Created
August 23, 2017 20:54
-
-
Save kjanjua26/041ac5392dab7515806fce28f43cb613 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import common | |
| import tensorflow as tf | |
| from tensorflow.python.ops import rnn_cell | |
| from tensorflow.python.ops.rnn import bidirectional_rnn | |
| import time | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| sequence_length = tf.placeholder(tf.int32, [None]) | |
| conv_concat = [] | |
| max_pool_size = 4 | |
| # Utility functions | |
| def weight_variable(shape): | |
| initial = tf.truncated_normal(shape, stddev=0.4) | |
| return tf.Variable(initial) | |
| def bias_variable(shape): | |
| #print(type(shape)) | |
| #time.sleep(300) | |
| initial = tf.constant(0.2, shape=shape) | |
| return tf.Variable(initial) | |
| def conv2d(x, W): | |
| return tf.nn.conv2d(x,W, strides=[1,1,1,1], padding='SAME') | |
| def maxpool(x): | |
| return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') | |
| def convolutional_layers(): | |
| sample = tf.placeholder(tf.float32, [None, None, common.OUTPUT_SHAPE[0]]) | |
| x = tf.placeholder(tf.float32, [common.BATCH_SIZE,48,918,1]) | |
| y = tf.placeholder(tf.float32, [common.BATCH_SIZE,common.num_classes]) | |
| W = weight_variable([3,3,1,16]) | |
| b = bias_variable([16]) | |
| conv1 = tf.nn.relu(conv2d(x,W)+b) | |
| pool1 = maxpool(conv1) | |
| print pool1 | |
| pool1 = tf.contrib.layers.flatten(pool1) | |
| pool1 = tf.reshape(pool1, [100,3672,48]) | |
| #pool1 = tf.squeeze(pool1) | |
| #conv_to_rnn_dims = (48 // (max_pool_size ** 2), (918 // (max_pool_size ** 2)) * 16) | |
| #print "Conv to Rnn: ", conv_to_rnn_dims | |
| #pool1 = tf.reshape(pool1, [100,918,48]) | |
| #pool1 = tf.strided_slice(pool1, [100,3672,48],[100,918,48]) | |
| #x_out = tf.reshape(pool1,[100,conv_to_rnn_dims,48]) | |
| #return x_out | |
| print("Shapeeee") | |
| print tf.shape(pool1) | |
| return pool1 | |
| ''' | |
| pooled = tf.nn.max_pool(h, ksize=[1, max_pool_size, 1, 1], strides=[1, max_pool_size, 1, 1], padding='SAME') | |
| conv_concat = tf.concat(conv1,2) | |
| pooled = tf.reshape(pooled, [-1, reduced, 128])clear | |
| pooled_concat.append(pooled) | |
| pooled_concat = tf.concat(pooled_concat,2) | |
| pooled_concat = tf.nn.dropout(pooled_concat, 0.5) | |
| return pooled_concat | |
| ''' | |
| def get_train_model(): | |
| #x,y, params = convolutional_layers() # y is h_pool3 | |
| x = convolutional_layers() | |
| print ("##########################") | |
| print ("The output is: "), x.get_shape() | |
| print("") | |
| print("") | |
| inputs = tf.placeholder(tf.float32, [None, None, common.OUTPUT_SHAPE[0]]) | |
| # Here we use sparse_placeholder that will generate a | |
| # SparseTensor required by ctc_loss op. | |
| targets = tf.sparse_placeholder(tf.int32) | |
| # 1d array of size [batch_size] | |
| seq_len = tf.placeholder(tf.int32, [None]) | |
| # Defining the cell for forward and backward layer | |
| forwardH1 = rnn_cell.LSTMCell(common.num_hidden, use_peepholes=True, state_is_tuple=True) | |
| backwardH1 = rnn_cell.LSTMCell(common.num_hidden, use_peepholes=True, state_is_tuple=True) | |
| # The second output previous state and is ignored | |
| outputs, _ = tf.nn.bidirectional_dynamic_rnn(forwardH1,backwardH1,x,seq_len,dtype=tf.float32) | |
| outputs=tf.concat(2,outputs) | |
| shape = tf.shape(x) | |
| batch_s, max_timesteps = shape[0], shape[1] | |
| weights = tf.Variable(tf.truncated_normal([common.num_hidden, | |
| common.num_classes], | |
| stddev=0.4), name="weights") | |
| # Reshaping to apply the same weights over the timesteps | |
| outputs = tf.reshape(outputs, [-1, 2*common.num_hidden]) | |
| # Truncated normal with mean 0 and stdev=0.1 | |
| #W = tf.Variable(tf.truncated_normal([2*common.num_hidden, common.num_classes], stddev=0.1), name="W") | |
| W = tf.Variable(tf.truncated_normal([2*common.num_hidden, common.num_classes], stddev=0.5), name="W") | |
| # Zero initialization | |
| b = tf.zeros(shape=[common.num_classes],name='b') | |
| #b = tf.ones(shape=[common.num_classes],name='b') | |
| # Doing the affine projection | |
| logits = tf.matmul(outputs, W)+b | |
| # Reshaping back to the original shape | |
| logits = tf.reshape(logits, [batch_s, -1, common.num_classes]) | |
| # Time major | |
| logits = tf.transpose(logits, (1, 0, 2)) | |
| return logits, x, targets, seq_len, W, b |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment