Skip to content

Instantly share code, notes, and snippets.

@dbcooper
Last active September 25, 2020 15:50
Show Gist options
  • Select an option

  • Save dbcooper/ca8f5e1376ac7202fc046c01f3b79abf to your computer and use it in GitHub Desktop.

Select an option

Save dbcooper/ca8f5e1376ac7202fc046c01f3b79abf to your computer and use it in GitHub Desktop.
Matlab neural net stuff
>> net
net =
Neural Network
name: 'Function Fitting Neural Network'
userdata: (your custom info)
dimensions:
numInputs: 1
numLayers: 2
numOutputs: 1
numInputDelays: 0
numLayerDelays: 0
numFeedbackDelays: 0
numWeightElements: 73
sampleTime: 1
connections:
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
subobjects:
input: Equivalent to inputs{1}
output: Equivalent to outputs{2}
inputs: {1x1 cell array of 1 input}
layers: {2x1 cell array of 2 layers}
outputs: {1x2 cell array of 1 output}
biases: {2x1 cell array of 2 biases}
inputWeights: {2x1 cell array of 1 weight}
layerWeights: {2x2 cell array of 1 weight}
functions:
adaptFcn: 'adaptwb'
adaptParam: (none)
derivFcn: 'defaultderiv'
divideFcn: 'dividerand'
divideParam: .trainRatio, .valRatio, .testRatio
divideMode: 'sample'
initFcn: 'initlay'
performFcn: 'mse'
performParam: .regularization, .normalization
plotFcns: {'plotperform', plottrainstate, ploterrhist,
plotregression, plotfit}
plotParams: {1x5 cell array of 5 params}
trainFcn: 'trainlm'
trainParam: .showWindow, .showCommandLine, .show, .epochs,
.time, .goal, .min_grad, .max_fail, .mu, .mu_dec,
.mu_inc, .mu_max
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
methods:
adapt: Learn while in continuous use
configure: Configure inputs & outputs
gensim: Generate Simulink model
init: Initialize weights & biases
perform: Calculate performance
sim: Evaluate network outputs given inputs
train: Train network with examples
view: View diagram
unconfigure: Unconfigure inputs & outputs
evaluate: outputs = net(inputs)
>> net.inputs{1}
ans =
Neural Network Input
name: 'Input'
feedbackOutput: []
processFcns: {'mapminmax'}
processParams: {1x1 cell array of 1 param}
processSettings: {1x1 cell array of 1 setting}
processedRange: [34x2 double]
processedSize: 34
range: [34x2 double]
size: 34
userdata: (your custom info)
>> net.layers{1}
ans =
Neural Network Layer
name: 'Hidden'
dimensions: 2
distanceFcn: (none)
distanceParam: (none)
distances: []
initFcn: 'initnw'
netInputFcn: 'netsum'
netInputParam: (none)
positions: []
range: [2x2 double]
size: 2
topologyFcn: (none)
transferFcn: 'tansig'
transferParam: (none)
userdata: (your custom info)
>> net.layers{2}
ans =
Neural Network Layer
name: 'Output'
dimensions: 1
distanceFcn: (none)
distanceParam: (none)
distances: []
initFcn: 'initnw'
netInputFcn: 'netsum'
netInputParam: (none)
positions: []
range: [1x2 double]
size: 1
topologyFcn: (none)
transferFcn: 'purelin'
transferParam: (none)
userdata: (your custom info)
>> net.outputs{1}
Error using network/subsref (line 212)
Dot indexing is not supported for variables of this type.
>> net.biases
ans =
2×1 cell array
{1×1 nnetBias}
{1×1 nnetBias}
>> net.outputs
ans =
1×2 cell array
{0×0 double} {1×1 nnetOutput}
>> net.outputs{1}
Error using network/subsref (line 212)
Dot indexing is not supported for variables of this type.
>> net.outputs{2}
ans =
Neural Network Output
name: 'Output'
feedbackInput: []
feedbackDelay: 0
feedbackMode: 'none'
processFcns: {'mapminmax'}
processParams: {1x1 cell array of 1 param}
processSettings: {1x1 cell array of 1 setting}
processedRange: [1x2 double]
processedSize: 1
range: [1x2 double]
size: 1
userdata: (your custom info)
>> net.biases{1}
ans =
Neural Network Bias
initFcn: (none)
learn: true
learnFcn: 'learngdm'
learnParam: .lr, .mc
size: 2
userdata: (your custom info)
>> net.biases{2}
ans =
Neural Network Bias
initFcn: (none)
learn: true
learnFcn: 'learngdm'
learnParam: .lr, .mc
size: 1
userdata: (your custom info)
>> net.inputWeights
ans =
2×1 cell array
{1×1 nnetWeight}
{0×0 double }
>> net.inputWeights{1}
ans =
Neural Network Weight
delays: 0
initFcn: (none)
initSettings: .range
learn: true
learnFcn: 'learngdm'
learnParam: .lr, .mc
size: [2 34]
weightFcn: 'dotprod'
weightParam: (none)
userdata: (your custom info)
>> net.inputWeights{1}(:)
ans =
struct with fields:
delays: 0
initFcn: ''
initSettings: [1×1 struct]
learn: 1
learnFcn: 'learngdm'
learnParam: [1×1 struct]
size: [2 34]
userdata: [1×1 struct]
weightFcn: 'dotprod'
weightParam: [1×1 struct]
>> net.inputWeights{1}()
ans =
struct with fields:
delays: 0
initFcn: ''
initSettings: [1×1 struct]
learn: 1
learnFcn: 'learngdm'
learnParam: [1×1 struct]
size: [2 34]
userdata: [1×1 struct]
weightFcn: 'dotprod'
weightParam: [1×1 struct]
>> x = net.inputWeights{1}
x =
Neural Network Weight
delays: 0
initFcn: (none)
initSettings: .range
learn: true
learnFcn: 'learngdm'
learnParam: .lr, .mc
size: [2 34]
weightFcn: 'dotprod'
weightParam: (none)
userdata: (your custom info)
>> x.disp()
Neural Network Weight
delays: 0
initFcn: (none)
initSettings: .range
learn: true
learnFcn: 'learngdm'
learnParam: .lr, .mc
size: [2 34]
weightFcn: 'dotprod'
weightParam: (none)
userdata: (your custom info)
>> x.struct()
ans =
struct with fields:
delays: 0
initFcn: ''
initSettings: [1×1 struct]
learn: 1
learnFcn: 'learngdm'
learnParam: [1×1 struct]
size: [2 34]
userdata: [1×1 struct]
weightFcn: 'dotprod'
weightParam: [1×1 struct]
>> disp(x)
Neural Network Weight
delays: 0
initFcn: (none)
initSettings: .range
learn: true
learnFcn: 'learngdm'
learnParam: .lr, .mc
size: [2 34]
weightFcn: 'dotprod'
weightParam: (none)
userdata: (your custom info)
>> x.size
ans =
2 34
>>
{
"version": "8",
"name": "Function Fitting Neural Network",
"efficiency": {
"cacheDelayedInputs": true,
"flattenTime": true,
"memoryReduction": 1,
"flattenedTime": true
},
"userdata": {
"note": "Put your custom network information here."
},
"numInputs": 1,
"numLayers": 2,
"numOutputs": 1,
"numInputDelays": 0,
"numLayerDelays": 0,
"numFeedbackDelays": 0,
"numWeightElements": 73,
"sampleTime": 1,
"biasConnect": [
true,
true
],
"inputConnect": [
true,
false
],
"layerConnect": [
[
false,
false
],
[
true,
false
]
],
"outputConnect": [
false,
true
],
"inputs": [
{
"name": "Input",
"feedbackOutput": [],
"processFcns": [
"mapminmax"
],
"processParams": [
{
"ymin": -1,
"ymax": 1
}
],
"processSettings": [
{
"name": "mapminmax",
"xrows": 34,
"xmax": [
33.9,
31.7,
31.7,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1,
32.1
],
"xmin": [
5.8,
8.9,
8.9,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6
],
"xrange": [
28.099999999999998,
22.799999999999997,
22.799999999999997,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5,
31.5
],
"yrows": 34,
"ymax": 1,
"ymin": -1,
"yrange": 2,
"gain": [
0.0711743772241993,
0.08771929824561404,
0.08771929824561404,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349,
0.06349206349206349
],
"xoffset": [
5.8,
8.9,
8.9,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6,
0.6
],
"no_change": false
}
],
"processedRange": [
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
]
],
"processedSize": 34,
"range": [
[
5.8,
33.9
],
[
8.9,
31.7
],
[
8.9,
31.7
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
],
[
0.6,
32.1
]
],
"size": 34,
"userdata": {
"note": "Put your custom input information here."
},
"exampleInput": []
}
],
"layers": [
{
"dimensions": 2,
"distanceFcn": "",
"distanceParam": {},
"distances": [],
"initFcn": "initnw",
"name": "Hidden",
"netInputFcn": "netsum",
"netInputParam": {},
"positions": [],
"range": [
[
-1,
1
],
[
-1,
1
]
],
"size": 2,
"topologyFcn": "",
"transferFcn": "tansig",
"transferParam": {},
"userdata": {
"note": "Put your custom layer information here."
}
},
{
"dimensions": 1,
"distanceFcn": "",
"distanceParam": {},
"distances": [],
"initFcn": "initnw",
"name": "Output",
"netInputFcn": "netsum",
"netInputParam": {},
"positions": [],
"range": [
null,
null
],
"size": 1,
"topologyFcn": "",
"transferFcn": "purelin",
"transferParam": {},
"userdata": {
"note": "Put your custom layer information here."
}
}
],
"biases": [
{
"initFcn": "",
"learn": true,
"learnFcn": "learngdm",
"learnParam": {
"lr": 0.01,
"mc": 0.9
},
"size": 2,
"userdata": {
"note": "Put your custom layer information here."
}
},
{
"initFcn": "",
"learn": true,
"learnFcn": "learngdm",
"learnParam": {
"lr": 0.01,
"mc": 0.9
},
"size": 1,
"userdata": {
"note": "Put your custom layer information here."
}
}
],
"outputs": [
[],
{
"name": "Output",
"feedbackInput": [],
"feedbackDelay": 0,
"feedbackMode": "none",
"processFcns": [
"mapminmax"
],
"processParams": [
{
"ymin": -1,
"ymax": 1
}
],
"processSettings": [
{
"name": "mapminmax",
"xrows": 1,
"xmax": 33.9,
"xmin": 5.8,
"xrange": 28.099999999999998,
"yrows": 1,
"ymax": 1,
"ymin": -1,
"yrange": 2,
"gain": 0.0711743772241993,
"xoffset": 5.8,
"no_change": false
}
],
"processedRange": [
-1,
1
],
"processedSize": 1,
"range": [
5.8,
33.9
],
"size": 1,
"userdata": {
"note": "Put your custom output information here."
},
"exampleOutput": []
}
],
"inputWeights": [
{
"delays": 0,
"initFcn": "",
"initSettings": {
"range": [
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
],
[
-1,
1
]
]
},
"learn": 1,
"learnFcn": "learngdm",
"learnParam": {
"lr": 0.01,
"mc": 0.9
},
"size": [
2,
34
],
"userdata": {
"note": "Put your custom weight information here."
},
"weightFcn": "dotprod",
"weightParam": {}
},
[]
],
"layerWeights": [
[],
{
"delays": 0,
"initFcn": "",
"initSettings": {
"range": [
[
-1,
1
],
[
-1,
1
]
]
},
"learn": 1,
"learnFcn": "learngdm",
"learnParam": {
"lr": 0.01,
"mc": 0.9
},
"size": [
1,
2
],
"userdata": {
"note": "Put your custom weight information here."
},
"weightFcn": "dotprod",
"weightParam": {}
},
[],
[]
],
"adaptFcn": "adaptwb",
"adaptParam": {},
"divideFcn": "dividerand",
"divideParam": {
"trainRatio": 0.7,
"valRatio": 0.15,
"testRatio": 0.15
},
"divideMode": "sample",
"initFcn": "initlay",
"performFcn": "mse",
"performParam": {
"regularization": 0,
"normalization": "none"
},
"plotFcns": [
"plotperform",
"plottrainstate",
"ploterrhist",
"plotregression",
"plotfit"
],
"plotParams": [
{},
{},
{
"bins": 20
},
{},
{
"outputIndex": 1
}
],
"derivFcn": "defaultderiv",
"trainFcn": "trainlm",
"trainParam": {
"showWindow": true,
"showCommandLine": false,
"show": 25,
"epochs": 1000,
"time": null,
"goal": 0,
"min_grad": 1e-7,
"max_fail": 6,
"mu": 0.001,
"mu_dec": 0.1,
"mu_inc": 10,
"mu_max": 10000000000
},
"IW": [
[
[
0.7307351714778254,
-1.0255555739647113,
0.5914068045014379,
-0.77027140616357,
0.5000918496765562,
-0.5549356068872707,
0.3931650110618178,
-0.20457104540796808,
-0.6971822424171328,
-0.18465658434002327,
-0.026413155804026617,
-0.31342303069746236,
-0.3309943689761925,
0.2706490012516821,
0.4845701102999045,
0.2950306151462595,
-0.1075933200042454,
-0.5707682888362376,
0.3745764811526097,
0.6943896352589671,
-0.1492620575795609,
0.4589910064865523,
-0.7676697615281113,
-0.35601847088097627,
0.38348563626675664,
-0.07073539357186173,
0.2791670651697229,
-0.38998463980013115,
0.5818512730548002,
0.2615414673844754,
0.39275509763351163,
0.05348775146012914,
0.9263375175873618,
1.1344499588608654
],
[
-0.13731340906142822,
-0.06700258198196771,
0.08277367370607223,
0.020923867620834827,
-0.0065949632528846565,
-0.0008421052728156726,
0.0012228860347601195,
-0.008145124557215324,
-0.006409833124812945,
-0.005303671847899319,
0.0027579094509415716,
-0.010943960348195413,
-0.006198610563192062,
0.0009481538108058471,
0.0022056790207043778,
-0.001297033638198378,
0.0033039683425179754,
-0.013688356713584243,
0.0019791706974251868,
-0.0003841318242705242,
-0.006689520859189102,
-0.003883958863776213,
-0.01654003495966959,
-0.01782415149106501,
-0.006882470164328086,
-0.022846186876163427,
-0.008262015342633456,
-0.019948972479646474,
0.0009057874266275357,
0.0002607332899122896,
0.004217828856144062,
0.001059276566625213,
0.007181461696212154,
0.01618086427285842
]
],
[]
],
"LW": [
[],
[
0.09399700253836589,
-4.7353203198205005
],
[],
[]
],
"b": [
[
-0.18678073470269005,
0.29880386516040613
],
1.2880505457022688
],
"revert": {
"IW": [
[
[
0.27603984509176493,
-0.3271647667436519,
0.11609048636676327,
-0.19427618573044,
0.40127299419064066,
-0.30030288783890124,
0.40097488377917234,
0.2633718963643386,
-0.06862210998965189,
0.25629105616642234,
0.13659803925898328,
0.3062165438308153,
0.15676616216853553,
0.2132481657390593,
0.13636753309438024,
0.18072020848040524,
-0.19565780186624,
-0.3533502100668777,
0.17088152316092092,
0.3948836074034053,
-0.05372648517569973,
0.23288114698284776,
-0.2746397601126678,
-0.04772559987065286,
0.18363103247820398,
-0.19644534467137068,
0.13603434009569615,
-0.33417192765987,
0.4032351442786237,
0.0747871793239489,
0.22038290451626769,
0.005224848621006687,
0.34285590167193575,
0.04141209619936716
],
[
0.30157757585102524,
0.3072138138282337,
-0.29910103663702337,
0.03484153730589679,
0.3454971493438166,
0.34973644710419727,
-0.010868565892026377,
-0.2661439028440176,
0.3089674792091983,
0.34148685425372155,
-0.3450510808090429,
0.3225363040420528,
0.19154802419067235,
-0.08009502215680726,
-0.24436838817439743,
-0.3479337620655127,
-0.33727760302884924,
0.24038828484362915,
-0.1359285150479936,
-0.34599165148939987,
-0.08802371394404872,
0.21938748023913524,
-0.007606924691016206,
0.10873730814567442,
0.1892787538049783,
0.133551933165622,
-0.25074114521311014,
-0.0012158083795333755,
-0.11862257779232399,
-0.20525820785773205,
-0.1820090904864516,
0.1479503901921598,
0.341337473634447,
-0.2685680875991176
]
],
[]
],
"LW": [
[],
[
-0.701411988881885,
-0.4849834917525271
],
[],
[]
],
"b": [
[
-1.4288342734114212,
1.4288342734114212
],
0.6814345119673251
]
},
"gradientFcn": "defaultderiv",
"gradientParam": {}
}
{"version":"8","name":"Function Fitting Neural Network","efficiency":{"cacheDelayedInputs":true,"flattenTime":true,"memoryReduction":1,"flattenedTime":true},"userdata":{"note":"Put your custom network information here."},"numInputs":1,"numLayers":2,"numOutputs":1,"numInputDelays":0,"numLayerDelays":0,"numFeedbackDelays":0,"numWeightElements":73,"sampleTime":1,"biasConnect":[true,true],"inputConnect":[true,false],"layerConnect":[[false,false],[true,false]],"outputConnect":[false,true],"inputs":[{"name":"Input","feedbackOutput":[],"processFcns":["mapminmax"],"processParams":[{"ymin":-1,"ymax":1}],"processSettings":[{"name":"mapminmax","xrows":34,"xmax":[33.9,31.7,31.7,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1,32.1],"xmin":[5.8,8.9,8.9,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6],"xrange":[28.099999999999998,22.799999999999997,22.799999999999997,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5,31.5],"yrows":34,"ymax":1,"ymin":-1,"yrange":2,"gain":[0.0711743772241993,0.087719298245614044,0.087719298245614044,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489,0.063492063492063489],"xoffset":[5.8,8.9,8.9,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6],"no_change":false}],"processedRange":[[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1]],"processedSize":34,"range":[[5.8,33.9],[8.9,31.7],[8.9,31.7],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1],[0.6,32.1]],"size":34,"userdata":{"note":"Put your custom input information here."},"exampleInput":[]}],"layers":[{"dimensions":2,"distanceFcn":"","distanceParam":{},"distances":[],"initFcn":"initnw","name":"Hidden","netInputFcn":"netsum","netInputParam":{},"positions":[],"range":[[-1,1],[-1,1]],"size":2,"topologyFcn":"","transferFcn":"tansig","transferParam":{},"userdata":{"note":"Put your custom layer information here."}},{"dimensions":1,"distanceFcn":"","distanceParam":{},"distances":[],"initFcn":"initnw","name":"Output","netInputFcn":"netsum","netInputParam":{},"positions":[],"range":[null,null],"size":1,"topologyFcn":"","transferFcn":"purelin","transferParam":{},"userdata":{"note":"Put your custom layer information here."}}],"biases":[{"initFcn":"","learn":true,"learnFcn":"learngdm","learnParam":{"lr":0.01,"mc":0.9},"size":2,"userdata":{"note":"Put your custom layer information here."}},{"initFcn":"","learn":true,"learnFcn":"learngdm","learnParam":{"lr":0.01,"mc":0.9},"size":1,"userdata":{"note":"Put your custom layer information here."}}],"outputs":[[],{"name":"Output","feedbackInput":[],"feedbackDelay":0,"feedbackMode":"none","processFcns":["mapminmax"],"processParams":[{"ymin":-1,"ymax":1}],"processSettings":[{"name":"mapminmax","xrows":1,"xmax":33.9,"xmin":5.8,"xrange":28.099999999999998,"yrows":1,"ymax":1,"ymin":-1,"yrange":2,"gain":0.0711743772241993,"xoffset":5.8,"no_change":false}],"processedRange":[-1,1],"processedSize":1,"range":[5.8,33.9],"size":1,"userdata":{"note":"Put your custom output information here."},"exampleOutput":[]}],"inputWeights":[{"delays":0,"initFcn":"","initSettings":{"range":[[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1]]},"learn":1,"learnFcn":"learngdm","learnParam":{"lr":0.01,"mc":0.9},"size":[2,34],"userdata":{"note":"Put your custom weight information here."},"weightFcn":"dotprod","weightParam":{}},[]],"layerWeights":[[],{"delays":0,"initFcn":"","initSettings":{"range":[[-1,1],[-1,1]]},"learn":1,"learnFcn":"learngdm","learnParam":{"lr":0.01,"mc":0.9},"size":[1,2],"userdata":{"note":"Put your custom weight information here."},"weightFcn":"dotprod","weightParam":{}},[],[]],"adaptFcn":"adaptwb","adaptParam":{},"divideFcn":"dividerand","divideParam":{"trainRatio":0.7,"valRatio":0.15,"testRatio":0.15},"divideMode":"sample","initFcn":"initlay","performFcn":"mse","performParam":{"regularization":0,"normalization":"none"},"plotFcns":["plotperform","plottrainstate","ploterrhist","plotregression","plotfit"],"plotParams":[{},{},{"bins":20},{},{"outputIndex":1}],"derivFcn":"defaultderiv","trainFcn":"trainlm","trainParam":{"showWindow":true,"showCommandLine":false,"show":25,"epochs":1000,"time":null,"goal":0,"min_grad":1E-7,"max_fail":6,"mu":0.001,"mu_dec":0.1,"mu_inc":10,"mu_max":1.0E+10},"IW":[[[0.73073517147782541,-1.0255555739647113,0.5914068045014379,-0.77027140616357,0.50009184967655618,-0.55493560688727073,0.39316501106181778,-0.20457104540796808,-0.69718224241713278,-0.18465658434002327,-0.026413155804026617,-0.31342303069746236,-0.3309943689761925,0.27064900125168212,0.48457011029990449,0.2950306151462595,-0.1075933200042454,-0.57076828883623765,0.37457648115260972,0.69438963525896713,-0.1492620575795609,0.45899100648655228,-0.76766976152811128,-0.35601847088097627,0.38348563626675664,-0.070735393571861732,0.27916706516972289,-0.38998463980013115,0.58185127305480022,0.26154146738447542,0.39275509763351163,0.053487751460129143,0.92633751758736183,1.1344499588608654],[-0.13731340906142822,-0.067002581981967707,0.082773673706072234,0.020923867620834827,-0.0065949632528846565,-0.00084210527281567262,0.0012228860347601195,-0.0081451245572153243,-0.0064098331248129449,-0.0053036718478993187,0.0027579094509415716,-0.010943960348195413,-0.0061986105631920618,0.00094815381080584713,0.0022056790207043778,-0.001297033638198378,0.0033039683425179754,-0.013688356713584243,0.0019791706974251868,-0.00038413182427052419,-0.0066895208591891018,-0.0038839588637762132,-0.016540034959669589,-0.017824151491065011,-0.0068824701643280858,-0.022846186876163427,-0.0082620153426334556,-0.019948972479646474,0.00090578742662753573,0.00026073328991228962,0.0042178288561440617,0.001059276566625213,0.007181461696212154,0.01618086427285842]],[]],"LW":[[],[0.09399700253836589,-4.7353203198205005],[],[]],"b":[[-0.18678073470269005,0.29880386516040613],1.2880505457022688],"revert":{"IW":[[[0.27603984509176493,-0.32716476674365191,0.11609048636676327,-0.19427618573044,0.40127299419064066,-0.30030288783890124,0.40097488377917234,0.26337189636433861,-0.068622109989651889,0.25629105616642234,0.13659803925898328,0.30621654383081531,0.15676616216853553,0.2132481657390593,0.13636753309438024,0.18072020848040524,-0.19565780186624,-0.35335021006687772,0.17088152316092092,0.39488360740340528,-0.05372648517569973,0.23288114698284776,-0.27463976011266777,-0.047725599870652863,0.18363103247820398,-0.19644534467137068,0.13603434009569615,-0.33417192765987,0.40323514427862373,0.0747871793239489,0.22038290451626769,0.0052248486210066869,0.34285590167193575,0.041412096199367157],[0.30157757585102524,0.30721381382823371,-0.29910103663702337,0.034841537305896793,0.34549714934381659,0.34973644710419727,-0.010868565892026377,-0.26614390284401762,0.30896747920919831,0.34148685425372155,-0.3450510808090429,0.3225363040420528,0.19154802419067235,-0.080095022156807263,-0.24436838817439743,-0.34793376206551269,-0.33727760302884924,0.24038828484362915,-0.13592851504799361,-0.34599165148939987,-0.088023713944048718,0.21938748023913524,-0.0076069246910162062,0.10873730814567442,0.1892787538049783,0.133551933165622,-0.25074114521311014,-0.0012158083795333755,-0.11862257779232399,-0.20525820785773205,-0.18200909048645161,0.1479503901921598,0.341337473634447,-0.2685680875991176]],[]],"LW":[[],[-0.701411988881885,-0.48498349175252708],[],[]],"b":[[-1.4288342734114212,1.4288342734114212],0.68143451196732507]},"gradientFcn":"defaultderiv","gradientParam":{}}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment