Last active
October 8, 2024 09:59
-
-
Save jingwangsg/694d3a3a078632e70a020a6e2aa20832 to your computer and use it in GitHub Desktop.
ratio sampler
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import torch | |
| import random | |
| class RatioSampler(torch.utils.data.Sampler): | |
| def __init__(self, dataset, ratio=1.0, shuffle=True): | |
| self.dataset_size = len(dataset) | |
| self.ratio = ratio | |
| self.shuffle = shuffle | |
| # Calculate the number of samples per episode | |
| self.num_samples_per_episode = max(1, int(self.dataset_size * self.ratio)) | |
| # Initialize indices and shuffle if needed | |
| self.indices = list(range(self.dataset_size)) | |
| if self.shuffle: | |
| random.shuffle(self.indices) | |
| # Pointer to keep track of current position in indices | |
| self.current_index = 0 | |
| def __iter__(self): | |
| episode_indices = [] | |
| while len(episode_indices) < self.num_samples_per_episode: | |
| remaining = self.dataset_size - self.current_index | |
| num_needed = self.num_samples_per_episode - len(episode_indices) | |
| num_to_take = min(remaining, num_needed) | |
| # Add indices to the current episode | |
| episode_indices.extend(self.indices[self.current_index:self.current_index + num_to_take]) | |
| self.current_index += num_to_take | |
| # If we've reached the end of the dataset, reset | |
| if self.current_index >= self.dataset_size: | |
| self.current_index = 0 | |
| if self.shuffle: | |
| random.shuffle(self.indices) | |
| return iter(episode_indices) | |
| def __len__(self): | |
| return self.num_samples_per_episode |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment