A and B are similar matrices if there exists an invertible matrix P such that
- מטריצות מייצגות דומות
Let
For any vector
If
-
Why was the adjugate (adjoint) matrix created? Gives a closed-form, explicit formula for finding the inverse matrix.
$$\det(A)A^{-1} = \text{adj}(A) = \text{cofactor}(A)^T$$ -
Why was Cramer's rule created? Gives a closed-form, explicit formula for the entries of the unique solution.
-
$V' \cup W'$ vectors are linearly independent $\det(V' \cup W') \neq 0$ $\text{Rank}(V' \cup W') = n$ - In general
$V' \cup W'$ is invertible $\dim(V \cap W) = 0$ $S = V \oplus W$
Given two vector sub-spaces
- Check if
$V = V_1 \oplus V_2$ - Let
$B = V_1 \cup V_2$ basis - Solve for a general vector
$X$ composed of$x_1, x_2, x_3, \dots, x_n$ as a linear combination of vectors from$B$ . - Each scalar should be in terms of
$x_1$ to$x_n$ . - For example:
$X = (x_1+x_2)b_1 + x_3 b_2 + \dots$ - כדי לקבל הטלה על
$V_1$ , "נניח" את החלק שקשור ל-$V_2$ במשוואה שיצאה לנו ונחשב את הוקטור הכללי בעזרת$x_1, \dots, x_n$ . (To get the projection on$V_1$ , we "leave" the part related to$V_2$ in our equation and calculate the general vector using$x_1, \dots, x_n$ .) - For example, if
$b_1$ is a vector from$V_1$ and the others are from$V_2$ then we calculate$T(x_1, x_2, \dots, x_n) = (x_1+x_2)b_1$ . - זה הכיוון ולא מספיק להכנה (This is the direction but not enough for preparation).
If
- תמונות בת"ל אז מקורות בת"ל IF (If images are linearly independent then sources are linearly independent)
- If
$T(v_1), T(v_2), \dots, T(v_k)$ בת"ל (are LI) Then${v_1, v_2, \dots, v_k}$ בת"ל (are LI). - הפרש תמונות שוות של טרנספורמציה נמצא בגרעין (The difference of equal images of a transformation is in the kernel)
$T(v_1) = T(v_2) \implies T(v_1) - T(v_2) = 0 \implies T(v_1 - v_2) = 0 \implies v_1 - v_2 \in \text{Ker } T$ - הפרש פתרון של אי הומוגנית הוא פתרון של הומוגנית מאותה משוואה (The difference of solutions of a non-homogeneous system is a solution of the corresponding homogeneous system).
Let
-
Injective (one-to-one) - חד-חד ערכית
-
Surjective - על
-
Bijective - חד-חד ערכית ועל
-
T Injective
$\text{Ker } T = {0}$
-
T Surjective
$\text{Im } T = W$ $\dim(\text{Im } T) = \dim(W)$
-
$T$ is an isomorphism iff it is bijective (חח"ע ועל). -
If
$\dim(V) = \dim(W)$ then$T$ is Injective IFF$T$ is Surjective.
- If
$\dim(V) > \dim(W)$ then$T$ is not Injective. - If
$\dim(V) < \dim(W)$ then$T$ is not Surjective. -
$TS$ is an Isomorphism IFF$T$ is Surjective and$S$ is Injective.
- There exists
$B$ s.t.$AB=BA=I$ ($B=A^{-1}$ ) $\det(A) \neq 0$ $\text{Rank}(A) = n$ -
$AX=0$ has only the trivial solution -
$AX=b$ has a unique solution - Rows/Columns of
$A$ span$\mathbb{F}^n$ - Rows/Columns of
$A$ are linearly independent (בלתי תלויות ליניארית) -
$\det(A) = \gamma_1 \cdot \gamma_2 \cdots \gamma_n$ (for$\gamma_i$ eigenvalues of A) - If
$A$ is invertible ->$A^k$ is invertible - If
$A, B$ are invertible ->$AB$ is invertible -
$A$ is invertible IFF$\text{transpose}(A)$ is invertible - Elementary Operations (Gauss) keep matrices invertible
- Transition Matrix from Basis to Basis is invertible
- If
$A$ is Triangular or Diagonal and all diagonal elements are$\neq 0$ then$A$ is invertible.