Created
April 15, 2019 09:15
-
-
Save andersx/6c9accc51f2a6f91c67a22a7a1900f95 to your computer and use it in GitHub Desktop.
KRR and OQML energy regression tests
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from __future__ import print_function | |
| import os | |
| import csv | |
| import ast | |
| from copy import deepcopy | |
| import scipy | |
| import scipy.stats | |
| from scipy.linalg import lstsq | |
| import numpy as np | |
| import qml | |
| from qml.math import cho_solve | |
| from qml.fchl import generate_representation | |
| from qml.fchl import get_local_kernels | |
| from qml.fchl import get_local_symmetric_kernels | |
| from qml.fchl import get_atomic_local_kernels | |
| test_dir = os.path.dirname(os.path.realpath(__file__)) | |
| CSV_FILE = test_dir + "/data/amons_small.csv" | |
| SIGMAS = [0.64] | |
| TRAINING = 13 | |
| TEST = 7 | |
| DX = 0.005 | |
| CUT_DISTANCE = 1e6 | |
| KERNEL_ARGS = { | |
| "verbose": False, | |
| "cut_distance": CUT_DISTANCE, | |
| "kernel": "gaussian", | |
| "kernel_args": { | |
| "sigma": SIGMAS, | |
| }, | |
| } | |
| LLAMBDA_ENERGY = 1e-7 | |
| LLAMBDA_FORCE = 1e-7 | |
| def mae(a, b): | |
| return np.mean(np.abs(a.flatten() - b.flatten())) | |
| def csv_to_molecular_reps(csv_filename): | |
| np.random.seed(667) | |
| x = [] | |
| e = [] | |
| distance = [] | |
| max_atoms = 5 | |
| with open(csv_filename, 'r') as csvfile: | |
| df = csv.reader(csvfile, delimiter=";", quotechar='#') | |
| for row in df: | |
| coordinates = np.array(ast.literal_eval(row[2])) | |
| nuclear_charges = ast.literal_eval(row[5]) | |
| atomtypes = ast.literal_eval(row[1]) | |
| energy = float(row[6]) | |
| rep = generate_representation(coordinates, nuclear_charges, | |
| max_size=max_atoms, cut_distance=CUT_DISTANCE) | |
| x.append(rep) | |
| e.append(energy) | |
| return np.array(x), e | |
| def test_krr_derivative(): | |
| Xall, Eall, = csv_to_molecular_reps(CSV_FILE) | |
| Eall = np.array(Eall) | |
| X = Xall[:TRAINING] | |
| E = Eall[:TRAINING] | |
| Xs = Xall[-TEST:] | |
| Es = Eall[-TEST:] | |
| K = get_local_symmetric_kernels(X, **KERNEL_ARGS) | |
| Ks = get_local_kernels(Xs, X, **KERNEL_ARGS) | |
| Y = np.array(E) | |
| for i, sigma in enumerate(SIGMAS): | |
| C = deepcopy(K[i]) | |
| for j in range(K.shape[2]): | |
| C[j,j] += LLAMBDA_ENERGY | |
| alpha = cho_solve(C, Y) | |
| Ess = np.dot(Ks[i], alpha) | |
| Et = np.dot(K[i], alpha) | |
| print(mae(Ess, Es)) | |
| print(mae(Et, E)) | |
| assert mae(Ess, Es) < 0.7, "Error in KRR test energy" | |
| assert mae(Et, E) < 0.02, "Error in KRR training energy" | |
| def test_non_square_derivative(): | |
| Xall, Eall, = csv_to_molecular_reps(CSV_FILE) | |
| Eall = np.array(Eall) | |
| X = Xall[:TRAINING] | |
| E = Eall[:TRAINING] | |
| Xs = Xall[-TEST:] | |
| Es = Eall[-TEST:] | |
| Kt_energy = get_atomic_local_kernels(X, X, **KERNEL_ARGS) | |
| Ks_energy = get_atomic_local_kernels(X, Xs, **KERNEL_ARGS) | |
| Y = np.array(E) | |
| for i, sigma in enumerate(SIGMAS): | |
| C = Kt_energy[i].T | |
| alphas, residuals, singular_values, rank = lstsq(C, Y, cond=1e-9, lapack_driver="gelsd") | |
| Ess = np.dot(Ks_energy[i].T, alphas) | |
| Et = np.dot(Kt_energy[i].T, alphas) | |
| print(mae(Ess, Es)) | |
| print(mae(Et, E)) | |
| assert mae(Ess, Es) < 4.0, "Error in operator test energy" | |
| assert mae(Et, E) < 0.04, "Error in operator training energy" | |
| if __name__ == "__main__": | |
| test_krr_derivative() | |
| test_non_square_derivative() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment