Created
December 18, 2025 15:35
-
-
Save eddiebergman/77470356a3a9167f875f9e0fd4a3f415 to your computer and use it in GitHub Desktop.
asdasd
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from __future__ import annotations | |
| from dataclasses import dataclass | |
| from typing import TYPE_CHECKING, Literal | |
| import numpy as np | |
| import pandas as pd | |
| from scipy.interpolate import griddata | |
| from scipy.spatial.distance import pdist | |
| from typing_extensions import Self | |
| from hank.point import Point3d | |
| if TYPE_CHECKING: | |
| pass | |
| @dataclass | |
| class Data: | |
| df: pd.DataFrame | |
| value_columns: tuple[str, ...] | |
| @classmethod | |
| def generate_scattered( | |
| cls, | |
| far_corner: Point3d, | |
| value: dict[str, tuple[float, float]], | |
| *, | |
| points: int = 500, | |
| rng: int | np.random.Generator | None = None, | |
| ) -> Self: | |
| assert not ("x" in value and "y" in value and "z" in value) | |
| rng = np.random.default_rng(rng) | |
| x, y, z = far_corner | |
| xs = np.random.uniform(0, x, size=points) | |
| ys = np.random.uniform(0, y, size=points) | |
| zs = np.random.uniform(0, z, size=points) | |
| values = { | |
| key: np.random.uniform(*value_range, size=points) | |
| for key, value_range in value.items() | |
| } | |
| return cls( | |
| df=pd.DataFrame({"x": xs, "y": ys, "z": zs, **values}), | |
| value_columns=tuple(values.keys()), | |
| ) | |
| def as_grid( | |
| self, | |
| *, | |
| minimum: tuple[float, float, float] | None = None, | |
| maximum: tuple[float, float, float] | None = None, | |
| density: ( | |
| tuple[Literal["points_per_axis"], int] | |
| | tuple[Literal["distance"], float] | |
| | tuple[Literal["percentile_min_distance"], float] | |
| ) = ("percentile_min_distance", 0.10), | |
| ) -> Data: | |
| if minimum is None: | |
| minimum = tuple(self.df[["x", "y", "z"]].min()) | |
| if maximum is None: | |
| maximum = tuple(self.df[["x", "y", "z"]].max()) | |
| match density: | |
| case ("points_per_axis", n_points): | |
| steps = (n_points, n_points, n_points) | |
| case ("distance", distance): | |
| steps = ( | |
| int(np.ceil((_max - _min) / distance)) + 1 | |
| for _min, _max in zip(minimum, maximum) | |
| ) | |
| case ("percentile_min_distance", percentile): | |
| distance = np.percentile(pdist(self.df[["x", "y", "z"]]), percentile) | |
| steps = tuple( | |
| int(np.ceil((_max - _min) / distance)) + 1 | |
| for _min, _max in zip(minimum, maximum) | |
| ) | |
| case _: | |
| raise ValueError("Invalid density specification") | |
| xi, yi, zi = ( | |
| np.linspace(_min, _max, _step) | |
| for _min, _max, _step in zip(minimum, maximum, steps) | |
| ) | |
| grid_x, grid_y, grid_z = np.meshgrid(xi, yi, zi) | |
| grid_values = {} | |
| for value_column in self.value_columns: | |
| grid_values[value_column] = griddata( | |
| points=self.df[["x", "y", "z"]], | |
| values=self.df[value_column], | |
| xi=(grid_x, grid_y, grid_z), | |
| method="nearest", | |
| ) | |
| print(grid_values) | |
| return self.__class__( | |
| df=pd.DataFrame( | |
| { | |
| "x": grid_x.flatten(), | |
| "y": grid_y.flatten(), | |
| "z": grid_z.flatten(), | |
| **{k: v.flatten() for k, v in grid_values.items()}, | |
| } | |
| ), | |
| value_columns=self.value_columns, | |
| ) | |
| if __name__ == "__main__": | |
| import matplotlib.pyplot as plt | |
| from hank import Data | |
| data = Data.generate_scattered((1, 1, 1), value={"k": (0, 1), "v": (0, 1)}, points=5000) | |
| uniform = data.as_grid( | |
| # density=("points_per_axis", 20) | |
| ) # Use a smaller grid for faster plotting | |
| fig = plt.figure(figsize=(12, 5)) | |
| # --- Plot 1: Original Scattered Data --- | |
| ax1 = fig.add_subplot(121, projection="3d") | |
| ax1.set_title("Original Scattered") | |
| ax1.scatter( | |
| data.df["x"], | |
| data.df["y"], | |
| data.df["z"], | |
| c=data.df["k"], | |
| s=data.df["v"] * 20, | |
| alpha=0.6, | |
| ) | |
| # --- Plot 2: Uniform Gridded Data --- | |
| ax2 = fig.add_subplot(122, projection="3d") | |
| ax2.set_title("Uniform Grid") | |
| ax2.scatter( | |
| uniform.df["x"], | |
| uniform.df["y"], | |
| uniform.df["z"], | |
| c=uniform.df["k"], | |
| s=uniform.df["v"] * 20, | |
| alpha=0.6, | |
| ) | |
| plt.tight_layout() | |
| plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment