Skip to content

Instantly share code, notes, and snippets.

@ProbablePattern
Created May 15, 2014 23:20
Show Gist options
  • Select an option

  • Save ProbablePattern/c46e4fb12bf758b99b03 to your computer and use it in GitHub Desktop.

Select an option

Save ProbablePattern/c46e4fb12bf758b99b03 to your computer and use it in GitHub Desktop.
VPIN calculation using bulk-volume classification
#### VPIN calculation #########################################################
#install.packages('fasttime',repos='http://www.rforge.net/')
require(data.table); require(fasttime); require(plyr)
# Assuming TAQ data is arranged in 1 year stock csv files
stock=fread('/TAQ_data.csv'); stock=stock[,1:3,with=FALSE]
setnames(stock,colnames(stock),c('DateTime','Price','Volume'));
stock[,DateTime:=paste(paste(substr(DateTime,1,4),substr(DateTime,5,6),
substr(DateTime,7,8),sep='-'),substr(DateTime,10,17))]
setkey(stock,DateTime);
stock=as.xts(stock[,2:3,with=FALSE],unique=FALSE,
order.by=fastPOSIXct(stock[,DateTime],tz='GMT'))
# Now we have an xts data frame called 'stock' with a DateTime index and...
# two columns: Price and Volume
# Vbucket=Number of volume buckets in an average volume day (Vbucket=50)
VPIN=function(stock,Vbucket) {
stock$dP1=diff(stock[,'Price'],lag=1,diff=1,na.pad=TRUE)
ends=endpoints(stock,'minutes')
timeDF=period.apply(stock[,'dP1'],INDEX=ends,FUN=sum)
timeDF$Volume=period.apply(stock[,'Volume'],INDEX=ends,FUN=sum)
Vbar=mean(period.apply(timeDF[,'Volume'],INDEX=endpoints(timeDF,'days'),
FUN=sum))/Vbucket
timeDF$Vfrac=timeDF[,'Volume']/Vbar
timeDF$CumVfrac=cumsum(timeDF[,'Vfrac'])
timeDF$Next=(timeDF[,'CumVfrac']-floor(timeDF[,'CumVfrac']))/timeDF[,'Vfrac']
timeDF[timeDF[,'Next']<1,'Next']=0
timeDF$Previous=lag(timeDF[,'dP1'])*lag(timeDF[,'Next'])
timeDF$dP2=(1-timeDF[,'Next'])*timeDF[,'dP1'] + timeDF[,'Previous']
timeDF$Vtick=floor(timeDF[,'CumVfrac'])
timeDF[,'Vtick']=timeDF[,'Vtick']-diff(timeDF[,'Vtick']); timeDF[1,'Vtick']=0
timeDF=as.data.frame(timeDF); timeDF[,'DateTime']=row.names(timeDF)
timeDF=ddply(as.data.frame(timeDF),.(Vtick),last)
timeDF=as.xts(timeDF[,c('Volume','dP2','Vtick')],
order.by=fastPOSIXct(timeDF$DateTime,tz='GMT'))
timeDF[1,'dP2']=0
timeDF$sigma=rollapply(timeDF[,'dP2'],Vbucket,sd,fill=NA)
timeDF$sigma=na.fill(timeDF$sigma,"extend")
timeDF$Vbuy=Vbar*pnorm(timeDF[,'dP2']/timeDF[,'sigma'])
timeDF$Vsell=Vbar-timeDF[,'Vbuy']
timeDF$OI=abs(timeDF[,'Vsell']-timeDF[,'Vbuy'])
timeDF$VPIN=rollapply(timeDF[,'OI'],Vbucket,sum)/(Vbar*Vbucket)
timeDF=timeDF[,c('VPIN')]; return(timeDF)
}
out=VPIN(stock,50)
###############################################################################
@gstar1990
Copy link

Hi, can you repeat flash crash figure in Easley, ohara's 2012 paper? It seems that your code is quite sensitive to the parameter Vbucket? VPIN doesn't increase even in the flash crash time using Emini SP500 data.

@zhehao
Copy link

zhehao commented Mar 31, 2016

@gstar1990,ELO(2012) calculate $std$ of $\delta_p$ with the whole sample, that is why their VPIN is sensitive in the flash crash

@alexlauforgithub
Copy link

Would you explain what does "Next", "Previous" and "dP2" mean?
Thanks a lot!

@niks302
Copy link

niks302 commented Aug 8, 2018

Hi can you please suggest that can we use this methodology and code if one has data aggregated to 1 minute frequency ?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment