Last active
August 12, 2017 11:28
-
-
Save estama/c1a4407322a86562bfa383c13b1e5278 to your computer and use it in GitHub Desktop.
Partition sieve algorithm for k-partitioning
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # ISC License | |
| # Copyright (c) 2017, Lefteris Stamatogiannakis | |
| # Permission to use, copy, modify, and/or distribute this software for any | |
| # purpose with or without fee is hereby granted, provided that the above | |
| # copyright notice and this permission notice appear in all copies. | |
| # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH | |
| # REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY | |
| # AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, | |
| # INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM | |
| # LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE | |
| # OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR | |
| # PERFORMANCE OF THIS SOFTWARE. | |
| # | |
| # partitionSieve function partitions an input list of numbers into multiple buckets. The max of any two bucket size differences is minimal. | |
| # | |
| # For more look here: https://plus.google.com/114866592715069940152/posts/QPwTJpn4he3 | |
| import random | |
| from bisect import * | |
| from itertools import * | |
| from math import ceil | |
| elems = [18235244038L, 29333785475L, 44241883158L, 90720783565L, 138278233069L, 160717749670L, 170810043347L, 190783321874L, 192761323717L, 263941209344L, 272732233974L, 283983798292L, 301164751968L,303174903185L, 316345714052L, 332247271357L, 354954626509L, 414848481662L, 477687829382L, 512677417648L, 535239618389L, 585259027380L, 620659086675L, 633354753524L, 651499393882L,656505134307L, 656531643207L, 709360592658L, 717553224165L, 729625007236L] | |
| # elems = [random.randint(0, 2 ** 32) for _ in range(30)] | |
| def checkSolution(s): | |
| sums = [sum(i) for i in s] | |
| return max(sums), min(sums) | |
| def kk(elems, k): | |
| k1 = k - 1 | |
| e = [(tuple([x] + [0] * (k - 1)), [[x]] + [[] for x in range(k1)]) for x in sorted(elems)] | |
| while len(e) > 1: | |
| e1 = e.pop() | |
| e2 = e.pop() | |
| edif = sorted([e1[0][i] + e2[0][k1-i] for i in range(k)], reverse = True) | |
| edif = tuple([x - edif[-1] for x in edif]) | |
| comb = sorted([e1[1][i] + e2[1][k1-i] for i in range(k)], key = sum, reverse = True) | |
| insort(e, (edif, comb)) | |
| return e[0][1] | |
| def partitionSieve(elems, k, highcount = None, memsize = 23.8): | |
| elemlen = len(elems) | |
| elemlen1 = elemlen - 1 | |
| elems = sorted(elems) | |
| lowstart = 0 | |
| totalsum = sum(elems) | |
| c = kk(elems, k) | |
| smallest = c | |
| k1 = k - 1 | |
| ub, _ = checkSolution(c) | |
| ub1 = ub - 1 | |
| lb = totalsum - k1 * ub1 | |
| if highcount is None: | |
| frontsum = 0 | |
| frontrange = 0 | |
| for i in xrange(elemlen): | |
| frontsum += elems[i] | |
| if frontsum >= ub: | |
| frontrange = i | |
| break | |
| backsum = 0 | |
| backrange = 0 | |
| for i in xrange(elemlen-1, -1, -1): | |
| backsum += elems[i] | |
| if backsum >= ub: | |
| backrange = elemlen - 1 - i | |
| break | |
| if backrange == 1: | |
| highcount = elemlen | |
| else: | |
| highcount = min(int(2.0**(elemlen/4.5) * ((2.0**float(backrange))/(2.0**float(frontrange))) * elemlen), elemlen) | |
| elemshigh = sorted(elems[elemlen - highcount:], reverse = True) | |
| elems = elemshigh + elems[:elemlen - highcount] | |
| lowstart = len(elemshigh) | |
| allcomb = [None] * elemlen | |
| totalcomb = 0 | |
| combi = 0 | |
| allcomb[-1] = [0, elems[-1]] | |
| comb = set(allcomb[-1]) | |
| combs = ub | |
| for i in xrange(elemlen - 2, -1, -1): | |
| curelem = elems[i] | |
| for x in allcomb[i + 1]: | |
| nelem = curelem + x | |
| if nelem >= ub: break | |
| comb.add(nelem) | |
| allcomb[i] = list(comb) | |
| allcomb[i].sort() | |
| totalcomb += len(allcomb[i]) | |
| combi = i | |
| combs = -1 if i > lowstart else (ub if i ==0 else elems[i-1]) | |
| if totalcomb > int(2 ** memsize): | |
| break | |
| comb = None | |
| optb = int(ceil(float(totalsum) / k)) | |
| stack = [] | |
| stack.append(([elems[0]], [[elems[0]]], 1)) | |
| disp0 = [0] * k | |
| lstack = [] | |
| nodevisit = 0 | |
| childslived = 0 | |
| childsvisited = 0 | |
| leafvisit = 0 | |
| seenelems = set() | |
| levelcount = [0] * elemlen | |
| while True: | |
| if len(lstack) > 0: | |
| sums, c, s = lstack.pop() | |
| if len(lstack) > 0: | |
| stack += lstack | |
| del(lstack[:]) | |
| else: | |
| if len(stack) == 0: | |
| break | |
| sums, c, s = stack.pop() | |
| nodevisit += 1 | |
| if len(sums) < k: | |
| c.append([]) | |
| sums.append(0) | |
| sp1 = s + 1 | |
| curelem = elems[s] | |
| newdisp = disp0[:] | |
| newdispsum = 0 | |
| if sp1 < elemlen: | |
| for i in xrange(k): | |
| nsum = sums[i] if i < len(sums) else 0 | |
| ubd = ub1 - nsum | |
| if sp1 >= lowstart: | |
| if nsum + elems[sp1] > ub1: | |
| d = ub1 - nsum | |
| elif sp1 >= combi: | |
| mcs = max(sp1, combi) | |
| lub = nsum + allcomb[mcs][bisect(allcomb[mcs], ubd) - 1] | |
| d = ub1 - lub | |
| else: | |
| d = 0 | |
| else: | |
| if ubd < combs or sp1 >= combi: | |
| mcs = max(sp1, combi) | |
| lub = nsum + allcomb[mcs][bisect(allcomb[mcs], ubd) - 1] | |
| d = ub1 - lub | |
| else: | |
| d = 0 | |
| newdisp[i] = d | |
| newdispsum += d | |
| stopcond = False | |
| childsvisited += len(sums) | |
| seenelems.clear() | |
| for i in xrange(len(sums)): | |
| if stopcond: break | |
| if sums[i] in seenelems: | |
| continue | |
| else: | |
| seenelems.add(sums[i]) | |
| nsum = sums[i] + curelem | |
| if nsum > ub1: | |
| continue | |
| if s < elemlen1: | |
| skiplub = ub1 - newdisp[i] | |
| if sp1 < lowstart and nsum >= skiplub: | |
| del(lstack[:]) | |
| stopcond = True | |
| if lb > skiplub: | |
| del(lstack[:]) | |
| stopcond = True | |
| llb = lb + newdispsum - newdisp[i] | |
| if llb < lb: | |
| continue | |
| ubd = ub1 - nsum | |
| if sp1 >= lowstart: | |
| if nsum + elems[sp1] > ub1: | |
| lub = nsum | |
| elif sp1 >= combi: | |
| mcs = max(sp1, combi) | |
| lub = nsum + allcomb[mcs][bisect(allcomb[mcs], ubd) - 1] | |
| else: | |
| lub = ub1 | |
| if llb > lub: | |
| continue | |
| else: | |
| if ubd < combs or sp1 >= combi: | |
| mcs = max(sp1, combi) | |
| lub = nsum + allcomb[mcs][bisect(allcomb[mcs], ubd) - 1] | |
| if llb > lub: | |
| continue | |
| newcomb = c[:] | |
| newcomb[i] = newcomb[i][:] | |
| newcomb[i].append( curelem ) | |
| newsums = sums[:] | |
| newsums[i] = nsum | |
| if s < elemlen1: | |
| levelcount[s] += 1 | |
| lstack.append((newsums, newcomb, sp1)) | |
| else: | |
| leafvisit += 1 | |
| if max(newsums) < ub: | |
| smallest = newcomb[:] | |
| ub = max(newsums) | |
| ub1 = ub - 1 | |
| lb = totalsum - k1 * ub1 | |
| newstack = [] | |
| dedup = set() | |
| for x in stack: | |
| lsums = x[0] | |
| if max(lsums) >= ub: continue | |
| sig = tuple(sorted(lsums)) | |
| if sig in dedup: | |
| continue | |
| else: | |
| dedup.add(sig) | |
| lsp1 = x[2] | |
| lnewdisp = [0] * k | |
| if lsp1 < elemlen: | |
| for i1 in xrange(k): | |
| nsum = lsums[i1] if i1 < len(lsums) else 0 | |
| ubd = ub1 - nsum | |
| if lsp1 >= lowstart: | |
| if nsum + elems[lsp1] > ub1: | |
| d = ub1 - nsum | |
| elif lsp1 >= combi: | |
| mcs = max(lsp1, combi) | |
| lub = nsum + allcomb[mcs][bisect(allcomb[mcs], ubd) - 1] | |
| d = ub1 - lub | |
| else: | |
| d = 0 | |
| else: | |
| if ubd < combs or lsp1 >= combi: | |
| mcs = max(lsp1, combi) | |
| lub = nsum + allcomb[mcs][bisect(allcomb[mcs], ubd) - 1] | |
| d = ub1 - lub | |
| else: | |
| d = 0 | |
| lnewdisp[i1] = d | |
| lasti = 0 | |
| maxllb = 0 | |
| for i1 in xrange(k): | |
| maxllb = max(maxllb, lb + sum(lnewdisp) - lnewdisp[i1]) | |
| if maxllb > ub1 or maxllb < lb: | |
| continue | |
| newstack.append(((maxllb, max(lsums), sum(lsums)), x[0], x[1], x[2])) | |
| newstack.sort(reverse = True) | |
| stack = [(x[1],x[2],x[3]) for x in newstack] | |
| if ub == optb: | |
| return c | |
| childslived += max(len(lstack) - 1, 0) | |
| return smallest | |
| print "Partitioning", len(elems),"items:" | |
| print elems | |
| k = 10 | |
| print "into", k, "buckets:" | |
| print partitionSieve(elems, k) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment