Skip to content

Instantly share code, notes, and snippets.

@intellectronica
Last active December 17, 2025 08:43
Show Gist options
  • Select an option

  • Save intellectronica/40d99adce3f6923fb875c0d39e810e0d to your computer and use it in GitHub Desktop.

Select an option

Save intellectronica/40d99adce3f6923fb875c0d39e810e0d to your computer and use it in GitHub Desktop.
GPT Image 1.5 SKILL

GPT Image 1.5 SKILL

Use this skill to create or edit images using OpenAI's GPT Image 1.5 model.

Installation

Unzip gpt-image-1-5.zip into ~/.claude/skills or ~/.skillz/ or wherever you keep skills locally. Or upload it to the Claude app.

API KEY

The skill can use an API key read from the environment (export OPENAI_API_KEY=...) or from the context (just paste the API key in the chat or add it to your instructions or a file in a project).

Usage

> Generate an image of a cyberpunk cityscape at night
> Generate a high quality landscape image of mountains at sunset
> Modify @photo.png to make the sky more dramatic with storm clouds
> Edit @portrait.png and change it to a watercolour painting style

Happy image-generating!

🫶 Eleanor (@intellectronica)

#!/usr/bin/env python3
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "openai>=1.50.0",
# "pillow>=10.0.0",
# ]
# ///
"""
Generate and edit images using OpenAI's GPT Image 1.5 model via the Responses API.
Usage:
# Generate new image
uv run generate_image.py --prompt "description" --filename "output.png" [options]
# Edit image (conversational, no mask)
uv run generate_image.py --prompt "edit instructions" --filename "output.png" --input-image "input.png" [options]
# Edit image with mask (precise inpainting)
uv run generate_image.py --prompt "what to add" --filename "output.png" --input-image "input.png" --mask "mask.png" [options]
"""
import argparse
import base64
import os
import sys
from io import BytesIO
from pathlib import Path
def get_api_key(provided_key: str | None) -> str | None:
"""Get API key from argument first, then environment."""
if provided_key:
return provided_key
return os.environ.get("OPENAI_API_KEY")
def create_full_transparent_mask(image_path: str) -> bytes:
"""Create a fully transparent PNG mask matching the input image dimensions."""
from PIL import Image
with Image.open(image_path) as img:
width, height = img.size
# Create fully transparent image (all pixels have alpha=0)
mask = Image.new("RGBA", (width, height), (0, 0, 0, 0))
buf = BytesIO()
mask.save(buf, format="PNG")
return buf.getvalue()
def generate_image_responses_api(
client,
prompt: str,
quality: str = "medium",
size: str = "1024x1024",
background: str = "auto",
) -> bytes:
"""Generate image using the Responses API with gpt-image-1.5."""
# Build tool configuration for image generation
tool_config = {
"type": "image_generation",
"quality": quality,
}
# Add size if not auto
if size != "auto":
tool_config["size"] = size
# Add background setting
if background != "auto":
tool_config["background"] = background
# Call the Responses API
response = client.responses.create(
model="gpt-4.1", # Model that orchestrates the image generation tool
input=prompt,
tools=[tool_config],
)
# Extract the generated image
for output in response.output:
if output.type == "image_generation_call":
return base64.b64decode(output.result)
raise RuntimeError("No image was generated in the response")
def edit_image_with_mask(
client,
prompt: str,
image_path: str,
mask_path: str | None,
size: str = "1024x1024",
) -> bytes:
"""Edit image using the Image API with mask support."""
from PIL import Image
# If no mask provided, create a fully transparent one (edit entire image)
if mask_path:
mask_file = open(mask_path, "rb")
else:
mask_bytes = create_full_transparent_mask(image_path)
mask_file = BytesIO(mask_bytes)
mask_file.name = "mask.png"
try:
result = client.images.edit(
model="gpt-image-1.5",
image=open(image_path, "rb"),
mask=mask_file,
prompt=prompt,
size=size if size != "auto" else "1024x1024",
)
image_base64 = result.data[0].b64_json
return base64.b64decode(image_base64)
finally:
if mask_path:
mask_file.close()
def main():
parser = argparse.ArgumentParser(
description="Generate and edit images using OpenAI GPT Image 1.5"
)
parser.add_argument(
"--prompt", "-p",
required=True,
help="Image description or editing instructions"
)
parser.add_argument(
"--filename", "-f",
required=True,
help="Output filename (e.g., output.png)"
)
parser.add_argument(
"--input-image", "-i",
help="Optional input image path for editing"
)
parser.add_argument(
"--mask", "-m",
help="Optional mask image path for precise inpainting (PNG with transparent areas to edit)"
)
parser.add_argument(
"--quality", "-q",
choices=["low", "medium", "high"],
default="medium",
help="Output quality: low, medium (default), or high"
)
parser.add_argument(
"--size", "-s",
choices=["1024x1024", "1024x1536", "1536x1024", "auto"],
default="1024x1024",
help="Output size (default: 1024x1024)"
)
parser.add_argument(
"--background", "-b",
choices=["transparent", "opaque", "auto"],
default="auto",
help="Background type for generation (default: auto)"
)
parser.add_argument(
"--api-key", "-k",
help="OpenAI API key (overrides OPENAI_API_KEY env var)"
)
args = parser.parse_args()
# Get API key
api_key = get_api_key(args.api_key)
if not api_key:
print("Error: No API key provided.", file=sys.stderr)
print("Please either:", file=sys.stderr)
print(" 1. Provide --api-key argument", file=sys.stderr)
print(" 2. Set OPENAI_API_KEY environment variable", file=sys.stderr)
sys.exit(1)
# Import here after checking API key to avoid slow import on error
from openai import OpenAI
# Initialise client
client = OpenAI(api_key=api_key)
# Set up output path
output_path = Path(args.filename)
output_path.parent.mkdir(parents=True, exist_ok=True)
# Determine operation mode
if args.input_image:
# Validate input image exists
if not Path(args.input_image).exists():
print(f"Error: Input image not found: {args.input_image}", file=sys.stderr)
sys.exit(1)
if args.mask:
# Validate mask exists
if not Path(args.mask).exists():
print(f"Error: Mask image not found: {args.mask}", file=sys.stderr)
sys.exit(1)
print(f"Editing image with mask using Image API...")
print(f" Input: {args.input_image}")
print(f" Mask: {args.mask}")
print(f" Size: {args.size}")
try:
image_bytes = edit_image_with_mask(
client,
args.prompt,
args.input_image,
args.mask,
args.size,
)
except Exception as e:
print(f"Error editing image with mask: {e}", file=sys.stderr)
sys.exit(1)
else:
# Edit without mask - use Image API with auto-generated full mask
print(f"Editing image using Image API (full image edit)...")
print(f" Input: {args.input_image}")
print(f" Size: {args.size}")
try:
image_bytes = edit_image_with_mask(
client,
args.prompt,
args.input_image,
None, # No mask - will create full transparent mask
args.size,
)
except Exception as e:
print(f"Error editing image: {e}", file=sys.stderr)
sys.exit(1)
else:
# Generation mode - use Responses API
print(f"Generating image using Responses API...")
print(f" Quality: {args.quality}")
print(f" Size: {args.size}")
print(f" Background: {args.background}")
try:
image_bytes = generate_image_responses_api(
client,
args.prompt,
args.quality,
args.size,
args.background,
)
except Exception as e:
print(f"Error generating image: {e}", file=sys.stderr)
sys.exit(1)
# Save the image
from PIL import Image
image = Image.open(BytesIO(image_bytes))
# Handle format conversion if needed
if args.background == "transparent" or output_path.suffix.lower() == ".png":
# Keep RGBA for transparent or PNG output
if image.mode != "RGBA":
image = image.convert("RGBA")
image.save(str(output_path), "PNG")
else:
# Convert to RGB for non-transparent output
if image.mode == "RGBA":
rgb_image = Image.new("RGB", image.size, (255, 255, 255))
rgb_image.paste(image, mask=image.split()[3])
rgb_image.save(str(output_path), "PNG")
elif image.mode == "RGB":
image.save(str(output_path), "PNG")
else:
image.convert("RGB").save(str(output_path), "PNG")
full_path = output_path.resolve()
print(f"\nImage saved: {full_path}")
if __name__ == "__main__":
main()
name description
gpt-image-1-5
Generate and edit images using OpenAI's GPT Image 1.5 model. Use when the user asks to generate, create, edit, modify, change, alter, or update images. Also use when user references an existing image file and asks to modify it in any way (e.g., "modify this image", "change the background", "replace X with Y"). Supports text-to-image generation and image editing with optional mask. DO NOT read the image file first - use this skill directly with the --input-image parameter.

GPT Image 1.5 - Image Generation & Editing

Generate new images or edit existing ones using OpenAI's GPT Image 1.5 model.

  • Generation: Uses the Responses API with image_generation tool
  • Editing: Uses the Image API for reliable mask-based inpainting

Usage

Run the script using absolute path (do NOT cd to skill directory first):

Generate new image:

uv run ~/.claude/skills/gpt-image-1-5/scripts/generate_image.py --prompt "your image description" --filename "output-name.png" [--quality low|medium|high] [--size 1024x1024|1024x1536|1536x1024|auto] [--background transparent|opaque|auto] [--api-key KEY]

Edit existing image (without mask - full image edit):

uv run ~/.claude/skills/gpt-image-1-5/scripts/generate_image.py --prompt "editing instructions" --filename "output-name.png" --input-image "path/to/input.png" [--size 1024x1024|1024x1536|1536x1024|auto] [--api-key KEY]

Edit existing image (with mask - precise inpainting):

uv run ~/.claude/skills/gpt-image-1-5/scripts/generate_image.py --prompt "what to put in masked area" --filename "output-name.png" --input-image "path/to/input.png" --mask "path/to/mask.png" [--size 1024x1024|1024x1536|1536x1024|auto] [--api-key KEY]

Important: Always run from the user's current working directory so images are saved where the user is working, not in the skill directory.

Parameters

Quality Options

  • low - Fastest generation, lower quality
  • medium (default) - Balanced quality and speed
  • high - Best quality, slower generation

Map user requests:

  • No mention of quality -> medium
  • "quick", "fast", "draft" -> low
  • "high quality", "best", "detailed", "high-res" -> high

Size Options

  • 1024x1024 (default) - Square format
  • 1024x1536 - Portrait format
  • 1536x1024 - Landscape format
  • auto - Let the model decide based on prompt

Map user requests:

  • No mention of size -> 1024x1024
  • "square" -> 1024x1024
  • "portrait", "vertical", "tall" -> 1024x1536
  • "landscape", "horizontal", "wide" -> 1536x1024

Background Options (generation only)

  • auto (default) - Model decides
  • transparent - Transparent background (PNG/WebP output)
  • opaque - Solid background

API Key

The script checks for API key in this order:

  1. --api-key argument (use if user provided key in chat)
  2. OPENAI_API_KEY environment variable

If neither is available, the script exits with an error message.

Filename Generation

Generate filenames with the pattern: yyyy-mm-dd-hh-mm-ss-name.png

Format: {timestamp}-{descriptive-name}.png

  • Timestamp: Current date/time in format yyyy-mm-dd-hh-mm-ss (24-hour format)
  • Name: Descriptive lowercase text with hyphens
  • Keep the descriptive part concise (1-5 words typically)
  • Use context from user's prompt or conversation
  • If unclear, use random identifier (e.g., x9k2, a7b3)

Examples:

  • Prompt "A serene Japanese garden" -> 2025-12-17-14-23-05-japanese-garden.png
  • Prompt "sunset over mountains" -> 2025-12-17-15-30-12-sunset-mountains.png
  • Prompt "create an image of a robot" -> 2025-12-17-16-45-33-robot.png
  • Unclear context -> 2025-12-17-17-12-48-x9k2.png

Image Editing

Both editing modes use the Image API (images.edit endpoint) with gpt-image-1.5 for reliable results.

Without Mask (Full Image Edit)

When the user wants to modify an existing image without specifying exact regions:

  1. Use --input-image parameter with the path to the image
  2. The prompt should contain editing instructions (e.g., "make the sky more dramatic", "change to cartoon style")
  3. A fully transparent mask is auto-generated, allowing the model to edit the entire image

With Mask (Precise Inpainting)

When the user wants to edit specific regions:

  1. Use --input-image parameter with the path to the image
  2. Use --mask parameter with a PNG mask file
  3. The mask should have transparent areas (alpha=0) where edits should occur
  4. The prompt describes what should appear in the masked region

Common editing tasks: add/remove elements, change style, adjust colors, replace backgrounds, etc.

Prompt Handling

For generation: Pass user's image description as-is to --prompt. Only rework if clearly insufficient.

For editing: Pass editing instructions in --prompt (e.g., "add a rainbow in the sky", "make it look like a watercolor painting")

Preserve user's creative intent in both cases.

Output

  • Saves PNG to current directory (or specified path if filename includes directory)
  • Script outputs the full path to the generated image
  • Do not read the image back - just inform the user of the saved path

Examples

Generate new image:

uv run ~/.claude/skills/gpt-image-1-5/scripts/generate_image.py --prompt "A serene Japanese garden with cherry blossoms" --filename "2025-12-17-14-23-05-japanese-garden.png" --quality high --size 1536x1024

Generate with transparent background:

uv run ~/.claude/skills/gpt-image-1-5/scripts/generate_image.py --prompt "A cute cartoon cat mascot" --filename "2025-12-17-14-25-30-cat-mascot.png" --background transparent --quality high

Edit existing image (full image):

uv run ~/.claude/skills/gpt-image-1-5/scripts/generate_image.py --prompt "make the sky more dramatic with storm clouds" --filename "2025-12-17-14-27-00-dramatic-sky.png" --input-image "original-photo.jpg"

Edit with mask (inpainting):

uv run ~/.claude/skills/gpt-image-1-5/scripts/generate_image.py --prompt "a flamingo swimming" --filename "2025-12-17-14-30-00-lounge-flamingo.png" --input-image "lounge.png" --mask "mask.png"
View raw

(Sorry about that, but we can’t show files that are this big right now.)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment