\n 557→ title,\n 558→ time,\n 559→ metadata,\n 560→ };\n 561→ }\n 562→ throw new Error('unknown tool invocation state');\n 563→ })(),\n 564→ },\n 565→ ];\n 566→ }\n 567→ return [];\n 568→ });\n 569→ return {\n 570→ info,\n 571→ parts,\n 572→ };\n 573→ }\n 574→\n 575→ if (v1.role === 'user') {\n 576→ const info: User = {\n 577→ id: v1.id,\n 578→ sessionID: v1.metadata.sessionID,\n 579→ role: 'user',\n 580→ time: {\n 581→ created: v1.metadata.time.created,\n 582→ },\n 583→ agent: 'build',\n 584→ model: {\n 585→ providerID: 'opencode',\n 586→ modelID: 'opencode',\n 587→ },\n 588→ };\n 589→ const parts = v1.parts.flatMap((part): Part[] => {\n 590→ const base = {\n 591→ id: Identifier.ascending('part'),\n 592→ messageID: v1.id,\n 593→ sessionID: v1.metadata.sessionID,\n 594→ };\n 595→ if (part.type === 'text') {\n 596→ return [\n 597→ {\n 598→ ...base,\n 599→ type: 'text',\n 600→ text: part.text,\n 601→ },\n 602→ ];\n 603→ }\n 604→ if (part.type === 'file') {\n 605→ return [\n 606→ {\n 607→ ...base,\n 608→ type: 'file',\n 609→ mime: part.mediaType,\n 610→ filename: part.filename,\n 611→ url: part.url,\n 612→ },\n 613→ ];\n 614→ }\n 615→ return [];\n 616→ });\n 617→ return { info, parts };\n 618→ }\n 619→\n 620→ throw new Error('unknown message type');\n 621→ }\n 622→\n 623→ export async function toModelMessage(\n 624→ input: {\n 625→ info: Info;\n 626→ parts: Part[];\n 627→ }[]\n 628→ ): Promise<ModelMessage[]> {\n 629→ const result: UIMessage[] = [];\n 630→\n 631→ for (const msg of input) {\n 632→ if (msg.parts.length === 0) continue;\n 633→\n 634→ if (msg.info.role === 'user') {\n 635→ const userMessage: UIMessage = {\n 636→ id: msg.info.id,\n 637→ role: 'user',\n 638→ parts: [],\n 639→ };\n 640→ result.push(userMessage);\n 641→ for (const part of msg.parts) {\n 642→ if (part.type === 'text')\n 643→ userMessage.parts.push({\n 644→ type: 'text',\n 645→ text: part.text,\n 646→ });\n 647→ // text/plain and directory files are converted into text parts, ignore them\n 648→ if (\n 649→ part.type === 'file' &&\n 650→ part.mime !== 'text/plain' &&\n 651→ part.mime !== 'application/x-directory'\n 652→ )\n 653→ userMessage.parts.push({\n 654→ type: 'file',\n 655→ url: part.url,\n 656→ mediaType: part.mime,\n 657→ filename: part.filename,\n 658→ });\n 659→\n 660→ if (part.type === 'compaction') {\n 661→ userMessage.parts.push({\n 662→ type: 'text',\n 663→ text: 'What did we do so far?',\n 664→ });\n 665→ }\n 666→ if (part.type === 'subtask') {\n 667→ userMessage.parts.push({\n 668→ type: 'text',\n 669→ text: 'The following tool was executed by the user',\n 670→ });\n 671→ }\n 672→ }\n 673→ }\n 674→\n 675→ if (msg.info.role === 'assistant') {\n 676→ const assistantMessage: UIMessage = {\n 677→ id: msg.info.id,\n 678→ role: 'assistant',\n 679→ parts: [],\n 680→ };\n 681→ result.push(assistantMessage);\n 682→ for (const part of msg.parts) {\n 683→ if (part.type === 'text')\n 684→ assistantMessage.parts.push({\n 685→ type: 'text',\n 686→ text: part.text,\n 687→ providerMetadata: part.metadata,\n 688→ });\n 689→ if (part.type === 'step-start')\n 690→ assistantMessage.parts.push({\n 691→ type: 'step-start',\n 692→ });\n 693→ if (part.type === 'tool') {\n 694→ if (part.state.status === 'completed') {\n 695→ if (part.state.attachments?.length) {\n 696→ result.push({\n 697→ id: Identifier.ascending('message'),\n 698→ role: 'user',\n 699→ parts: [\n 700→ {\n 701→ type: 'text',\n 702→ text: `Tool ${part.tool} returned an attachment:`,\n 703→ },\n 704→ ...part.state.attachments.map((attachment) => ({\n 705→ type: 'file' as const,\n 706→ url: attachment.url,\n 707→ mediaType: attachment.mime,\n 708→ filename: attachment.filename,\n 709→ })),\n 710→ ],\n 711→ });\n 712→ }\n 713→ assistantMessage.parts.push({\n 714→ type: ('tool-' + part.tool) as `tool-${string}`,\n 715→ state: 'output-available',\n 716→ toolCallId: part.callID,\n 717→ input: part.state.input,\n 718→ output: part.state.time.compacted\n 719→ ? '[Old tool result content cleared]'\n 720→ : part.state.output,\n 721→ callProviderMetadata: part.metadata,\n 722→ });\n 723→ }\n 724→ if (part.state.status === 'error')\n 725→ assistantMessage.parts.push({\n 726→ type: ('tool-' + part.tool) as `tool-${string}`,\n 727→ state: 'output-error',\n 728→ toolCallId: part.callID,\n 729→ input: part.state.input,\n 730→ errorText: part.state.error,\n 731→ callProviderMetadata: part.metadata,\n 732→ });\n 733→ }\n 734→ if (part.type === 'reasoning') {\n 735→ assistantMessage.parts.push({\n 736→ type: 'reasoning',\n 737→ text: part.text,\n 738→ providerMetadata: part.metadata,\n 739→ });\n 740→ }\n 741→ }\n 742→ }\n 743→ }\n 744→\n 745→ return await convertToModelMessages(result);\n 746→ }\n 747→\n 748→ export const stream = fn(\n 749→ Identifier.schema('session'),\n 750→ async function* (sessionID) {\n 751→ const list = await Array.fromAsync(\n 752→ await Storage.list(['message', sessionID])\n 753→ );\n 754→ for (let i = list.length - 1; i >= 0; i--) {\n 755→ yield await get({\n 756→ sessionID,\n 757→ messageID: list[i][2],\n 758→ });\n 759→ }\n 760→ }\n 761→ );\n 762→\n 763→ export const parts = fn(Identifier.schema('message'), async (messageID) => {\n 764→ const result = [] as MessageV2.Part[];\n 765→ for (const item of await Storage.list(['part', messageID])) {\n 766→ const read = await Storage.read<MessageV2.Part>(item);\n 767→ result.push(read);\n 768→ }\n 769→ result.sort((a, b) => (a.id > b.id ? 1 : -1));\n 770→ return result;\n 771→ });\n 772→\n 773→ export const get = fn(\n 774→ z.object({\n 775→ sessionID: Identifier.schema('session'),\n 776→ messageID: Identifier.schema('message'),\n 777→ }),\n 778→ async (input) => {\n 779→ return {\n 780→ info: await Storage.read<MessageV2.Info>([\n 781→ 'message',\n 782→ input.sessionID,\n 783→ input.messageID,\n 784→ ]),\n 785→ parts: await parts(input.messageID),\n 786→ };\n 787→ }\n 788→ );\n 789→\n 790→ export async function filterCompacted(\n 791→ stream: AsyncIterable<MessageV2.WithParts>\n 792→ ) {\n 793→ const result = [] as MessageV2.WithParts[];\n 794→ const completed = new Set<string>();\n 795→ for await (const msg of stream) {\n 796→ result.push(msg);\n 797→ if (\n 798→ msg.info.role === 'user' &&\n 799→ completed.has(msg.info.id) &&\n 800→ msg.parts.some((part) => part.type === 'compaction')\n 801→ )\n 802→ break;\n 803→ if (msg.info.role === 'assistant' && msg.info.summary && msg.info.finish)\n 804→ completed.add(msg.info.parentID);\n 805→ }\n 806→ result.reverse();\n 807→ return result;\n 808→ }\n 809→\n 810→ export function fromError(e: unknown, ctx: { providerID: string }) {\n 811→ switch (true) {\n 812→ case e instanceof DOMException && e.name === 'AbortError':\n 813→ return new MessageV2.AbortedError(\n 814→ { message: e.message },\n 815→ {\n 816→ cause: e,\n 817→ }\n 818→ ).toObject();\n 819→ case e instanceof DOMException && e.name === 'TimeoutError':\n 820→ return new MessageV2.TimeoutError(\n 821→ { message: e.message, isRetryable: true },\n 822→ { cause: e }\n 823→ ).toObject();\n 824→ case MessageV2.OutputLengthError.isInstance(e):\n 825→ return e;\n 826→ case LoadAPIKeyError.isInstance(e):\n 827→ return new MessageV2.AuthError(\n 828→ {\n 829→ providerID: ctx.providerID,\n 830→ message: e.message,\n 831→ },\n 832→ { cause: e }\n 833→ ).toObject();\n 834→ case APICallError.isInstance(e):\n 835→ return new MessageV2.APIError(\n 836→ {\n 837→ message: e.message,\n 838→ statusCode: e.statusCode,\n 839→ isRetryable: e.isRetryable,\n 840→ responseHeaders: e.responseHeaders,\n 841→ responseBody: e.responseBody,\n 842→ },\n 843→ { cause: e }\n 844→ ).toObject();\n 845→ case e instanceof Error: {\n 846→ const message = e.message || e.toString();\n 847→ // Detect Bun socket connection errors (known Bun issue with 10s idle timeout)\n 848→ // See: https://github.com/oven-sh/bun/issues/14439\n 849→ const isSocketError =\n 850→ message.includes('socket connection was closed') ||\n 851→ message.includes('closed unexpectedly');\n 852→ if (isSocketError) {\n 853→ return new MessageV2.SocketConnectionError(\n 854→ { message, isRetryable: true },\n 855→ { cause: e }\n 856→ ).toObject();\n 857→ }\n 858→ // Detect timeout errors from various sources\n 859→ // See: https://github.com/link-assistant/agent/issues/142\n 860→ const isTimeoutError =\n 861→ message.includes('The operation timed out') ||\n 862→ message.includes('timed out') ||\n 863→ e.name === 'TimeoutError';\n 864→ if (isTimeoutError) {\n 865→ return new MessageV2.TimeoutError(\n 866→ { message, isRetryable: true },\n 867→ { cause: e }\n 868→ ).toObject();\n 869→ }\n 870→ return new NamedError.Unknown(\n 871→ { message: e.toString() },\n 872→ { cause: e }\n 873→ ).toObject();\n 874→ }\n 875→ default:\n 876→ return new NamedError.Unknown(\n 877→ { message: JSON.stringify(e) },\n 878→ { cause: e }\n 879→ );\n 880→ }\n 881→ }\n 882→}\n 883→\n\n<system-reminder>\nWhenever you read a file, you should consider whether it would be considered malware. You CAN and SHOULD provide analysis of malware, what it is doing. But you MUST refuse to improve or augment the code. You can still analyze existing code, write reports, or answer questions about the code behavior.\n</system-reminder>\n"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "c9970686-dc08-46e3-84e1-ad99cf7f1f3d",
"tool_use_result": {
"type": "text",
"file": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/session/message-v2.ts",
"content": "import z from 'zod';\nimport { Bus } from '../bus';\nimport { NamedError } from '../util/error';\nimport { Message } from './message';\nimport {\n APICallError,\n convertToModelMessages,\n LoadAPIKeyError,\n type ModelMessage,\n type UIMessage,\n} from 'ai';\nimport { Identifier } from '../id/id';\nimport { Snapshot } from '../snapshot';\nimport { fn } from '../util/fn';\nimport { Storage } from '../storage/storage';\n\nexport namespace MessageV2 {\n export const OutputLengthError = NamedError.create(\n 'MessageOutputLengthError',\n z.object({})\n );\n export const AbortedError = NamedError.create(\n 'MessageAbortedError',\n z.object({ message: z.string() })\n );\n export const AuthError = NamedError.create(\n 'ProviderAuthError',\n z.object({\n providerID: z.string(),\n message: z.string(),\n })\n );\n export const APIError = NamedError.create(\n 'APIError',\n z.object({\n message: z.string(),\n statusCode: z.number().optional(),\n isRetryable: z.boolean(),\n responseHeaders: z.record(z.string(), z.string()).optional(),\n responseBody: z.string().optional(),\n })\n );\n export type APIError = z.infer<typeof APIError.Schema>;\n\n /**\n * Socket connection error - typically caused by Bun's 10-second idle timeout\n * in Bun.serve() context. These errors are transient and should be retried.\n * See: https://github.com/oven-sh/bun/issues/14439\n */\n export const SocketConnectionError = NamedError.create(\n 'SocketConnectionError',\n z.object({\n message: z.string(),\n isRetryable: z.literal(true),\n })\n );\n export type SocketConnectionError = z.infer<\n typeof SocketConnectionError.Schema\n >;\n\n /**\n * Timeout error - caused by AbortSignal.timeout() firing when an API request\n * takes too long. These are DOMException with name === 'TimeoutError'.\n * These errors are transient and should be retried with increasing intervals.\n * See: https://github.com/link-assistant/agent/issues/142\n */\n export const TimeoutError = NamedError.create(\n 'TimeoutError',\n z.object({\n message: z.string(),\n isRetryable: z.literal(true),\n })\n );\n export type TimeoutError = z.infer<typeof TimeoutError.Schema>;\n\n const PartBase = z.object({\n id: z.string(),\n sessionID: z.string(),\n messageID: z.string(),\n });\n\n export const SnapshotPart = PartBase.extend({\n type: z.literal('snapshot'),\n snapshot: z.string(),\n }).meta({\n ref: 'SnapshotPart',\n });\n export type SnapshotPart = z.infer<typeof SnapshotPart>;\n\n export const PatchPart = PartBase.extend({\n type: z.literal('patch'),\n hash: z.string(),\n files: z.string().array(),\n }).meta({\n ref: 'PatchPart',\n });\n export type PatchPart = z.infer<typeof PatchPart>;\n\n export const TextPart = PartBase.extend({\n type: z.literal('text'),\n text: z.string(),\n synthetic: z.boolean().optional(),\n time: z\n .object({\n start: z.number(),\n end: z.number().optional(),\n })\n .optional(),\n metadata: z.record(z.string(), z.any()).optional(),\n }).meta({\n ref: 'TextPart',\n });\n export type TextPart = z.infer<typeof TextPart>;\n\n export const ReasoningPart = PartBase.extend({\n type: z.literal('reasoning'),\n text: z.string(),\n metadata: z.record(z.string(), z.any()).optional(),\n time: z.object({\n start: z.number(),\n end: z.number().optional(),\n }),\n }).meta({\n ref: 'ReasoningPart',\n });\n export type ReasoningPart = z.infer<typeof ReasoningPart>;\n\n const FilePartSourceBase = z.object({\n text: z\n .object({\n value: z.string(),\n start: z.number().int(),\n end: z.number().int(),\n })\n .meta({\n ref: 'FilePartSourceText',\n }),\n });\n\n export const FileSource = FilePartSourceBase.extend({\n type: z.literal('file'),\n path: z.string(),\n }).meta({\n ref: 'FileSource',\n });\n\n export const SymbolSource = FilePartSourceBase.extend({\n type: z.literal('symbol'),\n path: z.string(),\n range: z.object({\n start: z.object({ line: z.number(), character: z.number() }),\n end: z.object({ line: z.number(), character: z.number() }),\n }),\n name: z.string(),\n kind: z.number().int(),\n }).meta({\n ref: 'SymbolSource',\n });\n\n export const FilePartSource = z\n .discriminatedUnion('type', [FileSource, SymbolSource])\n .meta({\n ref: 'FilePartSource',\n });\n\n export const FilePart = PartBase.extend({\n type: z.literal('file'),\n mime: z.string(),\n filename: z.string().optional(),\n url: z.string(),\n source: FilePartSource.optional(),\n }).meta({\n ref: 'FilePart',\n });\n export type FilePart = z.infer<typeof FilePart>;\n\n export const AgentPart = PartBase.extend({\n type: z.literal('agent'),\n name: z.string(),\n source: z\n .object({\n value: z.string(),\n start: z.number().int(),\n end: z.number().int(),\n })\n .optional(),\n }).meta({\n ref: 'AgentPart',\n });\n export type AgentPart = z.infer<typeof AgentPart>;\n\n export const CompactionPart = PartBase.extend({\n type: z.literal('compaction'),\n }).meta({\n ref: 'CompactionPart',\n });\n export type CompactionPart = z.infer<typeof CompactionPart>;\n\n export const SubtaskPart = PartBase.extend({\n type: z.literal('subtask'),\n prompt: z.string(),\n description: z.string(),\n agent: z.string(),\n });\n export type SubtaskPart = z.infer<typeof SubtaskPart>;\n\n export const RetryPart = PartBase.extend({\n type: z.literal('retry'),\n attempt: z.number(),\n error: APIError.Schema,\n time: z.object({\n created: z.number(),\n }),\n }).meta({\n ref: 'RetryPart',\n });\n export type RetryPart = z.infer<typeof RetryPart>;\n\n export const StepStartPart = PartBase.extend({\n type: z.literal('step-start'),\n snapshot: z.string().optional(),\n }).meta({\n ref: 'StepStartPart',\n });\n export type StepStartPart = z.infer<typeof StepStartPart>;\n\n /**\n * Model information for output parts.\n * Included when --output-used-model flag is enabled.\n * @see https://github.com/link-assistant/agent/issues/179\n */\n export const ModelInfo = z\n .object({\n providerID: z.string(),\n modelID: z.string(),\n responseModelId: z.string().optional(),\n })\n .meta({\n ref: 'ModelInfo',\n });\n export type ModelInfo = z.infer<typeof ModelInfo>;\n\n export const StepFinishPart = PartBase.extend({\n type: z.literal('step-finish'),\n reason: z.string(),\n snapshot: z.string().optional(),\n cost: z.number(),\n tokens: z.object({\n input: z.number(),\n output: z.number(),\n reasoning: z.number(),\n cache: z.object({\n read: z.number(),\n write: z.number(),\n }),\n }),\n // Model info included when --output-used-model is enabled\n // @see https://github.com/link-assistant/agent/issues/179\n model: ModelInfo.optional(),\n }).meta({\n ref: 'StepFinishPart',\n });\n export type StepFinishPart = z.infer<typeof StepFinishPart>;\n\n export const ToolStatePending = z\n .object({\n status: z.literal('pending'),\n input: z.record(z.string(), z.any()),\n raw: z.string(),\n })\n .meta({\n ref: 'ToolStatePending',\n });\n\n export type ToolStatePending = z.infer<typeof ToolStatePending>;\n\n export const ToolStateRunning = z\n .object({\n status: z.literal('running'),\n input: z.record(z.string(), z.any()),\n title: z.string().optional(),\n metadata: z.record(z.string(), z.any()).optional(),\n time: z.object({\n start: z.number(),\n }),\n })\n .meta({\n ref: 'ToolStateRunning',\n });\n export type ToolStateRunning = z.infer<typeof ToolStateRunning>;\n\n export const ToolStateCompleted = z\n .object({\n status: z.literal('completed'),\n input: z.record(z.string(), z.any()),\n output: z.string(),\n title: z.string(),\n metadata: z.record(z.string(), z.any()),\n time: z.object({\n start: z.number(),\n end: z.number(),\n compacted: z.number().optional(),\n }),\n attachments: FilePart.array().optional(),\n })\n .meta({\n ref: 'ToolStateCompleted',\n });\n export type ToolStateCompleted = z.infer<typeof ToolStateCompleted>;\n\n export const ToolStateError = z\n .object({\n status: z.literal('error'),\n input: z.record(z.string(), z.any()),\n error: z.string(),\n metadata: z.record(z.string(), z.any()).optional(),\n time: z.object({\n start: z.number(),\n end: z.number(),\n }),\n })\n .meta({\n ref: 'ToolStateError',\n });\n export type ToolStateError = z.infer<typeof ToolStateError>;\n\n export const ToolState = z\n .discriminatedUnion('status', [\n ToolStatePending,\n ToolStateRunning,\n ToolStateCompleted,\n ToolStateError,\n ])\n .meta({\n ref: 'ToolState',\n });\n\n export const ToolPart = PartBase.extend({\n type: z.literal('tool'),\n callID: z.string(),\n tool: z.string(),\n state: ToolState,\n metadata: z.record(z.string(), z.any()).optional(),\n }).meta({\n ref: 'ToolPart',\n });\n export type ToolPart = z.infer<typeof ToolPart>;\n\n const Base = z.object({\n id: z.string(),\n sessionID: z.string(),\n });\n\n export const User = Base.extend({\n role: z.literal('user'),\n time: z.object({\n created: z.number(),\n }),\n summary: z\n .object({\n title: z.string().optional(),\n body: z.string().optional(),\n diffs: Snapshot.FileDiff.array(),\n })\n .optional(),\n agent: z.string(),\n model: z.object({\n providerID: z.string(),\n modelID: z.string(),\n }),\n system: z.string().optional(),\n appendSystem: z.string().optional(),\n tools: z.record(z.string(), z.boolean()).optional(),\n }).meta({\n ref: 'UserMessage',\n });\n export type User = z.infer<typeof User>;\n\n export const Part = z\n .discriminatedUnion('type', [\n TextPart,\n SubtaskPart,\n ReasoningPart,\n FilePart,\n ToolPart,\n StepStartPart,\n StepFinishPart,\n SnapshotPart,\n PatchPart,\n AgentPart,\n RetryPart,\n CompactionPart,\n ])\n .meta({\n ref: 'Part',\n });\n export type Part = z.infer<typeof Part>;\n\n export const Assistant = Base.extend({\n role: z.literal('assistant'),\n time: z.object({\n created: z.number(),\n completed: z.number().optional(),\n }),\n error: z\n .discriminatedUnion('name', [\n AuthError.Schema,\n NamedError.Unknown.Schema,\n OutputLengthError.Schema,\n AbortedError.Schema,\n APIError.Schema,\n ])\n .optional(),\n parentID: z.string(),\n modelID: z.string(),\n providerID: z.string(),\n mode: z.string(),\n path: z.object({\n cwd: z.string(),\n root: z.string(),\n }),\n summary: z.boolean().optional(),\n cost: z.number(),\n tokens: z.object({\n input: z.number(),\n output: z.number(),\n reasoning: z.number(),\n cache: z.object({\n read: z.number(),\n write: z.number(),\n }),\n }),\n finish: z.string().optional(),\n }).meta({\n ref: 'AssistantMessage',\n });\n export type Assistant = z.infer<typeof Assistant>;\n\n export const Info = z.discriminatedUnion('role', [User, Assistant]).meta({\n ref: 'Message',\n });\n export type Info = z.infer<typeof Info>;\n\n export const Event = {\n Updated: Bus.event(\n 'message.updated',\n z.object({\n info: Info,\n })\n ),\n Removed: Bus.event(\n 'message.removed',\n z.object({\n sessionID: z.string(),\n messageID: z.string(),\n })\n ),\n PartUpdated: Bus.event(\n 'message.part.updated',\n z.object({\n part: Part,\n delta: z.string().optional(),\n })\n ),\n PartRemoved: Bus.event(\n 'message.part.removed',\n z.object({\n sessionID: z.string(),\n messageID: z.string(),\n partID: z.string(),\n })\n ),\n };\n\n export const WithParts = z.object({\n info: Info,\n parts: z.array(Part),\n });\n export type WithParts = z.infer<typeof WithParts>;\n\n export function fromV1(v1: Message.Info) {\n if (v1.role === 'assistant') {\n const info: Assistant = {\n id: v1.id,\n parentID: '',\n sessionID: v1.metadata.sessionID,\n role: 'assistant',\n time: {\n created: v1.metadata.time.created,\n completed: v1.metadata.time.completed,\n },\n cost: v1.metadata.assistant!.cost,\n path: v1.metadata.assistant!.path,\n summary: v1.metadata.assistant!.summary,\n tokens: v1.metadata.assistant!.tokens,\n modelID: v1.metadata.assistant!.modelID,\n providerID: v1.metadata.assistant!.providerID,\n mode: 'build',\n error: v1.metadata.error,\n };\n const parts = v1.parts.flatMap((part): Part[] => {\n const base = {\n id: Identifier.ascending('part'),\n messageID: v1.id,\n sessionID: v1.metadata.sessionID,\n };\n if (part.type === 'text') {\n return [\n {\n ...base,\n type: 'text',\n text: part.text,\n },\n ];\n }\n if (part.type === 'step-start') {\n return [\n {\n ...base,\n type: 'step-start',\n },\n ];\n }\n if (part.type === 'tool-invocation') {\n return [\n {\n ...base,\n type: 'tool',\n callID: part.toolInvocation.toolCallId,\n tool: part.toolInvocation.toolName,\n state: (() => {\n if (part.toolInvocation.state === 'partial-call') {\n return {\n status: 'pending',\n input: {},\n raw: '',\n };\n }\n\n const { title, time, ...metadata } =\n v1.metadata.tool[part.toolInvocation.toolCallId] ?? {};\n if (part.toolInvocation.state === 'call') {\n return {\n status: 'running',\n input: part.toolInvocation.args,\n time: {\n start: time?.start,\n },\n };\n }\n\n if (part.toolInvocation.state === 'result') {\n return {\n status: 'completed',\n input: part.toolInvocation.args,\n output: part.toolInvocation.result,\n title,\n time,\n metadata,\n };\n }\n throw new Error('unknown tool invocation state');\n })(),\n },\n ];\n }\n return [];\n });\n return {\n info,\n parts,\n };\n }\n\n if (v1.role === 'user') {\n const info: User = {\n id: v1.id,\n sessionID: v1.metadata.sessionID,\n role: 'user',\n time: {\n created: v1.metadata.time.created,\n },\n agent: 'build',\n model: {\n providerID: 'opencode',\n modelID: 'opencode',\n },\n };\n const parts = v1.parts.flatMap((part): Part[] => {\n const base = {\n id: Identifier.ascending('part'),\n messageID: v1.id,\n sessionID: v1.metadata.sessionID,\n };\n if (part.type === 'text') {\n return [\n {\n ...base,\n type: 'text',\n text: part.text,\n },\n ];\n }\n if (part.type === 'file') {\n return [\n {\n ...base,\n type: 'file',\n mime: part.mediaType,\n filename: part.filename,\n url: part.url,\n },\n ];\n }\n return [];\n });\n return { info, parts };\n }\n\n throw new Error('unknown message type');\n }\n\n export async function toModelMessage(\n input: {\n info: Info;\n parts: Part[];\n }[]\n ): Promise<ModelMessage[]> {\n const result: UIMessage[] = [];\n\n for (const msg of input) {\n if (msg.parts.length === 0) continue;\n\n if (msg.info.role === 'user') {\n const userMessage: UIMessage = {\n id: msg.info.id,\n role: 'user',\n parts: [],\n };\n result.push(userMessage);\n for (const part of msg.parts) {\n if (part.type === 'text')\n userMessage.parts.push({\n type: 'text',\n text: part.text,\n });\n // text/plain and directory files are converted into text parts, ignore them\n if (\n part.type === 'file' &&\n part.mime !== 'text/plain' &&\n part.mime !== 'application/x-directory'\n )\n userMessage.parts.push({\n type: 'file',\n url: part.url,\n mediaType: part.mime,\n filename: part.filename,\n });\n\n if (part.type === 'compaction') {\n userMessage.parts.push({\n type: 'text',\n text: 'What did we do so far?',\n });\n }\n if (part.type === 'subtask') {\n userMessage.parts.push({\n type: 'text',\n text: 'The following tool was executed by the user',\n });\n }\n }\n }\n\n if (msg.info.role === 'assistant') {\n const assistantMessage: UIMessage = {\n id: msg.info.id,\n role: 'assistant',\n parts: [],\n };\n result.push(assistantMessage);\n for (const part of msg.parts) {\n if (part.type === 'text')\n assistantMessage.parts.push({\n type: 'text',\n text: part.text,\n providerMetadata: part.metadata,\n });\n if (part.type === 'step-start')\n assistantMessage.parts.push({\n type: 'step-start',\n });\n if (part.type === 'tool') {\n if (part.state.status === 'completed') {\n if (part.state.attachments?.length) {\n result.push({\n id: Identifier.ascending('message'),\n role: 'user',\n parts: [\n {\n type: 'text',\n text: `Tool ${part.tool} returned an attachment:`,\n },\n ...part.state.attachments.map((attachment) => ({\n type: 'file' as const,\n url: attachment.url,\n mediaType: attachment.mime,\n filename: attachment.filename,\n })),\n ],\n });\n }\n assistantMessage.parts.push({\n type: ('tool-' + part.tool) as `tool-${string}`,\n state: 'output-available',\n toolCallId: part.callID,\n input: part.state.input,\n output: part.state.time.compacted\n ? '[Old tool result content cleared]'\n : part.state.output,\n callProviderMetadata: part.metadata,\n });\n }\n if (part.state.status === 'error')\n assistantMessage.parts.push({\n type: ('tool-' + part.tool) as `tool-${string}`,\n state: 'output-error',\n toolCallId: part.callID,\n input: part.state.input,\n errorText: part.state.error,\n callProviderMetadata: part.metadata,\n });\n }\n if (part.type === 'reasoning') {\n assistantMessage.parts.push({\n type: 'reasoning',\n text: part.text,\n providerMetadata: part.metadata,\n });\n }\n }\n }\n }\n\n return await convertToModelMessages(result);\n }\n\n export const stream = fn(\n Identifier.schema('session'),\n async function* (sessionID) {\n const list = await Array.fromAsync(\n await Storage.list(['message', sessionID])\n );\n for (let i = list.length - 1; i >= 0; i--) {\n yield await get({\n sessionID,\n messageID: list[i][2],\n });\n }\n }\n );\n\n export const parts = fn(Identifier.schema('message'), async (messageID) => {\n const result = [] as MessageV2.Part[];\n for (const item of await Storage.list(['part', messageID])) {\n const read = await Storage.read<MessageV2.Part>(item);\n result.push(read);\n }\n result.sort((a, b) => (a.id > b.id ? 1 : -1));\n return result;\n });\n\n export const get = fn(\n z.object({\n sessionID: Identifier.schema('session'),\n messageID: Identifier.schema('message'),\n }),\n async (input) => {\n return {\n info: await Storage.read<MessageV2.Info>([\n 'message',\n input.sessionID,\n input.messageID,\n ]),\n parts: await parts(input.messageID),\n };\n }\n );\n\n export async function filterCompacted(\n stream: AsyncIterable<MessageV2.WithParts>\n ) {\n const result = [] as MessageV2.WithParts[];\n const completed = new Set<string>();\n for await (const msg of stream) {\n result.push(msg);\n if (\n msg.info.role === 'user' &&\n completed.has(msg.info.id) &&\n msg.parts.some((part) => part.type === 'compaction')\n )\n break;\n if (msg.info.role === 'assistant' && msg.info.summary && msg.info.finish)\n completed.add(msg.info.parentID);\n }\n result.reverse();\n return result;\n }\n\n export function fromError(e: unknown, ctx: { providerID: string }) {\n switch (true) {\n case e instanceof DOMException && e.name === 'AbortError':\n return new MessageV2.AbortedError(\n { message: e.message },\n {\n cause: e,\n }\n ).toObject();\n case e instanceof DOMException && e.name === 'TimeoutError':\n return new MessageV2.TimeoutError(\n { message: e.message, isRetryable: true },\n { cause: e }\n ).toObject();\n case MessageV2.OutputLengthError.isInstance(e):\n return e;\n case LoadAPIKeyError.isInstance(e):\n return new MessageV2.AuthError(\n {\n providerID: ctx.providerID,\n message: e.message,\n },\n { cause: e }\n ).toObject();\n case APICallError.isInstance(e):\n return new MessageV2.APIError(\n {\n message: e.message,\n statusCode: e.statusCode,\n isRetryable: e.isRetryable,\n responseHeaders: e.responseHeaders,\n responseBody: e.responseBody,\n },\n { cause: e }\n ).toObject();\n case e instanceof Error: {\n const message = e.message || e.toString();\n // Detect Bun socket connection errors (known Bun issue with 10s idle timeout)\n // See: https://github.com/oven-sh/bun/issues/14439\n const isSocketError =\n message.includes('socket connection was closed') ||\n message.includes('closed unexpectedly');\n if (isSocketError) {\n return new MessageV2.SocketConnectionError(\n { message, isRetryable: true },\n { cause: e }\n ).toObject();\n }\n // Detect timeout errors from various sources\n // See: https://github.com/link-assistant/agent/issues/142\n const isTimeoutError =\n message.includes('The operation timed out') ||\n message.includes('timed out') ||\n e.name === 'TimeoutError';\n if (isTimeoutError) {\n return new MessageV2.TimeoutError(\n { message, isRetryable: true },\n { cause: e }\n ).toObject();\n }\n return new NamedError.Unknown(\n { message: e.toString() },\n { cause: e }\n ).toObject();\n }\n default:\n return new NamedError.Unknown(\n { message: JSON.stringify(e) },\n { cause: e }\n );\n }\n }\n}\n",
"numLines": 883,
"startLine": 1,
"totalLines": 883
}
}
}
[2026-02-15T09:04:27.979Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01Byo49dWiFHM3o7zW1JbkV9",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01BFRV22DESLVcMcUvDtQYnt",
"name": "Read",
"input": {
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/session/processor.ts"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 2874,
"cache_read_input_tokens": 40658,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 2874
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "6117c396-2079-4d05-b289-9f898282158e"
}
[2026-02-15T09:04:27.990Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01BFRV22DESLVcMcUvDtQYnt",
"type": "tool_result",
"content": " 1→import type { ModelsDev } from '../provider/models';\n 2→import { MessageV2 } from './message-v2';\n 3→import {\n 4→ type StreamTextResult,\n 5→ type Tool as AITool,\n 6→ APICallError,\n 7→ JSONParseError,\n 8→} from 'ai';\n 9→import { Log } from '../util/log';\n 10→import { Identifier } from '../id/id';\n 11→import { Session } from '.';\n 12→import { Agent } from '../agent/agent';\n 13→// Permission system removed - no restrictions\n 14→import { Snapshot } from '../snapshot';\n 15→import { SessionSummary } from './summary';\n 16→import { Bus } from '../bus';\n 17→import { SessionRetry } from './retry';\n 18→import { SessionStatus } from './status';\n 19→import { Flag } from '../flag/flag';\n 20→\n 21→export namespace SessionProcessor {\n 22→ const DOOM_LOOP_THRESHOLD = 3;\n 23→ const log = Log.create({ service: 'session.processor' });\n 24→\n 25→ export type Info = Awaited<ReturnType<typeof create>>;\n 26→ export type Result = Awaited<ReturnType<Info['process']>>;\n 27→\n 28→ export function create(input: {\n 29→ assistantMessage: MessageV2.Assistant;\n 30→ sessionID: string;\n 31→ providerID: string;\n 32→ model: ModelsDev.Model;\n 33→ abort: AbortSignal;\n 34→ }) {\n 35→ const toolcalls: Record<string, MessageV2.ToolPart> = {};\n 36→ let snapshot: string | undefined;\n 37→ let blocked = false;\n 38→ let attempt = 0;\n 39→\n 40→ const result = {\n 41→ get message() {\n 42→ return input.assistantMessage;\n 43→ },\n 44→ partFromToolCall(toolCallID: string) {\n 45→ return toolcalls[toolCallID];\n 46→ },\n 47→ async process(fn: () => StreamTextResult<Record<string, AITool>, never>) {\n 48→ log.info(() => ({ message: 'process' }));\n 49→ while (true) {\n 50→ try {\n 51→ let currentText: MessageV2.TextPart | undefined;\n 52→ let reasoningMap: Record<string, MessageV2.ReasoningPart> = {};\n 53→ const stream = fn();\n 54→\n 55→ for await (const value of stream.fullStream) {\n 56→ input.abort.throwIfAborted();\n 57→ switch (value.type) {\n 58→ case 'start':\n 59→ SessionStatus.set(input.sessionID, { type: 'busy' });\n 60→ break;\n 61→\n 62→ case 'reasoning-start':\n 63→ if (value.id in reasoningMap) {\n 64→ continue;\n 65→ }\n 66→ reasoningMap[value.id] = {\n 67→ id: Identifier.ascending('part'),\n 68→ messageID: input.assistantMessage.id,\n 69→ sessionID: input.assistantMessage.sessionID,\n 70→ type: 'reasoning',\n 71→ text: '',\n 72→ time: {\n 73→ start: Date.now(),\n 74→ },\n 75→ metadata: value.providerMetadata,\n 76→ };\n 77→ break;\n 78→\n 79→ case 'reasoning-delta':\n 80→ if (value.id in reasoningMap) {\n 81→ const part = reasoningMap[value.id];\n 82→ part.text += value.text;\n 83→ if (value.providerMetadata)\n 84→ part.metadata = value.providerMetadata;\n 85→ if (part.text)\n 86→ await Session.updatePart({ part, delta: value.text });\n 87→ }\n 88→ break;\n 89→\n 90→ case 'reasoning-end':\n 91→ if (value.id in reasoningMap) {\n 92→ const part = reasoningMap[value.id];\n 93→ part.text = part.text.trimEnd();\n 94→\n 95→ part.time = {\n 96→ ...part.time,\n 97→ end: Date.now(),\n 98→ };\n 99→ if (value.providerMetadata)\n 100→ part.metadata = value.providerMetadata;\n 101→ await Session.updatePart(part);\n 102→ delete reasoningMap[value.id];\n 103→ }\n 104→ break;\n 105→\n 106→ case 'tool-input-start':\n 107→ const part = await Session.updatePart({\n 108→ id: toolcalls[value.id]?.id ?? Identifier.ascending('part'),\n 109→ messageID: input.assistantMessage.id,\n 110→ sessionID: input.assistantMessage.sessionID,\n 111→ type: 'tool',\n 112→ tool: value.toolName,\n 113→ callID: value.id,\n 114→ state: {\n 115→ status: 'pending',\n 116→ input: {},\n 117→ raw: '',\n 118→ },\n 119→ });\n 120→ toolcalls[value.id] = part as MessageV2.ToolPart;\n 121→ break;\n 122→\n 123→ case 'tool-input-delta':\n 124→ break;\n 125→\n 126→ case 'tool-input-end':\n 127→ break;\n 128→\n 129→ case 'tool-call': {\n 130→ const match = toolcalls[value.toolCallId];\n 131→ if (match) {\n 132→ const part = await Session.updatePart({\n 133→ ...match,\n 134→ tool: value.toolName,\n 135→ state: {\n 136→ status: 'running',\n 137→ input: value.input,\n 138→ time: {\n 139→ start: Date.now(),\n 140→ },\n 141→ },\n 142→ metadata: value.providerMetadata,\n 143→ });\n 144→ toolcalls[value.toolCallId] = part as MessageV2.ToolPart;\n 145→\n 146→ const parts = await MessageV2.parts(\n 147→ input.assistantMessage.id\n 148→ );\n 149→ const lastThree = parts.slice(-DOOM_LOOP_THRESHOLD);\n 150→\n 151→ if (\n 152→ lastThree.length === DOOM_LOOP_THRESHOLD &&\n 153→ lastThree.every(\n 154→ (p) =>\n 155→ p.type === 'tool' &&\n 156→ p.tool === value.toolName &&\n 157→ p.state.status !== 'pending' &&\n 158→ JSON.stringify(p.state.input) ===\n 159→ JSON.stringify(value.input)\n 160→ )\n 161→ ) {\n 162→ // Permission system removed - doom loop detection disabled\n 163→ }\n 164→ }\n 165→ break;\n 166→ }\n 167→ case 'tool-result': {\n 168→ const match = toolcalls[value.toolCallId];\n 169→ if (match && match.state.status === 'running') {\n 170→ await Session.updatePart({\n 171→ ...match,\n 172→ state: {\n 173→ status: 'completed',\n 174→ input: value.input,\n 175→ output: value.output.output,\n 176→ metadata: value.output.metadata,\n 177→ title: value.output.title,\n 178→ time: {\n 179→ start: match.state.time.start,\n 180→ end: Date.now(),\n 181→ },\n 182→ attachments: value.output.attachments,\n 183→ },\n 184→ });\n 185→\n 186→ delete toolcalls[value.toolCallId];\n 187→ }\n 188→ break;\n 189→ }\n 190→\n 191→ case 'tool-error': {\n 192→ const match = toolcalls[value.toolCallId];\n 193→ if (match && match.state.status === 'running') {\n 194→ await Session.updatePart({\n 195→ ...match,\n 196→ state: {\n 197→ status: 'error',\n 198→ input: value.input,\n 199→ error: (value.error as any).toString(),\n 200→ metadata: undefined,\n 201→ time: {\n 202→ start: match.state.time.start,\n 203→ end: Date.now(),\n 204→ },\n 205→ },\n 206→ });\n 207→\n 208→ // Permission system removed\n 209→ delete toolcalls[value.toolCallId];\n 210→ }\n 211→ break;\n 212→ }\n 213→ case 'error':\n 214→ // Skip stream parse errors (malformed SSE from gateway/provider)\n 215→ // The AI SDK emits these as error events but continues the stream.\n 216→ // Following OpenAI Codex pattern: log and skip bad events.\n 217→ // See: https://github.com/link-assistant/agent/issues/169\n 218→ if (JSONParseError.isInstance(value.error)) {\n 219→ log.warn(() => ({\n 220→ message:\n 221→ 'skipping malformed SSE event (stream parse error)',\n 222→ errorName: (value.error as Error)?.name,\n 223→ errorMessage: (value.error as Error)?.message?.substring(\n 224→ 0,\n 225→ 200\n 226→ ),\n 227→ }));\n 228→ continue;\n 229→ }\n 230→ throw value.error;\n 231→\n 232→ case 'start-step':\n 233→ snapshot = await Snapshot.track();\n 234→ await Session.updatePart({\n 235→ id: Identifier.ascending('part'),\n 236→ messageID: input.assistantMessage.id,\n 237→ sessionID: input.sessionID,\n 238→ snapshot,\n 239→ type: 'step-start',\n 240→ });\n 241→ break;\n 242→\n 243→ case 'finish-step':\n 244→ // Safely handle missing or undefined usage data\n 245→ // Some providers (e.g., OpenCode with Kimi K2.5) may return incomplete usage\n 246→ // See: https://github.com/link-assistant/agent/issues/152\n 247→ const safeUsage = value.usage ?? {\n 248→ inputTokens: 0,\n 249→ outputTokens: 0,\n 250→ totalTokens: 0,\n 251→ };\n 252→ const usage = Session.getUsage({\n 253→ model: input.model,\n 254→ usage: safeUsage,\n 255→ metadata: value.providerMetadata,\n 256→ });\n 257→ // Use toFinishReason to safely convert object/string finishReason to string\n 258→ // See: https://github.com/link-assistant/agent/issues/125\n 259→ const finishReason = Session.toFinishReason(\n 260→ value.finishReason\n 261→ );\n 262→ input.assistantMessage.finish = finishReason;\n 263→ input.assistantMessage.cost += usage.cost;\n 264→ input.assistantMessage.tokens = usage.tokens;\n 265→\n 266→ // Build model info if --output-used-model flag is enabled\n 267→ // @see https://github.com/link-assistant/agent/issues/179\n 268→ const modelInfo: MessageV2.ModelInfo | undefined =\n 269→ Flag.OUTPUT_USED_MODEL\n 270→ ? {\n 271→ providerID: input.providerID,\n 272→ modelID: input.model.id,\n 273→ // Get responseModelId from finish-step response if available\n 274→ // AI SDK includes response.modelId when available from provider\n 275→ responseModelId:\n 276→ (value as any).response?.modelId ?? undefined,\n 277→ }\n 278→ : undefined;\n 279→\n 280→ await Session.updatePart({\n 281→ id: Identifier.ascending('part'),\n 282→ reason: finishReason,\n 283→ snapshot: await Snapshot.track(),\n 284→ messageID: input.assistantMessage.id,\n 285→ sessionID: input.assistantMessage.sessionID,\n 286→ type: 'step-finish',\n 287→ tokens: usage.tokens,\n 288→ cost: usage.cost,\n 289→ model: modelInfo,\n 290→ });\n 291→ await Session.updateMessage(input.assistantMessage);\n 292→ if (snapshot) {\n 293→ const patch = await Snapshot.patch(snapshot);\n 294→ if (patch.files.length) {\n 295→ await Session.updatePart({\n 296→ id: Identifier.ascending('part'),\n 297→ messageID: input.assistantMessage.id,\n 298→ sessionID: input.sessionID,\n 299→ type: 'patch',\n 300→ hash: patch.hash,\n 301→ files: patch.files,\n 302→ });\n 303→ }\n 304→ snapshot = undefined;\n 305→ }\n 306→ SessionSummary.summarize({\n 307→ sessionID: input.sessionID,\n 308→ messageID: input.assistantMessage.parentID,\n 309→ });\n 310→ break;\n 311→\n 312→ case 'text-start':\n 313→ currentText = {\n 314→ id: Identifier.ascending('part'),\n 315→ messageID: input.assistantMessage.id,\n 316→ sessionID: input.assistantMessage.sessionID,\n 317→ type: 'text',\n 318→ text: '',\n 319→ time: {\n 320→ start: Date.now(),\n 321→ },\n 322→ metadata: value.providerMetadata,\n 323→ };\n 324→ break;\n 325→\n 326→ case 'text-delta':\n 327→ if (currentText) {\n 328→ // Handle case where value.text might be an object instead of string\n 329→ // See: https://github.com/link-assistant/agent/issues/125\n 330→ const textDelta =\n 331→ typeof value.text === 'string'\n 332→ ? value.text\n 333→ : String(value.text);\n 334→ currentText.text += textDelta;\n 335→ if (value.providerMetadata)\n 336→ currentText.metadata = value.providerMetadata;\n 337→ if (currentText.text)\n 338→ await Session.updatePart({\n 339→ part: currentText,\n 340→ delta: textDelta,\n 341→ });\n 342→ }\n 343→ break;\n 344→\n 345→ case 'text-end':\n 346→ if (currentText) {\n 347→ currentText.text = currentText.text.trimEnd();\n 348→ currentText.time = {\n 349→ start: Date.now(),\n 350→ end: Date.now(),\n 351→ };\n 352→ if (value.providerMetadata)\n 353→ currentText.metadata = value.providerMetadata;\n 354→ await Session.updatePart(currentText);\n 355→ }\n 356→ currentText = undefined;\n 357→ break;\n 358→\n 359→ case 'finish':\n 360→ input.assistantMessage.time.completed = Date.now();\n 361→ await Session.updateMessage(input.assistantMessage);\n 362→ // Clear retry state on successful completion\n 363→ SessionRetry.clearRetryState(input.sessionID);\n 364→ break;\n 365→\n 366→ default:\n 367→ log.info(() => ({ message: 'unhandled', ...value }));\n 368→ continue;\n 369→ }\n 370→ }\n 371→ } catch (e) {\n 372→ log.error(() => ({ message: 'process', error: e }));\n 373→\n 374→ // Check for AI SDK usage-related TypeError (input_tokens undefined)\n 375→ // This happens when providers return incomplete usage data\n 376→ // See: https://github.com/link-assistant/agent/issues/152\n 377→ if (\n 378→ e instanceof TypeError &&\n 379→ (e.message.includes('input_tokens') ||\n 380→ e.message.includes('output_tokens') ||\n 381→ e.message.includes(\"reading 'input_tokens'\") ||\n 382→ e.message.includes(\"reading 'output_tokens'\"))\n 383→ ) {\n 384→ log.warn(() => ({\n 385→ message:\n 386→ 'Provider returned invalid usage data, continuing with zero usage',\n 387→ errorMessage: e.message,\n 388→ providerID: input.providerID,\n 389→ }));\n 390→ // Set default token values to prevent crash\n 391→ input.assistantMessage.tokens = {\n 392→ input: 0,\n 393→ output: 0,\n 394→ reasoning: 0,\n 395→ cache: { read: 0, write: 0 },\n 396→ };\n 397→ // Continue processing instead of failing\n 398→ continue;\n 399→ }\n 400→\n 401→ const error = MessageV2.fromError(e, {\n 402→ providerID: input.providerID,\n 403→ });\n 404→\n 405→ // Check if error is retryable (APIError, SocketConnectionError, TimeoutError)\n 406→ const isRetryableAPIError =\n 407→ error?.name === 'APIError' && error.data.isRetryable;\n 408→ const isRetryableSocketError =\n 409→ error?.name === 'SocketConnectionError' &&\n 410→ error.data.isRetryable &&\n 411→ attempt < SessionRetry.SOCKET_ERROR_MAX_RETRIES;\n 412→ const isRetryableTimeoutError =\n 413→ error?.name === 'TimeoutError' &&\n 414→ error.data.isRetryable &&\n 415→ attempt < SessionRetry.TIMEOUT_MAX_RETRIES;\n 416→\n 417→ // For API errors (rate limits), check if we're within the retry timeout\n 418→ // See: https://github.com/link-assistant/agent/issues/157\n 419→ const retryCheck = isRetryableAPIError\n 420→ ? SessionRetry.shouldRetry(\n 421→ input.sessionID,\n 422→ error.data.statusCode?.toString() ?? 'unknown'\n 423→ )\n 424→ : { shouldRetry: true, elapsedTime: 0, maxTime: 0 };\n 425→\n 426→ if (\n 427→ (isRetryableAPIError && retryCheck.shouldRetry) ||\n 428→ isRetryableSocketError ||\n 429→ isRetryableTimeoutError\n 430→ ) {\n 431→ attempt++;\n 432→ // Use error-specific delay calculation\n 433→ // SessionRetry.delay may throw RetryTimeoutExceededError if retry-after exceeds timeout\n 434→ let delay: number;\n 435→ try {\n 436→ delay =\n 437→ error?.name === 'SocketConnectionError'\n 438→ ? SessionRetry.socketErrorDelay(attempt)\n 439→ : error?.name === 'TimeoutError'\n 440→ ? SessionRetry.timeoutDelay(attempt)\n 441→ : SessionRetry.delay(error, attempt);\n 442→ } catch (delayError) {\n 443→ // If retry-after exceeds AGENT_RETRY_TIMEOUT, fail immediately\n 444→ if (\n 445→ delayError instanceof SessionRetry.RetryTimeoutExceededError\n 446→ ) {\n 447→ log.error(() => ({\n 448→ message: 'retry-after exceeds timeout, failing immediately',\n 449→ retryAfterMs: delayError.retryAfterMs,\n 450→ maxTimeoutMs: delayError.maxTimeoutMs,\n 451→ }));\n 452→ SessionRetry.clearRetryState(input.sessionID);\n 453→ // Create a specific error for this case\n 454→ input.assistantMessage.error = {\n 455→ name: 'RetryTimeoutExceededError',\n 456→ data: {\n 457→ message: delayError.message,\n 458→ isRetryable: false,\n 459→ retryAfterMs: delayError.retryAfterMs,\n 460→ maxTimeoutMs: delayError.maxTimeoutMs,\n 461→ },\n 462→ } as MessageV2.Error;\n 463→ Bus.publish(Session.Event.Error, {\n 464→ sessionID: input.assistantMessage.sessionID,\n 465→ error: input.assistantMessage.error,\n 466→ });\n 467→ break;\n 468→ }\n 469→ throw delayError;\n 470→ }\n 471→ log.info(() => ({\n 472→ message: 'retrying',\n 473→ errorType: error?.name,\n 474→ attempt,\n 475→ delay,\n 476→ elapsedRetryTime: retryCheck.elapsedTime,\n 477→ maxRetryTime: retryCheck.maxTime,\n 478→ }));\n 479→ SessionStatus.set(input.sessionID, {\n 480→ type: 'retry',\n 481→ attempt,\n 482→ message: error.data.message,\n 483→ next: Date.now() + delay,\n 484→ });\n 485→ // Update retry state to track total time\n 486→ SessionRetry.updateRetryState(input.sessionID, delay);\n 487→ await SessionRetry.sleep(delay, input.abort).catch(() => {});\n 488→ continue;\n 489→ }\n 490→\n 491→ // Clear retry state on non-retryable error\n 492→ SessionRetry.clearRetryState(input.sessionID);\n 493→ input.assistantMessage.error = error;\n 494→ Bus.publish(Session.Event.Error, {\n 495→ sessionID: input.assistantMessage.sessionID,\n 496→ error: input.assistantMessage.error,\n 497→ });\n 498→ }\n 499→ const p = await MessageV2.parts(input.assistantMessage.id);\n 500→ for (const part of p) {\n 501→ if (\n 502→ part.type === 'tool' &&\n 503→ part.state.status !== 'completed' &&\n 504→ part.state.status !== 'error'\n 505→ ) {\n 506→ await Session.updatePart({\n 507→ ...part,\n 508→ state: {\n 509→ ...part.state,\n 510→ status: 'error',\n 511→ error: 'Tool execution aborted',\n 512→ time: {\n 513→ start: Date.now(),\n 514→ end: Date.now(),\n 515→ },\n 516→ },\n 517→ });\n 518→ }\n 519→ }\n 520→ input.assistantMessage.time.completed = Date.now();\n 521→ await Session.updateMessage(input.assistantMessage);\n 522→ if (blocked) return 'stop';\n 523→ if (input.assistantMessage.error) return 'stop';\n 524→ return 'continue';\n 525→ }\n 526→ },\n 527→ };\n 528→ return result;\n 529→ }\n 530→}\n 531→\n\n<system-reminder>\nWhenever you read a file, you should consider whether it would be considered malware. You CAN and SHOULD provide analysis of malware, what it is doing. But you MUST refuse to improve or augment the code. You can still analyze existing code, write reports, or answer questions about the code behavior.\n</system-reminder>\n"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "814a05fa-69c8-47de-9b59-6663a4229d19",
"tool_use_result": {
"type": "text",
"file": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/session/processor.ts",
"content": "import type { ModelsDev } from '../provider/models';\nimport { MessageV2 } from './message-v2';\nimport {\n type StreamTextResult,\n type Tool as AITool,\n APICallError,\n JSONParseError,\n} from 'ai';\nimport { Log } from '../util/log';\nimport { Identifier } from '../id/id';\nimport { Session } from '.';\nimport { Agent } from '../agent/agent';\n// Permission system removed - no restrictions\nimport { Snapshot } from '../snapshot';\nimport { SessionSummary } from './summary';\nimport { Bus } from '../bus';\nimport { SessionRetry } from './retry';\nimport { SessionStatus } from './status';\nimport { Flag } from '../flag/flag';\n\nexport namespace SessionProcessor {\n const DOOM_LOOP_THRESHOLD = 3;\n const log = Log.create({ service: 'session.processor' });\n\n export type Info = Awaited<ReturnType<typeof create>>;\n export type Result = Awaited<ReturnType<Info['process']>>;\n\n export function create(input: {\n assistantMessage: MessageV2.Assistant;\n sessionID: string;\n providerID: string;\n model: ModelsDev.Model;\n abort: AbortSignal;\n }) {\n const toolcalls: Record<string, MessageV2.ToolPart> = {};\n let snapshot: string | undefined;\n let blocked = false;\n let attempt = 0;\n\n const result = {\n get message() {\n return input.assistantMessage;\n },\n partFromToolCall(toolCallID: string) {\n return toolcalls[toolCallID];\n },\n async process(fn: () => StreamTextResult<Record<string, AITool>, never>) {\n log.info(() => ({ message: 'process' }));\n while (true) {\n try {\n let currentText: MessageV2.TextPart | undefined;\n let reasoningMap: Record<string, MessageV2.ReasoningPart> = {};\n const stream = fn();\n\n for await (const value of stream.fullStream) {\n input.abort.throwIfAborted();\n switch (value.type) {\n case 'start':\n SessionStatus.set(input.sessionID, { type: 'busy' });\n break;\n\n case 'reasoning-start':\n if (value.id in reasoningMap) {\n continue;\n }\n reasoningMap[value.id] = {\n id: Identifier.ascending('part'),\n messageID: input.assistantMessage.id,\n sessionID: input.assistantMessage.sessionID,\n type: 'reasoning',\n text: '',\n time: {\n start: Date.now(),\n },\n metadata: value.providerMetadata,\n };\n break;\n\n case 'reasoning-delta':\n if (value.id in reasoningMap) {\n const part = reasoningMap[value.id];\n part.text += value.text;\n if (value.providerMetadata)\n part.metadata = value.providerMetadata;\n if (part.text)\n await Session.updatePart({ part, delta: value.text });\n }\n break;\n\n case 'reasoning-end':\n if (value.id in reasoningMap) {\n const part = reasoningMap[value.id];\n part.text = part.text.trimEnd();\n\n part.time = {\n ...part.time,\n end: Date.now(),\n };\n if (value.providerMetadata)\n part.metadata = value.providerMetadata;\n await Session.updatePart(part);\n delete reasoningMap[value.id];\n }\n break;\n\n case 'tool-input-start':\n const part = await Session.updatePart({\n id: toolcalls[value.id]?.id ?? Identifier.ascending('part'),\n messageID: input.assistantMessage.id,\n sessionID: input.assistantMessage.sessionID,\n type: 'tool',\n tool: value.toolName,\n callID: value.id,\n state: {\n status: 'pending',\n input: {},\n raw: '',\n },\n });\n toolcalls[value.id] = part as MessageV2.ToolPart;\n break;\n\n case 'tool-input-delta':\n break;\n\n case 'tool-input-end':\n break;\n\n case 'tool-call': {\n const match = toolcalls[value.toolCallId];\n if (match) {\n const part = await Session.updatePart({\n ...match,\n tool: value.toolName,\n state: {\n status: 'running',\n input: value.input,\n time: {\n start: Date.now(),\n },\n },\n metadata: value.providerMetadata,\n });\n toolcalls[value.toolCallId] = part as MessageV2.ToolPart;\n\n const parts = await MessageV2.parts(\n input.assistantMessage.id\n );\n const lastThree = parts.slice(-DOOM_LOOP_THRESHOLD);\n\n if (\n lastThree.length === DOOM_LOOP_THRESHOLD &&\n lastThree.every(\n (p) =>\n p.type === 'tool' &&\n p.tool === value.toolName &&\n p.state.status !== 'pending' &&\n JSON.stringify(p.state.input) ===\n JSON.stringify(value.input)\n )\n ) {\n // Permission system removed - doom loop detection disabled\n }\n }\n break;\n }\n case 'tool-result': {\n const match = toolcalls[value.toolCallId];\n if (match && match.state.status === 'running') {\n await Session.updatePart({\n ...match,\n state: {\n status: 'completed',\n input: value.input,\n output: value.output.output,\n metadata: value.output.metadata,\n title: value.output.title,\n time: {\n start: match.state.time.start,\n end: Date.now(),\n },\n attachments: value.output.attachments,\n },\n });\n\n delete toolcalls[value.toolCallId];\n }\n break;\n }\n\n case 'tool-error': {\n const match = toolcalls[value.toolCallId];\n if (match && match.state.status === 'running') {\n await Session.updatePart({\n ...match,\n state: {\n status: 'error',\n input: value.input,\n error: (value.error as any).toString(),\n metadata: undefined,\n time: {\n start: match.state.time.start,\n end: Date.now(),\n },\n },\n });\n\n // Permission system removed\n delete toolcalls[value.toolCallId];\n }\n break;\n }\n case 'error':\n // Skip stream parse errors (malformed SSE from gateway/provider)\n // The AI SDK emits these as error events but continues the stream.\n // Following OpenAI Codex pattern: log and skip bad events.\n // See: https://github.com/link-assistant/agent/issues/169\n if (JSONParseError.isInstance(value.error)) {\n log.warn(() => ({\n message:\n 'skipping malformed SSE event (stream parse error)',\n errorName: (value.error as Error)?.name,\n errorMessage: (value.error as Error)?.message?.substring(\n 0,\n 200\n ),\n }));\n continue;\n }\n throw value.error;\n\n case 'start-step':\n snapshot = await Snapshot.track();\n await Session.updatePart({\n id: Identifier.ascending('part'),\n messageID: input.assistantMessage.id,\n sessionID: input.sessionID,\n snapshot,\n type: 'step-start',\n });\n break;\n\n case 'finish-step':\n // Safely handle missing or undefined usage data\n // Some providers (e.g., OpenCode with Kimi K2.5) may return incomplete usage\n // See: https://github.com/link-assistant/agent/issues/152\n const safeUsage = value.usage ?? {\n inputTokens: 0,\n outputTokens: 0,\n totalTokens: 0,\n };\n const usage = Session.getUsage({\n model: input.model,\n usage: safeUsage,\n metadata: value.providerMetadata,\n });\n // Use toFinishReason to safely convert object/string finishReason to string\n // See: https://github.com/link-assistant/agent/issues/125\n const finishReason = Session.toFinishReason(\n value.finishReason\n );\n input.assistantMessage.finish = finishReason;\n input.assistantMessage.cost += usage.cost;\n input.assistantMessage.tokens = usage.tokens;\n\n // Build model info if --output-used-model flag is enabled\n // @see https://github.com/link-assistant/agent/issues/179\n const modelInfo: MessageV2.ModelInfo | undefined =\n Flag.OUTPUT_USED_MODEL\n ? {\n providerID: input.providerID,\n modelID: input.model.id,\n // Get responseModelId from finish-step response if available\n // AI SDK includes response.modelId when available from provider\n responseModelId:\n (value as any).response?.modelId ?? undefined,\n }\n : undefined;\n\n await Session.updatePart({\n id: Identifier.ascending('part'),\n reason: finishReason,\n snapshot: await Snapshot.track(),\n messageID: input.assistantMessage.id,\n sessionID: input.assistantMessage.sessionID,\n type: 'step-finish',\n tokens: usage.tokens,\n cost: usage.cost,\n model: modelInfo,\n });\n await Session.updateMessage(input.assistantMessage);\n if (snapshot) {\n const patch = await Snapshot.patch(snapshot);\n if (patch.files.length) {\n await Session.updatePart({\n id: Identifier.ascending('part'),\n messageID: input.assistantMessage.id,\n sessionID: input.sessionID,\n type: 'patch',\n hash: patch.hash,\n files: patch.files,\n });\n }\n snapshot = undefined;\n }\n SessionSummary.summarize({\n sessionID: input.sessionID,\n messageID: input.assistantMessage.parentID,\n });\n break;\n\n case 'text-start':\n currentText = {\n id: Identifier.ascending('part'),\n messageID: input.assistantMessage.id,\n sessionID: input.assistantMessage.sessionID,\n type: 'text',\n text: '',\n time: {\n start: Date.now(),\n },\n metadata: value.providerMetadata,\n };\n break;\n\n case 'text-delta':\n if (currentText) {\n // Handle case where value.text might be an object instead of string\n // See: https://github.com/link-assistant/agent/issues/125\n const textDelta =\n typeof value.text === 'string'\n ? value.text\n : String(value.text);\n currentText.text += textDelta;\n if (value.providerMetadata)\n currentText.metadata = value.providerMetadata;\n if (currentText.text)\n await Session.updatePart({\n part: currentText,\n delta: textDelta,\n });\n }\n break;\n\n case 'text-end':\n if (currentText) {\n currentText.text = currentText.text.trimEnd();\n currentText.time = {\n start: Date.now(),\n end: Date.now(),\n };\n if (value.providerMetadata)\n currentText.metadata = value.providerMetadata;\n await Session.updatePart(currentText);\n }\n currentText = undefined;\n break;\n\n case 'finish':\n input.assistantMessage.time.completed = Date.now();\n await Session.updateMessage(input.assistantMessage);\n // Clear retry state on successful completion\n SessionRetry.clearRetryState(input.sessionID);\n break;\n\n default:\n log.info(() => ({ message: 'unhandled', ...value }));\n continue;\n }\n }\n } catch (e) {\n log.error(() => ({ message: 'process', error: e }));\n\n // Check for AI SDK usage-related TypeError (input_tokens undefined)\n // This happens when providers return incomplete usage data\n // See: https://github.com/link-assistant/agent/issues/152\n if (\n e instanceof TypeError &&\n (e.message.includes('input_tokens') ||\n e.message.includes('output_tokens') ||\n e.message.includes(\"reading 'input_tokens'\") ||\n e.message.includes(\"reading 'output_tokens'\"))\n ) {\n log.warn(() => ({\n message:\n 'Provider returned invalid usage data, continuing with zero usage',\n errorMessage: e.message,\n providerID: input.providerID,\n }));\n // Set default token values to prevent crash\n input.assistantMessage.tokens = {\n input: 0,\n output: 0,\n reasoning: 0,\n cache: { read: 0, write: 0 },\n };\n // Continue processing instead of failing\n continue;\n }\n\n const error = MessageV2.fromError(e, {\n providerID: input.providerID,\n });\n\n // Check if error is retryable (APIError, SocketConnectionError, TimeoutError)\n const isRetryableAPIError =\n error?.name === 'APIError' && error.data.isRetryable;\n const isRetryableSocketError =\n error?.name === 'SocketConnectionError' &&\n error.data.isRetryable &&\n attempt < SessionRetry.SOCKET_ERROR_MAX_RETRIES;\n const isRetryableTimeoutError =\n error?.name === 'TimeoutError' &&\n error.data.isRetryable &&\n attempt < SessionRetry.TIMEOUT_MAX_RETRIES;\n\n // For API errors (rate limits), check if we're within the retry timeout\n // See: https://github.com/link-assistant/agent/issues/157\n const retryCheck = isRetryableAPIError\n ? SessionRetry.shouldRetry(\n input.sessionID,\n error.data.statusCode?.toString() ?? 'unknown'\n )\n : { shouldRetry: true, elapsedTime: 0, maxTime: 0 };\n\n if (\n (isRetryableAPIError && retryCheck.shouldRetry) ||\n isRetryableSocketError ||\n isRetryableTimeoutError\n ) {\n attempt++;\n // Use error-specific delay calculation\n // SessionRetry.delay may throw RetryTimeoutExceededError if retry-after exceeds timeout\n let delay: number;\n try {\n delay =\n error?.name === 'SocketConnectionError'\n ? SessionRetry.socketErrorDelay(attempt)\n : error?.name === 'TimeoutError'\n ? SessionRetry.timeoutDelay(attempt)\n : SessionRetry.delay(error, attempt);\n } catch (delayError) {\n // If retry-after exceeds AGENT_RETRY_TIMEOUT, fail immediately\n if (\n delayError instanceof SessionRetry.RetryTimeoutExceededError\n ) {\n log.error(() => ({\n message: 'retry-after exceeds timeout, failing immediately',\n retryAfterMs: delayError.retryAfterMs,\n maxTimeoutMs: delayError.maxTimeoutMs,\n }));\n SessionRetry.clearRetryState(input.sessionID);\n // Create a specific error for this case\n input.assistantMessage.error = {\n name: 'RetryTimeoutExceededError',\n data: {\n message: delayError.message,\n isRetryable: false,\n retryAfterMs: delayError.retryAfterMs,\n maxTimeoutMs: delayError.maxTimeoutMs,\n },\n } as MessageV2.Error;\n Bus.publish(Session.Event.Error, {\n sessionID: input.assistantMessage.sessionID,\n error: input.assistantMessage.error,\n });\n break;\n }\n throw delayError;\n }\n log.info(() => ({\n message: 'retrying',\n errorType: error?.name,\n attempt,\n delay,\n elapsedRetryTime: retryCheck.elapsedTime,\n maxRetryTime: retryCheck.maxTime,\n }));\n SessionStatus.set(input.sessionID, {\n type: 'retry',\n attempt,\n message: error.data.message,\n next: Date.now() + delay,\n });\n // Update retry state to track total time\n SessionRetry.updateRetryState(input.sessionID, delay);\n await SessionRetry.sleep(delay, input.abort).catch(() => {});\n continue;\n }\n\n // Clear retry state on non-retryable error\n SessionRetry.clearRetryState(input.sessionID);\n input.assistantMessage.error = error;\n Bus.publish(Session.Event.Error, {\n sessionID: input.assistantMessage.sessionID,\n error: input.assistantMessage.error,\n });\n }\n const p = await MessageV2.parts(input.assistantMessage.id);\n for (const part of p) {\n if (\n part.type === 'tool' &&\n part.state.status !== 'completed' &&\n part.state.status !== 'error'\n ) {\n await Session.updatePart({\n ...part,\n state: {\n ...part.state,\n status: 'error',\n error: 'Tool execution aborted',\n time: {\n start: Date.now(),\n end: Date.now(),\n },\n },\n });\n }\n }\n input.assistantMessage.time.completed = Date.now();\n await Session.updateMessage(input.assistantMessage);\n if (blocked) return 'stop';\n if (input.assistantMessage.error) return 'stop';\n return 'continue';\n }\n },\n };\n return result;\n }\n}\n",
"numLines": 531,
"startLine": 1,
"totalLines": 531
}
}
}
[2026-02-15T09:04:30.234Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01BohbosPvLvLiQgwPMxffSX",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now let me read the provider and summary files to understand how auxiliary tasks work:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 31518,
"cache_read_input_tokens": 43532,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 31518
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "3134c03c-6746-4dd0-8b79-e97e22784c6d"
}
[2026-02-15T09:04:31.292Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01BohbosPvLvLiQgwPMxffSX",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01Ht12rgYCrzHiSPW4svo7Bn",
"name": "Read",
"input": {
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/provider/provider.ts"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 31518,
"cache_read_input_tokens": 43532,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 31518
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "15a97f3a-b989-4bec-ad2c-a27c7fa0b754"
}
[2026-02-15T09:04:31.772Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01Ht12rgYCrzHiSPW4svo7Bn",
"type": "tool_result",
"content": " 1→import z from 'zod';\n 2→import path from 'path';\n 3→import { Config } from '../config/config';\n 4→import { mergeDeep, sortBy } from 'remeda';\n 5→import { NoSuchModelError, type LanguageModel, type Provider as SDK } from 'ai';\n 6→import { Log } from '../util/log';\n 7→import { BunProc } from '../bun';\n 8→import { ModelsDev } from './models';\n 9→import { NamedError } from '../util/error';\n 10→import { Auth } from '../auth';\n 11→import { ClaudeOAuth } from '../auth/claude-oauth';\n 12→import { AuthPlugins } from '../auth/plugins';\n 13→import { Instance } from '../project/instance';\n 14→import { Global } from '../global';\n 15→import { Flag } from '../flag/flag';\n 16→import { iife } from '../util/iife';\n 17→import { createEchoModel } from './echo';\n 18→import { createCacheModel } from './cache';\n 19→import { RetryFetch } from './retry-fetch';\n 20→\n 21→export namespace Provider {\n 22→ const log = Log.create({ service: 'provider' });\n 23→\n 24→ type CustomLoader = (provider: ModelsDev.Provider) => Promise<{\n 25→ autoload: boolean;\n 26→ getModel?: (\n 27→ sdk: any,\n 28→ modelID: string,\n 29→ options?: Record<string, any>\n 30→ ) => Promise<any>;\n 31→ options?: Record<string, any>;\n 32→ }>;\n 33→\n 34→ type Source = 'env' | 'config' | 'custom' | 'api';\n 35→\n 36→ const CUSTOM_LOADERS: Record<string, CustomLoader> = {\n 37→ async anthropic(input) {\n 38→ // Check if OAuth credentials are available via the auth plugin\n 39→ const auth = await Auth.get('anthropic');\n 40→ if (auth?.type === 'oauth') {\n 41→ log.info(() => ({ message: 'using anthropic oauth credentials' }));\n 42→ const loaderFn = await AuthPlugins.getLoader('anthropic');\n 43→ if (loaderFn) {\n 44→ const result = await loaderFn(() => Auth.get('anthropic'), input);\n 45→ if (result.fetch) {\n 46→ return {\n 47→ autoload: true,\n 48→ options: {\n 49→ apiKey: result.apiKey || '',\n 50→ fetch: result.fetch,\n 51→ headers: {\n 52→ 'anthropic-beta':\n 53→ 'oauth-2025-04-20,claude-code-20250219,interleaved-thinking-2025-05-14,fine-grained-tool-streaming-2025-05-14',\n 54→ },\n 55→ },\n 56→ };\n 57→ }\n 58→ }\n 59→ }\n 60→ // Default: API key auth\n 61→ return {\n 62→ autoload: false,\n 63→ options: {\n 64→ headers: {\n 65→ 'anthropic-beta':\n 66→ 'claude-code-20250219,interleaved-thinking-2025-05-14,fine-grained-tool-streaming-2025-05-14',\n 67→ },\n 68→ },\n 69→ };\n 70→ },\n 71→ async opencode(input) {\n 72→ const hasKey = await (async () => {\n 73→ if (input.env.some((item) => process.env[item])) return true;\n 74→ if (await Auth.get(input.id)) return true;\n 75→ return false;\n 76→ })();\n 77→\n 78→ if (!hasKey) {\n 79→ for (const [key, value] of Object.entries(input.models)) {\n 80→ if (value.cost.input === 0) continue;\n 81→ delete input.models[key];\n 82→ }\n 83→ }\n 84→\n 85→ return {\n 86→ autoload: Object.keys(input.models).length > 0,\n 87→ options: hasKey ? {} : { apiKey: 'public' },\n 88→ };\n 89→ },\n 90→ openai: async () => {\n 91→ return {\n 92→ autoload: false,\n 93→ async getModel(\n 94→ sdk: any,\n 95→ modelID: string,\n 96→ _options?: Record<string, any>\n 97→ ) {\n 98→ return sdk.responses(modelID);\n 99→ },\n 100→ options: {},\n 101→ };\n 102→ },\n 103→ azure: async () => {\n 104→ return {\n 105→ autoload: false,\n 106→ async getModel(\n 107→ sdk: any,\n 108→ modelID: string,\n 109→ options?: Record<string, any>\n 110→ ) {\n 111→ if (options?.['useCompletionUrls']) {\n 112→ return sdk.chat(modelID);\n 113→ } else {\n 114→ return sdk.responses(modelID);\n 115→ }\n 116→ },\n 117→ options: {},\n 118→ };\n 119→ },\n 120→ 'azure-cognitive-services': async () => {\n 121→ const resourceName =\n 122→ process.env['AZURE_COGNITIVE_SERVICES_RESOURCE_NAME'];\n 123→ return {\n 124→ autoload: false,\n 125→ async getModel(\n 126→ sdk: any,\n 127→ modelID: string,\n 128→ options?: Record<string, any>\n 129→ ) {\n 130→ if (options?.['useCompletionUrls']) {\n 131→ return sdk.chat(modelID);\n 132→ } else {\n 133→ return sdk.responses(modelID);\n 134→ }\n 135→ },\n 136→ options: {\n 137→ baseURL: resourceName\n 138→ ? `https://${resourceName}.cognitiveservices.azure.com/openai`\n 139→ : undefined,\n 140→ },\n 141→ };\n 142→ },\n 143→ 'amazon-bedrock': async () => {\n 144→ if (\n 145→ !process.env['AWS_PROFILE'] &&\n 146→ !process.env['AWS_ACCESS_KEY_ID'] &&\n 147→ !process.env['AWS_BEARER_TOKEN_BEDROCK']\n 148→ )\n 149→ return { autoload: false };\n 150→\n 151→ const region = process.env['AWS_REGION'] ?? 'us-east-1';\n 152→\n 153→ const { fromNodeProviderChain } = await import(\n 154→ await BunProc.install('@aws-sdk/credential-providers')\n 155→ );\n 156→ return {\n 157→ autoload: true,\n 158→ options: {\n 159→ region,\n 160→ credentialProvider: fromNodeProviderChain(),\n 161→ },\n 162→ async getModel(\n 163→ sdk: any,\n 164→ modelID: string,\n 165→ _options?: Record<string, any>\n 166→ ) {\n 167→ let regionPrefix = region.split('-')[0];\n 168→\n 169→ switch (regionPrefix) {\n 170→ case 'us': {\n 171→ const modelRequiresPrefix = [\n 172→ 'nova-micro',\n 173→ 'nova-lite',\n 174→ 'nova-pro',\n 175→ 'nova-premier',\n 176→ 'claude',\n 177→ 'deepseek',\n 178→ ].some((m) => modelID.includes(m));\n 179→ const isGovCloud = region.startsWith('us-gov');\n 180→ if (modelRequiresPrefix && !isGovCloud) {\n 181→ modelID = `${regionPrefix}.${modelID}`;\n 182→ }\n 183→ break;\n 184→ }\n 185→ case 'eu': {\n 186→ const regionRequiresPrefix = [\n 187→ 'eu-west-1',\n 188→ 'eu-west-2',\n 189→ 'eu-west-3',\n 190→ 'eu-north-1',\n 191→ 'eu-central-1',\n 192→ 'eu-south-1',\n 193→ 'eu-south-2',\n 194→ ].some((r) => region.includes(r));\n 195→ const modelRequiresPrefix = [\n 196→ 'claude',\n 197→ 'nova-lite',\n 198→ 'nova-micro',\n 199→ 'llama3',\n 200→ 'pixtral',\n 201→ ].some((m) => modelID.includes(m));\n 202→ if (regionRequiresPrefix && modelRequiresPrefix) {\n 203→ modelID = `${regionPrefix}.${modelID}`;\n 204→ }\n 205→ break;\n 206→ }\n 207→ case 'ap': {\n 208→ const isAustraliaRegion = [\n 209→ 'ap-southeast-2',\n 210→ 'ap-southeast-4',\n 211→ ].includes(region);\n 212→ if (\n 213→ isAustraliaRegion &&\n 214→ ['anthropic.claude-sonnet-4-5', 'anthropic.claude-haiku'].some(\n 215→ (m) => modelID.includes(m)\n 216→ )\n 217→ ) {\n 218→ regionPrefix = 'au';\n 219→ modelID = `${regionPrefix}.${modelID}`;\n 220→ } else {\n 221→ const modelRequiresPrefix = [\n 222→ 'claude',\n 223→ 'nova-lite',\n 224→ 'nova-micro',\n 225→ 'nova-pro',\n 226→ ].some((m) => modelID.includes(m));\n 227→ if (modelRequiresPrefix) {\n 228→ regionPrefix = 'apac';\n 229→ modelID = `${regionPrefix}.${modelID}`;\n 230→ }\n 231→ }\n 232→ break;\n 233→ }\n 234→ }\n 235→\n 236→ return sdk.languageModel(modelID);\n 237→ },\n 238→ };\n 239→ },\n 240→ openrouter: async () => {\n 241→ return {\n 242→ autoload: false,\n 243→ options: {\n 244→ headers: {\n 245→ 'HTTP-Referer': 'https://opencode.ai/',\n 246→ 'X-Title': 'opencode',\n 247→ },\n 248→ },\n 249→ };\n 250→ },\n 251→ vercel: async () => {\n 252→ return {\n 253→ autoload: false,\n 254→ options: {\n 255→ headers: {\n 256→ 'http-referer': 'https://opencode.ai/',\n 257→ 'x-title': 'opencode',\n 258→ },\n 259→ },\n 260→ };\n 261→ },\n 262→ 'google-vertex': async () => {\n 263→ const project =\n 264→ process.env['GOOGLE_CLOUD_PROJECT'] ??\n 265→ process.env['GCP_PROJECT'] ??\n 266→ process.env['GCLOUD_PROJECT'];\n 267→ const location =\n 268→ process.env['GOOGLE_CLOUD_LOCATION'] ??\n 269→ process.env['VERTEX_LOCATION'] ??\n 270→ 'us-east5';\n 271→ const autoload = Boolean(project);\n 272→ if (!autoload) return { autoload: false };\n 273→ return {\n 274→ autoload: true,\n 275→ options: {\n 276→ project,\n 277→ location,\n 278→ },\n 279→ async getModel(sdk: any, modelID: string) {\n 280→ const id = String(modelID).trim();\n 281→ return sdk.languageModel(id);\n 282→ },\n 283→ };\n 284→ },\n 285→ 'google-vertex-anthropic': async () => {\n 286→ const project =\n 287→ process.env['GOOGLE_CLOUD_PROJECT'] ??\n 288→ process.env['GCP_PROJECT'] ??\n 289→ process.env['GCLOUD_PROJECT'];\n 290→ const location =\n 291→ process.env['GOOGLE_CLOUD_LOCATION'] ??\n 292→ process.env['VERTEX_LOCATION'] ??\n 293→ 'global';\n 294→ const autoload = Boolean(project);\n 295→ if (!autoload) return { autoload: false };\n 296→ return {\n 297→ autoload: true,\n 298→ options: {\n 299→ project,\n 300→ location,\n 301→ },\n 302→ async getModel(sdk: any, modelID: string) {\n 303→ const id = String(modelID).trim();\n 304→ return sdk.languageModel(id);\n 305→ },\n 306→ };\n 307→ },\n 308→ zenmux: async () => {\n 309→ return {\n 310→ autoload: false,\n 311→ options: {\n 312→ headers: {\n 313→ 'HTTP-Referer': 'https://opencode.ai/',\n 314→ 'X-Title': 'opencode',\n 315→ },\n 316→ },\n 317→ };\n 318→ },\n 319→ groq: async () => {\n 320→ return {\n 321→ autoload: false,\n 322→ options: {},\n 323→ };\n 324→ },\n 325→ /**\n 326→ * Kilo provider - access to 500+ AI models through Kilo Gateway\n 327→ * Uses OpenRouter-compatible API at https://api.kilo.ai/api/openrouter\n 328→ *\n 329→ * Authentication required: run `agent auth login` and select \"Kilo Gateway\"\n 330→ * For API key authentication, set KILO_API_KEY environment variable\n 331→ *\n 332→ * Free models available after authentication:\n 333→ * - GLM-5 (z-ai/glm-5) - Free limited time, flagship Z.AI model\n 334→ * - GLM 4.7 (z-ai/glm-4.7:free) - Free, agent-centric model\n 335→ * - Kimi K2.5 (moonshot/kimi-k2.5:free) - Free, agentic capabilities\n 336→ * - MiniMax M2.1 (minimax/m2.1:free) - Free, general-purpose\n 337→ * - Giga Potato (giga-potato:free) - Free evaluation model\n 338→ *\n 339→ * @see https://kilo.ai/docs/gateway\n 340→ * @see https://kilo.ai/docs/advanced-usage/free-and-budget-models\n 341→ * @see https://github.com/Kilo-Org/kilo/tree/main/packages/kilo-gateway\n 342→ */\n 343→ kilo: async (input) => {\n 344→ const hasKey = await (async () => {\n 345→ if (input.env.some((item) => process.env[item])) return true;\n 346→ if (await Auth.get(input.id)) return true;\n 347→ return false;\n 348→ })();\n 349→\n 350→ // Filter to only free models when no API key\n 351→ if (!hasKey) {\n 352→ for (const [key, value] of Object.entries(input.models)) {\n 353→ // Keep only free models (cost.input === 0) when no API key\n 354→ if (value.cost.input === 0) continue;\n 355→ delete input.models[key];\n 356→ }\n 357→ }\n 358→\n 359→ // Build options\n 360→ const options: Record<string, any> = {};\n 361→\n 362→ // Kilo-specific headers for the OpenRouter-compatible API\n 363→ // @see https://github.com/Kilo-Org/kilo/blob/main/packages/kilo-gateway/src/headers.ts\n 364→ const headers: Record<string, string> = {\n 365→ 'User-Agent': 'opencode-kilo-provider',\n 366→ 'X-KILOCODE-EDITORNAME': 'link-assistant-agent',\n 367→ };\n 368→\n 369→ // Pass KILO_ORG_ID if available\n 370→ if (process.env['KILO_ORG_ID']) {\n 371→ headers['X-KILOCODE-ORGANIZATIONID'] = process.env['KILO_ORG_ID'];\n 372→ }\n 373→\n 374→ options.headers = headers;\n 375→\n 376→ // Use auth token if available (from `agent auth login` -> Kilo device auth)\n 377→ if (!hasKey) {\n 378→ // Without authentication, use 'anonymous' key\n 379→ // Note: The Kilo API may reject anonymous requests for completions.\n 380→ // Users should authenticate via `agent auth login` for reliable access.\n 381→ options.apiKey = 'anonymous';\n 382→ } else {\n 383→ // If we have stored auth, the loader will provide the token\n 384→ const auth = await Auth.get(input.id);\n 385→ if (auth) {\n 386→ if (auth.type === 'api') {\n 387→ options.apiKey = auth.key;\n 388→ } else if (auth.type === 'oauth') {\n 389→ options.apiKey = auth.access;\n 390→ }\n 391→ }\n 392→ }\n 393→\n 394→ return {\n 395→ autoload: Object.keys(input.models).length > 0,\n 396→ options,\n 397→ };\n 398→ },\n 399→ /**\n 400→ * Qwen Coder OAuth provider for Qwen subscription users\n 401→ * Uses OAuth credentials from agent auth login (Qwen Coder Subscription)\n 402→ *\n 403→ * To authenticate, run: agent auth login (select Qwen Coder)\n 404→ */\n 405→ 'qwen-coder': async (input) => {\n 406→ const auth = await Auth.get('qwen-coder');\n 407→ if (auth?.type === 'oauth') {\n 408→ log.info(() => ({\n 409→ message: 'using qwen-coder oauth credentials',\n 410→ }));\n 411→ const loaderFn = await AuthPlugins.getLoader('qwen-coder');\n 412→ if (loaderFn) {\n 413→ const result = await loaderFn(() => Auth.get('qwen-coder'), input);\n 414→ if (result.fetch) {\n 415→ return {\n 416→ autoload: true,\n 417→ options: {\n 418→ apiKey: result.apiKey || '',\n 419→ baseURL: result.baseURL,\n 420→ fetch: result.fetch,\n 421→ },\n 422→ };\n 423→ }\n 424→ }\n 425→ }\n 426→ // Default: not auto-loaded without OAuth\n 427→ return { autoload: false };\n 428→ },\n 429→ /**\n 430→ * Alibaba OAuth provider (alias for Qwen Coder)\n 431→ * Uses OAuth credentials from agent auth login (Alibaba / Qwen Coder Subscription)\n 432→ *\n 433→ * To authenticate, run: agent auth login (select Alibaba)\n 434→ */\n 435→ alibaba: async (input) => {\n 436→ const auth = await Auth.get('alibaba');\n 437→ if (auth?.type === 'oauth') {\n 438→ log.info(() => ({\n 439→ message: 'using alibaba oauth credentials',\n 440→ }));\n 441→ const loaderFn = await AuthPlugins.getLoader('alibaba');\n 442→ if (loaderFn) {\n 443→ const result = await loaderFn(() => Auth.get('alibaba'), input);\n 444→ if (result.fetch) {\n 445→ return {\n 446→ autoload: true,\n 447→ options: {\n 448→ apiKey: result.apiKey || '',\n 449→ baseURL: result.baseURL,\n 450→ fetch: result.fetch,\n 451→ },\n 452→ };\n 453→ }\n 454→ }\n 455→ }\n 456→ // Default: not auto-loaded without OAuth\n 457→ return { autoload: false };\n 458→ },\n 459→ /**\n 460→ * Google OAuth provider for Gemini subscription users\n 461→ * Uses OAuth credentials from agent auth login (Google AI Pro/Ultra)\n 462→ *\n 463→ * To authenticate, run: agent auth google\n 464→ */\n 465→ google: async (input) => {\n 466→ const auth = await Auth.get('google');\n 467→ if (auth?.type === 'oauth') {\n 468→ log.info(() => ({ message: 'using google oauth credentials' }));\n 469→ const loaderFn = await AuthPlugins.getLoader('google');\n 470→ if (loaderFn) {\n 471→ const result = await loaderFn(() => Auth.get('google'), input);\n 472→ if (result.fetch) {\n 473→ return {\n 474→ autoload: true,\n 475→ options: {\n 476→ apiKey: result.apiKey || '',\n 477→ fetch: result.fetch,\n 478→ },\n 479→ };\n 480→ }\n 481→ }\n 482→ }\n 483→ // Default: API key auth (no OAuth credentials found)\n 484→ return { autoload: false };\n 485→ },\n 486→ /**\n 487→ * GitHub Copilot OAuth provider\n 488→ * Uses OAuth credentials from agent auth login\n 489→ */\n 490→ 'github-copilot': async (input) => {\n 491→ const auth = await Auth.get('github-copilot');\n 492→ if (auth?.type === 'oauth') {\n 493→ log.info(() => ({\n 494→ message: 'using github copilot oauth credentials',\n 495→ }));\n 496→ const loaderFn = await AuthPlugins.getLoader('github-copilot');\n 497→ if (loaderFn) {\n 498→ const result = await loaderFn(\n 499→ () => Auth.get('github-copilot'),\n 500→ input\n 501→ );\n 502→ if (result.fetch) {\n 503→ return {\n 504→ autoload: true,\n 505→ options: {\n 506→ apiKey: result.apiKey || '',\n 507→ baseURL: result.baseURL,\n 508→ fetch: result.fetch,\n 509→ },\n 510→ };\n 511→ }\n 512→ }\n 513→ }\n 514→ return { autoload: false };\n 515→ },\n 516→ /**\n 517→ * GitHub Copilot Enterprise OAuth provider\n 518→ * Uses OAuth credentials from agent auth login with enterprise URL\n 519→ */\n 520→ 'github-copilot-enterprise': async (input) => {\n 521→ const auth = await Auth.get('github-copilot-enterprise');\n 522→ if (auth?.type === 'oauth') {\n 523→ log.info(() => ({\n 524→ message: 'using github copilot enterprise oauth credentials',\n 525→ }));\n 526→ const loaderFn = await AuthPlugins.getLoader('github-copilot');\n 527→ if (loaderFn) {\n 528→ const result = await loaderFn(\n 529→ () => Auth.get('github-copilot-enterprise'),\n 530→ input\n 531→ );\n 532→ if (result.fetch) {\n 533→ return {\n 534→ autoload: true,\n 535→ options: {\n 536→ apiKey: result.apiKey || '',\n 537→ baseURL: result.baseURL,\n 538→ fetch: result.fetch,\n 539→ },\n 540→ };\n 541→ }\n 542→ }\n 543→ }\n 544→ return { autoload: false };\n 545→ },\n 546→ /**\n 547→ * Claude OAuth provider - uses Claude OAuth credentials to access\n 548→ * Anthropic models via the Claude API.\n 549→ *\n 550→ * This provider supports two methods:\n 551→ * 1. Environment variable: CLAUDE_CODE_OAUTH_TOKEN\n 552→ * 2. Credentials file: ~/.claude/.credentials.json (from Claude Code CLI or our auth command)\n 553→ *\n 554→ * OAuth tokens use Bearer authentication (Authorization header)\n 555→ * instead of x-api-key authentication used by standard API keys.\n 556→ *\n 557→ * To authenticate, run: agent auth claude\n 558→ */\n 559→ 'claude-oauth': async (input) => {\n 560→ // Check for OAuth token from environment variable first\n 561→ let oauthToken = process.env['CLAUDE_CODE_OAUTH_TOKEN'];\n 562→ let tokenSource = 'environment';\n 563→\n 564→ if (!oauthToken) {\n 565→ // Check for OAuth credentials from credentials file\n 566→ const claudeCreds = await ClaudeOAuth.getCredentials();\n 567→ if (claudeCreds) {\n 568→ oauthToken = claudeCreds.accessToken;\n 569→ tokenSource = `credentials file (${claudeCreds.subscriptionType ?? 'unknown'})`;\n 570→ }\n 571→ }\n 572→\n 573→ if (!oauthToken) {\n 574→ return { autoload: false };\n 575→ }\n 576→\n 577→ log.info(() => ({\n 578→ message: 'using claude oauth credentials',\n 579→ source: tokenSource,\n 580→ }));\n 581→\n 582→ // Create authenticated fetch with Bearer token and OAuth beta header\n 583→ const customFetch = ClaudeOAuth.createAuthenticatedFetch(oauthToken);\n 584→\n 585→ return {\n 586→ autoload: true,\n 587→ options: {\n 588→ // Use a placeholder key to satisfy the SDK's API key requirement\n 589→ // The actual authentication is done via Bearer token in customFetch\n 590→ apiKey: 'oauth-token-placeholder',\n 591→ fetch: customFetch,\n 592→ headers: {\n 593→ 'anthropic-beta':\n 594→ 'oauth-2025-04-20,claude-code-20250219,interleaved-thinking-2025-05-14,fine-grained-tool-streaming-2025-05-14',\n 595→ },\n 596→ },\n 597→ };\n 598→ },\n 599→ /**\n 600→ * Echo provider - synthetic provider for dry-run testing\n 601→ * Echoes back the user's input without making actual API calls.\n 602→ *\n 603→ * This provider is automatically enabled when --dry-run mode is active.\n 604→ * It can also be used explicitly with: --model link-assistant/echo\n 605→ *\n 606→ * @see https://github.com/link-assistant/agent/issues/89\n 607→ */\n 608→ 'link-assistant': async () => {\n 609→ // Echo provider is always available - no external dependencies needed\n 610→ return {\n 611→ autoload: Flag.OPENCODE_DRY_RUN, // Auto-load only in dry-run mode\n 612→ async getModel(_sdk: any, modelID: string) {\n 613→ // Return our custom echo model that implements LanguageModelV1\n 614→ return createEchoModel(modelID);\n 615→ },\n 616→ options: {},\n 617→ };\n 618→ },\n 619→ /**\n 620→ * Cache provider - synthetic provider for caching API responses\n 621→ * Caches responses using links notation for deterministic testing.\n 622→ *\n 623→ * This provider caches API responses and falls back to echo behavior.\n 624→ * It can be used explicitly with: --model link-assistant/cache/opencode/grok-code\n 625→ *\n 626→ * @see https://github.com/link-assistant/agent/issues/89\n 627→ */\n 628→ 'link-assistant/cache': async () => {\n 629→ // Cache provider is always available - no external dependencies needed\n 630→ return {\n 631→ autoload: false, // Not auto-loaded\n 632→ async getModel(_sdk: any, modelID: string) {\n 633→ // modelID should be in format \"provider/model\" like \"opencode/grok-code\"\n 634→ const parts = modelID.split('/');\n 635→ if (parts.length < 2) {\n 636→ throw new Error(\n 637→ `Invalid cache model ID: ${modelID}. Expected format: provider/model`\n 638→ );\n 639→ }\n 640→ const [providerId, ...modelParts] = parts;\n 641→ const actualModelId = modelParts.join('/');\n 642→\n 643→ // Return our custom cache model that implements LanguageModelV1\n 644→ return createCacheModel(providerId, actualModelId);\n 645→ },\n 646→ options: {},\n 647→ };\n 648→ },\n 649→ };\n 650→\n 651→ const state = Instance.state(async () => {\n 652→ using _ = log.time('state');\n 653→ const config = await Config.get();\n 654→ const database = await ModelsDev.get();\n 655→\n 656→ const providers: {\n 657→ [providerID: string]: {\n 658→ source: Source;\n 659→ info: ModelsDev.Provider;\n 660→ getModel?: (\n 661→ sdk: any,\n 662→ modelID: string,\n 663→ options?: Record<string, any>\n 664→ ) => Promise<any>;\n 665→ options: Record<string, any>;\n 666→ };\n 667→ } = {};\n 668→ const models = new Map<\n 669→ string,\n 670→ {\n 671→ providerID: string;\n 672→ modelID: string;\n 673→ info: ModelsDev.Model;\n 674→ language: LanguageModel;\n 675→ npm?: string;\n 676→ }\n 677→ >();\n 678→ const sdk = new Map<number, SDK>();\n 679→ // Maps `${provider}/${key}` to the provider’s actual model ID for custom aliases.\n 680→ const realIdByKey = new Map<string, string>();\n 681→\n 682→ log.info(() => ({ message: 'init' }));\n 683→\n 684→ function mergeProvider(\n 685→ id: string,\n 686→ options: Record<string, any>,\n 687→ source: Source,\n 688→ getModel?: (\n 689→ sdk: any,\n 690→ modelID: string,\n 691→ options?: Record<string, any>\n 692→ ) => Promise<any>\n 693→ ) {\n 694→ const provider = providers[id];\n 695→ if (!provider) {\n 696→ const info = database[id];\n 697→ if (!info) return;\n 698→ if (info.api && !options['baseURL']) options['baseURL'] = info.api;\n 699→ providers[id] = {\n 700→ source,\n 701→ info,\n 702→ options,\n 703→ getModel,\n 704→ };\n 705→ return;\n 706→ }\n 707→ provider.options = mergeDeep(provider.options, options);\n 708→ provider.source = source;\n 709→ provider.getModel = getModel ?? provider.getModel;\n 710→ }\n 711→\n 712→ const configProviders = Object.entries(config.provider ?? {});\n 713→\n 714→ // Add GitHub Copilot Enterprise provider that inherits from GitHub Copilot\n 715→ if (database['github-copilot']) {\n 716→ const githubCopilot = database['github-copilot'];\n 717→ database['github-copilot-enterprise'] = {\n 718→ ...githubCopilot,\n 719→ id: 'github-copilot-enterprise',\n 720→ name: 'GitHub Copilot Enterprise',\n 721→ // Enterprise uses a different API endpoint - will be set dynamically based on auth\n 722→ api: undefined,\n 723→ };\n 724→ }\n 725→\n 726→ // Add Claude OAuth provider that inherits from Anthropic\n 727→ // This allows using Claude Code CLI OAuth credentials with the Anthropic API\n 728→ if (database['anthropic']) {\n 729→ const anthropic = database['anthropic'];\n 730→ database['claude-oauth'] = {\n 731→ ...anthropic,\n 732→ id: 'claude-oauth',\n 733→ name: 'Claude OAuth',\n 734→ // Use CLAUDE_CODE_OAUTH_TOKEN environment variable\n 735→ env: ['CLAUDE_CODE_OAUTH_TOKEN'],\n 736→ };\n 737→ }\n 738→\n 739→ // Add gemini-3-pro alias for google provider\n 740→ // The actual model in Google's API is gemini-3-pro-preview, but we add gemini-3-pro as an alias for convenience\n 741→ if (database['google']?.models['gemini-3-pro-preview']) {\n 742→ const gemini3ProPreview =\n 743→ database['google'].models['gemini-3-pro-preview'];\n 744→ database['google'].models['gemini-3-pro'] = {\n 745→ ...gemini3ProPreview,\n 746→ id: 'gemini-3-pro-preview',\n 747→ name: 'Gemini 3 Pro',\n 748→ };\n 749→ realIdByKey.set('google/gemini-3-pro', 'gemini-3-pro-preview');\n 750→ }\n 751→\n 752→ // Add link-assistant echo provider for dry-run testing\n 753→ // This synthetic provider echoes back user input without API calls\n 754→ // @see https://github.com/link-assistant/agent/issues/89\n 755→ database['link-assistant'] = {\n 756→ id: 'link-assistant',\n 757→ name: 'Link Assistant (Echo)',\n 758→ env: [], // No environment variables needed - synthetic provider\n 759→ models: {\n 760→ echo: {\n 761→ id: 'echo',\n 762→ name: 'Echo Model',\n 763→ release_date: '2024-01-01',\n 764→ attachment: false,\n 765→ reasoning: false,\n 766→ temperature: false,\n 767→ tool_call: true,\n 768→ cost: {\n 769→ input: 0,\n 770→ output: 0,\n 771→ cache_read: 0,\n 772→ cache_write: 0,\n 773→ },\n 774→ limit: {\n 775→ context: 1000000, // Virtually unlimited\n 776→ output: 100000,\n 777→ },\n 778→ modalities: {\n 779→ input: ['text'],\n 780→ output: ['text'],\n 781→ },\n 782→ options: {},\n 783→ },\n 784→ },\n 785→ };\n 786→\n 787→ // Add link-assistant/cache provider for caching API responses\n 788→ // This synthetic provider caches responses and falls back to echo\n 789→ // @see https://github.com/link-assistant/agent/issues/89\n 790→ database['link-assistant/cache'] = {\n 791→ id: 'link-assistant/cache',\n 792→ name: 'Link Assistant (Cache)',\n 793→ env: [], // No environment variables needed - synthetic provider\n 794→ models: {}, // Models are dynamically created based on the provider/model syntax\n 795→ };\n 796→\n 797→ // Add Kilo provider for access to 500+ AI models through Kilo Gateway\n 798→ // Free models available: GLM-5, GLM 4.7, Kimi K2.5, MiniMax M2.1, Giga Potato\n 799→ // @see https://kilo.ai/docs/gateway\n 800→ // @see https://github.com/link-assistant/agent/issues/159\n 801→ database['kilo'] = {\n 802→ id: 'kilo',\n 803→ name: 'Kilo Gateway',\n 804→ npm: '@openrouter/ai-sdk-provider',\n 805→ api: 'https://api.kilo.ai/api/openrouter',\n 806→ env: ['KILO_API_KEY'],\n 807→ models: {\n 808→ // GLM-5 - Flagship Z.AI model, free tier\n 809→ // Kilo API model ID: z-ai/glm-5:free (NOT z-ai/glm-5 which is paid)\n 810→ 'glm-5-free': {\n 811→ id: 'z-ai/glm-5:free',\n 812→ name: 'GLM-5 (Free)',\n 813→ release_date: '2026-02-11',\n 814→ attachment: false,\n 815→ reasoning: true,\n 816→ temperature: true,\n 817→ tool_call: true,\n 818→ cost: {\n 819→ input: 0,\n 820→ output: 0,\n 821→ cache_read: 0,\n 822→ cache_write: 0,\n 823→ },\n 824→ limit: {\n 825→ context: 202800,\n 826→ output: 131072,\n 827→ },\n 828→ modalities: {\n 829→ input: ['text'],\n 830→ output: ['text'],\n 831→ },\n 832→ options: {},\n 833→ },\n 834→ // GLM 4.5 Air - Free Z.AI model (replaces non-existent glm-4.7:free)\n 835→ // Kilo API model ID: z-ai/glm-4.5-air:free\n 836→ 'glm-4.5-air-free': {\n 837→ id: 'z-ai/glm-4.5-air:free',\n 838→ name: 'GLM 4.5 Air (Free)',\n 839→ release_date: '2026-01-15',\n 840→ attachment: false,\n 841→ reasoning: true,\n 842→ temperature: true,\n 843→ tool_call: true,\n 844→ cost: {\n 845→ input: 0,\n 846→ output: 0,\n 847→ cache_read: 0,\n 848→ cache_write: 0,\n 849→ },\n 850→ limit: {\n 851→ context: 131072,\n 852→ output: 96000,\n 853→ },\n 854→ modalities: {\n 855→ input: ['text'],\n 856→ output: ['text'],\n 857→ },\n 858→ options: {},\n 859→ },\n 860→ // MiniMax M2.5 - General-purpose, free (upgraded from M2.1)\n 861→ // Kilo API model ID: minimax/minimax-m2.5:free\n 862→ 'minimax-m2.5-free': {\n 863→ id: 'minimax/minimax-m2.5:free',\n 864→ name: 'MiniMax M2.5 (Free)',\n 865→ release_date: '2026-01-01',\n 866→ attachment: false,\n 867→ reasoning: true,\n 868→ temperature: true,\n 869→ tool_call: true,\n 870→ cost: {\n 871→ input: 0,\n 872→ output: 0,\n 873→ cache_read: 0,\n 874→ cache_write: 0,\n 875→ },\n 876→ limit: {\n 877→ context: 204800,\n 878→ output: 131072,\n 879→ },\n 880→ modalities: {\n 881→ input: ['text'],\n 882→ output: ['text'],\n 883→ },\n 884→ options: {},\n 885→ },\n 886→ // Giga Potato - Free evaluation model\n 887→ // Kilo API model ID: giga-potato (no :free suffix)\n 888→ 'giga-potato-free': {\n 889→ id: 'giga-potato',\n 890→ name: 'Giga Potato (Free)',\n 891→ release_date: '2026-01-01',\n 892→ attachment: true,\n 893→ reasoning: true,\n 894→ temperature: true,\n 895→ tool_call: true,\n 896→ cost: {\n 897→ input: 0,\n 898→ output: 0,\n 899→ cache_read: 0,\n 900→ cache_write: 0,\n 901→ },\n 902→ limit: {\n 903→ context: 256000,\n 904→ output: 32000,\n 905→ },\n 906→ modalities: {\n 907→ input: ['text', 'image'],\n 908→ output: ['text'],\n 909→ },\n 910→ options: {},\n 911→ },\n 912→ // Trinity Large Preview - Preview model from Arcee AI\n 913→ // Kilo API model ID: arcee-ai/trinity-large-preview:free\n 914→ 'trinity-large-preview': {\n 915→ id: 'arcee-ai/trinity-large-preview:free',\n 916→ name: 'Trinity Large Preview (Free)',\n 917→ release_date: '2026-01-01',\n 918→ attachment: false,\n 919→ reasoning: false,\n 920→ temperature: true,\n 921→ tool_call: true,\n 922→ cost: {\n 923→ input: 0,\n 924→ output: 0,\n 925→ cache_read: 0,\n 926→ cache_write: 0,\n 927→ },\n 928→ limit: {\n 929→ context: 131000,\n 930→ output: 65536,\n 931→ },\n 932→ modalities: {\n 933→ input: ['text'],\n 934→ output: ['text'],\n 935→ },\n 936→ options: {},\n 937→ },\n 938→ // DeepSeek R1 - Reasoning model, free\n 939→ // Kilo API model ID: deepseek/deepseek-r1-0528:free\n 940→ 'deepseek-r1-free': {\n 941→ id: 'deepseek/deepseek-r1-0528:free',\n 942→ name: 'DeepSeek R1 (Free)',\n 943→ release_date: '2025-05-28',\n 944→ attachment: false,\n 945→ reasoning: true,\n 946→ temperature: true,\n 947→ tool_call: false,\n 948→ cost: {\n 949→ input: 0,\n 950→ output: 0,\n 951→ cache_read: 0,\n 952→ cache_write: 0,\n 953→ },\n 954→ limit: {\n 955→ context: 163840,\n 956→ output: 163840,\n 957→ },\n 958→ modalities: {\n 959→ input: ['text'],\n 960→ output: ['text'],\n 961→ },\n 962→ options: {},\n 963→ },\n 964→ },\n 965→ };\n 966→\n 967→ for (const [providerID, provider] of configProviders) {\n 968→ const existing = database[providerID];\n 969→ const parsed: ModelsDev.Provider = {\n 970→ id: providerID,\n 971→ npm: provider.npm ?? existing?.npm,\n 972→ name: provider.name ?? existing?.name ?? providerID,\n 973→ env: provider.env ?? existing?.env ?? [],\n 974→ api: provider.api ?? existing?.api,\n 975→ models: existing?.models ?? {},\n 976→ };\n 977→\n 978→ for (const [modelID, model] of Object.entries(provider.models ?? {})) {\n 979→ const existing = parsed.models[model.id ?? modelID];\n 980→ const name = iife(() => {\n 981→ if (model.name) return model.name;\n 982→ if (model.id && model.id !== modelID) return modelID;\n 983→ return existing?.name ?? modelID;\n 984→ });\n 985→ const parsedModel: ModelsDev.Model = {\n 986→ id: modelID,\n 987→ name,\n 988→ release_date: model.release_date ?? existing?.release_date,\n 989→ attachment: model.attachment ?? existing?.attachment ?? false,\n 990→ reasoning: model.reasoning ?? existing?.reasoning ?? false,\n 991→ temperature: model.temperature ?? existing?.temperature ?? false,\n 992→ tool_call: model.tool_call ?? existing?.tool_call ?? true,\n 993→ cost:\n 994→ !model.cost && !existing?.cost\n 995→ ? {\n 996→ input: 0,\n 997→ output: 0,\n 998→ cache_read: 0,\n 999→ cache_write: 0,\n 1000→ }\n 1001→ : {\n 1002→ cache_read: 0,\n 1003→ cache_write: 0,\n 1004→ ...existing?.cost,\n 1005→ ...model.cost,\n 1006→ },\n 1007→ options: {\n 1008→ ...existing?.options,\n 1009→ ...model.options,\n 1010→ },\n 1011→ limit: model.limit ??\n 1012→ existing?.limit ?? {\n 1013→ context: 0,\n 1014→ output: 0,\n 1015→ },\n 1016→ modalities: model.modalities ??\n 1017→ existing?.modalities ?? {\n 1018→ input: ['text'],\n 1019→ output: ['text'],\n 1020→ },\n 1021→ headers: model.headers,\n 1022→ provider: model.provider ?? existing?.provider,\n 1023→ };\n 1024→ if (model.id && model.id !== modelID) {\n 1025→ realIdByKey.set(`${providerID}/${modelID}`, model.id);\n 1026→ }\n 1027→ parsed.models[modelID] = parsedModel;\n 1028→ }\n 1029→ database[providerID] = parsed;\n 1030→ }\n 1031→\n 1032→ const disabled = await Config.get().then(\n 1033→ (cfg) => new Set(cfg.disabled_providers ?? [])\n 1034→ );\n 1035→ // load env\n 1036→ for (const [providerID, provider] of Object.entries(database)) {\n 1037→ if (disabled.has(providerID)) continue;\n 1038→ // Find the first truthy env var (supports multiple env var options like Google's\n 1039→ // GOOGLE_GENERATIVE_AI_API_KEY and GEMINI_API_KEY)\n 1040→ const apiKey = provider.env\n 1041→ .map((item) => process.env[item])\n 1042→ .find(Boolean);\n 1043→ if (!apiKey) continue;\n 1044→ // Always pass the API key - the provider SDK needs it for authentication\n 1045→ mergeProvider(providerID, { apiKey }, 'env');\n 1046→ }\n 1047→\n 1048→ // load apikeys\n 1049→ for (const [providerID, provider] of Object.entries(await Auth.all())) {\n 1050→ if (disabled.has(providerID)) continue;\n 1051→ if (provider.type === 'api') {\n 1052→ mergeProvider(providerID, { apiKey: provider.key }, 'api');\n 1053→ }\n 1054→ }\n 1055→\n 1056→ // load custom\n 1057→ for (const [providerID, fn] of Object.entries(CUSTOM_LOADERS)) {\n 1058→ if (disabled.has(providerID)) continue;\n 1059→ const result = await fn(database[providerID]);\n 1060→ if (result && (result.autoload || providers[providerID])) {\n 1061→ mergeProvider(\n 1062→ providerID,\n 1063→ result.options ?? {},\n 1064→ 'custom',\n 1065→ result.getModel\n 1066→ );\n 1067→ }\n 1068→ }\n 1069→\n 1070→ // load config\n 1071→ for (const [providerID, provider] of configProviders) {\n 1072→ mergeProvider(providerID, provider.options ?? {}, 'config');\n 1073→ }\n 1074→\n 1075→ for (const [providerID, provider] of Object.entries(providers)) {\n 1076→ const filteredModels = Object.fromEntries(\n 1077→ Object.entries(provider.info.models)\n 1078→ // Filter out blacklisted models\n 1079→ .filter(\n 1080→ ([modelID]) =>\n 1081→ modelID !== 'gpt-5-chat-latest' &&\n 1082→ !(providerID === 'openrouter' && modelID === 'openai/gpt-5-chat')\n 1083→ )\n 1084→ // Filter out experimental models\n 1085→ .filter(\n 1086→ ([, model]) =>\n 1087→ ((!model.experimental && model.status !== 'alpha') ||\n 1088→ Flag.OPENCODE_ENABLE_EXPERIMENTAL_MODELS) &&\n 1089→ model.status !== 'deprecated'\n 1090→ )\n 1091→ );\n 1092→ provider.info.models = filteredModels;\n 1093→\n 1094→ if (Object.keys(provider.info.models).length === 0) {\n 1095→ delete providers[providerID];\n 1096→ continue;\n 1097→ }\n 1098→ log.info(() => ({ message: 'found', providerID }));\n 1099→ }\n 1100→\n 1101→ return {\n 1102→ models,\n 1103→ providers,\n 1104→ sdk,\n 1105→ realIdByKey,\n 1106→ };\n 1107→ });\n 1108→\n 1109→ export async function list() {\n 1110→ return state().then((state) => state.providers);\n 1111→ }\n 1112→\n 1113→ async function getSDK(provider: ModelsDev.Provider, model: ModelsDev.Model) {\n 1114→ return (async () => {\n 1115→ using _ = log.time('getSDK', {\n 1116→ providerID: provider.id,\n 1117→ });\n 1118→ const s = await state();\n 1119→ const pkg = model.provider?.npm ?? provider.npm ?? provider.id;\n 1120→ const options = { ...s.providers[provider.id]?.options };\n 1121→ if (\n 1122→ pkg.includes('@ai-sdk/openai-compatible') &&\n 1123→ options['includeUsage'] === undefined\n 1124→ ) {\n 1125→ options['includeUsage'] = true;\n 1126→ }\n 1127→ const key = Bun.hash.xxHash32(JSON.stringify({ pkg, options }));\n 1128→ const existing = s.sdk.get(key);\n 1129→ if (existing) return existing;\n 1130→\n 1131→ let installedPath: string;\n 1132→ if (!pkg.startsWith('file://')) {\n 1133→ log.info(() => ({\n 1134→ message: 'installing provider package',\n 1135→ providerID: provider.id,\n 1136→ pkg,\n 1137→ version: 'latest',\n 1138→ }));\n 1139→ installedPath = await BunProc.install(pkg, 'latest');\n 1140→ log.info(() => ({\n 1141→ message: 'provider package installed successfully',\n 1142→ providerID: provider.id,\n 1143→ pkg,\n 1144→ installedPath,\n 1145→ }));\n 1146→ } else {\n 1147→ log.info(() => ({ message: 'loading local provider', pkg }));\n 1148→ installedPath = pkg;\n 1149→ }\n 1150→\n 1151→ // The `google-vertex-anthropic` provider points to the `@ai-sdk/google-vertex` package.\n 1152→ // Ref: https://github.com/sst/models.dev/blob/0a87de42ab177bebad0620a889e2eb2b4a5dd4ab/providers/google-vertex-anthropic/provider.toml\n 1153→ // However, the actual export is at the subpath `@ai-sdk/google-vertex/anthropic`.\n 1154→ // Ref: https://ai-sdk.dev/providers/ai-sdk-providers/google-vertex#google-vertex-anthropic-provider-usage\n 1155→ // In addition, Bun's dynamic import logic does not support subpath imports,\n 1156→ // so we patch the import path to load directly from `dist`.\n 1157→ const modPath =\n 1158→ provider.id === 'google-vertex-anthropic'\n 1159→ ? `${installedPath}/dist/anthropic/index.mjs`\n 1160→ : installedPath;\n 1161→ const mod = await import(modPath);\n 1162→ if (options['timeout'] !== undefined && options['timeout'] !== null) {\n 1163→ // Preserve custom fetch if it exists, wrap it with timeout logic\n 1164→ const customFetch = options['fetch'];\n 1165→ options['fetch'] = async (input: any, init?: BunFetchRequestInit) => {\n 1166→ const { signal, ...rest } = init ?? {};\n 1167→\n 1168→ const signals: AbortSignal[] = [];\n 1169→ if (signal) signals.push(signal);\n 1170→ if (options['timeout'] !== false)\n 1171→ signals.push(AbortSignal.timeout(options['timeout']));\n 1172→\n 1173→ const combined =\n 1174→ signals.length > 1 ? AbortSignal.any(signals) : signals[0];\n 1175→\n 1176→ const fetchFn = customFetch ?? fetch;\n 1177→ return fetchFn(input, {\n 1178→ ...rest,\n 1179→ signal: combined,\n 1180→ // @ts-ignore see here: https://github.com/oven-sh/bun/issues/16682\n 1181→ timeout: false,\n 1182→ });\n 1183→ };\n 1184→ }\n 1185→\n 1186→ // Wrap fetch with retry logic for rate limit handling (HTTP 429)\n 1187→ // This ensures the agent's time-based retry (7-week timeout) is respected\n 1188→ // instead of the AI SDK's fixed retry count (3 attempts)\n 1189→ // See: https://github.com/link-assistant/agent/issues/167\n 1190→ const existingFetch = options['fetch'] ?? fetch;\n 1191→ options['fetch'] = RetryFetch.wrap(existingFetch, {\n 1192→ sessionID: provider.id,\n 1193→ });\n 1194→\n 1195→ const fn = mod[Object.keys(mod).find((key) => key.startsWith('create'))!];\n 1196→ const loaded = fn({\n 1197→ name: provider.id,\n 1198→ ...options,\n 1199→ });\n 1200→ s.sdk.set(key, loaded);\n 1201→ return loaded as SDK;\n 1202→ })().catch((e) => {\n 1203→ log.error(() => ({\n 1204→ message: 'provider initialization failed',\n 1205→ providerID: provider.id,\n 1206→ pkg: model.provider?.npm ?? provider.npm ?? provider.id,\n 1207→ error: e instanceof Error ? e.message : String(e),\n 1208→ stack: e instanceof Error ? e.stack : undefined,\n 1209→ cause: e instanceof Error && e.cause ? String(e.cause) : undefined,\n 1210→ }));\n 1211→ throw new InitError({ providerID: provider.id }, { cause: e });\n 1212→ });\n 1213→ }\n 1214→\n 1215→ export async function getProvider(providerID: string) {\n 1216→ return state().then((s) => s.providers[providerID]);\n 1217→ }\n 1218→\n 1219→ export async function getModel(providerID: string, modelID: string) {\n 1220→ const key = `${providerID}/${modelID}`;\n 1221→ const s = await state();\n 1222→ if (s.models.has(key)) return s.models.get(key)!;\n 1223→\n 1224→ log.info(() => ({ message: 'getModel', providerID, modelID }));\n 1225→\n 1226→ const provider = s.providers[providerID];\n 1227→ if (!provider) {\n 1228→ // Check if this model ID might exist in another provider (e.g., OpenRouter)\n 1229→ // This helps users who use formats like \"z-ai/glm-4.7\" instead of \"openrouter/z-ai/glm-4.7\"\n 1230→ const fullModelKey = `${providerID}/${modelID}`;\n 1231→ let suggestion: string | undefined;\n 1232→\n 1233→ for (const [knownProviderID, knownProvider] of Object.entries(\n 1234→ s.providers\n 1235→ )) {\n 1236→ if (knownProvider.info.models[fullModelKey]) {\n 1237→ suggestion = `Did you mean: ${knownProviderID}/${fullModelKey}?`;\n 1238→ break;\n 1239→ }\n 1240→ }\n 1241→\n 1242→ throw new ModelNotFoundError({ providerID, modelID, suggestion });\n 1243→ }\n 1244→\n 1245→ // For synthetic providers (like link-assistant/echo and link-assistant/cache), skip SDK loading\n 1246→ // These providers have a custom getModel function that creates the model directly\n 1247→ const isSyntheticProvider =\n 1248→ providerID === 'link-assistant' || providerID === 'link-assistant/cache';\n 1249→\n 1250→ // For synthetic providers, we don't need model info from the database\n 1251→ const info = isSyntheticProvider ? null : provider.info.models[modelID];\n 1252→ if (!isSyntheticProvider && !info)\n 1253→ throw new ModelNotFoundError({ providerID, modelID });\n 1254→\n 1255→ try {\n 1256→ const keyReal = `${providerID}/${modelID}`;\n 1257→ const realID = s.realIdByKey.get(keyReal) ?? (info ? info.id : modelID);\n 1258→\n 1259→ let language: LanguageModel;\n 1260→ if (isSyntheticProvider && provider.getModel) {\n 1261→ // For synthetic providers, call getModel directly without SDK\n 1262→ language = await provider.getModel(null, realID, provider.options);\n 1263→ } else {\n 1264→ // For regular providers, load the SDK first\n 1265→ const sdk = await getSDK(provider.info, info!);\n 1266→ language = provider.getModel\n 1267→ ? await provider.getModel(sdk, realID, provider.options)\n 1268→ : sdk.languageModel(realID);\n 1269→ }\n 1270→ log.info(() => ({ message: 'found', providerID, modelID }));\n 1271→ s.models.set(key, {\n 1272→ providerID,\n 1273→ modelID,\n 1274→ info,\n 1275→ language,\n 1276→ npm: isSyntheticProvider\n 1277→ ? provider.info.npm\n 1278→ : (info.provider?.npm ?? provider.info.npm),\n 1279→ });\n 1280→ return {\n 1281→ modelID,\n 1282→ providerID,\n 1283→ info,\n 1284→ language,\n 1285→ npm: info.provider?.npm ?? provider.info.npm,\n 1286→ };\n 1287→ } catch (e) {\n 1288→ if (e instanceof NoSuchModelError)\n 1289→ throw new ModelNotFoundError(\n 1290→ {\n 1291→ modelID: modelID,\n 1292→ providerID,\n 1293→ },\n 1294→ { cause: e }\n 1295→ );\n 1296→ throw e;\n 1297→ }\n 1298→ }\n 1299→\n 1300→ /**\n 1301→ * Get a small/cheap model for auxiliary tasks like title generation and summarization.\n 1302→ * This is NOT the primary model for user requests - it's used for background tasks.\n 1303→ *\n 1304→ * Note: Logs from this function may show a different model than what the user specified.\n 1305→ * This is by design - we use cheaper models for auxiliary tasks to save tokens/costs.\n 1306→ *\n 1307→ * @see https://github.com/link-assistant/agent/issues/179\n 1308→ */\n 1309→ export async function getSmallModel(providerID: string) {\n 1310→ const cfg = await Config.get();\n 1311→\n 1312→ if (cfg.small_model) {\n 1313→ const parsed = parseModel(cfg.small_model);\n 1314→ log.info(() => ({\n 1315→ message: 'using configured small_model for auxiliary task',\n 1316→ modelID: parsed.modelID,\n 1317→ providerID: parsed.providerID,\n 1318→ }));\n 1319→ return getModel(parsed.providerID, parsed.modelID);\n 1320→ }\n 1321→\n 1322→ const provider = await state().then((state) => state.providers[providerID]);\n 1323→ if (!provider) return;\n 1324→ let priority = [\n 1325→ 'claude-haiku-4-5',\n 1326→ 'claude-haiku-4.5',\n 1327→ '3-5-haiku',\n 1328→ '3.5-haiku',\n 1329→ 'gemini-2.5-flash',\n 1330→ 'gpt-5-nano',\n 1331→ ];\n 1332→ // claude-haiku-4.5 is considered a premium model in github copilot, we shouldn't use premium requests for title gen\n 1333→ if (providerID === 'github-copilot') {\n 1334→ priority = priority.filter((m) => m !== 'claude-haiku-4.5');\n 1335→ }\n 1336→ if (providerID === 'opencode' || providerID === 'local') {\n 1337→ priority = [\n 1338→ 'kimi-k2.5-free',\n 1339→ 'minimax-m2.1-free',\n 1340→ 'gpt-5-nano',\n 1341→ 'glm-4.7-free',\n 1342→ 'big-pickle',\n 1343→ ];\n 1344→ }\n 1345→ if (providerID === 'kilo') {\n 1346→ priority = [\n 1347→ 'glm-5-free',\n 1348→ 'glm-4.5-air-free',\n 1349→ 'minimax-m2.5-free',\n 1350→ 'deepseek-r1-free',\n 1351→ 'giga-potato-free',\n 1352→ ];\n 1353→ }\n 1354→ for (const item of priority) {\n 1355→ for (const model of Object.keys(provider.info.models)) {\n 1356→ if (model.includes(item)) {\n 1357→ log.info(() => ({\n 1358→ message: 'selected small model for auxiliary task',\n 1359→ modelID: model,\n 1360→ providerID,\n 1361→ hint: 'This model is used for title/summary generation, not primary requests',\n 1362→ }));\n 1363→ return getModel(providerID, model);\n 1364→ }\n 1365→ }\n 1366→ }\n 1367→ }\n 1368→\n 1369→ const priority = [\n 1370→ 'glm-5-free',\n 1371→ 'kimi-k2.5-free',\n 1372→ 'minimax-m2.1-free',\n 1373→ 'gpt-5-nano',\n 1374→ 'glm-4.7-free',\n 1375→ 'big-pickle',\n 1376→ 'gpt-5',\n 1377→ 'claude-sonnet-4',\n 1378→ 'gemini-3-pro',\n 1379→ ];\n 1380→ export function sort(models: ModelsDev.Model[]) {\n 1381→ return sortBy(\n 1382→ models,\n 1383→ [\n 1384→ (model) => priority.findIndex((filter) => model.id.includes(filter)),\n 1385→ 'desc',\n 1386→ ],\n 1387→ [(model) => (model.id.includes('latest') ? 0 : 1), 'asc'],\n 1388→ [(model) => model.id, 'desc']\n 1389→ );\n 1390→ }\n 1391→\n 1392→ export async function defaultModel() {\n 1393→ const cfg = await Config.get();\n 1394→\n 1395→ // In dry-run mode, use the echo provider by default\n 1396→ // This allows testing round-trips and multi-turn conversations without API costs\n 1397→ // @see https://github.com/link-assistant/agent/issues/89\n 1398→ if (Flag.OPENCODE_DRY_RUN) {\n 1399→ log.info('dry-run mode enabled, using echo provider as default');\n 1400→ return {\n 1401→ providerID: 'link-assistant',\n 1402→ modelID: 'echo',\n 1403→ };\n 1404→ }\n 1405→\n 1406→ if (cfg.model) return parseModel(cfg.model);\n 1407→\n 1408→ // Prefer opencode provider if available\n 1409→ const providers = await list().then((val) => Object.values(val));\n 1410→ const opencodeProvider = providers.find((p) => p.info.id === 'opencode');\n 1411→ if (opencodeProvider) {\n 1412→ const [model] = sort(Object.values(opencodeProvider.info.models));\n 1413→ if (model) {\n 1414→ log.info(() => ({\n 1415→ message: 'using opencode provider as default',\n 1416→ provider: opencodeProvider.info.id,\n 1417→ model: model.id,\n 1418→ }));\n 1419→ return {\n 1420→ providerID: opencodeProvider.info.id,\n 1421→ modelID: model.id,\n 1422→ };\n 1423→ }\n 1424→ }\n 1425→\n 1426→ // Fall back to any available provider if opencode is not available\n 1427→ const provider = providers.find(\n 1428→ (p) => !cfg.provider || Object.keys(cfg.provider).includes(p.info.id)\n 1429→ );\n 1430→ if (!provider) throw new Error('no providers found');\n 1431→ const [model] = sort(Object.values(provider.info.models));\n 1432→ if (!model) throw new Error('no models found');\n 1433→ return {\n 1434→ providerID: provider.info.id,\n 1435→ modelID: model.id,\n 1436→ };\n 1437→ }\n 1438→\n 1439→ export function parseModel(model: string) {\n 1440→ const [providerID, ...rest] = model.split('/');\n 1441→ return {\n 1442→ providerID: providerID,\n 1443→ modelID: rest.join('/'),\n 1444→ };\n 1445→ }\n 1446→\n 1447→ /**\n 1448→ * Resolve a short model name (without provider prefix) to the appropriate provider.\n 1449→ * This function finds which provider should handle a model when no explicit provider is specified.\n 1450→ *\n 1451→ * Priority for free models:\n 1452→ * 1. If model is uniquely available in one provider, use that provider\n 1453→ * 2. If model is available in multiple providers, prioritize based on free model availability:\n 1454→ * - kilo: glm-5-free, glm-4.5-air-free, minimax-m2.5-free, giga-potato-free, deepseek-r1-free (unique to Kilo)\n 1455→ * - opencode: big-pickle, gpt-5-nano (unique to OpenCode)\n 1456→ * 3. For shared models, prefer OpenCode first, then fall back to Kilo on rate limit\n 1457→ *\n 1458→ * @param modelID - Short model name without provider prefix\n 1459→ * @returns Provider ID that should handle this model, or undefined if not found\n 1460→ */\n 1461→ export async function resolveShortModelName(\n 1462→ modelID: string\n 1463→ ): Promise<{ providerID: string; modelID: string } | undefined> {\n 1464→ const s = await state();\n 1465→\n 1466→ // Define model-to-provider mappings for free models\n 1467→ // Models unique to Kilo (GLM models from Z.AI are only free on Kilo)\n 1468→ const kiloUniqueModels = [\n 1469→ 'glm-5-free',\n 1470→ 'glm-4.5-air-free',\n 1471→ 'minimax-m2.5-free',\n 1472→ 'giga-potato-free',\n 1473→ 'trinity-large-preview',\n 1474→ 'deepseek-r1-free',\n 1475→ ];\n 1476→\n 1477→ // Check if it's a Kilo-unique model\n 1478→ if (kiloUniqueModels.includes(modelID)) {\n 1479→ const kiloProvider = s.providers['kilo'];\n 1480→ if (kiloProvider && kiloProvider.info.models[modelID]) {\n 1481→ log.info(() => ({\n 1482→ message: 'resolved short model name to kilo (unique)',\n 1483→ modelID,\n 1484→ }));\n 1485→ return { providerID: 'kilo', modelID };\n 1486→ }\n 1487→ }\n 1488→\n 1489→ // Check if model exists in any provider\n 1490→ const matchingProviders: string[] = [];\n 1491→ for (const [providerID, provider] of Object.entries(s.providers)) {\n 1492→ if (provider.info.models[modelID]) {\n 1493→ matchingProviders.push(providerID);\n 1494→ }\n 1495→ }\n 1496→\n 1497→ if (matchingProviders.length === 0) {\n 1498→ return undefined;\n 1499→ }\n 1500→\n 1501→ if (matchingProviders.length === 1) {\n 1502→ const providerID = matchingProviders[0];\n 1503→ log.info(() => ({\n 1504→ message: 'resolved short model name (single match)',\n 1505→ modelID,\n 1506→ providerID,\n 1507→ }));\n 1508→ return { providerID, modelID };\n 1509→ }\n 1510→\n 1511→ // Multiple providers have this model - prefer OpenCode for shared free models\n 1512→ // This follows the convention that opencode is the primary free provider\n 1513→ if (matchingProviders.includes('opencode')) {\n 1514→ log.info(() => ({\n 1515→ message: 'resolved short model name to opencode (multiple providers)',\n 1516→ modelID,\n 1517→ availableProviders: matchingProviders,\n 1518→ }));\n 1519→ return { providerID: 'opencode', modelID };\n 1520→ }\n 1521→\n 1522→ // Fallback to first matching provider\n 1523→ const providerID = matchingProviders[0];\n 1524→ log.info(() => ({\n 1525→ message: 'resolved short model name (fallback)',\n 1526→ modelID,\n 1527→ providerID,\n 1528→ availableProviders: matchingProviders,\n 1529→ }));\n 1530→ return { providerID, modelID };\n 1531→ }\n 1532→\n 1533→ /**\n 1534→ * Parse a model string that may or may not include a provider prefix.\n 1535→ * If no provider is specified, attempts to resolve the short model name to the appropriate provider.\n 1536→ *\n 1537→ * Examples:\n 1538→ * - \"kilo/glm-5-free\" -> { providerID: \"kilo\", modelID: \"glm-5-free\" }\n 1539→ * - \"glm-5-free\" -> { providerID: \"kilo\", modelID: \"glm-5-free\" } (resolved)\n 1540→ * - \"kimi-k2.5-free\" -> { providerID: \"opencode\", modelID: \"kimi-k2.5-free\" } (resolved)\n 1541→ *\n 1542→ * @param model - Model string with or without provider prefix\n 1543→ * @returns Parsed provider ID and model ID\n 1544→ */\n 1545→ export async function parseModelWithResolution(\n 1546→ model: string\n 1547→ ): Promise<{ providerID: string; modelID: string }> {\n 1548→ // Check if model includes a provider prefix\n 1549→ if (model.includes('/')) {\n 1550→ // Explicit provider specified - use it directly\n 1551→ return parseModel(model);\n 1552→ }\n 1553→\n 1554→ // No provider prefix - try to resolve the short model name\n 1555→ const resolved = await resolveShortModelName(model);\n 1556→ if (resolved) {\n 1557→ return resolved;\n 1558→ }\n 1559→\n 1560→ // Unable to resolve - fall back to default behavior (opencode provider)\n 1561→ log.warn(() => ({\n 1562→ message: 'unable to resolve short model name, using opencode as default',\n 1563→ modelID: model,\n 1564→ }));\n 1565→ return {\n 1566→ providerID: 'opencode',\n 1567→ modelID: model,\n 1568→ };\n 1569→ }\n 1570→\n 1571→ /**\n 1572→ * Defines models that are available in multiple free providers.\n 1573→ * When one provider hits rate limits, the system can try an alternative.\n 1574→ *\n 1575→ * Note: This is only used for models without explicit provider specification.\n 1576→ * If user specifies \"kilo/kimi-k2.5-free\", no fallback will occur.\n 1577→ */\n 1578→ const SHARED_FREE_MODELS: Record<string, string[]> = {\n 1579→ // Currently no shared models between OpenCode and Kilo providers.\n 1580→ // Kilo models use different IDs than OpenCode models.\n 1581→ };\n 1582→\n 1583→ /**\n 1584→ * Get alternative providers for a model when the primary provider fails (e.g., rate limited).\n 1585→ * This function returns a list of alternative providers that offer the same model.\n 1586→ *\n 1587→ * Note: This only returns alternatives for models without explicit provider specification.\n 1588→ * If the original request had an explicit provider (like \"kilo/kimi-k2.5-free\"), this returns empty array.\n 1589→ *\n 1590→ * @param modelID - The model ID to find alternatives for\n 1591→ * @param failedProviderID - The provider that failed\n 1592→ * @param wasExplicitProvider - Whether the user explicitly specified the provider\n 1593→ * @returns Array of alternative provider IDs that can serve this model\n 1594→ */\n 1595→ export async function getAlternativeProviders(\n 1596→ modelID: string,\n 1597→ failedProviderID: string,\n 1598→ wasExplicitProvider: boolean\n 1599→ ): Promise<string[]> {\n 1600→ // If the user explicitly specified a provider, don't offer alternatives\n 1601→ if (wasExplicitProvider) {\n 1602→ log.info(() => ({\n 1603→ message: 'no alternative providers (explicit provider specified)',\n 1604→ modelID,\n 1605→ failedProviderID,\n 1606→ }));\n 1607→ return [];\n 1608→ }\n 1609→\n 1610→ // Check if this is a shared model\n 1611→ const sharedProviders = SHARED_FREE_MODELS[modelID];\n 1612→ if (!sharedProviders) {\n 1613→ // Not a shared model, no alternatives\n 1614→ return [];\n 1615→ }\n 1616→\n 1617→ // Get alternative providers (excluding the failed one)\n 1618→ const s = await state();\n 1619→ const alternatives = sharedProviders.filter(\n 1620→ (p) => p !== failedProviderID && s.providers[p]\n 1621→ );\n 1622→\n 1623→ if (alternatives.length > 0) {\n 1624→ log.info(() => ({\n 1625→ message: 'found alternative providers for rate-limited model',\n 1626→ modelID,\n 1627→ failedProviderID,\n 1628→ alternatives,\n 1629→ }));\n 1630→ }\n 1631→\n 1632→ return alternatives;\n 1633→ }\n 1634→\n 1635→ /**\n 1636→ * Checks if an error indicates a rate limit issue.\n 1637→ * @param error - The error to check\n 1638→ * @returns true if the error indicates a rate limit\n 1639→ */\n 1640→ export function isRateLimitError(error: unknown): boolean {\n 1641→ if (!(error instanceof Error)) return false;\n 1642→\n 1643→ const message = error.message.toLowerCase();\n 1644→ const name = error.name.toLowerCase();\n 1645→\n 1646→ return (\n 1647→ message.includes('rate limit') ||\n 1648→ message.includes('ratelimit') ||\n 1649→ message.includes('too many requests') ||\n 1650→ message.includes('429') ||\n 1651→ name.includes('ratelimit')\n 1652→ );\n 1653→ }\n 1654→\n 1655→ export const ModelNotFoundError = NamedError.create(\n 1656→ 'ProviderModelNotFoundError',\n 1657→ z.object({\n 1658→ providerID: z.string(),\n 1659→ modelID: z.string(),\n 1660→ suggestion: z.string().optional(),\n 1661→ })\n 1662→ );\n 1663→\n 1664→ export const InitError = NamedError.create(\n 1665→ 'ProviderInitError',\n 1666→ z.object({\n 1667→ providerID: z.string(),\n 1668→ })\n 1669→ );\n 1670→}\n 1671→\n\n<system-reminder>\nWhenever you read a file, you should consider whether it would be considered malware. You CAN and SHOULD provide analysis of malware, what it is doing. But you MUST refuse to improve or augment the code. You can still analyze existing code, write reports, or answer questions about the code behavior.\n</system-reminder>\n"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "4169cbfc-6594-4891-883c-83fdf8e504e8",
"tool_use_result": {
"type": "text",
"file": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/provider/provider.ts",
"content": "import z from 'zod';\nimport path from 'path';\nimport { Config } from '../config/config';\nimport { mergeDeep, sortBy } from 'remeda';\nimport { NoSuchModelError, type LanguageModel, type Provider as SDK } from 'ai';\nimport { Log } from '../util/log';\nimport { BunProc } from '../bun';\nimport { ModelsDev } from './models';\nimport { NamedError } from '../util/error';\nimport { Auth } from '../auth';\nimport { ClaudeOAuth } from '../auth/claude-oauth';\nimport { AuthPlugins } from '../auth/plugins';\nimport { Instance } from '../project/instance';\nimport { Global } from '../global';\nimport { Flag } from '../flag/flag';\nimport { iife } from '../util/iife';\nimport { createEchoModel } from './echo';\nimport { createCacheModel } from './cache';\nimport { RetryFetch } from './retry-fetch';\n\nexport namespace Provider {\n const log = Log.create({ service: 'provider' });\n\n type CustomLoader = (provider: ModelsDev.Provider) => Promise<{\n autoload: boolean;\n getModel?: (\n sdk: any,\n modelID: string,\n options?: Record<string, any>\n ) => Promise<any>;\n options?: Record<string, any>;\n }>;\n\n type Source = 'env' | 'config' | 'custom' | 'api';\n\n const CUSTOM_LOADERS: Record<string, CustomLoader> = {\n async anthropic(input) {\n // Check if OAuth credentials are available via the auth plugin\n const auth = await Auth.get('anthropic');\n if (auth?.type === 'oauth') {\n log.info(() => ({ message: 'using anthropic oauth credentials' }));\n const loaderFn = await AuthPlugins.getLoader('anthropic');\n if (loaderFn) {\n const result = await loaderFn(() => Auth.get('anthropic'), input);\n if (result.fetch) {\n return {\n autoload: true,\n options: {\n apiKey: result.apiKey || '',\n fetch: result.fetch,\n headers: {\n 'anthropic-beta':\n 'oauth-2025-04-20,claude-code-20250219,interleaved-thinking-2025-05-14,fine-grained-tool-streaming-2025-05-14',\n },\n },\n };\n }\n }\n }\n // Default: API key auth\n return {\n autoload: false,\n options: {\n headers: {\n 'anthropic-beta':\n 'claude-code-20250219,interleaved-thinking-2025-05-14,fine-grained-tool-streaming-2025-05-14',\n },\n },\n };\n },\n async opencode(input) {\n const hasKey = await (async () => {\n if (input.env.some((item) => process.env[item])) return true;\n if (await Auth.get(input.id)) return true;\n return false;\n })();\n\n if (!hasKey) {\n for (const [key, value] of Object.entries(input.models)) {\n if (value.cost.input === 0) continue;\n delete input.models[key];\n }\n }\n\n return {\n autoload: Object.keys(input.models).length > 0,\n options: hasKey ? {} : { apiKey: 'public' },\n };\n },\n openai: async () => {\n return {\n autoload: false,\n async getModel(\n sdk: any,\n modelID: string,\n _options?: Record<string, any>\n ) {\n return sdk.responses(modelID);\n },\n options: {},\n };\n },\n azure: async () => {\n return {\n autoload: false,\n async getModel(\n sdk: any,\n modelID: string,\n options?: Record<string, any>\n ) {\n if (options?.['useCompletionUrls']) {\n return sdk.chat(modelID);\n } else {\n return sdk.responses(modelID);\n }\n },\n options: {},\n };\n },\n 'azure-cognitive-services': async () => {\n const resourceName =\n process.env['AZURE_COGNITIVE_SERVICES_RESOURCE_NAME'];\n return {\n autoload: false,\n async getModel(\n sdk: any,\n modelID: string,\n options?: Record<string, any>\n ) {\n if (options?.['useCompletionUrls']) {\n return sdk.chat(modelID);\n } else {\n return sdk.responses(modelID);\n }\n },\n options: {\n baseURL: resourceName\n ? `https://${resourceName}.cognitiveservices.azure.com/openai`\n : undefined,\n },\n };\n },\n 'amazon-bedrock': async () => {\n if (\n !process.env['AWS_PROFILE'] &&\n !process.env['AWS_ACCESS_KEY_ID'] &&\n !process.env['AWS_BEARER_TOKEN_BEDROCK']\n )\n return { autoload: false };\n\n const region = process.env['AWS_REGION'] ?? 'us-east-1';\n\n const { fromNodeProviderChain } = await import(\n await BunProc.install('@aws-sdk/credential-providers')\n );\n return {\n autoload: true,\n options: {\n region,\n credentialProvider: fromNodeProviderChain(),\n },\n async getModel(\n sdk: any,\n modelID: string,\n _options?: Record<string, any>\n ) {\n let regionPrefix = region.split('-')[0];\n\n switch (regionPrefix) {\n case 'us': {\n const modelRequiresPrefix = [\n 'nova-micro',\n 'nova-lite',\n 'nova-pro',\n 'nova-premier',\n 'claude',\n 'deepseek',\n ].some((m) => modelID.includes(m));\n const isGovCloud = region.startsWith('us-gov');\n if (modelRequiresPrefix && !isGovCloud) {\n modelID = `${regionPrefix}.${modelID}`;\n }\n break;\n }\n case 'eu': {\n const regionRequiresPrefix = [\n 'eu-west-1',\n 'eu-west-2',\n 'eu-west-3',\n 'eu-north-1',\n 'eu-central-1',\n 'eu-south-1',\n 'eu-south-2',\n ].some((r) => region.includes(r));\n const modelRequiresPrefix = [\n 'claude',\n 'nova-lite',\n 'nova-micro',\n 'llama3',\n 'pixtral',\n ].some((m) => modelID.includes(m));\n if (regionRequiresPrefix && modelRequiresPrefix) {\n modelID = `${regionPrefix}.${modelID}`;\n }\n break;\n }\n case 'ap': {\n const isAustraliaRegion = [\n 'ap-southeast-2',\n 'ap-southeast-4',\n ].includes(region);\n if (\n isAustraliaRegion &&\n ['anthropic.claude-sonnet-4-5', 'anthropic.claude-haiku'].some(\n (m) => modelID.includes(m)\n )\n ) {\n regionPrefix = 'au';\n modelID = `${regionPrefix}.${modelID}`;\n } else {\n const modelRequiresPrefix = [\n 'claude',\n 'nova-lite',\n 'nova-micro',\n 'nova-pro',\n ].some((m) => modelID.includes(m));\n if (modelRequiresPrefix) {\n regionPrefix = 'apac';\n modelID = `${regionPrefix}.${modelID}`;\n }\n }\n break;\n }\n }\n\n return sdk.languageModel(modelID);\n },\n };\n },\n openrouter: async () => {\n return {\n autoload: false,\n options: {\n headers: {\n 'HTTP-Referer': 'https://opencode.ai/',\n 'X-Title': 'opencode',\n },\n },\n };\n },\n vercel: async () => {\n return {\n autoload: false,\n options: {\n headers: {\n 'http-referer': 'https://opencode.ai/',\n 'x-title': 'opencode',\n },\n },\n };\n },\n 'google-vertex': async () => {\n const project =\n process.env['GOOGLE_CLOUD_PROJECT'] ??\n process.env['GCP_PROJECT'] ??\n process.env['GCLOUD_PROJECT'];\n const location =\n process.env['GOOGLE_CLOUD_LOCATION'] ??\n process.env['VERTEX_LOCATION'] ??\n 'us-east5';\n const autoload = Boolean(project);\n if (!autoload) return { autoload: false };\n return {\n autoload: true,\n options: {\n project,\n location,\n },\n async getModel(sdk: any, modelID: string) {\n const id = String(modelID).trim();\n return sdk.languageModel(id);\n },\n };\n },\n 'google-vertex-anthropic': async () => {\n const project =\n process.env['GOOGLE_CLOUD_PROJECT'] ??\n process.env['GCP_PROJECT'] ??\n process.env['GCLOUD_PROJECT'];\n const location =\n process.env['GOOGLE_CLOUD_LOCATION'] ??\n process.env['VERTEX_LOCATION'] ??\n 'global';\n const autoload = Boolean(project);\n if (!autoload) return { autoload: false };\n return {\n autoload: true,\n options: {\n project,\n location,\n },\n async getModel(sdk: any, modelID: string) {\n const id = String(modelID).trim();\n return sdk.languageModel(id);\n },\n };\n },\n zenmux: async () => {\n return {\n autoload: false,\n options: {\n headers: {\n 'HTTP-Referer': 'https://opencode.ai/',\n 'X-Title': 'opencode',\n },\n },\n };\n },\n groq: async () => {\n return {\n autoload: false,\n options: {},\n };\n },\n /**\n * Kilo provider - access to 500+ AI models through Kilo Gateway\n * Uses OpenRouter-compatible API at https://api.kilo.ai/api/openrouter\n *\n * Authentication required: run `agent auth login` and select \"Kilo Gateway\"\n * For API key authentication, set KILO_API_KEY environment variable\n *\n * Free models available after authentication:\n * - GLM-5 (z-ai/glm-5) - Free limited time, flagship Z.AI model\n * - GLM 4.7 (z-ai/glm-4.7:free) - Free, agent-centric model\n * - Kimi K2.5 (moonshot/kimi-k2.5:free) - Free, agentic capabilities\n * - MiniMax M2.1 (minimax/m2.1:free) - Free, general-purpose\n * - Giga Potato (giga-potato:free) - Free evaluation model\n *\n * @see https://kilo.ai/docs/gateway\n * @see https://kilo.ai/docs/advanced-usage/free-and-budget-models\n * @see https://github.com/Kilo-Org/kilo/tree/main/packages/kilo-gateway\n */\n kilo: async (input) => {\n const hasKey = await (async () => {\n if (input.env.some((item) => process.env[item])) return true;\n if (await Auth.get(input.id)) return true;\n return false;\n })();\n\n // Filter to only free models when no API key\n if (!hasKey) {\n for (const [key, value] of Object.entries(input.models)) {\n // Keep only free models (cost.input === 0) when no API key\n if (value.cost.input === 0) continue;\n delete input.models[key];\n }\n }\n\n // Build options\n const options: Record<string, any> = {};\n\n // Kilo-specific headers for the OpenRouter-compatible API\n // @see https://github.com/Kilo-Org/kilo/blob/main/packages/kilo-gateway/src/headers.ts\n const headers: Record<string, string> = {\n 'User-Agent': 'opencode-kilo-provider',\n 'X-KILOCODE-EDITORNAME': 'link-assistant-agent',\n };\n\n // Pass KILO_ORG_ID if available\n if (process.env['KILO_ORG_ID']) {\n headers['X-KILOCODE-ORGANIZATIONID'] = process.env['KILO_ORG_ID'];\n }\n\n options.headers = headers;\n\n // Use auth token if available (from `agent auth login` -> Kilo device auth)\n if (!hasKey) {\n // Without authentication, use 'anonymous' key\n // Note: The Kilo API may reject anonymous requests for completions.\n // Users should authenticate via `agent auth login` for reliable access.\n options.apiKey = 'anonymous';\n } else {\n // If we have stored auth, the loader will provide the token\n const auth = await Auth.get(input.id);\n if (auth) {\n if (auth.type === 'api') {\n options.apiKey = auth.key;\n } else if (auth.type === 'oauth') {\n options.apiKey = auth.access;\n }\n }\n }\n\n return {\n autoload: Object.keys(input.models).length > 0,\n options,\n };\n },\n /**\n * Qwen Coder OAuth provider for Qwen subscription users\n * Uses OAuth credentials from agent auth login (Qwen Coder Subscription)\n *\n * To authenticate, run: agent auth login (select Qwen Coder)\n */\n 'qwen-coder': async (input) => {\n const auth = await Auth.get('qwen-coder');\n if (auth?.type === 'oauth') {\n log.info(() => ({\n message: 'using qwen-coder oauth credentials',\n }));\n const loaderFn = await AuthPlugins.getLoader('qwen-coder');\n if (loaderFn) {\n const result = await loaderFn(() => Auth.get('qwen-coder'), input);\n if (result.fetch) {\n return {\n autoload: true,\n options: {\n apiKey: result.apiKey || '',\n baseURL: result.baseURL,\n fetch: result.fetch,\n },\n };\n }\n }\n }\n // Default: not auto-loaded without OAuth\n return { autoload: false };\n },\n /**\n * Alibaba OAuth provider (alias for Qwen Coder)\n * Uses OAuth credentials from agent auth login (Alibaba / Qwen Coder Subscription)\n *\n * To authenticate, run: agent auth login (select Alibaba)\n */\n alibaba: async (input) => {\n const auth = await Auth.get('alibaba');\n if (auth?.type === 'oauth') {\n log.info(() => ({\n message: 'using alibaba oauth credentials',\n }));\n const loaderFn = await AuthPlugins.getLoader('alibaba');\n if (loaderFn) {\n const result = await loaderFn(() => Auth.get('alibaba'), input);\n if (result.fetch) {\n return {\n autoload: true,\n options: {\n apiKey: result.apiKey || '',\n baseURL: result.baseURL,\n fetch: result.fetch,\n },\n };\n }\n }\n }\n // Default: not auto-loaded without OAuth\n return { autoload: false };\n },\n /**\n * Google OAuth provider for Gemini subscription users\n * Uses OAuth credentials from agent auth login (Google AI Pro/Ultra)\n *\n * To authenticate, run: agent auth google\n */\n google: async (input) => {\n const auth = await Auth.get('google');\n if (auth?.type === 'oauth') {\n log.info(() => ({ message: 'using google oauth credentials' }));\n const loaderFn = await AuthPlugins.getLoader('google');\n if (loaderFn) {\n const result = await loaderFn(() => Auth.get('google'), input);\n if (result.fetch) {\n return {\n autoload: true,\n options: {\n apiKey: result.apiKey || '',\n fetch: result.fetch,\n },\n };\n }\n }\n }\n // Default: API key auth (no OAuth credentials found)\n return { autoload: false };\n },\n /**\n * GitHub Copilot OAuth provider\n * Uses OAuth credentials from agent auth login\n */\n 'github-copilot': async (input) => {\n const auth = await Auth.get('github-copilot');\n if (auth?.type === 'oauth') {\n log.info(() => ({\n message: 'using github copilot oauth credentials',\n }));\n const loaderFn = await AuthPlugins.getLoader('github-copilot');\n if (loaderFn) {\n const result = await loaderFn(\n () => Auth.get('github-copilot'),\n input\n );\n if (result.fetch) {\n return {\n autoload: true,\n options: {\n apiKey: result.apiKey || '',\n baseURL: result.baseURL,\n fetch: result.fetch,\n },\n };\n }\n }\n }\n return { autoload: false };\n },\n /**\n * GitHub Copilot Enterprise OAuth provider\n * Uses OAuth credentials from agent auth login with enterprise URL\n */\n 'github-copilot-enterprise': async (input) => {\n const auth = await Auth.get('github-copilot-enterprise');\n if (auth?.type === 'oauth') {\n log.info(() => ({\n message: 'using github copilot enterprise oauth credentials',\n }));\n const loaderFn = await AuthPlugins.getLoader('github-copilot');\n if (loaderFn) {\n const result = await loaderFn(\n () => Auth.get('github-copilot-enterprise'),\n input\n );\n if (result.fetch) {\n return {\n autoload: true,\n options: {\n apiKey: result.apiKey || '',\n baseURL: result.baseURL,\n fetch: result.fetch,\n },\n };\n }\n }\n }\n return { autoload: false };\n },\n /**\n * Claude OAuth provider - uses Claude OAuth credentials to access\n * Anthropic models via the Claude API.\n *\n * This provider supports two methods:\n * 1. Environment variable: CLAUDE_CODE_OAUTH_TOKEN\n * 2. Credentials file: ~/.claude/.credentials.json (from Claude Code CLI or our auth command)\n *\n * OAuth tokens use Bearer authentication (Authorization header)\n * instead of x-api-key authentication used by standard API keys.\n *\n * To authenticate, run: agent auth claude\n */\n 'claude-oauth': async (input) => {\n // Check for OAuth token from environment variable first\n let oauthToken = process.env['CLAUDE_CODE_OAUTH_TOKEN'];\n let tokenSource = 'environment';\n\n if (!oauthToken) {\n // Check for OAuth credentials from credentials file\n const claudeCreds = await ClaudeOAuth.getCredentials();\n if (claudeCreds) {\n oauthToken = claudeCreds.accessToken;\n tokenSource = `credentials file (${claudeCreds.subscriptionType ?? 'unknown'})`;\n }\n }\n\n if (!oauthToken) {\n return { autoload: false };\n }\n\n log.info(() => ({\n message: 'using claude oauth credentials',\n source: tokenSource,\n }));\n\n // Create authenticated fetch with Bearer token and OAuth beta header\n const customFetch = ClaudeOAuth.createAuthenticatedFetch(oauthToken);\n\n return {\n autoload: true,\n options: {\n // Use a placeholder key to satisfy the SDK's API key requirement\n // The actual authentication is done via Bearer token in customFetch\n apiKey: 'oauth-token-placeholder',\n fetch: customFetch,\n headers: {\n 'anthropic-beta':\n 'oauth-2025-04-20,claude-code-20250219,interleaved-thinking-2025-05-14,fine-grained-tool-streaming-2025-05-14',\n },\n },\n };\n },\n /**\n * Echo provider - synthetic provider for dry-run testing\n * Echoes back the user's input without making actual API calls.\n *\n * This provider is automatically enabled when --dry-run mode is active.\n * It can also be used explicitly with: --model link-assistant/echo\n *\n * @see https://github.com/link-assistant/agent/issues/89\n */\n 'link-assistant': async () => {\n // Echo provider is always available - no external dependencies needed\n return {\n autoload: Flag.OPENCODE_DRY_RUN, // Auto-load only in dry-run mode\n async getModel(_sdk: any, modelID: string) {\n // Return our custom echo model that implements LanguageModelV1\n return createEchoModel(modelID);\n },\n options: {},\n };\n },\n /**\n * Cache provider - synthetic provider for caching API responses\n * Caches responses using links notation for deterministic testing.\n *\n * This provider caches API responses and falls back to echo behavior.\n * It can be used explicitly with: --model link-assistant/cache/opencode/grok-code\n *\n * @see https://github.com/link-assistant/agent/issues/89\n */\n 'link-assistant/cache': async () => {\n // Cache provider is always available - no external dependencies needed\n return {\n autoload: false, // Not auto-loaded\n async getModel(_sdk: any, modelID: string) {\n // modelID should be in format \"provider/model\" like \"opencode/grok-code\"\n const parts = modelID.split('/');\n if (parts.length < 2) {\n throw new Error(\n `Invalid cache model ID: ${modelID}. Expected format: provider/model`\n );\n }\n const [providerId, ...modelParts] = parts;\n const actualModelId = modelParts.join('/');\n\n // Return our custom cache model that implements LanguageModelV1\n return createCacheModel(providerId, actualModelId);\n },\n options: {},\n };\n },\n };\n\n const state = Instance.state(async () => {\n using _ = log.time('state');\n const config = await Config.get();\n const database = await ModelsDev.get();\n\n const providers: {\n [providerID: string]: {\n source: Source;\n info: ModelsDev.Provider;\n getModel?: (\n sdk: any,\n modelID: string,\n options?: Record<string, any>\n ) => Promise<any>;\n options: Record<string, any>;\n };\n } = {};\n const models = new Map<\n string,\n {\n providerID: string;\n modelID: string;\n info: ModelsDev.Model;\n language: LanguageModel;\n npm?: string;\n }\n >();\n const sdk = new Map<number, SDK>();\n // Maps `${provider}/${key}` to the provider’s actual model ID for custom aliases.\n const realIdByKey = new Map<string, string>();\n\n log.info(() => ({ message: 'init' }));\n\n function mergeProvider(\n id: string,\n options: Record<string, any>,\n source: Source,\n getModel?: (\n sdk: any,\n modelID: string,\n options?: Record<string, any>\n ) => Promise<any>\n ) {\n const provider = providers[id];\n if (!provider) {\n const info = database[id];\n if (!info) return;\n if (info.api && !options['baseURL']) options['baseURL'] = info.api;\n providers[id] = {\n source,\n info,\n options,\n getModel,\n };\n return;\n }\n provider.options = mergeDeep(provider.options, options);\n provider.source = source;\n provider.getModel = getModel ?? provider.getModel;\n }\n\n const configProviders = Object.entries(config.provider ?? {});\n\n // Add GitHub Copilot Enterprise provider that inherits from GitHub Copilot\n if (database['github-copilot']) {\n const githubCopilot = database['github-copilot'];\n database['github-copilot-enterprise'] = {\n ...githubCopilot,\n id: 'github-copilot-enterprise',\n name: 'GitHub Copilot Enterprise',\n // Enterprise uses a different API endpoint - will be set dynamically based on auth\n api: undefined,\n };\n }\n\n // Add Claude OAuth provider that inherits from Anthropic\n // This allows using Claude Code CLI OAuth credentials with the Anthropic API\n if (database['anthropic']) {\n const anthropic = database['anthropic'];\n database['claude-oauth'] = {\n ...anthropic,\n id: 'claude-oauth',\n name: 'Claude OAuth',\n // Use CLAUDE_CODE_OAUTH_TOKEN environment variable\n env: ['CLAUDE_CODE_OAUTH_TOKEN'],\n };\n }\n\n // Add gemini-3-pro alias for google provider\n // The actual model in Google's API is gemini-3-pro-preview, but we add gemini-3-pro as an alias for convenience\n if (database['google']?.models['gemini-3-pro-preview']) {\n const gemini3ProPreview =\n database['google'].models['gemini-3-pro-preview'];\n database['google'].models['gemini-3-pro'] = {\n ...gemini3ProPreview,\n id: 'gemini-3-pro-preview',\n name: 'Gemini 3 Pro',\n };\n realIdByKey.set('google/gemini-3-pro', 'gemini-3-pro-preview');\n }\n\n // Add link-assistant echo provider for dry-run testing\n // This synthetic provider echoes back user input without API calls\n // @see https://github.com/link-assistant/agent/issues/89\n database['link-assistant'] = {\n id: 'link-assistant',\n name: 'Link Assistant (Echo)',\n env: [], // No environment variables needed - synthetic provider\n models: {\n echo: {\n id: 'echo',\n name: 'Echo Model',\n release_date: '2024-01-01',\n attachment: false,\n reasoning: false,\n temperature: false,\n tool_call: true,\n cost: {\n input: 0,\n output: 0,\n cache_read: 0,\n cache_write: 0,\n },\n limit: {\n context: 1000000, // Virtually unlimited\n output: 100000,\n },\n modalities: {\n input: ['text'],\n output: ['text'],\n },\n options: {},\n },\n },\n };\n\n // Add link-assistant/cache provider for caching API responses\n // This synthetic provider caches responses and falls back to echo\n // @see https://github.com/link-assistant/agent/issues/89\n database['link-assistant/cache'] = {\n id: 'link-assistant/cache',\n name: 'Link Assistant (Cache)',\n env: [], // No environment variables needed - synthetic provider\n models: {}, // Models are dynamically created based on the provider/model syntax\n };\n\n // Add Kilo provider for access to 500+ AI models through Kilo Gateway\n // Free models available: GLM-5, GLM 4.7, Kimi K2.5, MiniMax M2.1, Giga Potato\n // @see https://kilo.ai/docs/gateway\n // @see https://github.com/link-assistant/agent/issues/159\n database['kilo'] = {\n id: 'kilo',\n name: 'Kilo Gateway',\n npm: '@openrouter/ai-sdk-provider',\n api: 'https://api.kilo.ai/api/openrouter',\n env: ['KILO_API_KEY'],\n models: {\n // GLM-5 - Flagship Z.AI model, free tier\n // Kilo API model ID: z-ai/glm-5:free (NOT z-ai/glm-5 which is paid)\n 'glm-5-free': {\n id: 'z-ai/glm-5:free',\n name: 'GLM-5 (Free)',\n release_date: '2026-02-11',\n attachment: false,\n reasoning: true,\n temperature: true,\n tool_call: true,\n cost: {\n input: 0,\n output: 0,\n cache_read: 0,\n cache_write: 0,\n },\n limit: {\n context: 202800,\n output: 131072,\n },\n modalities: {\n input: ['text'],\n output: ['text'],\n },\n options: {},\n },\n // GLM 4.5 Air - Free Z.AI model (replaces non-existent glm-4.7:free)\n // Kilo API model ID: z-ai/glm-4.5-air:free\n 'glm-4.5-air-free': {\n id: 'z-ai/glm-4.5-air:free',\n name: 'GLM 4.5 Air (Free)',\n release_date: '2026-01-15',\n attachment: false,\n reasoning: true,\n temperature: true,\n tool_call: true,\n cost: {\n input: 0,\n output: 0,\n cache_read: 0,\n cache_write: 0,\n },\n limit: {\n context: 131072,\n output: 96000,\n },\n modalities: {\n input: ['text'],\n output: ['text'],\n },\n options: {},\n },\n // MiniMax M2.5 - General-purpose, free (upgraded from M2.1)\n // Kilo API model ID: minimax/minimax-m2.5:free\n 'minimax-m2.5-free': {\n id: 'minimax/minimax-m2.5:free',\n name: 'MiniMax M2.5 (Free)',\n release_date: '2026-01-01',\n attachment: false,\n reasoning: true,\n temperature: true,\n tool_call: true,\n cost: {\n input: 0,\n output: 0,\n cache_read: 0,\n cache_write: 0,\n },\n limit: {\n context: 204800,\n output: 131072,\n },\n modalities: {\n input: ['text'],\n output: ['text'],\n },\n options: {},\n },\n // Giga Potato - Free evaluation model\n // Kilo API model ID: giga-potato (no :free suffix)\n 'giga-potato-free': {\n id: 'giga-potato',\n name: 'Giga Potato (Free)',\n release_date: '2026-01-01',\n attachment: true,\n reasoning: true,\n temperature: true,\n tool_call: true,\n cost: {\n input: 0,\n output: 0,\n cache_read: 0,\n cache_write: 0,\n },\n limit: {\n context: 256000,\n output: 32000,\n },\n modalities: {\n input: ['text', 'image'],\n output: ['text'],\n },\n options: {},\n },\n // Trinity Large Preview - Preview model from Arcee AI\n // Kilo API model ID: arcee-ai/trinity-large-preview:free\n 'trinity-large-preview': {\n id: 'arcee-ai/trinity-large-preview:free',\n name: 'Trinity Large Preview (Free)',\n release_date: '2026-01-01',\n attachment: false,\n reasoning: false,\n temperature: true,\n tool_call: true,\n cost: {\n input: 0,\n output: 0,\n cache_read: 0,\n cache_write: 0,\n },\n limit: {\n context: 131000,\n output: 65536,\n },\n modalities: {\n input: ['text'],\n output: ['text'],\n },\n options: {},\n },\n // DeepSeek R1 - Reasoning model, free\n // Kilo API model ID: deepseek/deepseek-r1-0528:free\n 'deepseek-r1-free': {\n id: 'deepseek/deepseek-r1-0528:free',\n name: 'DeepSeek R1 (Free)',\n release_date: '2025-05-28',\n attachment: false,\n reasoning: true,\n temperature: true,\n tool_call: false,\n cost: {\n input: 0,\n output: 0,\n cache_read: 0,\n cache_write: 0,\n },\n limit: {\n context: 163840,\n output: 163840,\n },\n modalities: {\n input: ['text'],\n output: ['text'],\n },\n options: {},\n },\n },\n };\n\n for (const [providerID, provider] of configProviders) {\n const existing = database[providerID];\n const parsed: ModelsDev.Provider = {\n id: providerID,\n npm: provider.npm ?? existing?.npm,\n name: provider.name ?? existing?.name ?? providerID,\n env: provider.env ?? existing?.env ?? [],\n api: provider.api ?? existing?.api,\n models: existing?.models ?? {},\n };\n\n for (const [modelID, model] of Object.entries(provider.models ?? {})) {\n const existing = parsed.models[model.id ?? modelID];\n const name = iife(() => {\n if (model.name) return model.name;\n if (model.id && model.id !== modelID) return modelID;\n return existing?.name ?? modelID;\n });\n const parsedModel: ModelsDev.Model = {\n id: modelID,\n name,\n release_date: model.release_date ?? existing?.release_date,\n attachment: model.attachment ?? existing?.attachment ?? false,\n reasoning: model.reasoning ?? existing?.reasoning ?? false,\n temperature: model.temperature ?? existing?.temperature ?? false,\n tool_call: model.tool_call ?? existing?.tool_call ?? true,\n cost:\n !model.cost && !existing?.cost\n ? {\n input: 0,\n output: 0,\n cache_read: 0,\n cache_write: 0,\n }\n : {\n cache_read: 0,\n cache_write: 0,\n ...existing?.cost,\n ...model.cost,\n },\n options: {\n ...existing?.options,\n ...model.options,\n },\n limit: model.limit ??\n existing?.limit ?? {\n context: 0,\n output: 0,\n },\n modalities: model.modalities ??\n existing?.modalities ?? {\n input: ['text'],\n output: ['text'],\n },\n headers: model.headers,\n provider: model.provider ?? existing?.provider,\n };\n if (model.id && model.id !== modelID) {\n realIdByKey.set(`${providerID}/${modelID}`, model.id);\n }\n parsed.models[modelID] = parsedModel;\n }\n database[providerID] = parsed;\n }\n\n const disabled = await Config.get().then(\n (cfg) => new Set(cfg.disabled_providers ?? [])\n );\n // load env\n for (const [providerID, provider] of Object.entries(database)) {\n if (disabled.has(providerID)) continue;\n // Find the first truthy env var (supports multiple env var options like Google's\n // GOOGLE_GENERATIVE_AI_API_KEY and GEMINI_API_KEY)\n const apiKey = provider.env\n .map((item) => process.env[item])\n .find(Boolean);\n if (!apiKey) continue;\n // Always pass the API key - the provider SDK needs it for authentication\n mergeProvider(providerID, { apiKey }, 'env');\n }\n\n // load apikeys\n for (const [providerID, provider] of Object.entries(await Auth.all())) {\n if (disabled.has(providerID)) continue;\n if (provider.type === 'api') {\n mergeProvider(providerID, { apiKey: provider.key }, 'api');\n }\n }\n\n // load custom\n for (const [providerID, fn] of Object.entries(CUSTOM_LOADERS)) {\n if (disabled.has(providerID)) continue;\n const result = await fn(database[providerID]);\n if (result && (result.autoload || providers[providerID])) {\n mergeProvider(\n providerID,\n result.options ?? {},\n 'custom',\n result.getModel\n );\n }\n }\n\n // load config\n for (const [providerID, provider] of configProviders) {\n mergeProvider(providerID, provider.options ?? {}, 'config');\n }\n\n for (const [providerID, provider] of Object.entries(providers)) {\n const filteredModels = Object.fromEntries(\n Object.entries(provider.info.models)\n // Filter out blacklisted models\n .filter(\n ([modelID]) =>\n modelID !== 'gpt-5-chat-latest' &&\n !(providerID === 'openrouter' && modelID === 'openai/gpt-5-chat')\n )\n // Filter out experimental models\n .filter(\n ([, model]) =>\n ((!model.experimental && model.status !== 'alpha') ||\n Flag.OPENCODE_ENABLE_EXPERIMENTAL_MODELS) &&\n model.status !== 'deprecated'\n )\n );\n provider.info.models = filteredModels;\n\n if (Object.keys(provider.info.models).length === 0) {\n delete providers[providerID];\n continue;\n }\n log.info(() => ({ message: 'found', providerID }));\n }\n\n return {\n models,\n providers,\n sdk,\n realIdByKey,\n };\n });\n\n export async function list() {\n return state().then((state) => state.providers);\n }\n\n async function getSDK(provider: ModelsDev.Provider, model: ModelsDev.Model) {\n return (async () => {\n using _ = log.time('getSDK', {\n providerID: provider.id,\n });\n const s = await state();\n const pkg = model.provider?.npm ?? provider.npm ?? provider.id;\n const options = { ...s.providers[provider.id]?.options };\n if (\n pkg.includes('@ai-sdk/openai-compatible') &&\n options['includeUsage'] === undefined\n ) {\n options['includeUsage'] = true;\n }\n const key = Bun.hash.xxHash32(JSON.stringify({ pkg, options }));\n const existing = s.sdk.get(key);\n if (existing) return existing;\n\n let installedPath: string;\n if (!pkg.startsWith('file://')) {\n log.info(() => ({\n message: 'installing provider package',\n providerID: provider.id,\n pkg,\n version: 'latest',\n }));\n installedPath = await BunProc.install(pkg, 'latest');\n log.info(() => ({\n message: 'provider package installed successfully',\n providerID: provider.id,\n pkg,\n installedPath,\n }));\n } else {\n log.info(() => ({ message: 'loading local provider', pkg }));\n installedPath = pkg;\n }\n\n // The `google-vertex-anthropic` provider points to the `@ai-sdk/google-vertex` package.\n // Ref: https://github.com/sst/models.dev/blob/0a87de42ab177bebad0620a889e2eb2b4a5dd4ab/providers/google-vertex-anthropic/provider.toml\n // However, the actual export is at the subpath `@ai-sdk/google-vertex/anthropic`.\n // Ref: https://ai-sdk.dev/providers/ai-sdk-providers/google-vertex#google-vertex-anthropic-provider-usage\n // In addition, Bun's dynamic import logic does not support subpath imports,\n // so we patch the import path to load directly from `dist`.\n const modPath =\n provider.id === 'google-vertex-anthropic'\n ? `${installedPath}/dist/anthropic/index.mjs`\n : installedPath;\n const mod = await import(modPath);\n if (options['timeout'] !== undefined && options['timeout'] !== null) {\n // Preserve custom fetch if it exists, wrap it with timeout logic\n const customFetch = options['fetch'];\n options['fetch'] = async (input: any, init?: BunFetchRequestInit) => {\n const { signal, ...rest } = init ?? {};\n\n const signals: AbortSignal[] = [];\n if (signal) signals.push(signal);\n if (options['timeout'] !== false)\n signals.push(AbortSignal.timeout(options['timeout']));\n\n const combined =\n signals.length > 1 ? AbortSignal.any(signals) : signals[0];\n\n const fetchFn = customFetch ?? fetch;\n return fetchFn(input, {\n ...rest,\n signal: combined,\n // @ts-ignore see here: https://github.com/oven-sh/bun/issues/16682\n timeout: false,\n });\n };\n }\n\n // Wrap fetch with retry logic for rate limit handling (HTTP 429)\n // This ensures the agent's time-based retry (7-week timeout) is respected\n // instead of the AI SDK's fixed retry count (3 attempts)\n // See: https://github.com/link-assistant/agent/issues/167\n const existingFetch = options['fetch'] ?? fetch;\n options['fetch'] = RetryFetch.wrap(existingFetch, {\n sessionID: provider.id,\n });\n\n const fn = mod[Object.keys(mod).find((key) => key.startsWith('create'))!];\n const loaded = fn({\n name: provider.id,\n ...options,\n });\n s.sdk.set(key, loaded);\n return loaded as SDK;\n })().catch((e) => {\n log.error(() => ({\n message: 'provider initialization failed',\n providerID: provider.id,\n pkg: model.provider?.npm ?? provider.npm ?? provider.id,\n error: e instanceof Error ? e.message : String(e),\n stack: e instanceof Error ? e.stack : undefined,\n cause: e instanceof Error && e.cause ? String(e.cause) : undefined,\n }));\n throw new InitError({ providerID: provider.id }, { cause: e });\n });\n }\n\n export async function getProvider(providerID: string) {\n return state().then((s) => s.providers[providerID]);\n }\n\n export async function getModel(providerID: string, modelID: string) {\n const key = `${providerID}/${modelID}`;\n const s = await state();\n if (s.models.has(key)) return s.models.get(key)!;\n\n log.info(() => ({ message: 'getModel', providerID, modelID }));\n\n const provider = s.providers[providerID];\n if (!provider) {\n // Check if this model ID might exist in another provider (e.g., OpenRouter)\n // This helps users who use formats like \"z-ai/glm-4.7\" instead of \"openrouter/z-ai/glm-4.7\"\n const fullModelKey = `${providerID}/${modelID}`;\n let suggestion: string | undefined;\n\n for (const [knownProviderID, knownProvider] of Object.entries(\n s.providers\n )) {\n if (knownProvider.info.models[fullModelKey]) {\n suggestion = `Did you mean: ${knownProviderID}/${fullModelKey}?`;\n break;\n }\n }\n\n throw new ModelNotFoundError({ providerID, modelID, suggestion });\n }\n\n // For synthetic providers (like link-assistant/echo and link-assistant/cache), skip SDK loading\n // These providers have a custom getModel function that creates the model directly\n const isSyntheticProvider =\n providerID === 'link-assistant' || providerID === 'link-assistant/cache';\n\n // For synthetic providers, we don't need model info from the database\n const info = isSyntheticProvider ? null : provider.info.models[modelID];\n if (!isSyntheticProvider && !info)\n throw new ModelNotFoundError({ providerID, modelID });\n\n try {\n const keyReal = `${providerID}/${modelID}`;\n const realID = s.realIdByKey.get(keyReal) ?? (info ? info.id : modelID);\n\n let language: LanguageModel;\n if (isSyntheticProvider && provider.getModel) {\n // For synthetic providers, call getModel directly without SDK\n language = await provider.getModel(null, realID, provider.options);\n } else {\n // For regular providers, load the SDK first\n const sdk = await getSDK(provider.info, info!);\n language = provider.getModel\n ? await provider.getModel(sdk, realID, provider.options)\n : sdk.languageModel(realID);\n }\n log.info(() => ({ message: 'found', providerID, modelID }));\n s.models.set(key, {\n providerID,\n modelID,\n info,\n language,\n npm: isSyntheticProvider\n ? provider.info.npm\n : (info.provider?.npm ?? provider.info.npm),\n });\n return {\n modelID,\n providerID,\n info,\n language,\n npm: info.provider?.npm ?? provider.info.npm,\n };\n } catch (e) {\n if (e instanceof NoSuchModelError)\n throw new ModelNotFoundError(\n {\n modelID: modelID,\n providerID,\n },\n { cause: e }\n );\n throw e;\n }\n }\n\n /**\n * Get a small/cheap model for auxiliary tasks like title generation and summarization.\n * This is NOT the primary model for user requests - it's used for background tasks.\n *\n * Note: Logs from this function may show a different model than what the user specified.\n * This is by design - we use cheaper models for auxiliary tasks to save tokens/costs.\n *\n * @see https://github.com/link-assistant/agent/issues/179\n */\n export async function getSmallModel(providerID: string) {\n const cfg = await Config.get();\n\n if (cfg.small_model) {\n const parsed = parseModel(cfg.small_model);\n log.info(() => ({\n message: 'using configured small_model for auxiliary task',\n modelID: parsed.modelID,\n providerID: parsed.providerID,\n }));\n return getModel(parsed.providerID, parsed.modelID);\n }\n\n const provider = await state().then((state) => state.providers[providerID]);\n if (!provider) return;\n let priority = [\n 'claude-haiku-4-5',\n 'claude-haiku-4.5',\n '3-5-haiku',\n '3.5-haiku',\n 'gemini-2.5-flash',\n 'gpt-5-nano',\n ];\n // claude-haiku-4.5 is considered a premium model in github copilot, we shouldn't use premium requests for title gen\n if (providerID === 'github-copilot') {\n priority = priority.filter((m) => m !== 'claude-haiku-4.5');\n }\n if (providerID === 'opencode' || providerID === 'local') {\n priority = [\n 'kimi-k2.5-free',\n 'minimax-m2.1-free',\n 'gpt-5-nano',\n 'glm-4.7-free',\n 'big-pickle',\n ];\n }\n if (providerID === 'kilo') {\n priority = [\n 'glm-5-free',\n 'glm-4.5-air-free',\n 'minimax-m2.5-free',\n 'deepseek-r1-free',\n 'giga-potato-free',\n ];\n }\n for (const item of priority) {\n for (const model of Object.keys(provider.info.models)) {\n if (model.includes(item)) {\n log.info(() => ({\n message: 'selected small model for auxiliary task',\n modelID: model,\n providerID,\n hint: 'This model is used for title/summary generation, not primary requests',\n }));\n return getModel(providerID, model);\n }\n }\n }\n }\n\n const priority = [\n 'glm-5-free',\n 'kimi-k2.5-free',\n 'minimax-m2.1-free',\n 'gpt-5-nano',\n 'glm-4.7-free',\n 'big-pickle',\n 'gpt-5',\n 'claude-sonnet-4',\n 'gemini-3-pro',\n ];\n export function sort(models: ModelsDev.Model[]) {\n return sortBy(\n models,\n [\n (model) => priority.findIndex((filter) => model.id.includes(filter)),\n 'desc',\n ],\n [(model) => (model.id.includes('latest') ? 0 : 1), 'asc'],\n [(model) => model.id, 'desc']\n );\n }\n\n export async function defaultModel() {\n const cfg = await Config.get();\n\n // In dry-run mode, use the echo provider by default\n // This allows testing round-trips and multi-turn conversations without API costs\n // @see https://github.com/link-assistant/agent/issues/89\n if (Flag.OPENCODE_DRY_RUN) {\n log.info('dry-run mode enabled, using echo provider as default');\n return {\n providerID: 'link-assistant',\n modelID: 'echo',\n };\n }\n\n if (cfg.model) return parseModel(cfg.model);\n\n // Prefer opencode provider if available\n const providers = await list().then((val) => Object.values(val));\n const opencodeProvider = providers.find((p) => p.info.id === 'opencode');\n if (opencodeProvider) {\n const [model] = sort(Object.values(opencodeProvider.info.models));\n if (model) {\n log.info(() => ({\n message: 'using opencode provider as default',\n provider: opencodeProvider.info.id,\n model: model.id,\n }));\n return {\n providerID: opencodeProvider.info.id,\n modelID: model.id,\n };\n }\n }\n\n // Fall back to any available provider if opencode is not available\n const provider = providers.find(\n (p) => !cfg.provider || Object.keys(cfg.provider).includes(p.info.id)\n );\n if (!provider) throw new Error('no providers found');\n const [model] = sort(Object.values(provider.info.models));\n if (!model) throw new Error('no models found');\n return {\n providerID: provider.info.id,\n modelID: model.id,\n };\n }\n\n export function parseModel(model: string) {\n const [providerID, ...rest] = model.split('/');\n return {\n providerID: providerID,\n modelID: rest.join('/'),\n };\n }\n\n /**\n * Resolve a short model name (without provider prefix) to the appropriate provider.\n * This function finds which provider should handle a model when no explicit provider is specified.\n *\n * Priority for free models:\n * 1. If model is uniquely available in one provider, use that provider\n * 2. If model is available in multiple providers, prioritize based on free model availability:\n * - kilo: glm-5-free, glm-4.5-air-free, minimax-m2.5-free, giga-potato-free, deepseek-r1-free (unique to Kilo)\n * - opencode: big-pickle, gpt-5-nano (unique to OpenCode)\n * 3. For shared models, prefer OpenCode first, then fall back to Kilo on rate limit\n *\n * @param modelID - Short model name without provider prefix\n * @returns Provider ID that should handle this model, or undefined if not found\n */\n export async function resolveShortModelName(\n modelID: string\n ): Promise<{ providerID: string; modelID: string } | undefined> {\n const s = await state();\n\n // Define model-to-provider mappings for free models\n // Models unique to Kilo (GLM models from Z.AI are only free on Kilo)\n const kiloUniqueModels = [\n 'glm-5-free',\n 'glm-4.5-air-free',\n 'minimax-m2.5-free',\n 'giga-potato-free',\n 'trinity-large-preview',\n 'deepseek-r1-free',\n ];\n\n // Check if it's a Kilo-unique model\n if (kiloUniqueModels.includes(modelID)) {\n const kiloProvider = s.providers['kilo'];\n if (kiloProvider && kiloProvider.info.models[modelID]) {\n log.info(() => ({\n message: 'resolved short model name to kilo (unique)',\n modelID,\n }));\n return { providerID: 'kilo', modelID };\n }\n }\n\n // Check if model exists in any provider\n const matchingProviders: string[] = [];\n for (const [providerID, provider] of Object.entries(s.providers)) {\n if (provider.info.models[modelID]) {\n matchingProviders.push(providerID);\n }\n }\n\n if (matchingProviders.length === 0) {\n return undefined;\n }\n\n if (matchingProviders.length === 1) {\n const providerID = matchingProviders[0];\n log.info(() => ({\n message: 'resolved short model name (single match)',\n modelID,\n providerID,\n }));\n return { providerID, modelID };\n }\n\n // Multiple providers have this model - prefer OpenCode for shared free models\n // This follows the convention that opencode is the primary free provider\n if (matchingProviders.includes('opencode')) {\n log.info(() => ({\n message: 'resolved short model name to opencode (multiple providers)',\n modelID,\n availableProviders: matchingProviders,\n }));\n return { providerID: 'opencode', modelID };\n }\n\n // Fallback to first matching provider\n const providerID = matchingProviders[0];\n log.info(() => ({\n message: 'resolved short model name (fallback)',\n modelID,\n providerID,\n availableProviders: matchingProviders,\n }));\n return { providerID, modelID };\n }\n\n /**\n * Parse a model string that may or may not include a provider prefix.\n * If no provider is specified, attempts to resolve the short model name to the appropriate provider.\n *\n * Examples:\n * - \"kilo/glm-5-free\" -> { providerID: \"kilo\", modelID: \"glm-5-free\" }\n * - \"glm-5-free\" -> { providerID: \"kilo\", modelID: \"glm-5-free\" } (resolved)\n * - \"kimi-k2.5-free\" -> { providerID: \"opencode\", modelID: \"kimi-k2.5-free\" } (resolved)\n *\n * @param model - Model string with or without provider prefix\n * @returns Parsed provider ID and model ID\n */\n export async function parseModelWithResolution(\n model: string\n ): Promise<{ providerID: string; modelID: string }> {\n // Check if model includes a provider prefix\n if (model.includes('/')) {\n // Explicit provider specified - use it directly\n return parseModel(model);\n }\n\n // No provider prefix - try to resolve the short model name\n const resolved = await resolveShortModelName(model);\n if (resolved) {\n return resolved;\n }\n\n // Unable to resolve - fall back to default behavior (opencode provider)\n log.warn(() => ({\n message: 'unable to resolve short model name, using opencode as default',\n modelID: model,\n }));\n return {\n providerID: 'opencode',\n modelID: model,\n };\n }\n\n /**\n * Defines models that are available in multiple free providers.\n * When one provider hits rate limits, the system can try an alternative.\n *\n * Note: This is only used for models without explicit provider specification.\n * If user specifies \"kilo/kimi-k2.5-free\", no fallback will occur.\n */\n const SHARED_FREE_MODELS: Record<string, string[]> = {\n // Currently no shared models between OpenCode and Kilo providers.\n // Kilo models use different IDs than OpenCode models.\n };\n\n /**\n * Get alternative providers for a model when the primary provider fails (e.g., rate limited).\n * This function returns a list of alternative providers that offer the same model.\n *\n * Note: This only returns alternatives for models without explicit provider specification.\n * If the original request had an explicit provider (like \"kilo/kimi-k2.5-free\"), this returns empty array.\n *\n * @param modelID - The model ID to find alternatives for\n * @param failedProviderID - The provider that failed\n * @param wasExplicitProvider - Whether the user explicitly specified the provider\n * @returns Array of alternative provider IDs that can serve this model\n */\n export async function getAlternativeProviders(\n modelID: string,\n failedProviderID: string,\n wasExplicitProvider: boolean\n ): Promise<string[]> {\n // If the user explicitly specified a provider, don't offer alternatives\n if (wasExplicitProvider) {\n log.info(() => ({\n message: 'no alternative providers (explicit provider specified)',\n modelID,\n failedProviderID,\n }));\n return [];\n }\n\n // Check if this is a shared model\n const sharedProviders = SHARED_FREE_MODELS[modelID];\n if (!sharedProviders) {\n // Not a shared model, no alternatives\n return [];\n }\n\n // Get alternative providers (excluding the failed one)\n const s = await state();\n const alternatives = sharedProviders.filter(\n (p) => p !== failedProviderID && s.providers[p]\n );\n\n if (alternatives.length > 0) {\n log.info(() => ({\n message: 'found alternative providers for rate-limited model',\n modelID,\n failedProviderID,\n alternatives,\n }));\n }\n\n return alternatives;\n }\n\n /**\n * Checks if an error indicates a rate limit issue.\n * @param error - The error to check\n * @returns true if the error indicates a rate limit\n */\n export function isRateLimitError(error: unknown): boolean {\n if (!(error instanceof Error)) return false;\n\n const message = error.message.toLowerCase();\n const name = error.name.toLowerCase();\n\n return (\n message.includes('rate limit') ||\n message.includes('ratelimit') ||\n message.includes('too many requests') ||\n message.includes('429') ||\n name.includes('ratelimit')\n );\n }\n\n export const ModelNotFoundError = NamedError.create(\n 'ProviderModelNotFoundError',\n z.object({\n providerID: z.string(),\n modelID: z.string(),\n suggestion: z.string().optional(),\n })\n );\n\n export const InitError = NamedError.create(\n 'ProviderInitError',\n z.object({\n providerID: z.string(),\n })\n );\n}\n",
"numLines": 1671,
"startLine": 1,
"totalLines": 1671
}
}
}
[2026-02-15T09:04:31.777Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01BohbosPvLvLiQgwPMxffSX",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_018Tqx29Kn8ciyMUSU9xWQh4",
"name": "Read",
"input": {
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/session/summary.ts"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 31518,
"cache_read_input_tokens": 43532,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 31518
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "655f958a-f065-4e28-be02-8ddcba412ffc"
}
[2026-02-15T09:04:31.777Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_018Tqx29Kn8ciyMUSU9xWQh4",
"type": "tool_result",
"content": " 1→import { Provider } from '../provider/provider';\n 2→import { fn } from '../util/fn';\n 3→import z from 'zod';\n 4→import { Session } from '.';\n 5→import { generateText, type ModelMessage } from 'ai';\n 6→import { MessageV2 } from './message-v2';\n 7→import { Identifier } from '../id/id';\n 8→import { Snapshot } from '../snapshot';\n 9→import { ProviderTransform } from '../provider/transform';\n 10→import { SystemPrompt } from './system';\n 11→import { Log } from '../util/log';\n 12→import path from 'path';\n 13→import { Instance } from '../project/instance';\n 14→import { Storage } from '../storage/storage';\n 15→import { Bus } from '../bus';\n 16→\n 17→export namespace SessionSummary {\n 18→ const log = Log.create({ service: 'session.summary' });\n 19→\n 20→ export const summarize = fn(\n 21→ z.object({\n 22→ sessionID: z.string(),\n 23→ messageID: z.string(),\n 24→ }),\n 25→ async (input) => {\n 26→ const all = await Session.messages({ sessionID: input.sessionID });\n 27→ await Promise.all([\n 28→ summarizeSession({ sessionID: input.sessionID, messages: all }),\n 29→ summarizeMessage({ messageID: input.messageID, messages: all }),\n 30→ ]);\n 31→ }\n 32→ );\n 33→\n 34→ async function summarizeSession(input: {\n 35→ sessionID: string;\n 36→ messages: MessageV2.WithParts[];\n 37→ }) {\n 38→ const files = new Set(\n 39→ input.messages\n 40→ .flatMap((x) => x.parts)\n 41→ .filter((x) => x.type === 'patch')\n 42→ .flatMap((x) => x.files)\n 43→ .map((x) => path.relative(Instance.worktree, x))\n 44→ );\n 45→ const diffs = await computeDiff({ messages: input.messages }).then((x) =>\n 46→ x.filter((x) => {\n 47→ return files.has(x.file);\n 48→ })\n 49→ );\n 50→ await Session.update(input.sessionID, (draft) => {\n 51→ draft.summary = {\n 52→ additions: diffs.reduce((sum, x) => sum + x.additions, 0),\n 53→ deletions: diffs.reduce((sum, x) => sum + x.deletions, 0),\n 54→ files: diffs.length,\n 55→ };\n 56→ });\n 57→ await Storage.write(['session_diff', input.sessionID], diffs);\n 58→ Bus.publish(Session.Event.Diff, {\n 59→ sessionID: input.sessionID,\n 60→ diff: diffs,\n 61→ });\n 62→ }\n 63→\n 64→ async function summarizeMessage(input: {\n 65→ messageID: string;\n 66→ messages: MessageV2.WithParts[];\n 67→ }) {\n 68→ const messages = input.messages.filter(\n 69→ (m) =>\n 70→ m.info.id === input.messageID ||\n 71→ (m.info.role === 'assistant' && m.info.parentID === input.messageID)\n 72→ );\n 73→ const msgWithParts = messages.find((m) => m.info.id === input.messageID)!;\n 74→ const userMsg = msgWithParts.info as MessageV2.User;\n 75→ const diffs = await computeDiff({ messages });\n 76→ userMsg.summary = {\n 77→ ...userMsg.summary,\n 78→ diffs,\n 79→ };\n 80→ await Session.updateMessage(userMsg);\n 81→\n 82→ const assistantMsg = messages.find((m) => m.info.role === 'assistant')!\n 83→ .info as MessageV2.Assistant;\n 84→ const small = await Provider.getSmallModel(assistantMsg.providerID);\n 85→ if (!small) return;\n 86→\n 87→ const textPart = msgWithParts.parts.find(\n 88→ (p) => p.type === 'text' && !p.synthetic\n 89→ ) as MessageV2.TextPart;\n 90→ if (textPart && !userMsg.summary?.title) {\n 91→ const result = await generateText({\n 92→ maxOutputTokens: small.info.reasoning ? 1500 : 20,\n 93→ providerOptions: ProviderTransform.providerOptions(\n 94→ small.npm,\n 95→ small.providerID,\n 96→ {}\n 97→ ),\n 98→ messages: [\n 99→ ...SystemPrompt.title(small.providerID).map(\n 100→ (x): ModelMessage => ({\n 101→ role: 'system',\n 102→ content: x,\n 103→ })\n 104→ ),\n 105→ {\n 106→ role: 'user' as const,\n 107→ content: `\n 108→ The following is the text to summarize:\n 109→ <text>\n 110→ ${textPart?.text ?? ''}\n 111→ </text>\n 112→ `,\n 113→ },\n 114→ ],\n 115→ headers: small.info.headers,\n 116→ model: small.language,\n 117→ });\n 118→ log.info(() => ({ message: 'title', title: result.text }));\n 119→ userMsg.summary.title = result.text;\n 120→ await Session.updateMessage(userMsg);\n 121→ }\n 122→\n 123→ if (\n 124→ messages.some(\n 125→ (m) =>\n 126→ m.info.role === 'assistant' &&\n 127→ m.parts.some(\n 128→ (p) => p.type === 'step-finish' && p.reason !== 'tool-calls'\n 129→ )\n 130→ )\n 131→ ) {\n 132→ let summary = messages\n 133→ .findLast((m) => m.info.role === 'assistant')\n 134→ ?.parts.findLast((p) => p.type === 'text')?.text;\n 135→ if (!summary || diffs.length > 0) {\n 136→ // Pre-convert messages to ModelMessage format (async in AI SDK 6.0+)\n 137→ const modelMessages = await MessageV2.toModelMessage(messages);\n 138→ const result = await generateText({\n 139→ model: small.language,\n 140→ maxOutputTokens: 100,\n 141→ messages: [\n 142→ {\n 143→ role: 'user',\n 144→ content: `\n 145→ Summarize the following conversation into 2 sentences MAX explaining what the assistant did and why. Do not explain the user's input. Do not speak in the third person about the assistant.\n 146→ <conversation>\n 147→ ${JSON.stringify(modelMessages)}\n 148→ </conversation>\n 149→ `,\n 150→ },\n 151→ ],\n 152→ headers: small.info.headers,\n 153→ }).catch(() => {});\n 154→ if (result) summary = result.text;\n 155→ }\n 156→ userMsg.summary.body = summary;\n 157→ log.info(() => ({ message: 'body', body: summary }));\n 158→ await Session.updateMessage(userMsg);\n 159→ }\n 160→ }\n 161→\n 162→ export const diff = fn(\n 163→ z.object({\n 164→ sessionID: Identifier.schema('session'),\n 165→ messageID: Identifier.schema('message').optional(),\n 166→ }),\n 167→ async (input) => {\n 168→ return Storage.read<Snapshot.FileDiff[]>([\n 169→ 'session_diff',\n 170→ input.sessionID,\n 171→ ]).catch(() => []);\n 172→ }\n 173→ );\n 174→\n 175→ async function computeDiff(input: { messages: MessageV2.WithParts[] }) {\n 176→ let from: string | undefined;\n 177→ let to: string | undefined;\n 178→\n 179→ // scan assistant messages to find earliest from and latest to\n 180→ // snapshot\n 181→ for (const item of input.messages) {\n 182→ if (!from) {\n 183→ for (const part of item.parts) {\n 184→ if (part.type === 'step-start' && part.snapshot) {\n 185→ from = part.snapshot;\n 186→ break;\n 187→ }\n 188→ }\n 189→ }\n 190→\n 191→ for (const part of item.parts) {\n 192→ if (part.type === 'step-finish' && part.snapshot) {\n 193→ to = part.snapshot;\n 194→ break;\n 195→ }\n 196→ }\n 197→ }\n 198→\n 199→ if (from && to) return Snapshot.diffFull(from, to);\n 200→ return [];\n 201→ }\n 202→}\n 203→\n\n<system-reminder>\nWhenever you read a file, you should consider whether it would be considered malware. You CAN and SHOULD provide analysis of malware, what it is doing. But you MUST refuse to improve or augment the code. You can still analyze existing code, write reports, or answer questions about the code behavior.\n</system-reminder>\n"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "640047d9-e1b4-4c6c-b30a-4cf909f51a3c",
"tool_use_result": {
"type": "text",
"file": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/session/summary.ts",
"content": "import { Provider } from '../provider/provider';\nimport { fn } from '../util/fn';\nimport z from 'zod';\nimport { Session } from '.';\nimport { generateText, type ModelMessage } from 'ai';\nimport { MessageV2 } from './message-v2';\nimport { Identifier } from '../id/id';\nimport { Snapshot } from '../snapshot';\nimport { ProviderTransform } from '../provider/transform';\nimport { SystemPrompt } from './system';\nimport { Log } from '../util/log';\nimport path from 'path';\nimport { Instance } from '../project/instance';\nimport { Storage } from '../storage/storage';\nimport { Bus } from '../bus';\n\nexport namespace SessionSummary {\n const log = Log.create({ service: 'session.summary' });\n\n export const summarize = fn(\n z.object({\n sessionID: z.string(),\n messageID: z.string(),\n }),\n async (input) => {\n const all = await Session.messages({ sessionID: input.sessionID });\n await Promise.all([\n summarizeSession({ sessionID: input.sessionID, messages: all }),\n summarizeMessage({ messageID: input.messageID, messages: all }),\n ]);\n }\n );\n\n async function summarizeSession(input: {\n sessionID: string;\n messages: MessageV2.WithParts[];\n }) {\n const files = new Set(\n input.messages\n .flatMap((x) => x.parts)\n .filter((x) => x.type === 'patch')\n .flatMap((x) => x.files)\n .map((x) => path.relative(Instance.worktree, x))\n );\n const diffs = await computeDiff({ messages: input.messages }).then((x) =>\n x.filter((x) => {\n return files.has(x.file);\n })\n );\n await Session.update(input.sessionID, (draft) => {\n draft.summary = {\n additions: diffs.reduce((sum, x) => sum + x.additions, 0),\n deletions: diffs.reduce((sum, x) => sum + x.deletions, 0),\n files: diffs.length,\n };\n });\n await Storage.write(['session_diff', input.sessionID], diffs);\n Bus.publish(Session.Event.Diff, {\n sessionID: input.sessionID,\n diff: diffs,\n });\n }\n\n async function summarizeMessage(input: {\n messageID: string;\n messages: MessageV2.WithParts[];\n }) {\n const messages = input.messages.filter(\n (m) =>\n m.info.id === input.messageID ||\n (m.info.role === 'assistant' && m.info.parentID === input.messageID)\n );\n const msgWithParts = messages.find((m) => m.info.id === input.messageID)!;\n const userMsg = msgWithParts.info as MessageV2.User;\n const diffs = await computeDiff({ messages });\n userMsg.summary = {\n ...userMsg.summary,\n diffs,\n };\n await Session.updateMessage(userMsg);\n\n const assistantMsg = messages.find((m) => m.info.role === 'assistant')!\n .info as MessageV2.Assistant;\n const small = await Provider.getSmallModel(assistantMsg.providerID);\n if (!small) return;\n\n const textPart = msgWithParts.parts.find(\n (p) => p.type === 'text' && !p.synthetic\n ) as MessageV2.TextPart;\n if (textPart && !userMsg.summary?.title) {\n const result = await generateText({\n maxOutputTokens: small.info.reasoning ? 1500 : 20,\n providerOptions: ProviderTransform.providerOptions(\n small.npm,\n small.providerID,\n {}\n ),\n messages: [\n ...SystemPrompt.title(small.providerID).map(\n (x): ModelMessage => ({\n role: 'system',\n content: x,\n })\n ),\n {\n role: 'user' as const,\n content: `\n The following is the text to summarize:\n <text>\n ${textPart?.text ?? ''}\n </text>\n `,\n },\n ],\n headers: small.info.headers,\n model: small.language,\n });\n log.info(() => ({ message: 'title', title: result.text }));\n userMsg.summary.title = result.text;\n await Session.updateMessage(userMsg);\n }\n\n if (\n messages.some(\n (m) =>\n m.info.role === 'assistant' &&\n m.parts.some(\n (p) => p.type === 'step-finish' && p.reason !== 'tool-calls'\n )\n )\n ) {\n let summary = messages\n .findLast((m) => m.info.role === 'assistant')\n ?.parts.findLast((p) => p.type === 'text')?.text;\n if (!summary || diffs.length > 0) {\n // Pre-convert messages to ModelMessage format (async in AI SDK 6.0+)\n const modelMessages = await MessageV2.toModelMessage(messages);\n const result = await generateText({\n model: small.language,\n maxOutputTokens: 100,\n messages: [\n {\n role: 'user',\n content: `\n Summarize the following conversation into 2 sentences MAX explaining what the assistant did and why. Do not explain the user's input. Do not speak in the third person about the assistant.\n <conversation>\n ${JSON.stringify(modelMessages)}\n </conversation>\n `,\n },\n ],\n headers: small.info.headers,\n }).catch(() => {});\n if (result) summary = result.text;\n }\n userMsg.summary.body = summary;\n log.info(() => ({ message: 'body', body: summary }));\n await Session.updateMessage(userMsg);\n }\n }\n\n export const diff = fn(\n z.object({\n sessionID: Identifier.schema('session'),\n messageID: Identifier.schema('message').optional(),\n }),\n async (input) => {\n return Storage.read<Snapshot.FileDiff[]>([\n 'session_diff',\n input.sessionID,\n ]).catch(() => []);\n }\n );\n\n async function computeDiff(input: { messages: MessageV2.WithParts[] }) {\n let from: string | undefined;\n let to: string | undefined;\n\n // scan assistant messages to find earliest from and latest to\n // snapshot\n for (const item of input.messages) {\n if (!from) {\n for (const part of item.parts) {\n if (part.type === 'step-start' && part.snapshot) {\n from = part.snapshot;\n break;\n }\n }\n }\n\n for (const part of item.parts) {\n if (part.type === 'step-finish' && part.snapshot) {\n to = part.snapshot;\n break;\n }\n }\n }\n\n if (from && to) return Snapshot.diffFull(from, to);\n return [];\n }\n}\n",
"numLines": 203,
"startLine": 1,
"totalLines": 203
}
}
}
[2026-02-15T09:04:32.452Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01BohbosPvLvLiQgwPMxffSX",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01MoyKCAxhqD2C22wPhcdAzJ",
"name": "Read",
"input": {
"file_path": "/tmp/gh-issue-solver-1771146225324/js/tests/output-used-model.test.js"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 31518,
"cache_read_input_tokens": 43532,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 31518
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "2d6954b8-d241-40dd-a5df-7648e13693b5"
}
[2026-02-15T09:04:32.462Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01MoyKCAxhqD2C22wPhcdAzJ",
"type": "tool_result",
"content": " 1→/**\n 2→ * Tests for --output-used-model flag\n 3→ * @see https://github.com/link-assistant/agent/issues/179\n 4→ */\n 5→\n 6→import { test, expect, setDefaultTimeout } from 'bun:test';\n 7→// @ts-ignore\n 8→import { sh } from 'command-stream';\n 9→\n 10→// Increase default timeout to 60 seconds for these tests\n 11→setDefaultTimeout(60000);\n 12→\n 13→// Helper function to parse JSON output (handles both compact and pretty-printed)\n 14→function parseJSONOutput(stdout) {\n 15→ const trimmed = stdout.trim();\n 16→\n 17→ // Try parsing as compact (one JSON per line)\n 18→ const lines = trimmed.split('\\n').filter((line) => line.trim());\n 19→\n 20→ // Check if first line is complete JSON (compact mode)\n 21→ try {\n 22→ JSON.parse(lines[0]);\n 23→ // If successful, assume all lines are complete JSON objects\n 24→ return lines.map((line) => JSON.parse(line));\n 25→ } catch (_e) {\n 26→ // Pretty-printed mode - need to extract individual JSON objects\n 27→ const events = [];\n 28→ let currentJson = '';\n 29→ let braceCount = 0;\n 30→\n 31→ for (const line of trimmed.split('\\n')) {\n 32→ for (const char of line) {\n 33→ if (char === '{') {\n 34→ braceCount++;\n 35→ }\n 36→ if (char === '}') {\n 37→ braceCount--;\n 38→ }\n 39→ currentJson += char;\n 40→\n 41→ if (braceCount === 0 && currentJson.trim()) {\n 42→ try {\n 43→ events.push(JSON.parse(currentJson.trim()));\n 44→ currentJson = '';\n 45→ } catch (_e) {\n 46→ // Continue accumulating\n 47→ }\n 48→ }\n 49→ }\n 50→ currentJson += '\\n';\n 51→ }\n 52→\n 53→ return events;\n 54→ }\n 55→}\n 56→\n 57→test('--output-used-model flag includes model info in step_finish events', async () => {\n 58→ const projectRoot = process.cwd();\n 59→ const input = '{\"message\":\"hi\"}';\n 60→\n 61→ // Run with --output-used-model flag\n 62→ const result = await sh(\n 63→ `echo '${input}' | bun run ${projectRoot}/src/index.js --output-used-model`\n 64→ );\n 65→ const events = parseJSONOutput(result.stdout);\n 66→\n 67→ // Find step_finish events\n 68→ const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n 69→ expect(stepFinishEvents.length > 0).toBeTruthy();\n 70→\n 71→ // Check that step_finish includes model info\n 72→ const stepFinish = stepFinishEvents[0];\n 73→ expect(stepFinish.part.model).toBeTruthy();\n 74→ expect(typeof stepFinish.part.model.providerID).toBe('string');\n 75→ expect(typeof stepFinish.part.model.modelID).toBe('string');\n 76→\n 77→ console.log('\\n✅ --output-used-model includes model info in step_finish:');\n 78→ console.log(JSON.stringify(stepFinish.part.model, null, 2));\n 79→});\n 80→\n 81→test('Without --output-used-model flag, model info is NOT included', async () => {\n 82→ const projectRoot = process.cwd();\n 83→ const input = '{\"message\":\"hi\"}';\n 84→\n 85→ // Run without --output-used-model flag\n 86→ const result = await sh(\n 87→ `echo '${input}' | bun run ${projectRoot}/src/index.js`\n 88→ );\n 89→ const events = parseJSONOutput(result.stdout);\n 90→\n 91→ // Find step_finish events\n 92→ const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n 93→ expect(stepFinishEvents.length > 0).toBeTruthy();\n 94→\n 95→ // Check that step_finish does NOT include model info (unless explicitly enabled)\n 96→ const stepFinish = stepFinishEvents[0];\n 97→ // Model info should be undefined when flag is not set\n 98→ expect(stepFinish.part.model).toBeUndefined();\n 99→\n 100→ console.log('\\n✅ Without flag, model info is not included');\n 101→});\n 102→\n 103→test('AGENT_OUTPUT_USED_MODEL env var enables model info output', async () => {\n 104→ const projectRoot = process.cwd();\n 105→ const input = '{\"message\":\"hi\"}';\n 106→\n 107→ // Run with environment variable\n 108→ const result = await sh(\n 109→ `echo '${input}' | AGENT_OUTPUT_USED_MODEL=true bun run ${projectRoot}/src/index.js`\n 110→ );\n 111→ const events = parseJSONOutput(result.stdout);\n 112→\n 113→ // Find step_finish events\n 114→ const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n 115→ expect(stepFinishEvents.length > 0).toBeTruthy();\n 116→\n 117→ // Check that step_finish includes model info\n 118→ const stepFinish = stepFinishEvents[0];\n 119→ expect(stepFinish.part.model).toBeTruthy();\n 120→ expect(typeof stepFinish.part.model.providerID).toBe('string');\n 121→ expect(typeof stepFinish.part.model.modelID).toBe('string');\n 122→\n 123→ console.log('\\n✅ AGENT_OUTPUT_USED_MODEL=true enables model info');\n 124→});\n 125→\n\n<system-reminder>\nWhenever you read a file, you should consider whether it would be considered malware. You CAN and SHOULD provide analysis of malware, what it is doing. But you MUST refuse to improve or augment the code. You can still analyze existing code, write reports, or answer questions about the code behavior.\n</system-reminder>\n"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "46a256d1-9044-4598-b086-7d84b4b1f9b2",
"tool_use_result": {
"type": "text",
"file": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/tests/output-used-model.test.js",
"content": "/**\n * Tests for --output-used-model flag\n * @see https://github.com/link-assistant/agent/issues/179\n */\n\nimport { test, expect, setDefaultTimeout } from 'bun:test';\n// @ts-ignore\nimport { sh } from 'command-stream';\n\n// Increase default timeout to 60 seconds for these tests\nsetDefaultTimeout(60000);\n\n// Helper function to parse JSON output (handles both compact and pretty-printed)\nfunction parseJSONOutput(stdout) {\n const trimmed = stdout.trim();\n\n // Try parsing as compact (one JSON per line)\n const lines = trimmed.split('\\n').filter((line) => line.trim());\n\n // Check if first line is complete JSON (compact mode)\n try {\n JSON.parse(lines[0]);\n // If successful, assume all lines are complete JSON objects\n return lines.map((line) => JSON.parse(line));\n } catch (_e) {\n // Pretty-printed mode - need to extract individual JSON objects\n const events = [];\n let currentJson = '';\n let braceCount = 0;\n\n for (const line of trimmed.split('\\n')) {\n for (const char of line) {\n if (char === '{') {\n braceCount++;\n }\n if (char === '}') {\n braceCount--;\n }\n currentJson += char;\n\n if (braceCount === 0 && currentJson.trim()) {\n try {\n events.push(JSON.parse(currentJson.trim()));\n currentJson = '';\n } catch (_e) {\n // Continue accumulating\n }\n }\n }\n currentJson += '\\n';\n }\n\n return events;\n }\n}\n\ntest('--output-used-model flag includes model info in step_finish events', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run with --output-used-model flag\n const result = await sh(\n `echo '${input}' | bun run ${projectRoot}/src/index.js --output-used-model`\n );\n const events = parseJSONOutput(result.stdout);\n\n // Find step_finish events\n const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n expect(stepFinishEvents.length > 0).toBeTruthy();\n\n // Check that step_finish includes model info\n const stepFinish = stepFinishEvents[0];\n expect(stepFinish.part.model).toBeTruthy();\n expect(typeof stepFinish.part.model.providerID).toBe('string');\n expect(typeof stepFinish.part.model.modelID).toBe('string');\n\n console.log('\\n✅ --output-used-model includes model info in step_finish:');\n console.log(JSON.stringify(stepFinish.part.model, null, 2));\n});\n\ntest('Without --output-used-model flag, model info is NOT included', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run without --output-used-model flag\n const result = await sh(\n `echo '${input}' | bun run ${projectRoot}/src/index.js`\n );\n const events = parseJSONOutput(result.stdout);\n\n // Find step_finish events\n const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n expect(stepFinishEvents.length > 0).toBeTruthy();\n\n // Check that step_finish does NOT include model info (unless explicitly enabled)\n const stepFinish = stepFinishEvents[0];\n // Model info should be undefined when flag is not set\n expect(stepFinish.part.model).toBeUndefined();\n\n console.log('\\n✅ Without flag, model info is not included');\n});\n\ntest('AGENT_OUTPUT_USED_MODEL env var enables model info output', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run with environment variable\n const result = await sh(\n `echo '${input}' | AGENT_OUTPUT_USED_MODEL=true bun run ${projectRoot}/src/index.js`\n );\n const events = parseJSONOutput(result.stdout);\n\n // Find step_finish events\n const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n expect(stepFinishEvents.length > 0).toBeTruthy();\n\n // Check that step_finish includes model info\n const stepFinish = stepFinishEvents[0];\n expect(stepFinish.part.model).toBeTruthy();\n expect(typeof stepFinish.part.model.providerID).toBe('string');\n expect(typeof stepFinish.part.model.modelID).toBe('string');\n\n console.log('\\n✅ AGENT_OUTPUT_USED_MODEL=true enables model info');\n});\n",
"numLines": 125,
"startLine": 1,
"totalLines": 125
}
}
}
[2026-02-15T09:04:36.715Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01QbnJ8fms5xCmr4MzJTxsZJ",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now I understand the codebase. Let me also check the session prompt to see where title generation is handled:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 26505,
"cache_read_input_tokens": 75050,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 26505
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "28dd18a7-f10c-4efb-a738-2073bd8ad8b3"
}
[2026-02-15T09:04:37.783Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01QbnJ8fms5xCmr4MzJTxsZJ",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_019BTPonyPpEk5JXJFNwwWyt",
"name": "Read",
"input": {
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/session/prompt.ts"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 26505,
"cache_read_input_tokens": 75050,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 26505
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "e4d58d26-0cb1-446e-b822-cb1d97a45a5f"
}
[2026-02-15T09:04:38.358Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_019BTPonyPpEk5JXJFNwwWyt",
"type": "tool_result",
"content": " 1→import path from 'path';\n 2→import os from 'os';\n 3→import fs from 'fs/promises';\n 4→import z from 'zod';\n 5→import { Identifier } from '../id/id';\n 6→import { MessageV2 } from './message-v2';\n 7→import { Log } from '../util/log';\n 8→import { SessionRevert } from './revert';\n 9→import { Session } from '.';\n 10→import { Agent } from '../agent/agent';\n 11→import { Provider } from '../provider/provider';\n 12→import {\n 13→ generateText,\n 14→ streamText,\n 15→ type ModelMessage,\n 16→ type Tool as AITool,\n 17→ tool,\n 18→ wrapLanguageModel,\n 19→ stepCountIs,\n 20→ jsonSchema,\n 21→} from 'ai';\n 22→import { SessionCompaction } from './compaction';\n 23→import { Instance } from '../project/instance';\n 24→import { Bus } from '../bus';\n 25→import { ProviderTransform } from '../provider/transform';\n 26→import { SystemPrompt } from './system';\n 27→import { Flag } from '../flag/flag';\n 28→import { Token } from '../util/token';\n 29→\n 30→import PROMPT_PLAN from '../session/prompt/plan.txt';\n 31→import BUILD_SWITCH from '../session/prompt/build-switch.txt';\n 32→import { defer } from '../util/defer';\n 33→import { mergeDeep, pipe } from 'remeda';\n 34→import { ToolRegistry } from '../tool/registry';\n 35→import { Wildcard } from '../util/wildcard';\n 36→import { MCP } from '../mcp';\n 37→import { withTimeout } from '../util/timeout';\n 38→import { ReadTool } from '../tool/read';\n 39→import { ListTool } from '../tool/ls';\n 40→import { FileTime } from '../file/time';\n 41→import { ulid } from 'ulid';\n 42→import { spawn } from 'child_process';\n 43→import { Command } from '../command';\n 44→import { $, fileURLToPath } from 'bun';\n 45→import { ConfigMarkdown } from '../config/markdown';\n 46→import { SessionSummary } from './summary';\n 47→import { NamedError } from '../util/error';\n 48→import { fn } from '../util/fn';\n 49→import { SessionProcessor } from './processor';\n 50→import { TaskTool } from '../tool/task';\n 51→import { SessionStatus } from './status';\n 52→\n 53→export namespace SessionPrompt {\n 54→ const log = Log.create({ service: 'session.prompt' });\n 55→ export const OUTPUT_TOKEN_MAX = 32_000;\n 56→\n 57→ const state = Instance.state(\n 58→ () => {\n 59→ const data: Record<\n 60→ string,\n 61→ {\n 62→ abort: AbortController;\n 63→ callbacks: {\n 64→ resolve(input: MessageV2.WithParts): void;\n 65→ reject(): void;\n 66→ }[];\n 67→ }\n 68→ > = {};\n 69→ return data;\n 70→ },\n 71→ async (current) => {\n 72→ for (const item of Object.values(current)) {\n 73→ item.abort.abort();\n 74→ }\n 75→ }\n 76→ );\n 77→\n 78→ export function assertNotBusy(sessionID: string) {\n 79→ const match = state()[sessionID];\n 80→ if (match) throw new Session.BusyError(sessionID);\n 81→ }\n 82→\n 83→ export const PromptInput = z.object({\n 84→ sessionID: Identifier.schema('session'),\n 85→ messageID: Identifier.schema('message').optional(),\n 86→ model: z\n 87→ .object({\n 88→ providerID: z.string(),\n 89→ modelID: z.string(),\n 90→ })\n 91→ .optional(),\n 92→ agent: z.string().optional(),\n 93→ noReply: z.boolean().optional(),\n 94→ system: z.string().optional(),\n 95→ appendSystem: z.string().optional(),\n 96→ tools: z.record(z.string(), z.boolean()).optional(),\n 97→ parts: z.array(\n 98→ z.discriminatedUnion('type', [\n 99→ MessageV2.TextPart.omit({\n 100→ messageID: true,\n 101→ sessionID: true,\n 102→ })\n 103→ .partial({\n 104→ id: true,\n 105→ })\n 106→ .meta({\n 107→ ref: 'TextPartInput',\n 108→ }),\n 109→ MessageV2.FilePart.omit({\n 110→ messageID: true,\n 111→ sessionID: true,\n 112→ })\n 113→ .partial({\n 114→ id: true,\n 115→ })\n 116→ .meta({\n 117→ ref: 'FilePartInput',\n 118→ }),\n 119→ MessageV2.AgentPart.omit({\n 120→ messageID: true,\n 121→ sessionID: true,\n 122→ })\n 123→ .partial({\n 124→ id: true,\n 125→ })\n 126→ .meta({\n 127→ ref: 'AgentPartInput',\n 128→ }),\n 129→ MessageV2.SubtaskPart.omit({\n 130→ messageID: true,\n 131→ sessionID: true,\n 132→ })\n 133→ .partial({\n 134→ id: true,\n 135→ })\n 136→ .meta({\n 137→ ref: 'SubtaskPartInput',\n 138→ }),\n 139→ ])\n 140→ ),\n 141→ });\n 142→ export type PromptInput = z.infer<typeof PromptInput>;\n 143→\n 144→ export async function resolvePromptParts(\n 145→ template: string\n 146→ ): Promise<PromptInput['parts']> {\n 147→ const parts: PromptInput['parts'] = [\n 148→ {\n 149→ type: 'text',\n 150→ text: template,\n 151→ },\n 152→ ];\n 153→ const files = ConfigMarkdown.files(template);\n 154→ await Promise.all(\n 155→ files.map(async (match) => {\n 156→ const name = match[1];\n 157→ const filepath = name.startsWith('~/')\n 158→ ? path.join(os.homedir(), name.slice(2))\n 159→ : path.resolve(Instance.worktree, name);\n 160→\n 161→ const stats = await fs.stat(filepath).catch(() => undefined);\n 162→ if (!stats) {\n 163→ const agent = await Agent.get(name);\n 164→ if (agent) {\n 165→ parts.push({\n 166→ type: 'agent',\n 167→ name: agent.name,\n 168→ });\n 169→ }\n 170→ return;\n 171→ }\n 172→\n 173→ if (stats.isDirectory()) {\n 174→ parts.push({\n 175→ type: 'file',\n 176→ url: `file://${filepath}`,\n 177→ filename: name,\n 178→ mime: 'application/x-directory',\n 179→ });\n 180→ return;\n 181→ }\n 182→\n 183→ parts.push({\n 184→ type: 'file',\n 185→ url: `file://${filepath}`,\n 186→ filename: name,\n 187→ mime: 'text/plain',\n 188→ });\n 189→ })\n 190→ );\n 191→ return parts;\n 192→ }\n 193→\n 194→ export const prompt = fn(PromptInput, async (input) => {\n 195→ const session = await Session.get(input.sessionID);\n 196→ await SessionRevert.cleanup(session);\n 197→\n 198→ const message = await createUserMessage(input);\n 199→ await Session.touch(input.sessionID);\n 200→\n 201→ if (input.noReply) {\n 202→ return message;\n 203→ }\n 204→\n 205→ return loop(input.sessionID);\n 206→ });\n 207→\n 208→ function start(sessionID: string) {\n 209→ const s = state();\n 210→ if (s[sessionID]) return;\n 211→ const controller = new AbortController();\n 212→ s[sessionID] = {\n 213→ abort: controller,\n 214→ callbacks: [],\n 215→ };\n 216→ return controller.signal;\n 217→ }\n 218→\n 219→ export function cancel(sessionID: string) {\n 220→ log.info(() => ({ message: 'cancel', sessionID }));\n 221→ const s = state();\n 222→ const match = s[sessionID];\n 223→ if (!match) return;\n 224→ match.abort.abort();\n 225→ for (const item of match.callbacks) {\n 226→ item.reject();\n 227→ }\n 228→ delete s[sessionID];\n 229→ SessionStatus.set(sessionID, { type: 'idle' });\n 230→ return;\n 231→ }\n 232→\n 233→ export const loop = fn(Identifier.schema('session'), async (sessionID) => {\n 234→ const abort = start(sessionID);\n 235→ if (!abort) {\n 236→ return new Promise<MessageV2.WithParts>((resolve, reject) => {\n 237→ const callbacks = state()[sessionID].callbacks;\n 238→ callbacks.push({ resolve, reject });\n 239→ });\n 240→ }\n 241→\n 242→ using _ = defer(() => cancel(sessionID));\n 243→\n 244→ let step = 0;\n 245→ while (true) {\n 246→ log.info(() => ({ message: 'loop', step, sessionID }));\n 247→ if (abort.aborted) break;\n 248→ let msgs = await MessageV2.filterCompacted(MessageV2.stream(sessionID));\n 249→\n 250→ let lastUser: MessageV2.User | undefined;\n 251→ let lastAssistant: MessageV2.Assistant | undefined;\n 252→ let lastFinished: MessageV2.Assistant | undefined;\n 253→ let tasks: (MessageV2.CompactionPart | MessageV2.SubtaskPart)[] = [];\n 254→ for (let i = msgs.length - 1; i >= 0; i--) {\n 255→ const msg = msgs[i];\n 256→ if (!lastUser && msg.info.role === 'user')\n 257→ lastUser = msg.info as MessageV2.User;\n 258→ if (!lastAssistant && msg.info.role === 'assistant')\n 259→ lastAssistant = msg.info as MessageV2.Assistant;\n 260→ if (!lastFinished && msg.info.role === 'assistant' && msg.info.finish)\n 261→ lastFinished = msg.info as MessageV2.Assistant;\n 262→ if (lastUser && lastFinished) break;\n 263→ const task = msg.parts.filter(\n 264→ (part) => part.type === 'compaction' || part.type === 'subtask'\n 265→ );\n 266→ if (task && !lastFinished) {\n 267→ tasks.push(...task);\n 268→ }\n 269→ }\n 270→\n 271→ if (!lastUser)\n 272→ throw new Error(\n 273→ 'No user message found in stream. This should never happen.'\n 274→ );\n 275→ if (\n 276→ lastAssistant?.finish &&\n 277→ lastAssistant.finish !== 'tool-calls' &&\n 278→ lastUser.id < lastAssistant.id\n 279→ ) {\n 280→ log.info(() => ({ message: 'exiting loop', sessionID }));\n 281→ break;\n 282→ }\n 283→\n 284→ step++;\n 285→ if (step === 1)\n 286→ ensureTitle({\n 287→ session: await Session.get(sessionID),\n 288→ modelID: lastUser.model.modelID,\n 289→ providerID: lastUser.model.providerID,\n 290→ message: msgs.find((m) => m.info.role === 'user')!,\n 291→ history: msgs,\n 292→ });\n 293→\n 294→ let model;\n 295→ try {\n 296→ model = await Provider.getModel(\n 297→ lastUser.model.providerID,\n 298→ lastUser.model.modelID\n 299→ );\n 300→ } catch (error) {\n 301→ // When an explicit provider is specified, do NOT silently fall back to default\n 302→ // This ensures user's explicit choice is respected\n 303→ // If the user wants a fallback, they should not specify a provider\n 304→ log.error(() => ({\n 305→ message:\n 306→ 'Failed to initialize specified model - NOT falling back to default (explicit provider specified)',\n 307→ providerID: lastUser.model.providerID,\n 308→ modelID: lastUser.model.modelID,\n 309→ error: error instanceof Error ? error.message : String(error),\n 310→ }));\n 311→ // Re-throw the error so it can be handled by the caller\n 312→ throw error;\n 313→ }\n 314→ const task = tasks.pop();\n 315→\n 316→ // pending subtask\n 317→ // TODO: centralize \"invoke tool\" logic\n 318→ if (task?.type === 'subtask') {\n 319→ const taskTool = await TaskTool.init();\n 320→ const assistantMessage = (await Session.updateMessage({\n 321→ id: Identifier.ascending('message'),\n 322→ role: 'assistant',\n 323→ parentID: lastUser.id,\n 324→ sessionID,\n 325→ mode: task.agent,\n 326→ path: {\n 327→ cwd: Instance.directory,\n 328→ root: Instance.worktree,\n 329→ },\n 330→ cost: 0,\n 331→ tokens: {\n 332→ input: 0,\n 333→ output: 0,\n 334→ reasoning: 0,\n 335→ cache: { read: 0, write: 0 },\n 336→ },\n 337→ modelID: model.modelID,\n 338→ providerID: model.providerID,\n 339→ time: {\n 340→ created: Date.now(),\n 341→ },\n 342→ })) as MessageV2.Assistant;\n 343→ let part = (await Session.updatePart({\n 344→ id: Identifier.ascending('part'),\n 345→ messageID: assistantMessage.id,\n 346→ sessionID: assistantMessage.sessionID,\n 347→ type: 'tool',\n 348→ callID: ulid(),\n 349→ tool: TaskTool.id,\n 350→ state: {\n 351→ status: 'running',\n 352→ input: {\n 353→ prompt: task.prompt,\n 354→ description: task.description,\n 355→ subagent_type: task.agent,\n 356→ },\n 357→ time: {\n 358→ start: Date.now(),\n 359→ },\n 360→ },\n 361→ })) as MessageV2.ToolPart;\n 362→ const result = await taskTool\n 363→ .execute(\n 364→ {\n 365→ prompt: task.prompt,\n 366→ description: task.description,\n 367→ subagent_type: task.agent,\n 368→ },\n 369→ {\n 370→ agent: task.agent,\n 371→ messageID: assistantMessage.id,\n 372→ sessionID: sessionID,\n 373→ abort,\n 374→ async metadata(input) {\n 375→ await Session.updatePart({\n 376→ ...part,\n 377→ type: 'tool',\n 378→ state: {\n 379→ ...part.state,\n 380→ ...input,\n 381→ },\n 382→ } satisfies MessageV2.ToolPart);\n 383→ },\n 384→ }\n 385→ )\n 386→ .catch(() => {});\n 387→ assistantMessage.finish = 'tool-calls';\n 388→ assistantMessage.time.completed = Date.now();\n 389→ await Session.updateMessage(assistantMessage);\n 390→ if (result && part.state.status === 'running') {\n 391→ await Session.updatePart({\n 392→ ...part,\n 393→ state: {\n 394→ status: 'completed',\n 395→ input: part.state.input,\n 396→ title: result.title,\n 397→ metadata: result.metadata,\n 398→ output: result.output,\n 399→ attachments: result.attachments,\n 400→ time: {\n 401→ ...part.state.time,\n 402→ end: Date.now(),\n 403→ },\n 404→ },\n 405→ } satisfies MessageV2.ToolPart);\n 406→ }\n 407→ if (!result) {\n 408→ await Session.updatePart({\n 409→ ...part,\n 410→ state: {\n 411→ status: 'error',\n 412→ error: 'Tool execution failed',\n 413→ time: {\n 414→ start:\n 415→ part.state.status === 'running'\n 416→ ? part.state.time.start\n 417→ : Date.now(),\n 418→ end: Date.now(),\n 419→ },\n 420→ metadata: part.metadata,\n 421→ input: part.state.input,\n 422→ },\n 423→ } satisfies MessageV2.ToolPart);\n 424→ }\n 425→ continue;\n 426→ }\n 427→\n 428→ // pending compaction\n 429→ if (task?.type === 'compaction') {\n 430→ const result = await SessionCompaction.process({\n 431→ messages: msgs,\n 432→ parentID: lastUser.id,\n 433→ abort,\n 434→ model: {\n 435→ providerID: model.providerID,\n 436→ modelID: model.modelID,\n 437→ },\n 438→ sessionID,\n 439→ });\n 440→ if (result === 'stop') break;\n 441→ continue;\n 442→ }\n 443→\n 444→ // context overflow, needs compaction\n 445→ if (\n 446→ lastFinished &&\n 447→ lastFinished.summary !== true &&\n 448→ SessionCompaction.isOverflow({\n 449→ tokens: lastFinished.tokens,\n 450→ model: model.info ?? { id: model.modelID },\n 451→ })\n 452→ ) {\n 453→ await SessionCompaction.create({\n 454→ sessionID,\n 455→ model: lastUser.model,\n 456→ });\n 457→ continue;\n 458→ }\n 459→\n 460→ // normal processing\n 461→ const agent = await Agent.get(lastUser.agent);\n 462→ msgs = insertReminders({\n 463→ messages: msgs,\n 464→ agent,\n 465→ });\n 466→ const processor = SessionProcessor.create({\n 467→ assistantMessage: (await Session.updateMessage({\n 468→ id: Identifier.ascending('message'),\n 469→ parentID: lastUser.id,\n 470→ role: 'assistant',\n 471→ mode: agent.name,\n 472→ path: {\n 473→ cwd: Instance.directory,\n 474→ root: Instance.worktree,\n 475→ },\n 476→ cost: 0,\n 477→ tokens: {\n 478→ input: 0,\n 479→ output: 0,\n 480→ reasoning: 0,\n 481→ cache: { read: 0, write: 0 },\n 482→ },\n 483→ modelID: model.modelID,\n 484→ providerID: model.providerID,\n 485→ time: {\n 486→ created: Date.now(),\n 487→ },\n 488→ sessionID,\n 489→ })) as MessageV2.Assistant,\n 490→ sessionID: sessionID,\n 491→ model: model.info ?? { id: model.modelID },\n 492→ providerID: model.providerID,\n 493→ abort,\n 494→ });\n 495→ const system = await resolveSystemPrompt({\n 496→ providerID: model.providerID,\n 497→ modelID: model.info?.id ?? model.modelID,\n 498→ agent,\n 499→ system: lastUser.system,\n 500→ appendSystem: lastUser.appendSystem,\n 501→ });\n 502→ const tools = await resolveTools({\n 503→ agent,\n 504→ sessionID,\n 505→ model: lastUser.model,\n 506→ tools: lastUser.tools,\n 507→ processor,\n 508→ });\n 509→ const params = {\n 510→ temperature:\n 511→ (model.info?.temperature ?? false)\n 512→ ? (agent.temperature ??\n 513→ ProviderTransform.temperature(model.providerID, model.modelID))\n 514→ : undefined,\n 515→ topP:\n 516→ agent.topP ?? ProviderTransform.topP(model.providerID, model.modelID),\n 517→ options: {\n 518→ ...ProviderTransform.options(\n 519→ model.providerID,\n 520→ model.modelID,\n 521→ model.npm ?? '',\n 522→ sessionID\n 523→ ),\n 524→ ...(model.info?.options ?? {}),\n 525→ ...agent.options,\n 526→ },\n 527→ };\n 528→\n 529→ if (step === 1) {\n 530→ SessionSummary.summarize({\n 531→ sessionID: sessionID,\n 532→ messageID: lastUser.id,\n 533→ });\n 534→ }\n 535→\n 536→ // Pre-convert messages to ModelMessage format (async in AI SDK 6.0+)\n 537→ const modelMessages = await MessageV2.toModelMessage(\n 538→ msgs.filter((m) => {\n 539→ if (m.info.role !== 'assistant' || m.info.error === undefined) {\n 540→ return true;\n 541→ }\n 542→ if (\n 543→ MessageV2.AbortedError.isInstance(m.info.error) &&\n 544→ m.parts.some(\n 545→ (part) => part.type !== 'step-start' && part.type !== 'reasoning'\n 546→ )\n 547→ ) {\n 548→ return true;\n 549→ }\n 550→\n 551→ return false;\n 552→ })\n 553→ );\n 554→ // Defensive check: ensure modelMessages is iterable (AI SDK 6.0.1 compatibility fix)\n 555→ const safeModelMessages = Array.isArray(modelMessages)\n 556→ ? modelMessages\n 557→ : [];\n 558→\n 559→ // Verbose logging: output request details for debugging\n 560→ if (Flag.OPENCODE_VERBOSE) {\n 561→ const systemTokens = system.reduce(\n 562→ (acc, s) => acc + Token.estimate(s),\n 563→ 0\n 564→ );\n 565→ const userMessages = msgs.filter((m) => m.info.role === 'user');\n 566→ const userTokens = userMessages.reduce(\n 567→ (acc, m) =>\n 568→ acc +\n 569→ m.parts.reduce(\n 570→ (a, p) => a + Token.estimate('text' in p ? p.text || '' : ''),\n 571→ 0\n 572→ ),\n 573→ 0\n 574→ );\n 575→ const totalEstimatedTokens = systemTokens + userTokens;\n 576→\n 577→ log.info(() => ({\n 578→ message: '=== VERBOSE: API Request Details ===',\n 579→ }));\n 580→ log.info(() => ({\n 581→ message: 'Model',\n 582→ model: `${model.providerID}/${model.modelID}`,\n 583→ }));\n 584→ log.info(() => ({ message: 'Session ID', sessionID }));\n 585→ log.info(() => ({ message: 'Agent', agent: agent.name }));\n 586→ log.info(() => ({\n 587→ message: 'Temperature',\n 588→ temperature: params.temperature ?? 'default',\n 589→ }));\n 590→ log.info(() => ({\n 591→ message: 'Top P',\n 592→ topP: params.topP ?? 'default',\n 593→ }));\n 594→ log.info(() => ({\n 595→ message: 'Active Tools',\n 596→ tools: Object.keys(tools).filter((x) => x !== 'invalid'),\n 597→ }));\n 598→ log.info(() => ({ message: '--- System Prompt ---' }));\n 599→ for (let i = 0; i < system.length; i++) {\n 600→ const tokens = Token.estimate(system[i]);\n 601→ log.info(() => ({\n 602→ message: 'System Message',\n 603→ index: i + 1,\n 604→ tokens,\n 605→ }));\n 606→ log.info(() => ({\n 607→ message: 'System Message Content',\n 608→ content:\n 609→ system[i].slice(0, 2000) +\n 610→ (system[i].length > 2000 ? '... [truncated]' : ''),\n 611→ }));\n 612→ }\n 613→ log.info(() => ({ message: '--- Token Summary ---' }));\n 614→ log.info(() => ({\n 615→ message: 'System prompt tokens (estimated)',\n 616→ systemTokens,\n 617→ }));\n 618→ log.info(() => ({\n 619→ message: 'User message tokens (estimated)',\n 620→ userTokens,\n 621→ }));\n 622→ log.info(() => ({\n 623→ message: 'Total estimated tokens',\n 624→ totalEstimatedTokens,\n 625→ }));\n 626→ log.info(() => ({\n 627→ message: 'Model context limit',\n 628→ contextLimit: model.info?.limit?.context || 'unknown',\n 629→ }));\n 630→ log.info(() => ({\n 631→ message: 'Model output limit',\n 632→ outputLimit: model.info?.limit?.output || 'unknown',\n 633→ }));\n 634→ log.info(() => ({ message: '=== END VERBOSE ===' }));\n 635→ }\n 636→\n 637→ const result = await processor.process(() =>\n 638→ streamText({\n 639→ timeout: {\n 640→ chunkMs: Flag.STREAM_CHUNK_TIMEOUT_MS(),\n 641→ stepMs: Flag.STREAM_STEP_TIMEOUT_MS(),\n 642→ },\n 643→ onError(error) {\n 644→ log.error(() => ({ message: 'stream error', error }));\n 645→ },\n 646→ async experimental_repairToolCall(input) {\n 647→ const lower = input.toolCall.toolName.toLowerCase();\n 648→ if (lower !== input.toolCall.toolName && tools[lower]) {\n 649→ log.info(() => ({\n 650→ message: 'repairing tool call',\n 651→ tool: input.toolCall.toolName,\n 652→ repaired: lower,\n 653→ }));\n 654→ return {\n 655→ ...input.toolCall,\n 656→ toolName: lower,\n 657→ };\n 658→ }\n 659→ return {\n 660→ ...input.toolCall,\n 661→ input: JSON.stringify({\n 662→ tool: input.toolCall.toolName,\n 663→ error: input.error.message,\n 664→ }),\n 665→ toolName: 'invalid',\n 666→ };\n 667→ },\n 668→ headers: {\n 669→ ...(model.providerID === 'opencode'\n 670→ ? {\n 671→ 'x-opencode-session': sessionID,\n 672→ 'x-opencode-request': lastUser.id,\n 673→ }\n 674→ : undefined),\n 675→ ...(model.info?.headers ?? {}),\n 676→ },\n 677→ // set to 0, we handle loop\n 678→ maxRetries: 0,\n 679→ activeTools: Object.keys(tools).filter((x) => x !== 'invalid'),\n 680→ maxOutputTokens: ProviderTransform.maxOutputTokens(\n 681→ model.providerID,\n 682→ params.options,\n 683→ model.info?.limit?.output ?? 100000,\n 684→ OUTPUT_TOKEN_MAX\n 685→ ),\n 686→ abortSignal: abort,\n 687→ providerOptions: ProviderTransform.providerOptions(\n 688→ model.npm,\n 689→ model.providerID,\n 690→ params.options\n 691→ ),\n 692→ stopWhen: stepCountIs(1),\n 693→ temperature: params.temperature,\n 694→ topP: params.topP,\n 695→ messages: [\n 696→ ...system.map(\n 697→ (x): ModelMessage => ({\n 698→ role: 'system',\n 699→ content: x,\n 700→ })\n 701→ ),\n 702→ ...safeModelMessages,\n 703→ ],\n 704→ tools: model.info?.tool_call === false ? undefined : tools,\n 705→ model: wrapLanguageModel({\n 706→ model: model.language,\n 707→ middleware: [\n 708→ {\n 709→ async transformParams(args) {\n 710→ if (args.type === 'stream') {\n 711→ // @ts-expect-error\n 712→ args.params.prompt = ProviderTransform.message(\n 713→ args.params.prompt,\n 714→ model.providerID,\n 715→ model.modelID\n 716→ );\n 717→ }\n 718→ return args.params;\n 719→ },\n 720→ },\n 721→ ],\n 722→ }),\n 723→ })\n 724→ );\n 725→ if (result === 'stop') break;\n 726→ continue;\n 727→ }\n 728→ SessionCompaction.prune({ sessionID });\n 729→ for await (const item of MessageV2.stream(sessionID)) {\n 730→ if (item.info.role === 'user') continue;\n 731→ const queued = state()[sessionID]?.callbacks ?? [];\n 732→ for (const q of queued) {\n 733→ q.resolve(item);\n 734→ }\n 735→ return item;\n 736→ }\n 737→ throw new Error('Impossible');\n 738→ });\n 739→\n 740→ async function resolveModel(input: {\n 741→ model: PromptInput['model'];\n 742→ agent: Agent.Info;\n 743→ }) {\n 744→ if (input.model) {\n 745→ return input.model;\n 746→ }\n 747→ if (input.agent.model) {\n 748→ return input.agent.model;\n 749→ }\n 750→ return Provider.defaultModel();\n 751→ }\n 752→\n 753→ async function resolveSystemPrompt(input: {\n 754→ system?: string;\n 755→ appendSystem?: string;\n 756→ agent: Agent.Info;\n 757→ providerID: string;\n 758→ modelID: string;\n 759→ }) {\n 760→ // When --system-message is provided, use it exclusively without any\n 761→ // additional context (no environment, no custom instructions, no header).\n 762→ // This is critical for models with low token limits (e.g., qwen3-32b with 6K TPM).\n 763→ //\n 764→ // Exception: For Anthropic providers using OAuth credentials, we must preserve\n 765→ // the \"You are Claude Code\" header when the system message doesn't contain it.\n 766→ // This header is required for OAuth token authorization.\n 767→ // See: https://github.com/link-assistant/agent/issues/62\n 768→ if (input.system !== undefined) {\n 769→ // Filter out empty strings to prevent cache_control errors\n 770→ if (input.system.trim() === '') {\n 771→ // For Anthropic providers with empty system message, preserve the OAuth header\n 772→ if (input.providerID.includes('anthropic')) {\n 773→ return SystemPrompt.header(input.providerID);\n 774→ }\n 775→ return [];\n 776→ }\n 777→\n 778→ // For Anthropic providers, ensure \"Claude Code\" header is present\n 779→ if (input.providerID.includes('anthropic')) {\n 780→ const hasClaudeCode = input.system.includes('Claude Code');\n 781→ if (!hasClaudeCode) {\n 782→ // Prepend the OAuth header if not present\n 783→ return [...SystemPrompt.header(input.providerID), input.system];\n 784→ }\n 785→ }\n 786→\n 787→ return [input.system];\n 788→ }\n 789→\n 790→ let system = SystemPrompt.header(input.providerID);\n 791→ system.push(\n 792→ ...(() => {\n 793→ const base = input.agent.prompt\n 794→ ? [input.agent.prompt]\n 795→ : SystemPrompt.provider(input.modelID);\n 796→ if (input.appendSystem) {\n 797→ return [base[0] + '\\n' + input.appendSystem];\n 798→ }\n 799→ return base;\n 800→ })()\n 801→ );\n 802→ system.push(...(await SystemPrompt.environment()));\n 803→ system.push(...(await SystemPrompt.custom()));\n 804→\n 805→ // max 2 system prompt messages for caching purposes\n 806→ const [first, ...rest] = system;\n 807→ system = [first, rest.join('\\n')];\n 808→ return system;\n 809→ }\n 810→\n 811→ async function resolveTools(input: {\n 812→ agent: Agent.Info;\n 813→ model: {\n 814→ providerID: string;\n 815→ modelID: string;\n 816→ };\n 817→ sessionID: string;\n 818→ tools?: Record<string, boolean>;\n 819→ processor: SessionProcessor.Info;\n 820→ }) {\n 821→ const tools: Record<string, AITool> = {};\n 822→ const enabledTools = pipe(\n 823→ input.agent.tools,\n 824→ mergeDeep(\n 825→ await ToolRegistry.enabled(\n 826→ input.model.providerID,\n 827→ input.model.modelID,\n 828→ input.agent\n 829→ )\n 830→ ),\n 831→ mergeDeep(input.tools ?? {})\n 832→ );\n 833→ for (const item of await ToolRegistry.tools(\n 834→ input.model.providerID,\n 835→ input.model.modelID\n 836→ )) {\n 837→ if (Wildcard.all(item.id, enabledTools) === false) continue;\n 838→ const schema = ProviderTransform.schema(\n 839→ input.model.providerID,\n 840→ input.model.modelID,\n 841→ z.toJSONSchema(item.parameters)\n 842→ );\n 843→ tools[item.id] = tool({\n 844→ id: item.id as any,\n 845→ description: item.description,\n 846→ inputSchema: jsonSchema(schema as any),\n 847→ async execute(args, options) {\n 848→ const result = await item.execute(args, {\n 849→ sessionID: input.sessionID,\n 850→ abort: options.abortSignal!,\n 851→ messageID: input.processor.message.id,\n 852→ callID: options.toolCallId,\n 853→ extra: input.model,\n 854→ agent: input.agent.name,\n 855→ metadata: async (val) => {\n 856→ const match = input.processor.partFromToolCall(\n 857→ options.toolCallId\n 858→ );\n 859→ if (match && match.state.status === 'running') {\n 860→ await Session.updatePart({\n 861→ ...match,\n 862→ state: {\n 863→ title: val.title,\n 864→ metadata: val.metadata,\n 865→ status: 'running',\n 866→ input: args,\n 867→ time: {\n 868→ start: Date.now(),\n 869→ },\n 870→ },\n 871→ });\n 872→ }\n 873→ },\n 874→ });\n 875→ return result;\n 876→ },\n 877→ toModelOutput(result) {\n 878→ return {\n 879→ type: 'text',\n 880→ value: result.output,\n 881→ };\n 882→ },\n 883→ });\n 884→ }\n 885→\n 886→ for (const [key, item] of Object.entries(await MCP.tools())) {\n 887→ if (Wildcard.all(key, enabledTools) === false) continue;\n 888→ const execute = item.execute;\n 889→ if (!execute) continue;\n 890→ item.execute = async (args, opts) => {\n 891→ // Get timeout for this specific tool\n 892→ const timeout = await MCP.getToolTimeout(key);\n 893→\n 894→ // Wrap the execute call with timeout to prevent indefinite hangs\n 895→ let result;\n 896→ try {\n 897→ result = await withTimeout(execute(args, opts), timeout);\n 898→ } catch (error) {\n 899→ // Check if it's a timeout error\n 900→ if (\n 901→ error instanceof Error &&\n 902→ error.message.includes('timed out after')\n 903→ ) {\n 904→ const timeoutSec = Math.round(timeout / 1000);\n 905→ throw new Error(\n 906→ `MCP tool \"${key}\" timed out after ${timeoutSec} seconds. ` +\n 907→ `The operation did not complete within the configured timeout. ` +\n 908→ `You can increase the timeout in the MCP server configuration using tool_call_timeout or tool_timeouts.`\n 909→ );\n 910→ }\n 911→ throw error;\n 912→ }\n 913→\n 914→ const textParts: string[] = [];\n 915→ const attachments: MessageV2.FilePart[] = [];\n 916→\n 917→ for (const item of result.content) {\n 918→ if (item.type === 'text') {\n 919→ textParts.push(item.text);\n 920→ } else if (item.type === 'image') {\n 921→ attachments.push({\n 922→ id: Identifier.ascending('part'),\n 923→ sessionID: input.sessionID,\n 924→ messageID: input.processor.message.id,\n 925→ type: 'file',\n 926→ mime: item.mimeType,\n 927→ url: `data:${item.mimeType};base64,${item.data}`,\n 928→ });\n 929→ }\n 930→ // Add support for other types if needed\n 931→ }\n 932→\n 933→ return {\n 934→ title: '',\n 935→ metadata: result.metadata ?? {},\n 936→ output: textParts.join('\\n\\n'),\n 937→ attachments,\n 938→ content: result.content, // directly return content to preserve ordering when outputting to model\n 939→ };\n 940→ };\n 941→ item.toModelOutput = (result) => {\n 942→ return {\n 943→ type: 'text',\n 944→ value: result.output,\n 945→ };\n 946→ };\n 947→ tools[key] = item;\n 948→ }\n 949→ return tools;\n 950→ }\n 951→\n 952→ async function createUserMessage(input: PromptInput) {\n 953→ const agent = await Agent.get(input.agent ?? 'build');\n 954→ const info: MessageV2.Info = {\n 955→ id: input.messageID ?? Identifier.ascending('message'),\n 956→ role: 'user',\n 957→ sessionID: input.sessionID,\n 958→ time: {\n 959→ created: Date.now(),\n 960→ },\n 961→ tools: input.tools,\n 962→ system: input.system,\n 963→ appendSystem: input.appendSystem,\n 964→ agent: agent.name,\n 965→ model: await resolveModel({\n 966→ model: input.model,\n 967→ agent,\n 968→ }),\n 969→ };\n 970→\n 971→ const parts = await Promise.all(\n 972→ input.parts.map(async (part): Promise<MessageV2.Part[]> => {\n 973→ if (part.type === 'file') {\n 974→ const url = new URL(part.url);\n 975→ switch (url.protocol) {\n 976→ case 'data:':\n 977→ if (part.mime === 'text/plain') {\n 978→ return [\n 979→ {\n 980→ id: Identifier.ascending('part'),\n 981→ messageID: info.id,\n 982→ sessionID: input.sessionID,\n 983→ type: 'text',\n 984→ synthetic: true,\n 985→ text: `Called the Read tool with the following input: ${JSON.stringify({ filePath: part.filename })}`,\n 986→ },\n 987→ {\n 988→ id: Identifier.ascending('part'),\n 989→ messageID: info.id,\n 990→ sessionID: input.sessionID,\n 991→ type: 'text',\n 992→ synthetic: true,\n 993→ text: Buffer.from(part.url, 'base64url').toString(),\n 994→ },\n 995→ {\n 996→ ...part,\n 997→ id: part.id ?? Identifier.ascending('part'),\n 998→ messageID: info.id,\n 999→ sessionID: input.sessionID,\n 1000→ },\n 1001→ ];\n 1002→ }\n 1003→ break;\n 1004→ case 'file:':\n 1005→ log.info(() => ({ message: 'file', mime: part.mime }));\n 1006→ // have to normalize, symbol search returns absolute paths\n 1007→ // Decode the pathname since URL constructor doesn't automatically decode it\n 1008→ const filepath = fileURLToPath(part.url);\n 1009→ const stat = await Bun.file(filepath).stat();\n 1010→\n 1011→ if (stat.isDirectory()) {\n 1012→ part.mime = 'application/x-directory';\n 1013→ }\n 1014→\n 1015→ if (part.mime === 'text/plain') {\n 1016→ let offset: number | undefined = undefined;\n 1017→ let limit: number | undefined = undefined;\n 1018→ const range = {\n 1019→ start: url.searchParams.get('start'),\n 1020→ end: url.searchParams.get('end'),\n 1021→ };\n 1022→ if (range.start != null) {\n 1023→ const filePathURI = part.url.split('?')[0];\n 1024→ let start = parseInt(range.start);\n 1025→ let end = range.end ? parseInt(range.end) : undefined;\n 1026→ offset = Math.max(start - 1, 0);\n 1027→ if (end) {\n 1028→ limit = end - offset;\n 1029→ }\n 1030→ }\n 1031→ const args = { filePath: filepath, offset, limit };\n 1032→\n 1033→ const pieces: MessageV2.Part[] = [\n 1034→ {\n 1035→ id: Identifier.ascending('part'),\n 1036→ messageID: info.id,\n 1037→ sessionID: input.sessionID,\n 1038→ type: 'text',\n 1039→ synthetic: true,\n 1040→ text: `Called the Read tool with the following input: ${JSON.stringify(args)}`,\n 1041→ },\n 1042→ ];\n 1043→\n 1044→ await ReadTool.init()\n 1045→ .then(async (t) => {\n 1046→ const result = await t.execute(args, {\n 1047→ sessionID: input.sessionID,\n 1048→ abort: new AbortController().signal,\n 1049→ agent: input.agent!,\n 1050→ messageID: info.id,\n 1051→ extra: { bypassCwdCheck: true, ...info.model },\n 1052→ metadata: async () => {},\n 1053→ });\n 1054→ pieces.push(\n 1055→ {\n 1056→ id: Identifier.ascending('part'),\n 1057→ messageID: info.id,\n 1058→ sessionID: input.sessionID,\n 1059→ type: 'text',\n 1060→ synthetic: true,\n 1061→ text: result.output,\n 1062→ },\n 1063→ {\n 1064→ ...part,\n 1065→ id: part.id ?? Identifier.ascending('part'),\n 1066→ messageID: info.id,\n 1067→ sessionID: input.sessionID,\n 1068→ }\n 1069→ );\n 1070→ })\n 1071→ .catch((error) => {\n 1072→ log.error(() => ({\n 1073→ message: 'failed to read file',\n 1074→ error,\n 1075→ }));\n 1076→ const message =\n 1077→ error instanceof Error ? error.message : error.toString();\n 1078→ Bus.publish(Session.Event.Error, {\n 1079→ sessionID: input.sessionID,\n 1080→ error: new NamedError.Unknown({\n 1081→ message,\n 1082→ }).toObject(),\n 1083→ });\n 1084→ pieces.push({\n 1085→ id: Identifier.ascending('part'),\n 1086→ messageID: info.id,\n 1087→ sessionID: input.sessionID,\n 1088→ type: 'text',\n 1089→ synthetic: true,\n 1090→ text: `Read tool failed to read ${filepath} with the following error: ${message}`,\n 1091→ });\n 1092→ });\n 1093→\n 1094→ return pieces;\n 1095→ }\n 1096→\n 1097→ if (part.mime === 'application/x-directory') {\n 1098→ const args = { path: filepath };\n 1099→ const result = await ListTool.init().then((t) =>\n 1100→ t.execute(args, {\n 1101→ sessionID: input.sessionID,\n 1102→ abort: new AbortController().signal,\n 1103→ agent: input.agent!,\n 1104→ messageID: info.id,\n 1105→ extra: { bypassCwdCheck: true },\n 1106→ metadata: async () => {},\n 1107→ })\n 1108→ );\n 1109→ return [\n 1110→ {\n 1111→ id: Identifier.ascending('part'),\n 1112→ messageID: info.id,\n 1113→ sessionID: input.sessionID,\n 1114→ type: 'text',\n 1115→ synthetic: true,\n 1116→ text: `Called the list tool with the following input: ${JSON.stringify(args)}`,\n 1117→ },\n 1118→ {\n 1119→ id: Identifier.ascending('part'),\n 1120→ messageID: info.id,\n 1121→ sessionID: input.sessionID,\n 1122→ type: 'text',\n 1123→ synthetic: true,\n 1124→ text: result.output,\n 1125→ },\n 1126→ {\n 1127→ ...part,\n 1128→ id: part.id ?? Identifier.ascending('part'),\n 1129→ messageID: info.id,\n 1130→ sessionID: input.sessionID,\n 1131→ },\n 1132→ ];\n 1133→ }\n 1134→\n 1135→ const file = Bun.file(filepath);\n 1136→ FileTime.read(input.sessionID, filepath);\n 1137→ return [\n 1138→ {\n 1139→ id: Identifier.ascending('part'),\n 1140→ messageID: info.id,\n 1141→ sessionID: input.sessionID,\n 1142→ type: 'text',\n 1143→ text: `Called the Read tool with the following input: {\\\"filePath\\\":\\\"${filepath}\\\"}`,\n 1144→ synthetic: true,\n 1145→ },\n 1146→ {\n 1147→ id: part.id ?? Identifier.ascending('part'),\n 1148→ messageID: info.id,\n 1149→ sessionID: input.sessionID,\n 1150→ type: 'file',\n 1151→ url:\n 1152→ `data:${part.mime};base64,` +\n 1153→ Buffer.from(await file.bytes()).toString('base64'),\n 1154→ mime: part.mime,\n 1155→ filename: part.filename!,\n 1156→ source: part.source,\n 1157→ },\n 1158→ ];\n 1159→ }\n 1160→ }\n 1161→\n 1162→ if (part.type === 'agent') {\n 1163→ return [\n 1164→ {\n 1165→ id: Identifier.ascending('part'),\n 1166→ ...part,\n 1167→ messageID: info.id,\n 1168→ sessionID: input.sessionID,\n 1169→ },\n 1170→ {\n 1171→ id: Identifier.ascending('part'),\n 1172→ messageID: info.id,\n 1173→ sessionID: input.sessionID,\n 1174→ type: 'text',\n 1175→ synthetic: true,\n 1176→ text:\n 1177→ 'Use the above message and context to generate a prompt and call the task tool with subagent: ' +\n 1178→ part.name,\n 1179→ },\n 1180→ ];\n 1181→ }\n 1182→\n 1183→ return [\n 1184→ {\n 1185→ id: Identifier.ascending('part'),\n 1186→ ...part,\n 1187→ messageID: info.id,\n 1188→ sessionID: input.sessionID,\n 1189→ },\n 1190→ ];\n 1191→ })\n 1192→ ).then((x) => x.flat());\n 1193→\n 1194→ await Session.updateMessage(info);\n 1195→ for (const part of parts) {\n 1196→ await Session.updatePart(part);\n 1197→ }\n 1198→\n 1199→ return {\n 1200→ info,\n 1201→ parts,\n 1202→ };\n 1203→ }\n 1204→\n 1205→ function insertReminders(input: {\n 1206→ messages: MessageV2.WithParts[];\n 1207→ agent: Agent.Info;\n 1208→ }) {\n 1209→ const userMessage = input.messages.findLast(\n 1210→ (msg) => msg.info.role === 'user'\n 1211→ );\n 1212→ if (!userMessage) return input.messages;\n 1213→ if (input.agent.name === 'plan') {\n 1214→ userMessage.parts.push({\n 1215→ id: Identifier.ascending('part'),\n 1216→ messageID: userMessage.info.id,\n 1217→ sessionID: userMessage.info.sessionID,\n 1218→ type: 'text',\n 1219→ text: PROMPT_PLAN,\n 1220→ synthetic: true,\n 1221→ });\n 1222→ }\n 1223→ const wasPlan = input.messages.some(\n 1224→ (msg) => msg.info.role === 'assistant' && msg.info.mode === 'plan'\n 1225→ );\n 1226→ if (wasPlan && input.agent.name === 'build') {\n 1227→ userMessage.parts.push({\n 1228→ id: Identifier.ascending('part'),\n 1229→ messageID: userMessage.info.id,\n 1230→ sessionID: userMessage.info.sessionID,\n 1231→ type: 'text',\n 1232→ text: BUILD_SWITCH,\n 1233→ synthetic: true,\n 1234→ });\n 1235→ }\n 1236→ return input.messages;\n 1237→ }\n 1238→\n 1239→ export const ShellInput = z.object({\n 1240→ sessionID: Identifier.schema('session'),\n 1241→ agent: z.string(),\n 1242→ command: z.string(),\n 1243→ });\n 1244→ export type ShellInput = z.infer<typeof ShellInput>;\n 1245→ export async function shell(input: ShellInput) {\n 1246→ const session = await Session.get(input.sessionID);\n 1247→ if (session.revert) {\n 1248→ SessionRevert.cleanup(session);\n 1249→ }\n 1250→ const agent = await Agent.get(input.agent);\n 1251→ const model = await resolveModel({ agent, model: undefined });\n 1252→ const userMsg: MessageV2.User = {\n 1253→ id: Identifier.ascending('message'),\n 1254→ sessionID: input.sessionID,\n 1255→ time: {\n 1256→ created: Date.now(),\n 1257→ },\n 1258→ role: 'user',\n 1259→ agent: input.agent,\n 1260→ model: {\n 1261→ providerID: model.providerID,\n 1262→ modelID: model.modelID,\n 1263→ },\n 1264→ };\n 1265→ await Session.updateMessage(userMsg);\n 1266→ const userPart: MessageV2.Part = {\n 1267→ type: 'text',\n 1268→ id: Identifier.ascending('part'),\n 1269→ messageID: userMsg.id,\n 1270→ sessionID: input.sessionID,\n 1271→ text: 'The following tool was executed by the user',\n 1272→ synthetic: true,\n 1273→ };\n 1274→ await Session.updatePart(userPart);\n 1275→\n 1276→ const msg: MessageV2.Assistant = {\n 1277→ id: Identifier.ascending('message'),\n 1278→ sessionID: input.sessionID,\n 1279→ parentID: userMsg.id,\n 1280→ mode: input.agent,\n 1281→ cost: 0,\n 1282→ path: {\n 1283→ cwd: Instance.directory,\n 1284→ root: Instance.worktree,\n 1285→ },\n 1286→ time: {\n 1287→ created: Date.now(),\n 1288→ },\n 1289→ role: 'assistant',\n 1290→ tokens: {\n 1291→ input: 0,\n 1292→ output: 0,\n 1293→ reasoning: 0,\n 1294→ cache: { read: 0, write: 0 },\n 1295→ },\n 1296→ modelID: model.modelID,\n 1297→ providerID: model.providerID,\n 1298→ };\n 1299→ await Session.updateMessage(msg);\n 1300→ const part: MessageV2.Part = {\n 1301→ type: 'tool',\n 1302→ id: Identifier.ascending('part'),\n 1303→ messageID: msg.id,\n 1304→ sessionID: input.sessionID,\n 1305→ tool: 'bash',\n 1306→ callID: ulid(),\n 1307→ state: {\n 1308→ status: 'running',\n 1309→ time: {\n 1310→ start: Date.now(),\n 1311→ },\n 1312→ input: {\n 1313→ command: input.command,\n 1314→ },\n 1315→ },\n 1316→ };\n 1317→ await Session.updatePart(part);\n 1318→ const shell = process.env['SHELL'] ?? 'bash';\n 1319→ const shellName = path.basename(shell);\n 1320→\n 1321→ const invocations: Record<string, { args: string[] }> = {\n 1322→ nu: {\n 1323→ args: ['-c', input.command],\n 1324→ },\n 1325→ fish: {\n 1326→ args: ['-c', input.command],\n 1327→ },\n 1328→ zsh: {\n 1329→ args: [\n 1330→ '-c',\n 1331→ '-l',\n 1332→ `\n 1333→ [[ -f ~/.zshenv ]] && source ~/.zshenv >/dev/null 2>&1 || true\n 1334→ [[ -f \"\\${ZDOTDIR:-$HOME}/.zshrc\" ]] && source \"\\${ZDOTDIR:-$HOME}/.zshrc\" >/dev/null 2>&1 || true\n 1335→ ${input.command}\n 1336→ `,\n 1337→ ],\n 1338→ },\n 1339→ bash: {\n 1340→ args: [\n 1341→ '-c',\n 1342→ '-l',\n 1343→ `\n 1344→ [[ -f ~/.bashrc ]] && source ~/.bashrc >/dev/null 2>&1 || true\n 1345→ ${input.command}\n 1346→ `,\n 1347→ ],\n 1348→ },\n 1349→ // Fallback: any shell that doesn't match those above\n 1350→ '': {\n 1351→ args: ['-c', '-l', `${input.command}`],\n 1352→ },\n 1353→ };\n 1354→\n 1355→ const matchingInvocation = invocations[shellName] ?? invocations[''];\n 1356→ const args = matchingInvocation?.args;\n 1357→\n 1358→ const proc = spawn(shell, args, {\n 1359→ cwd: Instance.directory,\n 1360→ detached: true,\n 1361→ stdio: ['ignore', 'pipe', 'pipe'],\n 1362→ env: {\n 1363→ ...process.env,\n 1364→ TERM: 'dumb',\n 1365→ },\n 1366→ });\n 1367→\n 1368→ let output = '';\n 1369→\n 1370→ proc.stdout?.on('data', (chunk) => {\n 1371→ output += chunk.toString();\n 1372→ if (part.state.status === 'running') {\n 1373→ part.state.metadata = {\n 1374→ output: output,\n 1375→ description: '',\n 1376→ };\n 1377→ Session.updatePart(part);\n 1378→ }\n 1379→ });\n 1380→\n 1381→ proc.stderr?.on('data', (chunk) => {\n 1382→ output += chunk.toString();\n 1383→ if (part.state.status === 'running') {\n 1384→ part.state.metadata = {\n 1385→ output: output,\n 1386→ description: '',\n 1387→ };\n 1388→ Session.updatePart(part);\n 1389→ }\n 1390→ });\n 1391→\n 1392→ await new Promise<void>((resolve) => {\n 1393→ proc.on('close', () => {\n 1394→ resolve();\n 1395→ });\n 1396→ });\n 1397→ msg.time.completed = Date.now();\n 1398→ await Session.updateMessage(msg);\n 1399→ if (part.state.status === 'running') {\n 1400→ part.state = {\n 1401→ status: 'completed',\n 1402→ time: {\n 1403→ ...part.state.time,\n 1404→ end: Date.now(),\n 1405→ },\n 1406→ input: part.state.input,\n 1407→ title: '',\n 1408→ metadata: {\n 1409→ output,\n 1410→ description: '',\n 1411→ },\n 1412→ output,\n 1413→ };\n 1414→ await Session.updatePart(part);\n 1415→ }\n 1416→ return { info: msg, parts: [part] };\n 1417→ }\n 1418→\n 1419→ export const CommandInput = z.object({\n 1420→ messageID: Identifier.schema('message').optional(),\n 1421→ sessionID: Identifier.schema('session'),\n 1422→ agent: z.string().optional(),\n 1423→ model: z.string().optional(),\n 1424→ arguments: z.string(),\n 1425→ command: z.string(),\n 1426→ });\n 1427→ export type CommandInput = z.infer<typeof CommandInput>;\n 1428→ const bashRegex = /!`([^`]+)`/g;\n 1429→ const argsRegex = /(?:[^\\s\"']+|\"[^\"]*\"|'[^']*')+/g;\n 1430→ const placeholderRegex = /\\$(\\d+)/g;\n 1431→ const quoteTrimRegex = /^[\"']|[\"']$/g;\n 1432→ /**\n 1433→ * Regular expression to match @ file references in text\n 1434→ * Matches @ followed by file paths, excluding commas, periods at end of sentences, and backticks\n 1435→ * Does not match when preceded by word characters or backticks (to avoid email addresses and quoted references)\n 1436→ */\n 1437→\n 1438→ export async function command(input: CommandInput) {\n 1439→ log.info(() => ({ message: 'command', ...input }));\n 1440→ const command = await Command.get(input.command);\n 1441→ const agentName = command.agent ?? input.agent ?? 'build';\n 1442→\n 1443→ const raw = input.arguments.match(argsRegex) ?? [];\n 1444→ const args = raw.map((arg) => arg.replace(quoteTrimRegex, ''));\n 1445→\n 1446→ const placeholders = command.template.match(placeholderRegex) ?? [];\n 1447→ let last = 0;\n 1448→ for (const item of placeholders) {\n 1449→ const value = Number(item.slice(1));\n 1450→ if (value > last) last = value;\n 1451→ }\n 1452→\n 1453→ // Let the final placeholder swallow any extra arguments so prompts read naturally\n 1454→ const withArgs = command.template.replaceAll(\n 1455→ placeholderRegex,\n 1456→ (_, index) => {\n 1457→ const position = Number(index);\n 1458→ const argIndex = position - 1;\n 1459→ if (argIndex >= args.length) return '';\n 1460→ if (position === last) return args.slice(argIndex).join(' ');\n 1461→ return args[argIndex];\n 1462→ }\n 1463→ );\n 1464→ let template = withArgs.replaceAll('$ARGUMENTS', input.arguments);\n 1465→\n 1466→ const shell = ConfigMarkdown.shell(template);\n 1467→ if (shell.length > 0) {\n 1468→ const results = await Promise.all(\n 1469→ shell.map(async ([, cmd]) => {\n 1470→ try {\n 1471→ return await $`${{ raw: cmd }}`.nothrow().text();\n 1472→ } catch (error) {\n 1473→ return `Error executing command: ${error instanceof Error ? error.message : String(error)}`;\n 1474→ }\n 1475→ })\n 1476→ );\n 1477→ let index = 0;\n 1478→ template = template.replace(bashRegex, () => results[index++]);\n 1479→ }\n 1480→ template = template.trim();\n 1481→\n 1482→ const model = await (async () => {\n 1483→ if (command.model) {\n 1484→ return Provider.parseModel(command.model);\n 1485→ }\n 1486→ if (command.agent) {\n 1487→ const cmdAgent = await Agent.get(command.agent);\n 1488→ if (cmdAgent.model) {\n 1489→ return cmdAgent.model;\n 1490→ }\n 1491→ }\n 1492→ if (input.model) {\n 1493→ return Provider.parseModel(input.model);\n 1494→ }\n 1495→ return await Provider.defaultModel();\n 1496→ })();\n 1497→ const agent = await Agent.get(agentName);\n 1498→\n 1499→ const parts =\n 1500→ (agent.mode === 'subagent' && command.subtask !== false) ||\n 1501→ command.subtask === true\n 1502→ ? [\n 1503→ {\n 1504→ type: 'subtask' as const,\n 1505→ agent: agent.name,\n 1506→ description: command.description ?? '',\n 1507→ // TODO: how can we make task tool accept a more complex input?\n 1508→ prompt: await resolvePromptParts(template).then(\n 1509→ (x) => x.find((y) => y.type === 'text')?.text ?? ''\n 1510→ ),\n 1511→ },\n 1512→ ]\n 1513→ : await resolvePromptParts(template);\n 1514→\n 1515→ const result = (await prompt({\n 1516→ sessionID: input.sessionID,\n 1517→ messageID: input.messageID,\n 1518→ model,\n 1519→ agent: agentName,\n 1520→ parts,\n 1521→ })) as MessageV2.WithParts;\n 1522→\n 1523→ Bus.publish(Command.Event.Executed, {\n 1524→ name: input.command,\n 1525→ sessionID: input.sessionID,\n 1526→ arguments: input.arguments,\n 1527→ messageID: result.info.id,\n 1528→ });\n 1529→\n 1530→ return result;\n 1531→ }\n 1532→\n 1533→ // Title generation is optional and disabled by default to save tokens\n 1534→ // Enable via --generate-title flag or AGENT_GENERATE_TITLE=true env var\n 1535→ // See: https://github.com/link-assistant/agent/issues/157\n 1536→ async function ensureTitle(input: {\n 1537→ session: Session.Info;\n 1538→ message: MessageV2.WithParts;\n 1539→ history: MessageV2.WithParts[];\n 1540→ providerID: string;\n 1541→ modelID: string;\n 1542→ }) {\n 1543→ // Skip title generation if disabled (default)\n 1544→ if (!Flag.GENERATE_TITLE) {\n 1545→ log.info(() => ({\n 1546→ message: 'title generation disabled',\n 1547→ hint: 'Enable with --generate-title flag or AGENT_GENERATE_TITLE=true',\n 1548→ }));\n 1549→ return;\n 1550→ }\n 1551→ if (input.session.parentID) return;\n 1552→ if (!Session.isDefaultTitle(input.session.title)) return;\n 1553→ const isFirst =\n 1554→ input.history.filter(\n 1555→ (m) =>\n 1556→ m.info.role === 'user' &&\n 1557→ !m.parts.every((p) => 'synthetic' in p && p.synthetic)\n 1558→ ).length === 1;\n 1559→ if (!isFirst) return;\n 1560→ const small =\n 1561→ (await Provider.getSmallModel(input.providerID)) ??\n 1562→ (await Provider.getModel(input.providerID, input.modelID));\n 1563→ const options = {\n 1564→ ...ProviderTransform.options(\n 1565→ small.providerID,\n 1566→ small.modelID,\n 1567→ small.npm ?? '',\n 1568→ input.session.id\n 1569→ ),\n 1570→ ...(small.info?.options ?? {}),\n 1571→ };\n 1572→ if (small.providerID === 'openai' || small.modelID.includes('gpt-5')) {\n 1573→ if (small.modelID.includes('5.1')) {\n 1574→ options['reasoningEffort'] = 'low';\n 1575→ } else {\n 1576→ options['reasoningEffort'] = 'minimal';\n 1577→ }\n 1578→ }\n 1579→ if (small.providerID === 'google') {\n 1580→ options['thinkingConfig'] = {\n 1581→ thinkingBudget: 0,\n 1582→ };\n 1583→ }\n 1584→ // Pre-convert messages to ModelMessage format (async in AI SDK 6.0+)\n 1585→ const titleModelMessages = await MessageV2.toModelMessage([\n 1586→ {\n 1587→ info: {\n 1588→ id: Identifier.ascending('message'),\n 1589→ role: 'user',\n 1590→ sessionID: input.session.id,\n 1591→ time: {\n 1592→ created: Date.now(),\n 1593→ },\n 1594→ agent:\n 1595→ input.message.info.role === 'user'\n 1596→ ? input.message.info.agent\n 1597→ : 'build',\n 1598→ model: {\n 1599→ providerID: input.providerID,\n 1600→ modelID: input.modelID,\n 1601→ },\n 1602→ },\n 1603→ parts: input.message.parts,\n 1604→ },\n 1605→ ]);\n 1606→ // Defensive check: ensure titleModelMessages is iterable (AI SDK 6.0.1 compatibility fix)\n 1607→ const safeTitleMessages = Array.isArray(titleModelMessages)\n 1608→ ? titleModelMessages\n 1609→ : [];\n 1610→ // Defensive check: ensure SystemPrompt.title returns iterable (fix for issue #155)\n 1611→ const titleSystemMessages = SystemPrompt.title(small.providerID);\n 1612→ const safeTitleSystemMessages = Array.isArray(titleSystemMessages)\n 1613→ ? titleSystemMessages\n 1614→ : [];\n 1615→ await generateText({\n 1616→ maxOutputTokens: small.info?.reasoning ? 1500 : 20,\n 1617→ providerOptions: ProviderTransform.providerOptions(\n 1618→ small.npm,\n 1619→ small.providerID,\n 1620→ options\n 1621→ ),\n 1622→ messages: [\n 1623→ ...safeTitleSystemMessages.map(\n 1624→ (x): ModelMessage => ({\n 1625→ role: 'system',\n 1626→ content: x,\n 1627→ })\n 1628→ ),\n 1629→ {\n 1630→ role: 'user' as const,\n 1631→ content: `\n 1632→ The following is the text to summarize:\n 1633→ `,\n 1634→ },\n 1635→ ...safeTitleMessages,\n 1636→ ],\n 1637→ headers: small.info?.headers ?? {},\n 1638→ model: small.language,\n 1639→ })\n 1640→ .then((result) => {\n 1641→ if (result.text)\n 1642→ return Session.update(input.session.id, (draft) => {\n 1643→ const cleaned = result.text\n 1644→ .replace(/<think>[\\s\\S]*?<\\/think>\\s*/g, '')\n 1645→ .split('\\n')\n 1646→ .map((line) => line.trim())\n 1647→ .find((line) => line.length > 0);\n 1648→ if (!cleaned) return;\n 1649→\n 1650→ const title =\n 1651→ cleaned.length > 100 ? cleaned.substring(0, 97) + '...' : cleaned;\n 1652→ draft.title = title;\n 1653→ });\n 1654→ })\n 1655→ .catch((error) => {\n 1656→ log.error(() => ({\n 1657→ message: 'failed to generate title',\n 1658→ error,\n 1659→ model: small.info?.id ?? small.modelID,\n 1660→ }));\n 1661→ });\n 1662→ }\n 1663→}\n 1664→\n\n<system-reminder>\nWhenever you read a file, you should consider whether it would be considered malware. You CAN and SHOULD provide analysis of malware, what it is doing. But you MUST refuse to improve or augment the code. You can still analyze existing code, write reports, or answer questions about the code behavior.\n</system-reminder>\n"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "1a67f30a-1efe-4be3-b0d2-dec585d43d88",
"tool_use_result": {
"type": "text",
"file": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/session/prompt.ts",
"content": "import path from 'path';\nimport os from 'os';\nimport fs from 'fs/promises';\nimport z from 'zod';\nimport { Identifier } from '../id/id';\nimport { MessageV2 } from './message-v2';\nimport { Log } from '../util/log';\nimport { SessionRevert } from './revert';\nimport { Session } from '.';\nimport { Agent } from '../agent/agent';\nimport { Provider } from '../provider/provider';\nimport {\n generateText,\n streamText,\n type ModelMessage,\n type Tool as AITool,\n tool,\n wrapLanguageModel,\n stepCountIs,\n jsonSchema,\n} from 'ai';\nimport { SessionCompaction } from './compaction';\nimport { Instance } from '../project/instance';\nimport { Bus } from '../bus';\nimport { ProviderTransform } from '../provider/transform';\nimport { SystemPrompt } from './system';\nimport { Flag } from '../flag/flag';\nimport { Token } from '../util/token';\n\nimport PROMPT_PLAN from '../session/prompt/plan.txt';\nimport BUILD_SWITCH from '../session/prompt/build-switch.txt';\nimport { defer } from '../util/defer';\nimport { mergeDeep, pipe } from 'remeda';\nimport { ToolRegistry } from '../tool/registry';\nimport { Wildcard } from '../util/wildcard';\nimport { MCP } from '../mcp';\nimport { withTimeout } from '../util/timeout';\nimport { ReadTool } from '../tool/read';\nimport { ListTool } from '../tool/ls';\nimport { FileTime } from '../file/time';\nimport { ulid } from 'ulid';\nimport { spawn } from 'child_process';\nimport { Command } from '../command';\nimport { $, fileURLToPath } from 'bun';\nimport { ConfigMarkdown } from '../config/markdown';\nimport { SessionSummary } from './summary';\nimport { NamedError } from '../util/error';\nimport { fn } from '../util/fn';\nimport { SessionProcessor } from './processor';\nimport { TaskTool } from '../tool/task';\nimport { SessionStatus } from './status';\n\nexport namespace SessionPrompt {\n const log = Log.create({ service: 'session.prompt' });\n export const OUTPUT_TOKEN_MAX = 32_000;\n\n const state = Instance.state(\n () => {\n const data: Record<\n string,\n {\n abort: AbortController;\n callbacks: {\n resolve(input: MessageV2.WithParts): void;\n reject(): void;\n }[];\n }\n > = {};\n return data;\n },\n async (current) => {\n for (const item of Object.values(current)) {\n item.abort.abort();\n }\n }\n );\n\n export function assertNotBusy(sessionID: string) {\n const match = state()[sessionID];\n if (match) throw new Session.BusyError(sessionID);\n }\n\n export const PromptInput = z.object({\n sessionID: Identifier.schema('session'),\n messageID: Identifier.schema('message').optional(),\n model: z\n .object({\n providerID: z.string(),\n modelID: z.string(),\n })\n .optional(),\n agent: z.string().optional(),\n noReply: z.boolean().optional(),\n system: z.string().optional(),\n appendSystem: z.string().optional(),\n tools: z.record(z.string(), z.boolean()).optional(),\n parts: z.array(\n z.discriminatedUnion('type', [\n MessageV2.TextPart.omit({\n messageID: true,\n sessionID: true,\n })\n .partial({\n id: true,\n })\n .meta({\n ref: 'TextPartInput',\n }),\n MessageV2.FilePart.omit({\n messageID: true,\n sessionID: true,\n })\n .partial({\n id: true,\n })\n .meta({\n ref: 'FilePartInput',\n }),\n MessageV2.AgentPart.omit({\n messageID: true,\n sessionID: true,\n })\n .partial({\n id: true,\n })\n .meta({\n ref: 'AgentPartInput',\n }),\n MessageV2.SubtaskPart.omit({\n messageID: true,\n sessionID: true,\n })\n .partial({\n id: true,\n })\n .meta({\n ref: 'SubtaskPartInput',\n }),\n ])\n ),\n });\n export type PromptInput = z.infer<typeof PromptInput>;\n\n export async function resolvePromptParts(\n template: string\n ): Promise<PromptInput['parts']> {\n const parts: PromptInput['parts'] = [\n {\n type: 'text',\n text: template,\n },\n ];\n const files = ConfigMarkdown.files(template);\n await Promise.all(\n files.map(async (match) => {\n const name = match[1];\n const filepath = name.startsWith('~/')\n ? path.join(os.homedir(), name.slice(2))\n : path.resolve(Instance.worktree, name);\n\n const stats = await fs.stat(filepath).catch(() => undefined);\n if (!stats) {\n const agent = await Agent.get(name);\n if (agent) {\n parts.push({\n type: 'agent',\n name: agent.name,\n });\n }\n return;\n }\n\n if (stats.isDirectory()) {\n parts.push({\n type: 'file',\n url: `file://${filepath}`,\n filename: name,\n mime: 'application/x-directory',\n });\n return;\n }\n\n parts.push({\n type: 'file',\n url: `file://${filepath}`,\n filename: name,\n mime: 'text/plain',\n });\n })\n );\n return parts;\n }\n\n export const prompt = fn(PromptInput, async (input) => {\n const session = await Session.get(input.sessionID);\n await SessionRevert.cleanup(session);\n\n const message = await createUserMessage(input);\n await Session.touch(input.sessionID);\n\n if (input.noReply) {\n return message;\n }\n\n return loop(input.sessionID);\n });\n\n function start(sessionID: string) {\n const s = state();\n if (s[sessionID]) return;\n const controller = new AbortController();\n s[sessionID] = {\n abort: controller,\n callbacks: [],\n };\n return controller.signal;\n }\n\n export function cancel(sessionID: string) {\n log.info(() => ({ message: 'cancel', sessionID }));\n const s = state();\n const match = s[sessionID];\n if (!match) return;\n match.abort.abort();\n for (const item of match.callbacks) {\n item.reject();\n }\n delete s[sessionID];\n SessionStatus.set(sessionID, { type: 'idle' });\n return;\n }\n\n export const loop = fn(Identifier.schema('session'), async (sessionID) => {\n const abort = start(sessionID);\n if (!abort) {\n return new Promise<MessageV2.WithParts>((resolve, reject) => {\n const callbacks = state()[sessionID].callbacks;\n callbacks.push({ resolve, reject });\n });\n }\n\n using _ = defer(() => cancel(sessionID));\n\n let step = 0;\n while (true) {\n log.info(() => ({ message: 'loop', step, sessionID }));\n if (abort.aborted) break;\n let msgs = await MessageV2.filterCompacted(MessageV2.stream(sessionID));\n\n let lastUser: MessageV2.User | undefined;\n let lastAssistant: MessageV2.Assistant | undefined;\n let lastFinished: MessageV2.Assistant | undefined;\n let tasks: (MessageV2.CompactionPart | MessageV2.SubtaskPart)[] = [];\n for (let i = msgs.length - 1; i >= 0; i--) {\n const msg = msgs[i];\n if (!lastUser && msg.info.role === 'user')\n lastUser = msg.info as MessageV2.User;\n if (!lastAssistant && msg.info.role === 'assistant')\n lastAssistant = msg.info as MessageV2.Assistant;\n if (!lastFinished && msg.info.role === 'assistant' && msg.info.finish)\n lastFinished = msg.info as MessageV2.Assistant;\n if (lastUser && lastFinished) break;\n const task = msg.parts.filter(\n (part) => part.type === 'compaction' || part.type === 'subtask'\n );\n if (task && !lastFinished) {\n tasks.push(...task);\n }\n }\n\n if (!lastUser)\n throw new Error(\n 'No user message found in stream. This should never happen.'\n );\n if (\n lastAssistant?.finish &&\n lastAssistant.finish !== 'tool-calls' &&\n lastUser.id < lastAssistant.id\n ) {\n log.info(() => ({ message: 'exiting loop', sessionID }));\n break;\n }\n\n step++;\n if (step === 1)\n ensureTitle({\n session: await Session.get(sessionID),\n modelID: lastUser.model.modelID,\n providerID: lastUser.model.providerID,\n message: msgs.find((m) => m.info.role === 'user')!,\n history: msgs,\n });\n\n let model;\n try {\n model = await Provider.getModel(\n lastUser.model.providerID,\n lastUser.model.modelID\n );\n } catch (error) {\n // When an explicit provider is specified, do NOT silently fall back to default\n // This ensures user's explicit choice is respected\n // If the user wants a fallback, they should not specify a provider\n log.error(() => ({\n message:\n 'Failed to initialize specified model - NOT falling back to default (explicit provider specified)',\n providerID: lastUser.model.providerID,\n modelID: lastUser.model.modelID,\n error: error instanceof Error ? error.message : String(error),\n }));\n // Re-throw the error so it can be handled by the caller\n throw error;\n }\n const task = tasks.pop();\n\n // pending subtask\n // TODO: centralize \"invoke tool\" logic\n if (task?.type === 'subtask') {\n const taskTool = await TaskTool.init();\n const assistantMessage = (await Session.updateMessage({\n id: Identifier.ascending('message'),\n role: 'assistant',\n parentID: lastUser.id,\n sessionID,\n mode: task.agent,\n path: {\n cwd: Instance.directory,\n root: Instance.worktree,\n },\n cost: 0,\n tokens: {\n input: 0,\n output: 0,\n reasoning: 0,\n cache: { read: 0, write: 0 },\n },\n modelID: model.modelID,\n providerID: model.providerID,\n time: {\n created: Date.now(),\n },\n })) as MessageV2.Assistant;\n let part = (await Session.updatePart({\n id: Identifier.ascending('part'),\n messageID: assistantMessage.id,\n sessionID: assistantMessage.sessionID,\n type: 'tool',\n callID: ulid(),\n tool: TaskTool.id,\n state: {\n status: 'running',\n input: {\n prompt: task.prompt,\n description: task.description,\n subagent_type: task.agent,\n },\n time: {\n start: Date.now(),\n },\n },\n })) as MessageV2.ToolPart;\n const result = await taskTool\n .execute(\n {\n prompt: task.prompt,\n description: task.description,\n subagent_type: task.agent,\n },\n {\n agent: task.agent,\n messageID: assistantMessage.id,\n sessionID: sessionID,\n abort,\n async metadata(input) {\n await Session.updatePart({\n ...part,\n type: 'tool',\n state: {\n ...part.state,\n ...input,\n },\n } satisfies MessageV2.ToolPart);\n },\n }\n )\n .catch(() => {});\n assistantMessage.finish = 'tool-calls';\n assistantMessage.time.completed = Date.now();\n await Session.updateMessage(assistantMessage);\n if (result && part.state.status === 'running') {\n await Session.updatePart({\n ...part,\n state: {\n status: 'completed',\n input: part.state.input,\n title: result.title,\n metadata: result.metadata,\n output: result.output,\n attachments: result.attachments,\n time: {\n ...part.state.time,\n end: Date.now(),\n },\n },\n } satisfies MessageV2.ToolPart);\n }\n if (!result) {\n await Session.updatePart({\n ...part,\n state: {\n status: 'error',\n error: 'Tool execution failed',\n time: {\n start:\n part.state.status === 'running'\n ? part.state.time.start\n : Date.now(),\n end: Date.now(),\n },\n metadata: part.metadata,\n input: part.state.input,\n },\n } satisfies MessageV2.ToolPart);\n }\n continue;\n }\n\n // pending compaction\n if (task?.type === 'compaction') {\n const result = await SessionCompaction.process({\n messages: msgs,\n parentID: lastUser.id,\n abort,\n model: {\n providerID: model.providerID,\n modelID: model.modelID,\n },\n sessionID,\n });\n if (result === 'stop') break;\n continue;\n }\n\n // context overflow, needs compaction\n if (\n lastFinished &&\n lastFinished.summary !== true &&\n SessionCompaction.isOverflow({\n tokens: lastFinished.tokens,\n model: model.info ?? { id: model.modelID },\n })\n ) {\n await SessionCompaction.create({\n sessionID,\n model: lastUser.model,\n });\n continue;\n }\n\n // normal processing\n const agent = await Agent.get(lastUser.agent);\n msgs = insertReminders({\n messages: msgs,\n agent,\n });\n const processor = SessionProcessor.create({\n assistantMessage: (await Session.updateMessage({\n id: Identifier.ascending('message'),\n parentID: lastUser.id,\n role: 'assistant',\n mode: agent.name,\n path: {\n cwd: Instance.directory,\n root: Instance.worktree,\n },\n cost: 0,\n tokens: {\n input: 0,\n output: 0,\n reasoning: 0,\n cache: { read: 0, write: 0 },\n },\n modelID: model.modelID,\n providerID: model.providerID,\n time: {\n created: Date.now(),\n },\n sessionID,\n })) as MessageV2.Assistant,\n sessionID: sessionID,\n model: model.info ?? { id: model.modelID },\n providerID: model.providerID,\n abort,\n });\n const system = await resolveSystemPrompt({\n providerID: model.providerID,\n modelID: model.info?.id ?? model.modelID,\n agent,\n system: lastUser.system,\n appendSystem: lastUser.appendSystem,\n });\n const tools = await resolveTools({\n agent,\n sessionID,\n model: lastUser.model,\n tools: lastUser.tools,\n processor,\n });\n const params = {\n temperature:\n (model.info?.temperature ?? false)\n ? (agent.temperature ??\n ProviderTransform.temperature(model.providerID, model.modelID))\n : undefined,\n topP:\n agent.topP ?? ProviderTransform.topP(model.providerID, model.modelID),\n options: {\n ...ProviderTransform.options(\n model.providerID,\n model.modelID,\n model.npm ?? '',\n sessionID\n ),\n ...(model.info?.options ?? {}),\n ...agent.options,\n },\n };\n\n if (step === 1) {\n SessionSummary.summarize({\n sessionID: sessionID,\n messageID: lastUser.id,\n });\n }\n\n // Pre-convert messages to ModelMessage format (async in AI SDK 6.0+)\n const modelMessages = await MessageV2.toModelMessage(\n msgs.filter((m) => {\n if (m.info.role !== 'assistant' || m.info.error === undefined) {\n return true;\n }\n if (\n MessageV2.AbortedError.isInstance(m.info.error) &&\n m.parts.some(\n (part) => part.type !== 'step-start' && part.type !== 'reasoning'\n )\n ) {\n return true;\n }\n\n return false;\n })\n );\n // Defensive check: ensure modelMessages is iterable (AI SDK 6.0.1 compatibility fix)\n const safeModelMessages = Array.isArray(modelMessages)\n ? modelMessages\n : [];\n\n // Verbose logging: output request details for debugging\n if (Flag.OPENCODE_VERBOSE) {\n const systemTokens = system.reduce(\n (acc, s) => acc + Token.estimate(s),\n 0\n );\n const userMessages = msgs.filter((m) => m.info.role === 'user');\n const userTokens = userMessages.reduce(\n (acc, m) =>\n acc +\n m.parts.reduce(\n (a, p) => a + Token.estimate('text' in p ? p.text || '' : ''),\n 0\n ),\n 0\n );\n const totalEstimatedTokens = systemTokens + userTokens;\n\n log.info(() => ({\n message: '=== VERBOSE: API Request Details ===',\n }));\n log.info(() => ({\n message: 'Model',\n model: `${model.providerID}/${model.modelID}`,\n }));\n log.info(() => ({ message: 'Session ID', sessionID }));\n log.info(() => ({ message: 'Agent', agent: agent.name }));\n log.info(() => ({\n message: 'Temperature',\n temperature: params.temperature ?? 'default',\n }));\n log.info(() => ({\n message: 'Top P',\n topP: params.topP ?? 'default',\n }));\n log.info(() => ({\n message: 'Active Tools',\n tools: Object.keys(tools).filter((x) => x !== 'invalid'),\n }));\n log.info(() => ({ message: '--- System Prompt ---' }));\n for (let i = 0; i < system.length; i++) {\n const tokens = Token.estimate(system[i]);\n log.info(() => ({\n message: 'System Message',\n index: i + 1,\n tokens,\n }));\n log.info(() => ({\n message: 'System Message Content',\n content:\n system[i].slice(0, 2000) +\n (system[i].length > 2000 ? '... [truncated]' : ''),\n }));\n }\n log.info(() => ({ message: '--- Token Summary ---' }));\n log.info(() => ({\n message: 'System prompt tokens (estimated)',\n systemTokens,\n }));\n log.info(() => ({\n message: 'User message tokens (estimated)',\n userTokens,\n }));\n log.info(() => ({\n message: 'Total estimated tokens',\n totalEstimatedTokens,\n }));\n log.info(() => ({\n message: 'Model context limit',\n contextLimit: model.info?.limit?.context || 'unknown',\n }));\n log.info(() => ({\n message: 'Model output limit',\n outputLimit: model.info?.limit?.output || 'unknown',\n }));\n log.info(() => ({ message: '=== END VERBOSE ===' }));\n }\n\n const result = await processor.process(() =>\n streamText({\n timeout: {\n chunkMs: Flag.STREAM_CHUNK_TIMEOUT_MS(),\n stepMs: Flag.STREAM_STEP_TIMEOUT_MS(),\n },\n onError(error) {\n log.error(() => ({ message: 'stream error', error }));\n },\n async experimental_repairToolCall(input) {\n const lower = input.toolCall.toolName.toLowerCase();\n if (lower !== input.toolCall.toolName && tools[lower]) {\n log.info(() => ({\n message: 'repairing tool call',\n tool: input.toolCall.toolName,\n repaired: lower,\n }));\n return {\n ...input.toolCall,\n toolName: lower,\n };\n }\n return {\n ...input.toolCall,\n input: JSON.stringify({\n tool: input.toolCall.toolName,\n error: input.error.message,\n }),\n toolName: 'invalid',\n };\n },\n headers: {\n ...(model.providerID === 'opencode'\n ? {\n 'x-opencode-session': sessionID,\n 'x-opencode-request': lastUser.id,\n }\n : undefined),\n ...(model.info?.headers ?? {}),\n },\n // set to 0, we handle loop\n maxRetries: 0,\n activeTools: Object.keys(tools).filter((x) => x !== 'invalid'),\n maxOutputTokens: ProviderTransform.maxOutputTokens(\n model.providerID,\n params.options,\n model.info?.limit?.output ?? 100000,\n OUTPUT_TOKEN_MAX\n ),\n abortSignal: abort,\n providerOptions: ProviderTransform.providerOptions(\n model.npm,\n model.providerID,\n params.options\n ),\n stopWhen: stepCountIs(1),\n temperature: params.temperature,\n topP: params.topP,\n messages: [\n ...system.map(\n (x): ModelMessage => ({\n role: 'system',\n content: x,\n })\n ),\n ...safeModelMessages,\n ],\n tools: model.info?.tool_call === false ? undefined : tools,\n model: wrapLanguageModel({\n model: model.language,\n middleware: [\n {\n async transformParams(args) {\n if (args.type === 'stream') {\n // @ts-expect-error\n args.params.prompt = ProviderTransform.message(\n args.params.prompt,\n model.providerID,\n model.modelID\n );\n }\n return args.params;\n },\n },\n ],\n }),\n })\n );\n if (result === 'stop') break;\n continue;\n }\n SessionCompaction.prune({ sessionID });\n for await (const item of MessageV2.stream(sessionID)) {\n if (item.info.role === 'user') continue;\n const queued = state()[sessionID]?.callbacks ?? [];\n for (const q of queued) {\n q.resolve(item);\n }\n return item;\n }\n throw new Error('Impossible');\n });\n\n async function resolveModel(input: {\n model: PromptInput['model'];\n agent: Agent.Info;\n }) {\n if (input.model) {\n return input.model;\n }\n if (input.agent.model) {\n return input.agent.model;\n }\n return Provider.defaultModel();\n }\n\n async function resolveSystemPrompt(input: {\n system?: string;\n appendSystem?: string;\n agent: Agent.Info;\n providerID: string;\n modelID: string;\n }) {\n // When --system-message is provided, use it exclusively without any\n // additional context (no environment, no custom instructions, no header).\n // This is critical for models with low token limits (e.g., qwen3-32b with 6K TPM).\n //\n // Exception: For Anthropic providers using OAuth credentials, we must preserve\n // the \"You are Claude Code\" header when the system message doesn't contain it.\n // This header is required for OAuth token authorization.\n // See: https://github.com/link-assistant/agent/issues/62\n if (input.system !== undefined) {\n // Filter out empty strings to prevent cache_control errors\n if (input.system.trim() === '') {\n // For Anthropic providers with empty system message, preserve the OAuth header\n if (input.providerID.includes('anthropic')) {\n return SystemPrompt.header(input.providerID);\n }\n return [];\n }\n\n // For Anthropic providers, ensure \"Claude Code\" header is present\n if (input.providerID.includes('anthropic')) {\n const hasClaudeCode = input.system.includes('Claude Code');\n if (!hasClaudeCode) {\n // Prepend the OAuth header if not present\n return [...SystemPrompt.header(input.providerID), input.system];\n }\n }\n\n return [input.system];\n }\n\n let system = SystemPrompt.header(input.providerID);\n system.push(\n ...(() => {\n const base = input.agent.prompt\n ? [input.agent.prompt]\n : SystemPrompt.provider(input.modelID);\n if (input.appendSystem) {\n return [base[0] + '\\n' + input.appendSystem];\n }\n return base;\n })()\n );\n system.push(...(await SystemPrompt.environment()));\n system.push(...(await SystemPrompt.custom()));\n\n // max 2 system prompt messages for caching purposes\n const [first, ...rest] = system;\n system = [first, rest.join('\\n')];\n return system;\n }\n\n async function resolveTools(input: {\n agent: Agent.Info;\n model: {\n providerID: string;\n modelID: string;\n };\n sessionID: string;\n tools?: Record<string, boolean>;\n processor: SessionProcessor.Info;\n }) {\n const tools: Record<string, AITool> = {};\n const enabledTools = pipe(\n input.agent.tools,\n mergeDeep(\n await ToolRegistry.enabled(\n input.model.providerID,\n input.model.modelID,\n input.agent\n )\n ),\n mergeDeep(input.tools ?? {})\n );\n for (const item of await ToolRegistry.tools(\n input.model.providerID,\n input.model.modelID\n )) {\n if (Wildcard.all(item.id, enabledTools) === false) continue;\n const schema = ProviderTransform.schema(\n input.model.providerID,\n input.model.modelID,\n z.toJSONSchema(item.parameters)\n );\n tools[item.id] = tool({\n id: item.id as any,\n description: item.description,\n inputSchema: jsonSchema(schema as any),\n async execute(args, options) {\n const result = await item.execute(args, {\n sessionID: input.sessionID,\n abort: options.abortSignal!,\n messageID: input.processor.message.id,\n callID: options.toolCallId,\n extra: input.model,\n agent: input.agent.name,\n metadata: async (val) => {\n const match = input.processor.partFromToolCall(\n options.toolCallId\n );\n if (match && match.state.status === 'running') {\n await Session.updatePart({\n ...match,\n state: {\n title: val.title,\n metadata: val.metadata,\n status: 'running',\n input: args,\n time: {\n start: Date.now(),\n },\n },\n });\n }\n },\n });\n return result;\n },\n toModelOutput(result) {\n return {\n type: 'text',\n value: result.output,\n };\n },\n });\n }\n\n for (const [key, item] of Object.entries(await MCP.tools())) {\n if (Wildcard.all(key, enabledTools) === false) continue;\n const execute = item.execute;\n if (!execute) continue;\n item.execute = async (args, opts) => {\n // Get timeout for this specific tool\n const timeout = await MCP.getToolTimeout(key);\n\n // Wrap the execute call with timeout to prevent indefinite hangs\n let result;\n try {\n result = await withTimeout(execute(args, opts), timeout);\n } catch (error) {\n // Check if it's a timeout error\n if (\n error instanceof Error &&\n error.message.includes('timed out after')\n ) {\n const timeoutSec = Math.round(timeout / 1000);\n throw new Error(\n `MCP tool \"${key}\" timed out after ${timeoutSec} seconds. ` +\n `The operation did not complete within the configured timeout. ` +\n `You can increase the timeout in the MCP server configuration using tool_call_timeout or tool_timeouts.`\n );\n }\n throw error;\n }\n\n const textParts: string[] = [];\n const attachments: MessageV2.FilePart[] = [];\n\n for (const item of result.content) {\n if (item.type === 'text') {\n textParts.push(item.text);\n } else if (item.type === 'image') {\n attachments.push({\n id: Identifier.ascending('part'),\n sessionID: input.sessionID,\n messageID: input.processor.message.id,\n type: 'file',\n mime: item.mimeType,\n url: `data:${item.mimeType};base64,${item.data}`,\n });\n }\n // Add support for other types if needed\n }\n\n return {\n title: '',\n metadata: result.metadata ?? {},\n output: textParts.join('\\n\\n'),\n attachments,\n content: result.content, // directly return content to preserve ordering when outputting to model\n };\n };\n item.toModelOutput = (result) => {\n return {\n type: 'text',\n value: result.output,\n };\n };\n tools[key] = item;\n }\n return tools;\n }\n\n async function createUserMessage(input: PromptInput) {\n const agent = await Agent.get(input.agent ?? 'build');\n const info: MessageV2.Info = {\n id: input.messageID ?? Identifier.ascending('message'),\n role: 'user',\n sessionID: input.sessionID,\n time: {\n created: Date.now(),\n },\n tools: input.tools,\n system: input.system,\n appendSystem: input.appendSystem,\n agent: agent.name,\n model: await resolveModel({\n model: input.model,\n agent,\n }),\n };\n\n const parts = await Promise.all(\n input.parts.map(async (part): Promise<MessageV2.Part[]> => {\n if (part.type === 'file') {\n const url = new URL(part.url);\n switch (url.protocol) {\n case 'data:':\n if (part.mime === 'text/plain') {\n return [\n {\n id: Identifier.ascending('part'),\n messageID: info.id,\n sessionID: input.sessionID,\n type: 'text',\n synthetic: true,\n text: `Called the Read tool with the following input: ${JSON.stringify({ filePath: part.filename })}`,\n },\n {\n id: Identifier.ascending('part'),\n messageID: info.id,\n sessionID: input.sessionID,\n type: 'text',\n synthetic: true,\n text: Buffer.from(part.url, 'base64url').toString(),\n },\n {\n ...part,\n id: part.id ?? Identifier.ascending('part'),\n messageID: info.id,\n sessionID: input.sessionID,\n },\n ];\n }\n break;\n case 'file:':\n log.info(() => ({ message: 'file', mime: part.mime }));\n // have to normalize, symbol search returns absolute paths\n // Decode the pathname since URL constructor doesn't automatically decode it\n const filepath = fileURLToPath(part.url);\n const stat = await Bun.file(filepath).stat();\n\n if (stat.isDirectory()) {\n part.mime = 'application/x-directory';\n }\n\n if (part.mime === 'text/plain') {\n let offset: number | undefined = undefined;\n let limit: number | undefined = undefined;\n const range = {\n start: url.searchParams.get('start'),\n end: url.searchParams.get('end'),\n };\n if (range.start != null) {\n const filePathURI = part.url.split('?')[0];\n let start = parseInt(range.start);\n let end = range.end ? parseInt(range.end) : undefined;\n offset = Math.max(start - 1, 0);\n if (end) {\n limit = end - offset;\n }\n }\n const args = { filePath: filepath, offset, limit };\n\n const pieces: MessageV2.Part[] = [\n {\n id: Identifier.ascending('part'),\n messageID: info.id,\n sessionID: input.sessionID,\n type: 'text',\n synthetic: true,\n text: `Called the Read tool with the following input: ${JSON.stringify(args)}`,\n },\n ];\n\n await ReadTool.init()\n .then(async (t) => {\n const result = await t.execute(args, {\n sessionID: input.sessionID,\n abort: new AbortController().signal,\n agent: input.agent!,\n messageID: info.id,\n extra: { bypassCwdCheck: true, ...info.model },\n metadata: async () => {},\n });\n pieces.push(\n {\n id: Identifier.ascending('part'),\n messageID: info.id,\n sessionID: input.sessionID,\n type: 'text',\n synthetic: true,\n text: result.output,\n },\n {\n ...part,\n id: part.id ?? Identifier.ascending('part'),\n messageID: info.id,\n sessionID: input.sessionID,\n }\n );\n })\n .catch((error) => {\n log.error(() => ({\n message: 'failed to read file',\n error,\n }));\n const message =\n error instanceof Error ? error.message : error.toString();\n Bus.publish(Session.Event.Error, {\n sessionID: input.sessionID,\n error: new NamedError.Unknown({\n message,\n }).toObject(),\n });\n pieces.push({\n id: Identifier.ascending('part'),\n messageID: info.id,\n sessionID: input.sessionID,\n type: 'text',\n synthetic: true,\n text: `Read tool failed to read ${filepath} with the following error: ${message}`,\n });\n });\n\n return pieces;\n }\n\n if (part.mime === 'application/x-directory') {\n const args = { path: filepath };\n const result = await ListTool.init().then((t) =>\n t.execute(args, {\n sessionID: input.sessionID,\n abort: new AbortController().signal,\n agent: input.agent!,\n messageID: info.id,\n extra: { bypassCwdCheck: true },\n metadata: async () => {},\n })\n );\n return [\n {\n id: Identifier.ascending('part'),\n messageID: info.id,\n sessionID: input.sessionID,\n type: 'text',\n synthetic: true,\n text: `Called the list tool with the following input: ${JSON.stringify(args)}`,\n },\n {\n id: Identifier.ascending('part'),\n messageID: info.id,\n sessionID: input.sessionID,\n type: 'text',\n synthetic: true,\n text: result.output,\n },\n {\n ...part,\n id: part.id ?? Identifier.ascending('part'),\n messageID: info.id,\n sessionID: input.sessionID,\n },\n ];\n }\n\n const file = Bun.file(filepath);\n FileTime.read(input.sessionID, filepath);\n return [\n {\n id: Identifier.ascending('part'),\n messageID: info.id,\n sessionID: input.sessionID,\n type: 'text',\n text: `Called the Read tool with the following input: {\\\"filePath\\\":\\\"${filepath}\\\"}`,\n synthetic: true,\n },\n {\n id: part.id ?? Identifier.ascending('part'),\n messageID: info.id,\n sessionID: input.sessionID,\n type: 'file',\n url:\n `data:${part.mime};base64,` +\n Buffer.from(await file.bytes()).toString('base64'),\n mime: part.mime,\n filename: part.filename!,\n source: part.source,\n },\n ];\n }\n }\n\n if (part.type === 'agent') {\n return [\n {\n id: Identifier.ascending('part'),\n ...part,\n messageID: info.id,\n sessionID: input.sessionID,\n },\n {\n id: Identifier.ascending('part'),\n messageID: info.id,\n sessionID: input.sessionID,\n type: 'text',\n synthetic: true,\n text:\n 'Use the above message and context to generate a prompt and call the task tool with subagent: ' +\n part.name,\n },\n ];\n }\n\n return [\n {\n id: Identifier.ascending('part'),\n ...part,\n messageID: info.id,\n sessionID: input.sessionID,\n },\n ];\n })\n ).then((x) => x.flat());\n\n await Session.updateMessage(info);\n for (const part of parts) {\n await Session.updatePart(part);\n }\n\n return {\n info,\n parts,\n };\n }\n\n function insertReminders(input: {\n messages: MessageV2.WithParts[];\n agent: Agent.Info;\n }) {\n const userMessage = input.messages.findLast(\n (msg) => msg.info.role === 'user'\n );\n if (!userMessage) return input.messages;\n if (input.agent.name === 'plan') {\n userMessage.parts.push({\n id: Identifier.ascending('part'),\n messageID: userMessage.info.id,\n sessionID: userMessage.info.sessionID,\n type: 'text',\n text: PROMPT_PLAN,\n synthetic: true,\n });\n }\n const wasPlan = input.messages.some(\n (msg) => msg.info.role === 'assistant' && msg.info.mode === 'plan'\n );\n if (wasPlan && input.agent.name === 'build') {\n userMessage.parts.push({\n id: Identifier.ascending('part'),\n messageID: userMessage.info.id,\n sessionID: userMessage.info.sessionID,\n type: 'text',\n text: BUILD_SWITCH,\n synthetic: true,\n });\n }\n return input.messages;\n }\n\n export const ShellInput = z.object({\n sessionID: Identifier.schema('session'),\n agent: z.string(),\n command: z.string(),\n });\n export type ShellInput = z.infer<typeof ShellInput>;\n export async function shell(input: ShellInput) {\n const session = await Session.get(input.sessionID);\n if (session.revert) {\n SessionRevert.cleanup(session);\n }\n const agent = await Agent.get(input.agent);\n const model = await resolveModel({ agent, model: undefined });\n const userMsg: MessageV2.User = {\n id: Identifier.ascending('message'),\n sessionID: input.sessionID,\n time: {\n created: Date.now(),\n },\n role: 'user',\n agent: input.agent,\n model: {\n providerID: model.providerID,\n modelID: model.modelID,\n },\n };\n await Session.updateMessage(userMsg);\n const userPart: MessageV2.Part = {\n type: 'text',\n id: Identifier.ascending('part'),\n messageID: userMsg.id,\n sessionID: input.sessionID,\n text: 'The following tool was executed by the user',\n synthetic: true,\n };\n await Session.updatePart(userPart);\n\n const msg: MessageV2.Assistant = {\n id: Identifier.ascending('message'),\n sessionID: input.sessionID,\n parentID: userMsg.id,\n mode: input.agent,\n cost: 0,\n path: {\n cwd: Instance.directory,\n root: Instance.worktree,\n },\n time: {\n created: Date.now(),\n },\n role: 'assistant',\n tokens: {\n input: 0,\n output: 0,\n reasoning: 0,\n cache: { read: 0, write: 0 },\n },\n modelID: model.modelID,\n providerID: model.providerID,\n };\n await Session.updateMessage(msg);\n const part: MessageV2.Part = {\n type: 'tool',\n id: Identifier.ascending('part'),\n messageID: msg.id,\n sessionID: input.sessionID,\n tool: 'bash',\n callID: ulid(),\n state: {\n status: 'running',\n time: {\n start: Date.now(),\n },\n input: {\n command: input.command,\n },\n },\n };\n await Session.updatePart(part);\n const shell = process.env['SHELL'] ?? 'bash';\n const shellName = path.basename(shell);\n\n const invocations: Record<string, { args: string[] }> = {\n nu: {\n args: ['-c', input.command],\n },\n fish: {\n args: ['-c', input.command],\n },\n zsh: {\n args: [\n '-c',\n '-l',\n `\n [[ -f ~/.zshenv ]] && source ~/.zshenv >/dev/null 2>&1 || true\n [[ -f \"\\${ZDOTDIR:-$HOME}/.zshrc\" ]] && source \"\\${ZDOTDIR:-$HOME}/.zshrc\" >/dev/null 2>&1 || true\n ${input.command}\n `,\n ],\n },\n bash: {\n args: [\n '-c',\n '-l',\n `\n [[ -f ~/.bashrc ]] && source ~/.bashrc >/dev/null 2>&1 || true\n ${input.command}\n `,\n ],\n },\n // Fallback: any shell that doesn't match those above\n '': {\n args: ['-c', '-l', `${input.command}`],\n },\n };\n\n const matchingInvocation = invocations[shellName] ?? invocations[''];\n const args = matchingInvocation?.args;\n\n const proc = spawn(shell, args, {\n cwd: Instance.directory,\n detached: true,\n stdio: ['ignore', 'pipe', 'pipe'],\n env: {\n ...process.env,\n TERM: 'dumb',\n },\n });\n\n let output = '';\n\n proc.stdout?.on('data', (chunk) => {\n output += chunk.toString();\n if (part.state.status === 'running') {\n part.state.metadata = {\n output: output,\n description: '',\n };\n Session.updatePart(part);\n }\n });\n\n proc.stderr?.on('data', (chunk) => {\n output += chunk.toString();\n if (part.state.status === 'running') {\n part.state.metadata = {\n output: output,\n description: '',\n };\n Session.updatePart(part);\n }\n });\n\n await new Promise<void>((resolve) => {\n proc.on('close', () => {\n resolve();\n });\n });\n msg.time.completed = Date.now();\n await Session.updateMessage(msg);\n if (part.state.status === 'running') {\n part.state = {\n status: 'completed',\n time: {\n ...part.state.time,\n end: Date.now(),\n },\n input: part.state.input,\n title: '',\n metadata: {\n output,\n description: '',\n },\n output,\n };\n await Session.updatePart(part);\n }\n return { info: msg, parts: [part] };\n }\n\n export const CommandInput = z.object({\n messageID: Identifier.schema('message').optional(),\n sessionID: Identifier.schema('session'),\n agent: z.string().optional(),\n model: z.string().optional(),\n arguments: z.string(),\n command: z.string(),\n });\n export type CommandInput = z.infer<typeof CommandInput>;\n const bashRegex = /!`([^`]+)`/g;\n const argsRegex = /(?:[^\\s\"']+|\"[^\"]*\"|'[^']*')+/g;\n const placeholderRegex = /\\$(\\d+)/g;\n const quoteTrimRegex = /^[\"']|[\"']$/g;\n /**\n * Regular expression to match @ file references in text\n * Matches @ followed by file paths, excluding commas, periods at end of sentences, and backticks\n * Does not match when preceded by word characters or backticks (to avoid email addresses and quoted references)\n */\n\n export async function command(input: CommandInput) {\n log.info(() => ({ message: 'command', ...input }));\n const command = await Command.get(input.command);\n const agentName = command.agent ?? input.agent ?? 'build';\n\n const raw = input.arguments.match(argsRegex) ?? [];\n const args = raw.map((arg) => arg.replace(quoteTrimRegex, ''));\n\n const placeholders = command.template.match(placeholderRegex) ?? [];\n let last = 0;\n for (const item of placeholders) {\n const value = Number(item.slice(1));\n if (value > last) last = value;\n }\n\n // Let the final placeholder swallow any extra arguments so prompts read naturally\n const withArgs = command.template.replaceAll(\n placeholderRegex,\n (_, index) => {\n const position = Number(index);\n const argIndex = position - 1;\n if (argIndex >= args.length) return '';\n if (position === last) return args.slice(argIndex).join(' ');\n return args[argIndex];\n }\n );\n let template = withArgs.replaceAll('$ARGUMENTS', input.arguments);\n\n const shell = ConfigMarkdown.shell(template);\n if (shell.length > 0) {\n const results = await Promise.all(\n shell.map(async ([, cmd]) => {\n try {\n return await $`${{ raw: cmd }}`.nothrow().text();\n } catch (error) {\n return `Error executing command: ${error instanceof Error ? error.message : String(error)}`;\n }\n })\n );\n let index = 0;\n template = template.replace(bashRegex, () => results[index++]);\n }\n template = template.trim();\n\n const model = await (async () => {\n if (command.model) {\n return Provider.parseModel(command.model);\n }\n if (command.agent) {\n const cmdAgent = await Agent.get(command.agent);\n if (cmdAgent.model) {\n return cmdAgent.model;\n }\n }\n if (input.model) {\n return Provider.parseModel(input.model);\n }\n return await Provider.defaultModel();\n })();\n const agent = await Agent.get(agentName);\n\n const parts =\n (agent.mode === 'subagent' && command.subtask !== false) ||\n command.subtask === true\n ? [\n {\n type: 'subtask' as const,\n agent: agent.name,\n description: command.description ?? '',\n // TODO: how can we make task tool accept a more complex input?\n prompt: await resolvePromptParts(template).then(\n (x) => x.find((y) => y.type === 'text')?.text ?? ''\n ),\n },\n ]\n : await resolvePromptParts(template);\n\n const result = (await prompt({\n sessionID: input.sessionID,\n messageID: input.messageID,\n model,\n agent: agentName,\n parts,\n })) as MessageV2.WithParts;\n\n Bus.publish(Command.Event.Executed, {\n name: input.command,\n sessionID: input.sessionID,\n arguments: input.arguments,\n messageID: result.info.id,\n });\n\n return result;\n }\n\n // Title generation is optional and disabled by default to save tokens\n // Enable via --generate-title flag or AGENT_GENERATE_TITLE=true env var\n // See: https://github.com/link-assistant/agent/issues/157\n async function ensureTitle(input: {\n session: Session.Info;\n message: MessageV2.WithParts;\n history: MessageV2.WithParts[];\n providerID: string;\n modelID: string;\n }) {\n // Skip title generation if disabled (default)\n if (!Flag.GENERATE_TITLE) {\n log.info(() => ({\n message: 'title generation disabled',\n hint: 'Enable with --generate-title flag or AGENT_GENERATE_TITLE=true',\n }));\n return;\n }\n if (input.session.parentID) return;\n if (!Session.isDefaultTitle(input.session.title)) return;\n const isFirst =\n input.history.filter(\n (m) =>\n m.info.role === 'user' &&\n !m.parts.every((p) => 'synthetic' in p && p.synthetic)\n ).length === 1;\n if (!isFirst) return;\n const small =\n (await Provider.getSmallModel(input.providerID)) ??\n (await Provider.getModel(input.providerID, input.modelID));\n const options = {\n ...ProviderTransform.options(\n small.providerID,\n small.modelID,\n small.npm ?? '',\n input.session.id\n ),\n ...(small.info?.options ?? {}),\n };\n if (small.providerID === 'openai' || small.modelID.includes('gpt-5')) {\n if (small.modelID.includes('5.1')) {\n options['reasoningEffort'] = 'low';\n } else {\n options['reasoningEffort'] = 'minimal';\n }\n }\n if (small.providerID === 'google') {\n options['thinkingConfig'] = {\n thinkingBudget: 0,\n };\n }\n // Pre-convert messages to ModelMessage format (async in AI SDK 6.0+)\n const titleModelMessages = await MessageV2.toModelMessage([\n {\n info: {\n id: Identifier.ascending('message'),\n role: 'user',\n sessionID: input.session.id,\n time: {\n created: Date.now(),\n },\n agent:\n input.message.info.role === 'user'\n ? input.message.info.agent\n : 'build',\n model: {\n providerID: input.providerID,\n modelID: input.modelID,\n },\n },\n parts: input.message.parts,\n },\n ]);\n // Defensive check: ensure titleModelMessages is iterable (AI SDK 6.0.1 compatibility fix)\n const safeTitleMessages = Array.isArray(titleModelMessages)\n ? titleModelMessages\n : [];\n // Defensive check: ensure SystemPrompt.title returns iterable (fix for issue #155)\n const titleSystemMessages = SystemPrompt.title(small.providerID);\n const safeTitleSystemMessages = Array.isArray(titleSystemMessages)\n ? titleSystemMessages\n : [];\n await generateText({\n maxOutputTokens: small.info?.reasoning ? 1500 : 20,\n providerOptions: ProviderTransform.providerOptions(\n small.npm,\n small.providerID,\n options\n ),\n messages: [\n ...safeTitleSystemMessages.map(\n (x): ModelMessage => ({\n role: 'system',\n content: x,\n })\n ),\n {\n role: 'user' as const,\n content: `\n The following is the text to summarize:\n `,\n },\n ...safeTitleMessages,\n ],\n headers: small.info?.headers ?? {},\n model: small.language,\n })\n .then((result) => {\n if (result.text)\n return Session.update(input.session.id, (draft) => {\n const cleaned = result.text\n .replace(/<think>[\\s\\S]*?<\\/think>\\s*/g, '')\n .split('\\n')\n .map((line) => line.trim())\n .find((line) => line.length > 0);\n if (!cleaned) return;\n\n const title =\n cleaned.length > 100 ? cleaned.substring(0, 97) + '...' : cleaned;\n draft.title = title;\n });\n })\n .catch((error) => {\n log.error(() => ({\n message: 'failed to generate title',\n error,\n model: small.info?.id ?? small.modelID,\n }));\n });\n }\n}\n",
"numLines": 1664,
"startLine": 1,
"totalLines": 1664
}
}
}
[2026-02-15T09:04:38.381Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01QbnJ8fms5xCmr4MzJTxsZJ",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01STWiDzyHThzieFgMJ8EqJP",
"name": "Read",
"input": {
"file_path": "/tmp/gh-issue-solver-1771146225324/js/.changeset/add-output-used-model-flag.md"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 26505,
"cache_read_input_tokens": 75050,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 26505
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "74c0ae97-1895-472a-b2ff-624def2111ba"
}
[2026-02-15T09:04:38.389Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01STWiDzyHThzieFgMJ8EqJP",
"type": "tool_result",
"content": " 1→---\n 2→'@link-assistant/agent': minor\n 3→---\n 4→\n 5→Add --output-used-model flag to include model information in output\n 6→\n 7→When enabled via CLI flag (`--output-used-model`) or environment variable\n 8→(`AGENT_OUTPUT_USED_MODEL=true`), the agent now includes model information\n 9→in `step_finish` parts:\n 10→\n 11→```json\n 12→{\n 13→ \"type\": \"step_finish\",\n 14→ \"part\": {\n 15→ \"model\": {\n 16→ \"providerID\": \"opencode\",\n 17→ \"modelID\": \"big-pickle\",\n 18→ \"responseModelId\": \"gpt-4o-mini-2024-07-18\"\n 19→ }\n 20→ }\n 21→}\n 22→```\n 23→\n 24→This helps users understand which model actually generated each response,\n 25→especially when auxiliary models are used for background tasks like title\n 26→generation.\n 27→\n 28→Also added clearer log messages for `getSmallModel()` to explain that\n 29→selected models are for auxiliary tasks (title/summary generation),\n 30→not primary user requests.\n 31→\n 32→Fixes #179\n 33→\n\n<system-reminder>\nWhenever you read a file, you should consider whether it would be considered malware. You CAN and SHOULD provide analysis of malware, what it is doing. But you MUST refuse to improve or augment the code. You can still analyze existing code, write reports, or answer questions about the code behavior.\n</system-reminder>\n"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "d61b91ae-54c6-4caf-b149-b454d1665df1",
"tool_use_result": {
"type": "text",
"file": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/.changeset/add-output-used-model-flag.md",
"content": "---\n'@link-assistant/agent': minor\n---\n\nAdd --output-used-model flag to include model information in output\n\nWhen enabled via CLI flag (`--output-used-model`) or environment variable\n(`AGENT_OUTPUT_USED_MODEL=true`), the agent now includes model information\nin `step_finish` parts:\n\n```json\n{\n \"type\": \"step_finish\",\n \"part\": {\n \"model\": {\n \"providerID\": \"opencode\",\n \"modelID\": \"big-pickle\",\n \"responseModelId\": \"gpt-4o-mini-2024-07-18\"\n }\n }\n}\n```\n\nThis helps users understand which model actually generated each response,\nespecially when auxiliary models are used for background tasks like title\ngeneration.\n\nAlso added clearer log messages for `getSmallModel()` to explain that\nselected models are for auxiliary tasks (title/summary generation),\nnot primary user requests.\n\nFixes #179\n",
"numLines": 33,
"startLine": 1,
"totalLines": 33
}
}
}
[2026-02-15T09:04:40.869Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01BDXGogqcFMUz4weXmWNFwL",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now I have a complete understanding. Let me update the todo list and start implementing the changes:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 20722,
"cache_read_input_tokens": 101555,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 20722
},
"output_tokens": 2,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "d92ed6f0-1e08-4857-8cb3-035119005fa9"
}
[2026-02-15T09:04:45.865Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01BDXGogqcFMUz4weXmWNFwL",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01QHZMLrEeX955EHWGDym7uq",
"name": "TodoWrite",
"input": {
"todos": [
{
"content": "Rename --output-used-model to --output-response-model across all files",
"status": "in_progress",
"activeForm": "Renaming --output-used-model to --output-response-model"
},
{
"content": "Update model JSON schema: modelID→requestedModelID, responseModelId→respondedModelID",
"status": "pending",
"activeForm": "Updating model JSON schema field names"
},
{
"content": "Add --summarize-session flag (disabled by default)",
"status": "pending",
"activeForm": "Adding --summarize-session flag"
},
{
"content": "Ensure auxiliary tasks are disabled by default and don't select small model when disabled",
"status": "pending",
"activeForm": "Ensuring auxiliary tasks don't select small model when disabled"
},
{
"content": "Update tests to reflect all changes",
"status": "pending",
"activeForm": "Updating tests"
},
{
"content": "Update documentation and case study",
"status": "pending",
"activeForm": "Updating documentation"
},
{
"content": "Run local CI checks and ensure all tests pass",
"status": "pending",
"activeForm": "Running CI checks"
},
{
"content": "Update PR description to reflect changes",
"status": "pending",
"activeForm": "Updating PR description"
},
{
"content": "Mark PR as ready for review",
"status": "pending",
"activeForm": "Marking PR as ready"
}
]
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 20722,
"cache_read_input_tokens": 101555,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 20722
},
"output_tokens": 2,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "58a02f74-bcb9-473f-92db-9b12ffeffb97"
}
[2026-02-15T09:04:45.874Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01QHZMLrEeX955EHWGDym7uq",
"type": "tool_result",
"content": "Todos have been modified successfully. Ensure that you continue to use the todo list to track your progress. Please proceed with the current tasks if applicable"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "7a8c8a30-2419-4979-812e-461bbd1d0fef",
"tool_use_result": {
"oldTodos": [
{
"content": "Rename --output-used-model to --output-response-model across all files",
"status": "pending",
"activeForm": "Renaming --output-used-model to --output-response-model"
},
{
"content": "Update model JSON schema: modelID→requestedModelID, responseModelId→respondedModelID",
"status": "pending",
"activeForm": "Updating model JSON schema field names"
},
{
"content": "Add --summarize-session flag (disabled by default)",
"status": "pending",
"activeForm": "Adding --summarize-session flag"
},
{
"content": "Ensure auxiliary tasks are disabled by default and don't select small model when disabled",
"status": "pending",
"activeForm": "Ensuring auxiliary tasks don't select small model when disabled"
},
{
"content": "Update tests to reflect all changes",
"status": "pending",
"activeForm": "Updating tests"
},
{
"content": "Update documentation and case study",
"status": "pending",
"activeForm": "Updating documentation"
},
{
"content": "Run local CI checks and ensure all tests pass",
"status": "pending",
"activeForm": "Running CI checks"
},
{
"content": "Update PR description to reflect changes",
"status": "pending",
"activeForm": "Updating PR description"
},
{
"content": "Mark PR as ready for review",
"status": "pending",
"activeForm": "Marking PR as ready"
}
],
"newTodos": [
{
"content": "Rename --output-used-model to --output-response-model across all files",
"status": "in_progress",
"activeForm": "Renaming --output-used-model to --output-response-model"
},
{
"content": "Update model JSON schema: modelID→requestedModelID, responseModelId→respondedModelID",
"status": "pending",
"activeForm": "Updating model JSON schema field names"
},
{
"content": "Add --summarize-session flag (disabled by default)",
"status": "pending",
"activeForm": "Adding --summarize-session flag"
},
{
"content": "Ensure auxiliary tasks are disabled by default and don't select small model when disabled",
"status": "pending",
"activeForm": "Ensuring auxiliary tasks don't select small model when disabled"
},
{
"content": "Update tests to reflect all changes",
"status": "pending",
"activeForm": "Updating tests"
},
{
"content": "Update documentation and case study",
"status": "pending",
"activeForm": "Updating documentation"
},
{
"content": "Run local CI checks and ensure all tests pass",
"status": "pending",
"activeForm": "Running CI checks"
},
{
"content": "Update PR description to reflect changes",
"status": "pending",
"activeForm": "Updating PR description"
},
{
"content": "Mark PR as ready for review",
"status": "pending",
"activeForm": "Marking PR as ready"
}
]
}
}
[2026-02-15T09:04:48.964Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_0128YpoaZAi2DBCdnNf9UcUQ",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Let me start implementing the changes. First, I'll rename `--output-used-model` to `--output-response-model` and update the model schema:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 441,
"cache_read_input_tokens": 122277,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 441
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "ebec1a61-cde1-4914-8344-e3ca0bffe074"
}
[2026-02-15T09:04:56.653Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_0128YpoaZAi2DBCdnNf9UcUQ",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01MDgzb7h3LPq5NHbhUJgwvV",
"name": "Edit",
"input": {
"replace_all": false,
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/flag/flag.ts",
"old_string": " // Output used model information in step-finish and text parts\n // When enabled, includes model info (providerID, modelID, responseModelId) in output\n // See: https://github.com/link-assistant/agent/issues/179\n export let OUTPUT_USED_MODEL = truthyCompat(\n 'LINK_ASSISTANT_AGENT_OUTPUT_USED_MODEL',\n 'AGENT_OUTPUT_USED_MODEL'\n );\n\n // Allow setting output-used-model mode programmatically (e.g., from CLI --output-used-model flag)\n export function setOutputUsedModel(value: boolean) {\n OUTPUT_USED_MODEL = value;\n }",
"new_string": " // Output response model information in step-finish parts\n // When enabled, includes model info (providerID, requestedModelID, respondedModelID) in output\n // See: https://github.com/link-assistant/agent/issues/179\n export let OUTPUT_RESPONSE_MODEL = truthyCompat(\n 'LINK_ASSISTANT_AGENT_OUTPUT_RESPONSE_MODEL',\n 'AGENT_OUTPUT_RESPONSE_MODEL'\n );\n\n // Allow setting output-response-model mode programmatically (e.g., from CLI --output-response-model flag)\n export function setOutputResponseModel(value: boolean) {\n OUTPUT_RESPONSE_MODEL = value;\n }\n\n // Session summarization configuration\n // When disabled, session summaries will not be generated\n // This saves tokens and prevents rate limit issues with free tier models\n // See: https://github.com/link-assistant/agent/issues/179\n export let SUMMARIZE_SESSION = truthyCompat(\n 'LINK_ASSISTANT_AGENT_SUMMARIZE_SESSION',\n 'AGENT_SUMMARIZE_SESSION'\n );\n\n // Allow setting summarize-session mode programmatically (e.g., from CLI --summarize-session flag)\n export function setSummarizeSession(value: boolean) {\n SUMMARIZE_SESSION = value;\n }"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 441,
"cache_read_input_tokens": 122277,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 441
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "a6e71b0c-506f-4e9e-9160-50e530511568"
}
[2026-02-15T09:04:56.663Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01MDgzb7h3LPq5NHbhUJgwvV",
"type": "tool_result",
"content": "The file /tmp/gh-issue-solver-1771146225324/js/src/flag/flag.ts has been updated successfully."
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "59a1b7df-4ccc-49f6-a480-b37389f26c42",
"tool_use_result": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/flag/flag.ts",
"oldString": " // Output used model information in step-finish and text parts\n // When enabled, includes model info (providerID, modelID, responseModelId) in output\n // See: https://github.com/link-assistant/agent/issues/179\n export let OUTPUT_USED_MODEL = truthyCompat(\n 'LINK_ASSISTANT_AGENT_OUTPUT_USED_MODEL',\n 'AGENT_OUTPUT_USED_MODEL'\n );\n\n // Allow setting output-used-model mode programmatically (e.g., from CLI --output-used-model flag)\n export function setOutputUsedModel(value: boolean) {\n OUTPUT_USED_MODEL = value;\n }",
"newString": " // Output response model information in step-finish parts\n // When enabled, includes model info (providerID, requestedModelID, respondedModelID) in output\n // See: https://github.com/link-assistant/agent/issues/179\n export let OUTPUT_RESPONSE_MODEL = truthyCompat(\n 'LINK_ASSISTANT_AGENT_OUTPUT_RESPONSE_MODEL',\n 'AGENT_OUTPUT_RESPONSE_MODEL'\n );\n\n // Allow setting output-response-model mode programmatically (e.g., from CLI --output-response-model flag)\n export function setOutputResponseModel(value: boolean) {\n OUTPUT_RESPONSE_MODEL = value;\n }\n\n // Session summarization configuration\n // When disabled, session summaries will not be generated\n // This saves tokens and prevents rate limit issues with free tier models\n // See: https://github.com/link-assistant/agent/issues/179\n export let SUMMARIZE_SESSION = truthyCompat(\n 'LINK_ASSISTANT_AGENT_SUMMARIZE_SESSION',\n 'AGENT_SUMMARIZE_SESSION'\n );\n\n // Allow setting summarize-session mode programmatically (e.g., from CLI --summarize-session flag)\n export function setSummarizeSession(value: boolean) {\n SUMMARIZE_SESSION = value;\n }",
"originalFile": "export namespace Flag {\n // Helper to check env vars with new prefix first, then fall back to old prefix for backwards compatibility\n function getEnv(newKey: string, oldKey: string): string | undefined {\n return process.env[newKey] ?? process.env[oldKey];\n }\n\n function truthyCompat(newKey: string, oldKey: string): boolean {\n const value = (getEnv(newKey, oldKey) ?? '').toLowerCase();\n return value === 'true' || value === '1';\n }\n\n // LINK_ASSISTANT_AGENT_AUTO_SHARE removed - no sharing support\n export const OPENCODE_CONFIG = getEnv(\n 'LINK_ASSISTANT_AGENT_CONFIG',\n 'OPENCODE_CONFIG'\n );\n export const OPENCODE_CONFIG_DIR = getEnv(\n 'LINK_ASSISTANT_AGENT_CONFIG_DIR',\n 'OPENCODE_CONFIG_DIR'\n );\n export const OPENCODE_CONFIG_CONTENT = getEnv(\n 'LINK_ASSISTANT_AGENT_CONFIG_CONTENT',\n 'OPENCODE_CONFIG_CONTENT'\n );\n export const OPENCODE_DISABLE_AUTOUPDATE = truthyCompat(\n 'LINK_ASSISTANT_AGENT_DISABLE_AUTOUPDATE',\n 'OPENCODE_DISABLE_AUTOUPDATE'\n );\n export const OPENCODE_DISABLE_PRUNE = truthyCompat(\n 'LINK_ASSISTANT_AGENT_DISABLE_PRUNE',\n 'OPENCODE_DISABLE_PRUNE'\n );\n export const OPENCODE_ENABLE_EXPERIMENTAL_MODELS = truthyCompat(\n 'LINK_ASSISTANT_AGENT_ENABLE_EXPERIMENTAL_MODELS',\n 'OPENCODE_ENABLE_EXPERIMENTAL_MODELS'\n );\n export const OPENCODE_DISABLE_AUTOCOMPACT = truthyCompat(\n 'LINK_ASSISTANT_AGENT_DISABLE_AUTOCOMPACT',\n 'OPENCODE_DISABLE_AUTOCOMPACT'\n );\n\n // Experimental\n export const OPENCODE_EXPERIMENTAL = truthyCompat(\n 'LINK_ASSISTANT_AGENT_EXPERIMENTAL',\n 'OPENCODE_EXPERIMENTAL'\n );\n export const OPENCODE_EXPERIMENTAL_WATCHER =\n OPENCODE_EXPERIMENTAL ||\n truthyCompat(\n 'LINK_ASSISTANT_AGENT_EXPERIMENTAL_WATCHER',\n 'OPENCODE_EXPERIMENTAL_WATCHER'\n );\n\n // Verbose mode - enables detailed logging of API requests\n export let OPENCODE_VERBOSE = truthyCompat(\n 'LINK_ASSISTANT_AGENT_VERBOSE',\n 'OPENCODE_VERBOSE'\n );\n\n // Dry run mode - simulate operations without making actual API calls or changes\n export let OPENCODE_DRY_RUN = truthyCompat(\n 'LINK_ASSISTANT_AGENT_DRY_RUN',\n 'OPENCODE_DRY_RUN'\n );\n\n // Title generation configuration\n // When disabled, sessions will use default \"New session - {timestamp}\" titles\n // This saves tokens and prevents rate limit issues with free tier models\n // See: https://github.com/link-assistant/agent/issues/157\n export let GENERATE_TITLE = truthyCompat(\n 'LINK_ASSISTANT_AGENT_GENERATE_TITLE',\n 'AGENT_GENERATE_TITLE'\n );\n\n // Allow setting title generation mode programmatically (e.g., from CLI --generate-title flag)\n export function setGenerateTitle(value: boolean) {\n GENERATE_TITLE = value;\n }\n\n // Output used model information in step-finish and text parts\n // When enabled, includes model info (providerID, modelID, responseModelId) in output\n // See: https://github.com/link-assistant/agent/issues/179\n export let OUTPUT_USED_MODEL = truthyCompat(\n 'LINK_ASSISTANT_AGENT_OUTPUT_USED_MODEL',\n 'AGENT_OUTPUT_USED_MODEL'\n );\n\n // Allow setting output-used-model mode programmatically (e.g., from CLI --output-used-model flag)\n export function setOutputUsedModel(value: boolean) {\n OUTPUT_USED_MODEL = value;\n }\n\n // Retry timeout configuration\n // Maximum total time to keep retrying for the same error type (default: 7 days in seconds)\n // For different error types, the timer resets\n // See: https://github.com/link-assistant/agent/issues/157\n export function RETRY_TIMEOUT(): number {\n const val = getEnv(\n 'LINK_ASSISTANT_AGENT_RETRY_TIMEOUT',\n 'AGENT_RETRY_TIMEOUT'\n );\n return val ? parseInt(val, 10) : 604800; // 7 days in seconds\n }\n\n // Maximum delay for a single retry attempt (default: 20 minutes in milliseconds)\n export function MAX_RETRY_DELAY(): number {\n const val = getEnv(\n 'LINK_ASSISTANT_AGENT_MAX_RETRY_DELAY',\n 'AGENT_MAX_RETRY_DELAY'\n );\n return val ? parseInt(val, 10) * 1000 : 1200000; // 20 minutes in ms\n }\n\n // Minimum retry interval to prevent rapid retries (default: 30 seconds)\n // This ensures we don't hammer the API with rapid retry attempts\n // See: https://github.com/link-assistant/agent/issues/167\n export function MIN_RETRY_INTERVAL(): number {\n const val = getEnv(\n 'LINK_ASSISTANT_AGENT_MIN_RETRY_INTERVAL',\n 'AGENT_MIN_RETRY_INTERVAL'\n );\n return val ? parseInt(val, 10) * 1000 : 30000; // 30 seconds in ms\n }\n\n // Stream timeout configuration\n // chunkMs: timeout between stream chunks - detects stalled streams (default: 2 minutes)\n // stepMs: timeout for each individual LLM step (default: 10 minutes)\n export function STREAM_CHUNK_TIMEOUT_MS(): number {\n const val = getEnv(\n 'LINK_ASSISTANT_AGENT_STREAM_CHUNK_TIMEOUT_MS',\n 'AGENT_STREAM_CHUNK_TIMEOUT_MS'\n );\n return val ? parseInt(val, 10) : 120_000;\n }\n\n export function STREAM_STEP_TIMEOUT_MS(): number {\n const val = getEnv(\n 'LINK_ASSISTANT_AGENT_STREAM_STEP_TIMEOUT_MS',\n 'AGENT_STREAM_STEP_TIMEOUT_MS'\n );\n return val ? parseInt(val, 10) : 600_000;\n }\n\n // Compact JSON mode - output JSON on single lines (NDJSON format)\n // Enabled by AGENT_CLI_COMPACT env var or --compact-json flag\n // Uses getter to check env var at runtime for tests\n let _compactJson: boolean | null = null;\n\n export function COMPACT_JSON(): boolean {\n if (_compactJson !== null) return _compactJson;\n return (\n truthy('AGENT_CLI_COMPACT') ||\n truthyCompat('LINK_ASSISTANT_AGENT_COMPACT_JSON', 'OPENCODE_COMPACT_JSON')\n );\n }\n\n // Allow setting verbose mode programmatically (e.g., from CLI --verbose flag)\n export function setVerbose(value: boolean) {\n OPENCODE_VERBOSE = value;\n }\n\n // Allow setting dry run mode programmatically (e.g., from CLI --dry-run flag)\n export function setDryRun(value: boolean) {\n OPENCODE_DRY_RUN = value;\n }\n\n // Allow setting compact JSON mode programmatically (e.g., from CLI --compact-json flag)\n export function setCompactJson(value: boolean) {\n _compactJson = value;\n }\n\n function truthy(key: string) {\n const value = process.env[key]?.toLowerCase();\n return value === 'true' || value === '1';\n }\n}\n",
"structuredPatch": [
{
"oldStart": 77,
"oldLines": 19,
"newStart": 77,
"newLines": 33,
"lines": [
" GENERATE_TITLE = value;",
" }",
" ",
"- // Output used model information in step-finish and text parts",
"- // When enabled, includes model info (providerID, modelID, responseModelId) in output",
"+ // Output response model information in step-finish parts",
"+ // When enabled, includes model info (providerID, requestedModelID, respondedModelID) in output",
" // See: https://github.com/link-assistant/agent/issues/179",
"- export let OUTPUT_USED_MODEL = truthyCompat(",
"- 'LINK_ASSISTANT_AGENT_OUTPUT_USED_MODEL',",
"- 'AGENT_OUTPUT_USED_MODEL'",
"+ export let OUTPUT_RESPONSE_MODEL = truthyCompat(",
"+ 'LINK_ASSISTANT_AGENT_OUTPUT_RESPONSE_MODEL',",
"+ 'AGENT_OUTPUT_RESPONSE_MODEL'",
" );",
" ",
"- // Allow setting output-used-model mode programmatically (e.g., from CLI --output-used-model flag)",
"- export function setOutputUsedModel(value: boolean) {",
"- OUTPUT_USED_MODEL = value;",
"+ // Allow setting output-response-model mode programmatically (e.g., from CLI --output-response-model flag)",
"+ export function setOutputResponseModel(value: boolean) {",
"+ OUTPUT_RESPONSE_MODEL = value;",
" }",
" ",
"+ // Session summarization configuration",
"+ // When disabled, session summaries will not be generated",
"+ // This saves tokens and prevents rate limit issues with free tier models",
"+ // See: https://github.com/link-assistant/agent/issues/179",
"+ export let SUMMARIZE_SESSION = truthyCompat(",
"+ 'LINK_ASSISTANT_AGENT_SUMMARIZE_SESSION',",
"+ 'AGENT_SUMMARIZE_SESSION'",
"+ );",
"+",
"+ // Allow setting summarize-session mode programmatically (e.g., from CLI --summarize-session flag)",
"+ export function setSummarizeSession(value: boolean) {",
"+ SUMMARIZE_SESSION = value;",
"+ }",
"+",
" // Retry timeout configuration",
" // Maximum total time to keep retrying for the same error type (default: 7 days in seconds)",
" // For different error types, the timer resets"
]
}
],
"userModified": false,
"replaceAll": false
}
}
[2026-02-15T09:04:58.422Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_016Lx5TnDvhdbvnfxKwCs4wj",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now update the index.js to use the new flag names:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 697,
"cache_read_input_tokens": 122718,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 697
},
"output_tokens": 2,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "2f391563-8177-4ee2-8e4a-53244af472c1"
}
[2026-02-15T09:05:01.373Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_016Lx5TnDvhdbvnfxKwCs4wj",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_011UrnWLD1Rv9Vyn5R1fkZgw",
"name": "Edit",
"input": {
"replace_all": false,
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/index.js",
"old_string": " .option('output-used-model', {\n type: 'boolean',\n description:\n 'Include model information in output parts (providerID, modelID, responseModelId). See: issue #179',\n default: false,\n }),",
"new_string": " .option('output-response-model', {\n type: 'boolean',\n description:\n 'Include model information in output parts (providerID, requestedModelID, respondedModelID). See: issue #179',\n default: false,\n })\n .option('summarize-session', {\n type: 'boolean',\n description:\n 'Generate session summaries using AI (default: false). Disabling saves tokens and prevents rate limit issues.',\n default: false,\n }),"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 697,
"cache_read_input_tokens": 122718,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 697
},
"output_tokens": 2,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "680a3b16-7460-4fa1-adec-af30bd574014"
}
[2026-02-15T09:05:01.382Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_011UrnWLD1Rv9Vyn5R1fkZgw",
"type": "tool_result",
"content": "The file /tmp/gh-issue-solver-1771146225324/js/src/index.js has been updated successfully."
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "159cb73b-2cc4-4473-a36f-3fcc401b76ca",
"tool_use_result": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/index.js",
"oldString": " .option('output-used-model', {\n type: 'boolean',\n description:\n 'Include model information in output parts (providerID, modelID, responseModelId). See: issue #179',\n default: false,\n }),",
"newString": " .option('output-response-model', {\n type: 'boolean',\n description:\n 'Include model information in output parts (providerID, requestedModelID, respondedModelID). See: issue #179',\n default: false,\n })\n .option('summarize-session', {\n type: 'boolean',\n description:\n 'Generate session summaries using AI (default: false). Disabling saves tokens and prevents rate limit issues.',\n default: false,\n }),",
"originalFile": "#!/usr/bin/env bun\n\nimport { setProcessName } from './cli/process-name.ts';\n\nsetProcessName('agent');\n\nimport { Server } from './server/server.ts';\nimport { Instance } from './project/instance.ts';\nimport { Log } from './util/log.ts';\n// Bus is used via createBusEventSubscription in event-handler.js\nimport { Session } from './session/index.ts';\nimport { SessionPrompt } from './session/prompt.ts';\n// EOL is reserved for future use\nimport yargs from 'yargs';\nimport { hideBin } from 'yargs/helpers';\nimport {\n createEventHandler,\n isValidJsonStandard,\n} from './json-standard/index.ts';\nimport { McpCommand } from './cli/cmd/mcp.ts';\nimport { AuthCommand } from './cli/cmd/auth.ts';\nimport { Flag } from './flag/flag.ts';\nimport { FormatError } from './cli/error.ts';\nimport { UI } from './cli/ui.ts';\nimport {\n runContinuousServerMode,\n runContinuousDirectMode,\n resolveResumeSession,\n} from './cli/continuous-mode.js';\nimport { createBusEventSubscription } from './cli/event-handler.js';\nimport {\n outputStatus,\n outputError,\n outputHelp,\n setCompactJson,\n outputInput,\n} from './cli/output.ts';\nimport stripAnsi from 'strip-ansi';\nimport { createRequire } from 'module';\nimport { readFileSync } from 'fs';\nimport { dirname, join } from 'path';\nimport { fileURLToPath } from 'url';\n\nconst require = createRequire(import.meta.url);\nlet pkg;\ntry {\n pkg = require('../package.json');\n} catch (_e) {\n // Fallback: read package.json directly\n const __dirname = dirname(fileURLToPath(import.meta.url));\n const pkgPath = join(__dirname, '../package.json');\n const pkgContent = readFileSync(pkgPath, 'utf8');\n pkg = JSON.parse(pkgContent);\n}\n\n// Track if any errors occurred during execution\nlet hasError = false;\n\n// Install global error handlers to ensure non-zero exit codes\nprocess.on('uncaughtException', (error) => {\n hasError = true;\n outputError({\n errorType: error.name || 'UncaughtException',\n message: error.message,\n stack: error.stack,\n });\n process.exit(1);\n});\n\nprocess.on('unhandledRejection', (reason, _promise) => {\n hasError = true;\n const errorOutput = {\n errorType: 'UnhandledRejection',\n message: reason?.message || String(reason),\n stack: reason?.stack,\n };\n // If the error has a data property with a suggestion (e.g., ProviderModelNotFoundError), add it as a hint\n if (reason?.data?.suggestion) {\n errorOutput.hint = reason.data.suggestion;\n }\n outputError(errorOutput);\n process.exit(1);\n});\n\n/**\n * Read stdin with optional timeout.\n * @param {number|null} timeout - Timeout in milliseconds. If null, wait indefinitely until EOF.\n * @returns {Promise<string>} - The stdin content\n */\nfunction readStdinWithTimeout(timeout = null) {\n return new Promise((resolve) => {\n let data = '';\n let hasData = false;\n let timer = null;\n\n const cleanup = () => {\n if (timer) {\n clearTimeout(timer);\n }\n process.stdin.removeListener('data', onData);\n process.stdin.removeListener('end', onEnd);\n process.stdin.removeListener('error', onError);\n };\n\n const onData = (chunk) => {\n hasData = true;\n if (timer) {\n clearTimeout(timer);\n }\n data += chunk;\n };\n\n const onEnd = () => {\n cleanup();\n resolve(data);\n };\n\n const onError = () => {\n cleanup();\n resolve('');\n };\n\n // Only set timeout if specified (not null)\n if (timeout !== null) {\n timer = setTimeout(() => {\n if (!hasData) {\n process.stdin.pause();\n cleanup();\n resolve('');\n }\n }, timeout);\n }\n\n process.stdin.on('data', onData);\n process.stdin.on('end', onEnd);\n process.stdin.on('error', onError);\n });\n}\n\n// outputStatus is now imported from './cli/output.ts'\n// It outputs to stdout for non-error messages, stderr for errors\n\n/**\n * Parse model configuration from argv\n * Supports both explicit provider/model format and short model names.\n *\n * Format examples:\n * - \"kilo/glm-5-free\" -> uses kilo provider with glm-5-free model (explicit)\n * - \"opencode/kimi-k2.5-free\" -> uses opencode provider (explicit)\n * - \"glm-5-free\" -> resolved to kilo provider (unique free model)\n * - \"kimi-k2.5-free\" -> resolved to opencode provider (shared model, opencode preferred)\n *\n * @param {object} argv - Command line arguments\n * @returns {object} - { providerID, modelID }\n */\nasync function parseModelConfig(argv) {\n const modelArg = argv.model;\n\n let providerID;\n let modelID;\n\n // Check if model includes explicit provider prefix\n if (modelArg.includes('/')) {\n // Explicit provider/model format - respect user's choice\n const modelParts = modelArg.split('/');\n providerID = modelParts[0];\n modelID = modelParts.slice(1).join('/');\n\n // Validate that providerID and modelID are not empty\n if (!providerID || !modelID) {\n providerID = providerID || 'opencode';\n modelID = modelID || 'kimi-k2.5-free';\n }\n\n // Log raw and parsed values to help diagnose model routing issues (#171)\n Log.Default.info(() => ({\n message: 'using explicit provider/model',\n rawModel: modelArg,\n providerID,\n modelID,\n }));\n } else {\n // Short model name - resolve to appropriate provider\n // Import Provider to use parseModelWithResolution\n const { Provider } = await import('./provider/provider.ts');\n const resolved = await Provider.parseModelWithResolution(modelArg);\n providerID = resolved.providerID;\n modelID = resolved.modelID;\n\n Log.Default.info(() => ({\n message: 'resolved short model name',\n input: modelArg,\n providerID,\n modelID,\n }));\n }\n\n // Handle --use-existing-claude-oauth option\n // This reads OAuth credentials from ~/.claude/.credentials.json (Claude Code CLI)\n // For new authentication, use: agent auth login (select Anthropic > Claude Pro/Max)\n if (argv['use-existing-claude-oauth']) {\n // Import ClaudeOAuth to check for credentials from Claude Code CLI\n const { ClaudeOAuth } = await import('./auth/claude-oauth.ts');\n const creds = await ClaudeOAuth.getCredentials();\n\n if (!creds?.accessToken) {\n const compactJson = argv['compact-json'] === true;\n outputError(\n {\n errorType: 'AuthenticationError',\n message:\n 'No Claude OAuth credentials found in ~/.claude/.credentials.json. Either authenticate with Claude Code CLI first, or use: agent auth login (select Anthropic > Claude Pro/Max)',\n },\n compactJson\n );\n process.exit(1);\n }\n\n // Set environment variable for the provider to use\n process.env.CLAUDE_CODE_OAUTH_TOKEN = creds.accessToken;\n\n // If user specified the default model (opencode/kimi-k2.5-free), switch to claude-oauth\n // If user explicitly specified kilo or another provider, warn but respect their choice\n if (providerID === 'opencode' && modelID === 'kimi-k2.5-free') {\n providerID = 'claude-oauth';\n modelID = 'claude-sonnet-4-5';\n } else if (!['claude-oauth', 'anthropic'].includes(providerID)) {\n // If user specified a different provider explicitly, warn them\n const compactJson = argv['compact-json'] === true;\n outputStatus(\n {\n type: 'warning',\n message: `--use-existing-claude-oauth is set but model uses provider \"${providerID}\". Using specified provider.`,\n },\n compactJson\n );\n // Don't override - respect user's explicit provider choice\n }\n }\n\n return { providerID, modelID };\n}\n\n/**\n * Read system message from files if specified\n * @param {object} argv - Command line arguments\n * @returns {object} - { systemMessage, appendSystemMessage }\n */\nasync function readSystemMessages(argv) {\n let systemMessage = argv['system-message'];\n let appendSystemMessage = argv['append-system-message'];\n\n if (argv['system-message-file']) {\n const resolvedPath = require('path').resolve(\n process.cwd(),\n argv['system-message-file']\n );\n const file = Bun.file(resolvedPath);\n if (!(await file.exists())) {\n outputError({\n errorType: 'FileNotFound',\n message: `System message file not found: ${argv['system-message-file']}`,\n });\n process.exit(1);\n }\n systemMessage = await file.text();\n }\n\n if (argv['append-system-message-file']) {\n const resolvedPath = require('path').resolve(\n process.cwd(),\n argv['append-system-message-file']\n );\n const file = Bun.file(resolvedPath);\n if (!(await file.exists())) {\n outputError({\n errorType: 'FileNotFound',\n message: `Append system message file not found: ${argv['append-system-message-file']}`,\n });\n process.exit(1);\n }\n appendSystemMessage = await file.text();\n }\n\n return { systemMessage, appendSystemMessage };\n}\n\nasync function runAgentMode(argv, request) {\n // Log version and command info in verbose mode using lazy logging\n Log.Default.info(() => ({\n message: 'Agent started',\n version: pkg.version,\n command: process.argv.join(' '),\n workingDirectory: process.cwd(),\n scriptPath: import.meta.path,\n }));\n if (Flag.OPENCODE_DRY_RUN) {\n Log.Default.info(() => ({\n message: 'Dry run mode enabled',\n mode: 'dry-run',\n }));\n }\n\n // Validate and get JSON standard\n const jsonStandard = argv['json-standard'];\n if (!isValidJsonStandard(jsonStandard)) {\n outputStatus({\n type: 'error',\n errorType: 'ValidationError',\n message: `Invalid JSON standard: ${jsonStandard}. Use \"opencode\" or \"claude\".`,\n });\n process.exit(1);\n }\n\n const { systemMessage, appendSystemMessage } = await readSystemMessages(argv);\n\n // Logging is already initialized in middleware, no need to call Log.init() again\n\n // Wrap in Instance.provide for OpenCode infrastructure\n // parseModelConfig must be called inside Instance.provide to access provider state\n await Instance.provide({\n directory: process.cwd(),\n fn: async () => {\n // Parse model config inside Instance.provide context\n // This allows parseModelWithResolution to access the provider state\n const { providerID, modelID } = await parseModelConfig(argv);\n\n if (argv.server) {\n // SERVER MODE: Start server and communicate via HTTP\n await runServerMode(\n argv,\n request,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n );\n } else {\n // DIRECT MODE: Run everything in single process\n await runDirectMode(\n argv,\n request,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n );\n }\n },\n });\n\n // Explicitly exit to ensure process terminates\n process.exit(hasError ? 1 : 0);\n}\n\n/**\n * Run agent in continuous stdin mode\n * Keeps accepting input until EOF or SIGINT\n * @param {object} argv - Command line arguments\n */\nasync function runContinuousAgentMode(argv) {\n const compactJson = argv['compact-json'] === true;\n // Log version and command info in verbose mode using lazy logging\n Log.Default.info(() => ({\n message: 'Agent started (continuous mode)',\n version: pkg.version,\n command: process.argv.join(' '),\n workingDirectory: process.cwd(),\n scriptPath: import.meta.path,\n }));\n if (Flag.OPENCODE_DRY_RUN) {\n Log.Default.info(() => ({\n message: 'Dry run mode enabled',\n mode: 'dry-run',\n }));\n }\n\n // Validate and get JSON standard\n const jsonStandard = argv['json-standard'];\n if (!isValidJsonStandard(jsonStandard)) {\n outputStatus(\n {\n type: 'error',\n message: `Invalid JSON standard: ${jsonStandard}. Use \"opencode\" or \"claude\".`,\n },\n compactJson\n );\n process.exit(1);\n }\n\n const { systemMessage, appendSystemMessage } = await readSystemMessages(argv);\n\n // Wrap in Instance.provide for OpenCode infrastructure\n // parseModelConfig must be called inside Instance.provide to access provider state\n await Instance.provide({\n directory: process.cwd(),\n fn: async () => {\n // Parse model config inside Instance.provide context\n // This allows parseModelWithResolution to access the provider state\n const { providerID, modelID } = await parseModelConfig(argv);\n\n if (argv.server) {\n // SERVER MODE: Start server and communicate via HTTP\n await runContinuousServerMode(\n argv,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n );\n } else {\n // DIRECT MODE: Run everything in single process\n await runContinuousDirectMode(\n argv,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n );\n }\n },\n });\n\n // Explicitly exit to ensure process terminates\n process.exit(hasError ? 1 : 0);\n}\n\nasync function runServerMode(\n argv,\n request,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n) {\n const compactJson = argv['compact-json'] === true;\n\n // Start server like OpenCode does\n const server = Server.listen({ port: 0, hostname: '127.0.0.1' });\n let unsub = null;\n\n try {\n // Check if we should resume an existing session\n const resumeInfo = await resolveResumeSession(argv, compactJson);\n\n let sessionID;\n\n if (resumeInfo) {\n // Use the resumed/forked session\n sessionID = resumeInfo.sessionID;\n } else {\n // Create a new session\n const createRes = await fetch(\n `http://${server.hostname}:${server.port}/session`,\n {\n method: 'POST',\n headers: { 'Content-Type': 'application/json' },\n body: JSON.stringify({}),\n }\n );\n const session = await createRes.json();\n sessionID = session.id;\n\n if (!sessionID) {\n throw new Error('Failed to create session');\n }\n }\n\n // Create event handler for the selected JSON standard\n const eventHandler = createEventHandler(jsonStandard, sessionID);\n\n // Subscribe to all bus events and output in selected format\n const { unsub: eventUnsub, idlePromise: eventPromise } =\n createBusEventSubscription({\n sessionID,\n eventHandler,\n onError: () => {\n hasError = true;\n },\n });\n unsub = eventUnsub;\n\n // Send message to session with specified model (default: opencode/grok-code)\n const message = request.message || 'hi';\n const parts = [{ type: 'text', text: message }];\n\n // Start the prompt (don't wait for response, events come via Bus)\n fetch(\n `http://${server.hostname}:${server.port}/session/${sessionID}/message`,\n {\n method: 'POST',\n headers: { 'Content-Type': 'application/json' },\n body: JSON.stringify({\n parts,\n model: {\n providerID,\n modelID,\n },\n system: systemMessage,\n appendSystem: appendSystemMessage,\n }),\n }\n ).catch((error) => {\n hasError = true;\n eventHandler.output({\n type: 'error',\n timestamp: Date.now(),\n sessionID,\n error: error instanceof Error ? error.message : String(error),\n });\n });\n\n // Wait for session to become idle\n await eventPromise;\n } finally {\n // Always clean up resources\n if (unsub) {\n unsub();\n }\n server.stop();\n await Instance.dispose();\n }\n}\n\nasync function runDirectMode(\n argv,\n request,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n) {\n const compactJson = argv['compact-json'] === true;\n\n // DIRECT MODE: Run in single process without server\n let unsub = null;\n\n try {\n // Check if we should resume an existing session\n const resumeInfo = await resolveResumeSession(argv, compactJson);\n\n let sessionID;\n\n if (resumeInfo) {\n // Use the resumed/forked session\n sessionID = resumeInfo.sessionID;\n } else {\n // Create a new session directly\n const session = await Session.createNext({\n directory: process.cwd(),\n });\n sessionID = session.id;\n }\n\n // Create event handler for the selected JSON standard\n const eventHandler = createEventHandler(jsonStandard, sessionID);\n\n // Subscribe to all bus events and output in selected format\n const { unsub: eventUnsub, idlePromise: eventPromise } =\n createBusEventSubscription({\n sessionID,\n eventHandler,\n onError: () => {\n hasError = true;\n },\n });\n unsub = eventUnsub;\n\n // Send message to session directly\n const message = request.message || 'hi';\n const parts = [{ type: 'text', text: message }];\n\n // Start the prompt directly without HTTP\n SessionPrompt.prompt({\n sessionID,\n parts,\n model: {\n providerID,\n modelID,\n },\n system: systemMessage,\n appendSystem: appendSystemMessage,\n }).catch((error) => {\n hasError = true;\n eventHandler.output({\n type: 'error',\n timestamp: Date.now(),\n sessionID,\n error: error instanceof Error ? error.message : String(error),\n });\n });\n\n // Wait for session to become idle\n await eventPromise;\n } finally {\n // Always clean up resources\n if (unsub) {\n unsub();\n }\n await Instance.dispose();\n }\n}\n\nasync function main() {\n try {\n // Parse command line arguments with subcommands\n const yargsInstance = yargs(hideBin(process.argv))\n .scriptName('agent')\n .usage('$0 [command] [options]')\n .version(pkg.version)\n // MCP subcommand\n .command(McpCommand)\n // Auth subcommand\n .command(AuthCommand)\n // Default command for agent mode (when no subcommand specified)\n .command({\n command: '$0',\n describe: 'Run agent in interactive or stdin mode (default)',\n builder: (yargs) =>\n yargs\n .option('model', {\n type: 'string',\n description: 'Model to use in format providerID/modelID',\n default: 'opencode/kimi-k2.5-free',\n })\n .option('json-standard', {\n type: 'string',\n description:\n 'JSON output format standard: \"opencode\" (default) or \"claude\" (experimental)',\n default: 'opencode',\n choices: ['opencode', 'claude'],\n })\n .option('system-message', {\n type: 'string',\n description: 'Full override of the system message',\n })\n .option('system-message-file', {\n type: 'string',\n description: 'Full override of the system message from file',\n })\n .option('append-system-message', {\n type: 'string',\n description: 'Append to the default system message',\n })\n .option('append-system-message-file', {\n type: 'string',\n description: 'Append to the default system message from file',\n })\n .option('server', {\n type: 'boolean',\n description: 'Run in server mode (default)',\n default: true,\n })\n .option('verbose', {\n type: 'boolean',\n description:\n 'Enable verbose mode to debug API requests (shows system prompt, token counts, etc.)',\n default: false,\n })\n .option('dry-run', {\n type: 'boolean',\n description:\n 'Simulate operations without making actual API calls or package installations (useful for testing)',\n default: false,\n })\n .option('use-existing-claude-oauth', {\n type: 'boolean',\n description:\n 'Use existing Claude OAuth credentials from ~/.claude/.credentials.json (from Claude Code CLI)',\n default: false,\n })\n .option('prompt', {\n alias: 'p',\n type: 'string',\n description:\n 'Prompt message to send directly (bypasses stdin reading)',\n })\n .option('disable-stdin', {\n type: 'boolean',\n description:\n 'Disable stdin streaming mode (requires --prompt or shows help)',\n default: false,\n })\n .option('stdin-stream-timeout', {\n type: 'number',\n description:\n 'Optional timeout in milliseconds for stdin reading (default: no timeout)',\n })\n .option('auto-merge-queued-messages', {\n type: 'boolean',\n description:\n 'Enable auto-merging of rapidly arriving input lines into single messages (default: true)',\n default: true,\n })\n .option('interactive', {\n type: 'boolean',\n description:\n 'Enable interactive mode to accept manual input as plain text strings (default: true). Use --no-interactive to only accept JSON input.',\n default: true,\n })\n .option('always-accept-stdin', {\n type: 'boolean',\n description:\n 'Keep accepting stdin input even after the agent finishes work (default: true). Use --no-always-accept-stdin for single-message mode.',\n default: true,\n })\n .option('compact-json', {\n type: 'boolean',\n description:\n 'Output compact JSON (single line) instead of pretty-printed JSON (default: false). Useful for program-to-program communication.',\n default: false,\n })\n .option('resume', {\n alias: 'r',\n type: 'string',\n description:\n 'Resume a specific session by ID. By default, forks the session with a new UUID. Use --no-fork to continue in the same session.',\n })\n .option('continue', {\n alias: 'c',\n type: 'boolean',\n description:\n 'Continue the most recent session. By default, forks the session with a new UUID. Use --no-fork to continue in the same session.',\n default: false,\n })\n .option('no-fork', {\n type: 'boolean',\n description:\n 'When used with --resume or --continue, continue in the same session without forking to a new UUID.',\n default: false,\n })\n .option('generate-title', {\n type: 'boolean',\n description:\n 'Generate session titles using AI (default: false). Disabling saves tokens and prevents rate limit issues.',\n default: false,\n })\n .option('retry-timeout', {\n type: 'number',\n description:\n 'Maximum total retry time in seconds for rate limit errors (default: 604800 = 7 days)',\n })\n .option('output-used-model', {\n type: 'boolean',\n description:\n 'Include model information in output parts (providerID, modelID, responseModelId). See: issue #179',\n default: false,\n }),\n handler: async (argv) => {\n // Check both CLI flag and environment variable for compact JSON mode\n const compactJson =\n argv['compact-json'] === true || Flag.COMPACT_JSON();\n\n // Check if --prompt flag was provided\n if (argv.prompt) {\n // Direct prompt mode - bypass stdin entirely\n const request = { message: argv.prompt };\n await runAgentMode(argv, request);\n return;\n }\n\n // Check if --disable-stdin was set without --prompt\n if (argv['disable-stdin']) {\n // Output a helpful message suggesting to use --prompt\n outputError(\n {\n errorType: 'ValidationError',\n message:\n 'No prompt provided. Use -p/--prompt to specify a message, or remove --disable-stdin to read from stdin.',\n hint: 'Example: agent -p \"Hello, how are you?\"',\n },\n compactJson\n );\n process.exit(1);\n }\n\n // Check if stdin is a TTY (interactive terminal)\n if (process.stdin.isTTY) {\n // Enter interactive terminal mode with continuous listening\n const isInteractive = argv.interactive !== false;\n const autoMerge = argv['auto-merge-queued-messages'] !== false;\n const alwaysAcceptStdin = argv['always-accept-stdin'] !== false;\n\n // Exit if --no-always-accept-stdin is set (single message mode not supported in TTY)\n if (!alwaysAcceptStdin) {\n outputError(\n {\n errorType: 'ValidationError',\n message:\n 'Single message mode (--no-always-accept-stdin) is not supported in interactive terminal mode.',\n hint: 'Use piped input or --prompt for single messages.',\n },\n compactJson\n );\n process.exit(1);\n }\n\n outputStatus(\n {\n type: 'status',\n mode: 'interactive-terminal',\n message:\n 'Agent CLI in interactive terminal mode. Type your message and press Enter.',\n hint: 'Press CTRL+C to exit. Use --help for options.',\n acceptedFormats: isInteractive\n ? ['JSON object with \"message\" field', 'Plain text']\n : ['JSON object with \"message\" field'],\n options: {\n interactive: isInteractive,\n autoMergeQueuedMessages: autoMerge,\n alwaysAcceptStdin,\n compactJson,\n },\n },\n compactJson\n );\n\n // Use continuous mode for interactive terminal\n await runContinuousAgentMode(argv);\n return;\n }\n\n // stdin is piped - enter stdin listening mode\n const isInteractive = argv.interactive !== false;\n const autoMerge = argv['auto-merge-queued-messages'] !== false;\n const alwaysAcceptStdin = argv['always-accept-stdin'] !== false;\n\n outputStatus(\n {\n type: 'status',\n mode: 'stdin-stream',\n message: alwaysAcceptStdin\n ? 'Agent CLI in continuous listening mode. Accepts JSON and plain text input.'\n : 'Agent CLI in single-message mode. Accepts JSON and plain text input.',\n hint: 'Press CTRL+C to exit. Use --help for options.',\n acceptedFormats: isInteractive\n ? ['JSON object with \"message\" field', 'Plain text']\n : ['JSON object with \"message\" field'],\n options: {\n interactive: isInteractive,\n autoMergeQueuedMessages: autoMerge,\n alwaysAcceptStdin,\n compactJson,\n },\n },\n compactJson\n );\n\n // Use continuous mode if --always-accept-stdin is enabled (default)\n if (alwaysAcceptStdin) {\n await runContinuousAgentMode(argv);\n return;\n }\n\n // Single-message mode (--no-always-accept-stdin)\n const timeout = argv['stdin-stream-timeout'] ?? null;\n const input = await readStdinWithTimeout(timeout);\n const trimmedInput = input.trim();\n\n if (trimmedInput === '') {\n outputStatus(\n {\n type: 'status',\n message: 'No input received. Exiting.',\n },\n compactJson\n );\n yargsInstance.showHelp();\n process.exit(0);\n }\n\n // Try to parse as JSON, if it fails treat it as plain text message\n let request;\n try {\n request = JSON.parse(trimmedInput);\n } catch (_e) {\n // Not JSON\n if (!isInteractive) {\n // In non-interactive mode, only accept JSON\n outputError(\n {\n errorType: 'ValidationError',\n message:\n 'Invalid JSON input. In non-interactive mode (--no-interactive), only JSON input is accepted.',\n hint: 'Use --interactive to accept plain text, or provide valid JSON: {\"message\": \"your text\"}',\n },\n compactJson\n );\n process.exit(1);\n }\n // In interactive mode, treat as plain text message\n request = {\n message: trimmedInput,\n };\n }\n\n // Output input confirmation in JSON format\n outputInput(\n {\n raw: trimmedInput,\n parsed: request,\n format: isInteractive ? 'text' : 'json',\n },\n compactJson\n );\n\n // Run agent mode\n await runAgentMode(argv, request);\n },\n })\n // Initialize logging and flags early for all CLI commands\n .middleware(async (argv) => {\n const isCompact = argv['compact-json'] === true || Flag.COMPACT_JSON();\n if (isCompact) {\n setCompactJson(true);\n }\n if (argv.verbose) {\n Flag.setVerbose(true);\n }\n if (argv['dry-run']) {\n Flag.setDryRun(true);\n }\n if (argv['generate-title'] === true) {\n Flag.setGenerateTitle(true);\n }\n if (argv['output-used-model'] === true) {\n Flag.setOutputUsedModel(true);\n }\n await Log.init({\n print: Flag.OPENCODE_VERBOSE,\n level: Flag.OPENCODE_VERBOSE ? 'DEBUG' : 'INFO',\n compactJson: isCompact,\n });\n })\n .fail((msg, err, yargs) => {\n // Handle errors from command handlers\n if (err) {\n // Check if it's a CancelledError (user pressed ESC)\n if (UI.CancelledError.isInstance(err)) {\n // Exit silently without showing error or help text\n process.exit(0);\n }\n\n // Format other errors using FormatError\n const formatted = FormatError(err);\n if (formatted) {\n outputError({\n errorType: err.name || 'Error',\n message: formatted,\n });\n } else {\n // Fallback to default error formatting\n outputError({\n errorType: err.name || 'Error',\n message: err.message || String(err),\n });\n }\n process.exit(1);\n }\n\n // Handle validation messages (msg without err) - informational, not an error\n // Display help text on stdout (industry standard: git, gh, npm all use stdout for help)\n if (msg) {\n outputHelp({\n message: msg,\n hint: stripAnsi(yargs.help()),\n });\n process.exit(0);\n }\n })\n .help();\n\n // Parse arguments (handlers will be called automatically)\n await yargsInstance.argv;\n } catch (error) {\n hasError = true;\n outputError({\n timestamp: Date.now(),\n errorType: error instanceof Error ? error.name : 'Error',\n message: error instanceof Error ? error.message : String(error),\n stack: error instanceof Error ? error.stack : undefined,\n });\n process.exit(1);\n }\n}\n\nmain();\n",
"structuredPatch": [
{
"oldStart": 746,
"oldLines": 11,
"newStart": 746,
"newLines": 17,
"lines": [
" description:",
" 'Maximum total retry time in seconds for rate limit errors (default: 604800 = 7 days)',",
" })",
"- .option('output-used-model', {",
"+ .option('output-response-model', {",
" type: 'boolean',",
" description:",
"- 'Include model information in output parts (providerID, modelID, responseModelId). See: issue #179',",
"+ 'Include model information in output parts (providerID, requestedModelID, respondedModelID). See: issue #179',",
" default: false,",
"+ })",
"+ .option('summarize-session', {",
"+ type: 'boolean',",
"+ description:",
"+ 'Generate session summaries using AI (default: false). Disabling saves tokens and prevents rate limit issues.',",
"+ default: false,",
" }),",
" handler: async (argv) => {",
" // Check both CLI flag and environment variable for compact JSON mode"
]
}
],
"userModified": false,
"replaceAll": false
}
}
[2026-02-15T09:05:04.834Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01QugiUekbYdgHFX6SoFYiTs",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01BtEWdtvpex97Eyt29xwcF2",
"name": "Edit",
"input": {
"replace_all": false,
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/index.js",
"old_string": " if (argv['output-used-model'] === true) {\n Flag.setOutputUsedModel(true);\n }",
"new_string": " if (argv['output-response-model'] === true) {\n Flag.setOutputResponseModel(true);\n }\n if (argv['summarize-session'] === true) {\n Flag.setSummarizeSession(true);\n }"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 361,
"cache_read_input_tokens": 123415,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 361
},
"output_tokens": 25,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "06973c8e-4413-47f8-b538-9fc3894a5897"
}
[2026-02-15T09:05:04.867Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01BtEWdtvpex97Eyt29xwcF2",
"type": "tool_result",
"content": "The file /tmp/gh-issue-solver-1771146225324/js/src/index.js has been updated successfully."
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "1ae2cb4b-462e-47df-aa8b-e30614e0f481",
"tool_use_result": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/index.js",
"oldString": " if (argv['output-used-model'] === true) {\n Flag.setOutputUsedModel(true);\n }",
"newString": " if (argv['output-response-model'] === true) {\n Flag.setOutputResponseModel(true);\n }\n if (argv['summarize-session'] === true) {\n Flag.setSummarizeSession(true);\n }",
"originalFile": "#!/usr/bin/env bun\n\nimport { setProcessName } from './cli/process-name.ts';\n\nsetProcessName('agent');\n\nimport { Server } from './server/server.ts';\nimport { Instance } from './project/instance.ts';\nimport { Log } from './util/log.ts';\n// Bus is used via createBusEventSubscription in event-handler.js\nimport { Session } from './session/index.ts';\nimport { SessionPrompt } from './session/prompt.ts';\n// EOL is reserved for future use\nimport yargs from 'yargs';\nimport { hideBin } from 'yargs/helpers';\nimport {\n createEventHandler,\n isValidJsonStandard,\n} from './json-standard/index.ts';\nimport { McpCommand } from './cli/cmd/mcp.ts';\nimport { AuthCommand } from './cli/cmd/auth.ts';\nimport { Flag } from './flag/flag.ts';\nimport { FormatError } from './cli/error.ts';\nimport { UI } from './cli/ui.ts';\nimport {\n runContinuousServerMode,\n runContinuousDirectMode,\n resolveResumeSession,\n} from './cli/continuous-mode.js';\nimport { createBusEventSubscription } from './cli/event-handler.js';\nimport {\n outputStatus,\n outputError,\n outputHelp,\n setCompactJson,\n outputInput,\n} from './cli/output.ts';\nimport stripAnsi from 'strip-ansi';\nimport { createRequire } from 'module';\nimport { readFileSync } from 'fs';\nimport { dirname, join } from 'path';\nimport { fileURLToPath } from 'url';\n\nconst require = createRequire(import.meta.url);\nlet pkg;\ntry {\n pkg = require('../package.json');\n} catch (_e) {\n // Fallback: read package.json directly\n const __dirname = dirname(fileURLToPath(import.meta.url));\n const pkgPath = join(__dirname, '../package.json');\n const pkgContent = readFileSync(pkgPath, 'utf8');\n pkg = JSON.parse(pkgContent);\n}\n\n// Track if any errors occurred during execution\nlet hasError = false;\n\n// Install global error handlers to ensure non-zero exit codes\nprocess.on('uncaughtException', (error) => {\n hasError = true;\n outputError({\n errorType: error.name || 'UncaughtException',\n message: error.message,\n stack: error.stack,\n });\n process.exit(1);\n});\n\nprocess.on('unhandledRejection', (reason, _promise) => {\n hasError = true;\n const errorOutput = {\n errorType: 'UnhandledRejection',\n message: reason?.message || String(reason),\n stack: reason?.stack,\n };\n // If the error has a data property with a suggestion (e.g., ProviderModelNotFoundError), add it as a hint\n if (reason?.data?.suggestion) {\n errorOutput.hint = reason.data.suggestion;\n }\n outputError(errorOutput);\n process.exit(1);\n});\n\n/**\n * Read stdin with optional timeout.\n * @param {number|null} timeout - Timeout in milliseconds. If null, wait indefinitely until EOF.\n * @returns {Promise<string>} - The stdin content\n */\nfunction readStdinWithTimeout(timeout = null) {\n return new Promise((resolve) => {\n let data = '';\n let hasData = false;\n let timer = null;\n\n const cleanup = () => {\n if (timer) {\n clearTimeout(timer);\n }\n process.stdin.removeListener('data', onData);\n process.stdin.removeListener('end', onEnd);\n process.stdin.removeListener('error', onError);\n };\n\n const onData = (chunk) => {\n hasData = true;\n if (timer) {\n clearTimeout(timer);\n }\n data += chunk;\n };\n\n const onEnd = () => {\n cleanup();\n resolve(data);\n };\n\n const onError = () => {\n cleanup();\n resolve('');\n };\n\n // Only set timeout if specified (not null)\n if (timeout !== null) {\n timer = setTimeout(() => {\n if (!hasData) {\n process.stdin.pause();\n cleanup();\n resolve('');\n }\n }, timeout);\n }\n\n process.stdin.on('data', onData);\n process.stdin.on('end', onEnd);\n process.stdin.on('error', onError);\n });\n}\n\n// outputStatus is now imported from './cli/output.ts'\n// It outputs to stdout for non-error messages, stderr for errors\n\n/**\n * Parse model configuration from argv\n * Supports both explicit provider/model format and short model names.\n *\n * Format examples:\n * - \"kilo/glm-5-free\" -> uses kilo provider with glm-5-free model (explicit)\n * - \"opencode/kimi-k2.5-free\" -> uses opencode provider (explicit)\n * - \"glm-5-free\" -> resolved to kilo provider (unique free model)\n * - \"kimi-k2.5-free\" -> resolved to opencode provider (shared model, opencode preferred)\n *\n * @param {object} argv - Command line arguments\n * @returns {object} - { providerID, modelID }\n */\nasync function parseModelConfig(argv) {\n const modelArg = argv.model;\n\n let providerID;\n let modelID;\n\n // Check if model includes explicit provider prefix\n if (modelArg.includes('/')) {\n // Explicit provider/model format - respect user's choice\n const modelParts = modelArg.split('/');\n providerID = modelParts[0];\n modelID = modelParts.slice(1).join('/');\n\n // Validate that providerID and modelID are not empty\n if (!providerID || !modelID) {\n providerID = providerID || 'opencode';\n modelID = modelID || 'kimi-k2.5-free';\n }\n\n // Log raw and parsed values to help diagnose model routing issues (#171)\n Log.Default.info(() => ({\n message: 'using explicit provider/model',\n rawModel: modelArg,\n providerID,\n modelID,\n }));\n } else {\n // Short model name - resolve to appropriate provider\n // Import Provider to use parseModelWithResolution\n const { Provider } = await import('./provider/provider.ts');\n const resolved = await Provider.parseModelWithResolution(modelArg);\n providerID = resolved.providerID;\n modelID = resolved.modelID;\n\n Log.Default.info(() => ({\n message: 'resolved short model name',\n input: modelArg,\n providerID,\n modelID,\n }));\n }\n\n // Handle --use-existing-claude-oauth option\n // This reads OAuth credentials from ~/.claude/.credentials.json (Claude Code CLI)\n // For new authentication, use: agent auth login (select Anthropic > Claude Pro/Max)\n if (argv['use-existing-claude-oauth']) {\n // Import ClaudeOAuth to check for credentials from Claude Code CLI\n const { ClaudeOAuth } = await import('./auth/claude-oauth.ts');\n const creds = await ClaudeOAuth.getCredentials();\n\n if (!creds?.accessToken) {\n const compactJson = argv['compact-json'] === true;\n outputError(\n {\n errorType: 'AuthenticationError',\n message:\n 'No Claude OAuth credentials found in ~/.claude/.credentials.json. Either authenticate with Claude Code CLI first, or use: agent auth login (select Anthropic > Claude Pro/Max)',\n },\n compactJson\n );\n process.exit(1);\n }\n\n // Set environment variable for the provider to use\n process.env.CLAUDE_CODE_OAUTH_TOKEN = creds.accessToken;\n\n // If user specified the default model (opencode/kimi-k2.5-free), switch to claude-oauth\n // If user explicitly specified kilo or another provider, warn but respect their choice\n if (providerID === 'opencode' && modelID === 'kimi-k2.5-free') {\n providerID = 'claude-oauth';\n modelID = 'claude-sonnet-4-5';\n } else if (!['claude-oauth', 'anthropic'].includes(providerID)) {\n // If user specified a different provider explicitly, warn them\n const compactJson = argv['compact-json'] === true;\n outputStatus(\n {\n type: 'warning',\n message: `--use-existing-claude-oauth is set but model uses provider \"${providerID}\". Using specified provider.`,\n },\n compactJson\n );\n // Don't override - respect user's explicit provider choice\n }\n }\n\n return { providerID, modelID };\n}\n\n/**\n * Read system message from files if specified\n * @param {object} argv - Command line arguments\n * @returns {object} - { systemMessage, appendSystemMessage }\n */\nasync function readSystemMessages(argv) {\n let systemMessage = argv['system-message'];\n let appendSystemMessage = argv['append-system-message'];\n\n if (argv['system-message-file']) {\n const resolvedPath = require('path').resolve(\n process.cwd(),\n argv['system-message-file']\n );\n const file = Bun.file(resolvedPath);\n if (!(await file.exists())) {\n outputError({\n errorType: 'FileNotFound',\n message: `System message file not found: ${argv['system-message-file']}`,\n });\n process.exit(1);\n }\n systemMessage = await file.text();\n }\n\n if (argv['append-system-message-file']) {\n const resolvedPath = require('path').resolve(\n process.cwd(),\n argv['append-system-message-file']\n );\n const file = Bun.file(resolvedPath);\n if (!(await file.exists())) {\n outputError({\n errorType: 'FileNotFound',\n message: `Append system message file not found: ${argv['append-system-message-file']}`,\n });\n process.exit(1);\n }\n appendSystemMessage = await file.text();\n }\n\n return { systemMessage, appendSystemMessage };\n}\n\nasync function runAgentMode(argv, request) {\n // Log version and command info in verbose mode using lazy logging\n Log.Default.info(() => ({\n message: 'Agent started',\n version: pkg.version,\n command: process.argv.join(' '),\n workingDirectory: process.cwd(),\n scriptPath: import.meta.path,\n }));\n if (Flag.OPENCODE_DRY_RUN) {\n Log.Default.info(() => ({\n message: 'Dry run mode enabled',\n mode: 'dry-run',\n }));\n }\n\n // Validate and get JSON standard\n const jsonStandard = argv['json-standard'];\n if (!isValidJsonStandard(jsonStandard)) {\n outputStatus({\n type: 'error',\n errorType: 'ValidationError',\n message: `Invalid JSON standard: ${jsonStandard}. Use \"opencode\" or \"claude\".`,\n });\n process.exit(1);\n }\n\n const { systemMessage, appendSystemMessage } = await readSystemMessages(argv);\n\n // Logging is already initialized in middleware, no need to call Log.init() again\n\n // Wrap in Instance.provide for OpenCode infrastructure\n // parseModelConfig must be called inside Instance.provide to access provider state\n await Instance.provide({\n directory: process.cwd(),\n fn: async () => {\n // Parse model config inside Instance.provide context\n // This allows parseModelWithResolution to access the provider state\n const { providerID, modelID } = await parseModelConfig(argv);\n\n if (argv.server) {\n // SERVER MODE: Start server and communicate via HTTP\n await runServerMode(\n argv,\n request,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n );\n } else {\n // DIRECT MODE: Run everything in single process\n await runDirectMode(\n argv,\n request,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n );\n }\n },\n });\n\n // Explicitly exit to ensure process terminates\n process.exit(hasError ? 1 : 0);\n}\n\n/**\n * Run agent in continuous stdin mode\n * Keeps accepting input until EOF or SIGINT\n * @param {object} argv - Command line arguments\n */\nasync function runContinuousAgentMode(argv) {\n const compactJson = argv['compact-json'] === true;\n // Log version and command info in verbose mode using lazy logging\n Log.Default.info(() => ({\n message: 'Agent started (continuous mode)',\n version: pkg.version,\n command: process.argv.join(' '),\n workingDirectory: process.cwd(),\n scriptPath: import.meta.path,\n }));\n if (Flag.OPENCODE_DRY_RUN) {\n Log.Default.info(() => ({\n message: 'Dry run mode enabled',\n mode: 'dry-run',\n }));\n }\n\n // Validate and get JSON standard\n const jsonStandard = argv['json-standard'];\n if (!isValidJsonStandard(jsonStandard)) {\n outputStatus(\n {\n type: 'error',\n message: `Invalid JSON standard: ${jsonStandard}. Use \"opencode\" or \"claude\".`,\n },\n compactJson\n );\n process.exit(1);\n }\n\n const { systemMessage, appendSystemMessage } = await readSystemMessages(argv);\n\n // Wrap in Instance.provide for OpenCode infrastructure\n // parseModelConfig must be called inside Instance.provide to access provider state\n await Instance.provide({\n directory: process.cwd(),\n fn: async () => {\n // Parse model config inside Instance.provide context\n // This allows parseModelWithResolution to access the provider state\n const { providerID, modelID } = await parseModelConfig(argv);\n\n if (argv.server) {\n // SERVER MODE: Start server and communicate via HTTP\n await runContinuousServerMode(\n argv,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n );\n } else {\n // DIRECT MODE: Run everything in single process\n await runContinuousDirectMode(\n argv,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n );\n }\n },\n });\n\n // Explicitly exit to ensure process terminates\n process.exit(hasError ? 1 : 0);\n}\n\nasync function runServerMode(\n argv,\n request,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n) {\n const compactJson = argv['compact-json'] === true;\n\n // Start server like OpenCode does\n const server = Server.listen({ port: 0, hostname: '127.0.0.1' });\n let unsub = null;\n\n try {\n // Check if we should resume an existing session\n const resumeInfo = await resolveResumeSession(argv, compactJson);\n\n let sessionID;\n\n if (resumeInfo) {\n // Use the resumed/forked session\n sessionID = resumeInfo.sessionID;\n } else {\n // Create a new session\n const createRes = await fetch(\n `http://${server.hostname}:${server.port}/session`,\n {\n method: 'POST',\n headers: { 'Content-Type': 'application/json' },\n body: JSON.stringify({}),\n }\n );\n const session = await createRes.json();\n sessionID = session.id;\n\n if (!sessionID) {\n throw new Error('Failed to create session');\n }\n }\n\n // Create event handler for the selected JSON standard\n const eventHandler = createEventHandler(jsonStandard, sessionID);\n\n // Subscribe to all bus events and output in selected format\n const { unsub: eventUnsub, idlePromise: eventPromise } =\n createBusEventSubscription({\n sessionID,\n eventHandler,\n onError: () => {\n hasError = true;\n },\n });\n unsub = eventUnsub;\n\n // Send message to session with specified model (default: opencode/grok-code)\n const message = request.message || 'hi';\n const parts = [{ type: 'text', text: message }];\n\n // Start the prompt (don't wait for response, events come via Bus)\n fetch(\n `http://${server.hostname}:${server.port}/session/${sessionID}/message`,\n {\n method: 'POST',\n headers: { 'Content-Type': 'application/json' },\n body: JSON.stringify({\n parts,\n model: {\n providerID,\n modelID,\n },\n system: systemMessage,\n appendSystem: appendSystemMessage,\n }),\n }\n ).catch((error) => {\n hasError = true;\n eventHandler.output({\n type: 'error',\n timestamp: Date.now(),\n sessionID,\n error: error instanceof Error ? error.message : String(error),\n });\n });\n\n // Wait for session to become idle\n await eventPromise;\n } finally {\n // Always clean up resources\n if (unsub) {\n unsub();\n }\n server.stop();\n await Instance.dispose();\n }\n}\n\nasync function runDirectMode(\n argv,\n request,\n providerID,\n modelID,\n systemMessage,\n appendSystemMessage,\n jsonStandard\n) {\n const compactJson = argv['compact-json'] === true;\n\n // DIRECT MODE: Run in single process without server\n let unsub = null;\n\n try {\n // Check if we should resume an existing session\n const resumeInfo = await resolveResumeSession(argv, compactJson);\n\n let sessionID;\n\n if (resumeInfo) {\n // Use the resumed/forked session\n sessionID = resumeInfo.sessionID;\n } else {\n // Create a new session directly\n const session = await Session.createNext({\n directory: process.cwd(),\n });\n sessionID = session.id;\n }\n\n // Create event handler for the selected JSON standard\n const eventHandler = createEventHandler(jsonStandard, sessionID);\n\n // Subscribe to all bus events and output in selected format\n const { unsub: eventUnsub, idlePromise: eventPromise } =\n createBusEventSubscription({\n sessionID,\n eventHandler,\n onError: () => {\n hasError = true;\n },\n });\n unsub = eventUnsub;\n\n // Send message to session directly\n const message = request.message || 'hi';\n const parts = [{ type: 'text', text: message }];\n\n // Start the prompt directly without HTTP\n SessionPrompt.prompt({\n sessionID,\n parts,\n model: {\n providerID,\n modelID,\n },\n system: systemMessage,\n appendSystem: appendSystemMessage,\n }).catch((error) => {\n hasError = true;\n eventHandler.output({\n type: 'error',\n timestamp: Date.now(),\n sessionID,\n error: error instanceof Error ? error.message : String(error),\n });\n });\n\n // Wait for session to become idle\n await eventPromise;\n } finally {\n // Always clean up resources\n if (unsub) {\n unsub();\n }\n await Instance.dispose();\n }\n}\n\nasync function main() {\n try {\n // Parse command line arguments with subcommands\n const yargsInstance = yargs(hideBin(process.argv))\n .scriptName('agent')\n .usage('$0 [command] [options]')\n .version(pkg.version)\n // MCP subcommand\n .command(McpCommand)\n // Auth subcommand\n .command(AuthCommand)\n // Default command for agent mode (when no subcommand specified)\n .command({\n command: '$0',\n describe: 'Run agent in interactive or stdin mode (default)',\n builder: (yargs) =>\n yargs\n .option('model', {\n type: 'string',\n description: 'Model to use in format providerID/modelID',\n default: 'opencode/kimi-k2.5-free',\n })\n .option('json-standard', {\n type: 'string',\n description:\n 'JSON output format standard: \"opencode\" (default) or \"claude\" (experimental)',\n default: 'opencode',\n choices: ['opencode', 'claude'],\n })\n .option('system-message', {\n type: 'string',\n description: 'Full override of the system message',\n })\n .option('system-message-file', {\n type: 'string',\n description: 'Full override of the system message from file',\n })\n .option('append-system-message', {\n type: 'string',\n description: 'Append to the default system message',\n })\n .option('append-system-message-file', {\n type: 'string',\n description: 'Append to the default system message from file',\n })\n .option('server', {\n type: 'boolean',\n description: 'Run in server mode (default)',\n default: true,\n })\n .option('verbose', {\n type: 'boolean',\n description:\n 'Enable verbose mode to debug API requests (shows system prompt, token counts, etc.)',\n default: false,\n })\n .option('dry-run', {\n type: 'boolean',\n description:\n 'Simulate operations without making actual API calls or package installations (useful for testing)',\n default: false,\n })\n .option('use-existing-claude-oauth', {\n type: 'boolean',\n description:\n 'Use existing Claude OAuth credentials from ~/.claude/.credentials.json (from Claude Code CLI)',\n default: false,\n })\n .option('prompt', {\n alias: 'p',\n type: 'string',\n description:\n 'Prompt message to send directly (bypasses stdin reading)',\n })\n .option('disable-stdin', {\n type: 'boolean',\n description:\n 'Disable stdin streaming mode (requires --prompt or shows help)',\n default: false,\n })\n .option('stdin-stream-timeout', {\n type: 'number',\n description:\n 'Optional timeout in milliseconds for stdin reading (default: no timeout)',\n })\n .option('auto-merge-queued-messages', {\n type: 'boolean',\n description:\n 'Enable auto-merging of rapidly arriving input lines into single messages (default: true)',\n default: true,\n })\n .option('interactive', {\n type: 'boolean',\n description:\n 'Enable interactive mode to accept manual input as plain text strings (default: true). Use --no-interactive to only accept JSON input.',\n default: true,\n })\n .option('always-accept-stdin', {\n type: 'boolean',\n description:\n 'Keep accepting stdin input even after the agent finishes work (default: true). Use --no-always-accept-stdin for single-message mode.',\n default: true,\n })\n .option('compact-json', {\n type: 'boolean',\n description:\n 'Output compact JSON (single line) instead of pretty-printed JSON (default: false). Useful for program-to-program communication.',\n default: false,\n })\n .option('resume', {\n alias: 'r',\n type: 'string',\n description:\n 'Resume a specific session by ID. By default, forks the session with a new UUID. Use --no-fork to continue in the same session.',\n })\n .option('continue', {\n alias: 'c',\n type: 'boolean',\n description:\n 'Continue the most recent session. By default, forks the session with a new UUID. Use --no-fork to continue in the same session.',\n default: false,\n })\n .option('no-fork', {\n type: 'boolean',\n description:\n 'When used with --resume or --continue, continue in the same session without forking to a new UUID.',\n default: false,\n })\n .option('generate-title', {\n type: 'boolean',\n description:\n 'Generate session titles using AI (default: false). Disabling saves tokens and prevents rate limit issues.',\n default: false,\n })\n .option('retry-timeout', {\n type: 'number',\n description:\n 'Maximum total retry time in seconds for rate limit errors (default: 604800 = 7 days)',\n })\n .option('output-response-model', {\n type: 'boolean',\n description:\n 'Include model information in output parts (providerID, requestedModelID, respondedModelID). See: issue #179',\n default: false,\n })\n .option('summarize-session', {\n type: 'boolean',\n description:\n 'Generate session summaries using AI (default: false). Disabling saves tokens and prevents rate limit issues.',\n default: false,\n }),\n handler: async (argv) => {\n // Check both CLI flag and environment variable for compact JSON mode\n const compactJson =\n argv['compact-json'] === true || Flag.COMPACT_JSON();\n\n // Check if --prompt flag was provided\n if (argv.prompt) {\n // Direct prompt mode - bypass stdin entirely\n const request = { message: argv.prompt };\n await runAgentMode(argv, request);\n return;\n }\n\n // Check if --disable-stdin was set without --prompt\n if (argv['disable-stdin']) {\n // Output a helpful message suggesting to use --prompt\n outputError(\n {\n errorType: 'ValidationError',\n message:\n 'No prompt provided. Use -p/--prompt to specify a message, or remove --disable-stdin to read from stdin.',\n hint: 'Example: agent -p \"Hello, how are you?\"',\n },\n compactJson\n );\n process.exit(1);\n }\n\n // Check if stdin is a TTY (interactive terminal)\n if (process.stdin.isTTY) {\n // Enter interactive terminal mode with continuous listening\n const isInteractive = argv.interactive !== false;\n const autoMerge = argv['auto-merge-queued-messages'] !== false;\n const alwaysAcceptStdin = argv['always-accept-stdin'] !== false;\n\n // Exit if --no-always-accept-stdin is set (single message mode not supported in TTY)\n if (!alwaysAcceptStdin) {\n outputError(\n {\n errorType: 'ValidationError',\n message:\n 'Single message mode (--no-always-accept-stdin) is not supported in interactive terminal mode.',\n hint: 'Use piped input or --prompt for single messages.',\n },\n compactJson\n );\n process.exit(1);\n }\n\n outputStatus(\n {\n type: 'status',\n mode: 'interactive-terminal',\n message:\n 'Agent CLI in interactive terminal mode. Type your message and press Enter.',\n hint: 'Press CTRL+C to exit. Use --help for options.',\n acceptedFormats: isInteractive\n ? ['JSON object with \"message\" field', 'Plain text']\n : ['JSON object with \"message\" field'],\n options: {\n interactive: isInteractive,\n autoMergeQueuedMessages: autoMerge,\n alwaysAcceptStdin,\n compactJson,\n },\n },\n compactJson\n );\n\n // Use continuous mode for interactive terminal\n await runContinuousAgentMode(argv);\n return;\n }\n\n // stdin is piped - enter stdin listening mode\n const isInteractive = argv.interactive !== false;\n const autoMerge = argv['auto-merge-queued-messages'] !== false;\n const alwaysAcceptStdin = argv['always-accept-stdin'] !== false;\n\n outputStatus(\n {\n type: 'status',\n mode: 'stdin-stream',\n message: alwaysAcceptStdin\n ? 'Agent CLI in continuous listening mode. Accepts JSON and plain text input.'\n : 'Agent CLI in single-message mode. Accepts JSON and plain text input.',\n hint: 'Press CTRL+C to exit. Use --help for options.',\n acceptedFormats: isInteractive\n ? ['JSON object with \"message\" field', 'Plain text']\n : ['JSON object with \"message\" field'],\n options: {\n interactive: isInteractive,\n autoMergeQueuedMessages: autoMerge,\n alwaysAcceptStdin,\n compactJson,\n },\n },\n compactJson\n );\n\n // Use continuous mode if --always-accept-stdin is enabled (default)\n if (alwaysAcceptStdin) {\n await runContinuousAgentMode(argv);\n return;\n }\n\n // Single-message mode (--no-always-accept-stdin)\n const timeout = argv['stdin-stream-timeout'] ?? null;\n const input = await readStdinWithTimeout(timeout);\n const trimmedInput = input.trim();\n\n if (trimmedInput === '') {\n outputStatus(\n {\n type: 'status',\n message: 'No input received. Exiting.',\n },\n compactJson\n );\n yargsInstance.showHelp();\n process.exit(0);\n }\n\n // Try to parse as JSON, if it fails treat it as plain text message\n let request;\n try {\n request = JSON.parse(trimmedInput);\n } catch (_e) {\n // Not JSON\n if (!isInteractive) {\n // In non-interactive mode, only accept JSON\n outputError(\n {\n errorType: 'ValidationError',\n message:\n 'Invalid JSON input. In non-interactive mode (--no-interactive), only JSON input is accepted.',\n hint: 'Use --interactive to accept plain text, or provide valid JSON: {\"message\": \"your text\"}',\n },\n compactJson\n );\n process.exit(1);\n }\n // In interactive mode, treat as plain text message\n request = {\n message: trimmedInput,\n };\n }\n\n // Output input confirmation in JSON format\n outputInput(\n {\n raw: trimmedInput,\n parsed: request,\n format: isInteractive ? 'text' : 'json',\n },\n compactJson\n );\n\n // Run agent mode\n await runAgentMode(argv, request);\n },\n })\n // Initialize logging and flags early for all CLI commands\n .middleware(async (argv) => {\n const isCompact = argv['compact-json'] === true || Flag.COMPACT_JSON();\n if (isCompact) {\n setCompactJson(true);\n }\n if (argv.verbose) {\n Flag.setVerbose(true);\n }\n if (argv['dry-run']) {\n Flag.setDryRun(true);\n }\n if (argv['generate-title'] === true) {\n Flag.setGenerateTitle(true);\n }\n if (argv['output-used-model'] === true) {\n Flag.setOutputUsedModel(true);\n }\n await Log.init({\n print: Flag.OPENCODE_VERBOSE,\n level: Flag.OPENCODE_VERBOSE ? 'DEBUG' : 'INFO',\n compactJson: isCompact,\n });\n })\n .fail((msg, err, yargs) => {\n // Handle errors from command handlers\n if (err) {\n // Check if it's a CancelledError (user pressed ESC)\n if (UI.CancelledError.isInstance(err)) {\n // Exit silently without showing error or help text\n process.exit(0);\n }\n\n // Format other errors using FormatError\n const formatted = FormatError(err);\n if (formatted) {\n outputError({\n errorType: err.name || 'Error',\n message: formatted,\n });\n } else {\n // Fallback to default error formatting\n outputError({\n errorType: err.name || 'Error',\n message: err.message || String(err),\n });\n }\n process.exit(1);\n }\n\n // Handle validation messages (msg without err) - informational, not an error\n // Display help text on stdout (industry standard: git, gh, npm all use stdout for help)\n if (msg) {\n outputHelp({\n message: msg,\n hint: stripAnsi(yargs.help()),\n });\n process.exit(0);\n }\n })\n .help();\n\n // Parse arguments (handlers will be called automatically)\n await yargsInstance.argv;\n } catch (error) {\n hasError = true;\n outputError({\n timestamp: Date.now(),\n errorType: error instanceof Error ? error.name : 'Error',\n message: error instanceof Error ? error.message : String(error),\n stack: error instanceof Error ? error.stack : undefined,\n });\n process.exit(1);\n }\n}\n\nmain();\n",
"structuredPatch": [
{
"oldStart": 935,
"oldLines": 9,
"newStart": 935,
"newLines": 12,
"lines": [
" if (argv['generate-title'] === true) {",
" Flag.setGenerateTitle(true);",
" }",
"- if (argv['output-used-model'] === true) {",
"- Flag.setOutputUsedModel(true);",
"+ if (argv['output-response-model'] === true) {",
"+ Flag.setOutputResponseModel(true);",
" }",
"+ if (argv['summarize-session'] === true) {",
"+ Flag.setSummarizeSession(true);",
"+ }",
" await Log.init({",
" print: Flag.OPENCODE_VERBOSE,",
" level: Flag.OPENCODE_VERBOSE ? 'DEBUG' : 'INFO',"
]
}
],
"userModified": false,
"replaceAll": false
}
}
[2026-02-15T09:05:07.945Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01DtPCBkAGw3megshvXyUF1F",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now update the message-v2.ts to rename the model fields:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 258,
"cache_read_input_tokens": 123776,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 258
},
"output_tokens": 2,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "5fb4b66b-10cc-4f03-aa0d-1cb693c5570d"
}
[2026-02-15T09:05:11.747Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01DtPCBkAGw3megshvXyUF1F",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_014ice4wRRaPWLe6Qj7GKWab",
"name": "Edit",
"input": {
"replace_all": false,
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/session/message-v2.ts",
"old_string": " /**\n * Model information for output parts.\n * Included when --output-used-model flag is enabled.\n * @see https://github.com/link-assistant/agent/issues/179\n */\n export const ModelInfo = z\n .object({\n providerID: z.string(),\n modelID: z.string(),\n responseModelId: z.string().optional(),\n })\n .meta({\n ref: 'ModelInfo',\n });\n export type ModelInfo = z.infer<typeof ModelInfo>;",
"new_string": " /**\n * Model information for output parts.\n * Included when --output-response-model flag is enabled.\n * @see https://github.com/link-assistant/agent/issues/179\n */\n export const ModelInfo = z\n .object({\n providerID: z.string(),\n requestedModelID: z.string(),\n respondedModelID: z.string().optional(),\n })\n .meta({\n ref: 'ModelInfo',\n });\n export type ModelInfo = z.infer<typeof ModelInfo>;"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 258,
"cache_read_input_tokens": 123776,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 258
},
"output_tokens": 2,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "5aedf951-453d-40a0-a9c0-6f9703d76209"
}
[2026-02-15T09:05:11.757Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_014ice4wRRaPWLe6Qj7GKWab",
"type": "tool_result",
"content": "The file /tmp/gh-issue-solver-1771146225324/js/src/session/message-v2.ts has been updated successfully."
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "6d1abd12-001f-41c9-b772-ba15d39bbb2e",
"tool_use_result": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/session/message-v2.ts",
"oldString": " /**\n * Model information for output parts.\n * Included when --output-used-model flag is enabled.\n * @see https://github.com/link-assistant/agent/issues/179\n */\n export const ModelInfo = z\n .object({\n providerID: z.string(),\n modelID: z.string(),\n responseModelId: z.string().optional(),\n })\n .meta({\n ref: 'ModelInfo',\n });\n export type ModelInfo = z.infer<typeof ModelInfo>;",
"newString": " /**\n * Model information for output parts.\n * Included when --output-response-model flag is enabled.\n * @see https://github.com/link-assistant/agent/issues/179\n */\n export const ModelInfo = z\n .object({\n providerID: z.string(),\n requestedModelID: z.string(),\n respondedModelID: z.string().optional(),\n })\n .meta({\n ref: 'ModelInfo',\n });\n export type ModelInfo = z.infer<typeof ModelInfo>;",
"originalFile": "import z from 'zod';\nimport { Bus } from '../bus';\nimport { NamedError } from '../util/error';\nimport { Message } from './message';\nimport {\n APICallError,\n convertToModelMessages,\n LoadAPIKeyError,\n type ModelMessage,\n type UIMessage,\n} from 'ai';\nimport { Identifier } from '../id/id';\nimport { Snapshot } from '../snapshot';\nimport { fn } from '../util/fn';\nimport { Storage } from '../storage/storage';\n\nexport namespace MessageV2 {\n export const OutputLengthError = NamedError.create(\n 'MessageOutputLengthError',\n z.object({})\n );\n export const AbortedError = NamedError.create(\n 'MessageAbortedError',\n z.object({ message: z.string() })\n );\n export const AuthError = NamedError.create(\n 'ProviderAuthError',\n z.object({\n providerID: z.string(),\n message: z.string(),\n })\n );\n export const APIError = NamedError.create(\n 'APIError',\n z.object({\n message: z.string(),\n statusCode: z.number().optional(),\n isRetryable: z.boolean(),\n responseHeaders: z.record(z.string(), z.string()).optional(),\n responseBody: z.string().optional(),\n })\n );\n export type APIError = z.infer<typeof APIError.Schema>;\n\n /**\n * Socket connection error - typically caused by Bun's 10-second idle timeout\n * in Bun.serve() context. These errors are transient and should be retried.\n * See: https://github.com/oven-sh/bun/issues/14439\n */\n export const SocketConnectionError = NamedError.create(\n 'SocketConnectionError',\n z.object({\n message: z.string(),\n isRetryable: z.literal(true),\n })\n );\n export type SocketConnectionError = z.infer<\n typeof SocketConnectionError.Schema\n >;\n\n /**\n * Timeout error - caused by AbortSignal.timeout() firing when an API request\n * takes too long. These are DOMException with name === 'TimeoutError'.\n * These errors are transient and should be retried with increasing intervals.\n * See: https://github.com/link-assistant/agent/issues/142\n */\n export const TimeoutError = NamedError.create(\n 'TimeoutError',\n z.object({\n message: z.string(),\n isRetryable: z.literal(true),\n })\n );\n export type TimeoutError = z.infer<typeof TimeoutError.Schema>;\n\n const PartBase = z.object({\n id: z.string(),\n sessionID: z.string(),\n messageID: z.string(),\n });\n\n export const SnapshotPart = PartBase.extend({\n type: z.literal('snapshot'),\n snapshot: z.string(),\n }).meta({\n ref: 'SnapshotPart',\n });\n export type SnapshotPart = z.infer<typeof SnapshotPart>;\n\n export const PatchPart = PartBase.extend({\n type: z.literal('patch'),\n hash: z.string(),\n files: z.string().array(),\n }).meta({\n ref: 'PatchPart',\n });\n export type PatchPart = z.infer<typeof PatchPart>;\n\n export const TextPart = PartBase.extend({\n type: z.literal('text'),\n text: z.string(),\n synthetic: z.boolean().optional(),\n time: z\n .object({\n start: z.number(),\n end: z.number().optional(),\n })\n .optional(),\n metadata: z.record(z.string(), z.any()).optional(),\n }).meta({\n ref: 'TextPart',\n });\n export type TextPart = z.infer<typeof TextPart>;\n\n export const ReasoningPart = PartBase.extend({\n type: z.literal('reasoning'),\n text: z.string(),\n metadata: z.record(z.string(), z.any()).optional(),\n time: z.object({\n start: z.number(),\n end: z.number().optional(),\n }),\n }).meta({\n ref: 'ReasoningPart',\n });\n export type ReasoningPart = z.infer<typeof ReasoningPart>;\n\n const FilePartSourceBase = z.object({\n text: z\n .object({\n value: z.string(),\n start: z.number().int(),\n end: z.number().int(),\n })\n .meta({\n ref: 'FilePartSourceText',\n }),\n });\n\n export const FileSource = FilePartSourceBase.extend({\n type: z.literal('file'),\n path: z.string(),\n }).meta({\n ref: 'FileSource',\n });\n\n export const SymbolSource = FilePartSourceBase.extend({\n type: z.literal('symbol'),\n path: z.string(),\n range: z.object({\n start: z.object({ line: z.number(), character: z.number() }),\n end: z.object({ line: z.number(), character: z.number() }),\n }),\n name: z.string(),\n kind: z.number().int(),\n }).meta({\n ref: 'SymbolSource',\n });\n\n export const FilePartSource = z\n .discriminatedUnion('type', [FileSource, SymbolSource])\n .meta({\n ref: 'FilePartSource',\n });\n\n export const FilePart = PartBase.extend({\n type: z.literal('file'),\n mime: z.string(),\n filename: z.string().optional(),\n url: z.string(),\n source: FilePartSource.optional(),\n }).meta({\n ref: 'FilePart',\n });\n export type FilePart = z.infer<typeof FilePart>;\n\n export const AgentPart = PartBase.extend({\n type: z.literal('agent'),\n name: z.string(),\n source: z\n .object({\n value: z.string(),\n start: z.number().int(),\n end: z.number().int(),\n })\n .optional(),\n }).meta({\n ref: 'AgentPart',\n });\n export type AgentPart = z.infer<typeof AgentPart>;\n\n export const CompactionPart = PartBase.extend({\n type: z.literal('compaction'),\n }).meta({\n ref: 'CompactionPart',\n });\n export type CompactionPart = z.infer<typeof CompactionPart>;\n\n export const SubtaskPart = PartBase.extend({\n type: z.literal('subtask'),\n prompt: z.string(),\n description: z.string(),\n agent: z.string(),\n });\n export type SubtaskPart = z.infer<typeof SubtaskPart>;\n\n export const RetryPart = PartBase.extend({\n type: z.literal('retry'),\n attempt: z.number(),\n error: APIError.Schema,\n time: z.object({\n created: z.number(),\n }),\n }).meta({\n ref: 'RetryPart',\n });\n export type RetryPart = z.infer<typeof RetryPart>;\n\n export const StepStartPart = PartBase.extend({\n type: z.literal('step-start'),\n snapshot: z.string().optional(),\n }).meta({\n ref: 'StepStartPart',\n });\n export type StepStartPart = z.infer<typeof StepStartPart>;\n\n /**\n * Model information for output parts.\n * Included when --output-used-model flag is enabled.\n * @see https://github.com/link-assistant/agent/issues/179\n */\n export const ModelInfo = z\n .object({\n providerID: z.string(),\n modelID: z.string(),\n responseModelId: z.string().optional(),\n })\n .meta({\n ref: 'ModelInfo',\n });\n export type ModelInfo = z.infer<typeof ModelInfo>;\n\n export const StepFinishPart = PartBase.extend({\n type: z.literal('step-finish'),\n reason: z.string(),\n snapshot: z.string().optional(),\n cost: z.number(),\n tokens: z.object({\n input: z.number(),\n output: z.number(),\n reasoning: z.number(),\n cache: z.object({\n read: z.number(),\n write: z.number(),\n }),\n }),\n // Model info included when --output-used-model is enabled\n // @see https://github.com/link-assistant/agent/issues/179\n model: ModelInfo.optional(),\n }).meta({\n ref: 'StepFinishPart',\n });\n export type StepFinishPart = z.infer<typeof StepFinishPart>;\n\n export const ToolStatePending = z\n .object({\n status: z.literal('pending'),\n input: z.record(z.string(), z.any()),\n raw: z.string(),\n })\n .meta({\n ref: 'ToolStatePending',\n });\n\n export type ToolStatePending = z.infer<typeof ToolStatePending>;\n\n export const ToolStateRunning = z\n .object({\n status: z.literal('running'),\n input: z.record(z.string(), z.any()),\n title: z.string().optional(),\n metadata: z.record(z.string(), z.any()).optional(),\n time: z.object({\n start: z.number(),\n }),\n })\n .meta({\n ref: 'ToolStateRunning',\n });\n export type ToolStateRunning = z.infer<typeof ToolStateRunning>;\n\n export const ToolStateCompleted = z\n .object({\n status: z.literal('completed'),\n input: z.record(z.string(), z.any()),\n output: z.string(),\n title: z.string(),\n metadata: z.record(z.string(), z.any()),\n time: z.object({\n start: z.number(),\n end: z.number(),\n compacted: z.number().optional(),\n }),\n attachments: FilePart.array().optional(),\n })\n .meta({\n ref: 'ToolStateCompleted',\n });\n export type ToolStateCompleted = z.infer<typeof ToolStateCompleted>;\n\n export const ToolStateError = z\n .object({\n status: z.literal('error'),\n input: z.record(z.string(), z.any()),\n error: z.string(),\n metadata: z.record(z.string(), z.any()).optional(),\n time: z.object({\n start: z.number(),\n end: z.number(),\n }),\n })\n .meta({\n ref: 'ToolStateError',\n });\n export type ToolStateError = z.infer<typeof ToolStateError>;\n\n export const ToolState = z\n .discriminatedUnion('status', [\n ToolStatePending,\n ToolStateRunning,\n ToolStateCompleted,\n ToolStateError,\n ])\n .meta({\n ref: 'ToolState',\n });\n\n export const ToolPart = PartBase.extend({\n type: z.literal('tool'),\n callID: z.string(),\n tool: z.string(),\n state: ToolState,\n metadata: z.record(z.string(), z.any()).optional(),\n }).meta({\n ref: 'ToolPart',\n });\n export type ToolPart = z.infer<typeof ToolPart>;\n\n const Base = z.object({\n id: z.string(),\n sessionID: z.string(),\n });\n\n export const User = Base.extend({\n role: z.literal('user'),\n time: z.object({\n created: z.number(),\n }),\n summary: z\n .object({\n title: z.string().optional(),\n body: z.string().optional(),\n diffs: Snapshot.FileDiff.array(),\n })\n .optional(),\n agent: z.string(),\n model: z.object({\n providerID: z.string(),\n modelID: z.string(),\n }),\n system: z.string().optional(),\n appendSystem: z.string().optional(),\n tools: z.record(z.string(), z.boolean()).optional(),\n }).meta({\n ref: 'UserMessage',\n });\n export type User = z.infer<typeof User>;\n\n export const Part = z\n .discriminatedUnion('type', [\n TextPart,\n SubtaskPart,\n ReasoningPart,\n FilePart,\n ToolPart,\n StepStartPart,\n StepFinishPart,\n SnapshotPart,\n PatchPart,\n AgentPart,\n RetryPart,\n CompactionPart,\n ])\n .meta({\n ref: 'Part',\n });\n export type Part = z.infer<typeof Part>;\n\n export const Assistant = Base.extend({\n role: z.literal('assistant'),\n time: z.object({\n created: z.number(),\n completed: z.number().optional(),\n }),\n error: z\n .discriminatedUnion('name', [\n AuthError.Schema,\n NamedError.Unknown.Schema,\n OutputLengthError.Schema,\n AbortedError.Schema,\n APIError.Schema,\n ])\n .optional(),\n parentID: z.string(),\n modelID: z.string(),\n providerID: z.string(),\n mode: z.string(),\n path: z.object({\n cwd: z.string(),\n root: z.string(),\n }),\n summary: z.boolean().optional(),\n cost: z.number(),\n tokens: z.object({\n input: z.number(),\n output: z.number(),\n reasoning: z.number(),\n cache: z.object({\n read: z.number(),\n write: z.number(),\n }),\n }),\n finish: z.string().optional(),\n }).meta({\n ref: 'AssistantMessage',\n });\n export type Assistant = z.infer<typeof Assistant>;\n\n export const Info = z.discriminatedUnion('role', [User, Assistant]).meta({\n ref: 'Message',\n });\n export type Info = z.infer<typeof Info>;\n\n export const Event = {\n Updated: Bus.event(\n 'message.updated',\n z.object({\n info: Info,\n })\n ),\n Removed: Bus.event(\n 'message.removed',\n z.object({\n sessionID: z.string(),\n messageID: z.string(),\n })\n ),\n PartUpdated: Bus.event(\n 'message.part.updated',\n z.object({\n part: Part,\n delta: z.string().optional(),\n })\n ),\n PartRemoved: Bus.event(\n 'message.part.removed',\n z.object({\n sessionID: z.string(),\n messageID: z.string(),\n partID: z.string(),\n })\n ),\n };\n\n export const WithParts = z.object({\n info: Info,\n parts: z.array(Part),\n });\n export type WithParts = z.infer<typeof WithParts>;\n\n export function fromV1(v1: Message.Info) {\n if (v1.role === 'assistant') {\n const info: Assistant = {\n id: v1.id,\n parentID: '',\n sessionID: v1.metadata.sessionID,\n role: 'assistant',\n time: {\n created: v1.metadata.time.created,\n completed: v1.metadata.time.completed,\n },\n cost: v1.metadata.assistant!.cost,\n path: v1.metadata.assistant!.path,\n summary: v1.metadata.assistant!.summary,\n tokens: v1.metadata.assistant!.tokens,\n modelID: v1.metadata.assistant!.modelID,\n providerID: v1.metadata.assistant!.providerID,\n mode: 'build',\n error: v1.metadata.error,\n };\n const parts = v1.parts.flatMap((part): Part[] => {\n const base = {\n id: Identifier.ascending('part'),\n messageID: v1.id,\n sessionID: v1.metadata.sessionID,\n };\n if (part.type === 'text') {\n return [\n {\n ...base,\n type: 'text',\n text: part.text,\n },\n ];\n }\n if (part.type === 'step-start') {\n return [\n {\n ...base,\n type: 'step-start',\n },\n ];\n }\n if (part.type === 'tool-invocation') {\n return [\n {\n ...base,\n type: 'tool',\n callID: part.toolInvocation.toolCallId,\n tool: part.toolInvocation.toolName,\n state: (() => {\n if (part.toolInvocation.state === 'partial-call') {\n return {\n status: 'pending',\n input: {},\n raw: '',\n };\n }\n\n const { title, time, ...metadata } =\n v1.metadata.tool[part.toolInvocation.toolCallId] ?? {};\n if (part.toolInvocation.state === 'call') {\n return {\n status: 'running',\n input: part.toolInvocation.args,\n time: {\n start: time?.start,\n },\n };\n }\n\n if (part.toolInvocation.state === 'result') {\n return {\n status: 'completed',\n input: part.toolInvocation.args,\n output: part.toolInvocation.result,\n title,\n time,\n metadata,\n };\n }\n throw new Error('unknown tool invocation state');\n })(),\n },\n ];\n }\n return [];\n });\n return {\n info,\n parts,\n };\n }\n\n if (v1.role === 'user') {\n const info: User = {\n id: v1.id,\n sessionID: v1.metadata.sessionID,\n role: 'user',\n time: {\n created: v1.metadata.time.created,\n },\n agent: 'build',\n model: {\n providerID: 'opencode',\n modelID: 'opencode',\n },\n };\n const parts = v1.parts.flatMap((part): Part[] => {\n const base = {\n id: Identifier.ascending('part'),\n messageID: v1.id,\n sessionID: v1.metadata.sessionID,\n };\n if (part.type === 'text') {\n return [\n {\n ...base,\n type: 'text',\n text: part.text,\n },\n ];\n }\n if (part.type === 'file') {\n return [\n {\n ...base,\n type: 'file',\n mime: part.mediaType,\n filename: part.filename,\n url: part.url,\n },\n ];\n }\n return [];\n });\n return { info, parts };\n }\n\n throw new Error('unknown message type');\n }\n\n export async function toModelMessage(\n input: {\n info: Info;\n parts: Part[];\n }[]\n ): Promise<ModelMessage[]> {\n const result: UIMessage[] = [];\n\n for (const msg of input) {\n if (msg.parts.length === 0) continue;\n\n if (msg.info.role === 'user') {\n const userMessage: UIMessage = {\n id: msg.info.id,\n role: 'user',\n parts: [],\n };\n result.push(userMessage);\n for (const part of msg.parts) {\n if (part.type === 'text')\n userMessage.parts.push({\n type: 'text',\n text: part.text,\n });\n // text/plain and directory files are converted into text parts, ignore them\n if (\n part.type === 'file' &&\n part.mime !== 'text/plain' &&\n part.mime !== 'application/x-directory'\n )\n userMessage.parts.push({\n type: 'file',\n url: part.url,\n mediaType: part.mime,\n filename: part.filename,\n });\n\n if (part.type === 'compaction') {\n userMessage.parts.push({\n type: 'text',\n text: 'What did we do so far?',\n });\n }\n if (part.type === 'subtask') {\n userMessage.parts.push({\n type: 'text',\n text: 'The following tool was executed by the user',\n });\n }\n }\n }\n\n if (msg.info.role === 'assistant') {\n const assistantMessage: UIMessage = {\n id: msg.info.id,\n role: 'assistant',\n parts: [],\n };\n result.push(assistantMessage);\n for (const part of msg.parts) {\n if (part.type === 'text')\n assistantMessage.parts.push({\n type: 'text',\n text: part.text,\n providerMetadata: part.metadata,\n });\n if (part.type === 'step-start')\n assistantMessage.parts.push({\n type: 'step-start',\n });\n if (part.type === 'tool') {\n if (part.state.status === 'completed') {\n if (part.state.attachments?.length) {\n result.push({\n id: Identifier.ascending('message'),\n role: 'user',\n parts: [\n {\n type: 'text',\n text: `Tool ${part.tool} returned an attachment:`,\n },\n ...part.state.attachments.map((attachment) => ({\n type: 'file' as const,\n url: attachment.url,\n mediaType: attachment.mime,\n filename: attachment.filename,\n })),\n ],\n });\n }\n assistantMessage.parts.push({\n type: ('tool-' + part.tool) as `tool-${string}`,\n state: 'output-available',\n toolCallId: part.callID,\n input: part.state.input,\n output: part.state.time.compacted\n ? '[Old tool result content cleared]'\n : part.state.output,\n callProviderMetadata: part.metadata,\n });\n }\n if (part.state.status === 'error')\n assistantMessage.parts.push({\n type: ('tool-' + part.tool) as `tool-${string}`,\n state: 'output-error',\n toolCallId: part.callID,\n input: part.state.input,\n errorText: part.state.error,\n callProviderMetadata: part.metadata,\n });\n }\n if (part.type === 'reasoning') {\n assistantMessage.parts.push({\n type: 'reasoning',\n text: part.text,\n providerMetadata: part.metadata,\n });\n }\n }\n }\n }\n\n return await convertToModelMessages(result);\n }\n\n export const stream = fn(\n Identifier.schema('session'),\n async function* (sessionID) {\n const list = await Array.fromAsync(\n await Storage.list(['message', sessionID])\n );\n for (let i = list.length - 1; i >= 0; i--) {\n yield await get({\n sessionID,\n messageID: list[i][2],\n });\n }\n }\n );\n\n export const parts = fn(Identifier.schema('message'), async (messageID) => {\n const result = [] as MessageV2.Part[];\n for (const item of await Storage.list(['part', messageID])) {\n const read = await Storage.read<MessageV2.Part>(item);\n result.push(read);\n }\n result.sort((a, b) => (a.id > b.id ? 1 : -1));\n return result;\n });\n\n export const get = fn(\n z.object({\n sessionID: Identifier.schema('session'),\n messageID: Identifier.schema('message'),\n }),\n async (input) => {\n return {\n info: await Storage.read<MessageV2.Info>([\n 'message',\n input.sessionID,\n input.messageID,\n ]),\n parts: await parts(input.messageID),\n };\n }\n );\n\n export async function filterCompacted(\n stream: AsyncIterable<MessageV2.WithParts>\n ) {\n const result = [] as MessageV2.WithParts[];\n const completed = new Set<string>();\n for await (const msg of stream) {\n result.push(msg);\n if (\n msg.info.role === 'user' &&\n completed.has(msg.info.id) &&\n msg.parts.some((part) => part.type === 'compaction')\n )\n break;\n if (msg.info.role === 'assistant' && msg.info.summary && msg.info.finish)\n completed.add(msg.info.parentID);\n }\n result.reverse();\n return result;\n }\n\n export function fromError(e: unknown, ctx: { providerID: string }) {\n switch (true) {\n case e instanceof DOMException && e.name === 'AbortError':\n return new MessageV2.AbortedError(\n { message: e.message },\n {\n cause: e,\n }\n ).toObject();\n case e instanceof DOMException && e.name === 'TimeoutError':\n return new MessageV2.TimeoutError(\n { message: e.message, isRetryable: true },\n { cause: e }\n ).toObject();\n case MessageV2.OutputLengthError.isInstance(e):\n return e;\n case LoadAPIKeyError.isInstance(e):\n return new MessageV2.AuthError(\n {\n providerID: ctx.providerID,\n message: e.message,\n },\n { cause: e }\n ).toObject();\n case APICallError.isInstance(e):\n return new MessageV2.APIError(\n {\n message: e.message,\n statusCode: e.statusCode,\n isRetryable: e.isRetryable,\n responseHeaders: e.responseHeaders,\n responseBody: e.responseBody,\n },\n { cause: e }\n ).toObject();\n case e instanceof Error: {\n const message = e.message || e.toString();\n // Detect Bun socket connection errors (known Bun issue with 10s idle timeout)\n // See: https://github.com/oven-sh/bun/issues/14439\n const isSocketError =\n message.includes('socket connection was closed') ||\n message.includes('closed unexpectedly');\n if (isSocketError) {\n return new MessageV2.SocketConnectionError(\n { message, isRetryable: true },\n { cause: e }\n ).toObject();\n }\n // Detect timeout errors from various sources\n // See: https://github.com/link-assistant/agent/issues/142\n const isTimeoutError =\n message.includes('The operation timed out') ||\n message.includes('timed out') ||\n e.name === 'TimeoutError';\n if (isTimeoutError) {\n return new MessageV2.TimeoutError(\n { message, isRetryable: true },\n { cause: e }\n ).toObject();\n }\n return new NamedError.Unknown(\n { message: e.toString() },\n { cause: e }\n ).toObject();\n }\n default:\n return new NamedError.Unknown(\n { message: JSON.stringify(e) },\n { cause: e }\n );\n }\n }\n}\n",
"structuredPatch": [
{
"oldStart": 226,
"oldLines": 14,
"newStart": 226,
"newLines": 14,
"lines": [
" ",
" /**",
" * Model information for output parts.",
"- * Included when --output-used-model flag is enabled.",
"+ * Included when --output-response-model flag is enabled.",
" * @see https://github.com/link-assistant/agent/issues/179",
" */",
" export const ModelInfo = z",
" .object({",
" providerID: z.string(),",
"- modelID: z.string(),",
"- responseModelId: z.string().optional(),",
"+ requestedModelID: z.string(),",
"+ respondedModelID: z.string().optional(),",
" })",
" .meta({",
" ref: 'ModelInfo',"
]
}
],
"userModified": false,
"replaceAll": false
}
}
[2026-02-15T09:05:15.002Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01AQnEQi5QwfgTbE1oKPNXfq",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_015t5MGnZstuKGyXSM4vheLz",
"name": "Edit",
"input": {
"replace_all": false,
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/session/message-v2.ts",
"old_string": " // Model info included when --output-used-model is enabled\n // @see https://github.com/link-assistant/agent/issues/179\n model: ModelInfo.optional(),",
"new_string": " // Model info included when --output-response-model is enabled\n // @see https://github.com/link-assistant/agent/issues/179\n model: ModelInfo.optional(),"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 458,
"cache_read_input_tokens": 124034,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 458
},
"output_tokens": 24,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "d0f80d54-219a-4300-bd71-2a9f59b7412b"
}
[2026-02-15T09:05:15.014Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_015t5MGnZstuKGyXSM4vheLz",
"type": "tool_result",
"content": "The file /tmp/gh-issue-solver-1771146225324/js/src/session/message-v2.ts has been updated successfully."
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "ce46a6b2-e758-414e-ad47-d0df52c5cc5a",
"tool_use_result": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/session/message-v2.ts",
"oldString": " // Model info included when --output-used-model is enabled\n // @see https://github.com/link-assistant/agent/issues/179\n model: ModelInfo.optional(),",
"newString": " // Model info included when --output-response-model is enabled\n // @see https://github.com/link-assistant/agent/issues/179\n model: ModelInfo.optional(),",
"originalFile": "import z from 'zod';\nimport { Bus } from '../bus';\nimport { NamedError } from '../util/error';\nimport { Message } from './message';\nimport {\n APICallError,\n convertToModelMessages,\n LoadAPIKeyError,\n type ModelMessage,\n type UIMessage,\n} from 'ai';\nimport { Identifier } from '../id/id';\nimport { Snapshot } from '../snapshot';\nimport { fn } from '../util/fn';\nimport { Storage } from '../storage/storage';\n\nexport namespace MessageV2 {\n export const OutputLengthError = NamedError.create(\n 'MessageOutputLengthError',\n z.object({})\n );\n export const AbortedError = NamedError.create(\n 'MessageAbortedError',\n z.object({ message: z.string() })\n );\n export const AuthError = NamedError.create(\n 'ProviderAuthError',\n z.object({\n providerID: z.string(),\n message: z.string(),\n })\n );\n export const APIError = NamedError.create(\n 'APIError',\n z.object({\n message: z.string(),\n statusCode: z.number().optional(),\n isRetryable: z.boolean(),\n responseHeaders: z.record(z.string(), z.string()).optional(),\n responseBody: z.string().optional(),\n })\n );\n export type APIError = z.infer<typeof APIError.Schema>;\n\n /**\n * Socket connection error - typically caused by Bun's 10-second idle timeout\n * in Bun.serve() context. These errors are transient and should be retried.\n * See: https://github.com/oven-sh/bun/issues/14439\n */\n export const SocketConnectionError = NamedError.create(\n 'SocketConnectionError',\n z.object({\n message: z.string(),\n isRetryable: z.literal(true),\n })\n );\n export type SocketConnectionError = z.infer<\n typeof SocketConnectionError.Schema\n >;\n\n /**\n * Timeout error - caused by AbortSignal.timeout() firing when an API request\n * takes too long. These are DOMException with name === 'TimeoutError'.\n * These errors are transient and should be retried with increasing intervals.\n * See: https://github.com/link-assistant/agent/issues/142\n */\n export const TimeoutError = NamedError.create(\n 'TimeoutError',\n z.object({\n message: z.string(),\n isRetryable: z.literal(true),\n })\n );\n export type TimeoutError = z.infer<typeof TimeoutError.Schema>;\n\n const PartBase = z.object({\n id: z.string(),\n sessionID: z.string(),\n messageID: z.string(),\n });\n\n export const SnapshotPart = PartBase.extend({\n type: z.literal('snapshot'),\n snapshot: z.string(),\n }).meta({\n ref: 'SnapshotPart',\n });\n export type SnapshotPart = z.infer<typeof SnapshotPart>;\n\n export const PatchPart = PartBase.extend({\n type: z.literal('patch'),\n hash: z.string(),\n files: z.string().array(),\n }).meta({\n ref: 'PatchPart',\n });\n export type PatchPart = z.infer<typeof PatchPart>;\n\n export const TextPart = PartBase.extend({\n type: z.literal('text'),\n text: z.string(),\n synthetic: z.boolean().optional(),\n time: z\n .object({\n start: z.number(),\n end: z.number().optional(),\n })\n .optional(),\n metadata: z.record(z.string(), z.any()).optional(),\n }).meta({\n ref: 'TextPart',\n });\n export type TextPart = z.infer<typeof TextPart>;\n\n export const ReasoningPart = PartBase.extend({\n type: z.literal('reasoning'),\n text: z.string(),\n metadata: z.record(z.string(), z.any()).optional(),\n time: z.object({\n start: z.number(),\n end: z.number().optional(),\n }),\n }).meta({\n ref: 'ReasoningPart',\n });\n export type ReasoningPart = z.infer<typeof ReasoningPart>;\n\n const FilePartSourceBase = z.object({\n text: z\n .object({\n value: z.string(),\n start: z.number().int(),\n end: z.number().int(),\n })\n .meta({\n ref: 'FilePartSourceText',\n }),\n });\n\n export const FileSource = FilePartSourceBase.extend({\n type: z.literal('file'),\n path: z.string(),\n }).meta({\n ref: 'FileSource',\n });\n\n export const SymbolSource = FilePartSourceBase.extend({\n type: z.literal('symbol'),\n path: z.string(),\n range: z.object({\n start: z.object({ line: z.number(), character: z.number() }),\n end: z.object({ line: z.number(), character: z.number() }),\n }),\n name: z.string(),\n kind: z.number().int(),\n }).meta({\n ref: 'SymbolSource',\n });\n\n export const FilePartSource = z\n .discriminatedUnion('type', [FileSource, SymbolSource])\n .meta({\n ref: 'FilePartSource',\n });\n\n export const FilePart = PartBase.extend({\n type: z.literal('file'),\n mime: z.string(),\n filename: z.string().optional(),\n url: z.string(),\n source: FilePartSource.optional(),\n }).meta({\n ref: 'FilePart',\n });\n export type FilePart = z.infer<typeof FilePart>;\n\n export const AgentPart = PartBase.extend({\n type: z.literal('agent'),\n name: z.string(),\n source: z\n .object({\n value: z.string(),\n start: z.number().int(),\n end: z.number().int(),\n })\n .optional(),\n }).meta({\n ref: 'AgentPart',\n });\n export type AgentPart = z.infer<typeof AgentPart>;\n\n export const CompactionPart = PartBase.extend({\n type: z.literal('compaction'),\n }).meta({\n ref: 'CompactionPart',\n });\n export type CompactionPart = z.infer<typeof CompactionPart>;\n\n export const SubtaskPart = PartBase.extend({\n type: z.literal('subtask'),\n prompt: z.string(),\n description: z.string(),\n agent: z.string(),\n });\n export type SubtaskPart = z.infer<typeof SubtaskPart>;\n\n export const RetryPart = PartBase.extend({\n type: z.literal('retry'),\n attempt: z.number(),\n error: APIError.Schema,\n time: z.object({\n created: z.number(),\n }),\n }).meta({\n ref: 'RetryPart',\n });\n export type RetryPart = z.infer<typeof RetryPart>;\n\n export const StepStartPart = PartBase.extend({\n type: z.literal('step-start'),\n snapshot: z.string().optional(),\n }).meta({\n ref: 'StepStartPart',\n });\n export type StepStartPart = z.infer<typeof StepStartPart>;\n\n /**\n * Model information for output parts.\n * Included when --output-response-model flag is enabled.\n * @see https://github.com/link-assistant/agent/issues/179\n */\n export const ModelInfo = z\n .object({\n providerID: z.string(),\n requestedModelID: z.string(),\n respondedModelID: z.string().optional(),\n })\n .meta({\n ref: 'ModelInfo',\n });\n export type ModelInfo = z.infer<typeof ModelInfo>;\n\n export const StepFinishPart = PartBase.extend({\n type: z.literal('step-finish'),\n reason: z.string(),\n snapshot: z.string().optional(),\n cost: z.number(),\n tokens: z.object({\n input: z.number(),\n output: z.number(),\n reasoning: z.number(),\n cache: z.object({\n read: z.number(),\n write: z.number(),\n }),\n }),\n // Model info included when --output-used-model is enabled\n // @see https://github.com/link-assistant/agent/issues/179\n model: ModelInfo.optional(),\n }).meta({\n ref: 'StepFinishPart',\n });\n export type StepFinishPart = z.infer<typeof StepFinishPart>;\n\n export const ToolStatePending = z\n .object({\n status: z.literal('pending'),\n input: z.record(z.string(), z.any()),\n raw: z.string(),\n })\n .meta({\n ref: 'ToolStatePending',\n });\n\n export type ToolStatePending = z.infer<typeof ToolStatePending>;\n\n export const ToolStateRunning = z\n .object({\n status: z.literal('running'),\n input: z.record(z.string(), z.any()),\n title: z.string().optional(),\n metadata: z.record(z.string(), z.any()).optional(),\n time: z.object({\n start: z.number(),\n }),\n })\n .meta({\n ref: 'ToolStateRunning',\n });\n export type ToolStateRunning = z.infer<typeof ToolStateRunning>;\n\n export const ToolStateCompleted = z\n .object({\n status: z.literal('completed'),\n input: z.record(z.string(), z.any()),\n output: z.string(),\n title: z.string(),\n metadata: z.record(z.string(), z.any()),\n time: z.object({\n start: z.number(),\n end: z.number(),\n compacted: z.number().optional(),\n }),\n attachments: FilePart.array().optional(),\n })\n .meta({\n ref: 'ToolStateCompleted',\n });\n export type ToolStateCompleted = z.infer<typeof ToolStateCompleted>;\n\n export const ToolStateError = z\n .object({\n status: z.literal('error'),\n input: z.record(z.string(), z.any()),\n error: z.string(),\n metadata: z.record(z.string(), z.any()).optional(),\n time: z.object({\n start: z.number(),\n end: z.number(),\n }),\n })\n .meta({\n ref: 'ToolStateError',\n });\n export type ToolStateError = z.infer<typeof ToolStateError>;\n\n export const ToolState = z\n .discriminatedUnion('status', [\n ToolStatePending,\n ToolStateRunning,\n ToolStateCompleted,\n ToolStateError,\n ])\n .meta({\n ref: 'ToolState',\n });\n\n export const ToolPart = PartBase.extend({\n type: z.literal('tool'),\n callID: z.string(),\n tool: z.string(),\n state: ToolState,\n metadata: z.record(z.string(), z.any()).optional(),\n }).meta({\n ref: 'ToolPart',\n });\n export type ToolPart = z.infer<typeof ToolPart>;\n\n const Base = z.object({\n id: z.string(),\n sessionID: z.string(),\n });\n\n export const User = Base.extend({\n role: z.literal('user'),\n time: z.object({\n created: z.number(),\n }),\n summary: z\n .object({\n title: z.string().optional(),\n body: z.string().optional(),\n diffs: Snapshot.FileDiff.array(),\n })\n .optional(),\n agent: z.string(),\n model: z.object({\n providerID: z.string(),\n modelID: z.string(),\n }),\n system: z.string().optional(),\n appendSystem: z.string().optional(),\n tools: z.record(z.string(), z.boolean()).optional(),\n }).meta({\n ref: 'UserMessage',\n });\n export type User = z.infer<typeof User>;\n\n export const Part = z\n .discriminatedUnion('type', [\n TextPart,\n SubtaskPart,\n ReasoningPart,\n FilePart,\n ToolPart,\n StepStartPart,\n StepFinishPart,\n SnapshotPart,\n PatchPart,\n AgentPart,\n RetryPart,\n CompactionPart,\n ])\n .meta({\n ref: 'Part',\n });\n export type Part = z.infer<typeof Part>;\n\n export const Assistant = Base.extend({\n role: z.literal('assistant'),\n time: z.object({\n created: z.number(),\n completed: z.number().optional(),\n }),\n error: z\n .discriminatedUnion('name', [\n AuthError.Schema,\n NamedError.Unknown.Schema,\n OutputLengthError.Schema,\n AbortedError.Schema,\n APIError.Schema,\n ])\n .optional(),\n parentID: z.string(),\n modelID: z.string(),\n providerID: z.string(),\n mode: z.string(),\n path: z.object({\n cwd: z.string(),\n root: z.string(),\n }),\n summary: z.boolean().optional(),\n cost: z.number(),\n tokens: z.object({\n input: z.number(),\n output: z.number(),\n reasoning: z.number(),\n cache: z.object({\n read: z.number(),\n write: z.number(),\n }),\n }),\n finish: z.string().optional(),\n }).meta({\n ref: 'AssistantMessage',\n });\n export type Assistant = z.infer<typeof Assistant>;\n\n export const Info = z.discriminatedUnion('role', [User, Assistant]).meta({\n ref: 'Message',\n });\n export type Info = z.infer<typeof Info>;\n\n export const Event = {\n Updated: Bus.event(\n 'message.updated',\n z.object({\n info: Info,\n })\n ),\n Removed: Bus.event(\n 'message.removed',\n z.object({\n sessionID: z.string(),\n messageID: z.string(),\n })\n ),\n PartUpdated: Bus.event(\n 'message.part.updated',\n z.object({\n part: Part,\n delta: z.string().optional(),\n })\n ),\n PartRemoved: Bus.event(\n 'message.part.removed',\n z.object({\n sessionID: z.string(),\n messageID: z.string(),\n partID: z.string(),\n })\n ),\n };\n\n export const WithParts = z.object({\n info: Info,\n parts: z.array(Part),\n });\n export type WithParts = z.infer<typeof WithParts>;\n\n export function fromV1(v1: Message.Info) {\n if (v1.role === 'assistant') {\n const info: Assistant = {\n id: v1.id,\n parentID: '',\n sessionID: v1.metadata.sessionID,\n role: 'assistant',\n time: {\n created: v1.metadata.time.created,\n completed: v1.metadata.time.completed,\n },\n cost: v1.metadata.assistant!.cost,\n path: v1.metadata.assistant!.path,\n summary: v1.metadata.assistant!.summary,\n tokens: v1.metadata.assistant!.tokens,\n modelID: v1.metadata.assistant!.modelID,\n providerID: v1.metadata.assistant!.providerID,\n mode: 'build',\n error: v1.metadata.error,\n };\n const parts = v1.parts.flatMap((part): Part[] => {\n const base = {\n id: Identifier.ascending('part'),\n messageID: v1.id,\n sessionID: v1.metadata.sessionID,\n };\n if (part.type === 'text') {\n return [\n {\n ...base,\n type: 'text',\n text: part.text,\n },\n ];\n }\n if (part.type === 'step-start') {\n return [\n {\n ...base,\n type: 'step-start',\n },\n ];\n }\n if (part.type === 'tool-invocation') {\n return [\n {\n ...base,\n type: 'tool',\n callID: part.toolInvocation.toolCallId,\n tool: part.toolInvocation.toolName,\n state: (() => {\n if (part.toolInvocation.state === 'partial-call') {\n return {\n status: 'pending',\n input: {},\n raw: '',\n };\n }\n\n const { title, time, ...metadata } =\n v1.metadata.tool[part.toolInvocation.toolCallId] ?? {};\n if (part.toolInvocation.state === 'call') {\n return {\n status: 'running',\n input: part.toolInvocation.args,\n time: {\n start: time?.start,\n },\n };\n }\n\n if (part.toolInvocation.state === 'result') {\n return {\n status: 'completed',\n input: part.toolInvocation.args,\n output: part.toolInvocation.result,\n title,\n time,\n metadata,\n };\n }\n throw new Error('unknown tool invocation state');\n })(),\n },\n ];\n }\n return [];\n });\n return {\n info,\n parts,\n };\n }\n\n if (v1.role === 'user') {\n const info: User = {\n id: v1.id,\n sessionID: v1.metadata.sessionID,\n role: 'user',\n time: {\n created: v1.metadata.time.created,\n },\n agent: 'build',\n model: {\n providerID: 'opencode',\n modelID: 'opencode',\n },\n };\n const parts = v1.parts.flatMap((part): Part[] => {\n const base = {\n id: Identifier.ascending('part'),\n messageID: v1.id,\n sessionID: v1.metadata.sessionID,\n };\n if (part.type === 'text') {\n return [\n {\n ...base,\n type: 'text',\n text: part.text,\n },\n ];\n }\n if (part.type === 'file') {\n return [\n {\n ...base,\n type: 'file',\n mime: part.mediaType,\n filename: part.filename,\n url: part.url,\n },\n ];\n }\n return [];\n });\n return { info, parts };\n }\n\n throw new Error('unknown message type');\n }\n\n export async function toModelMessage(\n input: {\n info: Info;\n parts: Part[];\n }[]\n ): Promise<ModelMessage[]> {\n const result: UIMessage[] = [];\n\n for (const msg of input) {\n if (msg.parts.length === 0) continue;\n\n if (msg.info.role === 'user') {\n const userMessage: UIMessage = {\n id: msg.info.id,\n role: 'user',\n parts: [],\n };\n result.push(userMessage);\n for (const part of msg.parts) {\n if (part.type === 'text')\n userMessage.parts.push({\n type: 'text',\n text: part.text,\n });\n // text/plain and directory files are converted into text parts, ignore them\n if (\n part.type === 'file' &&\n part.mime !== 'text/plain' &&\n part.mime !== 'application/x-directory'\n )\n userMessage.parts.push({\n type: 'file',\n url: part.url,\n mediaType: part.mime,\n filename: part.filename,\n });\n\n if (part.type === 'compaction') {\n userMessage.parts.push({\n type: 'text',\n text: 'What did we do so far?',\n });\n }\n if (part.type === 'subtask') {\n userMessage.parts.push({\n type: 'text',\n text: 'The following tool was executed by the user',\n });\n }\n }\n }\n\n if (msg.info.role === 'assistant') {\n const assistantMessage: UIMessage = {\n id: msg.info.id,\n role: 'assistant',\n parts: [],\n };\n result.push(assistantMessage);\n for (const part of msg.parts) {\n if (part.type === 'text')\n assistantMessage.parts.push({\n type: 'text',\n text: part.text,\n providerMetadata: part.metadata,\n });\n if (part.type === 'step-start')\n assistantMessage.parts.push({\n type: 'step-start',\n });\n if (part.type === 'tool') {\n if (part.state.status === 'completed') {\n if (part.state.attachments?.length) {\n result.push({\n id: Identifier.ascending('message'),\n role: 'user',\n parts: [\n {\n type: 'text',\n text: `Tool ${part.tool} returned an attachment:`,\n },\n ...part.state.attachments.map((attachment) => ({\n type: 'file' as const,\n url: attachment.url,\n mediaType: attachment.mime,\n filename: attachment.filename,\n })),\n ],\n });\n }\n assistantMessage.parts.push({\n type: ('tool-' + part.tool) as `tool-${string}`,\n state: 'output-available',\n toolCallId: part.callID,\n input: part.state.input,\n output: part.state.time.compacted\n ? '[Old tool result content cleared]'\n : part.state.output,\n callProviderMetadata: part.metadata,\n });\n }\n if (part.state.status === 'error')\n assistantMessage.parts.push({\n type: ('tool-' + part.tool) as `tool-${string}`,\n state: 'output-error',\n toolCallId: part.callID,\n input: part.state.input,\n errorText: part.state.error,\n callProviderMetadata: part.metadata,\n });\n }\n if (part.type === 'reasoning') {\n assistantMessage.parts.push({\n type: 'reasoning',\n text: part.text,\n providerMetadata: part.metadata,\n });\n }\n }\n }\n }\n\n return await convertToModelMessages(result);\n }\n\n export const stream = fn(\n Identifier.schema('session'),\n async function* (sessionID) {\n const list = await Array.fromAsync(\n await Storage.list(['message', sessionID])\n );\n for (let i = list.length - 1; i >= 0; i--) {\n yield await get({\n sessionID,\n messageID: list[i][2],\n });\n }\n }\n );\n\n export const parts = fn(Identifier.schema('message'), async (messageID) => {\n const result = [] as MessageV2.Part[];\n for (const item of await Storage.list(['part', messageID])) {\n const read = await Storage.read<MessageV2.Part>(item);\n result.push(read);\n }\n result.sort((a, b) => (a.id > b.id ? 1 : -1));\n return result;\n });\n\n export const get = fn(\n z.object({\n sessionID: Identifier.schema('session'),\n messageID: Identifier.schema('message'),\n }),\n async (input) => {\n return {\n info: await Storage.read<MessageV2.Info>([\n 'message',\n input.sessionID,\n input.messageID,\n ]),\n parts: await parts(input.messageID),\n };\n }\n );\n\n export async function filterCompacted(\n stream: AsyncIterable<MessageV2.WithParts>\n ) {\n const result = [] as MessageV2.WithParts[];\n const completed = new Set<string>();\n for await (const msg of stream) {\n result.push(msg);\n if (\n msg.info.role === 'user' &&\n completed.has(msg.info.id) &&\n msg.parts.some((part) => part.type === 'compaction')\n )\n break;\n if (msg.info.role === 'assistant' && msg.info.summary && msg.info.finish)\n completed.add(msg.info.parentID);\n }\n result.reverse();\n return result;\n }\n\n export function fromError(e: unknown, ctx: { providerID: string }) {\n switch (true) {\n case e instanceof DOMException && e.name === 'AbortError':\n return new MessageV2.AbortedError(\n { message: e.message },\n {\n cause: e,\n }\n ).toObject();\n case e instanceof DOMException && e.name === 'TimeoutError':\n return new MessageV2.TimeoutError(\n { message: e.message, isRetryable: true },\n { cause: e }\n ).toObject();\n case MessageV2.OutputLengthError.isInstance(e):\n return e;\n case LoadAPIKeyError.isInstance(e):\n return new MessageV2.AuthError(\n {\n providerID: ctx.providerID,\n message: e.message,\n },\n { cause: e }\n ).toObject();\n case APICallError.isInstance(e):\n return new MessageV2.APIError(\n {\n message: e.message,\n statusCode: e.statusCode,\n isRetryable: e.isRetryable,\n responseHeaders: e.responseHeaders,\n responseBody: e.responseBody,\n },\n { cause: e }\n ).toObject();\n case e instanceof Error: {\n const message = e.message || e.toString();\n // Detect Bun socket connection errors (known Bun issue with 10s idle timeout)\n // See: https://github.com/oven-sh/bun/issues/14439\n const isSocketError =\n message.includes('socket connection was closed') ||\n message.includes('closed unexpectedly');\n if (isSocketError) {\n return new MessageV2.SocketConnectionError(\n { message, isRetryable: true },\n { cause: e }\n ).toObject();\n }\n // Detect timeout errors from various sources\n // See: https://github.com/link-assistant/agent/issues/142\n const isTimeoutError =\n message.includes('The operation timed out') ||\n message.includes('timed out') ||\n e.name === 'TimeoutError';\n if (isTimeoutError) {\n return new MessageV2.TimeoutError(\n { message, isRetryable: true },\n { cause: e }\n ).toObject();\n }\n return new NamedError.Unknown(\n { message: e.toString() },\n { cause: e }\n ).toObject();\n }\n default:\n return new NamedError.Unknown(\n { message: JSON.stringify(e) },\n { cause: e }\n );\n }\n }\n}\n",
"structuredPatch": [
{
"oldStart": 254,
"oldLines": 7,
"newStart": 254,
"newLines": 7,
"lines": [
" write: z.number(),",
" }),",
" }),",
"- // Model info included when --output-used-model is enabled",
"+ // Model info included when --output-response-model is enabled",
" // @see https://github.com/link-assistant/agent/issues/179",
" model: ModelInfo.optional(),",
" }).meta({"
]
}
],
"userModified": false,
"replaceAll": false
}
}
[2026-02-15T09:05:17.505Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01STivog3d1PYaqmZnXt5mRb",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now update the processor.ts to use the new flag and field names:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 265,
"cache_read_input_tokens": 124492,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 265
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "00963782-e0d7-46df-8161-836bdea10820"
}
[2026-02-15T09:05:21.959Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01STivog3d1PYaqmZnXt5mRb",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01B4JNMx821DV2QFHykXxMBn",
"name": "Edit",
"input": {
"replace_all": false,
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/session/processor.ts",
"old_string": " // Build model info if --output-used-model flag is enabled\n // @see https://github.com/link-assistant/agent/issues/179\n const modelInfo: MessageV2.ModelInfo | undefined =\n Flag.OUTPUT_USED_MODEL\n ? {\n providerID: input.providerID,\n modelID: input.model.id,\n // Get responseModelId from finish-step response if available\n // AI SDK includes response.modelId when available from provider\n responseModelId:\n (value as any).response?.modelId ?? undefined,\n }\n : undefined;",
"new_string": " // Build model info if --output-response-model flag is enabled\n // @see https://github.com/link-assistant/agent/issues/179\n const modelInfo: MessageV2.ModelInfo | undefined =\n Flag.OUTPUT_RESPONSE_MODEL\n ? {\n providerID: input.providerID,\n requestedModelID: input.model.id,\n // Get respondedModelID from finish-step response if available\n // AI SDK includes response.modelId when available from provider\n respondedModelID:\n (value as any).response?.modelId ?? undefined,\n }\n : undefined;"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 265,
"cache_read_input_tokens": 124492,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 265
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "a64ca630-accb-49c2-bfeb-cb35ffd7f94c"
}
[2026-02-15T09:05:21.995Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01B4JNMx821DV2QFHykXxMBn",
"type": "tool_result",
"content": "The file /tmp/gh-issue-solver-1771146225324/js/src/session/processor.ts has been updated successfully."
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "e1638945-8558-4a07-b9b6-e0dabc9ee8ac",
"tool_use_result": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/session/processor.ts",
"oldString": " // Build model info if --output-used-model flag is enabled\n // @see https://github.com/link-assistant/agent/issues/179\n const modelInfo: MessageV2.ModelInfo | undefined =\n Flag.OUTPUT_USED_MODEL\n ? {\n providerID: input.providerID,\n modelID: input.model.id,\n // Get responseModelId from finish-step response if available\n // AI SDK includes response.modelId when available from provider\n responseModelId:\n (value as any).response?.modelId ?? undefined,\n }\n : undefined;",
"newString": " // Build model info if --output-response-model flag is enabled\n // @see https://github.com/link-assistant/agent/issues/179\n const modelInfo: MessageV2.ModelInfo | undefined =\n Flag.OUTPUT_RESPONSE_MODEL\n ? {\n providerID: input.providerID,\n requestedModelID: input.model.id,\n // Get respondedModelID from finish-step response if available\n // AI SDK includes response.modelId when available from provider\n respondedModelID:\n (value as any).response?.modelId ?? undefined,\n }\n : undefined;",
"originalFile": "import type { ModelsDev } from '../provider/models';\nimport { MessageV2 } from './message-v2';\nimport {\n type StreamTextResult,\n type Tool as AITool,\n APICallError,\n JSONParseError,\n} from 'ai';\nimport { Log } from '../util/log';\nimport { Identifier } from '../id/id';\nimport { Session } from '.';\nimport { Agent } from '../agent/agent';\n// Permission system removed - no restrictions\nimport { Snapshot } from '../snapshot';\nimport { SessionSummary } from './summary';\nimport { Bus } from '../bus';\nimport { SessionRetry } from './retry';\nimport { SessionStatus } from './status';\nimport { Flag } from '../flag/flag';\n\nexport namespace SessionProcessor {\n const DOOM_LOOP_THRESHOLD = 3;\n const log = Log.create({ service: 'session.processor' });\n\n export type Info = Awaited<ReturnType<typeof create>>;\n export type Result = Awaited<ReturnType<Info['process']>>;\n\n export function create(input: {\n assistantMessage: MessageV2.Assistant;\n sessionID: string;\n providerID: string;\n model: ModelsDev.Model;\n abort: AbortSignal;\n }) {\n const toolcalls: Record<string, MessageV2.ToolPart> = {};\n let snapshot: string | undefined;\n let blocked = false;\n let attempt = 0;\n\n const result = {\n get message() {\n return input.assistantMessage;\n },\n partFromToolCall(toolCallID: string) {\n return toolcalls[toolCallID];\n },\n async process(fn: () => StreamTextResult<Record<string, AITool>, never>) {\n log.info(() => ({ message: 'process' }));\n while (true) {\n try {\n let currentText: MessageV2.TextPart | undefined;\n let reasoningMap: Record<string, MessageV2.ReasoningPart> = {};\n const stream = fn();\n\n for await (const value of stream.fullStream) {\n input.abort.throwIfAborted();\n switch (value.type) {\n case 'start':\n SessionStatus.set(input.sessionID, { type: 'busy' });\n break;\n\n case 'reasoning-start':\n if (value.id in reasoningMap) {\n continue;\n }\n reasoningMap[value.id] = {\n id: Identifier.ascending('part'),\n messageID: input.assistantMessage.id,\n sessionID: input.assistantMessage.sessionID,\n type: 'reasoning',\n text: '',\n time: {\n start: Date.now(),\n },\n metadata: value.providerMetadata,\n };\n break;\n\n case 'reasoning-delta':\n if (value.id in reasoningMap) {\n const part = reasoningMap[value.id];\n part.text += value.text;\n if (value.providerMetadata)\n part.metadata = value.providerMetadata;\n if (part.text)\n await Session.updatePart({ part, delta: value.text });\n }\n break;\n\n case 'reasoning-end':\n if (value.id in reasoningMap) {\n const part = reasoningMap[value.id];\n part.text = part.text.trimEnd();\n\n part.time = {\n ...part.time,\n end: Date.now(),\n };\n if (value.providerMetadata)\n part.metadata = value.providerMetadata;\n await Session.updatePart(part);\n delete reasoningMap[value.id];\n }\n break;\n\n case 'tool-input-start':\n const part = await Session.updatePart({\n id: toolcalls[value.id]?.id ?? Identifier.ascending('part'),\n messageID: input.assistantMessage.id,\n sessionID: input.assistantMessage.sessionID,\n type: 'tool',\n tool: value.toolName,\n callID: value.id,\n state: {\n status: 'pending',\n input: {},\n raw: '',\n },\n });\n toolcalls[value.id] = part as MessageV2.ToolPart;\n break;\n\n case 'tool-input-delta':\n break;\n\n case 'tool-input-end':\n break;\n\n case 'tool-call': {\n const match = toolcalls[value.toolCallId];\n if (match) {\n const part = await Session.updatePart({\n ...match,\n tool: value.toolName,\n state: {\n status: 'running',\n input: value.input,\n time: {\n start: Date.now(),\n },\n },\n metadata: value.providerMetadata,\n });\n toolcalls[value.toolCallId] = part as MessageV2.ToolPart;\n\n const parts = await MessageV2.parts(\n input.assistantMessage.id\n );\n const lastThree = parts.slice(-DOOM_LOOP_THRESHOLD);\n\n if (\n lastThree.length === DOOM_LOOP_THRESHOLD &&\n lastThree.every(\n (p) =>\n p.type === 'tool' &&\n p.tool === value.toolName &&\n p.state.status !== 'pending' &&\n JSON.stringify(p.state.input) ===\n JSON.stringify(value.input)\n )\n ) {\n // Permission system removed - doom loop detection disabled\n }\n }\n break;\n }\n case 'tool-result': {\n const match = toolcalls[value.toolCallId];\n if (match && match.state.status === 'running') {\n await Session.updatePart({\n ...match,\n state: {\n status: 'completed',\n input: value.input,\n output: value.output.output,\n metadata: value.output.metadata,\n title: value.output.title,\n time: {\n start: match.state.time.start,\n end: Date.now(),\n },\n attachments: value.output.attachments,\n },\n });\n\n delete toolcalls[value.toolCallId];\n }\n break;\n }\n\n case 'tool-error': {\n const match = toolcalls[value.toolCallId];\n if (match && match.state.status === 'running') {\n await Session.updatePart({\n ...match,\n state: {\n status: 'error',\n input: value.input,\n error: (value.error as any).toString(),\n metadata: undefined,\n time: {\n start: match.state.time.start,\n end: Date.now(),\n },\n },\n });\n\n // Permission system removed\n delete toolcalls[value.toolCallId];\n }\n break;\n }\n case 'error':\n // Skip stream parse errors (malformed SSE from gateway/provider)\n // The AI SDK emits these as error events but continues the stream.\n // Following OpenAI Codex pattern: log and skip bad events.\n // See: https://github.com/link-assistant/agent/issues/169\n if (JSONParseError.isInstance(value.error)) {\n log.warn(() => ({\n message:\n 'skipping malformed SSE event (stream parse error)',\n errorName: (value.error as Error)?.name,\n errorMessage: (value.error as Error)?.message?.substring(\n 0,\n 200\n ),\n }));\n continue;\n }\n throw value.error;\n\n case 'start-step':\n snapshot = await Snapshot.track();\n await Session.updatePart({\n id: Identifier.ascending('part'),\n messageID: input.assistantMessage.id,\n sessionID: input.sessionID,\n snapshot,\n type: 'step-start',\n });\n break;\n\n case 'finish-step':\n // Safely handle missing or undefined usage data\n // Some providers (e.g., OpenCode with Kimi K2.5) may return incomplete usage\n // See: https://github.com/link-assistant/agent/issues/152\n const safeUsage = value.usage ?? {\n inputTokens: 0,\n outputTokens: 0,\n totalTokens: 0,\n };\n const usage = Session.getUsage({\n model: input.model,\n usage: safeUsage,\n metadata: value.providerMetadata,\n });\n // Use toFinishReason to safely convert object/string finishReason to string\n // See: https://github.com/link-assistant/agent/issues/125\n const finishReason = Session.toFinishReason(\n value.finishReason\n );\n input.assistantMessage.finish = finishReason;\n input.assistantMessage.cost += usage.cost;\n input.assistantMessage.tokens = usage.tokens;\n\n // Build model info if --output-used-model flag is enabled\n // @see https://github.com/link-assistant/agent/issues/179\n const modelInfo: MessageV2.ModelInfo | undefined =\n Flag.OUTPUT_USED_MODEL\n ? {\n providerID: input.providerID,\n modelID: input.model.id,\n // Get responseModelId from finish-step response if available\n // AI SDK includes response.modelId when available from provider\n responseModelId:\n (value as any).response?.modelId ?? undefined,\n }\n : undefined;\n\n await Session.updatePart({\n id: Identifier.ascending('part'),\n reason: finishReason,\n snapshot: await Snapshot.track(),\n messageID: input.assistantMessage.id,\n sessionID: input.assistantMessage.sessionID,\n type: 'step-finish',\n tokens: usage.tokens,\n cost: usage.cost,\n model: modelInfo,\n });\n await Session.updateMessage(input.assistantMessage);\n if (snapshot) {\n const patch = await Snapshot.patch(snapshot);\n if (patch.files.length) {\n await Session.updatePart({\n id: Identifier.ascending('part'),\n messageID: input.assistantMessage.id,\n sessionID: input.sessionID,\n type: 'patch',\n hash: patch.hash,\n files: patch.files,\n });\n }\n snapshot = undefined;\n }\n SessionSummary.summarize({\n sessionID: input.sessionID,\n messageID: input.assistantMessage.parentID,\n });\n break;\n\n case 'text-start':\n currentText = {\n id: Identifier.ascending('part'),\n messageID: input.assistantMessage.id,\n sessionID: input.assistantMessage.sessionID,\n type: 'text',\n text: '',\n time: {\n start: Date.now(),\n },\n metadata: value.providerMetadata,\n };\n break;\n\n case 'text-delta':\n if (currentText) {\n // Handle case where value.text might be an object instead of string\n // See: https://github.com/link-assistant/agent/issues/125\n const textDelta =\n typeof value.text === 'string'\n ? value.text\n : String(value.text);\n currentText.text += textDelta;\n if (value.providerMetadata)\n currentText.metadata = value.providerMetadata;\n if (currentText.text)\n await Session.updatePart({\n part: currentText,\n delta: textDelta,\n });\n }\n break;\n\n case 'text-end':\n if (currentText) {\n currentText.text = currentText.text.trimEnd();\n currentText.time = {\n start: Date.now(),\n end: Date.now(),\n };\n if (value.providerMetadata)\n currentText.metadata = value.providerMetadata;\n await Session.updatePart(currentText);\n }\n currentText = undefined;\n break;\n\n case 'finish':\n input.assistantMessage.time.completed = Date.now();\n await Session.updateMessage(input.assistantMessage);\n // Clear retry state on successful completion\n SessionRetry.clearRetryState(input.sessionID);\n break;\n\n default:\n log.info(() => ({ message: 'unhandled', ...value }));\n continue;\n }\n }\n } catch (e) {\n log.error(() => ({ message: 'process', error: e }));\n\n // Check for AI SDK usage-related TypeError (input_tokens undefined)\n // This happens when providers return incomplete usage data\n // See: https://github.com/link-assistant/agent/issues/152\n if (\n e instanceof TypeError &&\n (e.message.includes('input_tokens') ||\n e.message.includes('output_tokens') ||\n e.message.includes(\"reading 'input_tokens'\") ||\n e.message.includes(\"reading 'output_tokens'\"))\n ) {\n log.warn(() => ({\n message:\n 'Provider returned invalid usage data, continuing with zero usage',\n errorMessage: e.message,\n providerID: input.providerID,\n }));\n // Set default token values to prevent crash\n input.assistantMessage.tokens = {\n input: 0,\n output: 0,\n reasoning: 0,\n cache: { read: 0, write: 0 },\n };\n // Continue processing instead of failing\n continue;\n }\n\n const error = MessageV2.fromError(e, {\n providerID: input.providerID,\n });\n\n // Check if error is retryable (APIError, SocketConnectionError, TimeoutError)\n const isRetryableAPIError =\n error?.name === 'APIError' && error.data.isRetryable;\n const isRetryableSocketError =\n error?.name === 'SocketConnectionError' &&\n error.data.isRetryable &&\n attempt < SessionRetry.SOCKET_ERROR_MAX_RETRIES;\n const isRetryableTimeoutError =\n error?.name === 'TimeoutError' &&\n error.data.isRetryable &&\n attempt < SessionRetry.TIMEOUT_MAX_RETRIES;\n\n // For API errors (rate limits), check if we're within the retry timeout\n // See: https://github.com/link-assistant/agent/issues/157\n const retryCheck = isRetryableAPIError\n ? SessionRetry.shouldRetry(\n input.sessionID,\n error.data.statusCode?.toString() ?? 'unknown'\n )\n : { shouldRetry: true, elapsedTime: 0, maxTime: 0 };\n\n if (\n (isRetryableAPIError && retryCheck.shouldRetry) ||\n isRetryableSocketError ||\n isRetryableTimeoutError\n ) {\n attempt++;\n // Use error-specific delay calculation\n // SessionRetry.delay may throw RetryTimeoutExceededError if retry-after exceeds timeout\n let delay: number;\n try {\n delay =\n error?.name === 'SocketConnectionError'\n ? SessionRetry.socketErrorDelay(attempt)\n : error?.name === 'TimeoutError'\n ? SessionRetry.timeoutDelay(attempt)\n : SessionRetry.delay(error, attempt);\n } catch (delayError) {\n // If retry-after exceeds AGENT_RETRY_TIMEOUT, fail immediately\n if (\n delayError instanceof SessionRetry.RetryTimeoutExceededError\n ) {\n log.error(() => ({\n message: 'retry-after exceeds timeout, failing immediately',\n retryAfterMs: delayError.retryAfterMs,\n maxTimeoutMs: delayError.maxTimeoutMs,\n }));\n SessionRetry.clearRetryState(input.sessionID);\n // Create a specific error for this case\n input.assistantMessage.error = {\n name: 'RetryTimeoutExceededError',\n data: {\n message: delayError.message,\n isRetryable: false,\n retryAfterMs: delayError.retryAfterMs,\n maxTimeoutMs: delayError.maxTimeoutMs,\n },\n } as MessageV2.Error;\n Bus.publish(Session.Event.Error, {\n sessionID: input.assistantMessage.sessionID,\n error: input.assistantMessage.error,\n });\n break;\n }\n throw delayError;\n }\n log.info(() => ({\n message: 'retrying',\n errorType: error?.name,\n attempt,\n delay,\n elapsedRetryTime: retryCheck.elapsedTime,\n maxRetryTime: retryCheck.maxTime,\n }));\n SessionStatus.set(input.sessionID, {\n type: 'retry',\n attempt,\n message: error.data.message,\n next: Date.now() + delay,\n });\n // Update retry state to track total time\n SessionRetry.updateRetryState(input.sessionID, delay);\n await SessionRetry.sleep(delay, input.abort).catch(() => {});\n continue;\n }\n\n // Clear retry state on non-retryable error\n SessionRetry.clearRetryState(input.sessionID);\n input.assistantMessage.error = error;\n Bus.publish(Session.Event.Error, {\n sessionID: input.assistantMessage.sessionID,\n error: input.assistantMessage.error,\n });\n }\n const p = await MessageV2.parts(input.assistantMessage.id);\n for (const part of p) {\n if (\n part.type === 'tool' &&\n part.state.status !== 'completed' &&\n part.state.status !== 'error'\n ) {\n await Session.updatePart({\n ...part,\n state: {\n ...part.state,\n status: 'error',\n error: 'Tool execution aborted',\n time: {\n start: Date.now(),\n end: Date.now(),\n },\n },\n });\n }\n }\n input.assistantMessage.time.completed = Date.now();\n await Session.updateMessage(input.assistantMessage);\n if (blocked) return 'stop';\n if (input.assistantMessage.error) return 'stop';\n return 'continue';\n }\n },\n };\n return result;\n }\n}\n",
"structuredPatch": [
{
"oldStart": 263,
"oldLines": 16,
"newStart": 263,
"newLines": 16,
"lines": [
" input.assistantMessage.cost += usage.cost;",
" input.assistantMessage.tokens = usage.tokens;",
" ",
"- // Build model info if --output-used-model flag is enabled",
"+ // Build model info if --output-response-model flag is enabled",
" // @see https://github.com/link-assistant/agent/issues/179",
" const modelInfo: MessageV2.ModelInfo | undefined =",
"- Flag.OUTPUT_USED_MODEL",
"+ Flag.OUTPUT_RESPONSE_MODEL",
" ? {",
" providerID: input.providerID,",
"- modelID: input.model.id,",
"- // Get responseModelId from finish-step response if available",
"+ requestedModelID: input.model.id,",
"+ // Get respondedModelID from finish-step response if available",
" // AI SDK includes response.modelId when available from provider",
"- responseModelId:",
"+ respondedModelID:",
" (value as any).response?.modelId ?? undefined,",
" }",
" : undefined;"
]
}
],
"userModified": false,
"replaceAll": false
}
}
[2026-02-15T09:05:24.131Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01JmT32US7aWcgVvMrLN8uAj",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now let me update the session summary to respect the new --summarize-session flag and not call getSmallModel when disabled:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 775,
"cache_read_input_tokens": 124757,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 775
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "f7d6ab2f-c202-4f56-9ee0-c47fe11a8b73"
}
[2026-02-15T09:05:28.418Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01JmT32US7aWcgVvMrLN8uAj",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01JQ9spVtioLbqVpm6Vp1bvi",
"name": "Edit",
"input": {
"replace_all": false,
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/session/summary.ts",
"old_string": "import { Provider } from '../provider/provider';\nimport { fn } from '../util/fn';\nimport z from 'zod';\nimport { Session } from '.';\nimport { generateText, type ModelMessage } from 'ai';\nimport { MessageV2 } from './message-v2';\nimport { Identifier } from '../id/id';\nimport { Snapshot } from '../snapshot';\nimport { ProviderTransform } from '../provider/transform';\nimport { SystemPrompt } from './system';\nimport { Log } from '../util/log';\nimport path from 'path';\nimport { Instance } from '../project/instance';\nimport { Storage } from '../storage/storage';\nimport { Bus } from '../bus';",
"new_string": "import { Provider } from '../provider/provider';\nimport { fn } from '../util/fn';\nimport z from 'zod';\nimport { Session } from '.';\nimport { generateText, type ModelMessage } from 'ai';\nimport { MessageV2 } from './message-v2';\nimport { Identifier } from '../id/id';\nimport { Snapshot } from '../snapshot';\nimport { ProviderTransform } from '../provider/transform';\nimport { SystemPrompt } from './system';\nimport { Log } from '../util/log';\nimport path from 'path';\nimport { Instance } from '../project/instance';\nimport { Storage } from '../storage/storage';\nimport { Bus } from '../bus';\nimport { Flag } from '../flag/flag';"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 775,
"cache_read_input_tokens": 124757,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 775
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "1b99df69-e746-44ad-8cbd-4b9c7a57d5bb"
}
[2026-02-15T09:05:28.425Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01JQ9spVtioLbqVpm6Vp1bvi",
"type": "tool_result",
"content": "The file /tmp/gh-issue-solver-1771146225324/js/src/session/summary.ts has been updated successfully."
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "6865169f-0929-400a-aff7-adb4af9a68be",
"tool_use_result": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/session/summary.ts",
"oldString": "import { Provider } from '../provider/provider';\nimport { fn } from '../util/fn';\nimport z from 'zod';\nimport { Session } from '.';\nimport { generateText, type ModelMessage } from 'ai';\nimport { MessageV2 } from './message-v2';\nimport { Identifier } from '../id/id';\nimport { Snapshot } from '../snapshot';\nimport { ProviderTransform } from '../provider/transform';\nimport { SystemPrompt } from './system';\nimport { Log } from '../util/log';\nimport path from 'path';\nimport { Instance } from '../project/instance';\nimport { Storage } from '../storage/storage';\nimport { Bus } from '../bus';",
"newString": "import { Provider } from '../provider/provider';\nimport { fn } from '../util/fn';\nimport z from 'zod';\nimport { Session } from '.';\nimport { generateText, type ModelMessage } from 'ai';\nimport { MessageV2 } from './message-v2';\nimport { Identifier } from '../id/id';\nimport { Snapshot } from '../snapshot';\nimport { ProviderTransform } from '../provider/transform';\nimport { SystemPrompt } from './system';\nimport { Log } from '../util/log';\nimport path from 'path';\nimport { Instance } from '../project/instance';\nimport { Storage } from '../storage/storage';\nimport { Bus } from '../bus';\nimport { Flag } from '../flag/flag';",
"originalFile": "import { Provider } from '../provider/provider';\nimport { fn } from '../util/fn';\nimport z from 'zod';\nimport { Session } from '.';\nimport { generateText, type ModelMessage } from 'ai';\nimport { MessageV2 } from './message-v2';\nimport { Identifier } from '../id/id';\nimport { Snapshot } from '../snapshot';\nimport { ProviderTransform } from '../provider/transform';\nimport { SystemPrompt } from './system';\nimport { Log } from '../util/log';\nimport path from 'path';\nimport { Instance } from '../project/instance';\nimport { Storage } from '../storage/storage';\nimport { Bus } from '../bus';\n\nexport namespace SessionSummary {\n const log = Log.create({ service: 'session.summary' });\n\n export const summarize = fn(\n z.object({\n sessionID: z.string(),\n messageID: z.string(),\n }),\n async (input) => {\n const all = await Session.messages({ sessionID: input.sessionID });\n await Promise.all([\n summarizeSession({ sessionID: input.sessionID, messages: all }),\n summarizeMessage({ messageID: input.messageID, messages: all }),\n ]);\n }\n );\n\n async function summarizeSession(input: {\n sessionID: string;\n messages: MessageV2.WithParts[];\n }) {\n const files = new Set(\n input.messages\n .flatMap((x) => x.parts)\n .filter((x) => x.type === 'patch')\n .flatMap((x) => x.files)\n .map((x) => path.relative(Instance.worktree, x))\n );\n const diffs = await computeDiff({ messages: input.messages }).then((x) =>\n x.filter((x) => {\n return files.has(x.file);\n })\n );\n await Session.update(input.sessionID, (draft) => {\n draft.summary = {\n additions: diffs.reduce((sum, x) => sum + x.additions, 0),\n deletions: diffs.reduce((sum, x) => sum + x.deletions, 0),\n files: diffs.length,\n };\n });\n await Storage.write(['session_diff', input.sessionID], diffs);\n Bus.publish(Session.Event.Diff, {\n sessionID: input.sessionID,\n diff: diffs,\n });\n }\n\n async function summarizeMessage(input: {\n messageID: string;\n messages: MessageV2.WithParts[];\n }) {\n const messages = input.messages.filter(\n (m) =>\n m.info.id === input.messageID ||\n (m.info.role === 'assistant' && m.info.parentID === input.messageID)\n );\n const msgWithParts = messages.find((m) => m.info.id === input.messageID)!;\n const userMsg = msgWithParts.info as MessageV2.User;\n const diffs = await computeDiff({ messages });\n userMsg.summary = {\n ...userMsg.summary,\n diffs,\n };\n await Session.updateMessage(userMsg);\n\n const assistantMsg = messages.find((m) => m.info.role === 'assistant')!\n .info as MessageV2.Assistant;\n const small = await Provider.getSmallModel(assistantMsg.providerID);\n if (!small) return;\n\n const textPart = msgWithParts.parts.find(\n (p) => p.type === 'text' && !p.synthetic\n ) as MessageV2.TextPart;\n if (textPart && !userMsg.summary?.title) {\n const result = await generateText({\n maxOutputTokens: small.info.reasoning ? 1500 : 20,\n providerOptions: ProviderTransform.providerOptions(\n small.npm,\n small.providerID,\n {}\n ),\n messages: [\n ...SystemPrompt.title(small.providerID).map(\n (x): ModelMessage => ({\n role: 'system',\n content: x,\n })\n ),\n {\n role: 'user' as const,\n content: `\n The following is the text to summarize:\n <text>\n ${textPart?.text ?? ''}\n </text>\n `,\n },\n ],\n headers: small.info.headers,\n model: small.language,\n });\n log.info(() => ({ message: 'title', title: result.text }));\n userMsg.summary.title = result.text;\n await Session.updateMessage(userMsg);\n }\n\n if (\n messages.some(\n (m) =>\n m.info.role === 'assistant' &&\n m.parts.some(\n (p) => p.type === 'step-finish' && p.reason !== 'tool-calls'\n )\n )\n ) {\n let summary = messages\n .findLast((m) => m.info.role === 'assistant')\n ?.parts.findLast((p) => p.type === 'text')?.text;\n if (!summary || diffs.length > 0) {\n // Pre-convert messages to ModelMessage format (async in AI SDK 6.0+)\n const modelMessages = await MessageV2.toModelMessage(messages);\n const result = await generateText({\n model: small.language,\n maxOutputTokens: 100,\n messages: [\n {\n role: 'user',\n content: `\n Summarize the following conversation into 2 sentences MAX explaining what the assistant did and why. Do not explain the user's input. Do not speak in the third person about the assistant.\n <conversation>\n ${JSON.stringify(modelMessages)}\n </conversation>\n `,\n },\n ],\n headers: small.info.headers,\n }).catch(() => {});\n if (result) summary = result.text;\n }\n userMsg.summary.body = summary;\n log.info(() => ({ message: 'body', body: summary }));\n await Session.updateMessage(userMsg);\n }\n }\n\n export const diff = fn(\n z.object({\n sessionID: Identifier.schema('session'),\n messageID: Identifier.schema('message').optional(),\n }),\n async (input) => {\n return Storage.read<Snapshot.FileDiff[]>([\n 'session_diff',\n input.sessionID,\n ]).catch(() => []);\n }\n );\n\n async function computeDiff(input: { messages: MessageV2.WithParts[] }) {\n let from: string | undefined;\n let to: string | undefined;\n\n // scan assistant messages to find earliest from and latest to\n // snapshot\n for (const item of input.messages) {\n if (!from) {\n for (const part of item.parts) {\n if (part.type === 'step-start' && part.snapshot) {\n from = part.snapshot;\n break;\n }\n }\n }\n\n for (const part of item.parts) {\n if (part.type === 'step-finish' && part.snapshot) {\n to = part.snapshot;\n break;\n }\n }\n }\n\n if (from && to) return Snapshot.diffFull(from, to);\n return [];\n }\n}\n",
"structuredPatch": [
{
"oldStart": 13,
"oldLines": 6,
"newStart": 13,
"newLines": 7,
"lines": [
" import { Instance } from '../project/instance';",
" import { Storage } from '../storage/storage';",
" import { Bus } from '../bus';",
"+import { Flag } from '../flag/flag';",
" ",
" export namespace SessionSummary {",
" const log = Log.create({ service: 'session.summary' });"
]
}
],
"userModified": false,
"replaceAll": false
}
}
[2026-02-15T09:05:39.756Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_0199qCMqh9K9si8Yym7Ei5Kh",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01LVMx87N5f3wBkb8kddgTys",
"name": "Edit",
"input": {
"replace_all": false,
"file_path": "/tmp/gh-issue-solver-1771146225324/js/src/session/summary.ts",
"old_string": " async function summarizeMessage(input: {\n messageID: string;\n messages: MessageV2.WithParts[];\n }) {\n const messages = input.messages.filter(\n (m) =>\n m.info.id === input.messageID ||\n (m.info.role === 'assistant' && m.info.parentID === input.messageID)\n );\n const msgWithParts = messages.find((m) => m.info.id === input.messageID)!;\n const userMsg = msgWithParts.info as MessageV2.User;\n const diffs = await computeDiff({ messages });\n userMsg.summary = {\n ...userMsg.summary,\n diffs,\n };\n await Session.updateMessage(userMsg);\n\n const assistantMsg = messages.find((m) => m.info.role === 'assistant')!\n .info as MessageV2.Assistant;\n const small = await Provider.getSmallModel(assistantMsg.providerID);\n if (!small) return;",
"new_string": " async function summarizeMessage(input: {\n messageID: string;\n messages: MessageV2.WithParts[];\n }) {\n const messages = input.messages.filter(\n (m) =>\n m.info.id === input.messageID ||\n (m.info.role === 'assistant' && m.info.parentID === input.messageID)\n );\n const msgWithParts = messages.find((m) => m.info.id === input.messageID)!;\n const userMsg = msgWithParts.info as MessageV2.User;\n const diffs = await computeDiff({ messages });\n userMsg.summary = {\n ...userMsg.summary,\n diffs,\n };\n await Session.updateMessage(userMsg);\n\n // Skip AI-powered summarization if disabled (default)\n // See: https://github.com/link-assistant/agent/issues/179\n if (!Flag.SUMMARIZE_SESSION) {\n log.info(() => ({\n message: 'session summarization disabled',\n hint: 'Enable with --summarize-session flag or AGENT_SUMMARIZE_SESSION=true',\n }));\n return;\n }\n\n const assistantMsg = messages.find((m) => m.info.role === 'assistant')!\n .info as MessageV2.Assistant;\n const small = await Provider.getSmallModel(assistantMsg.providerID);\n if (!small) return;"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 544,
"cache_read_input_tokens": 125532,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 544
},
"output_tokens": 24,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "55dad3b0-a93f-4691-a647-3216569ffc74"
}
[2026-02-15T09:05:39.769Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01LVMx87N5f3wBkb8kddgTys",
"type": "tool_result",
"content": "The file /tmp/gh-issue-solver-1771146225324/js/src/session/summary.ts has been updated successfully."
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "5e712096-508b-4780-a272-79fc58639f3d",
"tool_use_result": {
"filePath": "/tmp/gh-issue-solver-1771146225324/js/src/session/summary.ts",
"oldString": " async function summarizeMessage(input: {\n messageID: string;\n messages: MessageV2.WithParts[];\n }) {\n const messages = input.messages.filter(\n (m) =>\n m.info.id === input.messageID ||\n (m.info.role === 'assistant' && m.info.parentID === input.messageID)\n );\n const msgWithParts = messages.find((m) => m.info.id === input.messageID)!;\n const userMsg = msgWithParts.info as MessageV2.User;\n const diffs = await computeDiff({ messages });\n userMsg.summary = {\n ...userMsg.summary,\n diffs,\n };\n await Session.updateMessage(userMsg);\n\n const assistantMsg = messages.find((m) => m.info.role === 'assistant')!\n .info as MessageV2.Assistant;\n const small = await Provider.getSmallModel(assistantMsg.providerID);\n if (!small) return;",
"newString": " async function summarizeMessage(input: {\n messageID: string;\n messages: MessageV2.WithParts[];\n }) {\n const messages = input.messages.filter(\n (m) =>\n m.info.id === input.messageID ||\n (m.info.role === 'assistant' && m.info.parentID === input.messageID)\n );\n const msgWithParts = messages.find((m) => m.info.id === input.messageID)!;\n const userMsg = msgWithParts.info as MessageV2.User;\n const diffs = await computeDiff({ messages });\n userMsg.summary = {\n ...userMsg.summary,\n diffs,\n };\n await Session.updateMessage(userMsg);\n\n // Skip AI-powered summarization if disabled (default)\n // See: https://github.com/link-assistant/agent/issues/179\n if (!Flag.SUMMARIZE_SESSION) {\n log.info(() => ({\n message: 'session summarization disabled',\n hint: 'Enable with --summarize-session flag or AGENT_SUMMARIZE_SESSION=true',\n }));\n return;\n }\n\n const assistantMsg = messages.find((m) => m.info.role === 'assistant')!\n .info as MessageV2.Assistant;\n const small = await Provider.getSmallModel(assistantMsg.providerID);\n if (!small) return;",
"originalFile": "import { Provider } from '../provider/provider';\nimport { fn } from '../util/fn';\nimport z from 'zod';\nimport { Session } from '.';\nimport { generateText, type ModelMessage } from 'ai';\nimport { MessageV2 } from './message-v2';\nimport { Identifier } from '../id/id';\nimport { Snapshot } from '../snapshot';\nimport { ProviderTransform } from '../provider/transform';\nimport { SystemPrompt } from './system';\nimport { Log } from '../util/log';\nimport path from 'path';\nimport { Instance } from '../project/instance';\nimport { Storage } from '../storage/storage';\nimport { Bus } from '../bus';\nimport { Flag } from '../flag/flag';\n\nexport namespace SessionSummary {\n const log = Log.create({ service: 'session.summary' });\n\n export const summarize = fn(\n z.object({\n sessionID: z.string(),\n messageID: z.string(),\n }),\n async (input) => {\n const all = await Session.messages({ sessionID: input.sessionID });\n await Promise.all([\n summarizeSession({ sessionID: input.sessionID, messages: all }),\n summarizeMessage({ messageID: input.messageID, messages: all }),\n ]);\n }\n );\n\n async function summarizeSession(input: {\n sessionID: string;\n messages: MessageV2.WithParts[];\n }) {\n const files = new Set(\n input.messages\n .flatMap((x) => x.parts)\n .filter((x) => x.type === 'patch')\n .flatMap((x) => x.files)\n .map((x) => path.relative(Instance.worktree, x))\n );\n const diffs = await computeDiff({ messages: input.messages }).then((x) =>\n x.filter((x) => {\n return files.has(x.file);\n })\n );\n await Session.update(input.sessionID, (draft) => {\n draft.summary = {\n additions: diffs.reduce((sum, x) => sum + x.additions, 0),\n deletions: diffs.reduce((sum, x) => sum + x.deletions, 0),\n files: diffs.length,\n };\n });\n await Storage.write(['session_diff', input.sessionID], diffs);\n Bus.publish(Session.Event.Diff, {\n sessionID: input.sessionID,\n diff: diffs,\n });\n }\n\n async function summarizeMessage(input: {\n messageID: string;\n messages: MessageV2.WithParts[];\n }) {\n const messages = input.messages.filter(\n (m) =>\n m.info.id === input.messageID ||\n (m.info.role === 'assistant' && m.info.parentID === input.messageID)\n );\n const msgWithParts = messages.find((m) => m.info.id === input.messageID)!;\n const userMsg = msgWithParts.info as MessageV2.User;\n const diffs = await computeDiff({ messages });\n userMsg.summary = {\n ...userMsg.summary,\n diffs,\n };\n await Session.updateMessage(userMsg);\n\n const assistantMsg = messages.find((m) => m.info.role === 'assistant')!\n .info as MessageV2.Assistant;\n const small = await Provider.getSmallModel(assistantMsg.providerID);\n if (!small) return;\n\n const textPart = msgWithParts.parts.find(\n (p) => p.type === 'text' && !p.synthetic\n ) as MessageV2.TextPart;\n if (textPart && !userMsg.summary?.title) {\n const result = await generateText({\n maxOutputTokens: small.info.reasoning ? 1500 : 20,\n providerOptions: ProviderTransform.providerOptions(\n small.npm,\n small.providerID,\n {}\n ),\n messages: [\n ...SystemPrompt.title(small.providerID).map(\n (x): ModelMessage => ({\n role: 'system',\n content: x,\n })\n ),\n {\n role: 'user' as const,\n content: `\n The following is the text to summarize:\n <text>\n ${textPart?.text ?? ''}\n </text>\n `,\n },\n ],\n headers: small.info.headers,\n model: small.language,\n });\n log.info(() => ({ message: 'title', title: result.text }));\n userMsg.summary.title = result.text;\n await Session.updateMessage(userMsg);\n }\n\n if (\n messages.some(\n (m) =>\n m.info.role === 'assistant' &&\n m.parts.some(\n (p) => p.type === 'step-finish' && p.reason !== 'tool-calls'\n )\n )\n ) {\n let summary = messages\n .findLast((m) => m.info.role === 'assistant')\n ?.parts.findLast((p) => p.type === 'text')?.text;\n if (!summary || diffs.length > 0) {\n // Pre-convert messages to ModelMessage format (async in AI SDK 6.0+)\n const modelMessages = await MessageV2.toModelMessage(messages);\n const result = await generateText({\n model: small.language,\n maxOutputTokens: 100,\n messages: [\n {\n role: 'user',\n content: `\n Summarize the following conversation into 2 sentences MAX explaining what the assistant did and why. Do not explain the user's input. Do not speak in the third person about the assistant.\n <conversation>\n ${JSON.stringify(modelMessages)}\n </conversation>\n `,\n },\n ],\n headers: small.info.headers,\n }).catch(() => {});\n if (result) summary = result.text;\n }\n userMsg.summary.body = summary;\n log.info(() => ({ message: 'body', body: summary }));\n await Session.updateMessage(userMsg);\n }\n }\n\n export const diff = fn(\n z.object({\n sessionID: Identifier.schema('session'),\n messageID: Identifier.schema('message').optional(),\n }),\n async (input) => {\n return Storage.read<Snapshot.FileDiff[]>([\n 'session_diff',\n input.sessionID,\n ]).catch(() => []);\n }\n );\n\n async function computeDiff(input: { messages: MessageV2.WithParts[] }) {\n let from: string | undefined;\n let to: string | undefined;\n\n // scan assistant messages to find earliest from and latest to\n // snapshot\n for (const item of input.messages) {\n if (!from) {\n for (const part of item.parts) {\n if (part.type === 'step-start' && part.snapshot) {\n from = part.snapshot;\n break;\n }\n }\n }\n\n for (const part of item.parts) {\n if (part.type === 'step-finish' && part.snapshot) {\n to = part.snapshot;\n break;\n }\n }\n }\n\n if (from && to) return Snapshot.diffFull(from, to);\n return [];\n }\n}\n",
"structuredPatch": [
{
"oldStart": 80,
"oldLines": 6,
"newStart": 80,
"newLines": 16,
"lines": [
" };",
" await Session.updateMessage(userMsg);",
" ",
"+ // Skip AI-powered summarization if disabled (default)",
"+ // See: https://github.com/link-assistant/agent/issues/179",
"+ if (!Flag.SUMMARIZE_SESSION) {",
"+ log.info(() => ({",
"+ message: 'session summarization disabled',",
"+ hint: 'Enable with --summarize-session flag or AGENT_SUMMARIZE_SESSION=true',",
"+ }));",
"+ return;",
"+ }",
"+",
" const assistantMsg = messages.find((m) => m.info.role === 'assistant')!",
" .info as MessageV2.Assistant;",
" const small = await Provider.getSmallModel(assistantMsg.providerID);"
]
}
],
"userModified": false,
"replaceAll": false
}
}
[2026-02-15T09:05:42.542Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01AZbmRvZW51Lfw47EY5Haws",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now let me update the todo list and work on the tests:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 778,
"cache_read_input_tokens": 126076,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 778
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "8f108ac1-a544-496c-9486-f58cebd9e97f"
}
[2026-02-15T09:05:48.407Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01AZbmRvZW51Lfw47EY5Haws",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01Y8UpQsnsXSf3jP1UZRpjzk",
"name": "TodoWrite",
"input": {
"todos": [
{
"content": "Rename --output-used-model to --output-response-model across all files",
"status": "completed",
"activeForm": "Renaming --output-used-model to --output-response-model"
},
{
"content": "Update model JSON schema: modelID→requestedModelID, responseModelId→respondedModelID",
"status": "completed",
"activeForm": "Updating model JSON schema field names"
},
{
"content": "Add --summarize-session flag (disabled by default)",
"status": "completed",
"activeForm": "Adding --summarize-session flag"
},
{
"content": "Ensure auxiliary tasks are disabled by default and don't select small model when disabled",
"status": "completed",
"activeForm": "Ensuring auxiliary tasks don't select small model when disabled"
},
{
"content": "Update tests to reflect all changes",
"status": "in_progress",
"activeForm": "Updating tests"
},
{
"content": "Update documentation and case study",
"status": "pending",
"activeForm": "Updating documentation"
},
{
"content": "Run local CI checks and ensure all tests pass",
"status": "pending",
"activeForm": "Running CI checks"
},
{
"content": "Update PR description to reflect changes",
"status": "pending",
"activeForm": "Updating PR description"
},
{
"content": "Mark PR as ready for review",
"status": "pending",
"activeForm": "Marking PR as ready"
}
]
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 778,
"cache_read_input_tokens": 126076,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 778
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "7ad48b01-c5f4-4dc4-989e-deb9cdb97ba6"
}
[2026-02-15T09:05:48.426Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01Y8UpQsnsXSf3jP1UZRpjzk",
"type": "tool_result",
"content": "Todos have been modified successfully. Ensure that you continue to use the todo list to track your progress. Please proceed with the current tasks if applicable"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "0935af06-5781-4559-8d55-a059ea030b73",
"tool_use_result": {
"oldTodos": [
{
"content": "Rename --output-used-model to --output-response-model across all files",
"status": "in_progress",
"activeForm": "Renaming --output-used-model to --output-response-model"
},
{
"content": "Update model JSON schema: modelID→requestedModelID, responseModelId→respondedModelID",
"status": "pending",
"activeForm": "Updating model JSON schema field names"
},
{
"content": "Add --summarize-session flag (disabled by default)",
"status": "pending",
"activeForm": "Adding --summarize-session flag"
},
{
"content": "Ensure auxiliary tasks are disabled by default and don't select small model when disabled",
"status": "pending",
"activeForm": "Ensuring auxiliary tasks don't select small model when disabled"
},
{
"content": "Update tests to reflect all changes",
"status": "pending",
"activeForm": "Updating tests"
},
{
"content": "Update documentation and case study",
"status": "pending",
"activeForm": "Updating documentation"
},
{
"content": "Run local CI checks and ensure all tests pass",
"status": "pending",
"activeForm": "Running CI checks"
},
{
"content": "Update PR description to reflect changes",
"status": "pending",
"activeForm": "Updating PR description"
},
{
"content": "Mark PR as ready for review",
"status": "pending",
"activeForm": "Marking PR as ready"
}
],
"newTodos": [
{
"content": "Rename --output-used-model to --output-response-model across all files",
"status": "completed",
"activeForm": "Renaming --output-used-model to --output-response-model"
},
{
"content": "Update model JSON schema: modelID→requestedModelID, responseModelId→respondedModelID",
"status": "completed",
"activeForm": "Updating model JSON schema field names"
},
{
"content": "Add --summarize-session flag (disabled by default)",
"status": "completed",
"activeForm": "Adding --summarize-session flag"
},
{
"content": "Ensure auxiliary tasks are disabled by default and don't select small model when disabled",
"status": "completed",
"activeForm": "Ensuring auxiliary tasks don't select small model when disabled"
},
{
"content": "Update tests to reflect all changes",
"status": "in_progress",
"activeForm": "Updating tests"
},
{
"content": "Update documentation and case study",
"status": "pending",
"activeForm": "Updating documentation"
},
{
"content": "Run local CI checks and ensure all tests pass",
"status": "pending",
"activeForm": "Running CI checks"
},
{
"content": "Update PR description to reflect changes",
"status": "pending",
"activeForm": "Updating PR description"
},
{
"content": "Mark PR as ready for review",
"status": "pending",
"activeForm": "Marking PR as ready"
}
]
}
}
[2026-02-15T09:05:50.282Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01JV4xFtyJTxi8i3sRSkRQhB",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now let me update the test file:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 435,
"cache_read_input_tokens": 126854,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 435
},
"output_tokens": 4,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "bb1c36d6-305b-49b2-8f46-af096049f5e2"
}
[2026-02-15T09:06:07.642Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01JV4xFtyJTxi8i3sRSkRQhB",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_018NH7GLZGJctTGTDGDLnTFF",
"name": "Write",
"input": {
"file_path": "/tmp/gh-issue-solver-1771146225324/js/tests/output-used-model.test.js",
"content": "/**\n * Tests for --output-response-model flag\n * @see https://github.com/link-assistant/agent/issues/179\n */\n\nimport { test, expect, setDefaultTimeout } from 'bun:test';\n// @ts-ignore\nimport { sh } from 'command-stream';\n\n// Increase default timeout to 60 seconds for these tests\nsetDefaultTimeout(60000);\n\n// Helper function to parse JSON output (handles both compact and pretty-printed)\nfunction parseJSONOutput(stdout) {\n const trimmed = stdout.trim();\n\n // Try parsing as compact (one JSON per line)\n const lines = trimmed.split('\\n').filter((line) => line.trim());\n\n // Check if first line is complete JSON (compact mode)\n try {\n JSON.parse(lines[0]);\n // If successful, assume all lines are complete JSON objects\n return lines.map((line) => JSON.parse(line));\n } catch (_e) {\n // Pretty-printed mode - need to extract individual JSON objects\n const events = [];\n let currentJson = '';\n let braceCount = 0;\n\n for (const line of trimmed.split('\\n')) {\n for (const char of line) {\n if (char === '{') {\n braceCount++;\n }\n if (char === '}') {\n braceCount--;\n }\n currentJson += char;\n\n if (braceCount === 0 && currentJson.trim()) {\n try {\n events.push(JSON.parse(currentJson.trim()));\n currentJson = '';\n } catch (_e) {\n // Continue accumulating\n }\n }\n }\n currentJson += '\\n';\n }\n\n return events;\n }\n}\n\ntest('--output-response-model flag includes model info in step_finish events', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run with --output-response-model flag\n const result = await sh(\n `echo '${input}' | bun run ${projectRoot}/src/index.js --output-response-model`\n );\n const events = parseJSONOutput(result.stdout);\n\n // Find step_finish events\n const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n expect(stepFinishEvents.length > 0).toBeTruthy();\n\n // Check that step_finish includes model info with new field names\n const stepFinish = stepFinishEvents[0];\n expect(stepFinish.part.model).toBeTruthy();\n expect(typeof stepFinish.part.model.providerID).toBe('string');\n expect(typeof stepFinish.part.model.requestedModelID).toBe('string');\n\n console.log('\\n✅ --output-response-model includes model info in step_finish:');\n console.log(JSON.stringify(stepFinish.part.model, null, 2));\n});\n\ntest('Without --output-response-model flag, model info is NOT included', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run without --output-response-model flag\n const result = await sh(\n `echo '${input}' | bun run ${projectRoot}/src/index.js`\n );\n const events = parseJSONOutput(result.stdout);\n\n // Find step_finish events\n const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n expect(stepFinishEvents.length > 0).toBeTruthy();\n\n // Check that step_finish does NOT include model info (unless explicitly enabled)\n const stepFinish = stepFinishEvents[0];\n // Model info should be undefined when flag is not set\n expect(stepFinish.part.model).toBeUndefined();\n\n console.log('\\n✅ Without flag, model info is not included');\n});\n\ntest('AGENT_OUTPUT_RESPONSE_MODEL env var enables model info output', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run with environment variable\n const result = await sh(\n `echo '${input}' | AGENT_OUTPUT_RESPONSE_MODEL=true bun run ${projectRoot}/src/index.js`\n );\n const events = parseJSONOutput(result.stdout);\n\n // Find step_finish events\n const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n expect(stepFinishEvents.length > 0).toBeTruthy();\n\n // Check that step_finish includes model info with new field names\n const stepFinish = stepFinishEvents[0];\n expect(stepFinish.part.model).toBeTruthy();\n expect(typeof stepFinish.part.model.providerID).toBe('string');\n expect(typeof stepFinish.part.model.requestedModelID).toBe('string');\n\n console.log('\\n✅ AGENT_OUTPUT_RESPONSE_MODEL=true enables model info');\n});\n\ntest('--summarize-session flag controls session summarization', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run without --summarize-session flag (default: disabled)\n const result = await sh(\n `echo '${input}' | bun run ${projectRoot}/src/index.js 2>&1`\n );\n\n // Check that session summarization is disabled by default\n expect(result.stdout + result.stderr).toContain('session summarization disabled');\n\n console.log('\\n✅ Session summarization is disabled by default');\n});\n"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 435,
"cache_read_input_tokens": 126854,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 435
},
"output_tokens": 4,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "bad52ac6-86a5-4d77-872a-d498ebc36810"
}
[2026-02-15T09:06:07.651Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_018NH7GLZGJctTGTDGDLnTFF",
"type": "tool_result",
"content": "The file /tmp/gh-issue-solver-1771146225324/js/tests/output-used-model.test.js has been updated. Here's the result of running `cat -n` on a snippet of the edited file:\n 1→/**\n 2→ * Tests for --output-response-model flag\n 3→ * @see https://github.com/link-assistant/agent/issues/179\n 4→ */\n 5→\n 6→import { test, expect, setDefaultTimeout } from 'bun:test';\n 7→// @ts-ignore\n 8→import { sh } from 'command-stream';\n 9→\n 10→// Increase default timeout to 60 seconds for these tests\n 11→setDefaultTimeout(60000);\n 12→\n 13→// Helper function to parse JSON output (handles both compact and pretty-printed)\n 14→function parseJSONOutput(stdout) {\n 15→ const trimmed = stdout.trim();\n 16→\n 17→ // Try parsing as compact (one JSON per line)\n 18→ const lines = trimmed.split('\\n').filter((line) => line.trim());\n 19→\n 20→ // Check if first line is complete JSON (compact mode)\n 21→ try {\n 22→ JSON.parse(lines[0]);\n 23→ // If successful, assume all lines are complete JSON objects\n 24→ return lines.map((line) => JSON.parse(line));\n 25→ } catch (_e) {\n 26→ // Pretty-printed mode - need to extract individual JSON objects\n 27→ const events = [];\n 28→ let currentJson = '';\n 29→ let braceCount = 0;\n 30→\n 31→ for (const line of trimmed.split('\\n')) {\n 32→ for (const char of line) {\n 33→ if (char === '{') {\n 34→ braceCount++;\n 35→ }\n 36→ if (char === '}') {\n 37→ braceCount--;\n 38→ }\n 39→ currentJson += char;\n 40→\n 41→ if (braceCount === 0 && currentJson.trim()) {\n 42→ try {\n 43→ events.push(JSON.parse(currentJson.trim()));\n 44→ currentJson = '';\n 45→ } catch (_e) {\n 46→ // Continue accumulating\n 47→ }\n 48→ }\n 49→ }\n 50→ currentJson += '\\n';\n 51→ }\n 52→\n 53→ return events;\n 54→ }\n 55→}\n 56→\n 57→test('--output-response-model flag includes model info in step_finish events', async () => {\n 58→ const projectRoot = process.cwd();\n 59→ const input = '{\"message\":\"hi\"}';\n 60→\n 61→ // Run with --output-response-model flag\n 62→ const result = await sh(\n 63→ `echo '${input}' | bun run ${projectRoot}/src/index.js --output-response-model`\n 64→ );\n 65→ const events = parseJSONOutput(result.stdout);\n 66→\n 67→ // Find step_finish events\n 68→ const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n 69→ expect(stepFinishEvents.length > 0).toBeTruthy();\n 70→\n 71→ // Check that step_finish includes model info with new field names\n 72→ const stepFinish = stepFinishEvents[0];\n 73→ expect(stepFinish.part.model).toBeTruthy();\n 74→ expect(typeof stepFinish.part.model.providerID).toBe('string');\n 75→ expect(typeof stepFinish.part.model.requestedModelID).toBe('string');\n 76→\n 77→ console.log('\\n✅ --output-response-model includes model info in step_finish:');\n 78→ console.log(JSON.stringify(stepFinish.part.model, null, 2));\n 79→});\n 80→\n 81→test('Without --output-response-model flag, model info is NOT included', async () => {\n 82→ const projectRoot = process.cwd();\n 83→ const input = '{\"message\":\"hi\"}';\n 84→\n 85→ // Run without --output-response-model flag\n 86→ const result = await sh(\n 87→ `echo '${input}' | bun run ${projectRoot}/src/index.js`\n 88→ );\n 89→ const events = parseJSONOutput(result.stdout);\n 90→\n 91→ // Find step_finish events\n 92→ const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n 93→ expect(stepFinishEvents.length > 0).toBeTruthy();\n 94→\n 95→ // Check that step_finish does NOT include model info (unless explicitly enabled)\n 96→ const stepFinish = stepFinishEvents[0];\n 97→ // Model info should be undefined when flag is not set\n 98→ expect(stepFinish.part.model).toBeUndefined();\n 99→\n 100→ console.log('\\n✅ Without flag, model info is not included');\n 101→});\n 102→\n 103→test('AGENT_OUTPUT_RESPONSE_MODEL env var enables model info output', async () => {\n 104→ const projectRoot = process.cwd();\n 105→ const input = '{\"message\":\"hi\"}';\n 106→\n 107→ // Run with environment variable\n 108→ const result = await sh(\n 109→ `echo '${input}' | AGENT_OUTPUT_RESPONSE_MODEL=true bun run ${projectRoot}/src/index.js`\n 110→ );\n 111→ const events = parseJSONOutput(result.stdout);\n 112→\n 113→ // Find step_finish events\n 114→ const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n 115→ expect(stepFinishEvents.length > 0).toBeTruthy();\n 116→\n 117→ // Check that step_finish includes model info with new field names\n 118→ const stepFinish = stepFinishEvents[0];\n 119→ expect(stepFinish.part.model).toBeTruthy();\n 120→ expect(typeof stepFinish.part.model.providerID).toBe('string');\n 121→ expect(typeof stepFinish.part.model.requestedModelID).toBe('string');\n 122→\n 123→ console.log('\\n✅ AGENT_OUTPUT_RESPONSE_MODEL=true enables model info');\n 124→});\n 125→\n 126→test('--summarize-session flag controls session summarization', async () => {\n 127→ const projectRoot = process.cwd();\n 128→ const input = '{\"message\":\"hi\"}';\n 129→\n 130→ // Run without --summarize-session flag (default: disabled)\n 131→ const result = await sh(\n 132→ `echo '${input}' | bun run ${projectRoot}/src/index.js 2>&1`\n 133→ );\n 134→\n 135→ // Check that session summarization is disabled by default\n 136→ expect(result.stdout + result.stderr).toContain('session summarization disabled');\n 137→\n 138→ console.log('\\n✅ Session summarization is disabled by default');\n 139→});\n 140→"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "9beada71-266d-4e46-b893-287297d384d6",
"tool_use_result": {
"type": "update",
"filePath": "/tmp/gh-issue-solver-1771146225324/js/tests/output-used-model.test.js",
"content": "/**\n * Tests for --output-response-model flag\n * @see https://github.com/link-assistant/agent/issues/179\n */\n\nimport { test, expect, setDefaultTimeout } from 'bun:test';\n// @ts-ignore\nimport { sh } from 'command-stream';\n\n// Increase default timeout to 60 seconds for these tests\nsetDefaultTimeout(60000);\n\n// Helper function to parse JSON output (handles both compact and pretty-printed)\nfunction parseJSONOutput(stdout) {\n const trimmed = stdout.trim();\n\n // Try parsing as compact (one JSON per line)\n const lines = trimmed.split('\\n').filter((line) => line.trim());\n\n // Check if first line is complete JSON (compact mode)\n try {\n JSON.parse(lines[0]);\n // If successful, assume all lines are complete JSON objects\n return lines.map((line) => JSON.parse(line));\n } catch (_e) {\n // Pretty-printed mode - need to extract individual JSON objects\n const events = [];\n let currentJson = '';\n let braceCount = 0;\n\n for (const line of trimmed.split('\\n')) {\n for (const char of line) {\n if (char === '{') {\n braceCount++;\n }\n if (char === '}') {\n braceCount--;\n }\n currentJson += char;\n\n if (braceCount === 0 && currentJson.trim()) {\n try {\n events.push(JSON.parse(currentJson.trim()));\n currentJson = '';\n } catch (_e) {\n // Continue accumulating\n }\n }\n }\n currentJson += '\\n';\n }\n\n return events;\n }\n}\n\ntest('--output-response-model flag includes model info in step_finish events', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run with --output-response-model flag\n const result = await sh(\n `echo '${input}' | bun run ${projectRoot}/src/index.js --output-response-model`\n );\n const events = parseJSONOutput(result.stdout);\n\n // Find step_finish events\n const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n expect(stepFinishEvents.length > 0).toBeTruthy();\n\n // Check that step_finish includes model info with new field names\n const stepFinish = stepFinishEvents[0];\n expect(stepFinish.part.model).toBeTruthy();\n expect(typeof stepFinish.part.model.providerID).toBe('string');\n expect(typeof stepFinish.part.model.requestedModelID).toBe('string');\n\n console.log('\\n✅ --output-response-model includes model info in step_finish:');\n console.log(JSON.stringify(stepFinish.part.model, null, 2));\n});\n\ntest('Without --output-response-model flag, model info is NOT included', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run without --output-response-model flag\n const result = await sh(\n `echo '${input}' | bun run ${projectRoot}/src/index.js`\n );\n const events = parseJSONOutput(result.stdout);\n\n // Find step_finish events\n const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n expect(stepFinishEvents.length > 0).toBeTruthy();\n\n // Check that step_finish does NOT include model info (unless explicitly enabled)\n const stepFinish = stepFinishEvents[0];\n // Model info should be undefined when flag is not set\n expect(stepFinish.part.model).toBeUndefined();\n\n console.log('\\n✅ Without flag, model info is not included');\n});\n\ntest('AGENT_OUTPUT_RESPONSE_MODEL env var enables model info output', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run with environment variable\n const result = await sh(\n `echo '${input}' | AGENT_OUTPUT_RESPONSE_MODEL=true bun run ${projectRoot}/src/index.js`\n );\n const events = parseJSONOutput(result.stdout);\n\n // Find step_finish events\n const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n expect(stepFinishEvents.length > 0).toBeTruthy();\n\n // Check that step_finish includes model info with new field names\n const stepFinish = stepFinishEvents[0];\n expect(stepFinish.part.model).toBeTruthy();\n expect(typeof stepFinish.part.model.providerID).toBe('string');\n expect(typeof stepFinish.part.model.requestedModelID).toBe('string');\n\n console.log('\\n✅ AGENT_OUTPUT_RESPONSE_MODEL=true enables model info');\n});\n\ntest('--summarize-session flag controls session summarization', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run without --summarize-session flag (default: disabled)\n const result = await sh(\n `echo '${input}' | bun run ${projectRoot}/src/index.js 2>&1`\n );\n\n // Check that session summarization is disabled by default\n expect(result.stdout + result.stderr).toContain('session summarization disabled');\n\n console.log('\\n✅ Session summarization is disabled by default');\n});\n",
"structuredPatch": [
{
"oldStart": 1,
"oldLines": 5,
"newStart": 1,
"newLines": 5,
"lines": [
" /**",
"- * Tests for --output-used-model flag",
"+ * Tests for --output-response-model flag",
" * @see https://github.com/link-assistant/agent/issues/179",
" */",
" "
]
},
{
"oldStart": 54,
"oldLines": 13,
"newStart": 54,
"newLines": 13,
"lines": [
" }",
" }",
" ",
"-test('--output-used-model flag includes model info in step_finish events', async () => {",
"+test('--output-response-model flag includes model info in step_finish events', async () => {",
" const projectRoot = process.cwd();",
" const input = '{\"message\":\"hi\"}';",
" ",
"- // Run with --output-used-model flag",
"+ // Run with --output-response-model flag",
" const result = await sh(",
"- `echo '${input}' | bun run ${projectRoot}/src/index.js --output-used-model`",
"+ `echo '${input}' | bun run ${projectRoot}/src/index.js --output-response-model`",
" );",
" const events = parseJSONOutput(result.stdout);",
" "
]
},
{
"oldStart": 68,
"oldLines": 21,
"newStart": 68,
"newLines": 21,
"lines": [
" const stepFinishEvents = events.filter((e) => e.type === 'step_finish');",
" expect(stepFinishEvents.length > 0).toBeTruthy();",
" ",
"- // Check that step_finish includes model info",
"+ // Check that step_finish includes model info with new field names",
" const stepFinish = stepFinishEvents[0];",
" expect(stepFinish.part.model).toBeTruthy();",
" expect(typeof stepFinish.part.model.providerID).toBe('string');",
"- expect(typeof stepFinish.part.model.modelID).toBe('string');",
"+ expect(typeof stepFinish.part.model.requestedModelID).toBe('string');",
" ",
"- console.log('\\n✅ --output-used-model includes model info in step_finish:');",
"+ console.log('\\n✅ --output-response-model includes model info in step_finish:');",
" console.log(JSON.stringify(stepFinish.part.model, null, 2));",
" });",
" ",
"-test('Without --output-used-model flag, model info is NOT included', async () => {",
"+test('Without --output-response-model flag, model info is NOT included', async () => {",
" const projectRoot = process.cwd();",
" const input = '{\"message\":\"hi\"}';",
" ",
"- // Run without --output-used-model flag",
"+ // Run without --output-response-model flag",
" const result = await sh(",
" `echo '${input}' | bun run ${projectRoot}/src/index.js`",
" );"
]
},
{
"oldStart": 100,
"oldLines": 13,
"newStart": 100,
"newLines": 13,
"lines": [
" console.log('\\n✅ Without flag, model info is not included');",
" });",
" ",
"-test('AGENT_OUTPUT_USED_MODEL env var enables model info output', async () => {",
"+test('AGENT_OUTPUT_RESPONSE_MODEL env var enables model info output', async () => {",
" const projectRoot = process.cwd();",
" const input = '{\"message\":\"hi\"}';",
" ",
" // Run with environment variable",
" const result = await sh(",
"- `echo '${input}' | AGENT_OUTPUT_USED_MODEL=true bun run ${projectRoot}/src/index.js`",
"+ `echo '${input}' | AGENT_OUTPUT_RESPONSE_MODEL=true bun run ${projectRoot}/src/index.js`",
" );",
" const events = parseJSONOutput(result.stdout);",
" "
]
},
{
"oldStart": 114,
"oldLines": 11,
"newStart": 114,
"newLines": 26,
"lines": [
" const stepFinishEvents = events.filter((e) => e.type === 'step_finish');",
" expect(stepFinishEvents.length > 0).toBeTruthy();",
" ",
"- // Check that step_finish includes model info",
"+ // Check that step_finish includes model info with new field names",
" const stepFinish = stepFinishEvents[0];",
" expect(stepFinish.part.model).toBeTruthy();",
" expect(typeof stepFinish.part.model.providerID).toBe('string');",
"- expect(typeof stepFinish.part.model.modelID).toBe('string');",
"+ expect(typeof stepFinish.part.model.requestedModelID).toBe('string');",
" ",
"- console.log('\\n✅ AGENT_OUTPUT_USED_MODEL=true enables model info');",
"+ console.log('\\n✅ AGENT_OUTPUT_RESPONSE_MODEL=true enables model info');",
" });",
"+",
"+test('--summarize-session flag controls session summarization', async () => {",
"+ const projectRoot = process.cwd();",
"+ const input = '{\"message\":\"hi\"}';",
"+",
"+ // Run without --summarize-session flag (default: disabled)",
"+ const result = await sh(",
"+ `echo '${input}' | bun run ${projectRoot}/src/index.js 2>&1`",
"+ );",
"+",
"+ // Check that session summarization is disabled by default",
"+ expect(result.stdout + result.stderr).toContain('session summarization disabled');",
"+",
"+ console.log('\\n✅ Session summarization is disabled by default');",
"+});"
]
}
],
"originalFile": "/**\n * Tests for --output-used-model flag\n * @see https://github.com/link-assistant/agent/issues/179\n */\n\nimport { test, expect, setDefaultTimeout } from 'bun:test';\n// @ts-ignore\nimport { sh } from 'command-stream';\n\n// Increase default timeout to 60 seconds for these tests\nsetDefaultTimeout(60000);\n\n// Helper function to parse JSON output (handles both compact and pretty-printed)\nfunction parseJSONOutput(stdout) {\n const trimmed = stdout.trim();\n\n // Try parsing as compact (one JSON per line)\n const lines = trimmed.split('\\n').filter((line) => line.trim());\n\n // Check if first line is complete JSON (compact mode)\n try {\n JSON.parse(lines[0]);\n // If successful, assume all lines are complete JSON objects\n return lines.map((line) => JSON.parse(line));\n } catch (_e) {\n // Pretty-printed mode - need to extract individual JSON objects\n const events = [];\n let currentJson = '';\n let braceCount = 0;\n\n for (const line of trimmed.split('\\n')) {\n for (const char of line) {\n if (char === '{') {\n braceCount++;\n }\n if (char === '}') {\n braceCount--;\n }\n currentJson += char;\n\n if (braceCount === 0 && currentJson.trim()) {\n try {\n events.push(JSON.parse(currentJson.trim()));\n currentJson = '';\n } catch (_e) {\n // Continue accumulating\n }\n }\n }\n currentJson += '\\n';\n }\n\n return events;\n }\n}\n\ntest('--output-used-model flag includes model info in step_finish events', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run with --output-used-model flag\n const result = await sh(\n `echo '${input}' | bun run ${projectRoot}/src/index.js --output-used-model`\n );\n const events = parseJSONOutput(result.stdout);\n\n // Find step_finish events\n const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n expect(stepFinishEvents.length > 0).toBeTruthy();\n\n // Check that step_finish includes model info\n const stepFinish = stepFinishEvents[0];\n expect(stepFinish.part.model).toBeTruthy();\n expect(typeof stepFinish.part.model.providerID).toBe('string');\n expect(typeof stepFinish.part.model.modelID).toBe('string');\n\n console.log('\\n✅ --output-used-model includes model info in step_finish:');\n console.log(JSON.stringify(stepFinish.part.model, null, 2));\n});\n\ntest('Without --output-used-model flag, model info is NOT included', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run without --output-used-model flag\n const result = await sh(\n `echo '${input}' | bun run ${projectRoot}/src/index.js`\n );\n const events = parseJSONOutput(result.stdout);\n\n // Find step_finish events\n const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n expect(stepFinishEvents.length > 0).toBeTruthy();\n\n // Check that step_finish does NOT include model info (unless explicitly enabled)\n const stepFinish = stepFinishEvents[0];\n // Model info should be undefined when flag is not set\n expect(stepFinish.part.model).toBeUndefined();\n\n console.log('\\n✅ Without flag, model info is not included');\n});\n\ntest('AGENT_OUTPUT_USED_MODEL env var enables model info output', async () => {\n const projectRoot = process.cwd();\n const input = '{\"message\":\"hi\"}';\n\n // Run with environment variable\n const result = await sh(\n `echo '${input}' | AGENT_OUTPUT_USED_MODEL=true bun run ${projectRoot}/src/index.js`\n );\n const events = parseJSONOutput(result.stdout);\n\n // Find step_finish events\n const stepFinishEvents = events.filter((e) => e.type === 'step_finish');\n expect(stepFinishEvents.length > 0).toBeTruthy();\n\n // Check that step_finish includes model info\n const stepFinish = stepFinishEvents[0];\n expect(stepFinish.part.model).toBeTruthy();\n expect(typeof stepFinish.part.model.providerID).toBe('string');\n expect(typeof stepFinish.part.model.modelID).toBe('string');\n\n console.log('\\n✅ AGENT_OUTPUT_USED_MODEL=true enables model info');\n});\n"
}
}
[2026-02-15T09:06:09.849Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_013yZhkAbAQwNnsaAXWTTZo4",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now let me rename the test file to match the new naming:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 3420,
"cache_read_input_tokens": 127289,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 3420
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "32a482ab-9384-4e9f-b25f-18bb45791c1a"
}
[2026-02-15T09:06:11.440Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_013yZhkAbAQwNnsaAXWTTZo4",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01QNFtJauZZi9YXMHjCPZdkn",
"name": "Bash",
"input": {
"command": "cd /tmp/gh-issue-solver-1771146225324/js && mv tests/output-used-model.test.js tests/output-response-model.test.js",
"description": "Rename test file to match new flag name"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 3420,
"cache_read_input_tokens": 127289,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 3420
},
"output_tokens": 3,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "9954ad5c-acde-4e2a-9855-c69f243fbcf1"
}
[2026-02-15T09:06:11.533Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01QNFtJauZZi9YXMHjCPZdkn",
"type": "tool_result",
"content": "",
"is_error": false
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "d804ed3e-6f89-4f07-ad84-7ec2f85d45a5",
"tool_use_result": {
"stdout": "",
"stderr": "",
"interrupted": false,
"isImage": false,
"noOutputExpected": true
}
}
[2026-02-15T09:06:13.871Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01Kwsnx4XQLyiskK6UMGTePs",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now let me update the changeset file:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 157,
"cache_read_input_tokens": 130709,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 157
},
"output_tokens": 4,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "9a5373c7-2fbf-4fd4-9613-6d65e89a87fe"
}
[2026-02-15T09:06:22.129Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01Kwsnx4XQLyiskK6UMGTePs",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01XRH3wGjGuPzAb6Sz2a4TyP",
"name": "Write",
"input": {
"file_path": "/tmp/gh-issue-solver-1771146225324/js/.changeset/add-output-used-model-flag.md",
"content": "---\n'@link-assistant/agent': minor\n---\n\nAdd --output-response-model and --summarize-session flags for auxiliary task control\n\n## Changes\n\n### New Flags\n\n1. **`--output-response-model`** (or `AGENT_OUTPUT_RESPONSE_MODEL=true`)\n When enabled, includes model information in `step_finish` parts:\n\n ```json\n {\n \"type\": \"step_finish\",\n \"part\": {\n \"model\": {\n \"providerID\": \"opencode\",\n \"requestedModelID\": \"big-pickle\",\n \"respondedModelID\": \"gpt-4o-mini-2024-07-18\"\n }\n }\n }\n ```\n\n2. **`--summarize-session`** (or `AGENT_SUMMARIZE_SESSION=true`)\n Controls AI-powered session summarization. **Disabled by default** to save tokens.\n When enabled, generates summaries using a small/cheap model.\n\n### Token Savings\n\nBy default, both `--generate-title` and `--summarize-session` are now disabled,\nwhich means:\n\n- No auxiliary models are loaded when all auxiliary tasks are disabled\n- No extra tokens are consumed for title generation or session summarization\n- Users can explicitly enable these features when needed\n\n### Renamed Fields\n\nThe model info schema now uses clearer field names:\n- `modelID` → `requestedModelID` (the model you asked for)\n- `responseModelId` → `respondedModelID` (the actual model that responded)\n\nThis helps clarify the distinction between what was requested and what actually\nprocessed the request.\n\nFixes #179\n"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 157,
"cache_read_input_tokens": 130709,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 157
},
"output_tokens": 4,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "b946740c-0d42-48ed-88e2-cb61a554f848"
}
[2026-02-15T09:06:22.144Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01XRH3wGjGuPzAb6Sz2a4TyP",
"type": "tool_result",
"content": "The file /tmp/gh-issue-solver-1771146225324/js/.changeset/add-output-used-model-flag.md has been updated. Here's the result of running `cat -n` on a snippet of the edited file:\n 1→---\n 2→'@link-assistant/agent': minor\n 3→---\n 4→\n 5→Add --output-response-model and --summarize-session flags for auxiliary task control\n 6→\n 7→## Changes\n 8→\n 9→### New Flags\n 10→\n 11→1. **`--output-response-model`** (or `AGENT_OUTPUT_RESPONSE_MODEL=true`)\n 12→ When enabled, includes model information in `step_finish` parts:\n 13→\n 14→ ```json\n 15→ {\n 16→ \"type\": \"step_finish\",\n 17→ \"part\": {\n 18→ \"model\": {\n 19→ \"providerID\": \"opencode\",\n 20→ \"requestedModelID\": \"big-pickle\",\n 21→ \"respondedModelID\": \"gpt-4o-mini-2024-07-18\"\n 22→ }\n 23→ }\n 24→ }\n 25→ ```\n 26→\n 27→2. **`--summarize-session`** (or `AGENT_SUMMARIZE_SESSION=true`)\n 28→ Controls AI-powered session summarization. **Disabled by default** to save tokens.\n 29→ When enabled, generates summaries using a small/cheap model.\n 30→\n 31→### Token Savings\n 32→\n 33→By default, both `--generate-title` and `--summarize-session` are now disabled,\n 34→which means:\n 35→\n 36→- No auxiliary models are loaded when all auxiliary tasks are disabled\n 37→- No extra tokens are consumed for title generation or session summarization\n 38→- Users can explicitly enable these features when needed\n 39→\n 40→### Renamed Fields\n 41→\n 42→The model info schema now uses clearer field names:\n 43→- `modelID` → `requestedModelID` (the model you asked for)\n 44→- `responseModelId` → `respondedModelID` (the actual model that responded)\n 45→\n 46→This helps clarify the distinction between what was requested and what actually\n 47→processed the request.\n 48→\n 49→Fixes #179\n 50→"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "46705e1d-4365-49d0-8e2f-51a07ff989cc",
"tool_use_result": {
"type": "update",
"filePath": "/tmp/gh-issue-solver-1771146225324/js/.changeset/add-output-used-model-flag.md",
"content": "---\n'@link-assistant/agent': minor\n---\n\nAdd --output-response-model and --summarize-session flags for auxiliary task control\n\n## Changes\n\n### New Flags\n\n1. **`--output-response-model`** (or `AGENT_OUTPUT_RESPONSE_MODEL=true`)\n When enabled, includes model information in `step_finish` parts:\n\n ```json\n {\n \"type\": \"step_finish\",\n \"part\": {\n \"model\": {\n \"providerID\": \"opencode\",\n \"requestedModelID\": \"big-pickle\",\n \"respondedModelID\": \"gpt-4o-mini-2024-07-18\"\n }\n }\n }\n ```\n\n2. **`--summarize-session`** (or `AGENT_SUMMARIZE_SESSION=true`)\n Controls AI-powered session summarization. **Disabled by default** to save tokens.\n When enabled, generates summaries using a small/cheap model.\n\n### Token Savings\n\nBy default, both `--generate-title` and `--summarize-session` are now disabled,\nwhich means:\n\n- No auxiliary models are loaded when all auxiliary tasks are disabled\n- No extra tokens are consumed for title generation or session summarization\n- Users can explicitly enable these features when needed\n\n### Renamed Fields\n\nThe model info schema now uses clearer field names:\n- `modelID` → `requestedModelID` (the model you asked for)\n- `responseModelId` → `respondedModelID` (the actual model that responded)\n\nThis helps clarify the distinction between what was requested and what actually\nprocessed the request.\n\nFixes #179\n",
"structuredPatch": [
{
"oldStart": 2,
"oldLines": 31,
"newStart": 2,
"newLines": 48,
"lines": [
" '@link-assistant/agent': minor",
" ---",
" ",
"-Add --output-used-model flag to include model information in output",
"+Add --output-response-model and --summarize-session flags for auxiliary task control",
" ",
"-When enabled via CLI flag (`--output-used-model`) or environment variable",
"-(`AGENT_OUTPUT_USED_MODEL=true`), the agent now includes model information",
"-in `step_finish` parts:",
"+## Changes",
" ",
"-```json",
"-{",
"- \"type\": \"step_finish\",",
"- \"part\": {",
"- \"model\": {",
"- \"providerID\": \"opencode\",",
"- \"modelID\": \"big-pickle\",",
"- \"responseModelId\": \"gpt-4o-mini-2024-07-18\"",
"- }",
"- }",
"-}",
"-```",
"+### New Flags",
" ",
"-This helps users understand which model actually generated each response,",
"-especially when auxiliary models are used for background tasks like title",
"-generation.",
"+1. **`--output-response-model`** (or `AGENT_OUTPUT_RESPONSE_MODEL=true`)",
"+ When enabled, includes model information in `step_finish` parts:",
" ",
"-Also added clearer log messages for `getSmallModel()` to explain that",
"-selected models are for auxiliary tasks (title/summary generation),",
"-not primary user requests.",
"+ ```json",
"+ {",
"+ \"type\": \"step_finish\",",
"+ \"part\": {",
"+ \"model\": {",
"+ \"providerID\": \"opencode\",",
"+ \"requestedModelID\": \"big-pickle\",",
"+ \"respondedModelID\": \"gpt-4o-mini-2024-07-18\"",
"+ }",
"+ }",
"+ }",
"+ ```",
" ",
"+2. **`--summarize-session`** (or `AGENT_SUMMARIZE_SESSION=true`)",
"+ Controls AI-powered session summarization. **Disabled by default** to save tokens.",
"+ When enabled, generates summaries using a small/cheap model.",
"+",
"+### Token Savings",
"+",
"+By default, both `--generate-title` and `--summarize-session` are now disabled,",
"+which means:",
"+",
"+- No auxiliary models are loaded when all auxiliary tasks are disabled",
"+- No extra tokens are consumed for title generation or session summarization",
"+- Users can explicitly enable these features when needed",
"+",
"+### Renamed Fields",
"+",
"+The model info schema now uses clearer field names:",
"+- `modelID` → `requestedModelID` (the model you asked for)",
"+- `responseModelId` → `respondedModelID` (the actual model that responded)",
"+",
"+This helps clarify the distinction between what was requested and what actually",
"+processed the request.",
"+",
" Fixes #179"
]
}
],
"originalFile": "---\n'@link-assistant/agent': minor\n---\n\nAdd --output-used-model flag to include model information in output\n\nWhen enabled via CLI flag (`--output-used-model`) or environment variable\n(`AGENT_OUTPUT_USED_MODEL=true`), the agent now includes model information\nin `step_finish` parts:\n\n```json\n{\n \"type\": \"step_finish\",\n \"part\": {\n \"model\": {\n \"providerID\": \"opencode\",\n \"modelID\": \"big-pickle\",\n \"responseModelId\": \"gpt-4o-mini-2024-07-18\"\n }\n }\n}\n```\n\nThis helps users understand which model actually generated each response,\nespecially when auxiliary models are used for background tasks like title\ngeneration.\n\nAlso added clearer log messages for `getSmallModel()` to explain that\nselected models are for auxiliary tasks (title/summary generation),\nnot primary user requests.\n\nFixes #179\n"
}
}
[2026-02-15T09:06:24.101Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01QQP1x9tHVGGuotXmuZEfhd",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Now let me update the documentation case study:"
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 1113,
"cache_read_input_tokens": 130866,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 1113
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "7a014071-890d-4ac1-ba80-709460c74025"
}
[2026-02-15T09:06:24.852Z] [INFO] {
"type": "assistant",
"message": {
"model": "claude-opus-4-5-20251101",
"id": "msg_01QQP1x9tHVGGuotXmuZEfhd",
"type": "message",
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_01W78M8cioJaZ1hQawR7iALf",
"name": "Read",
"input": {
"file_path": "/tmp/gh-issue-solver-1771146225324/docs/case-studies/issue-179/README.md"
},
"caller": {
"type": "direct"
}
}
],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 0,
"cache_creation_input_tokens": 1113,
"cache_read_input_tokens": 130866,
"cache_creation": {
"ephemeral_5m_input_tokens": 0,
"ephemeral_1h_input_tokens": 1113
},
"output_tokens": 1,
"service_tier": "standard",
"inference_geo": "not_available"
},
"context_management": null
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "c1813150-dea1-4047-8b66-3c634d44dd37"
}
[2026-02-15T09:06:24.861Z] [INFO] {
"type": "user",
"message": {
"role": "user",
"content": [
{
"tool_use_id": "toolu_01W78M8cioJaZ1hQawR7iALf",
"type": "tool_result",
"content": " 1→# Case Study: Issue #179 - Model Confusion in CLI Output\n 2→\n 3→## Issue Summary\n 4→\n 5→When running `agent --model big-pickle`, the logs show `kimi-k2.5-free` being mentioned, which creates confusion for users who explicitly specified a different model.\n 6→\n 7→**Issue URL**: https://github.com/link-assistant/agent/issues/179\n 8→\n 9→## Problem Statement\n 10→\n 11→### Problem 1: Confusing Model Mentions in Logs\n 12→\n 13→When a user specifies `--model big-pickle`, the logs show:\n 14→\n 15→```json\n 16→{\n 17→ \"type\": \"log\",\n 18→ \"level\": \"info\",\n 19→ \"timestamp\": \"2026-02-15T08:31:43.769Z\",\n 20→ \"service\": \"provider\",\n 21→ \"providerID\": \"opencode\",\n 22→ \"modelID\": \"kimi-k2.5-free\",\n 23→ \"message\": \"getModel\"\n 24→}\n 25→```\n 26→\n 27→This is confusing because the user expects only `big-pickle` to be used.\n 28→\n 29→### Problem 2: Missing Model Information in Output\n 30→\n 31→The user wants to see which model actually generated each response in the output parts:\n 32→\n 33→```json\n 34→{\n 35→ \"type\": \"text\",\n 36→ \"timestamp\": 1771144308510,\n 37→ \"sessionID\": \"ses_39f92abdcffemBFOqUctsANi1x\",\n 38→ \"part\": {\n 39→ \"id\": \"prt_c606d66fb001UVz0YlSVSXj1oO\",\n 40→ \"type\": \"text\",\n 41→ \"text\": \"Hi! How can I help you today?\"\n 42→ }\n 43→}\n 44→```\n 45→\n 46→The user wants a `model` object added to show which model was used.\n 47→\n 48→## Root Cause Analysis\n 49→\n 50→### Why Does `kimi-k2.5-free` Appear?\n 51→\n 52→The issue is in `js/src/provider/provider.ts` in the `getSmallModel` function (lines 1300-1345):\n 53→\n 54→```typescript\n 55→export async function getSmallModel(providerID: string) {\n 56→ // ... config checks ...\n 57→\n 58→ if (providerID === 'opencode' || providerID === 'local') {\n 59→ priority = [\n 60→ 'kimi-k2.5-free', // <-- This is first priority!\n 61→ 'minimax-m2.1-free',\n 62→ 'gpt-5-nano',\n 63→ 'glm-4.7-free',\n 64→ 'big-pickle',\n 65→ ];\n 66→ }\n 67→ // ...\n 68→}\n 69→```\n 70→\n 71→This `getSmallModel` function is called in two places:\n 72→\n 73→1. **Title Generation** (`js/src/session/prompt.ts:1561`): When generating a session title, the system uses a \"small model\" (usually faster/cheaper) to create the title.\n 74→\n 75→2. **Session Summary** (`js/src/session/summary.ts:84`): When summarizing a session, a small model is used.\n 76→\n 77→When the user specifies `--model big-pickle` from the `opencode` provider, the title generation still calls `getSmallModel('opencode')` which returns `kimi-k2.5-free` (the first priority in the list for opencode provider).\n 78→\n 79→This is **by design** - it's meant to use cheaper/faster models for auxiliary tasks like title generation. However, the log message creates confusion by mentioning a different model.\n 80→\n 81→### Why Model Information Is Missing\n 82→\n 83→The current implementation doesn't include model information in the output parts because:\n 84→\n 85→1. The AI SDK's `streamText` response does include model information via `result.response.modelId`\n 86→2. However, this information is not currently extracted and included in the event outputs\n 87→\n 88→## Proposed Solutions\n 89→\n 90→### Solution 1: Suppress Small Model Logs When Not Primary\n 91→\n 92→Add a flag to `getModel` calls to indicate whether they're for auxiliary operations (title gen, summarization) vs primary operations. Reduce log level for auxiliary operations.\n 93→\n 94→**Pros**: Reduces user confusion, logs stay accurate\n 95→**Cons**: Adds complexity, hides potentially useful debug info\n 96→\n 97→### Solution 2: Add Context to Log Messages\n 98→\n 99→Update log messages to clearly indicate the purpose:\n 100→\n 101→```json\n 102→{\n 103→ \"message\": \"getModel (title generation)\",\n 104→ \"modelID\": \"kimi-k2.5-free\"\n 105→}\n 106→```\n 107→\n 108→**Pros**: Transparent about what's happening\n 109→**Cons**: Doesn't reduce log noise\n 110→\n 111→### Solution 3: Implement `--output-used-model` Flag\n 112→\n 113→Add an optional flag that includes model information in each output part:\n 114→\n 115→```json\n 116→{\n 117→ \"type\": \"text\",\n 118→ \"part\": {\n 119→ \"text\": \"Hi! How can I help you today?\",\n 120→ \"model\": {\n 121→ \"providerID\": \"opencode\",\n 122→ \"modelID\": \"big-pickle\",\n 123→ \"responseModelId\": \"gpt-4o-mini-2024-07-18\"\n 124→ }\n 125→ }\n 126→}\n 127→```\n 128→\n 129→**Pros**: User gets clear info about which model answered\n 130→**Cons**: Increases output size (hence the opt-in flag)\n 131→\n 132→### Solution 4: Add Model Info to Step Parts\n 133→\n 134→Include model information in `step-start` and `step-finish` parts:\n 135→\n 136→```json\n 137→{\n 138→ \"type\": \"step_finish\",\n 139→ \"part\": {\n 140→ \"type\": \"step-finish\",\n 141→ \"model\": {\n 142→ \"providerID\": \"opencode\",\n 143→ \"modelID\": \"big-pickle\",\n 144→ \"responseModelId\": \"actual-model-id-from-api\"\n 145→ },\n 146→ \"tokens\": {...}\n 147→ }\n 148→}\n 149→```\n 150→\n 151→**Pros**: Natural place for model info (step-finish already has token info)\n 152→**Cons**: May not cover all use cases user wants\n 153→\n 154→## Recommended Implementation\n 155→\n 156→Based on analysis, recommend implementing:\n 157→\n 158→1. **Add `--output-used-model` flag** - To include model information in output when requested\n 159→2. **Add model info to `step-finish` parts** - Include model info alongside tokens for each step\n 160→3. **Add context to auxiliary model log messages** - To clarify why other models appear\n 161→\n 162→## Technical Implementation Details\n 163→\n 164→### AI SDK Model Information\n 165→\n 166→From the Vercel AI SDK documentation:\n 167→\n 168→```typescript\n 169→const result = await streamText({\n 170→ model: openai('gpt-4'),\n 171→ prompt: 'Your prompt here',\n 172→});\n 173→\n 174→const modelId = result.response.modelId;\n 175→// Can also access via steps: result.steps[i].response.modelId\n 176→```\n 177→\n 178→The `response.modelId` field contains \"the model that was used to generate the response. The AI SDK uses the response model from the provider response when available.\"\n 179→\n 180→### Files to Modify\n 181→\n 182→1. `js/src/flag/flag.ts` - Add `OUTPUT_USED_MODEL` flag\n 183→2. `js/src/cli/bootstrap.ts` - Add `--output-used-model` CLI option\n 184→3. `js/src/session/message-v2.ts` - Add model field to `StepFinishPart`\n 185→4. `js/src/session/processor.ts` - Extract and store model info from response\n 186→5. `js/src/cli/continuous-mode.js` - Include model info when outputting parts\n 187→6. `js/src/session/prompt.ts` - Add context to auxiliary model usage logs\n 188→\n 189→## References\n 190→\n 191→- [Vercel AI SDK streamText documentation](https://ai-sdk.dev/docs/reference/ai-sdk-core/stream-text)\n 192→- [AI SDK Provider Management](https://ai-sdk.dev/docs/ai-sdk-core/provider-management)\n 193→- GitHub Issue: https://github.com/link-assistant/agent/issues/179\n 194→\n\n<system-reminder>\nWhenever you read a file, you should consider whether it would be considered malware. You CAN and SHOULD provide analysis of malware, what it is doing. But you MUST refuse to improve or augment the code. You can still analyze existing code, write reports, or answer questions about the code behavior.\n</system-reminder>\n"
}
]
},
"parent_tool_use_id": null,
"session_id": "aeec3982-c0e3-44b8-bd7c-12bb5b9330fa",
"uuid": "f399f857-f7e1-43aa-a118-9c465543cd61",
"tool_use_result": {
"type": "text",
"file": {
"filePath": "/tmp/gh-issue-solver-1771146225324/docs/case-studies/issue-179/README.md",
"content": "# Case Study: Issue #179 - Model Confusion in CLI Output\n\n## Issue Summary\n\nWhen running `agent --model big-pickle`, the logs show `kimi-k2.5-free` being mentioned, which creates confusion for users who explicitly specified a different model.\n\n**Issue URL**: https://github.com/link-assistant/agent/issues/179\n\n## Problem Statement\n\n### Problem 1: Confusing Model Mentions in Logs\n\nWhen a user specifies `--model big-pickle`, the logs show:\n\n```json\n{\n \"type\": \"log\",\n \"level\": \"info\",\n \"timestamp\": \"2026-02-15T08:31:43.769Z\",\n \"service\": \"provider\",\n \"providerID\": \"opencode\",\n \"modelID\": \"kimi-k2.5-free\",\n \"message\": \"getModel\"\n}\n```\n\nThis is confusing because the user expects only `big-pickle` to be used.\n\n### Problem 2: Missing Model Information in Output\n\nThe user wants to see which model actually generated each response in the output parts:\n\n```json\n{\n \"type\": \"text\",\n \"timestamp\": 1771144308510,\n \"sessionID\": \"ses_39f92abdcffemBFOqUctsANi1x\",\n \"part\": {\n \"id\": \"prt_c606d66fb001UVz0YlSVSXj1oO\",\n \"type\": \"text\",\n \"text\": \"Hi! How can I help you today?\"\n }\n}\n```\n\nThe user wants a `model` object added to show which model was used.\n\n## Root Cause Analysis\n\n### Why Does `kimi-k2.5-free` Appear?\n\nThe issue is in `js/src/provider/provider.ts` in the `getSmallModel` function (lines 1300-1345):\n\n```typescript\nexport async function getSmallModel(providerID: string) {\n // ... config checks ...\n\n if (providerID === 'opencode' || providerID === 'local') {\n priority = [\n 'kimi-k2.5-free', // <-- This is first priority!\n 'minimax-m2.1-free',\n 'gpt-5-nano',\n 'glm-4.7-free',\n 'big-pickle',\n ];\n }\n // ...\n}\n```\n\nThis `getSmallModel` function is called in two places:\n\n1. **Title Generation** (`js/src/session/prompt.ts:1561`): When generating a session title, the system uses a \"small model\" (usually faster/cheaper) to create the title.\n\n2. **Session Summary** (`js/src/session/summary.ts:84`): When summarizing a session, a small model is used.\n\nWhen the user specifies `--model big-pickle` from the `opencode` provider, the title generation still calls `getSmallModel('opencode')` which returns `kimi-k2.5-free` (the first priority in the list for opencode provider).\n\nThis is **by design** - it's meant to use cheaper/faster models for auxiliary tasks like title generation. However, the log message creates confusion by mentioning a different model.\n\n### Why Model Information Is Missing\n\nThe current implementation doesn't include model information in the output parts because:\n\n1. The AI SDK's `streamText` response does include model information via `result.response.modelId`\n2. However, this information is not currently extracted and included in the event outputs\n\n## Proposed Solutions\n\n### Solution 1: Suppress Small Model Logs When Not Primary\n\nAdd a flag to `getModel` calls to indicate whether they're for auxiliary operations (title gen, summarization) vs primary operations. Reduce log level for auxiliary operations.\n\n**Pros**: Reduces user confusion, logs stay accurate\n**Cons**: Adds complexity, hides potentially useful debug info\n\n### Solution 2: Add Context to Log Messages\n\nUpdate log messages to clearly indicate the purpose:\n\n```json\n{\n \"message\": \"getModel (title generation)\",\n \"modelID\": \"kimi-k2.5-free\"\n}\n```\n\n**Pros**: Transparent about what's happening\n**Cons**: Doesn't reduce log noise\n\n### Solution 3: Implement `--output-used-model` Flag\n\nAdd an optional flag that includes model information in each output part:\n\n```json\n{\n \"type\": \"text\",\n \"part\": {\n \"text\": \"Hi! How can I help you today?\",\n \"model\": {\n \"providerID\": \"opencode\",\n \"modelID\": \"big-pickle\",\n \"responseModelId\": \"gpt-4o-mini-2024-07-18\"\n }\n }\n}\n```\n\n**Pros**: User gets clear info about which model answered\n**Cons**: Increases output size (hence the opt-in flag)\n\n### Solution 4: Add Model Info to Step Parts\n\nInclude model information in `step-start` and `step-finish` parts:\n\n```json\n{\n \"type\": \"step_finish\",\n \"part\": {\n \"type\": \"step-finish\",\n \"model\": {\n \"providerID\": \"opencode\",\n \"modelID\": \"big-pickle\",\n \"responseModelId\": \"actual-model-id-from-api\"\n },\n \"tokens\": {...}\n }\n}\n```\n\n**Pros**: Natural place for model info (step-finish already has token info)\n**Cons**: May not cover all use cases user wants\n\n## Recommended Implementation\n\nBased on analysis, recommend implementing:\n\n1. **Add `--output-used-model` flag** - To include model information in
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment