Last active
September 13, 2021 19:57
-
-
Save gshen42/c42a2ec4d4457b6d42323bce9fabf1ad to your computer and use it in GitHub Desktop.
Proof of sum of 0..n is equal to n*(n+1)/2 in Agda
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _≤_; z≤n; s≤s; _<_) | |
| open import Data.Nat.Properties using (*-distribˡ-+; *-comm; +-assoc; +-comm) | |
| open import Data.Nat.DivMod using (_/_; m*n/n≡m; +-distrib-/; _%_; %-distribˡ-+; m*n%n≡0) | |
| open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; _≢_; cong; sym; subst) | |
| open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) | |
| module Sum where | |
| sum : ℕ → ℕ | |
| sum 0 = 0 | |
| sum (suc n) = suc n + sum n | |
| sumᶜ : ℕ → ℕ | |
| sumᶜ n = suc n * n / 2 | |
| sum≡sumᶜ : ∀ n → sum n ≡ sumᶜ n | |
| sum≡sumᶜ zero = refl | |
| sum≡sumᶜ (suc n) = | |
| begin | |
| sum (suc n) | |
| ≡⟨⟩ | |
| suc n + sum n | |
| ≡⟨ cong (suc n +_) (sum≡sumᶜ n) ⟩ | |
| suc n + sumᶜ n | |
| ≡⟨⟩ | |
| suc n + suc n * n / 2 | |
| ≡⟨ cong (_+ (suc n) * n / 2) (sym (m*n/n≡m (suc n) 2)) ⟩ | |
| suc n * 2 / 2 + suc n * n / 2 | |
| ≡⟨ sym (+-distrib-/ (suc n * 2) (suc n * n) {2} (lemma₃ n)) ⟩ | |
| (suc n * 2 + suc n * n) / 2 | |
| ≡⟨ cong (_/ 2) (sym (*-distribˡ-+ (suc n) 2 n)) ⟩ | |
| suc n * (2 + n) / 2 | |
| ≡⟨ cong (_/ 2) (*-comm (suc n) (2 + n)) ⟩ | |
| (2 + n) * suc n / 2 | |
| ≡⟨⟩ | |
| sumᶜ (suc n) | |
| ∎ | |
| where | |
| lemma₁ : ∀ n → n + n ≡ n * 2 | |
| lemma₁ zero = refl | |
| lemma₁ (suc n) rewrite +-comm n (suc n) | lemma₁ n = refl | |
| lemma₂ : ∀ n → (suc n) * n % 2 ≡ 0 | |
| lemma₂ zero = refl | |
| lemma₂ (suc n) = | |
| begin | |
| suc (suc n) * (suc n) % 2 | |
| ≡⟨⟩ | |
| (suc n + (suc n + n * suc n)) % 2 | |
| ≡⟨ cong (_% 2) (sym (+-assoc (suc n) (suc n) (n * suc n))) ⟩ | |
| (suc n + suc n + n * suc n) % 2 | |
| ≡⟨ cong (λ x → (x + n * suc n) % 2) (lemma₁ (suc n)) ⟩ | |
| (suc n * 2 + n * suc n) % 2 | |
| ≡⟨ (%-distribˡ-+ (suc n * 2) (n * suc n) 2) ⟩ | |
| (suc n * 2 % 2 + n * suc n % 2) % 2 | |
| ≡⟨ cong (λ x → (x + n * suc n % 2) % 2) (m*n%n≡0 (suc n) 1) ⟩ | |
| (n * suc n % 2) % 2 | |
| ≡⟨ cong (λ x → x % 2 % 2) (*-comm n (suc n)) ⟩ | |
| (suc n * n % 2) % 2 | |
| ≡⟨ cong (_% 2) (lemma₂ n) ⟩ | |
| 0 % 2 | |
| ≡⟨⟩ | |
| 0 | |
| ∎ | |
| lemma₃ : ∀ n → suc n * 2 % 2 + suc n * n % 2 < 2 | |
| lemma₃ n rewrite m*n%n≡0 (suc n) 1 | lemma₂ n = s≤s z≤n |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment