Last active
October 2, 2018 11:38
-
-
Save Microno95/cc3a34ba54cc4e7f646ce971486f57ee to your computer and use it in GitHub Desktop.
Script showing issue with Keras 2.2.3 that occurs when trying to save best model via ModelCheckpoint callback.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import os | |
| import pandas as pd | |
| import sys | |
| import uuid | |
| import sys | |
| import tensorflow as tf | |
| config = tf.ConfigProto() | |
| config.gpu_options.allow_growth = True | |
| session = tf.Session(config=config) | |
| import keras | |
| import keras.backend as K | |
| import gc | |
| def main(**kwargs): | |
| model_dir = os.path.join("temp/", str(uuid.uuid1())+"/") | |
| os.makedirs(model_dir, exist_ok=True) | |
| model_name = os.path.join(model_dir, "model.best.hdf5") | |
| trainX = np.random.rand(1024, 24, 10) | |
| trainY = np.random.rand(1024, 1) | |
| testX = np.random.rand(256, 24, 10) | |
| testY = np.random.rand(256, 1) | |
| try: | |
| input_layer = keras.layers.Input(shape=trainX.shape[1:]) | |
| conv_layers = [] | |
| conv_net_out = [] | |
| conv_skip_out = [] | |
| conv_layers.append(keras.layers.Conv1D(kwargs['conv_layer_filter_num'], | |
| kwargs['conv_layer_size'], | |
| activation=kwargs['conv_layer_activation'], | |
| padding='causal', | |
| dilation_rate=1, | |
| activity_regularizer=keras.regularizers.l1(kwargs['conv_l1_reg_parameter']), | |
| kernel_regularizer=keras.regularizers.l2(kwargs['conv_l2_reg_parameter']))(input_layer)) | |
| intermediate_sum = keras.layers.BatchNormalization()(keras.layers.Activation("selu")(conv_layers[-1])) | |
| conv_skip_out.append(keras.layers.Conv1D(1,1)(intermediate_sum)) | |
| intermediate_sum = keras.layers.Conv1D(1,1)(intermediate_sum) | |
| conv_net_out.append(keras.layers.Add()([intermediate_sum, input_layer])) | |
| for conv_idx in range(kwargs['conv_layer_count'] - 1): | |
| conv_layers.append(keras.layers.Conv1D(kwargs['conv_layer_filter_num'], | |
| kwargs['conv_layer_size'], | |
| activation=kwargs['conv_layer_activation'], | |
| padding='causal', | |
| dilation_rate=kwargs['conv_layer_dilation_rate'] * (conv_idx + 1), | |
| activity_regularizer=keras.regularizers.l1(kwargs['conv_l1_reg_parameter']), | |
| kernel_regularizer=keras.regularizers.l2(kwargs['conv_l2_reg_parameter']))(conv_net_out[-1])) | |
| intermediate_sum = keras.layers.BatchNormalization()(keras.layers.Activation("selu")(conv_layers[-1])) | |
| conv_skip_out.append(keras.layers.Conv1D(1,1)(intermediate_sum)) | |
| intermediate_sum = keras.layers.Conv1D(1,1)(intermediate_sum) | |
| conv_net_out.append(keras.layers.Add()([intermediate_sum, conv_net_out[-1]])) | |
| conv_sum_layer = keras.layers.Add()(conv_net_out) | |
| csum_out = keras.layers.Activation('selu')(conv_sum_layer) | |
| oxo_layer1 = keras.layers.Conv1D(1,1)(csum_out) | |
| relu_layer = keras.layers.Activation('selu')(oxo_layer1) | |
| oxo_layer2 = keras.layers.Conv1D(1,1)(relu_layer) | |
| flat_oxo_layer = keras.layers.Flatten()(oxo_layer2) | |
| output_layer = keras.layers.Dense(trainY.shape[-1], activation="linear")(flat_oxo_layer) | |
| model = keras.models.Model(inputs=input_layer, outputs=output_layer) | |
| model.compile(loss=kwargs['loss'], optimizer=kwargs['optimizer']) | |
| test_csv_cb = keras.callbacks.CSVLogger(os.path.join(model_dir, 'progress.csv'), separator=',', append=False) | |
| early_stopping_cb = keras.callbacks.EarlyStopping(patience=15) | |
| model_saver_cb = keras.callbacks.ModelCheckpoint(model_name, monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=False, mode='auto', period=1) | |
| model.fit(trainX, trainY, validation_split=0.1, | |
| epochs=kwargs['training_epochs'], batch_size=kwargs['batch_size'], | |
| shuffle=True, verbose=0, callbacks=[early_stopping_cb, model_saver_cb, test_csv_cb]) | |
| model.save(model_name) | |
| try: | |
| model = keras.models.load_model(model_name) | |
| predictions = model.predict(testX) - testY | |
| gc.collect() | |
| return np.percentile(np.square(predictions), 75) | |
| except Exception as e: | |
| raise e | |
| except Exception as e: | |
| raise e | |
| if __name__ == "__main__": | |
| CNN_params = {'optimizer': 'adam', | |
| 'loss': 'mse', | |
| 'conv_layer_count': 8, | |
| 'conv_layer_filter_num': 16, | |
| 'conv_layer_size': 2, | |
| 'conv_layer_dilation_rate': 2, | |
| 'conv_layer_activation': 'selu', | |
| 'conv_l2_reg_parameter': 5e-4, | |
| 'conv_l1_reg_parameter': 5e-5, | |
| 'training_epochs': 100, | |
| 'batch_size': 256} | |
| print("75th percentile of test predictions is: {:.2e}".format(main(**CNN_params))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment