Instantly share code, notes, and snippets.
Created
December 10, 2025 06:38
-
Star
0
(0)
You must be signed in to star a gist -
Fork
0
(0)
You must be signed in to fork a gist
-
-
Save chunibyo-wly/c1a391006f3c3f41411b05c3a1d36a19 to your computer and use it in GitHub Desktop.
SHARE S20 slam project point cloud to undistort images
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import cv2 | |
| import numpy as np | |
| import trimesh | |
| from tqdm import tqdm | |
| import json | |
| import open3d as o3d | |
| from copy import deepcopy | |
| from pathlib import Path | |
| import xml.etree.ElementTree as ET | |
| from shutil import rmtree | |
| PLY_PATH = Path("data2/2025-12-09_15-13-54_colorized.ply") | |
| DATA_ROOT = Path("data2") | |
| OUTPUT = Path("output3") | |
| if OUTPUT.exists(): | |
| rmtree(OUTPUT) | |
| OUTPUT.mkdir(exist_ok=True) | |
| def create_camera(fov_y=60, aspect=16 / 9, near=0.1, far=1.0): | |
| # 角度转弧度 | |
| fov_y_rad = np.radians(fov_y) | |
| # 近平面与远平面的宽高 | |
| h_near = np.tan(fov_y_rad / 2) * near | |
| w_near = h_near * aspect | |
| h_far = np.tan(fov_y_rad / 2) * far | |
| w_far = h_far * aspect | |
| # 八个顶点 | |
| vertices = np.array( | |
| [ | |
| [-w_near, h_near, -near], # 0: nlt | |
| [w_near, h_near, -near], # 1: nrt | |
| [w_near, -h_near, -near], # 2: nrb | |
| [-w_near, -h_near, -near], # 3: nlb | |
| [-w_far, h_far, -far], # 4: flt | |
| [w_far, h_far, -far], # 5: frt | |
| [w_far, -h_far, -far], # 6: frb | |
| [-w_far, -h_far, -far], # 7: flb | |
| ] | |
| ) | |
| # 定义线的连接关系(每两个顶点形成一条边) | |
| edges = np.array( | |
| [ | |
| [0, 1], | |
| [1, 2], | |
| [2, 3], | |
| [3, 0], # 近平面 | |
| [4, 5], | |
| [5, 6], | |
| [6, 7], | |
| [7, 4], # 远平面 | |
| [0, 4], | |
| [1, 5], | |
| [2, 6], | |
| [3, 7], # 连接线 | |
| ] | |
| ) | |
| # 利用 trimesh 生成一个 Path3D 线框 | |
| frustum = trimesh.load_path(vertices[edges] / 10) | |
| return frustum | |
| def parse_traj(tag="left"): | |
| file_path = DATA_ROOT / "undistort" / "TransformedCam.json" | |
| with open(file_path, "r") as f: | |
| data = json.load(f) | |
| traj = [] | |
| for entry in data["frames"]: | |
| if tag not in entry["file_path"]: | |
| continue | |
| T = np.array(entry["transform_matrix"]) | |
| traj.append((entry["file_path"], T)) | |
| return traj | |
| def parse_intrinsics(tag="left"): | |
| fisheye_xml = DATA_ROOT / "images" / f"{tag.title()}.opt" | |
| undistort_xml = DATA_ROOT / "undistort" / f"{tag.title()}_undistort.opt" | |
| tree = ET.parse(fisheye_xml) | |
| root = tree.getroot() | |
| fx = float(root.find(".//M_00").text) | |
| fy = float(root.find(".//M_11").text) | |
| tree = ET.parse(undistort_xml) | |
| root = tree.getroot() | |
| cx = float(root.find(".//PrincipalPoint/X").text) | |
| cy = float(root.find(".//PrincipalPoint/Y").text) | |
| w = int(root.find(".//Width").text) | |
| h = int(root.find(".//Height").text) | |
| K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float64) | |
| reso = (h, w) | |
| return K, reso | |
| def main(): | |
| camera = create_camera() | |
| camera.export("camera.ply") | |
| pcd = o3d.io.read_point_cloud(PLY_PATH.as_posix()) | |
| kdtree = o3d.geometry.KDTreeFlann(pcd) | |
| for tag in ["left", "right"]: | |
| traj = parse_traj(tag) | |
| K, reso = parse_intrinsics(tag) | |
| output_meshes = [] | |
| for i, (file_path, T) in enumerate(tqdm(traj[::])): | |
| basename = Path(file_path).stem | |
| cam_instance = camera.copy() | |
| cam_instance.apply_transform(T) | |
| v = [0, 0, 0, 1] | |
| v = T @ v | |
| [k, idx, _] = kdtree.search_radius_vector_3d(o3d.utility.Vector3dVector([v[:3]])[0], 5.0) | |
| if k == 0: | |
| continue | |
| tmp_pcd = deepcopy(pcd.select_by_index(idx)) | |
| tmp_pcd = tmp_pcd.transform(np.linalg.inv(T)) | |
| pts = np.asarray(tmp_pcd.points) | |
| color = np.asarray(tmp_pcd.colors)[pts[:, 2] < 0] | |
| r, g, b = color[:, 0], color[:, 1], color[:, 2] | |
| color = np.stack([b, g, r], axis=-1) | |
| pts = pts[pts[:, 2] < 0] | |
| pts2 = pts / pts[:, 2:3] | |
| uv = (K @ pts2.T).T | |
| h, w = reso | |
| _mask = (0 <= uv[:, 0]) & (uv[:, 0] < w) & (0 <= uv[:, 1]) & (uv[:, 1] < h) | |
| color = color[_mask] | |
| uv = uv[_mask].astype(np.int32) | |
| uv2d = {} | |
| pts[:, 2] = np.abs(pts[:, 2]) | |
| for _uv, _pt, _c in zip(uv, pts[_mask], color): | |
| if (_uv[0], _uv[1]) in uv2d and uv2d[(_uv[0], _uv[1])][0] < _pt[2]: | |
| continue | |
| uv2d[(_uv[0], _uv[1])] = (_pt[2], _c) | |
| sorted_uv = sorted(uv2d.items(), key=lambda x: x[1][0], reverse=True) | |
| input_img = cv2.imread(DATA_ROOT / "undistort" / file_path) | |
| origin = input_img.copy() | |
| img = np.zeros((h, w, 3), dtype=np.uint8) | |
| for (u, v), (_z, c) in sorted_uv: | |
| r = int(np.clip(50 / (_z + 0.5), 10, 50)) | |
| cv2.circle(img, (u, v), r, (c * 255).astype(np.int32).tolist(), -1) | |
| input_img[np.where(img != 0)] = img[np.where(img != 0)] | |
| cv2.imwrite((OUTPUT / basename).with_suffix(".png").as_posix(), np.hstack([origin, input_img, img])) | |
| output_meshes.append(cam_instance) | |
| combined = trimesh.util.concatenate(output_meshes) | |
| combined.export(f"traj_{tag}.ply") | |
| if __name__ == "__main__": | |
| main() |
Author
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
sam3 segmentation and pcd index select