Created
September 20, 2023 19:07
-
-
Save yamil-abraham/95ce7cdd3968ada1f38daa77f186d4e9 to your computer and use it in GitHub Desktop.
Load Brest Cancer-SVMs.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "provenance": [], | |
| "authorship_tag": "ABX9TyPx1V+0UFmCDs66KJHe/Yz0", | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| }, | |
| "language_info": { | |
| "name": "python" | |
| } | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/yamil-abraham/95ce7cdd3968ada1f38daa77f186d4e9/load-brest-cancer-svms.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": { | |
| "id": "X3RRfOu95QaT" | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "from sklearn import datasets\n", | |
| "\n", | |
| "data = datasets.load_breast_cancer(as_frame=True)\n", | |
| "#https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "data.data" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 458 | |
| }, | |
| "id": "Xq2dIrhS5cXv", | |
| "outputId": "a769bc61-7558-4752-a03d-32a41c3d5dcf" | |
| }, | |
| "execution_count": 4, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| " mean radius mean texture mean perimeter mean area mean smoothness \\\n", | |
| "0 17.99 10.38 122.80 1001.0 0.11840 \n", | |
| "1 20.57 17.77 132.90 1326.0 0.08474 \n", | |
| "2 19.69 21.25 130.00 1203.0 0.10960 \n", | |
| "3 11.42 20.38 77.58 386.1 0.14250 \n", | |
| "4 20.29 14.34 135.10 1297.0 0.10030 \n", | |
| ".. ... ... ... ... ... \n", | |
| "564 21.56 22.39 142.00 1479.0 0.11100 \n", | |
| "565 20.13 28.25 131.20 1261.0 0.09780 \n", | |
| "566 16.60 28.08 108.30 858.1 0.08455 \n", | |
| "567 20.60 29.33 140.10 1265.0 0.11780 \n", | |
| "568 7.76 24.54 47.92 181.0 0.05263 \n", | |
| "\n", | |
| " mean compactness mean concavity mean concave points mean symmetry \\\n", | |
| "0 0.27760 0.30010 0.14710 0.2419 \n", | |
| "1 0.07864 0.08690 0.07017 0.1812 \n", | |
| "2 0.15990 0.19740 0.12790 0.2069 \n", | |
| "3 0.28390 0.24140 0.10520 0.2597 \n", | |
| "4 0.13280 0.19800 0.10430 0.1809 \n", | |
| ".. ... ... ... ... \n", | |
| "564 0.11590 0.24390 0.13890 0.1726 \n", | |
| "565 0.10340 0.14400 0.09791 0.1752 \n", | |
| "566 0.10230 0.09251 0.05302 0.1590 \n", | |
| "567 0.27700 0.35140 0.15200 0.2397 \n", | |
| "568 0.04362 0.00000 0.00000 0.1587 \n", | |
| "\n", | |
| " mean fractal dimension ... worst radius worst texture \\\n", | |
| "0 0.07871 ... 25.380 17.33 \n", | |
| "1 0.05667 ... 24.990 23.41 \n", | |
| "2 0.05999 ... 23.570 25.53 \n", | |
| "3 0.09744 ... 14.910 26.50 \n", | |
| "4 0.05883 ... 22.540 16.67 \n", | |
| ".. ... ... ... ... \n", | |
| "564 0.05623 ... 25.450 26.40 \n", | |
| "565 0.05533 ... 23.690 38.25 \n", | |
| "566 0.05648 ... 18.980 34.12 \n", | |
| "567 0.07016 ... 25.740 39.42 \n", | |
| "568 0.05884 ... 9.456 30.37 \n", | |
| "\n", | |
| " worst perimeter worst area worst smoothness worst compactness \\\n", | |
| "0 184.60 2019.0 0.16220 0.66560 \n", | |
| "1 158.80 1956.0 0.12380 0.18660 \n", | |
| "2 152.50 1709.0 0.14440 0.42450 \n", | |
| "3 98.87 567.7 0.20980 0.86630 \n", | |
| "4 152.20 1575.0 0.13740 0.20500 \n", | |
| ".. ... ... ... ... \n", | |
| "564 166.10 2027.0 0.14100 0.21130 \n", | |
| "565 155.00 1731.0 0.11660 0.19220 \n", | |
| "566 126.70 1124.0 0.11390 0.30940 \n", | |
| "567 184.60 1821.0 0.16500 0.86810 \n", | |
| "568 59.16 268.6 0.08996 0.06444 \n", | |
| "\n", | |
| " worst concavity worst concave points worst symmetry \\\n", | |
| "0 0.7119 0.2654 0.4601 \n", | |
| "1 0.2416 0.1860 0.2750 \n", | |
| "2 0.4504 0.2430 0.3613 \n", | |
| "3 0.6869 0.2575 0.6638 \n", | |
| "4 0.4000 0.1625 0.2364 \n", | |
| ".. ... ... ... \n", | |
| "564 0.4107 0.2216 0.2060 \n", | |
| "565 0.3215 0.1628 0.2572 \n", | |
| "566 0.3403 0.1418 0.2218 \n", | |
| "567 0.9387 0.2650 0.4087 \n", | |
| "568 0.0000 0.0000 0.2871 \n", | |
| "\n", | |
| " worst fractal dimension \n", | |
| "0 0.11890 \n", | |
| "1 0.08902 \n", | |
| "2 0.08758 \n", | |
| "3 0.17300 \n", | |
| "4 0.07678 \n", | |
| ".. ... \n", | |
| "564 0.07115 \n", | |
| "565 0.06637 \n", | |
| "566 0.07820 \n", | |
| "567 0.12400 \n", | |
| "568 0.07039 \n", | |
| "\n", | |
| "[569 rows x 30 columns]" | |
| ], | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-fce80ff3-f1b1-4672-8e4a-8211f92421c4\" class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>mean radius</th>\n", | |
| " <th>mean texture</th>\n", | |
| " <th>mean perimeter</th>\n", | |
| " <th>mean area</th>\n", | |
| " <th>mean smoothness</th>\n", | |
| " <th>mean compactness</th>\n", | |
| " <th>mean concavity</th>\n", | |
| " <th>mean concave points</th>\n", | |
| " <th>mean symmetry</th>\n", | |
| " <th>mean fractal dimension</th>\n", | |
| " <th>...</th>\n", | |
| " <th>worst radius</th>\n", | |
| " <th>worst texture</th>\n", | |
| " <th>worst perimeter</th>\n", | |
| " <th>worst area</th>\n", | |
| " <th>worst smoothness</th>\n", | |
| " <th>worst compactness</th>\n", | |
| " <th>worst concavity</th>\n", | |
| " <th>worst concave points</th>\n", | |
| " <th>worst symmetry</th>\n", | |
| " <th>worst fractal dimension</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>17.99</td>\n", | |
| " <td>10.38</td>\n", | |
| " <td>122.80</td>\n", | |
| " <td>1001.0</td>\n", | |
| " <td>0.11840</td>\n", | |
| " <td>0.27760</td>\n", | |
| " <td>0.30010</td>\n", | |
| " <td>0.14710</td>\n", | |
| " <td>0.2419</td>\n", | |
| " <td>0.07871</td>\n", | |
| " <td>...</td>\n", | |
| " <td>25.380</td>\n", | |
| " <td>17.33</td>\n", | |
| " <td>184.60</td>\n", | |
| " <td>2019.0</td>\n", | |
| " <td>0.16220</td>\n", | |
| " <td>0.66560</td>\n", | |
| " <td>0.7119</td>\n", | |
| " <td>0.2654</td>\n", | |
| " <td>0.4601</td>\n", | |
| " <td>0.11890</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>20.57</td>\n", | |
| " <td>17.77</td>\n", | |
| " <td>132.90</td>\n", | |
| " <td>1326.0</td>\n", | |
| " <td>0.08474</td>\n", | |
| " <td>0.07864</td>\n", | |
| " <td>0.08690</td>\n", | |
| " <td>0.07017</td>\n", | |
| " <td>0.1812</td>\n", | |
| " <td>0.05667</td>\n", | |
| " <td>...</td>\n", | |
| " <td>24.990</td>\n", | |
| " <td>23.41</td>\n", | |
| " <td>158.80</td>\n", | |
| " <td>1956.0</td>\n", | |
| " <td>0.12380</td>\n", | |
| " <td>0.18660</td>\n", | |
| " <td>0.2416</td>\n", | |
| " <td>0.1860</td>\n", | |
| " <td>0.2750</td>\n", | |
| " <td>0.08902</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>19.69</td>\n", | |
| " <td>21.25</td>\n", | |
| " <td>130.00</td>\n", | |
| " <td>1203.0</td>\n", | |
| " <td>0.10960</td>\n", | |
| " <td>0.15990</td>\n", | |
| " <td>0.19740</td>\n", | |
| " <td>0.12790</td>\n", | |
| " <td>0.2069</td>\n", | |
| " <td>0.05999</td>\n", | |
| " <td>...</td>\n", | |
| " <td>23.570</td>\n", | |
| " <td>25.53</td>\n", | |
| " <td>152.50</td>\n", | |
| " <td>1709.0</td>\n", | |
| " <td>0.14440</td>\n", | |
| " <td>0.42450</td>\n", | |
| " <td>0.4504</td>\n", | |
| " <td>0.2430</td>\n", | |
| " <td>0.3613</td>\n", | |
| " <td>0.08758</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>11.42</td>\n", | |
| " <td>20.38</td>\n", | |
| " <td>77.58</td>\n", | |
| " <td>386.1</td>\n", | |
| " <td>0.14250</td>\n", | |
| " <td>0.28390</td>\n", | |
| " <td>0.24140</td>\n", | |
| " <td>0.10520</td>\n", | |
| " <td>0.2597</td>\n", | |
| " <td>0.09744</td>\n", | |
| " <td>...</td>\n", | |
| " <td>14.910</td>\n", | |
| " <td>26.50</td>\n", | |
| " <td>98.87</td>\n", | |
| " <td>567.7</td>\n", | |
| " <td>0.20980</td>\n", | |
| " <td>0.86630</td>\n", | |
| " <td>0.6869</td>\n", | |
| " <td>0.2575</td>\n", | |
| " <td>0.6638</td>\n", | |
| " <td>0.17300</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>20.29</td>\n", | |
| " <td>14.34</td>\n", | |
| " <td>135.10</td>\n", | |
| " <td>1297.0</td>\n", | |
| " <td>0.10030</td>\n", | |
| " <td>0.13280</td>\n", | |
| " <td>0.19800</td>\n", | |
| " <td>0.10430</td>\n", | |
| " <td>0.1809</td>\n", | |
| " <td>0.05883</td>\n", | |
| " <td>...</td>\n", | |
| " <td>22.540</td>\n", | |
| " <td>16.67</td>\n", | |
| " <td>152.20</td>\n", | |
| " <td>1575.0</td>\n", | |
| " <td>0.13740</td>\n", | |
| " <td>0.20500</td>\n", | |
| " <td>0.4000</td>\n", | |
| " <td>0.1625</td>\n", | |
| " <td>0.2364</td>\n", | |
| " <td>0.07678</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>...</th>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>564</th>\n", | |
| " <td>21.56</td>\n", | |
| " <td>22.39</td>\n", | |
| " <td>142.00</td>\n", | |
| " <td>1479.0</td>\n", | |
| " <td>0.11100</td>\n", | |
| " <td>0.11590</td>\n", | |
| " <td>0.24390</td>\n", | |
| " <td>0.13890</td>\n", | |
| " <td>0.1726</td>\n", | |
| " <td>0.05623</td>\n", | |
| " <td>...</td>\n", | |
| " <td>25.450</td>\n", | |
| " <td>26.40</td>\n", | |
| " <td>166.10</td>\n", | |
| " <td>2027.0</td>\n", | |
| " <td>0.14100</td>\n", | |
| " <td>0.21130</td>\n", | |
| " <td>0.4107</td>\n", | |
| " <td>0.2216</td>\n", | |
| " <td>0.2060</td>\n", | |
| " <td>0.07115</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>565</th>\n", | |
| " <td>20.13</td>\n", | |
| " <td>28.25</td>\n", | |
| " <td>131.20</td>\n", | |
| " <td>1261.0</td>\n", | |
| " <td>0.09780</td>\n", | |
| " <td>0.10340</td>\n", | |
| " <td>0.14400</td>\n", | |
| " <td>0.09791</td>\n", | |
| " <td>0.1752</td>\n", | |
| " <td>0.05533</td>\n", | |
| " <td>...</td>\n", | |
| " <td>23.690</td>\n", | |
| " <td>38.25</td>\n", | |
| " <td>155.00</td>\n", | |
| " <td>1731.0</td>\n", | |
| " <td>0.11660</td>\n", | |
| " <td>0.19220</td>\n", | |
| " <td>0.3215</td>\n", | |
| " <td>0.1628</td>\n", | |
| " <td>0.2572</td>\n", | |
| " <td>0.06637</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>566</th>\n", | |
| " <td>16.60</td>\n", | |
| " <td>28.08</td>\n", | |
| " <td>108.30</td>\n", | |
| " <td>858.1</td>\n", | |
| " <td>0.08455</td>\n", | |
| " <td>0.10230</td>\n", | |
| " <td>0.09251</td>\n", | |
| " <td>0.05302</td>\n", | |
| " <td>0.1590</td>\n", | |
| " <td>0.05648</td>\n", | |
| " <td>...</td>\n", | |
| " <td>18.980</td>\n", | |
| " <td>34.12</td>\n", | |
| " <td>126.70</td>\n", | |
| " <td>1124.0</td>\n", | |
| " <td>0.11390</td>\n", | |
| " <td>0.30940</td>\n", | |
| " <td>0.3403</td>\n", | |
| " <td>0.1418</td>\n", | |
| " <td>0.2218</td>\n", | |
| " <td>0.07820</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>567</th>\n", | |
| " <td>20.60</td>\n", | |
| " <td>29.33</td>\n", | |
| " <td>140.10</td>\n", | |
| " <td>1265.0</td>\n", | |
| " <td>0.11780</td>\n", | |
| " <td>0.27700</td>\n", | |
| " <td>0.35140</td>\n", | |
| " <td>0.15200</td>\n", | |
| " <td>0.2397</td>\n", | |
| " <td>0.07016</td>\n", | |
| " <td>...</td>\n", | |
| " <td>25.740</td>\n", | |
| " <td>39.42</td>\n", | |
| " <td>184.60</td>\n", | |
| " <td>1821.0</td>\n", | |
| " <td>0.16500</td>\n", | |
| " <td>0.86810</td>\n", | |
| " <td>0.9387</td>\n", | |
| " <td>0.2650</td>\n", | |
| " <td>0.4087</td>\n", | |
| " <td>0.12400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>568</th>\n", | |
| " <td>7.76</td>\n", | |
| " <td>24.54</td>\n", | |
| " <td>47.92</td>\n", | |
| " <td>181.0</td>\n", | |
| " <td>0.05263</td>\n", | |
| " <td>0.04362</td>\n", | |
| " <td>0.00000</td>\n", | |
| " <td>0.00000</td>\n", | |
| " <td>0.1587</td>\n", | |
| " <td>0.05884</td>\n", | |
| " <td>...</td>\n", | |
| " <td>9.456</td>\n", | |
| " <td>30.37</td>\n", | |
| " <td>59.16</td>\n", | |
| " <td>268.6</td>\n", | |
| " <td>0.08996</td>\n", | |
| " <td>0.06444</td>\n", | |
| " <td>0.0000</td>\n", | |
| " <td>0.0000</td>\n", | |
| " <td>0.2871</td>\n", | |
| " <td>0.07039</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>569 rows × 30 columns</p>\n", | |
| "</div>\n", | |
| " <div class=\"colab-df-buttons\">\n", | |
| "\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-fce80ff3-f1b1-4672-8e4a-8211f92421c4')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
| " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| "\n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-buttons div {\n", | |
| " margin-bottom: 4px;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-fce80ff3-f1b1-4672-8e4a-8211f92421c4 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-fce80ff3-f1b1-4672-8e4a-8211f92421c4');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| "\n", | |
| "\n", | |
| "<div id=\"df-702bae60-ff4f-479a-8544-dc160bdf5e92\">\n", | |
| " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-702bae60-ff4f-479a-8544-dc160bdf5e92')\"\n", | |
| " title=\"Suggest charts.\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <g>\n", | |
| " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
| " </g>\n", | |
| "</svg>\n", | |
| " </button>\n", | |
| "\n", | |
| "<style>\n", | |
| " .colab-df-quickchart {\n", | |
| " --bg-color: #E8F0FE;\n", | |
| " --fill-color: #1967D2;\n", | |
| " --hover-bg-color: #E2EBFA;\n", | |
| " --hover-fill-color: #174EA6;\n", | |
| " --disabled-fill-color: #AAA;\n", | |
| " --disabled-bg-color: #DDD;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-quickchart {\n", | |
| " --bg-color: #3B4455;\n", | |
| " --fill-color: #D2E3FC;\n", | |
| " --hover-bg-color: #434B5C;\n", | |
| " --hover-fill-color: #FFFFFF;\n", | |
| " --disabled-bg-color: #3B4455;\n", | |
| " --disabled-fill-color: #666;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart {\n", | |
| " background-color: var(--bg-color);\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: var(--fill-color);\n", | |
| " height: 32px;\n", | |
| " padding: 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart:hover {\n", | |
| " background-color: var(--hover-bg-color);\n", | |
| " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: var(--button-hover-fill-color);\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart-complete:disabled,\n", | |
| " .colab-df-quickchart-complete:disabled:hover {\n", | |
| " background-color: var(--disabled-bg-color);\n", | |
| " fill: var(--disabled-fill-color);\n", | |
| " box-shadow: none;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-spinner {\n", | |
| " border: 2px solid var(--fill-color);\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " animation:\n", | |
| " spin 1s steps(1) infinite;\n", | |
| " }\n", | |
| "\n", | |
| " @keyframes spin {\n", | |
| " 0% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " }\n", | |
| " 20% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 30% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 40% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 60% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 80% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " 90% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " }\n", | |
| "</style>\n", | |
| "\n", | |
| " <script>\n", | |
| " async function quickchart(key) {\n", | |
| " const quickchartButtonEl =\n", | |
| " document.querySelector('#' + key + ' button');\n", | |
| " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
| " quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
| " try {\n", | |
| " const charts = await google.colab.kernel.invokeFunction(\n", | |
| " 'suggestCharts', [key], {});\n", | |
| " } catch (error) {\n", | |
| " console.error('Error during call to suggestCharts:', error);\n", | |
| " }\n", | |
| " quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
| " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
| " }\n", | |
| " (() => {\n", | |
| " let quickchartButtonEl =\n", | |
| " document.querySelector('#df-702bae60-ff4f-479a-8544-dc160bdf5e92 button');\n", | |
| " quickchartButtonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| " })();\n", | |
| " </script>\n", | |
| "</div>\n", | |
| " </div>\n", | |
| " </div>\n" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 4 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "data.frame.head()" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 270 | |
| }, | |
| "id": "5yKcS-Hh5fal", | |
| "outputId": "558ccaee-627a-48b3-d854-efe6eb37c747" | |
| }, | |
| "execution_count": 6, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| " mean radius mean texture mean perimeter mean area mean smoothness \\\n", | |
| "0 17.99 10.38 122.80 1001.0 0.11840 \n", | |
| "1 20.57 17.77 132.90 1326.0 0.08474 \n", | |
| "2 19.69 21.25 130.00 1203.0 0.10960 \n", | |
| "3 11.42 20.38 77.58 386.1 0.14250 \n", | |
| "4 20.29 14.34 135.10 1297.0 0.10030 \n", | |
| "\n", | |
| " mean compactness mean concavity mean concave points mean symmetry \\\n", | |
| "0 0.27760 0.3001 0.14710 0.2419 \n", | |
| "1 0.07864 0.0869 0.07017 0.1812 \n", | |
| "2 0.15990 0.1974 0.12790 0.2069 \n", | |
| "3 0.28390 0.2414 0.10520 0.2597 \n", | |
| "4 0.13280 0.1980 0.10430 0.1809 \n", | |
| "\n", | |
| " mean fractal dimension ... worst texture worst perimeter worst area \\\n", | |
| "0 0.07871 ... 17.33 184.60 2019.0 \n", | |
| "1 0.05667 ... 23.41 158.80 1956.0 \n", | |
| "2 0.05999 ... 25.53 152.50 1709.0 \n", | |
| "3 0.09744 ... 26.50 98.87 567.7 \n", | |
| "4 0.05883 ... 16.67 152.20 1575.0 \n", | |
| "\n", | |
| " worst smoothness worst compactness worst concavity worst concave points \\\n", | |
| "0 0.1622 0.6656 0.7119 0.2654 \n", | |
| "1 0.1238 0.1866 0.2416 0.1860 \n", | |
| "2 0.1444 0.4245 0.4504 0.2430 \n", | |
| "3 0.2098 0.8663 0.6869 0.2575 \n", | |
| "4 0.1374 0.2050 0.4000 0.1625 \n", | |
| "\n", | |
| " worst symmetry worst fractal dimension target \n", | |
| "0 0.4601 0.11890 0 \n", | |
| "1 0.2750 0.08902 0 \n", | |
| "2 0.3613 0.08758 0 \n", | |
| "3 0.6638 0.17300 0 \n", | |
| "4 0.2364 0.07678 0 \n", | |
| "\n", | |
| "[5 rows x 31 columns]" | |
| ], | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-73ea8359-a656-47d8-b98d-dd6f9520d525\" class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>mean radius</th>\n", | |
| " <th>mean texture</th>\n", | |
| " <th>mean perimeter</th>\n", | |
| " <th>mean area</th>\n", | |
| " <th>mean smoothness</th>\n", | |
| " <th>mean compactness</th>\n", | |
| " <th>mean concavity</th>\n", | |
| " <th>mean concave points</th>\n", | |
| " <th>mean symmetry</th>\n", | |
| " <th>mean fractal dimension</th>\n", | |
| " <th>...</th>\n", | |
| " <th>worst texture</th>\n", | |
| " <th>worst perimeter</th>\n", | |
| " <th>worst area</th>\n", | |
| " <th>worst smoothness</th>\n", | |
| " <th>worst compactness</th>\n", | |
| " <th>worst concavity</th>\n", | |
| " <th>worst concave points</th>\n", | |
| " <th>worst symmetry</th>\n", | |
| " <th>worst fractal dimension</th>\n", | |
| " <th>target</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>17.99</td>\n", | |
| " <td>10.38</td>\n", | |
| " <td>122.80</td>\n", | |
| " <td>1001.0</td>\n", | |
| " <td>0.11840</td>\n", | |
| " <td>0.27760</td>\n", | |
| " <td>0.3001</td>\n", | |
| " <td>0.14710</td>\n", | |
| " <td>0.2419</td>\n", | |
| " <td>0.07871</td>\n", | |
| " <td>...</td>\n", | |
| " <td>17.33</td>\n", | |
| " <td>184.60</td>\n", | |
| " <td>2019.0</td>\n", | |
| " <td>0.1622</td>\n", | |
| " <td>0.6656</td>\n", | |
| " <td>0.7119</td>\n", | |
| " <td>0.2654</td>\n", | |
| " <td>0.4601</td>\n", | |
| " <td>0.11890</td>\n", | |
| " <td>0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>20.57</td>\n", | |
| " <td>17.77</td>\n", | |
| " <td>132.90</td>\n", | |
| " <td>1326.0</td>\n", | |
| " <td>0.08474</td>\n", | |
| " <td>0.07864</td>\n", | |
| " <td>0.0869</td>\n", | |
| " <td>0.07017</td>\n", | |
| " <td>0.1812</td>\n", | |
| " <td>0.05667</td>\n", | |
| " <td>...</td>\n", | |
| " <td>23.41</td>\n", | |
| " <td>158.80</td>\n", | |
| " <td>1956.0</td>\n", | |
| " <td>0.1238</td>\n", | |
| " <td>0.1866</td>\n", | |
| " <td>0.2416</td>\n", | |
| " <td>0.1860</td>\n", | |
| " <td>0.2750</td>\n", | |
| " <td>0.08902</td>\n", | |
| " <td>0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>19.69</td>\n", | |
| " <td>21.25</td>\n", | |
| " <td>130.00</td>\n", | |
| " <td>1203.0</td>\n", | |
| " <td>0.10960</td>\n", | |
| " <td>0.15990</td>\n", | |
| " <td>0.1974</td>\n", | |
| " <td>0.12790</td>\n", | |
| " <td>0.2069</td>\n", | |
| " <td>0.05999</td>\n", | |
| " <td>...</td>\n", | |
| " <td>25.53</td>\n", | |
| " <td>152.50</td>\n", | |
| " <td>1709.0</td>\n", | |
| " <td>0.1444</td>\n", | |
| " <td>0.4245</td>\n", | |
| " <td>0.4504</td>\n", | |
| " <td>0.2430</td>\n", | |
| " <td>0.3613</td>\n", | |
| " <td>0.08758</td>\n", | |
| " <td>0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>11.42</td>\n", | |
| " <td>20.38</td>\n", | |
| " <td>77.58</td>\n", | |
| " <td>386.1</td>\n", | |
| " <td>0.14250</td>\n", | |
| " <td>0.28390</td>\n", | |
| " <td>0.2414</td>\n", | |
| " <td>0.10520</td>\n", | |
| " <td>0.2597</td>\n", | |
| " <td>0.09744</td>\n", | |
| " <td>...</td>\n", | |
| " <td>26.50</td>\n", | |
| " <td>98.87</td>\n", | |
| " <td>567.7</td>\n", | |
| " <td>0.2098</td>\n", | |
| " <td>0.8663</td>\n", | |
| " <td>0.6869</td>\n", | |
| " <td>0.2575</td>\n", | |
| " <td>0.6638</td>\n", | |
| " <td>0.17300</td>\n", | |
| " <td>0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>20.29</td>\n", | |
| " <td>14.34</td>\n", | |
| " <td>135.10</td>\n", | |
| " <td>1297.0</td>\n", | |
| " <td>0.10030</td>\n", | |
| " <td>0.13280</td>\n", | |
| " <td>0.1980</td>\n", | |
| " <td>0.10430</td>\n", | |
| " <td>0.1809</td>\n", | |
| " <td>0.05883</td>\n", | |
| " <td>...</td>\n", | |
| " <td>16.67</td>\n", | |
| " <td>152.20</td>\n", | |
| " <td>1575.0</td>\n", | |
| " <td>0.1374</td>\n", | |
| " <td>0.2050</td>\n", | |
| " <td>0.4000</td>\n", | |
| " <td>0.1625</td>\n", | |
| " <td>0.2364</td>\n", | |
| " <td>0.07678</td>\n", | |
| " <td>0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows × 31 columns</p>\n", | |
| "</div>\n", | |
| " <div class=\"colab-df-buttons\">\n", | |
| "\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-73ea8359-a656-47d8-b98d-dd6f9520d525')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
| " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| "\n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-buttons div {\n", | |
| " margin-bottom: 4px;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-73ea8359-a656-47d8-b98d-dd6f9520d525 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-73ea8359-a656-47d8-b98d-dd6f9520d525');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| "\n", | |
| "\n", | |
| "<div id=\"df-c917fb92-fa56-4a2d-90d1-7d507dfd187e\">\n", | |
| " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-c917fb92-fa56-4a2d-90d1-7d507dfd187e')\"\n", | |
| " title=\"Suggest charts.\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <g>\n", | |
| " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
| " </g>\n", | |
| "</svg>\n", | |
| " </button>\n", | |
| "\n", | |
| "<style>\n", | |
| " .colab-df-quickchart {\n", | |
| " --bg-color: #E8F0FE;\n", | |
| " --fill-color: #1967D2;\n", | |
| " --hover-bg-color: #E2EBFA;\n", | |
| " --hover-fill-color: #174EA6;\n", | |
| " --disabled-fill-color: #AAA;\n", | |
| " --disabled-bg-color: #DDD;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-quickchart {\n", | |
| " --bg-color: #3B4455;\n", | |
| " --fill-color: #D2E3FC;\n", | |
| " --hover-bg-color: #434B5C;\n", | |
| " --hover-fill-color: #FFFFFF;\n", | |
| " --disabled-bg-color: #3B4455;\n", | |
| " --disabled-fill-color: #666;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart {\n", | |
| " background-color: var(--bg-color);\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: var(--fill-color);\n", | |
| " height: 32px;\n", | |
| " padding: 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart:hover {\n", | |
| " background-color: var(--hover-bg-color);\n", | |
| " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: var(--button-hover-fill-color);\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart-complete:disabled,\n", | |
| " .colab-df-quickchart-complete:disabled:hover {\n", | |
| " background-color: var(--disabled-bg-color);\n", | |
| " fill: var(--disabled-fill-color);\n", | |
| " box-shadow: none;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-spinner {\n", | |
| " border: 2px solid var(--fill-color);\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " animation:\n", | |
| " spin 1s steps(1) infinite;\n", | |
| " }\n", | |
| "\n", | |
| " @keyframes spin {\n", | |
| " 0% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " }\n", | |
| " 20% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 30% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 40% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 60% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 80% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " 90% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " }\n", | |
| "</style>\n", | |
| "\n", | |
| " <script>\n", | |
| " async function quickchart(key) {\n", | |
| " const quickchartButtonEl =\n", | |
| " document.querySelector('#' + key + ' button');\n", | |
| " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
| " quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
| " try {\n", | |
| " const charts = await google.colab.kernel.invokeFunction(\n", | |
| " 'suggestCharts', [key], {});\n", | |
| " } catch (error) {\n", | |
| " console.error('Error during call to suggestCharts:', error);\n", | |
| " }\n", | |
| " quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
| " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
| " }\n", | |
| " (() => {\n", | |
| " let quickchartButtonEl =\n", | |
| " document.querySelector('#df-c917fb92-fa56-4a2d-90d1-7d507dfd187e button');\n", | |
| " quickchartButtonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| " })();\n", | |
| " </script>\n", | |
| "</div>\n", | |
| " </div>\n", | |
| " </div>\n" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 6 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "data.frame.info()" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "R6JKJVMC5kjM", | |
| "outputId": "05b6895d-f338-41bf-d1ba-15fd0357b406" | |
| }, | |
| "execution_count": 7, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "RangeIndex: 569 entries, 0 to 568\n", | |
| "Data columns (total 31 columns):\n", | |
| " # Column Non-Null Count Dtype \n", | |
| "--- ------ -------------- ----- \n", | |
| " 0 mean radius 569 non-null float64\n", | |
| " 1 mean texture 569 non-null float64\n", | |
| " 2 mean perimeter 569 non-null float64\n", | |
| " 3 mean area 569 non-null float64\n", | |
| " 4 mean smoothness 569 non-null float64\n", | |
| " 5 mean compactness 569 non-null float64\n", | |
| " 6 mean concavity 569 non-null float64\n", | |
| " 7 mean concave points 569 non-null float64\n", | |
| " 8 mean symmetry 569 non-null float64\n", | |
| " 9 mean fractal dimension 569 non-null float64\n", | |
| " 10 radius error 569 non-null float64\n", | |
| " 11 texture error 569 non-null float64\n", | |
| " 12 perimeter error 569 non-null float64\n", | |
| " 13 area error 569 non-null float64\n", | |
| " 14 smoothness error 569 non-null float64\n", | |
| " 15 compactness error 569 non-null float64\n", | |
| " 16 concavity error 569 non-null float64\n", | |
| " 17 concave points error 569 non-null float64\n", | |
| " 18 symmetry error 569 non-null float64\n", | |
| " 19 fractal dimension error 569 non-null float64\n", | |
| " 20 worst radius 569 non-null float64\n", | |
| " 21 worst texture 569 non-null float64\n", | |
| " 22 worst perimeter 569 non-null float64\n", | |
| " 23 worst area 569 non-null float64\n", | |
| " 24 worst smoothness 569 non-null float64\n", | |
| " 25 worst compactness 569 non-null float64\n", | |
| " 26 worst concavity 569 non-null float64\n", | |
| " 27 worst concave points 569 non-null float64\n", | |
| " 28 worst symmetry 569 non-null float64\n", | |
| " 29 worst fractal dimension 569 non-null float64\n", | |
| " 30 target 569 non-null int64 \n", | |
| "dtypes: float64(30), int64(1)\n", | |
| "memory usage: 137.9 KB\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "data.frame.isna().sum()" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "aIGX7Fiw5sRt", | |
| "outputId": "2ca20d6c-4150-41c2-e17c-a279f6273359" | |
| }, | |
| "execution_count": 8, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "mean radius 0\n", | |
| "mean texture 0\n", | |
| "mean perimeter 0\n", | |
| "mean area 0\n", | |
| "mean smoothness 0\n", | |
| "mean compactness 0\n", | |
| "mean concavity 0\n", | |
| "mean concave points 0\n", | |
| "mean symmetry 0\n", | |
| "mean fractal dimension 0\n", | |
| "radius error 0\n", | |
| "texture error 0\n", | |
| "perimeter error 0\n", | |
| "area error 0\n", | |
| "smoothness error 0\n", | |
| "compactness error 0\n", | |
| "concavity error 0\n", | |
| "concave points error 0\n", | |
| "symmetry error 0\n", | |
| "fractal dimension error 0\n", | |
| "worst radius 0\n", | |
| "worst texture 0\n", | |
| "worst perimeter 0\n", | |
| "worst area 0\n", | |
| "worst smoothness 0\n", | |
| "worst compactness 0\n", | |
| "worst concavity 0\n", | |
| "worst concave points 0\n", | |
| "worst symmetry 0\n", | |
| "worst fractal dimension 0\n", | |
| "target 0\n", | |
| "dtype: int64" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 8 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "data.frame.describe()" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 384 | |
| }, | |
| "id": "_0PZ2_lr51sn", | |
| "outputId": "cbf26383-8d2d-488a-deaf-fb301898f06e" | |
| }, | |
| "execution_count": 9, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| " mean radius mean texture mean perimeter mean area \\\n", | |
| "count 569.000000 569.000000 569.000000 569.000000 \n", | |
| "mean 14.127292 19.289649 91.969033 654.889104 \n", | |
| "std 3.524049 4.301036 24.298981 351.914129 \n", | |
| "min 6.981000 9.710000 43.790000 143.500000 \n", | |
| "25% 11.700000 16.170000 75.170000 420.300000 \n", | |
| "50% 13.370000 18.840000 86.240000 551.100000 \n", | |
| "75% 15.780000 21.800000 104.100000 782.700000 \n", | |
| "max 28.110000 39.280000 188.500000 2501.000000 \n", | |
| "\n", | |
| " mean smoothness mean compactness mean concavity mean concave points \\\n", | |
| "count 569.000000 569.000000 569.000000 569.000000 \n", | |
| "mean 0.096360 0.104341 0.088799 0.048919 \n", | |
| "std 0.014064 0.052813 0.079720 0.038803 \n", | |
| "min 0.052630 0.019380 0.000000 0.000000 \n", | |
| "25% 0.086370 0.064920 0.029560 0.020310 \n", | |
| "50% 0.095870 0.092630 0.061540 0.033500 \n", | |
| "75% 0.105300 0.130400 0.130700 0.074000 \n", | |
| "max 0.163400 0.345400 0.426800 0.201200 \n", | |
| "\n", | |
| " mean symmetry mean fractal dimension ... worst texture \\\n", | |
| "count 569.000000 569.000000 ... 569.000000 \n", | |
| "mean 0.181162 0.062798 ... 25.677223 \n", | |
| "std 0.027414 0.007060 ... 6.146258 \n", | |
| "min 0.106000 0.049960 ... 12.020000 \n", | |
| "25% 0.161900 0.057700 ... 21.080000 \n", | |
| "50% 0.179200 0.061540 ... 25.410000 \n", | |
| "75% 0.195700 0.066120 ... 29.720000 \n", | |
| "max 0.304000 0.097440 ... 49.540000 \n", | |
| "\n", | |
| " worst perimeter worst area worst smoothness worst compactness \\\n", | |
| "count 569.000000 569.000000 569.000000 569.000000 \n", | |
| "mean 107.261213 880.583128 0.132369 0.254265 \n", | |
| "std 33.602542 569.356993 0.022832 0.157336 \n", | |
| "min 50.410000 185.200000 0.071170 0.027290 \n", | |
| "25% 84.110000 515.300000 0.116600 0.147200 \n", | |
| "50% 97.660000 686.500000 0.131300 0.211900 \n", | |
| "75% 125.400000 1084.000000 0.146000 0.339100 \n", | |
| "max 251.200000 4254.000000 0.222600 1.058000 \n", | |
| "\n", | |
| " worst concavity worst concave points worst symmetry \\\n", | |
| "count 569.000000 569.000000 569.000000 \n", | |
| "mean 0.272188 0.114606 0.290076 \n", | |
| "std 0.208624 0.065732 0.061867 \n", | |
| "min 0.000000 0.000000 0.156500 \n", | |
| "25% 0.114500 0.064930 0.250400 \n", | |
| "50% 0.226700 0.099930 0.282200 \n", | |
| "75% 0.382900 0.161400 0.317900 \n", | |
| "max 1.252000 0.291000 0.663800 \n", | |
| "\n", | |
| " worst fractal dimension target \n", | |
| "count 569.000000 569.000000 \n", | |
| "mean 0.083946 0.627417 \n", | |
| "std 0.018061 0.483918 \n", | |
| "min 0.055040 0.000000 \n", | |
| "25% 0.071460 0.000000 \n", | |
| "50% 0.080040 1.000000 \n", | |
| "75% 0.092080 1.000000 \n", | |
| "max 0.207500 1.000000 \n", | |
| "\n", | |
| "[8 rows x 31 columns]" | |
| ], | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-edc835d9-628b-4f63-ab05-593a0b7760e8\" class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>mean radius</th>\n", | |
| " <th>mean texture</th>\n", | |
| " <th>mean perimeter</th>\n", | |
| " <th>mean area</th>\n", | |
| " <th>mean smoothness</th>\n", | |
| " <th>mean compactness</th>\n", | |
| " <th>mean concavity</th>\n", | |
| " <th>mean concave points</th>\n", | |
| " <th>mean symmetry</th>\n", | |
| " <th>mean fractal dimension</th>\n", | |
| " <th>...</th>\n", | |
| " <th>worst texture</th>\n", | |
| " <th>worst perimeter</th>\n", | |
| " <th>worst area</th>\n", | |
| " <th>worst smoothness</th>\n", | |
| " <th>worst compactness</th>\n", | |
| " <th>worst concavity</th>\n", | |
| " <th>worst concave points</th>\n", | |
| " <th>worst symmetry</th>\n", | |
| " <th>worst fractal dimension</th>\n", | |
| " <th>target</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>count</th>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>...</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " <td>569.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>mean</th>\n", | |
| " <td>14.127292</td>\n", | |
| " <td>19.289649</td>\n", | |
| " <td>91.969033</td>\n", | |
| " <td>654.889104</td>\n", | |
| " <td>0.096360</td>\n", | |
| " <td>0.104341</td>\n", | |
| " <td>0.088799</td>\n", | |
| " <td>0.048919</td>\n", | |
| " <td>0.181162</td>\n", | |
| " <td>0.062798</td>\n", | |
| " <td>...</td>\n", | |
| " <td>25.677223</td>\n", | |
| " <td>107.261213</td>\n", | |
| " <td>880.583128</td>\n", | |
| " <td>0.132369</td>\n", | |
| " <td>0.254265</td>\n", | |
| " <td>0.272188</td>\n", | |
| " <td>0.114606</td>\n", | |
| " <td>0.290076</td>\n", | |
| " <td>0.083946</td>\n", | |
| " <td>0.627417</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>std</th>\n", | |
| " <td>3.524049</td>\n", | |
| " <td>4.301036</td>\n", | |
| " <td>24.298981</td>\n", | |
| " <td>351.914129</td>\n", | |
| " <td>0.014064</td>\n", | |
| " <td>0.052813</td>\n", | |
| " <td>0.079720</td>\n", | |
| " <td>0.038803</td>\n", | |
| " <td>0.027414</td>\n", | |
| " <td>0.007060</td>\n", | |
| " <td>...</td>\n", | |
| " <td>6.146258</td>\n", | |
| " <td>33.602542</td>\n", | |
| " <td>569.356993</td>\n", | |
| " <td>0.022832</td>\n", | |
| " <td>0.157336</td>\n", | |
| " <td>0.208624</td>\n", | |
| " <td>0.065732</td>\n", | |
| " <td>0.061867</td>\n", | |
| " <td>0.018061</td>\n", | |
| " <td>0.483918</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>min</th>\n", | |
| " <td>6.981000</td>\n", | |
| " <td>9.710000</td>\n", | |
| " <td>43.790000</td>\n", | |
| " <td>143.500000</td>\n", | |
| " <td>0.052630</td>\n", | |
| " <td>0.019380</td>\n", | |
| " <td>0.000000</td>\n", | |
| " <td>0.000000</td>\n", | |
| " <td>0.106000</td>\n", | |
| " <td>0.049960</td>\n", | |
| " <td>...</td>\n", | |
| " <td>12.020000</td>\n", | |
| " <td>50.410000</td>\n", | |
| " <td>185.200000</td>\n", | |
| " <td>0.071170</td>\n", | |
| " <td>0.027290</td>\n", | |
| " <td>0.000000</td>\n", | |
| " <td>0.000000</td>\n", | |
| " <td>0.156500</td>\n", | |
| " <td>0.055040</td>\n", | |
| " <td>0.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>25%</th>\n", | |
| " <td>11.700000</td>\n", | |
| " <td>16.170000</td>\n", | |
| " <td>75.170000</td>\n", | |
| " <td>420.300000</td>\n", | |
| " <td>0.086370</td>\n", | |
| " <td>0.064920</td>\n", | |
| " <td>0.029560</td>\n", | |
| " <td>0.020310</td>\n", | |
| " <td>0.161900</td>\n", | |
| " <td>0.057700</td>\n", | |
| " <td>...</td>\n", | |
| " <td>21.080000</td>\n", | |
| " <td>84.110000</td>\n", | |
| " <td>515.300000</td>\n", | |
| " <td>0.116600</td>\n", | |
| " <td>0.147200</td>\n", | |
| " <td>0.114500</td>\n", | |
| " <td>0.064930</td>\n", | |
| " <td>0.250400</td>\n", | |
| " <td>0.071460</td>\n", | |
| " <td>0.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>50%</th>\n", | |
| " <td>13.370000</td>\n", | |
| " <td>18.840000</td>\n", | |
| " <td>86.240000</td>\n", | |
| " <td>551.100000</td>\n", | |
| " <td>0.095870</td>\n", | |
| " <td>0.092630</td>\n", | |
| " <td>0.061540</td>\n", | |
| " <td>0.033500</td>\n", | |
| " <td>0.179200</td>\n", | |
| " <td>0.061540</td>\n", | |
| " <td>...</td>\n", | |
| " <td>25.410000</td>\n", | |
| " <td>97.660000</td>\n", | |
| " <td>686.500000</td>\n", | |
| " <td>0.131300</td>\n", | |
| " <td>0.211900</td>\n", | |
| " <td>0.226700</td>\n", | |
| " <td>0.099930</td>\n", | |
| " <td>0.282200</td>\n", | |
| " <td>0.080040</td>\n", | |
| " <td>1.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>75%</th>\n", | |
| " <td>15.780000</td>\n", | |
| " <td>21.800000</td>\n", | |
| " <td>104.100000</td>\n", | |
| " <td>782.700000</td>\n", | |
| " <td>0.105300</td>\n", | |
| " <td>0.130400</td>\n", | |
| " <td>0.130700</td>\n", | |
| " <td>0.074000</td>\n", | |
| " <td>0.195700</td>\n", | |
| " <td>0.066120</td>\n", | |
| " <td>...</td>\n", | |
| " <td>29.720000</td>\n", | |
| " <td>125.400000</td>\n", | |
| " <td>1084.000000</td>\n", | |
| " <td>0.146000</td>\n", | |
| " <td>0.339100</td>\n", | |
| " <td>0.382900</td>\n", | |
| " <td>0.161400</td>\n", | |
| " <td>0.317900</td>\n", | |
| " <td>0.092080</td>\n", | |
| " <td>1.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>max</th>\n", | |
| " <td>28.110000</td>\n", | |
| " <td>39.280000</td>\n", | |
| " <td>188.500000</td>\n", | |
| " <td>2501.000000</td>\n", | |
| " <td>0.163400</td>\n", | |
| " <td>0.345400</td>\n", | |
| " <td>0.426800</td>\n", | |
| " <td>0.201200</td>\n", | |
| " <td>0.304000</td>\n", | |
| " <td>0.097440</td>\n", | |
| " <td>...</td>\n", | |
| " <td>49.540000</td>\n", | |
| " <td>251.200000</td>\n", | |
| " <td>4254.000000</td>\n", | |
| " <td>0.222600</td>\n", | |
| " <td>1.058000</td>\n", | |
| " <td>1.252000</td>\n", | |
| " <td>0.291000</td>\n", | |
| " <td>0.663800</td>\n", | |
| " <td>0.207500</td>\n", | |
| " <td>1.000000</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>8 rows × 31 columns</p>\n", | |
| "</div>\n", | |
| " <div class=\"colab-df-buttons\">\n", | |
| "\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-edc835d9-628b-4f63-ab05-593a0b7760e8')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
| " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| "\n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-buttons div {\n", | |
| " margin-bottom: 4px;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-edc835d9-628b-4f63-ab05-593a0b7760e8 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-edc835d9-628b-4f63-ab05-593a0b7760e8');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| "\n", | |
| "\n", | |
| "<div id=\"df-14a28d3e-c619-4e4b-9d83-e2c2c3a7d4b2\">\n", | |
| " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-14a28d3e-c619-4e4b-9d83-e2c2c3a7d4b2')\"\n", | |
| " title=\"Suggest charts.\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <g>\n", | |
| " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
| " </g>\n", | |
| "</svg>\n", | |
| " </button>\n", | |
| "\n", | |
| "<style>\n", | |
| " .colab-df-quickchart {\n", | |
| " --bg-color: #E8F0FE;\n", | |
| " --fill-color: #1967D2;\n", | |
| " --hover-bg-color: #E2EBFA;\n", | |
| " --hover-fill-color: #174EA6;\n", | |
| " --disabled-fill-color: #AAA;\n", | |
| " --disabled-bg-color: #DDD;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-quickchart {\n", | |
| " --bg-color: #3B4455;\n", | |
| " --fill-color: #D2E3FC;\n", | |
| " --hover-bg-color: #434B5C;\n", | |
| " --hover-fill-color: #FFFFFF;\n", | |
| " --disabled-bg-color: #3B4455;\n", | |
| " --disabled-fill-color: #666;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart {\n", | |
| " background-color: var(--bg-color);\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: var(--fill-color);\n", | |
| " height: 32px;\n", | |
| " padding: 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart:hover {\n", | |
| " background-color: var(--hover-bg-color);\n", | |
| " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: var(--button-hover-fill-color);\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart-complete:disabled,\n", | |
| " .colab-df-quickchart-complete:disabled:hover {\n", | |
| " background-color: var(--disabled-bg-color);\n", | |
| " fill: var(--disabled-fill-color);\n", | |
| " box-shadow: none;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-spinner {\n", | |
| " border: 2px solid var(--fill-color);\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " animation:\n", | |
| " spin 1s steps(1) infinite;\n", | |
| " }\n", | |
| "\n", | |
| " @keyframes spin {\n", | |
| " 0% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " }\n", | |
| " 20% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 30% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 40% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 60% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 80% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " 90% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " }\n", | |
| "</style>\n", | |
| "\n", | |
| " <script>\n", | |
| " async function quickchart(key) {\n", | |
| " const quickchartButtonEl =\n", | |
| " document.querySelector('#' + key + ' button');\n", | |
| " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
| " quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
| " try {\n", | |
| " const charts = await google.colab.kernel.invokeFunction(\n", | |
| " 'suggestCharts', [key], {});\n", | |
| " } catch (error) {\n", | |
| " console.error('Error during call to suggestCharts:', error);\n", | |
| " }\n", | |
| " quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
| " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
| " }\n", | |
| " (() => {\n", | |
| " let quickchartButtonEl =\n", | |
| " document.querySelector('#df-14a28d3e-c619-4e4b-9d83-e2c2c3a7d4b2 button');\n", | |
| " quickchartButtonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| " })();\n", | |
| " </script>\n", | |
| "</div>\n", | |
| " </div>\n", | |
| " </div>\n" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 9 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "data.data.shape" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "LSnXRqLV545s", | |
| "outputId": "cd634c43-6e30-435e-9437-a4fcd61dc7fe" | |
| }, | |
| "execution_count": 10, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "(569, 30)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 10 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "from sklearn.model_selection import train_test_split\n", | |
| "\n", | |
| "X = data.data\n", | |
| "y = data.target\n", | |
| "\n", | |
| "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .5)" | |
| ], | |
| "metadata": { | |
| "id": "sU86mWwq6Aml" | |
| }, | |
| "execution_count": 18, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "from sklearn import svm\n", | |
| "from sklearn import metrics\n", | |
| "\n", | |
| "kernels = [\"linear\", \"rbf\", \"sigmoid\"]\n", | |
| "gammas = [1, .01, .001, .0001, .00001]\n", | |
| "\n", | |
| "for kernel in kernels:\n", | |
| " for gamma in gammas:\n", | |
| " model = svm.SVC(kernel=kernel, gamma=gamma)\n", | |
| " model.fit(X_train, y_train)\n", | |
| " predictions = model.predict(X_test)\n", | |
| " print(f\"{kernel} : Gamma: {gamma}: Accuracy:\", metrics.accuracy_score(y_test, predictions))\n", | |
| " print(f\"{kernel} : Gamma: {gamma}: Precision:\", metrics.accuracy_score(y_test, predictions))" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "i17jZMSt6Nl7", | |
| "outputId": "b4b80d3b-b42a-4571-9f29-01b5d2e8c390" | |
| }, | |
| "execution_count": 14, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "linear : Gamma: 1: Accuracy: 0.9415204678362573\n", | |
| "linear : Gamma: 1: Precision: 0.9415204678362573\n", | |
| "linear : Gamma: 0.01: Accuracy: 0.9415204678362573\n", | |
| "linear : Gamma: 0.01: Precision: 0.9415204678362573\n", | |
| "linear : Gamma: 0.001: Accuracy: 0.9415204678362573\n", | |
| "linear : Gamma: 0.001: Precision: 0.9415204678362573\n", | |
| "linear : Gamma: 0.0001: Accuracy: 0.9415204678362573\n", | |
| "linear : Gamma: 0.0001: Precision: 0.9415204678362573\n", | |
| "linear : Gamma: 1e-05: Accuracy: 0.9415204678362573\n", | |
| "linear : Gamma: 1e-05: Precision: 0.9415204678362573\n", | |
| "rbf : Gamma: 1: Accuracy: 0.6023391812865497\n", | |
| "rbf : Gamma: 1: Precision: 0.6023391812865497\n", | |
| "rbf : Gamma: 0.01: Accuracy: 0.5964912280701754\n", | |
| "rbf : Gamma: 0.01: Precision: 0.5964912280701754\n", | |
| "rbf : Gamma: 0.001: Accuracy: 0.9239766081871345\n", | |
| "rbf : Gamma: 0.001: Precision: 0.9239766081871345\n", | |
| "rbf : Gamma: 0.0001: Accuracy: 0.9415204678362573\n", | |
| "rbf : Gamma: 0.0001: Precision: 0.9415204678362573\n", | |
| "rbf : Gamma: 1e-05: Accuracy: 0.935672514619883\n", | |
| "rbf : Gamma: 1e-05: Precision: 0.935672514619883\n", | |
| "sigmoid : Gamma: 1: Accuracy: 0.6023391812865497\n", | |
| "sigmoid : Gamma: 1: Precision: 0.6023391812865497\n", | |
| "sigmoid : Gamma: 0.01: Accuracy: 0.6023391812865497\n", | |
| "sigmoid : Gamma: 0.01: Precision: 0.6023391812865497\n", | |
| "sigmoid : Gamma: 0.001: Accuracy: 0.6023391812865497\n", | |
| "sigmoid : Gamma: 0.001: Precision: 0.6023391812865497\n", | |
| "sigmoid : Gamma: 0.0001: Accuracy: 0.6023391812865497\n", | |
| "sigmoid : Gamma: 0.0001: Precision: 0.6023391812865497\n", | |
| "sigmoid : Gamma: 1e-05: Accuracy: 0.5087719298245614\n", | |
| "sigmoid : Gamma: 1e-05: Precision: 0.5087719298245614\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "model = svm.SVC(kernel=\"linear\")\n", | |
| "model.fit(X_train, y_train)\n", | |
| "predictions = model.predict(X_test)\n", | |
| "print(f\"{kernel} : Gamma: {gamma}: Accuracy:\", metrics.accuracy_score(y_test, predictions))\n", | |
| "print(f\"{kernel} : Gamma: {gamma}: Precision:\", metrics.accuracy_score(y_test, predictions))" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "TPDP6md86-5g", | |
| "outputId": "20c33fec-e1ca-46bb-c1c6-0e77ccca6770" | |
| }, | |
| "execution_count": 19, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "sigmoid : Gamma: 1e-05: Accuracy: 0.9508771929824561\n", | |
| "sigmoid : Gamma: 1e-05: Precision: 0.9508771929824561\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "from sklearn.metrics import classification_report\n", | |
| "\n", | |
| "print(classification_report(y_test, predictions))" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "nalgT_2K8LYf", | |
| "outputId": "5b4e261d-2a0d-4e93-b47f-e26085f02758" | |
| }, | |
| "execution_count": 20, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| " precision recall f1-score support\n", | |
| "\n", | |
| " 0 0.93 0.93 0.93 97\n", | |
| " 1 0.96 0.96 0.96 188\n", | |
| "\n", | |
| " accuracy 0.95 285\n", | |
| " macro avg 0.95 0.95 0.95 285\n", | |
| "weighted avg 0.95 0.95 0.95 285\n", | |
| "\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "from sklearn.metrics import confusion_matrix\n", | |
| "import pandas as pd\n", | |
| "\n", | |
| "pd.DataFrame(confusion_matrix(y_test, predictions))" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 112 | |
| }, | |
| "id": "0xad03D88T5D", | |
| "outputId": "c25ad5df-9b92-4ea8-d719-a2ca23c605ec" | |
| }, | |
| "execution_count": 21, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| " 0 1\n", | |
| "0 90 7\n", | |
| "1 7 181" | |
| ], | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-c5f5a531-aa8b-4d4d-b0a2-dab8abc3b10d\" class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>0</th>\n", | |
| " <th>1</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>90</td>\n", | |
| " <td>7</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>7</td>\n", | |
| " <td>181</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <div class=\"colab-df-buttons\">\n", | |
| "\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-c5f5a531-aa8b-4d4d-b0a2-dab8abc3b10d')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
| " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| "\n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-buttons div {\n", | |
| " margin-bottom: 4px;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-c5f5a531-aa8b-4d4d-b0a2-dab8abc3b10d button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-c5f5a531-aa8b-4d4d-b0a2-dab8abc3b10d');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| "\n", | |
| "\n", | |
| "<div id=\"df-033f6bb6-54b7-4c77-874b-03057f2da806\">\n", | |
| " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-033f6bb6-54b7-4c77-874b-03057f2da806')\"\n", | |
| " title=\"Suggest charts.\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <g>\n", | |
| " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
| " </g>\n", | |
| "</svg>\n", | |
| " </button>\n", | |
| "\n", | |
| "<style>\n", | |
| " .colab-df-quickchart {\n", | |
| " --bg-color: #E8F0FE;\n", | |
| " --fill-color: #1967D2;\n", | |
| " --hover-bg-color: #E2EBFA;\n", | |
| " --hover-fill-color: #174EA6;\n", | |
| " --disabled-fill-color: #AAA;\n", | |
| " --disabled-bg-color: #DDD;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-quickchart {\n", | |
| " --bg-color: #3B4455;\n", | |
| " --fill-color: #D2E3FC;\n", | |
| " --hover-bg-color: #434B5C;\n", | |
| " --hover-fill-color: #FFFFFF;\n", | |
| " --disabled-bg-color: #3B4455;\n", | |
| " --disabled-fill-color: #666;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart {\n", | |
| " background-color: var(--bg-color);\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: var(--fill-color);\n", | |
| " height: 32px;\n", | |
| " padding: 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart:hover {\n", | |
| " background-color: var(--hover-bg-color);\n", | |
| " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: var(--button-hover-fill-color);\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart-complete:disabled,\n", | |
| " .colab-df-quickchart-complete:disabled:hover {\n", | |
| " background-color: var(--disabled-bg-color);\n", | |
| " fill: var(--disabled-fill-color);\n", | |
| " box-shadow: none;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-spinner {\n", | |
| " border: 2px solid var(--fill-color);\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " animation:\n", | |
| " spin 1s steps(1) infinite;\n", | |
| " }\n", | |
| "\n", | |
| " @keyframes spin {\n", | |
| " 0% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " }\n", | |
| " 20% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 30% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 40% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 60% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 80% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " 90% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " }\n", | |
| "</style>\n", | |
| "\n", | |
| " <script>\n", | |
| " async function quickchart(key) {\n", | |
| " const quickchartButtonEl =\n", | |
| " document.querySelector('#' + key + ' button');\n", | |
| " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
| " quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
| " try {\n", | |
| " const charts = await google.colab.kernel.invokeFunction(\n", | |
| " 'suggestCharts', [key], {});\n", | |
| " } catch (error) {\n", | |
| " console.error('Error during call to suggestCharts:', error);\n", | |
| " }\n", | |
| " quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
| " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
| " }\n", | |
| " (() => {\n", | |
| " let quickchartButtonEl =\n", | |
| " document.querySelector('#df-033f6bb6-54b7-4c77-874b-03057f2da806 button');\n", | |
| " quickchartButtonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| " })();\n", | |
| " </script>\n", | |
| "</div>\n", | |
| " </div>\n", | |
| " </div>\n" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 21 | |
| } | |
| ] | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment