Last active
December 22, 2025 23:44
-
-
Save johnlees/3e06380965f367e4894ea20fbae2b90d to your computer and use it in GitHub Desktop.
Firth regression in python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python | |
| '''Python implementation of Firth regression by John Lees | |
| See https://www.ncbi.nlm.nih.gov/pubmed/12758140''' | |
| def firth_likelihood(beta, logit): | |
| return -(logit.loglike(beta) + 0.5*np.log(np.linalg.det(-logit.hessian(beta)))) | |
| # Do firth regression | |
| # Note information = -hessian, for some reason available but not implemented in statsmodels | |
| def fit_firth(y, X, start_vec=None, step_limit=1000, convergence_limit=0.0001): | |
| logit_model = smf.Logit(y, X) | |
| if start_vec is None: | |
| start_vec = np.zeros(X.shape[1]) | |
| beta_iterations = [] | |
| beta_iterations.append(start_vec) | |
| for i in range(0, step_limit): | |
| pi = logit_model.predict(beta_iterations[i]) | |
| W = np.diagflat(np.multiply(pi, 1-pi)) | |
| var_covar_mat = np.linalg.pinv(-logit_model.hessian(beta_iterations[i])) | |
| # build hat matrix | |
| rootW = np.sqrt(W) | |
| H = np.dot(np.transpose(X), np.transpose(rootW)) | |
| H = np.matmul(var_covar_mat, H) | |
| H = np.matmul(np.dot(rootW, X), H) | |
| # penalised score | |
| U = np.matmul(np.transpose(X), y - pi + np.multiply(np.diagonal(H), 0.5 - pi)) | |
| new_beta = beta_iterations[i] + np.matmul(var_covar_mat, U) | |
| # step halving | |
| j = 0 | |
| while firth_likelihood(new_beta, logit_model) > firth_likelihood(beta_iterations[i], logit_model): | |
| new_beta = beta_iterations[i] + 0.5*(new_beta - beta_iterations[i]) | |
| j = j + 1 | |
| if (j > step_limit): | |
| sys.stderr.write('Firth regression failed\n') | |
| return None | |
| beta_iterations.append(new_beta) | |
| if i > 0 and (np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) < convergence_limit): | |
| break | |
| return_fit = None | |
| if np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) >= convergence_limit: | |
| sys.stderr.write('Firth regression failed\n') | |
| else: | |
| # Calculate stats | |
| fitll = -firth_likelihood(beta_iterations[-1], logit_model) | |
| intercept = beta_iterations[-1][0] | |
| beta = beta_iterations[-1][1:].tolist() | |
| bse = np.sqrt(np.diagonal(np.linalg.pinv(-logit_model.hessian(beta_iterations[-1])))) | |
| return_fit = intercept, beta, bse, fitll | |
| return return_fit | |
| if __name__ == "__main__": | |
| import sys | |
| import warnings | |
| import math | |
| import statsmodels | |
| import numpy as np | |
| from scipy import stats | |
| import statsmodels.api as smf | |
| # create X and y here. Make sure X has an intercept term (column of ones) | |
| # ... | |
| # How to call and calculate p-values | |
| (intercept, beta, bse, fitll) = fit_firth(y, X) | |
| beta = [intercept] + beta | |
| # Wald test | |
| waldp = [] | |
| for beta_val, bse_val in zip(beta, bse): | |
| waldp.append(2 * (1 - stats.norm.cdf(abs(beta_val/bse_val)))) | |
| # LRT | |
| lrtp = [] | |
| for beta_idx, (beta_val, bse_val) in enumerate(zip(beta, bse)): | |
| null_X = np.delete(X, beta_idx, axis=1) | |
| (null_intercept, null_beta, null_bse, null_fitll) = fit_firth(y, null_X) | |
| lrstat = -2*(null_fitll - fitll) | |
| lrt_pvalue = 1 | |
| if lrstat > 0: # non-convergence | |
| lrt_pvalue = stats.chi2.sf(lrstat, 1) | |
| lrtp.append(lrt_pvalue) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi! Update to my comment from >3 years ago - I have a new library firthmodels that has a much cleaner and more robust implementation of Firth logistic regression, as well as Firth-penalized Cox proportional hazards, with solid efficiency improvements over the R libraries. It also has a statsmodels-style API wrapper for logistic regression, and I'm planning to implement a lifelines-style wrapper for the CoxPH estimator as well. Feedback and contributions are appreciated!