Created
April 29, 2017 12:13
-
-
Save bartolsthoorn/36c813a4becec1b260392f5353c8b7cc to your computer and use it in GitHub Desktop.
Simple multi-laber classification example with Pytorch and MultiLabelSoftMarginLoss (https://en.wikipedia.org/wiki/Multi-label_classification)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import torch | |
| import torch.nn as nn | |
| import numpy as np | |
| import torch.optim as optim | |
| from torch.autograd import Variable | |
| # (1, 0) => target labels 0+2 | |
| # (0, 1) => target labels 1 | |
| # (1, 1) => target labels 3 | |
| train = [] | |
| labels = [] | |
| for i in range(10000): | |
| category = (np.random.choice([0, 1]), np.random.choice([0, 1])) | |
| if category == (1, 0): | |
| train.append([np.random.uniform(0.1, 1), 0]) | |
| labels.append([1, 0, 1]) | |
| if category == (0, 1): | |
| train.append([0, np.random.uniform(0.1, 1)]) | |
| labels.append([0, 1, 0]) | |
| if category == (0, 0): | |
| train.append([np.random.uniform(0.1, 1), np.random.uniform(0.1, 1)]) | |
| labels.append([0, 0, 1]) | |
| class _classifier(nn.Module): | |
| def __init__(self, nlabel): | |
| super(_classifier, self).__init__() | |
| self.main = nn.Sequential( | |
| nn.Linear(2, 64), | |
| nn.ReLU(), | |
| nn.Linear(64, nlabel), | |
| ) | |
| def forward(self, input): | |
| return self.main(input) | |
| nlabel = len(labels[0]) # => 3 | |
| classifier = _classifier(nlabel) | |
| optimizer = optim.Adam(classifier.parameters()) | |
| criterion = nn.MultiLabelSoftMarginLoss() | |
| epochs = 5 | |
| for epoch in range(epochs): | |
| losses = [] | |
| for i, sample in enumerate(train): | |
| inputv = Variable(torch.FloatTensor(sample)).view(1, -1) | |
| labelsv = Variable(torch.FloatTensor(labels[i])).view(1, -1) | |
| output = classifier(inputv) | |
| loss = criterion(output, labelsv) | |
| optimizer.zero_grad() | |
| loss.backward() | |
| optimizer.step() | |
| losses.append(loss.data.mean()) | |
| print('[%d/%d] Loss: %.3f' % (epoch+1, epochs, np.mean(losses))) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| $ python multilabel.py | |
| [1/5] Loss: 0.092 | |
| [2/5] Loss: 0.005 | |
| [3/5] Loss: 0.001 | |
| [4/5] Loss: 0.000 | |
| [5/5] Loss: 0.000 |
Author
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@jcfgonc No. You likely confused
nn.MultiLabelSoftMarginLosswithnn.MultiLabelMarginLoss(note the Soft in the name). Despite the similar names, they require totally different label formats.nn.MultiLabelSoftMarginLoss[1, 0, 1](Class 0 and 2 are present)
nn.MultiLabelMarginLoss[0, 2, -1](Indices of active classes; padded with -1)
nn.CrossEntropyLoss2(Only Class 2 is present)