Last active
October 13, 2021 19:56
-
-
Save khlam/2b999576ac30d73ecddd99da33637a30 to your computer and use it in GitHub Desktop.
pytorch-csv-lazy-read-csv
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import pandas as pd | |
| import torch | |
| from torch.utils.data import Dataset, DataLoader | |
| class lazyLoadCSVDataset(Dataset): | |
| def __init__(self, data_CSV_path, rows_each_fetch=500, shuffle=True): | |
| self.dataPath = data_CSV_path | |
| self.rowsEachFetch = rows_each_fetch | |
| self.shuffle = shuffle | |
| self.n = sum(1 for line in open(self.dataPath)) - 2 # subtract header and empty last line from total line count | |
| self.totalFetchCalls = int(np.around(self.n / self.rowsEachFetch)) | |
| self.reader = pd.read_csv(self.dataPath, sep=',', chunksize=self.rowsEachFetch, comment='#', header=0, iterator=True) | |
| self.data = self.reader.get_chunk(self.rowsEachFetch).values # fetch the next chunk of lines from the file | |
| self.data = torch.as_tensor(self.data, dtype=torch.float32) | |
| self.data = self.data.to(device) | |
| if (self.shuffle == True): | |
| self.data = self.data[torch.randperm(self.data.shape[0])] | |
| self.chunkItr = 0 # chunk iterator | |
| def __len__(self): | |
| return self.n | |
| def reachedEndOfChunk(self): | |
| if (self.chunkItr == self.data.shape[0]): # when we reach end of chunk, reset chunk iterator and return true | |
| self.chunkItr = 0 | |
| if (self.data.shape[0] < self.rowsEachFetch): | |
| self.reader = pd.read_csv(self.dataPath, sep=',', chunksize=self.rowsEachFetch, comment='#', header=0, iterator=True) | |
| return True | |
| else: | |
| return False | |
| def __getitem__(self, index): | |
| if (self.reachedEndOfChunk() == True): # If we reach the end of chunk then fetch a new chunk | |
| self.data = self.reader.get_chunk(self.rowsEachFetch).values # fetch the next chunk of lines from the file | |
| self.data = torch.as_tensor(self.data, dtype=torch.float32) | |
| self.data = self.data.to(device) | |
| if (self.shuffle == True): | |
| self.data = self.data[torch.randperm(self.data.shape[0])] | |
| tensorData = self.data[self.chunkItr] | |
| x = tensorData[:-1] # data | |
| y = tensorData[-1] # labels | |
| # your transforms here | |
| self.chunkItr += 1 # every time we have not reached the end of the chunk, increment chunkItr and return false | |
| return x, y | |
| trainDataset = lazyLoadCSVDataset(data_CSV_path=trainPath, rows_each_fetch=300000, shuffle=True) | |
| trainLoader = DataLoader(dataset=trainDataset, batch_size=batchSize, shuffle=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment