Created
July 3, 2025 15:00
-
-
Save jeguzzi/8b6480d02f8924d441f4ddc27cb8074b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from navground import sim | |
| from navground.learning import ControlActionConfig, DefaultObservationConfig, GroupConfig | |
| from navground.learning.parallel_env import parallel_env, make_vec_from_penv | |
| from navground.learning.rewards import SocialReward | |
| from stable_baselines3 import SAC | |
| # 1. Load a scenario | |
| scenario = sim.load_scenario(...) | |
| # 2. Create a training environmnent | |
| action_config = ControlActionConfig(max_acceleration=1.0, max_angular_acceleration=10.0, | |
| use_acceleration_action=True) | |
| sensor = sim.load_sensor(...) | |
| observation_config = DefaultObservationConfig(include_target_direction=True, include_velocity=True, | |
| include_angular_speed=True, flat=True) | |
| # The wheelchairs have indices 0, 1, 2, 3 and should be controlled by a policy. | |
| group = GroupConfig(indices=(0, 1, 2, 3), action=action_config, observation=observation_config, | |
| sensor=sensor, reward=SocialReward(safety_margin=0.2)) | |
| # The other agents (i.e., humans) will be controlled by the original model-based behavior. | |
| train_penv = parallel_env(scenario=scenario, groups=[group], time_step=0.1, max_duration=120, | |
| include_success=False) | |
| train_venv = make_vec_from_penv(train_penv, seed=0, monitor=True, monitor_keywords=()) | |
| # 3. Train a policy | |
| sac = SAC("MlpPolicy", train_venv) | |
| sac.learn(total_timesteps=300_000) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment