Last active
December 20, 2025 11:31
-
-
Save abikoushi/2eb9bafacb61a44d42ed9c8c311cae97 to your computer and use it in GitHub Desktop.
ALTO (adaptive linearized tensor operation) indexing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #ref: | |
| #Jan Laukemann et al. (2025) Accelerating Sparse Tensor Decomposition Using Adaptive Linearized Representation | |
| #https://arxiv.org/abs/2403.06348 | |
| library(dplyr) | |
| ALTO_indexing <- function(object, data = environment(object), ...) { | |
| mf <- model.frame(object, data, ...) | |
| t <- if (missing(data)) terms(object) else terms(object, data = data) | |
| labs <- attr(t, "term.labels") | |
| mf <- lapply(labs, function(x) { | |
| if (is.factor(mf[[x]])) { | |
| return(mf[[x]]) | |
| } else { | |
| warning(paste0("auto-converted `", x, "` as factor")) | |
| return(factor(mf[[x]])) | |
| } | |
| }) | |
| ## 0-based index | |
| li <- lapply(mf, function(x) { | |
| as.integer(x) - 1L | |
| }) | |
| ## 各因子の水準 | |
| factorlevels <- lapply(mf, levels) | |
| names(factorlevels) <- labs | |
| ## 各因子の水準数 | |
| n_cate <- sapply(mf, nlevels) | |
| ## 必要 bit 幅 | |
| bitwidth <- ceiling(log2(n_cate)) | |
| names(bitwidth) <- labs | |
| ## 下位因子からの累積 bit shift | |
| shift <- c(0L, cumsum(bitwidth[-length(bitwidth)])) | |
| names(shift) <- labs | |
| ## ALTO index | |
| index <- 0L | |
| for (i in seq_along(li)) { | |
| index <- index + bitwShiftL(li[[i]], shift[i]) | |
| } | |
| result <- list( | |
| index = index, | |
| bitwidth = bitwidth, | |
| shift = shift, | |
| factorlevels = factorlevels | |
| ) | |
| class(result) <- "alto_index" | |
| return(result) | |
| } | |
| ALTO_unpack <- function(x, alto_index) { | |
| stopifnot(class(alto_index) == "alto_index") | |
| k <- length(alto_index$bitwidth) | |
| res <- integer(k) | |
| names(res) <- names(alto_index$bitwidth) | |
| for (i in seq_len(k)) { | |
| mask <- bitwShiftL(1L, alto_index$bitwidth[i]) - 1L | |
| res[i] <- bitwAnd(bitwShiftR(x, alto_index$shift[i]), mask) | |
| } | |
| return(res) | |
| } | |
| ALTO_unpack_factor <- function(index, alto_index) { | |
| stopifnot(class(alto_index) == "alto_index") | |
| res_un = ALTO_unpack(index, alto_index) | |
| res = character(length = length(res_un)) | |
| for (i in seq_along(res)) { | |
| res[i] <- alto_index$factorlevels[[i]][res_un[i] + 1L] | |
| } | |
| return(res) | |
| } | |
| library(dplyr) | |
| df_Titanic <- as.data.frame(Titanic) | |
| df_Hair <- as.data.frame(HairEyeColor) %>% | |
| mutate(Hair = as.character(Hair)) | |
| f = ~ Hair + Eye + Sex | |
| f <- Freq ~ . | |
| ind_hair = ALTO_indexing(f, data = df_Hair) | |
| ALTO_unpack(6, ind_hair) | |
| ALTO_unpack_factor(6, ind_hair) | |
| df_Hair[ind_hair$index == 6, ] | |
| f = ~ Class + Sex + Age + Survived | |
| f = Freq ~ . | |
| ind_titanic = ALTO_indexing(f, data = df_Titanic) | |
| ALTO_unpack(9, ind_titanic) | |
| ALTO_unpack_factor(9, ind_titanic) | |
| df_Titanic[ind_titanic$index == 9, ] | |
| ### | |
| df_Hair <- as.data.frame(HairEyeColor) | |
| mutate(df_Hair, alto = ind_hair$index) %>% | |
| arrange(alto) %>% | |
| dplyr::filter(Hair == "Black") | |
| mutate(df_Hair, alto = ind_hair$index) %>% | |
| arrange(alto) %>% | |
| dplyr::filter(Eye == "Brown") | |
| mutate(df_Hair, alto = ind_hair$index) %>% | |
| arrange(alto) %>% | |
| dplyr::filter(Sex == "Male") | |
| #### | |
| i1_fixed <- 1L | |
| vals <- 0:7 | |
| inds <- (i1_fixed - 1L) + bitwShiftL(vals, ind_hair$shift[2]) | |
| df_Hair[ind_hair$index %in% inds, ] | |
| as.data.frame(HairEyeColor[i1_fixed, , , drop = FALSE]) | |
| print( | |
| all( | |
| df_Hair[ind_hair$index %in% inds, 2:4] == | |
| as.data.frame(HairEyeColor[i1_fixed, , ]) | |
| ) | |
| ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment