Created
November 18, 2025 15:33
-
-
Save andreacfm/3e1f6199eb7b47ebaa08fb9800c50ffb to your computer and use it in GitHub Desktop.
spark drop_fully_null_columns considering duplicated column names
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def drop_fully_null_columns(data_frame): | |
| """ | |
| Drops DataFrame columns that are fully null (i.e. the maximum value is null). | |
| Handles duplicate column names by using column positions. | |
| Arguments: | |
| data_frame {spark DataFrame} -- spark dataframe | |
| Returns: | |
| spark DataFrame -- dataframe with fully null columns removed | |
| """ | |
| # Get column names and their positions | |
| columns = data_frame.columns | |
| # Use positions to reference columns uniquely | |
| agg_exprs = [F.max(data_frame._jdf.schema().fields()[i].name).alias(f"col_{i}") for i in range(len(columns))] | |
| # Compute max for each column | |
| rows_with_data = data_frame.agg(*agg_exprs).collect()[0].asDict() | |
| # Find columns where max is None | |
| cols_to_drop_idx = [i for i, val in rows_with_data.items() if val is None] | |
| # Drop columns by position | |
| for idx in sorted(cols_to_drop_idx, reverse=True): | |
| data_frame = data_frame.drop(columns[idx]) | |
| return data_frame |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment