Created
January 27, 2026 06:49
-
-
Save eric-wieser/fdf2410aeee3c79c6983e8d43963a9c1 to your computer and use it in GitHub Desktop.
Continues from https://leanprover.zulipchat.com/#narrow/channel/217875-Is-there-code-for-X.3F/topic/lie.20algebra/near/516211291
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import Mathlib | |
| namespace LieAlgebra.SpecialLinear | |
| variable {n R M} [CommRing R] [DecidableEq n] [AddCommGroup M] [Module R M] | |
| theorem ext_linear [Fintype n] ⦃f g : sl n R →ₗ[R] M⦄ (i₀ : n) | |
| (hf : ∀ i j h, f ∘ₗ single i j h = g ∘ₗ single i j h) | |
| (hf : ∀ i, f ∘ₗ singleSubSingle i i₀ = g ∘ₗ singleSubSingle i i₀) : | |
| f = g := by | |
| ext | |
| #exit | |
| def basisEquiv (i₀ : n) [Fintype n] : | |
| (({ x : n × n // x.1 ≠ x.2 } → R) × ({y // y ≠ i₀} → R)) ≃ₗ[R] sl n R := | |
| .ofLinear | |
| (LinearMap.coprod | |
| (∑ i, single _ _ i.prop ∘ₗ .proj i) | |
| (∑ i, singleSubSingle i.val i₀ ∘ₗ .proj i)) | |
| (LinearMap.prod | |
| (LinearMap.pi fun ij => | |
| (Matrix.entryLinearMap R _ ij.val.1 ij.val.2) ∘ₗ (sl n R).toSubmodule.subtype) | |
| (LinearMap.pi fun i => | |
| (Matrix.entryLinearMap R _ i.val i.val -Matrix.entryLinearMap R _ i₀ i₀) | |
| ∘ₗ (sl n R).toSubmodule.subtype)) | |
| _ | |
| (by | |
| rw [← LinearMap.lsum_apply R (fun _ : { x : n × n // x.1 ≠ x.2 } => sl n R) R] | |
| -- ext <;> dsimp <;> simp | |
| sorry) | |
| noncomputable def basis (i₀ : n) [Fintype n] : | |
| Module.Basis ({ x : n × n // x.1 ≠ x.2 } ⊕ {y // y ≠ i₀}) R (sl n R) := | |
| .ofEquivFun <| { | |
| toFun M := (fun ij : { x : n × n // x.1 ≠ x.2 } => M.val ij.1.1 ij.1.2, fun i : {y // y ≠ i₀} => M.val i i - M.val i₀ i₀) | |
| map_add' _ _ := by ext <;> dsimp; simp [sub_add_sub_comm] | |
| map_smul' _ _ := by ext <;> dsimp; simp [mul_sub] | |
| invFun c := | |
| ∑ ij, single _ _ ij.prop (c.1 ij) + ∑ i, singleSubSingle i.1 i₀ (c.2 i) | |
| left_inv M := by | |
| ext : 1 | |
| dsimp | |
| simp | |
| sorry | |
| right_inv | |
| | ⟨x, x'⟩ => by | |
| ext ⟨⟨i, j⟩, hij : i ≠ j⟩ | |
| dsimp | |
| simp | |
| sorry | |
| } ≪≫ₗ (LinearEquiv.sumArrowLequivProdArrow _ _ R R |>.symm) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment