Skip to content

Instantly share code, notes, and snippets.

View Qu3tzal's full-sized avatar

Maxime Alvarez Qu3tzal

View GitHub Profile
@Qu3tzal
Qu3tzal / port_bridgev2.py
Created January 8, 2026 09:06
Convert BridgeV2 TFDS dataset to LeRobot compatible dataset.
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
class SelfAttention(torch.nn.Module):
def __init__(self, input_dimension, output_dimension):
super().__init__()
self.input_dimension = input_dimension
self.output_dimension = output_dimension
self.Qw = torch.nn.Linear(self.input_dimension, self.output_dimension)
self.Kw = torch.nn.Linear(self.input_dimension, self.output_dimension)
self.Vw = torch.nn.Linear(self.input_dimension, self.output_dimension)
@Qu3tzal
Qu3tzal / stock_compare.py
Created May 18, 2023 08:02
Quickly compare a list of stocks or indices prices.
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import argparse
def parse_args():
parser = argparse.ArgumentParser(description='Quickly compare a list of stocks or indices prices.')
parser.add_argument('--history', type=str, default='ytd', help='History period of the price data', choices=["1d", "5d", "1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"])
#include <SFML/Graphics.hpp>
#include <cmath>
// Program parameters.
const float TICK_PER_SEC = 60.f;
const float MAX_JERK_LENGTH = 100.f;
// Computed constants.
const sf::Time TICK_TIME = sf::seconds(1.f / TICK_PER_SEC);
@Qu3tzal
Qu3tzal / solution_regression.py
Created February 21, 2019 02:10
solution_regression.py
# -*- coding: utf-8 -*-
#####
# Maxime Alvarez 18085322
# Daniel Regnard 18130194
###
import numpy as np
import random
from sklearn import linear_model
rpi <-> arduino
through driver
From 2 cameras set up parallely and of the same lzns configuration, we should try to feed the images to a deep learning system that will learn how to estimatr the distance of an object
by the difference of position of a same point in the two images.