Last active
February 10, 2026 19:29
-
-
Save ctrueden/9a8f7a03b75fb1ac29e38b6c390be196 to your computer and use it in GitHub Desktop.
Run StarDist 2D in Fiji via Appose using cellcast.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #@ Img image | |
| #@ Double (value=1.0, description="minimum percentile value for normalization") pmin | |
| #@ Double (value=99.8, description="maximum percentile value for normalization") pmax | |
| #@ Double (value=0.479, description="Polygon probability threshold") prob_threshold | |
| #@ Double (value=0.3, description="Non-Maximum Suppression threshold") nms_threshold | |
| #@ Boolean (value=true, description="Set True for GPU inference via WebGPU, False for CPU inference") gpu | |
| #@output Img labels | |
| import org.apposed.appose.Appose | |
| cellcastScript = """ | |
| def flip_img(img): | |
| ""\"Flips a NumPy array between Java (F_ORDER) and NumPy-friendly (C_ORDER)""\" | |
| import numpy as np | |
| return np.transpose(img, tuple(reversed(range(img.ndim)))) | |
| def share_as_ndarray(img): | |
| ""\"Copies a NumPy array into a same-sized newly allocated block of shared memory""\" | |
| from appose import NDArray | |
| shared = NDArray(str(img.dtype), img.shape) | |
| shared.ndarray()[:] = img | |
| return shared | |
| import cellcast.models as ccm | |
| labels = ccm.stardist_2d_versatile_fluo.predict( | |
| flip_img(image.ndarray()), | |
| pmin, | |
| pmax, | |
| prob_threshold, | |
| nms_threshold, | |
| gpu, | |
| ) | |
| share_as_ndarray(flip_img(labels)) | |
| """ | |
| println("== BUILDING ENVIRONMENT ==") | |
| env = Appose.uv().include("cellcast").name("cellcast").logDebug().build() | |
| println("Environment build complete: ${env.base()}") | |
| // Conversion functions: ImgLib2 Img <-> Appose NDArray | |
| imgToAppose = { img -> | |
| ndArray = net.imglib2.appose.ShmImg.copyOf(image).ndArray() | |
| println("Copied image into shared memory: ${ndArray.shape()} DType{${ndArray.dType()}}") | |
| return ndArray | |
| } | |
| apposeToImg = { ndarray -> | |
| net.imglib2.appose.NDArrays.asArrayImg(ndarray) | |
| } | |
| copyImg = { img -> | |
| // Note: We use PlanarImg because the original ImageJ likes them best. | |
| copy = new net.imglib2.img.planar.PlanarImgFactory(img.getType()).create(img.dimensionsAsLongArray()) | |
| net.imglib2.util.ImgUtil.copy(img, copy) | |
| return copy | |
| } | |
| // Run the script as an Appose task | |
| println("== STARTING PYTHON SERVICE ==") | |
| try (python = env.python()) { | |
| inputs = [ | |
| "image": imgToAppose(image), | |
| "pmin": pmin, | |
| "pmax": pmax, | |
| "prob_threshold": prob_threshold, | |
| "nms_threshold": nms_threshold, | |
| "gpu": gpu, | |
| ] | |
| task = python.task(cellcastScript, inputs) | |
| .listen { if (it.message) println("[CELLCAST] ${it.message}") } | |
| .waitFor() | |
| println("TASK FINISHED: ${task.status}") | |
| if (task.error) println(task.error) | |
| labels = copyImg(apposeToImg(task.result())) | |
| // Without the copyImg, imglib2-ij fails to wrap such ArrayImgs to ImagePlus, | |
| // due to ImageProcessorUtils expecting a backing Java primitive array type. | |
| // | |
| // pixels = labels.update( null ).getCurrentStorageArray() | |
| // ^ Pixels is a DirectShortBufferU here -- makes sense; it's shared memory | |
| // | |
| // But then... how the heck does the unseg_fiji plugin work?! | |
| // So for the moment, we just copy it into a non-shm Img. :'-( | |
| } | |
| finally { | |
| println("== TERMINATING PYTHON SERVICE ==") | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment