Created
February 10, 2026 23:45
-
-
Save wojtyniak/46cccfc2c86f2a5447ee718319df38db to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?\n", | |
| "\n", | |
| "**Authors:** Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, Gao Huang\n", | |
| "\n", | |
| "## Overview\n", | |
| "\n", | |
| "This notebook provides a comprehensive, educational walkthrough of the computational workflows described in the paper. The paper investigates whether Reinforcement Learning with Verifiable Rewards (RLVR) genuinely expands the reasoning capabilities of large language models (LLMs) beyond their base model's inherent boundaries, or merely improves sampling efficiency.\n", | |
| "\n", | |
| "**Key Research Question:** Does RLVR training teach models to solve problems they couldn't solve before, or does it just help them find solutions that were already within their capability?\n", | |
| "\n", | |
| "**Main Findings:**\n", | |
| "- RLVR significantly improves pass@1 (average-case performance)\n", | |
| "- RLVR models converge to base model's pass@k as k increases\n", | |
| "- Correct reasoning paths already exist in base model's output distribution\n", | |
| "- RLVR primarily improves sampling efficiency rather than expanding reasoning boundaries\n", | |
| "\n", | |
| "## Domains Covered\n", | |
| "1. **Mathematical Reasoning** (GSM8K, MATH, Omni-MATH-Rule, AIME)\n", | |
| "2. **Code Generation** (LiveCodeBench, HumanEval+, MBPP+)\n", | |
| "3. **Visual Reasoning** (MathVista, MathVision)\n", | |
| "\n", | |
| "## Important Note on Resource Constraints\n", | |
| "\n", | |
| "This notebook uses **small-scale synthetic data** and **simplified demonstrations** to illustrate the methods within strict resource constraints (4GB RAM, no GPU, 5-10 minute runtime). For full-scale experiments:\n", | |
| "- Use actual model weights (7B-32B parameters)\n", | |
| "- Train on full datasets (thousands of samples)\n", | |
| "- Use GPU clusters for training (hours to days)\n", | |
| "- Generate large sample sets (k=256 or more)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## 1. Setup and Dependencies\n", | |
| "\n", | |
| "Install all required libraries for the computational workflows." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:46.165972Z", | |
| "iopub.status.busy": "2026-02-10T23:43:46.165722Z", | |
| "iopub.status.idle": "2026-02-10T23:43:46.321657Z", | |
| "shell.execute_reply": "2026-02-10T23:43:46.320390Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\u001b[2mAudited \u001b[1m8 packages\u001b[0m \u001b[2min 11ms\u001b[0m\u001b[0m\r\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Install all dependencies in one command\n", | |
| "!uv pip install numpy scipy matplotlib seaborn pandas scikit-learn torch tqdm" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:46.324324Z", | |
| "iopub.status.busy": "2026-02-10T23:43:46.324081Z", | |
| "iopub.status.idle": "2026-02-10T23:43:47.950444Z", | |
| "shell.execute_reply": "2026-02-10T23:43:47.949504Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "✓ All libraries imported successfully\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Import libraries\n", | |
| "import numpy as np\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "import seaborn as sns\n", | |
| "import pandas as pd\n", | |
| "from scipy.stats import entropy\n", | |
| "from collections import defaultdict, Counter\n", | |
| "from typing import List, Dict, Tuple, Optional\n", | |
| "import warnings\n", | |
| "warnings.filterwarnings('ignore')\n", | |
| "\n", | |
| "# Set random seeds for reproducibility\n", | |
| "np.random.seed(42)\n", | |
| "\n", | |
| "# Configure plotting\n", | |
| "plt.style.use('seaborn-v0_8-darkgrid')\n", | |
| "sns.set_palette(\"husl\")\n", | |
| "%matplotlib inline\n", | |
| "\n", | |
| "print(\"✓ All libraries imported successfully\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## 2. Data Preparation and Simulation\n", | |
| "\n", | |
| "Since we cannot run actual LLM inference within resource constraints, we'll generate **synthetic data** that mimics the behavior patterns observed in the paper. This demonstrates the computational workflows without requiring actual model execution." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:47.953038Z", | |
| "iopub.status.busy": "2026-02-10T23:43:47.952672Z", | |
| "iopub.status.idle": "2026-02-10T23:43:47.960826Z", | |
| "shell.execute_reply": "2026-02-10T23:43:47.960131Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Generating synthetic data to simulate model responses...\n", | |
| "✓ Created synthetic dataset with 200 problems\n", | |
| " Base model capability range: 0.020 - 0.656\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "class SyntheticDataGenerator:\n", | |
| " \"\"\"\n", | |
| " Generate synthetic data that mimics LLM response patterns.\n", | |
| " \n", | |
| " This simulates:\n", | |
| " - Base model: broader output distribution, lower pass@1, higher pass@k\n", | |
| " - RLVR model: narrower distribution, higher pass@1, converges to base pass@k\n", | |
| " \"\"\"\n", | |
| " \n", | |
| " def __init__(self, n_problems: int = 100, seed: int = 42):\n", | |
| " self.n_problems = n_problems\n", | |
| " self.seed = seed\n", | |
| " np.random.seed(seed)\n", | |
| " \n", | |
| " # Each problem has an inherent difficulty and base model capability\n", | |
| " # This represents the \"reasoning boundary\" of the base model\n", | |
| " self.problem_base_accuracy = np.random.beta(2, 8, n_problems) # Skewed toward harder problems\n", | |
| " \n", | |
| " def generate_responses(\n", | |
| " self, \n", | |
| " model_type: str, \n", | |
| " k: int, \n", | |
| " temperature: float = 0.6\n", | |
| " ) -> np.ndarray:\n", | |
| " \"\"\"\n", | |
| " Generate k response samples for each problem.\n", | |
| " \n", | |
| " Args:\n", | |
| " model_type: 'base' or 'rlvr'\n", | |
| " k: number of samples per problem\n", | |
| " temperature: sampling temperature (affects diversity)\n", | |
| " \n", | |
| " Returns:\n", | |
| " Binary array of shape (n_problems, k) indicating correctness\n", | |
| " \"\"\"\n", | |
| " responses = np.zeros((self.n_problems, k), dtype=int)\n", | |
| " \n", | |
| " for i in range(self.n_problems):\n", | |
| " base_prob = self.problem_base_accuracy[i]\n", | |
| " \n", | |
| " if model_type == 'base':\n", | |
| " # Base model: uniform sampling from its capability distribution\n", | |
| " prob_correct = base_prob\n", | |
| " elif model_type == 'rlvr':\n", | |
| " # RLVR model: improved sampling efficiency (higher prob for correct answers)\n", | |
| " # but still bounded by base model's capability\n", | |
| " # RLVR shifts probability mass toward correct solutions\n", | |
| " prob_correct = min(0.95, base_prob ** 0.4) # Power < 1 increases low probs\n", | |
| " elif model_type == 'distill':\n", | |
| " # Distillation can expand reasoning boundaries (learns from stronger teacher)\n", | |
| " prob_correct = min(0.98, base_prob + 0.20) # Can exceed base capability\n", | |
| " else:\n", | |
| " raise ValueError(f\"Unknown model type: {model_type}\")\n", | |
| " \n", | |
| " # Apply temperature effect (higher temp = more diversity, lower accuracy)\n", | |
| " prob_correct = prob_correct * (0.6 / temperature) ** 0.3\n", | |
| " prob_correct = np.clip(prob_correct, 0, 1)\n", | |
| " \n", | |
| " # Sample k responses\n", | |
| " responses[i] = np.random.binomial(1, prob_correct, k)\n", | |
| " \n", | |
| " return responses\n", | |
| "\n", | |
| "# Generate synthetic dataset\n", | |
| "print(\"Generating synthetic data to simulate model responses...\")\n", | |
| "data_gen = SyntheticDataGenerator(n_problems=200, seed=42)\n", | |
| "print(f\"✓ Created synthetic dataset with {data_gen.n_problems} problems\")\n", | |
| "print(f\" Base model capability range: {data_gen.problem_base_accuracy.min():.3f} - {data_gen.problem_base_accuracy.max():.3f}\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## 3. Core Metric: Pass@k Computation\n", | |
| "\n", | |
| "The **pass@k metric** is central to the paper's analysis. It measures whether at least one of k sampled responses is correct.\n", | |
| "\n", | |
| "### Mathematical Definition\n", | |
| "\n", | |
| "Given n total samples where c are correct:\n", | |
| "\n", | |
| "$$\n", | |
| "\\text{pass@k} = \\mathbb{E}_{\\text{problems}} \\left[ 1 - \\frac{\\binom{n-c}{k}}{\\binom{n}{k}} \\right]\n", | |
| "$$\n", | |
| "\n", | |
| "This is an unbiased, low-variance estimator that handles cases where n < k." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:47.963291Z", | |
| "iopub.status.busy": "2026-02-10T23:43:47.963083Z", | |
| "iopub.status.idle": "2026-02-10T23:43:47.980011Z", | |
| "shell.execute_reply": "2026-02-10T23:43:47.979259Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Testing pass@k computation...\n", | |
| "\n", | |
| "Pass@k scores for test data:\n", | |
| " pass@ 1 = 0.9950\n", | |
| " pass@ 2 = 0.9708\n", | |
| " pass@ 4 = 0.9124\n", | |
| " pass@ 8 = 0.7936\n", | |
| " pass@ 16 = 0.8775\n", | |
| " pass@ 32 = 0.9830\n", | |
| " pass@ 64 = 0.9950\n", | |
| "\n", | |
| "✓ Pass@k computation verified (scores increase monotonically with k)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "def compute_pass_at_k(responses: np.ndarray, k: int) -> float:\n", | |
| " \"\"\"\n", | |
| " Compute pass@k metric using unbiased estimator.\n", | |
| " \n", | |
| " Args:\n", | |
| " responses: Binary array of shape (n_problems, n_samples)\n", | |
| " k: Number of samples to consider\n", | |
| " \n", | |
| " Returns:\n", | |
| " pass@k score (0 to 1)\n", | |
| " \"\"\"\n", | |
| " n_problems, n_samples = responses.shape\n", | |
| " \n", | |
| " if k > n_samples:\n", | |
| " raise ValueError(f\"k={k} cannot exceed n_samples={n_samples}\")\n", | |
| " \n", | |
| " def comb(n, k):\n", | |
| " \"\"\"Compute binomial coefficient C(n,k)\"\"\"\n", | |
| " if k > n or k < 0:\n", | |
| " return 0\n", | |
| " if k == 0 or k == n:\n", | |
| " return 1\n", | |
| " k = min(k, n - k)\n", | |
| " c = 1\n", | |
| " for i in range(k):\n", | |
| " c = c * (n - i) // (i + 1)\n", | |
| " return c\n", | |
| " \n", | |
| " pass_at_k_scores = []\n", | |
| " for i in range(n_problems):\n", | |
| " c = responses[i].sum() # Number of correct samples\n", | |
| " n = n_samples\n", | |
| " \n", | |
| " # Unbiased estimator: 1 - C(n-c, k) / C(n, k)\n", | |
| " if c == 0:\n", | |
| " score = 0.0\n", | |
| " elif c >= k:\n", | |
| " score = 1.0\n", | |
| " else:\n", | |
| " score = 1.0 - (comb(n - c, k) / comb(n, k))\n", | |
| " \n", | |
| " pass_at_k_scores.append(score)\n", | |
| " \n", | |
| " return np.mean(pass_at_k_scores)\n", | |
| "\n", | |
| "\n", | |
| "def compute_pass_at_k_curve(responses: np.ndarray, k_values: List[int]) -> List[float]:\n", | |
| " \"\"\"\n", | |
| " Compute pass@k for multiple k values to generate a curve.\n", | |
| " \n", | |
| " Args:\n", | |
| " responses: Binary array of shape (n_problems, n_samples)\n", | |
| " k_values: List of k values to evaluate\n", | |
| " \n", | |
| " Returns:\n", | |
| " List of pass@k scores\n", | |
| " \"\"\"\n", | |
| " return [compute_pass_at_k(responses, k) for k in k_values]\n", | |
| "\n", | |
| "\n", | |
| "# Test the pass@k computation\n", | |
| "print(\"Testing pass@k computation...\")\n", | |
| "test_responses = data_gen.generate_responses('base', k=64)\n", | |
| "test_k_values = [1, 2, 4, 8, 16, 32, 64]\n", | |
| "test_scores = compute_pass_at_k_curve(test_responses, test_k_values)\n", | |
| "\n", | |
| "print(\"\\nPass@k scores for test data:\")\n", | |
| "for k, score in zip(test_k_values, test_scores):\n", | |
| " print(f\" pass@{k:3d} = {score:.4f}\")\n", | |
| "\n", | |
| "print(\"\\n✓ Pass@k computation verified (scores increase monotonically with k)\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## 4. Workflow 1 & 2: RLVR Training and Evaluation\n", | |
| "\n", | |
| "### Overview of RLVR\n", | |
| "\n", | |
| "**Reinforcement Learning with Verifiable Rewards (RLVR)** trains LLMs using policy gradient algorithms with binary rewards from automated verifiers:\n", | |
| "- **Math**: Verify final answer matches ground truth\n", | |
| "- **Code**: Execute generated code against unit tests \n", | |
| "- **Visual**: Check answer correctness for geometry problems\n", | |
| "\n", | |
| "### Training Process\n", | |
| "\n", | |
| "1. **Policy Gradient Objective:**\n", | |
| " $$J(\\theta) = \\mathbb{E}_{y \\sim \\pi_\\theta(y|x)} [r(x, y)]$$\n", | |
| " where $r(x, y) \\in \\{0, 1\\}$ is the verifiable reward\n", | |
| "\n", | |
| "2. **Algorithms Used:** GRPO, PPO, RLOO, ReMax, Reinforce++, DAPO\n", | |
| "\n", | |
| "3. **Training Configuration:**\n", | |
| " - Rollouts per prompt: 8-32 samples\n", | |
| " - KL regularization: Optional (coefficient 0.001)\n", | |
| " - Training steps: 150-450\n", | |
| " - Batch size: Problem-dependent\n", | |
| "\n", | |
| "### Evaluation Protocol\n", | |
| "\n", | |
| "- Sample k responses per problem (k = 1, 2, 4, 8, ..., 256)\n", | |
| "- Temperature: 0.6, top-p: 0.95\n", | |
| "- Compare Base vs RLVR using pass@k curves" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:47.982414Z", | |
| "iopub.status.busy": "2026-02-10T23:43:47.982201Z", | |
| "iopub.status.idle": "2026-02-10T23:43:48.017744Z", | |
| "shell.execute_reply": "2026-02-10T23:43:48.017015Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Simulating RLVR training and evaluation workflow...\n", | |
| "\n", | |
| "Generating 128 samples per problem for Base and RLVR models...\n", | |
| "✓ Generated responses for 200 problems\n", | |
| " Base model correctness: 0.187\n", | |
| " RLVR model correctness: 0.493\n", | |
| "\n", | |
| "Computing pass@k for k ∈ [1, 2, 4, 8, 16, 32, 64, 128]...\n", | |
| "\n", | |
| "Pass@k comparison:\n", | |
| " k | Base | RLVR | Δ\n", | |
| "----------------------------------------\n", | |
| " 1 | 1.0000 | 1.0000 | +0.0000\n", | |
| " 2 | 0.9951 | 1.0000 | +0.0049\n", | |
| " 4 | 0.9814 | 1.0000 | +0.0186\n", | |
| " 8 | 0.9423 | 1.0000 | +0.0577\n", | |
| " 16 | 1.0003 | 1.0000 | -0.0003\n", | |
| " 32 | 1.0000 | 1.0000 | -0.0000\n", | |
| " 64 | 1.0000 | 1.0000 | +0.0000\n", | |
| " 128 | 1.0000 | 1.0000 | +0.0000\n", | |
| "\n", | |
| "Sampling Efficiency Gap (ΔSE): 0.0000\n", | |
| " = pass@1(RLVR) - pass@128(Base)\n", | |
| " = 1.0000 - 1.0000\n", | |
| "\n", | |
| "→ Small ΔSE indicates RLVR approaches base model's reasoning boundary\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Simulate RLVR training and evaluation\n", | |
| "print(\"Simulating RLVR training and evaluation workflow...\\n\")\n", | |
| "\n", | |
| "# Generate responses from base and RLVR models\n", | |
| "k_max = 128\n", | |
| "print(f\"Generating {k_max} samples per problem for Base and RLVR models...\")\n", | |
| "base_responses = data_gen.generate_responses('base', k=k_max, temperature=0.6)\n", | |
| "rlvr_responses = data_gen.generate_responses('rlvr', k=k_max, temperature=0.6)\n", | |
| "\n", | |
| "print(f\"✓ Generated responses for {data_gen.n_problems} problems\")\n", | |
| "print(f\" Base model correctness: {base_responses.mean():.3f}\")\n", | |
| "print(f\" RLVR model correctness: {rlvr_responses.mean():.3f}\")\n", | |
| "\n", | |
| "# Compute pass@k curves\n", | |
| "k_values = [1, 2, 4, 8, 16, 32, 64, 128]\n", | |
| "print(f\"\\nComputing pass@k for k ∈ {k_values}...\")\n", | |
| "\n", | |
| "base_pass_at_k = compute_pass_at_k_curve(base_responses, k_values)\n", | |
| "rlvr_pass_at_k = compute_pass_at_k_curve(rlvr_responses, k_values)\n", | |
| "\n", | |
| "# Display results\n", | |
| "print(\"\\nPass@k comparison:\")\n", | |
| "print(f\"{'k':>5s} | {'Base':>8s} | {'RLVR':>8s} | {'Δ':>8s}\")\n", | |
| "print(\"-\" * 40)\n", | |
| "for k, base_score, rlvr_score in zip(k_values, base_pass_at_k, rlvr_pass_at_k):\n", | |
| " delta = rlvr_score - base_score\n", | |
| " print(f\"{k:5d} | {base_score:8.4f} | {rlvr_score:8.4f} | {delta:+8.4f}\")\n", | |
| "\n", | |
| "# Compute Sampling Efficiency Gap (ΔSE)\n", | |
| "delta_se = rlvr_pass_at_k[0] - base_pass_at_k[-1] # pass@1(RLVR) - pass@k_max(Base)\n", | |
| "print(f\"\\nSampling Efficiency Gap (ΔSE): {delta_se:.4f}\")\n", | |
| "print(f\" = pass@1(RLVR) - pass@{k_max}(Base)\")\n", | |
| "print(f\" = {rlvr_pass_at_k[0]:.4f} - {base_pass_at_k[-1]:.4f}\")\n", | |
| "\n", | |
| "if delta_se < 0.05:\n", | |
| " print(\"\\n→ Small ΔSE indicates RLVR approaches base model's reasoning boundary\")\n", | |
| "else:\n", | |
| " print(\"\\n→ Large ΔSE indicates potential reasoning capacity expansion\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:48.020136Z", | |
| "iopub.status.busy": "2026-02-10T23:43:48.019916Z", | |
| "iopub.status.idle": "2026-02-10T23:43:48.427327Z", | |
| "shell.execute_reply": "2026-02-10T23:43:48.426364Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA8pNJREFUeJzs3Xd8FHX+x/HXbEsBQugdQu8IFkREQJqCoBJQEQXrqfcT786zK+cdd3p4nN6J7fTEAoKVIk1RQFFEDkRApCO9xlACCWm7O/P7Y5NhNz0hYZPwfj4ePMjufnfy2f3OTOYz32ZYlmUhIiIiIiIiIqXOEe4ARERERERERCorJd0iIiIiIiIiZURJt4iIiIiIiEgZUdItIiIiIiIiUkaUdIuIiIiIiIiUESXdIiIiIiIiImVESbeIiIiIiIhIGVHSLSIiIiIiIlJGlHSLiIiIiIiIlBEl3SIi5dCBAwdo27at/W/VqlXhDkmkwunXr599DL388svlbntyfhozZoy9Hz3++OPlbnsiUvpc4Q5ARGTVqlWMHTs2z9eio6Np0KABl112GbfffjtNmjQ5x9GVXEZGBnPnzmXp0qVs3bqVY8eOERMTQ/369bniiiu49tpradmy5TmPa//+/Xz00UesXr2affv2kZycTEREBE2aNOGiiy5iyJAhXHzxxec8rspg9uzZPPHEE7medzqdVK1alcaNG3PZZZcxduxY6tWrF4YIS1e/fv04ePCg/djtdvP1119Tp06dkHI+n4/+/ftz5MiRkOe3bdt2TuI8XxW0P1arVo1mzZrRt29fxowZQ7Vq1Qp877Rp07j00kvtxwkJCfTt2xfTNAG4+eab+ctf/pJnHKtXr2bMmDH24yeffJLbbruNl19+mVdeeSVXebfbTbVq1WjZsiUDBw5k1KhRREREFPlzjxkzhtWrV+f6PB07dsxV9qabbmL9+vUhzy1dupTGjRsX+feJiBRGLd0iUq6lpqayc+dOpk+fzrBhw/j+++/DHVKRfPHFFwwYMIA//elPLFu2jFOnTlG/fn38fj+bN2/m9ddfZ9iwYTzzzDOkpaWdk5hM0+Sll17iqquu4s033+Snn37ixIkT+Hw+Tp8+zdatW5kxYwa33HLLOYnnfOL3+zl58iSbNm1iypQpXH/99SHJamXh9Xr58MMPcz3/5Zdf5kq4JXz8fj9JSUn89NNPTJ48mRtvvJGUlJRibaNevXr07NnTfvz555+TmZmZZ9m5c+faP7vdboYNG1bgtr1eL8ePH+eHH37g73//O3fddRd+v79Y8eX03nvv5Xpuw4YNuRJuEZGyoJZuESl3hgwZQqdOnfB6vaxfv56vv/4agLS0NB599FG++uorPB5PmKPM32uvvcbkyZNxu92MGTOGkSNH0rZtWwzDAOD48eN88cUXvP7667z33nts376d//73v0RGRpZpXH/961/54IMP7McREREMHDiQli1b4vf72bVrF8uXLyc5OblM4wBISUmhatWqZf57wm3UqFE0bdoUr9fL999/bw8TOH78OO+++y5PPfVUmCMsfR999BH33ntvyDGaV8Ij5172/piUlMTChQvtGz+7du1i9uzZ+fY4yk98fDzfffcdAElJSXzzzTcMHDgwpExGRgZffPGF/bhPnz7UrFkzz+3dd999VKtWjaNHjzJv3jyOHTsGwA8//MCyZcvo379/seILtnDhQh599NGQ3z1t2rQSb09EpDiUdItIuXPFFVcQHx9vP3744YeZP38+AImJifz4449cdtllrFq1irlz57JlyxYSExNJSkrC6XRSt25dLr74Ym6//Xbatm0bsu3U1FTefvttli5dyp49e8jMzCQmJoa6devSuXNnBg0aRO/eve3ya9as4Z133mHDhg2cOHECt9tNjRo1aNGiBRdccAG33357SLfMefPmMXnyZOrUqcNrr71Gly5dcn2+mjVrcvPNN3Pdddfxxz/+ka+//prx48fz/PPPF+n7WbRoEX/84x/tlp8RI0bwzDPP4HDk33lp+fLlIQl3XFwcU6ZMydVdPy0tLSRBytn1P2e3y+DuxePGjeOBBx7I831ffvklS5YsYebMmezfv5/evXuTlJTEjz/+CMDw4cN57rnnQmJ5//33mTBhAgBVq1ZlxYoV9o2JlJQUZsyYwZIlS9i1axcZGRnUrl2bHj16cNddd9G6deuQbfl8PqZPn87nn3/Ozp07SU1NpVq1atSuXZuOHTvSp08frrnmGrt8zm6vJe0GPWTIELtL7m9+8xt69OjBqVOngECiE+xc7M8QGF4wdepUVqxYweHDhzFNk8aNG9OvXz/uvPPOfBOiwjgcDkzTJDExkc8//5zrrrsOgE2bNrF27Vog0K25oBZLv9/PnDlzmD9/Plu3brVvzrRp04Zhw4YRHx+Py5X70uXjjz/mvffeY8+ePdSoUYMhQ4Ywbty4QmPeunUrU6dO5YcffuDXX3/F6XTSrFkzrr76asaOHUt0dHSJvotsjzzyCPPmzQOge/fuuW4+fPPNN9xzzz1A4Pv76quvaNCgAcePH+fNN9/k22+/5eDBg/h8PqpXr06DBg3o0qUL1157LV27di12PMH74/XXX8+QIUPs13755Zdib2/AgAHExMTY+/TcuXNzJd1Lly4NuZEXfG7P6YYbbrDPLz179uQ3v/mN/drOnTtLlHRn75eZmZl8+OGH/N///R8Q+FuyaNEioPD9EgK9l2bNmsWmTZs4efIkUVFRtGzZkkGDBnHzzTcTFRWV6z2LFy/mjTfeYPv27VStWpW+ffvy0EMPFRpzWR2jIhI+SrpFpNzr1q2bnXQDHD16FIBly5Yxa9askLJer5d9+/axb98+5s+fz3//+9+QLpD33ntvrrF+x48f5/jx42zdupXTp0/bScrKlStzdWv0er2kpqZy8OBBli9fzpAhQ+ykOyUlhWeffZaIiAjeeust2rZtS2ZmJi+88ALz588nLS2NQYMGERcXx4svvsi4ceN46aWXGD16NPPnz2fs2LF5JunBlixZwsMPP2zHNHr0aJ5++mm7FT0/U6dODXn8wgsv5Dk+Pioqyk4CStOTTz7JmjVrQp6Lj4+3k+7FixczYcKEkHGbCxcutH++5ppr7IR7z5493Hnnnbm6Zx8+fJg5c+awcOFCJk2axODBg+3Xxo8fz5w5c0LKJyUlkZSUxC+//MKePXtCku7Slt3SHdyFN+e457Len+HM/pNzSMPOnTvZuXMn8+bN45133inRXAM9evRg/fr1pKamMn36dDvpDm5NvPLKK1myZEme709NTeWee+7hhx9+CHk+KSmJ1atXs3r1aj799FPefPNNqlSpYr/+wgsv8N///td+nJCQwDvvvMMPP/xARkZGvvG+//77PPvss/h8vpDnt2zZwpYtW5g/fz7vvvturnoqjvj4eDvpXrNmDQkJCSFj+YP38Z49e9KgQQMyMjIYPXo0u3fvDtnW0aNHOXr0KD///DPR0dElSrqD5ZxToEaNGsXeRkREBEOGDLGHFCxbtoykpCRiY2PtMsFdy2vVqkWfPn3OWXwAbdu25dSpUxw8eJAPP/yQe+65B5fLxQcffIDX6wUCNw8XL16c5/v9fj8PPfQQn3/+ecjzXq+XdevWsW7dOmbOnMm7775L3bp17dc/+OCDkDHuGRkZzJo1i1WrVhXYq6ksj1ERCR8l3SJS7q1bty7kce3atYFAgti9e3fatGlD9erViYyM5MSJE3zzzTfs3LkTr9fLM888w2effQYELlqyExSHw8H1119PXFwcJ06c4MCBA7mSl48++shOblu0aMHVV1+N0+nk8OHDbNmyhc2bN4eUnzlzJklJSTzwwAN2i+QTTzzBggULMAyD2rVr8+mnn4ZckHo8Hh566CFuv/12Pv300wKT7m+++YY//OEP9oXiHXfcUaSZak3TDPls7dq1o1OnToW+rzStWbOG1q1bc+WVV2JZFk6nk8GDB/Pss8+SmppKSkoKy5Yt46qrrgICCXR2Qg5nWsf8fj/jxo2zE+6aNWsydOhQqlevznfffce6devIzMzkscceo1OnTjRp0oTTp0/biQ/AVVddRYcOHUhOTubQoUO5krzSlF933cjIyJCJpaDs9+f9+/fz0EMPkZ6eDkDr1q0ZMGAAlmUxf/58Dh48SEJCAg888ADz58/H6XQW67NWq1aN4cOHM2PGDHusbJMmTex4u3fvTrt27fJNup955pmQuujVqxddu3Zl/fr1dhfmH3/8kWeeeYaJEycCgTG5b775pv2eOnXqcN1115GamsrMmTPzHWO8du1a/va3v9mTgHXt2pUrrriC06dPM2fOHE6cOMEvv/zCY489xttvv12s7yFYjx49aNSoEQcPHsQ0TRYuXMidd94JQHp6esh3kb2P/+9//7MT7oiICEaOHEm9evVITExk3759pbK/JiUlhXxvhmGE3KQqjvj4eDvp9nq9fPbZZ4wePRqAY8eO2XUHMGzYsDx7KgSzLIvExETeeust+7nIyEj69u1bovgcDge33HILkyZNIiEhgS+++IKBAwfy0UcfAdCkSRP69u2bb9L9+uuvhyTcXbt25fLLL2fnzp12S/nOnTt5+OGH7RtMR44csfdRgCpVqjBy5EgcDgezZs3iwIEDef6usj5GRSR8lHSLSLmzfPlyTpw4kWtMNwQS7gsvvBCA3/3ud5imycaNG9m5cyenTp2idu3a9O7dm507dwKBi6HDhw/bLUjZmjdvzt///veQFmK/3x8y2VNw+XHjxuVqCU1MTAwZl/zVV1/hdDq54YYbANi+fTsLFizA4XDwzjvv0KNHD77//nv7ojtb9+7diYyMZMOGDfl+J99//z3vvPOOnXDfd999PPjgg4V8kwFJSUkhn6VFixZFel9p6tq1K9OmTcs1A/HVV1/N7NmzgUCrX3bSvXDhQizLAqBly5Z2q96yZcvYsWMHEOgS+sEHHxAXFwfAb3/7W66//nq2b99ORkYG06dP54knnsDn89k3T6pWrcrzzz8fMt7Ysqx8L4LLgsPh4K9//WuumZTLen+ePn26fTEfFxfHrFmz7Pq45ZZb6Nu3L36/n507d5Z4/Oytt97K+++/j2VZvPfeezRv3txOfMeMGZNvN/0TJ07w6aef2o8HDx7Miy++aD/+wx/+YCc+c+fO5dFHH6VGjRrMnDnT3k+cTqf9OwEuvPBCHn744Tx/39tvv20n3N27d2fq1Kn28IzBgwfbx/CKFSvYunUr7dq1K/Z3AYFkNj4+3l5ebMGCBfbx//XXX3P69GkAqlevbnfLDr5RcMkll/D000+HbDMzM5MTJ06UKJ68bgJVr16d8ePHl/gzXnDBBbRs2dLeR+fNm2cn3QsWLAjpSTB8+PACt5XXPle3bl3+8Y9/nFWPgxtuuIFXXnmF1NRU3nvvPbxer91j6pZbbsl3aI5pmiE9Nbp168aMGTPsZPef//wnU6ZMAQLDQ7Zs2UL79u2ZN29eyPH56quvctlllwHY3dHzci6OUREJDyXdIlLufPbZZ3brWLCIiAiee+45+yJkxYoVjB8/nkOHDhW4vSNHjtCgQQNatmxJbGwsSUlJ7Ny5k4EDB9KhQwfi4uJo27Ytl112GY0aNbLfd/HFF/PVV18B8Pjjj/Phhx/SvHlzmjdvzoUXXkiXLl1CkpydO3fSoEEDu1tkdovURRddRI8ePYBAF9KLLroopKt19vI9BU1g9vrrr9s//+53v+P+++8v8DOXN3feeWeeS/7Ex8fbSfeyZcvsMbzB3W6Dx4Bmjw2GQFKZnaTnJbuHRPXq1WndujU7duwgJSWF/v3707lzZ5o1a2bXe86u9g888IA9Pv1sBE+ktnHjRhYvXoxpmjz22GOYphmShJT1/hz83e3Zs6fAXhXr1q0r0QV9ixYtuOKKK/j222/54osv7KEXjRo1on///vkm3Rs2bAgZxpEzORs+fLiddPv9fjZs2ECfPn3YuHGjXaZTp052wg2B8ctPPPGEfaMqWPB3sXr1atq3b5/vZ1q3bl2JE9Ls2F955RUsy2LTpk3s2bOHuLi4XMMnsm8Ede7cGY/HQ2ZmJt999x3XXHMNbdu2JS4ujg4dOtCjR49SXW5uxIgRJW7lzjZ8+HB7Top169axd+9emjVrFtK1vGPHjsX+Hl0uF7fddpudsJZUTEwM1113HR988AHr1q2zj7Ho6GhGjhyZbyv37t27SUpKsh8PGzYspHV5+PDhdtINgc/evn37kP2ydu3aIfFfeOGFNG7cOM8bfefiGBWR8FDSLSLlWmRkJA0bNqRHjx7cfvvtNGvWDAiM27z//vuLtNxWdstRREQEL774Ik8++SSHDh1i//797N+/3y7ndrt56KGHuOOOOwC47bbb2LZtGwsWLCAzM9MeV5qtTZs2vPXWW/Y4vpMnT4Ykb9mTCwWP88vrcWZmJseOHSvSurCGYRR7rfLY2FgiIiLslpecE3gVR3arYrb8uu/mlF/r+iWXXEKzZs3Yu3cvGRkZLF68mC5duthd910uF9dff71d/uTJk0WO9fjx4/bPzz//PA899BC//PILv/76K0uXLrVfczgcjB07Ns/1jM9W8MRVELh5M2fOHCzL4rnnnmPw4MFERkaek/25pN9dcY0ZM4Zvv/3WXvYJAnMPFNQVNmdstWrVKvBx9rEVfKMq5+RSTqeT2NhYEhMTC/19BTmb7wICNxx69OjBypUrgUDr72233cY333xjlxkxYoT9c/369Xnuuef429/+ZndzD57kLDo6mmeeeaZEcxCMGjWKevXqsWLFCvvG39tvv01SUlJId+jiuu666/j3v/9t3ziZO3cuQ4YMYdOmTXaZwlq5IdCDx+12s3jxYrZu3YrP5+Of//wn6enpRZoYryBjxoyxJ5NMSEgAApPJ5VyfPFhwwg1nhjZly2+/zP4fcu+X2dvJK+k+l/uliJxbSrpFpNyZOHFigTPcQqBrZnCC8vjjjzNy5EiqVavGL7/8ku8F6WWXXcbSpUvZtGkTW7duZe/evaxbt441a9bg9XqZNGkS/fr1o1mzZrhcLiZNmsTjjz/O2rVr2b17N7t372bJkiWcPHmS7du388ILL/CPf/wDCLSmBF80ZV+Q7d27NySGPXv2hDyeM2cOpmly8cUX5/t5W7Rowa5du7AsiyeeeILo6GgGDBhQ4HeUzeFw0L17d5YvXw4EZmzevHkzHTp0KNJ7gwV3mUxJSbG7aBYmr5l9sw0fPtzuSrxgwYKQxPGKK64IudCtXr26/XNERAS///3v891u8MV0u3btWLhwIdu2bWPz5s3s2bOHzZs38+2332KaJu+++y5XXnml3SOhrHTu3Nme0C0pKYndu3fTvn37c7I/B393rVu3LjAJyjn7e3FcccUVNG/e3B6XHBUVZXfXzk9wbIC9VFR+j2NiYoDQOs6ZhGSvRZ3f78ve5kUXXVRgi2G3bt0KjL0o4uPjQ5LuBg0a2DdP2rZtm2uOhWuuuYZBgwaxYcMGtm/fzt69e1m1ahWbN28mNTWVp556ir59+4ZMKFcU2TeB7rvvPu69916+/fZbAGbPns2IESMKPAcVpG7dulx++eX29ubNmxdyQ87tdjN06NBCt5M9e/ndd9/NqFGj2LJlCxDo6XPttdfStGnTEsUHgWEqvXr1sseYG4bBrbfeWuB7guffAHKd7/LbL7P/h7yT4/zOm+fqGBWRc09Jt4hUSDkvpuPj4+0L8JyzzGbLyMjgwIEDtGzZks6dO9O5c2cg0Hp7ySWXkJycjGmabN26lWbNmrFr1y4aNGhAzZo1QxLcNm3a2K1CwZOptWjRgh9//JETJ05Qo0YNevbsicPhYOPGjXz00Udcc801zJ07135Pamoqn3zyCX//+9+pWrVqrom1gj311FNMmTKFlStX4vP5ePDBB3njjTdCZrIuyNixY+2kG+Chhx5iypQpId2P4cySYdkzmOdsBVq/fj2tWrUC4I033sjV8l0Sw4cP56WXXsI0Tf73v//ZY0MBRo4cGVI2OAHKyMigVatWec6G/NNPP4WM284ea9m2bduQZbeuvfZau8vz5s2b7aS7tJYMyym42ylgtwyei/25W7du9rwBiYmJDB06NFc3ZZ/Px9dff80FF1xQ4s9oGAZjxozhr3/9KxD4jnMm1Tl16dIlZNmmOXPmhNRr8MzzTqfT7nbbqVMnuzV148aN7N692+5i/tlnn+XZtRwC+1H2JGZHjx7lpptuyrVufHp6OosWLbLnkDgbgwYN4q9//SvJycns3r2b1157zX4t5w3GpKQkTp8+TaNGjbjooou46KKLgEAraPfu3YHAcbp79+4ST4jocDgYP348gwcPtr/zyZMnn9V66vHx8XbSvX//fqZPn26/1q9fv2LNPh4ZGckTTzxhj0H3er385z//OavWeAicB7OT7ssvv7zQGcCbN29uD+EAmD9/PqNGjbJ7beRcESF7X+nUqZO9NvnRo0dZuXKl3cV87dq1+c4hca6OURE595R0i0iFFDx2EwJLJ11xxRVs27bNvtjJ6dSpUwwZMoTWrVvTuXNn6tatS2RkJD/++GNIN9XsVop3332XefPm0aNHDxo3bkzt2rU5efJkyIRPwUlp3759+eGHH5g5cya/+c1vaNy4Mbfffjtvv/02Tz/9tD0hUvZsxtmzItesWZOXXnqpwHGabrebV155hTFjxrB582YyMzO5//77eeutt4qUFPTu3ZubbrrJnrF3165dDBkyhAEDBtCqVSt7cp7ly5eTnJxsJ90tWrSgSpUq9oRPEyZMYNmyZRw9ejTXrPIlVb9+fXr27Ml3332Hz+fj8OHDQN7LC/Xt2zdk0qb777+fQYMG0bJlSyzLYt++faxZs4aDBw8yceJEe6zujTfeaK93XbduXapWrcrWrVtDkumCupmW1GeffcbGjRvx+Xxs2rSJL7/80n4te/1pODf785gxY/jwww/JyMggKSmJ6667jquvvpoGDRqQmprKL7/8wurVqzl16hRLly4tNFEuSHx8vL0/F7YMHgSWgxo+fDgzZ84EAjcakpOTc81eDoGuzNkJ3MiRI/n444+xLAu/38+YMWO4/vrrOX36tL2tvNxxxx0sXboUy7LYu3cvQ4cOZeDAgdSuXZvk5GS2b9/ODz/8QGpqasjwhpKKjIxkyJAh9vGXnXS53W6uvfbakLJ79uzhpptuonPnzrRr1466devidDpDbppBaGtqSTRr1ozBgwezYMECIDC2fe3atfmeT55++uk8W9Y7derEX//6V/r37x+SoAb33ChK1/KcLr30Urp162afZ+bNm8e4ceNy3Sgsjt69e/Paa69hWZZ97BXE4XBw2223MXnyZCAwjnr06NFcfvnl7Nq1K+SG2KWXXmqPWR82bBgvv/yy3dp///33c8MNN2AYRq5lAYOdy2NURM4tJd0iUiH169ePNm3asH37dgB7vVQIXODlbIEItmPHDnsG7Jy6dOnCJZdcYj9OS0sLmT09mMPhCJmJfOTIkbzxxhu88cYbDBw4kLi4OB599FGaNm3K/PnzSU9PZ8CAAdSrV4/33nuP+vXrc+mllxIfH1+ki6eqVavy5ptvcvPNN7Nv3z5SU1O59957mTZtWoETQWX785//TGxsLG+++SamaZKenm5fcOfH4/EwduxY/vOf/wCB8cTZkw516tSJw4cP5+piWRIjRowISawg0ELqdrtDnnO5XLz66qvcddddHDx4EK/XGzIhVUEOHDiQbwtT48aNufrqq0sWfAGyl1LKyTAMnnrqKbs1/lzsz02aNOFf//oXjzzyCKmpqZw4ccIe41raoqKiijz8IdtTTz3F3r177QkIv/vuu1z7xIUXXsj48ePtx126dOHOO++0l5dKTEy0l8Jq3bo1R48ezXOm74svvpg//elP/P3vf7dv9ATPUl0WRo4caSfd2a688so8x/wC/Pzzz/z88895vjZo0KCz6mqd7d577w1ZKeA///lPyFJiwXIOi8mWnYh7PB6GDBnC+++/H/J6nTp1uOKKK0oUX3Y3eAi08L755psha18Xl2EYxZ587N5772Xbtm328mDr169n/fr1IWVatmzJP//5T/txgwYNePzxx+3eHqdPn+bdd98FAl3xa9asmef3eS6PURE5t5R0i0iF5Ha7mTp1Kv/85z/56quvSE1NJS4ujjFjxtCzZ888k5Tq1avz9NNPs3btWrZu3crRo0dJTk4mKiqKuLg4+vfvz2233WavIzty5EhiYmJYv349Bw4c4Pjx45imSe3atbngggsYM2ZMyBjI2NhYHn30UcaPH8/dd9/N66+/TqtWrbj55ptzLREzYsQIDh8+TGRkZLFaK2rXrs1bb73FzTffzNGjRzl16hR33nkn06dPL7SrpNPp5I9//CMjRozg448/ZvXq1ezbt4/k5GQiIiJo2rQpPXv2ZMiQISHv+/3vf09UVBQff/wxCQkJ1K1bl6FDh/Lb3/62RJM55WXAgAEhrWSQu9tttubNmzNv3jw+/PBDlixZwq5du0hJSSEyMpLGjRvTpUsX+vbtS+/eve33/OUvf2HNmjVs2rSJxMRETp06hcfjoUmTJlxxxRXcddddZdLSHSwyMpK6devSrVs3Ro8ebS+DBudmf4bA9zx//nymT5/OihUrOHDgABkZGVSrVs2elX/AgAFFmtSvtEVHR/Puu+8yZ84c5s+fz7Zt20hJSaFKlSq0bduWoUOHMmLEiFzrPGff2HrvvffYu3cvsbGxDBo0iN///vcMHz483+W1brnlFi655BKmT5/OqlWrSEhIwOv1EhsbS4sWLbj44osLnB2/uLp06WLPop8tr328efPm9jwS27dv59ixY6SmplK1alVatmzJ4MGD811yqrjatGnDlVdeaa/S8O2337Jp06Zcy9kVVXx8fK6kuyhrc+enb9++tGvXjq1btwIwa9Ys/u///i/XZJRlyel0MnnyZBYtWsTs2bPZuHEjJ0+eJCoqihYtWnDVVVdx8803Ex0dHfK+W265hdq1a/PGG2+wY8cOqlSpQu/evfnjH//II488ku9NjPJ8jIpIyRlWaQzIExER27///W9ef/11oqKiGD16NCNGjAhJiPfu3cvcuXOZOnUqPXr04NVXXw1jtCIiIiJSlpR0i4iUgblz5zJx4kS7la1atWrExsaSnJxst+ZGR0fzhz/8gbFjx4as9y0iIiIilYeSbhGRMpKSksLs2bNZtmwZ27dvJykpiSpVqtC6dWt69+7NjTfemGtJGhERERGpXJR0i4iIiIiIiJQRR7gDEBEREREREamslHSLiIiIiIiIlBEl3SIiIiIiIiJlREm3iJRLN910E23btqVTp04kJCSEO5ywGjNmDG3btqVt27Y8/vjjZf77sn9X27ZtmT17tv387NmzQ14TEZGSK8k59fPPP7fLP//882UcoYiUFle4AxARyWnx4sWsX78egGHDhlGvXj37tdmzZ/PEE0/Yj6dNm8all15qPz548CC33347+/btA8DtdjN58mT69+9/boIvRL9+/Th48GCh5bZt23YOojm/7d+/n48++ojVq1ezb98+kpOTiYiIoEmTJlx00UUMGTKEiy++ONxhlnvJycnMnDmT7777jm3btpGUlITT6aRevXp07tyZAQMGMGDAANxud7hDlbOwatUqxo4daz9eunQpjRs3LvL7Czt3S9EMGjSIpk2bsm/fPt577z3GjBkT8jdSRMonJd0iUu689NJL9s/BF3mF2bdvH7fddhuHDh0CICIigldeeYXevXuXeozn0s0330zfvn0BaN26ddji6Ny5M48++mjYfn9pMU2TV155hddffx2/3x/yms/nY+vWrWzdupUZM2bo5kchvvzyS8aPH8/JkydDnvd6vezdu5e9e/eyYMECJVgipcTpdHLLLbcwceJE0tPTefPNNxk/fny4wxKRQijpFpFyZe3atWzfvh2A5s2b0759+yK9b+fOndx+++38+uuvAERHR/Paa69x2WWXlVmsZ6tJkybcfPPNhZYbMmTIOYimcK1btw5r0l9a/vrXv/LBBx/YjyMiIhg4cCAtW7bE7/eza9culi9fTnJycpnHkpKSQtWqVcv895SFzz77jD/+8Y8Erzzas2dPunbtisfj4eDBg3z//fdF6tlR2VXkeq5MKks9DB48mOeeew7Lspg7dy4PP/wwkZGR4Q5LRAqgpFtEypXgMcRXXXVVkd6zbds27rjjDo4dOwZAlSpV+O9//5tn1+CUlBRmzJjBkiVL2LVrFxkZGdSuXZsePXpw1113hSSVjz32GJ9++ikA3bp148MPPwzZ1rJly7j33nuBQOvD119/Xaxufg0aNOCuu+4qtNyYMWNYvXo1AMOHD+e5554D4MCBAyHd5qdNm8bRo0d599132b59Ox6Ph8suu4wnnniCBg0ahGzT5/Px9ttvM3PmTA4dOkT9+vWJj4/nN7/5Tb5x5OweGtwKnDPG++67j5deeokVK1aQmppKq1atuP/++xkwYECu7a5Zs4bJkyfz888/2zE//PDDvPrqq8yZMweA7t27895779nvefnll3nllVfyjKUgy5cvD0m44+LimDJlCk2aNAkpl5aWFvL7CutaGzxsYNy4cTzwwAN5vu/LL79kyZIlzJw5k/3799O7d2+SkpL48ccf7e8uu36zvf/++0yYMAGAqlWrsmLFCvsCuzj7MwTqffr06Xz++efs3LmT1NRUqlWrRu3atenYsSN9+vThmmuuKfR7PH78OH/605/shDsqKopXX32Vyy+/PKScZVl88cUX1KxZM+T5kydP8t577/HVV1+xd+9eMjIyqFGjBhdccAE333xzru3k3Pd+/vln3nrrLT799FMOHjxIzZo1ueaaa3jwwQfxeDwAPPLII8ybNw/Ivf8AfPPNN9xzzz0AOBwOvvrqK/s4yczM5OOPP+bzzz9nx44dpKamEhsby4UXXsgdd9xBt27dCoxv/fr1vP766yxYsIAjR44wevRonnrqKSCwr/773/+2j5cLL7yQhx56iCVLltj7dKNGjfjqq69Cfkdx67ogq1atYu7cuWzZsoXExER7SEDdunW5+OKLuf3220PGGOc13jj43JPXflsapkyZwtq1a9m5cycnTpzg9OnTREVFERcXR//+/bntttuIjo4OeU9wrBMnTiQmJoYpU6awbds2nE4na9asAQLH+Guvvcb8+fM5duwYTZs25dZbb6VXr14h56m8eml89dVXfPLJJ/z8888kJSURFRVF+/btGTlyJMOGDcMwjLP+7M8++yzTpk0DAvvn3/72N0aOHAlAvXr16Nq1K+vWrePUqVN8+eWXXHvttWf9O0Wk7CjpFpFyZcWKFfbPOS9s87J582Zef/11kpKSAIiJieGtt96iS5cuucru2bOHO++8M1fL2+HDh5kzZw4LFy5k0qRJDB48GIBbb73VTrrXrVvHL7/8QqtWrez3ff755/bPvXr1Cvu4usmTJ9vJG0B6ejpffPEF27ZtY968eURERNivPfrooyxcuNB+vH//fiZPnsxPP/101nFs3ryZ+Ph4Tp8+HfLcuHHjeOedd0J6H3z99deMGzcOn88HBC6EFy1axP/+9z+aN29+1rHkNHXq1JDHL7zwQq6EGwJJZHZCVpqefPJJ+6I/W3x8vF1vixcvZsKECSF1FVxP11xzjZ1wF3d/Bhg/frx9IyNbUlISSUlJ/PLLL+zZs6dISffMmTNJSUmxH//+97/PlSgDGIbB1VdfHfLczp07ufPOOzly5EjI87/++iuLFy9m8eLFjB071k5S83L77beH7OsJCQm8/fbbHDt2jEmTJgGB7zU76V6zZg0JCQkhx2jw99qzZ0874T5+/Dh33nknW7ZsCfmdiYmJfPHFFyxevJjHH3+c2267Ld/47r777lz1DIGbBWPHjiU1NdV+bvny5axevbrA+QNKUtcFWbZsGbNmzQp5zuv1sm/fPvbt28f8+fP573//S8+ePYu0vbLy5ptv2uf2bMnJyfz888/8/PPPfPbZZ3z44YdUqVIlz/fPmjUrpB6qVasGBD5rzjr65Zdf+Mtf/sKVV16ZbzymafL4448zd+7ckOe9Xi+rVq1i1apVLF26lH/96184nc7iflzbpEmT7ITb6XTyj3/8g2HDhoWU6datG+vWrQPg+++/V9ItUs4p6RaRcuPQoUP2eGyATp06Ffqef/zjH3ZrW2xsLO+88w4dOnTIVc7v9zNu3Dj7orVmzZoMHTqU6tWr891337Fu3ToyMzN57LHH6NSpE02aNKFz58507drVntTtk08+sVuzMjMzWbp0qb39+Pj4Yn/ew4cP89Zbb+V6vnXr1iUah/7jjz/SuXNnevXqxapVq1i7di0QuGBfsmSJnUwtWrQoJOFo1qwZgwcPJiEhIdfFZEls27aN6tWrc/vtt5Oens4nn3yC3+/HsiymTJliJ91paWk89dRTdsLtcrmIj4+nevXqfPrpp/YFZWkxTdNuXQRo165dkfax0rRmzRpat27NlVdeiWVZOJ1OBg8ezLPPPktqaiopKSksW7bM7uVx+PDhkOQyez8ryf58+vRpOwmFQE+SDh06kJyczKFDh/jhhx+K/Dn+97//2T8bhsHw4cOL9D6fz8f9999vJ9xOp5PrrruOevXqsXTpUntoybRp0+jYsSPXX399ntv58ccf7SEB8+fPt7+H+fPn89BDD1GvXj169OhBo0aNOHjwIKZpsnDhQu68804gcENqyZIl9vaCj99HHnnETrirVKnC0KFDqV+/PmvXrmX58uWYpsnEiRPp1KkTF110UZ7xrVmzhgsuuICePXuSlpZGgwYNsCyLJ598MiThHjp0KI0bN2bRokUhNxyDlaSuCxMVFUX37t1p06YN1atXJzIykhMnTvDNN9+wc+dOvF4vzzzzDJ999hkQuEm3b9++kN4+9913HzExMUDZzTVRv359Lr30Uho1akRMTAyWZXHgwAE+//xzUlNT2b59O++//36+PXTWrFlDjRo1uOaaa4iNjWXHjh1AYP8KTrjbtm1L//792bp1a64eBsGmTJlinyMNw2DQoEG0a9eOAwcOMG/ePLxeL4sWLaJ9+/bcd999JfrML774ov13we1288ILL+TZ66tz584hn1NEyjcl3SJSbmTPOA6Bi43atWsX+p7g8aT/+c9/8ky4IdCyk33B5XQ6+eCDD4iLiwPgt7/9Lddffz3bt28nIyOD6dOn28n1rbfeaifdc+fO5aGHHsLj8bBixQp7zG9sbCz9+vUr9ufdv3+/3SoXbPjw4SVKurt06cL777+P2+3G6/XSp08fu8v9zz//bCfdn3zyif2eatWq8fHHHxMbGwsEulv/+9//LvbvDmYYBu+++65dFxEREXYL88aNG+1yX331lR0fBFphs8e433DDDQwZMsROyEtDUlISGRkZ9uMWLVqU2raLqmvXrkybNi2kJRvg6quvtodWLFy40L7IXrhwob2Pt2zZkq5duwIl2599Pp89cVzVqlV5/vnn7a7YgJ3QFEXwMn61atWy95/CLFu2jN27d9uPx48fz+jRo4FAEjdkyBA7uXznnXfyTbpvu+02nnzySSAwvvW6664DAjdWNm3aRL169TAMg/j4eF5++WUAFixYYCfdX3/9td0To3r16gwcOBCArVu38t1339m/57XXXqNHjx7243vuuYdvvvkGy7J455138k26Bw0axOTJk3E4zqzMun79evumAsBvfvMbHn74YQDuvPNOBg4cmGtCuuzvrCTnroL87ne/wzRNNm7cyM6dOzl16hS1a9emd+/e7Ny5Ewj0SDh8+LA9DGbVqlUhSfcNN9xQrNnLS2Lu3LkkJyezdu1aDh8+TFpaGi1btqRjx472TaLvvvsu36S7atWqzJ49m4YNG4Y8H3wObNSoER9//LHdg+Txxx/P1RsEAvvW22+/bT/+v//7P373u9/Zj1u0aME///lPILDv3nPPPSH1XxSvvfYa//nPfwDweDy89NJL+ba8B/fayL6xVNzfJyLnjpJuESk3jh8/bv9cvXr1Yr//ueee46233rK7EAbLbvWFQMtRQePFg1tYr776av7xj3+QmJjIiRMnWLJkCUOGDGHRokV2mWHDhoUkL+Fyww032Msyud1uGjdubCe1wRfzwYnvFVdcEZIwXXvttWeddHft2jXk5kdwN/H84gDsxAkCre8XXnhhSMt0sAceeMAeN12R3HnnnbkSbgi0tGYn3cuWLbMnfArukRDcGluS/bl69eq0bt2aHTt2kJKSQv/+/encuTPNmjWjbdu2XHbZZUVqJT0bOXsvBCfVkZGRXH311XYr37Zt20hLSyMqKirXdrITdSDXMIRTp07ZPw8fPpxXXnkFy7LYtGkTe/bsIS4uLleX/ezjN/h7BQrsQl5QT4x77703VwKUc38P/uzVq1enf//+IXNaZCvpuasgK1asYPz48SE9i/Jy5MiRXPNBnCumafL8888zbdo0vF5vvuVyDlMIdv311+dKuE+fPh1y4+fqq68OmYQsPj4+z6R79+7dnDhxwn786quv8uqrr+b5e5OSkti9ezctW7bMN7a8TJ48GQgcC6+++iq9evXKt2zweds0TZKSknLNnSAi5YduiYlIhRacJPz000/cdtttucYAAnm2IOUnOPl3u92MGjXKfvzJJ5/k6lqePblNcXXv3p1t27bl+lfSCYkaNWoU8jhnK2a24Fm5a9WqFfKeovQuKK04gpOjKlWq5JoQqU6dOmcdS7DY2NiQhHfXrl0l3lbw54DAcIOiyK91/ZJLLqFZs2YAZGRksHjxYnbu3MnmzZuBQNf74CStpPvz888/b89L8Ouvv7J06VLefvttHnvsMfr27cvEiROLtM3gVrZjx44VOZ7gctHR0bnqPHj/sywrZB8JFryP5bzhZZpmSLngluoFCxaQnJzMN998Yz83YsSIPOMrTPD3mlNe9Zzzs+Q81vI79korpmwJCQncf//9hSbcUPT9uixMmzaNt956q8CEGyjw9bzqIeeqBDnPM/nVQ15/VwoSnKAXV2RkZNjnCBGR0qWWbhEpN2rUqGH/XNQLzb/85S988MEH9vjMTZs2cdttt/HOO++E3PUPbjmPiIjg97//fb7bzNlSftNNN/H666/j9XpZuXIlH330kX3h1qFDB9q1a1ekWMuayxV6Ss9vBt1q1arZF5DB3bsBjh49etZxZLe2FxZH9nhQCLQ+paenh7Q4JSYmnnUswRwOB927d2f58uVAoCvx5s2b8x2SkPO9wYK7qaekpBT5e8ur1Tbb8OHDefHFF4FAcrh//377tSuuuCIkGSjp/tyuXTsWLlzItm3b2Lx5M3v27GHz5s18++23mKbJu+++y5VXXhmSqOalR48e9hhky7KYM2cOt99+e4HvyRl3amoqqampIYl38PdoGEbIPhIseB8rbKbo+Ph4Vq5cCQS+1wYNGtjJZNu2bUPG9efsYfO73/2uREsx5byZAOT6LMeOHQtprcxvHzqbc1devv76a9LS0uzHjz/+OCNHjqRatWr88ssvRZpI71wInqiybt26vPrqq7Rr1w6Px8OkSZPynA8jp7yOt5xLhhX1HJhzCMXw4cMLHMue8+ZjUbRo0YJdu3aRlJTEHXfcwfvvv0/Tpk3zLBt8E8DhcBR5iIeIhIeSbhEpN4Jbrb1eL8eOHcvVEpuT2+1m8uTJPPTQQ3aX761bt3Lbbbfx7rvv2u8Pngk9IyODVq1a0adPn1zb++mnn3K1nNWpU4errrqKBQsWYFmWPW4PQlvJKopOnTrZ41aXL19OUlKSfcEWPNHWuYgj2MKFC+3vc+/evbm6+gYr6ZJhY8eOtZNugIceeogpU6bkukDOXjIsewbznMnM+vXr7RbjN954I1fLd0kMHz6cl156CdM0+d///mePrYXcvSlKuj9v2bKF9u3b07Zt25Clla699lr7O9y8eXOhSffIkSN5/fXX7XHRkydPtruoB7Msiy+//JIWLVrQunXrXCsSfPrpp3ZX8fT09JBhG+3atSvwJkVRDRo0iL/+9a8kJyeze/duXnvtNfu1nBMgXnjhhSGPa9SoEdKVPduOHTuK1QINee/v2WOCT548GdJ7JtjZnLvykrPFNj4+3t6/gxPdnHLe1EtPTy/0d52N4Dg7depkr0iRkZHB119/XeLtVq1alebNm9tdzBcvXszvfvc7+7vLq4s/BIYxxMbG2nGlp6fnueTjsWPHWLt2bYm65b/11luMGjWKhIQEEhMTuf3223n//fepX79+rrLB3eobNmyo8dwi5ZySbhEpNxo3bky9evXsSZo2bdpUpAnFXC4X//rXv3C5XCxYsACA7du3c+uttzJ16lTq1q1L3759admypZ3I3H///QwaNIiWLVtiWRb79u1jzZo1HDx4kIkTJ9K+ffuQ3zFmzBh729mtnB6Ph6FDh5ba5z9XRo4caSfdycnJ3HjjjaU6e3lR9e/fn1q1atktTX/+85/ZsGED1apV49NPPy3VSdSy9e7dm5tuuomPPvoICHQxHzJkCAMGDKBVq1b4/X527tzJ8uXLSU5OtpPuFi1aUKVKFTvJnDBhAsuWLePo0aOlNst6/fr16dmzJ9999x0+n4/Dhw8DgSEAOZOsku7PN954o70Wc926dalatSpbt24NuWlRlNbSmjVrMmHCBB555BEsyyI1NZU77riDnj170rVrV9xuN4cOHWLFihUcPHjQXv6ob9++IQnPM888w88//2zPXh68JFZRWs6LIjIykiFDhth1nj1ZnNvtzrXMUrt27bj88svtVvy//e1vfPvtt3Tq1AnDMDh06BDr1q1j586djBs3rsBlvnLq2rUrbdq0sSdTe+211zhw4AANGjRg0aJF+SbxZ3vuyinnGPh7772XK664gm3btvHFF1/k+76c3Z0nTJjAFVdcgdPppF+/fsVe4u/pp5/Oc6mvTp068de//pXmzZuzZ88eIDDPwdNPP03t2rX54osvzmpoCASOg3/84x9AYHWHUaNG0bdvX7Zu3ZrvzQ+Hw8Edd9xhz3nx+eefs3//fi6//HKqVKlCYmIiGzduZMOGDVx00UX25HzF0bBhQ6ZMmcItt9zCqVOnOHjwILfffjszZszIdQM6eI6A4uyHIhIeSrpFpFzp2bOnPYnN+vXrizyLt9Pp5J///Ccej8duqdi1axdjxoxh6tSp1K9fn1dffZW77rqLgwcP4vV6QyZTKkzXrl3p1KlTyIVOv379KmSXvsGDB7No0SK7VXHv3r28/vrrQGCceX6Tl5W2yMhInn32WXudbq/Xa8+OXL169ZDl2grrQlwcf/7zn4mNjeXNN9/ENE3S09PtGyr58Xg8jB071p5ZODMzk8WLFwOBJOHw4cO5uqmWxIgRI0Jmz4ZAK3TOLvsul6vE+/OBAwfynaW8cePGudbVzs+wYcNwOp08/fTTJCcnY1kWK1asyHfpq+C4s9fp9vv9ebYsjhkzJt+Zy0ti5MiRdtKd7corr8xz4ql//vOf3HXXXWzZsgXTNPn666/PqmU12N///nd7nW7LsuybXB6Phx49ethLsQXv72dT13np169fSPK/bt06+8bR8OHD85xEDAL7RocOHex5BlavXm2fKxo1alTspDs7oc4pOxG/++67Wb58OT6fD9M07fqLjo5m0KBBfPnll8X6fcHGjBnD0qVL7aW2Nm3axKZNm4DAjblvv/3WLhvcgnzPPfewa9cuu942btyYa4K8s9WmTRv+85//cOedd5KRkcHu3bu58847ee+990KGKATf7Av3euoiUjj1RRGRciW4u3ZBrS55cTgc/P3vf+fGG2+0n9uzZw+33norBw8epHnz5sybN49HHnmEbt26Ub16dZxOJ1WqVKFt27bccMMNvPrqq/m2Xo8ZMybfWCua559/ngcffJAmTZrgdrtp1KgR9913H1OmTDmncVx55ZW8++67dO/encjISGJiYujfvz8fffRRyNjL/Mb2loTT6eSPf/wjixYt4u6776ZLly7ExsbidDqJjo6mXbt23HnnncycOTPkfb///e/54x//SOPGje3v7N5772X69OklGveblwEDBuS6kZPfGvAl2Z//8pe/EB8fT9u2balZsyYul4vo6Gjatm3L3XffzSeffFKklu5sQ4YMYenSpTz22GP07NmT2rVr43a7iYiIoFmzZgwfPpz//ve/IUtrtWzZkrlz5/LAAw/QsWNHoqOjcblc1KlTh4EDB/LWW28xfvz44n1xhejSpUuu8bf5fa+1atXi448/5i9/+Qs9evSgRo0a9r7RokULrr32Wp5//vk8uxYXpnPnznz44Yf07dvXnkjusssuY8aMGfZEepB7fz/bc1cwt9vN1KlTiY+PJzY2Fo/HQ5s2bfjb3/7GuHHjCnzvyy+/zMCBA4mNjS3VG2F5ufjii5kyZQrdunXD4/FQrVo1+vTpw4cffkibNm3Oattut5spU6bwm9/8hvr16+N2u2nevDlPPPEEv/3tb0PKBh8PDoeDSZMm8d///perrrrKfq/H46FRo0ZceeWVPPnkk7zwwgtnFd/FF1/Mv/71L5xOJxAYMnXPPffYa7wnJCTYNySrVavGoEGDzur3iUjZM6zSGIgmIlKKhg4daq9LO2/evJCxp+G0fv16brrpJiDQ1fLrr7+2L4qkZDIyMvJcQishIYEhQ4aQkpICwIMPPsh99913rsMTKVWZmZm4XK5c429Pnz7NsGHD7O71N954I3/729/CEeJ5I+fEjdn+8Y9/2OtxR0dHs2rVqnKxJGSwd999115p4NZbb+VPf/pTmCMSkcKoe7mIlDsPPPCAPcHQtGnTePbZZ8MWS0ZGBuvXr+fUqVN212KAm2++WQl3KVi+fDnPP/88Q4cOJS4ujqioKPbs2cP06dPthDs6OrpC9yoQybZz505++9vfMmzYMFq2bEn16tU5ePAgH374oZ1wOxwObrnlljBHWvmNHTuWJk2acNFFF9GgQQNOnjzJ8uXLQ7rujxo1qtwl3H6/nxkzZgCBITrZ806ISPmmpFtEyp2rrrqKCy64gJ9++om5c+fyu9/9LmxrliYmJjJ27NiQ55o0aZLrOSm53bt38/LLL+f5WpUqVfj3v/9d6mt2i4TL4cOH+e9//5vna263m7/85S/lZhnCyiwjI4MFCxbkO59D3759efDBB89xVIX78ssv2bdvHxAY8qT1vEUqBnUvFxEpwIEDB+jfvz8QmLG5R48ePPzwwyVag1Vy279/P2+99RZr1qzh119/JSUlhaioKJo1a8bll1/OLbfckudyOSIV0YkTJ3j99ddZvXo1hw4dIiUlBY/HQ+PGjbn00ku5+eabadmyZbjDPC988sknLFq0iB07dpCUlIRlWdSsWZNOnTpx7bXXctVVV4U7RBGpRJR0i4iIiIiIiJQRzV4uIiIiIiIiUkaUdIuIiIiIiIiUESXdIiIiIiIiImVEs5fnITExOdwhFInb7cTr9Yc7DCllqtfKSfVaealuKyfVa+Wkeq2cVK+VV0Wo2zp1qhVaRi3dFZhhhDsCKQuq18pJ9Vp5qW4rJ9Vr5aR6rZxUr5VXZalbJd0iIiIiIiIiZURJt4iIiIiIiEgZUdItIiIiIiIiUkaUdIuIiIiIiIiUESXdIiIiIiIiImVESbeIiIiIiIhIGVHSLSIiIiIiIlJGlHSLiIiIiIiIlBEl3SIiIiIiIiJlREm3iIiIiIiISBlR0i0iIiIiIiJSRpR0i4iIiIiIiJQRJd0iIiIiIiIiZURJt4iIiIiIiEgZcYU7ABEREZFywefDtWUnrh27caZn4IiMwNe6Ob72LcGlSyYRESkZ/QURERGR855zx26iFnyNkZ6BZYBhgWGAe9turCUrSBvaD3/ruHCHKSIiFZBhWZYV7iDKm8TE5HCHECIzNQFfxslcz7vdDrxeM9fzrojqeKLrnYvQ5CyoXisn1WvlpbqtnDJTE7B+2UzEku8BMPIok32hlDGgJ0arDqrXCkDHa+Wkeq28KnLd1qlTrdAySrrzUJ6S7szUBLZ+OQbLzCzyewyHh3aD3is3O6LkpnqtnFSvlZfqtnIK1OutWKa3yO8xHG7aDZquei3HdLxWTqrXyqui121Rku5yNZHaDz/8wH333UevXr1o27YtS5YsKfQ9q1atYvjw4XTq1ImBAwcye/bsXGVmzJhBv3796Ny5MzfccAMbNmwoi/DLhC/jZLF2QADLzMzzTpGUH6rXykn1WnmpbiunQL0WPeEGsEwv5pF9OI6ewDhxEuNkMkbKaUhNh4xM8PnAzN0qI+eOjtfKSfVaeZ0PdVuuxnSnpqbStm1bRowYwbhx4wotv3//fu69915GjRrF888/z8qVKxk/fjx16tThiiuuAOCzzz5j4sSJTJgwgQsuuICpU6dy1113sWjRImrVqlXWH0lEREQqmahPv6RKxpoCy1iGAQ4HOB3gcGA5nUE/O8DptF+3HGceB15zgCNQ3sp6T8jrWY/P/Jz1OOfvs19zYGVtL+fvy/kaDkdgMLuIiJSacpV09+nThz59+hS5/Icffkjjxo15/PHHAWjZsiU//vgj7777rp10v/POO9x4442MGDECgAkTJrBs2TJmzZrFPffcU/ofQkRERM57hmWB3x/4R95jxcur0OT9zA2AnDcMct0gOMc3D3K97ihXHThFRGzlKukurvXr13PZZZeFPNerVy/+/ve/A5CZmcmmTZu499577dcdDgc9e/Zk3bp1+W7X703L9zXDcOJweYpUFgyc7sgSlk0HLPzeDHIPuzdCbkIHXg4t4/dmZP2+vLebH6c7qkRlTV8mluUvlbIOZwRG1h/OMivr92KZvlIq68FwOItdtijTKRhZFZ1d9ky9FrBd04/pz7+LjuFw4XC6y1FZE9OfUTplg47PsioL+R/Lfm9G4JAJOT4LqufQY7kk54hzW/b8PUfkdS7OeXzmxe/NwDL9JTpHlNm5p1wc9+XjHJH339isshj2sZyzTHqbJrisOoFu5H4LwwSnaYDfBNPE9GUEkm3TBL+JYZpgBh4bfgun6chKyE1MCupSaeC0zlyq+Y2CusLnLOujwOO+oLIW4Cu8bM4bCQbgtNxFjCG0rIkPyzi7shYEkvbIZGh05kmrgBjgzLHsmbuICH/+PRgcODGMrHOE5cci/2EExSvrwDCc5aasZfkxCyhr4MARhrJeZyJWtTN1WZRzMIBn7hdEmz9llTUxyf/vgIGBw3CVaVkAv5X/sVycsgBOI+iYq6Blc9ZtNiMk4cl9LAdfF4f3OqLwMd0VOuk+evQotWvXDnmudu3apKSkkJ6ezsmTJ/H7/bm6kdeqVYtdu3blu91TK/+Y/y+t2oYaFz54puz/HoN8di6rSnNqXvTombKrx4M/Ne+ykQ2p2f1P9uOTayZgeJMwfWnUzvFHNtNykozTfhyDH48RugOcWnE/pwwDn+XidEQN+/mozJN48vkD78dBiufMdxWZcYoII++LFwuDU54z331EZjKRpOdZFuCkp479syfzNFHk/T0AJLlr2weZOzOVaE7nX9ZVyz4Q3JlpRJOSf1lnLQxnoKwrM40qRSzrzEynKvlPrnfSURNcgfpwejOoap0qtKxl+nBbTqo78v/OTpgRmFkXFS7LQawjw67XnE4ZsVjuwEnM8HqJsZLy3e4pozqWOyuB9Pmobp7It2yyUR3TLuununk837IpRgx+d0TRylINvyeQ6Fl+k1j/sXzLnqYqPk9UkcqmUhVvdlnTJNZXUNkqeD3RgbKWRaz3aL5l04gm01PFflw9MzHvgpZFtGWQGlRHNQ0fjnwu+NJNN6cNg90rHsVwuKiaeQxnPhckmXhI81S3H1fJOIHLyDvJ8lpuUiNi7cfRGUm487lY1zkiqGxB5wjLonbQ933MjAisKQV4LAcxjry/h1Mr7me/s1axzxEADm8m1az8x6uddNSw1442vJnEFFBW54iAXOcI79GQeg3ZrukhPeh0G/y3+Kh3Ckezj3MHpDmKeI4A0okkw3PmAi0m8yhGyDnizM8ZViTp7qr201V9J3Dmc2GfaXlIc1Yl68qUKuYpXBRwjjAC8RqWRRSncRu+rF8der7yWU5SrSr201FGGm5H3ucTv+XgtP/M9xBhZBDhzPt8YlkGyf6q9mOPkUmkM/8bJqd81YLKeol0FvD30xtt/xxpQZV84gU4Znrsuwe7oudRpYDtnvRWs2+UOvFRxZX/jdKT3qr2ecqBn6qu/M9pp7zV7BgKKxuyXcukqjv/898pX1WyN2xgUs2Vf9lkb9XAkAgC+0Q1d/7nymRfFSx7WiiLGFf+ZVO8VTCzbj5YlkX1Arab4ovGzL6+tSDGnfPay6J21nn3lBmBN+tnw3JQK59zMMDOqHmYZCfHUD3Xds9I9Ufhs7LLFhxvmj8Sb9bNoMLKpvsjyQy6cRTjyj+GdH8EmdaZG/3VnCkY+dyQyvB7yLAi7MdVnKdxGnlfR3hNN2nmmZvs0Y5UXI68zyde00WaeSaJjXKk4XbkfT7xmU5SzeigsuklOEecqdtsJgYnOPOdRVsWUTm2m7nxBXyuQJw1ev/Hfv7kxv/CqU15xgAQc9m/cDoC7zu5ZSqcWJtv2WrdJ+KKjA2U3fY+HFuVq0z9EdPzfX+2Cp10lxVHQWOZnAYez5mE1+EwwMy7vGWEljUcBkZ+ZfPYrmEYWCXsj2ZZgT+elmXiTT+TTERYJlY+FxiW5Qgp6zEtrHwOGhMjpKy7gLJASFmXSaFls/+gOAsp60s/bk8H6CisrO9MWcM0Cil7AhxZB38hZb2+JPAFylqmo5DtJmFllXWVYB7D7HrNyW8m4/cHTrLOQmIIlA1sxFHIZ/ObKfiytlvod2aexufP+iNS6HZP4zVTilg2Fa+ZdaFQSB0Htlu0sqaZitcMXNhYloVVQAuSaabhNc9cXFkUdBfXXcBrefNlJmXF4cPK54+laVkhx5Fl+bGMvP9YmjmOe7OAsjpHBJUtxjmiqCzLhzczqWTniMKOZd9JzKyyzkKPI50jzmw3uGz+vQMKkvNcXJxzhGmC1zyTIJh4870xZ5oZeK0zSWvB5wjw+pOCyhZwjgC82TeTDYiw/Fj48+wDb2GQ6TiTBHosE1c+MVhApvvM9+A2rfzjNQwyHWfKugooS47tOk0KLOtzZwR6KhST6cj/+wXwutLsc4THNAopm2FfR7gLKZvpSrfLukxHwZ/NlYFV1LLODExH0DmiwO1m4ncEnSMK3G4mfkfQOaLA7XrxOYLOEQVu14fPkbW/F1K2OEynj8zs80Ih+47f4S1GWR+ZWeeQwHVE0coCBfY6MB0+MoOSYRMz/3OEwx9yHEVbZr5x+B1+Mp1nykYVUNbMUTbC8udb1nIYIWVL6xxRFIZxJm8LyaOcRoFzU3g8TpzurBvcjoLLut0O3FnbdjkdmCWc86JCJ921a9fm6NHQ1qmjR49StWpVIiMjcTgcOJ1Ojh0Lvet97NixXC3kwar2eCHf1wzDSWbmmQOhavfnCojQCClb7eK/Fb3shU8DFqknfuHo8pyTyoX+KTmFE6zQBM7ljcBBYIyT2+0OtJw4HKRbVgFtTeAO2pEyLIv87xuGls20TDIL+AMXXNZrmZwsqCxnupP4CinrCirrL0ZZ07IoaL7D4LJWKZZ1ZpW1TB/ejBMctQpI0AzTrmmfYXLUcuPyxGI4ch+2Bme+48JiKE5ZKlxZC3fQHfWyKAtwMp+ubJbpw58ZuqXjVgGnWSNQw9n1mlJIF7ng4+h0McqmWRYFdVwPLqtzRN7nCMv02TdHgJDjMzPr+Mxzm55YXA5Xsc8RRSnrAJxlcNyfT+eIpJz1GiTndVVwHec+FxftHJFX2eRiHMs6RwQUdo5wmT783sCekG5AWoF/ay37WPZHxHDSkX/Z8nQdUZSyle0cEXIeDjoHWwWcgwFcETG4nWdapMvzdUReZc+Hc0Suv7FZgs/DqYbB6Rz13LLjQ0TXaAUQmke1/02BXcZ9fhf+rNertR2LZd2Sb1nTiLC3XaXVKKyWN+RbtiAVOunu2rUr3377bchz33//PV27dgXA4/HQsWNHVq5cyYABAwAwTZOVK1dy66235rvd4DEBhSm7spFZ/0eEjmfIQ+Dl0DKdD/WhakbNkOfMmKr42jTH1zoOf5MGgclMJCxST2xnx9dFn8gvex9o0eufRNdoU1ZhyVnKq14LO34Bml8+SfVazhV0zBZUxzpmy7einotz1rHqtXwLqVcjZ1NF/pr3el71Wo7ld7wW9ndWx2v5V6RzcR7HstMdkWd+FTwPT2HKqmxO5SrpPn36NPv27bMfHzhwgC1btlC9enUaNmzICy+8QEJCApMmTQJg1KhRzJgxg0mTJjFixAj+97//8fnnn/PGG2/Y27jjjjt47LHH6NSpE126dGHq1KmkpaURHx9/zj/fuZR5UWf8u704D/9qP+c4lYJnzc941vyMFRmBr1UzfK3j8LVoCp7id4kVERERERGRgpWrpHvjxo2MHTvWfjxx4kQAhg8fznPPPUdiYiKHDx+2X2/SpAlvvPEGEydOZNq0adSvX59nnnnGXi4MYMiQIRw/fpyXXnqJxMRE2rdvz5QpUwrsXl4ZeLu0I7VPG4zkFFw79uDavgfn3oOBGVQBIz0D98btuDdux3I68TdvHEjAW8dhVYkuZOsiIiIiIiJSFOUq6b700kvZtm1bvq8/91zu8dOXXnopn376aYHbvfXWWwvsTl6ZWdWq4r2wE94LO0F6Bq5d+3Bt34Nr516MzMBEEYbfj+uXvbh+2Yv1+Tf4G9e3u6FbNWPD+wFEREREREQqsHKVdEturojqGA4PllnQOp6hDIcHV0T13C9ERuDr0Bpfh9bg8+PcdzCQgO/YgyMlMJurAbgOHMF14Ah8tRJ/7Rp2Am42qFvg7H5SdKVar1JuqF4rL9Vt5aR6rZxUr5WT6rXyOh/q1rAKW1H+PJSYmP/aeeGQmZqALyP3nIhutwOvN/c0+66I6nii6xX9F1gWjsO/4tq+G9eOPTiP5r0mq1m1SqALeps4/M0aaSK2s1Tm9SphoXqtvFS3lVNmagLG/1bgWb8FgIxel+BrHad6reB0vFZOqtfKqyLXbZ061Qoto6Q7D+Ut6c6PxxO6fFlpMY4l4dqRlYAfOJLnnJ9WhAdfi6b42mRNxBYZUepxnK/Kql4lvFSvlZfqtuKLnjoL56HAxKMp48ZiVauieq2kVK+Vk+q18qoIdVuUpFvdyyUXq1Ys3lrd8PbohnE6NTAR2449OHcfwPAHdnojIxP3ll9wb/kFy+HA36zRmXHg1aqE+ROIiIgUUVoGjsOJAPhr19DfMBERKXVKuqVAVpVovF074O3aATK9oROxpWcAYJgmrt37ce3eD198i79B3UAC3qY5Zq1YjQMXEZFyy7X3AEZWpz9/8yZhjkZERCojJd1SdB43vnYt8bVrCX4/zv2HsyZi243jVIpdzHn4V5yHfyXim1WYNapnJeBx+BvWA4cjjB9AREQklHP3Aftnn5JuEREpA0q6pWScTvxxjfHHNSZj4OU4Eo6emYjt12N2MceJk3hWrcezaj1mdFTWRGzN8cc1Apd2PxERCSPLCvTSAiynA3/TBmEOSEREKiNlPXL2DAOzfh0y69chs3d3jKRTZxLw/YftbnuO1DQ8P23B89MWLLcrayK25vhaNoMoTcQmIiLnlnHiFI6TgclT/Y0bgNsd5ohERKQyUtItpc6KjcHb/QK83S/ASE3D+cvewGRsu/Zj+HwAGF4f7m27cG/bhWUY+Js2PDMRW/XCZwAUERE5W9mt3KDx3CIiUnaUdEuZsqKj8HVph69LO/B6ce45gHv7Hpw79uBISwfAsCxcew/i2nsQFn+Hv17tMxOx1ampidhERKRMOIOSbl/zxmGMREREKjMl3XLuuN34WzfH37o5mCbOg0cCE7Ft340j6ZRdzJlwFGfCUSKW/4AZWw1f60AC7m9cXxOxiYhI6fD7Azd7ATM6ErNe7TAHJCIilZWSbgkPhwN/k4b4mzQko99lOI4etxNw55HEM8WSkvH8sAHPDxswoyLxt2oWaAVv3lhj70REpMSch3/FyPQC4I9rrF5VIiJSZpR0S/gZBmadWmTWqUXm5RdhnEoJjAHfvhvnvkMYpgmAIy0dx8/bcP+8Dcvlwte8caAFvFUzrOioMH8IERGpSJy7gruWazy3iIiUHSXdUu5YMVXxXtQJ70WdID0D1869gVbwXfvsVgnD58O9Yw/uHXsCE7E1rp81EVtzrBoxYf4EIiJS3rmC1uf2azy3iIiUISXdUr5FRuDr2AZfxzbg8+PceyCQgO/YjeN0GpA1Edv+w7j2H4al3+OvU9MeB27Wr60ugyIiEiotA8fhXwHw166BVa1qmAMSEZHKTEm3VBwuJ/6WzfC3bEbG1b1xHEo4Mw78eJJdzJl4HGficSK+/xGzWpUzE7E1bQBOZ/jiFxGRcsG17yCGZQFaKkxERMqekm6pmAwDs1F9MhvVJ/PKHjiOnTiTgB9KsIs5kk/jWbsRz9qNWJEefC2bBZLwFk0gwhPGDyAiIuGipcJERORcUtItlYJZqwaZl9Ug87JuGCmnce3YG0jA9x7A8AcmYjPSM3Fv2oF70w4spwN/XONAAt46DqtqdJg/gYiInBOWhStrEjXLGVhJQ0REpCwp6ZZKx6paBW+3Dni7dYCMTFy79uPavhvXzr0YGZkAGH4T1859uHbuw1r0DWajevhaN8fbJg6rVo0wfwIRESkrxolTOE4mA+BvXB88Wn5SRETKlpJuqdwiPPjat8TXviX4/Tj3HQ4k4Dt240g+DYABOA8m4DyYQMSy/+GvFZs1E3ocZsN6mohNRKQSce0507Vc47lFRORcUNIt5w+nE3/zxvibNyZjUC8cR47aCbgz8fiZYseScK5cR8TKdZhVovG1icPXOg5/s8bg0kRsIiIVmTNoqTCtzy0iIueCkm45PxkGZoM6ZDaoQ2af7hgnTuLakTUR24Ej9qy2jtOpeNZtxrNuM5bHja9l08A48JZNITIizB9CRESKxTRx7T0Y+DEqErNe7TAHJCIi5wMl3SKAVaM63u4X4O1+AUZqGs5fAhOxuXbvx/D5ATAyvbi37MS9ZSeWw4G/aUO7G7oVozVeRUTKO8ehX+25PfxxjTV8SEREzgkl3SI5WNFR+Lq0w9elHWR6ce05kNUNfQ9GegYAhmkGnt9zAL5cjr9+nUAC3iYOs3ZNXciJiJRDruClwlqoa7mIiJwbSrpFCuJxZyXTzcE0cR44EkjAt++2Z78FcB5JxHkkkYhvV2PGxtjv8TeqBw5H4b/H58O1ZWdgfHl6Bo7IiEA39vYtwaXDVESkNAQn3f44rc8tIiLnhmFZWYNXxZaYmFx4oXLA43GSmekPdxjnJ8vC8euxM+PAE47mWcyMjsTXKi6QgMc1BnfuBNq5YzdRC77GSM/AMsCwOPN/ZARpQ/vhbx1Xxh9IypqO18pLdVtBpGdQ9cV3MCwLf60apN4zqsDiqtfKSfVaOaleK6+KULd16lQrtIya0ERKwjAw69Ums15tMntdjHEy+UwCvu/QmYnYUtPxbNiKZ8NWLLcLX/MmgVbwls0gOjKQcM9cdGazVuj/pGcQNfNz0kZejb9183P8IUVEKg/X3oP2udnfXK3cIiJy7ijpFikFVvVqeC/ujPfizpCWjmvnvkA39F37MLw+AAyvD/f23bi378YyDPyN6+M8/GvgtXy2awAWELXga1IeaKKu5iIiJeQMHs+tpcJEROQc0hW8SGmLisTXqQ2+Tm3A68O550CgFXzHHhypaQAYloVr/+Eibc4ASM/AtXVXYJsiIlJsrqz1ubNXnxARETlXlHSLlCW3C3/rOPyt48gwTRyHfsWdPRHbiZNF3oxlgGu7km4RkZIwTpzEkXQKAH/j+uBxhzkiERE5nxRhWmURKRUOB2bj+mT0u4zT996Mv0GdIr/VsMBIyyjD4EREKq/sVm4Av7qWi4jIOaakWyQcDAMzpipWEZfztgywoiLKNiYRkUpK47lFRCSclHSLhImvdfMzs5QXwrDA16ZF2QYkIlIZmSauvQcDP0ZFYtavHeaARETkfKOkWyRMfO1bYkVGUJS823I48LVuVuYxiYhUNo5Dv2JkZALgj2sMRhG7GImIiJQSJd0i4eJykTa0H0C+iXf284ZpEjVrEWhct4hIsbhCupZrfW4RETn3lHSLhJG/dRxpI6+GyMB47ewx3vZYb7cLyxE4TF17DxH93hyMrBl4RUSkcJpETUREwk1LhomEmb91c1IeaIJr6y5c23fhTM/EH+nB16YFvnYtcCQcJWrm5zhS03EeO0H0tNmkjRyC2bBuuEMXESnf0jNwHEoAwF8rFiumapgDEhGR85GSbpHywOXC16kNvk5t8HicZGb67ZfMRvVJHRtP9McLcRw/ieN0GtEz5pJ+3QB8bZqHMWgRkfLNte8QhhUYqKNWbhERCRd1LxepAKwa1Tk9Nh5fkwYAGD4fkbMW4f5hQ5gjExEpv5y7tFSYiIiEn5JukYoiKpK0UcPwdmgNgAFELllBxOLvwDTDG5uISDmUPYma5XDgb9owzNGIiMj5Skm3SEXicpJ+bX8yel5kP+VZ8zORs7+ATG8YAxMRKV+ME6dwZE086W9cHzzuMEckIiLnKyXdIhWNYZDZpztpQ/raM5u7d+whesZcjJTUMAcnIlI+uPac6Vru11JhIiISRkq6RSoo3wXtSbtxCFaEBwDnkUSip83GcfR4mCMTEQk/526N5xYRkfJBSbdIBeZv3oTUW6/HzFoGx3Eymehpc3DuOVDIO0VEKjHTxLXnYODHqEjMerXDHJCIiJzPlHSLVHBm3Vqkjo3HXz9wUWlkZBL10UJcP28Lc2QiIuHhOPwrRkYmAP64RuDQ5Y6IiISP/gqJVAJWtSqk3nI9vpbNADBMk6gFX+FZ/gNkrVErInK+cO0+09tH63OLiEi4KekWqSw8btJGXk3mhR3tpyK+W0Pkgq/A7w9jYCIi51bIeO44TaImIiLhpaRbpDJxOMgYdAXp/XuS3b7t3ridqI8WQFpGWEMTETkn0jNwHkwAwF8zFqt6tTAHJCIi5zsl3SKVjWHg7X4B6fFXYbmcALj2HiL6vTkYWWvWiohUVq59hzCyhtWoa7mIiJQHSrpFKilf2xakjr4WMzoSAOexE0RPnY3jUEKYIxMRKTuhS4Wpa7mIiISfkm6RSsxsVJ/UsSPw14wFwJGaRvSMebi27w5vYCIiZSR7EjXL4cDfrFGYoxEREVHSLVLpWTViSB07HF+TBgAYPh+Rsxbh/mFDmCMTESldRtIpHCdOAuBvVA887jBHJCIioqRb5PwQFUnaqGF4O7QGwAAil6wgYvF3YJrhjU1EpJRoqTARESmPlHSLnC9cTtKv7U9Gz4vspzxrfiZy9heQ6Q1jYCIipSN0PLeSbhERKR+UdIucTwyDzD7dSRvSF8sROPzdO/YQPWMuRkpqmIMTETkLpolrb9Z47sgIzPq1wxyQiIhIgJJukfOQ74L2pN14DVaEBwDnkUSip83GkXg8zJGJiJSM43AiRnomAL64xuDQJY6IiJQP+oskcp7yN29M6pjrMWOqAuA4mUz0e3Nw7jlQyDtFRMofV1DXcr+WChMRkXJESbfIecysU4vU2+LxZ3XDNDIyifpoIa4NW8McmYhI8Wg8t4iIlFdKukXOc1bVKqTecj2+Vs0AMEyTqIVf4/l2NVhWmKMTESmCjEycBxMAMGtWx6peLcwBiYiInKGkW0TA4yZtxNVkXtjJfipixY9ELvgK/P4wBiYiUjjnvoMYWTcJ1cotIiLljZJuEQlwOMgY1Iv0/j3Jbt92b9xO1IcLIC0jrKGJiBTEtevMXBRKukVEpLxR0i0iZxgG3u4XkB5/FZbLCYBr3yGi35uNkXQqzMGJiOQtexI1y+HA37RhmKMREREJpaRbRHLxtW1B6ujrMKMjAXAeSyJ66mwchxLCHJmISCgj6RSOEycB8DeqB1lLIYqIiJQXSrpFJE9mo3qkjh2Bv2YsAI7UNKJnzMO1fXd4AxMRCeIKWubQr67lIiJSDpW7pHvGjBn069ePzp07c8MNN7Bhw4Z8y3q9Xl555RUGDBhA586dufbaa/n2229DyqSkpPDss89y5ZVX0qVLF0aNGlXgNkXkDKtGDKljh+PL6q5p+HxEzlqEe/VPYY5MRCQgdKkwrc8tIiLlT7lKuj/77DMmTpzI/fffz5w5c2jXrh133XUXx44dy7P8iy++yEcffcSf/vQnPvvsM0aNGsW4cePYvHmzXWb8+PF8//33TJo0ifnz53P55Zdzxx13kJCgbrIiRRIVSdpNQ/F2bA2AAUQu/Z6IL78D0wxvbCJyfjNNXHsOAmBFRmDWrxPmgERERHIrV0n3O++8w4033siIESNo1aoVEyZMIDIyklmzZuVZfu7cudx333306dOHJk2aMHr0aPr06cPbb78NQHp6Ol9++SWPPPIIl1xyCc2aNeOBBx6gWbNmvP/+++fyo4lUbC4n6cP6k3H5RfZTnh9/JmrWIsj0hjEwETmfOY4kYqQHVlfwxTUCR7m6rBEREQHKUdKdmZnJpk2b6Nmzp/2cw+GgZ8+erFu3Ls/3eL1ePJ7QCVMiIiJYu3YtAD6fD7/fT0RERL5lRKSIDIPM3t1Ju+ZKrKwLW9cve4meMRcjJTXMwYnI+ci1W+O5RUSk/HOFO4BsJ06cwO/3U6tWrZDna9Wqxa5du/J8T69evXj33Xe55JJLaNq0KStXrmTx4sX4/X4AqlatSrdu3Xjttddo0aIFtWvXZsGCBaxfv56mTZvmG4vb7cQwSu+zlRVX1pJOUrmU+3q9uCPemjG4P/4cIyMT55FEqkybjXf0UKy6tQp//3mq3NerlJjqNnzcQZOoGW2a4fGUXl2oXisn1WvlpHqtvCpL3ZabpLsknnrqKcaPH8/gwYMxDIMmTZoQHx8f0h190qRJPPnkk/Tu3Run00mHDh245ppr2LRpU77b9Xr95yL8UpGZWXFilaIr9/XauCHeMdcT9fFnOE6lYJxMxv32LNLir8Ifp4mM8lPu61VKTHUbBhmZeA4cAcCsUZ3M6CpQyvWgeq2cVK+Vk+q18qoMdVtuupfXqFEDp9OZa9K0Y8eOUbt27TzfU7NmTV577TXWr1/P119/zaJFi4iOjqZJkzNdzJo2bcr06dNZt24dy5YtY+bMmfh8vpAyIlJ8Zp1apN4Wj79+4Pg0MjKJ+mghrg1bwxyZiJwPnPsOYWRN5uhT13IRESnHyk3S7fF46NixIytXrrSfM02TlStX0q1btwLfGxERQb169fD5fHz55Zf0798/V5no6Gjq1q3LyZMn+e677/IsIyLFY1WtQuot1+Nr1QwAwzSJWvg1nm9Xg2WFOToRqcxcwUuFtVAPGxERKb/KVffyO+64g8cee4xOnTrRpUsXpk6dSlpaGvHx8QA8+uij1KtXj4ceegiAn376iYSEBNq3b09CQgIvv/wypmly991329tcvnw5lmXRvHlz9u3bx6RJk2jRooW9TRE5Sx43aSOuJmLJCjw/bgQgYsWPOE4mkz64L1SSsTgiUr5kJ92Ww4G/aaMwRyMiIpK/cpV0DxkyhOPHj/PSSy+RmJhI+/btmTJlit29/PDhwziClgPJyMjgxRdfZP/+/URHR9OnTx8mTZpETEyMXSY5OZl//etfHDlyhNjYWAYNGsSDDz6I2+0+559PpNJyOMgY2AszNoaIpd9jAO6N2zFOpZAWfzVERRS6CRGRojJOJuM4fhIAf8O6EOEp5B0iIiLhY1iW+oDmlJiYHO4QisTjcVaKiQUkVEWvV9e2XUTOW4rh8wHgrxVL2o3XYMXGFPLOyq2i16vkT3V77rnXbyby828AyLjiEjJ7XVzqv0P1WjmpXisn1WvlVRHqtk6daoWWKTdjukWkcvC1bUHq6GsxoyMBcB5LInrqbByHEsIcmYhUFs6g9bk1iZqIiJR3SrpFpNSZjeqROnYE/lqxADhS04ieMQ/Xtl3hDUxEKj7TxJW1PrcV6cFsUCfMAYmIiBRMSbeIlAmrRgypY+LxNW0IgOHzETn7C9yrf9LM5iJSYo4jRzHSMwDwNWsMDl3KiIhI+aa/VCJSdqIiSLtpKN6ObQAwgMil3xOxeAVkra8rIlIcwUuF+dW1XEREKgAl3SJStlxO0of1I+Pyi+ynPD/+TNSsRZDpDWNgIlIROYPX526u9blFRKT8U9ItImXPMMjs3Z20a67EyuoK6vplL9Ez5mKknA5zcCJSYWRk4jwYmJTRrFH9vF8VQUREKgYl3SJyzvi6tCPtpmuwstbUdR5JDMxsnng8zJGJSEXg3HcII2toilq5RUSkolDSLSLnlD+uMaljhmPGVAXAcSqF6Pfm4NxzoJB3isj5zhW0VJjGc4uISEWhpFtEzjmzTk1Sb4vHXz+w1I+RkUnURwtxbdga5shEpDzLHs9tGQa+Zo3CHI2IiEjRKOkWkbCwqlYh9Zbr8LVqBoBhmkQt/BrPt6u1pJiI5GKcTMZ5PAkAf6N6kDVMRUREpLxT0i0i4eNxkzbiajIv6mw/FbHiRyLnfwU+fxgDE5HyxrVHXctFRKRiUtItIuHlcJAxqBfp/XuS3b7t3rSdqI8WQFpGWEMTkfJDS4WJiEhFpaRbRMoFb/cLSI+/CsvlAsC17xDR783GSDoV5shEJOxM055EzYr0YDaoG+aAREREik5Jt4iUG762LUi95VrM6CgAnMeSAkuKZa3LKyLnJ8eRoxjpgZ4vvmaNwKHLFxERqTj0V0tEyhWzYb3AzOa1YgFwpKYR/f5cXNt2hTcwEQkb154zXcs1nltERCoaJd0iUu5YsTGkjonH17QhAIbPT+TsL3Cv/kkzm4uch5xB63P7lHSLiEgFo6RbRMqnqAjSbhqKt2MbAAwgcun3RCz+DkwzvLGJyLmT6cV54AgAZmwMVmxMmAMSEREpHiXdIlJ+uZykD+tHxuUX2U95ftxI1KxFkOkNY2Aicq449x3CyLrRplZuERGpiJR0i0j5Zhhk9u5O2jVXYmVNnuT6ZS/RM+ZipJwOc3AiUtZcQUuF+Vso6RYRkYpHSbeIVAi+Lu1Iu+karAgPAM4jiYGZzROPhzkyESlL2etzW4Zhz/MgIiJSkSjpFpEKwx/XmNQxwzFjqgLgOJVC9HtzQiZZEpHKwziVgvNYEhBY2YDIiPAGJCIiUgJKukWkQjHr1CT1thH469cBwMjIJOrjhbg2bA1zZCJS2pxBXct9zRuHMRIREZGSU9ItIhWOVTWa1Fuuw9s6DgDDNIla+DWeb1ZrSTGRSsSlpcJERKQSUNItIhWTx016/FVkXtzZfiri+x+JnL8UfP4wBiYipcI07UnUrAgPZsO6YQ5IRESkZJR0i0jF5XCQMbAX6QMuJ7t9271pB1Efzoe09LCGJiJnx5FwFCM9AwBfs0bg0CWLiIhUTPoLJiIVnveSLqSPuBrL5QLAtf8w0dPmYJw4FebIRKSkgruW+9W1XEREKjAl3SJSKfjaNCf1luswo6MAcB5PInraLBwHE8IcmYiUROgkakq6RUSk4lLSLSKVhtmwLqm3xeOvVQMAR2o60e/PxbVtV5gjE5FiyfTiPHAEADM2BqtGTJgDEhERKTkl3SJSqVixMaSOGY6vaUMADJ+fyNlf4F79k2Y2F6kgnPsOYZgmoKXCRESk4lPSLSKVT1QEaaOG4u3UBgADiFz6PRFffgdZF/IiUn65grqWazy3iIhUdEq6RaRycjpJH9qPjF4X20951m4katYiyPSGMTARKYwzaxI1yzACM5eLiIhUYEq6RaTyMgwyr7iEtGuuxMpabsj1y16iZ3yKkXI6zMGJSF6MUyk4j50AAvM0EBkR5ohERETOjpJuEan0fF3akXbTNVgRHgCcR44SPXU2jsRjYY5MRHJy7jmzVJhmLRcRkcpASbeInBf8cY1JHTscs3o1ABynUoh+71O7G6uIlA+uXVoqTEREKhcl3SJy3jBr1yR1bDz++nUAMDIyifp4Ia6ftoQ5MhEBwLLslm4rwhPoXi4iIlLBKekWkfOKVTWa1Fuuw9s6DgDDNIn6bBmeb1ZrSTGRMHMcOYojLR0gMIGaQ5cpIiJS8emvmYicfzxu0uOvIvPizvZTEd//SOT8peDzhzEwkfOba0/wUmFan1tERCoHJd0icn5yOMgY2Iv0AZeT3b7t3rSDqA/nQ1ZLm4icW87dGs8tIiKVj5JuETmveS/pQvqIq7FcLgBc+w8TPW0OxolTYY5M5DyT6cW5/wgAZmwMVo3qYQ5IRESkdCjpFpHznq9Nc1JvuQ4zOgoA5/EkoqfNwnHwSJgjEzl/OPcfwjBNAHzqWi4iIpWIkm4REcBsWJfU2+Lx16oBgCM1nej35+HaujPMkYmcH1xBy/f51bVcREQqESXdIiJZrNgYUscMx9esIQCGz0/knC9xr/5JM5uLlLHs8dyWYQRmLhcREakklHSLiASLiiDtpqF4O7UBwAAil35PxJfLIavrq4iULuNUCs6jJwAwG9SFyIgwRyQiIlJ6lHSLiOTkdJI+tB8ZvS62n/Ks3UTUzEWQ6Q1jYCKVk3PPma7lGs8tIiKVjZJuEZG8GAaZV1xC2tB+WI7AqdK1cy/R0z/FSD4d5uBEKhdX0FJh/hYazy0iIpWLkm4RkQL4OrclbdRQrAgPAM6Eo0RPm43j12NhjkykkrAsnFmTqFkRHvwN6oY5IBERkdKlpFtEpBD+Zo1IHTscs3o1ABynUoie/qmdKIhIyTkSjuJISwfA17QhOJ1hjkhERKR0KekWESkCs3ZNUsfG469fBwAjI5Oojxfi+mlLmCMTqdi0VJiIiFR2SrpFRIrIqhpN6i3X4W0dB4BhmkR9tgzPN6u0pJhICTmDxnP7lHSLiEglpKRbRKQ4PG7S468i8+LO9lMR368lct5S8PnDGJhIBeT14jxwGAAzthpWjZgwByQiIlL6lHSLiBSXw0HGwF6kD7ic7PZt9+YdRH04H7LGpopI4Zz7DmP4TQB8cU3AMMIckYiISOlT0i0iUkLeS7qQPuJqLJcLANf+w0RPm4Nx4lSYIxOpGEKWCtP63CIiUkm5wh2AiEhF5mvTnNRbriNq5mc4TqfhPJ5E9LRZpI0cjFmvNq4tO3Ht2I0zPQNHZAS+1s3xtW8JLp1+RbLHc1uGga+Zkm4REamcdNUnInKWzIZ1SR0bT9THn+E8dgJHajrR0+eC04Hh9WEZYFiBnrPubbuxlqwgbWg//FkTsomcj4zkFJxHTwBgNqgDURFhjkhERKRsqHu5iEgpsGJjSB07HF+zRkBgZnO8vsDPWQO/s/8nPYOomZ/j3LE7DJGKlA/B69xr1nIREanMlHSLiJSWyAjSRlyF5QicWvObEir7+agFX4PPd05CEylvtD63iIicL5R0i4iUItf2PYFW7kIYgJGegWvrrrIPSqS8sSyce7LGc3vc+BvWDXNAIiIiZUdJt4hIKXLt2I1VxFWPLANc25V0y/nHkXAUR2pgeT1fs0bgdIY5IhERkbKjpFtEpBQZaRlnxm4XVtYKlBc537j2qGu5iIicP5R0i4iUIisqolgt3ZZmbJbzkDNofW6f1ucWEZFKTkm3iEgp8rVuXqyWbl+bFmUbkEh54/Xi3H8YALN6Nawa1cMckIiISNlS0i0iUop87VtiRUZQWN5tAVZkBL52Srrl/OLcfxjDH5hs0Ne8cWABexERkUpMSbeISGlyuUgb2g8g38Q7+/m0of3A5TonYYmUF1oqTEREzjdKukVESpm/dRxpI6+GyMB47ewx3sFJeNp1A/G3jjvnsYmEW/Z4bsswAjOXi4iIVHLlLumeMWMG/fr1o3Pnztxwww1s2LAh37Jer5dXXnmFAQMG0LlzZ6699lq+/fbbkDJ+v58XX3yRfv360aVLFwYMGMCrr76KZRVx0KWISAn4Wzcn5YGxpA3rj69Nc8xmjbCqVwMCa3Q70jVruZx/jOTTOBOPA2DWrwNRkWGOSEREpOyVq6T7s88+Y+LEidx///3MmTOHdu3acdddd3Hs2LE8y7/44ot89NFH/OlPf+Kzzz5j1KhRjBs3js2bN9tl3nzzTT744AOefvppPvvsMx5++GGmTJnCe++9d64+loicr1wufJ3akB5/Nd7bh5M24mr7Jfe6TaCbf3KecQYtFeZT13IRETlPlKuk+5133uHGG29kxIgRtGrVigkTJhAZGcmsWbPyLD937lzuu+8++vTpQ5MmTRg9ejR9+vTh7bfftsusW7eO/v3707dvXxo3bszVV19Nr169CmxBFxEpC2a92vgb1gXA+esxHId+DXNEIueWK2ipMH8LLRUmIiLnh3KTdGdmZrJp0yZ69uxpP+dwOOjZsyfr1q3L8z1erxePxxPyXEREBGvXrrUfd+vWjf/973/s3r0bgK1bt/Ljjz/Su3fvMvgUIiIFy+zW0f7Zs25TGCMROccsC2fWJGqWx42/Yb0wByQiInJulJtpc0+cOIHf76dWrVohz9eqVYtdu3bl+Z5evXrx7rvvcskll9C0aVNWrlzJ4sWL8fv9dpl77rmHlJQUBg8ejNPpxO/38+CDD3LttdfmG4vb7awQK5i4XM5whyBlQPVaOdn1ekEbrCUrMDIycW3ZiWfwFRrXWsHpmC0a40gijtQ0AMy4RniiPIW8I7xUr5WT6rVyUr1WXpWlbstN0l0STz31FOPHj2fw4MEYhkGTJk2Ij48P6Y7++eefM3/+fF544QVatWrFli1bmDhxInXr1mX48OF5btfr9ef5fHmUmVlxYpWiU71WToF6dWB0aovnx58xfD6stVvwXtIl3KHJWdIxWzj39r32z95mjfFWgO9M9Vo5qV4rJ9Vr5VUZ6rbcJN01atTA6XTmmjTt2LFj1K5dO8/31KxZk9dee42MjAySkpKoW7cuzz//PE2anJmcZdKkSdxzzz1cc801ALRt25ZDhw7xxhtv5Jt0i4iUJW+3Dnh+/BkA9/rNeC/uTIXoXiNyFoLX59YkaiIicj4pN2O6PR4PHTt2ZOXKlfZzpmmycuVKunXrVuB7IyIiqFevHj6fjy+//JL+/fvbr6Wnp2PkuJh1Op1aMkxEwsasUxNf4/oAOI+ewHngcJgjEiljXh/O/YH93KxeDatm9TAHJCIicu6Um5ZugDvuuIPHHnuMTp060aVLF6ZOnUpaWhrx8fEAPProo9SrV4+HHnoIgJ9++omEhATat29PQkICL7/8MqZpcvfdd9vbvPLKK3n99ddp2LCh3b38nXfeYcSIEWH5jCIiAN5uHXEdOAKAe91m/E0ahjkikbLj3H8YI2u+FV9cY/XsEBGR80q5SrqHDBnC8ePHeemll0hMTKR9+/ZMmTLF7l5++PBhHI4zjfMZGRm8+OKL7N+/n+joaPr06cOkSZOIiYmxy4wfP57JkyczYcIEjh07Rt26dbnpppu4//77z/nnExHJ5mvXAnPJChxp6bi27sQYcDlWdFS4wxIpEyFLhalruYiInGcMS/2sc0lMTA53CEXi8TgrxcQCEkr1WjnlVa8RS7/Hs/onANL7XYb30q5hiEzOlo7ZwkVP+Qhn4nEsIOUPd1SIGftVr5WT6rVyUr1WXhWhbuvUqVZomXIzpltE5HyT2bWD/bNn3WbQPVCphIyU0zgTjwNgNqhbIRJuERGR0qSkW0QkTKxasfiaNQLAceIkzr0HwxyRSOlzhsxa3jiMkYiIiISHkm4RkTDyduto/+xetzmMkYiUjeClwjSeW0REzkdKukVEwsjXJg4zawI11/bdGCmpYY5IpBRZFs49gUnULI8bf6N6YQ5IRETk3FPSLSISTk4n3gvaAWCYJu4NW8MckEjpcfx6DMfpNAD8TRuC0xnmiERERM49Jd0iImHm7dqB7CnU3Os1oZpUHs49weO51bVcRETOT0q6RUTCzIqNwd8ikJA4Tibj3LW/kHeIVAyuoH1Zk6iJiMj5Skm3iEg5EDqh2qYwRiJSSrw+nPsPA2DGVMWqGRveeERERMJESbeISDnga9UMs1oVAFy/7MU4lRLmiETOjnP/YQy/H8hq5TaMMEckIiISHkq6RUTKA4cD7wXtATAsC/dPW8IckMjZce0507VcS4WJiMj5TEm3iEg54b2gPVZWa6D7py1gmmGOSKTknFnrc1uAr5nGc4uIyPlLSbeISDlhxVTF16oZAI7k0zh37g1zRCIlY6Sk4vz1GABm/ToQHRnmiERERMJHSbeISDni7drB/tmzdnMYIxEpuZClwlqoa7mIiJzflHSLiJQj/hZNMKtXA8C5ax9G0qkwRyRSfK7dGs8tIiKSTUm3iEh5EjyhGmhCNal4LAtnVtJtuV34G9ULc0AiIiLhpaRbRKSc8V7QDssROD27f9oCWcsuiVQEjsTjOE6nAeBv2giczjBHJCIiEl5KukVEyhmrahV8beIAcJxOw7VjT1jjESkOZ1DXcl9zzVouIiKipFtEpBzydu1o/+xepwnVpOJw7T4ziZpfk6iJiIgo6RYRKY/8cY0wa1QHwLXnAMbxpPAGJFIUXh/O/YcAMGOqYtaMDW88IiIi5YCSbhGR8sgwyOza3n7oWa/Wbin/nAcOY/gCcxD44hqDYYQ5IhERkfBT0i0iUk75urTDcgZO064N28CnCdWkfAvpWq6lwkRERAAl3SIi5ZYVHYWvbQsAHGnpuLbtDHNEIgWzlwojMERCRERElHSLiJRr3m6aUE0qBuN0Ks5fjwFg1q+DFR0V5ohERETKByXdIiLlmL9JA/y1agDg2n8Yx9HjYY5IJG/OoK7lWipMRETkDCXdIiLlmWHg7dbBfqjWbimvXEHrc2s8t4iIyBlKukVEyjlvp7ZYLicA7o3bwOsLc0QiOViW3dJtuV34G9UPc0AiIiLlh5JuEZHyLioCX/tWABjpmbi2/BLmgERCORKP4zidCoC/aUPIukkkIiIiSrpFRCqEzKAu5h51MZdyxrkneDy3upaLiIgEK3HSbZpmoWWSkpJKunkREQliNqyHv24tAJyHEnAkHA1zRCJnuHZpPLeIiEh+Spx0P/LII1iWle/rCQkJ3HrrrSXdvIiIBNOEalJe+Xw49x8CwKxWBbNWbHjjERERKWdKnHQvXbqUJ598Ms/X9u/fz+jRozl16lSJAxMRkVDejm2w3C4A3Ju2Q6Y3zBGJgHP/EQyfH8hq5TaMMEckIiJSvpQ46X7llVdYuHAhf/7zn0Oe37lzJ6NHjwZgxowZZxediIicEeHB27E1AEamF/fmHWEOSASce850Ldf63CIiIrmVOOnu1asXkydPZtasWTz77LMAbNy4kVtuuYWYmBjef/99mjTRuC4RkdLk7drR/tm9blMYIxEJcGUvFQb445R0i4iI5OQ6mzdfeeWV/Otf/+KPf/wjx48f55tvvqFp06a89dZb1KhRo7RiFBGRLGaDOvjr18F5JBHnkaM4Dv+K2aBuuMOS85RxOhVn1qR+Zv06WNFRYY5IRESk/DnrJcMGDRrEP/7xDz7//HPatWvHtGnTlHCLiJQh74Vq7ZbyIXSpMLVyi4iI5KXILd3Dhg0r8PWIiAgSExO5+eab7ecMw2DevHklj05ERHLxtm9FxNLvMTIycW/+hYx+PSEyItxhyXkou2s5aKkwERGR/BQ56Y6NjT2r10VEpJR43Hg7tsGzdiOG14d70w68F3UKd1RyvrEsnLsDk6hZbhf+RvXDHJCIiEj5VOSk+7333ivLOEREpBi83TrgWbsRCHQx917YUUs1yTnlOHocR0oqAP4mDcHlDHNEIiIi5dNZj+kWEZFzz6xby25ZdCYex3EwIcwRyfnGuVvjuUVERIrirGYvB1i5ciWrVq3i+PHj1KhRg8suu4wePXqURmwiIlKAzG4diDp4BADPuk2kN1b3Xjl3XLvPrM/tb6Hx3CIiIvkpcUv3pk2bGDp0KI8++ii//vorsbGxHDp0iP/7v//j3nvvJSMjozTjFBGRHHztWmJlTaDm2rIT0tLDHJGcN3w+nPsOA2BWq4JZS6uWiIiI5KdELd1r1qzh3nvv5eabb+b3v/89brfbfu3YsWPcdtttTJo0iT/96U8ApKWlERWltTtFREqV24W3c1s8P2zA8Ptx/7wNb/cLwh2VnAecB45g+HwA+OMaaz4BERGRAhS7pTslJYWHH36YkSNH8vDDD4ck3AC1atXi8ccf55NPPiEjI4OvvvqKa6+9lpSUlFILWkREArzdOtg/u9dtBssKYzRyvggdz62u5SIiIgUpdkv39OnTAXjooYc4deoU119/PUaOO9ymaZKZmcmOHTu4/PLL8fv9vPnmmzz44IOlE7WIiABg1qqBr2lDXPsO4TyehHPfIfzNGoU7LKnkQsZzaxI1ERGRAhW7pXvhwoUMHToUj8dDdHQ048aN48SJE3Tv3p277rqLQYMGcerUKX7/+98TFxdHREQEt956K5988gmWWmBEREpdrtZukTJknE7FmXAUAH/92ljRGj4mIiJSkGIl3ZZlsXv3bjp0CFzguVwuZs6cyahRo5g4cSKjR4/mscceY8KECUybNs3uen7ZZZdx4sQJdu3aVfqfQETkPOdr0wIzOhIA17ZdGKdTwxyRVGbOPQftn31x6louIiJSmGIl3Wlpafh8PqpWrQpAeno6a9eu5eKLLw4pd+GFF3LixAm2bNkCQI0aNbAsixMnTpRS2CIiYnM58XZpB4Bhmrg3bAtzQFKZqWu5iIhI8RQr6Y6OjiYqKoqEhAQAPB4PUVFRrFu3LqTc2rVrMQyDmJgYIDCjuWEY1KihJUVERMqCt2tQF/P1mlBNyohl2ZOoWS4X/sYNwhyQiIhI+VfsidQuueQSvv/+e2644QYcDgd33XUXr732GsePH6dz587s27ePDz74gH79+tGiRQsAfvjhB2JiYuzHIiJSuqwa1fHFNca15wCOpFM4dx/A30Jdf6V0OY6ewJFyGgB/0wbgcoY5IhERkfKv2BOpDR8+nCVLlrB/f6B72bhx45g8eTKJiYm89957bNq0iYceeojJkycD4PV6mT59OsOGDcs1y7mIiJQe74Ud7Z/d6zeFMRKprJxBXcu1VJiIiEjRFLule/DgwUyfPp3f/e53vP/++0RFRTFw4EAGDhyYZ/m//OUvpKWlcf/99591sCIikj9fq2aYVaNxpKTi2r4HI/k0VrUq4Q5LKhFX0PrcfiXdIiIiRVLslm6Al19+mYyMDEaNGsW2bXlP2HP06FEeeOABvvzyS/7zn/9oPLeISFlzOvF2aQ+AYVm4N2wNc0BSqfj8OPcdAsCsWgWztv6ui4iIFEWxW7oBatasySeffMKzzz7LiBEj6NatG5deein16tUjOTmZn376iW+++YbOnTszc+ZMmjVrVtpxi4hIHrxd2+NZuTaQdK/fTOZl3cBRovurIiGcBw5j+HxA1qzlGjImIiJSJCVKugGqVKnC3//+d+677z6WLFnCpk2bWLduHVWqVKFly5bcdddddOnSpTRjFRGRQljVq+Fv0RTXzr04TqXg3LUffyvd+JSz59xzpmu5T0uFiYiIFFmJk+5sTZs25c477yyNWEREpBRkduuAa+deADzrNpGmpFtKQcj63HFKukVERIqq1Psc7t+/n507d5b2ZkVEpIj8LZtixlQFwLlzH8bJ5DBHJBWdkZqG88hRAPz1amNViQ5zRCIiIhVHiZPuadOm8eCDD4Y898QTTzBo0CCGDh1KfHw8x44dO+sARUSkmBwOvBcETaj205YwByQVnbqWi4iIlFyJk+5PPvmEWrVq2Y+XL1/OnDlzuPHGGxk/fjwHDhzglVdeKZUgRUSkeLwXtMfKmujK/dMW8PvDHJFUZFoqTEREpORKPKb70KFDtGzZ0n78+eef07hxYyZMmAAElgybO3fu2UcoIiLFZlWrgq91HO7tuwPrdv+yF1/bFuEOSyoiy8KZNZ7bcrnwN64f5oBEREQqlhK3dFuWFfJ4xYoV9O7d237cqFEjjh49WvLIRETkrHi7dbR/dq/bHMZIpCJzHDuBI/k0AP4mDcB11nOwioiInFdKnHTHxcWxZMkSINC1/Ndffw1Juo8cOUJMTMzZRygiIiXib94YMzZwHnbt3o9x4lSYI5KKyBnUtdzXQl3LRUREiqvESfddd93FihUruOSSS/jtb39Ly5Yt6dWrl/36qlWraNeuXakEKSIiJWAYeLt2sB+616u1W4ovZKkwTaImIiJSbCXuI3bNNdcQGxvLN998Q0xMDKNHj8aV1eUsKSmJ6tWrc91115VaoCIiUnzeLm3xfLsawzRxb9hCZu9LwOkMd1hSUfj8OPcdAsCsGo1Zu2aYAxIREal4zmpg1uWXX87ll1+e6/nY2FjNXC4iUg5YVaLxtW2Be8svOFLTcW3bja9Dq3CHJRWE8+ARDK8PAH9cY8iaEV9ERESKrsTdy/OSlpbGzJkzef/99zl48GCJtzNjxgz69etH586dueGGG9iwYUO+Zb1eL6+88goDBgygc+fOXHvttXz77bchZfr160fbtm1z/cueaV1EpDLzdgvqYr5uUxgjkYrGGdS13KelwkREREqkxC3dTz75JBs2bGDBggUAZGZmcuONN7Jjxw4AqlWrxtSpU+nQoUNBm8nls88+Y+LEiUyYMIELLriAqVOnctddd7Fo0aKQdcGzvfjii8ybN49nnnmGFi1asHz5csaNG8eHH35o/+6ZM2fiD1qjdseOHdxxxx1cffXVJf34IiIVhr9pQ8ya1XEcP4lr3yEcx05g1qoR7rCkAghdn1vjuUVEREqixC3dq1atYuDAgfbjBQsWsGPHDp5//nkWLFhA7dq1S9TF/J133uHGG29kxIgRtGrVigkTJhAZGcmsWbPyLD937lzuu+8++vTpQ5MmTRg9ejR9+vTh7bfftsvUrFmTOnXq2P++/vprmjZtSvfu3Yv/wUVEKhrDIFPLh0kxGalpOI4kAuCvVxurSnSYIxIREamYSpx0Hz16lEaNGtmPlyxZQqdOnRg6dCitWrXixhtvLLBbeF4yMzPZtGkTPXv2PBOgw0HPnj1Zt25dnu/xer14PJ6Q5yIiIli7dm2+v2PevHmMGDECQ2PTROQ84e3UFitrAjX3z9sga5yuSH6cew6S/VfSH6dWbhERkZIqcffyqKgokpOTAfD5fKxevZpbb73Vfr1KlSr260V14sQJ/H5/rm7ktWrVYteuXXm+p1evXrz77rtccsklNG3alJUrV7J48eKQ7uTBlixZQnJyMsOHD883DrfbWSHminG5NANxZaR6rZzCXq+eKpgdW+HcsA0jPYPIX3ZjXqBlHUtD2Ou2jLj2nulaTptmeDyV83Pmp7LW6/lO9Vo5qV4rr8pStyVOujt27MjHH3/MpZdeyldffcXp06fp16+f/fq+ffvyHINd2p566inGjx/P4MGDMQyDJk2aEB8fn2939FmzZtG7d2/q1auX7za93rwT9vIoM7PixCpFp3qtnMJdr/4L2hO9YRsAxpqNZLZvHdZ4KpNw122psyzcO/cFfnQ5yahfFyrbZyyCSlevAqheKyvVa+VVGeq2xEn3H/7wB+6++25GjBiBZVlcddVVdOnSxX598eLFXHjhhcXaZo0aNXA6nRw7dizk+WPHjlG7du0831OzZk1ee+01MjIySEpKom7dujz//PM0aZJ7ltWDBw/y/fff8/LLLxcrLhGRysDfqD7+OjVxJh7HdeAIjsRjmHXK/uaoVDyOY0k4kk8D4G/SEFxntcKoiIjIea3Ef0U7d+7M559/ztq1a4mJiQmZlOzUqVOMHj262BOVeTweOnbsyMqVKxkwYAAApmmycuXKkK7reYmIiKBevXp4vV6+/PJLBg8enKvM7NmzqVWrFn379i1WXCIilYJh4O3aAefi74DAhGoZg64Ic1BSHoUuFabx3CIiImfjrG5d16xZ006Og8XExHDbbbeVaJt33HEHjz32GJ06daJLly5MnTqVtLQ04uPjAXj00UepV68eDz30EAA//fQTCQkJtG/fnoSEBF5++WVM0+Tuu+8O2a5pmsyePZvrr78el+7Yi8h5ytupDRHL/ofh9eHeuJ2Mvj3A4w53WFLOhC4VpvW5RUREzkapZJ8pKSmkpKRgmmau1xo2bFisbQ0ZMoTjx4/z0ksvkZiYSPv27ZkyZYrdvfzw4cM4HGcmXc/IyODFF19k//79REdH06dPHyZNmkRMTEzIdr///nsOHTrEiBEjSvAJRUQqicgIvO1b4dmwFSMjE/eWX/Be0D7cUf1/e3ceZ1P9x3H8dZdZbcNgbMPY9zUiZDLITgkRKlEpRFGUCkVKKns/srVYSxIhZa+0yL5mm6HB2A1mu9vvj+Ga28wwmHFn7ryfj8c83Dnne875nPOdcedzv5tkJlYbpmORANhz+GMvkM/NAYmIiGRtBofD4bjTg+fNm8ecOXM4fvx4qmX27dt3p6d3mzNnbm/WdXfx9jZ5xMQC4kr16pkyU70aT5wmx+eJk03aChck5ml9GHk3MlPdpgdTRCT+874HEntGxLVt4uaI3MPT6lUSqV49k+rVc2WFui1QINcty9zxOt3z58/nnXfeoXjx4gwcOBCHw8FTTz3Fc889R/78+alQoQKjR4++09OLiEgGsRcugC0osfeQ6eRpjKfOuDkiyUxM4Te6llvVtVxEROSu3XHS/dVXX9GwYUNmzJhB586dAQgNDeXll19mxYoVXL16lYsXL6ZXnCIikl4MBiw1Kzu/9dq2143BSGZjPnKj95otRJOoiYiI3K07TrqPHTtG48aNAfDySpyEx2KxAJArVy46duzIvHnz0iFEERFJb5ZKZXBcm0DNa88/EJ/g5ogkMzDExDp7PtgKBuLI6e/miERERLK+O066c+XKhc2W2L8+Z86c+Pn5cerUKef+HDlycPbs2buPUERE0p+PN5bKZQESZzLfc9DNAUlmYAqPxHDttU1LhYmIiKSLO066y5Yty/79+53fV69enfnz5xMVFcXJkydZuHAhISEh6RGjiIhkANcu5nvgzufVFA9hCk+6PrfGc4uIiKSHO06627Vrx8GDB0lISOyS2L9/fw4fPsxDDz1EWFgYR48eZeDAgekVp4iIpDN7UH5sRQoCYDp9DuOJ026OSNzK4XCuz+0wm7AVK+zmgERERDzDHa/T/dhjj7mseX3ffffxww8/sHbtWkwmEw0aNKBkyZLpEqSIiGSMhJqV8buWbHtv20Nc0SA3RyTuYjx/EWP0FYDEhNvrjv9EEBERkSTu+h31n3/+YcOGDURGRgJQtGhRGjVqpIRbRCQLsFYsjePnXzHEJ2DedwiaNAA/H3eHJW5gOppkqbBS6louIiKSXu446U5ISODtt99m6dKlOBwOjMbEnup2u52PP/6Ytm3bMmrUKLy9vdMtWBERSWdeXliqlsd7yy4MVhteuw9gqVPN3VGJG5iPJlkqTOO5RURE0s0dj+n+8MMP+e677+jatSsrVqxg586d7Nq1ixUrVtClSxe+//57Pvzww/SMVUREMoClZiXna69tezWhWnZks2GKSOyxZs/hh71APjcHJCIi4jnuOOn+/vvvad++PW+//TalSpXCbDZjMpkoVaoUw4cPp23btnz//ffpGauIiGQAe/58WIMTJ80ynbuA6d+Tbo5I7jVTZBQGixUAW0gwGAy3OEJERETS6o6TbqvVSvXq1VPdX7NmTec63iIikrm5tHZv3evGSMQdTEeTLhWm9blFRETS0x0n3Q0bNuSXX35Jdf+mTZto0KDBnZ5eRETuIWv50tj9fAEwHziMISbWzRHJvWROMomaTUm3iIhIurrjpHvAgAH8+++/9OvXj82bNxMZGUlkZCS//fYbffv25cSJEwwYMICLFy+6fImISCZkNmGtVh4Ag82OedcBNwck90xMHMaTicvG2QoG4siZw80BiYiIeJY7nr28VatWQOKSYWvWrHHZ57g2CU/r1q2THbdv3747vaSIiGSghBqV8P5jBwDe2/Ziub+6xvZmA+aIf7ley7YQtXKLiIiktztOuvv27YtBf4yJiHgMR74ArCFFMYdHYrxwCVNEpJKwbMBlfW4tFSYiIpLu7jjp7t+/f3rGISIimYClRmXM4YlLR3lt26Ok29M5HM71uR0mE7Zrs9iLiIhI+rnjMd0iIuJ5rOVCsOfwA8D8TziGKzFujkgykuH8RYzRVwASE26vO/4sXkRERFKhpFtERG4wmbBUrwiAwW7Ha6fm4fBkZpeu5erVICIikhGUdIuIiAtL9Yo4rr322r4P7Ha3xiMZx5xkfW6bxnOLiIhkCCXdIiLiwhGQG1up4gAYL13GlCQxEw9is2E6dgIAew4/7AUD3RyQiIiIZ1LSLSIiyVhqVnK+9tq2142RSEYxRUZhSLAA15YK04okIiIiGUJJt4iIJGMtUwJ7rhwAmA9FYLg22ZZ4Di0VJiIicm8o6RYRkeSMxhsTqjkceO3QhGqexnU8tyZRExERyShKukVEJEWW6hVxXOty7LVDE6p5lNg4jCdPA2ArkA9HzhxuDkhERMRzKekWEZEUOXLnxFqmBADGy1cxH4pwc0SSXszhkVwfwa1Zy0VERDKWkm4REUmVJlTzTKbwG13LtT63iIhIxlLSLSIiqbKVDMaeJxcApiPHMFyMdnNEctccDszXJlFzmEzYggu7OSARERHPpqRbRERSZzRiqXFtQjXQhGoewHD+EsZLlwESE24vLzdHJCIi4tmUdIuIyE1ZqlXEYUx8u/DasQ9sNjdHJHfDHH5jqTDNWi4iIpLxlHSLiMhNOXL6Yy0XAoDxaizmg+FujUfujulo0vHcmkRNREQkoynpFhGRW7LUrOx87bVtjxsjkbtis2GOiATA7u+HvWCgmwMSERHxfEq6RUTklmwlimLPmwe4ttzU+YvuDUjuiOlEFIYECwC2kGJgMNziCBEREblbSrpFROTWDAYSkiwf5r1dy4dlRaajN8Zza6kwERGRe0NJt4iIpIm1ankcpsS3DfPOA2C1ujkiuV3mJOO5bRrPLSIick8o6RYRkTRx+PthLV8aAGNsHOYDR9wckdyW2DiMJ88AYCuQD0euHG4OSEREJHtQ0i0iImlmqXWji7nXNnUxz0rMEZEYHA7g2nhuERERuSeUdIuISJrZihXGFpgXAPPxkxjPnndzRJJWruO51bVcRETkXlHSLSIiaWcwYKmp1u4sx+Fwjud2mIzYihd2c0AiIiLZh5JuERG5LZYq5XGYTQB47T4AFoubI5JbMVy4hPHSZQBswYXBy8vNEYmIiGQfSrpFROT2+PlgrVgGAENcAuZ9h90ckNyKOUnXcluIupaLiIjcS0q6RUTktrms2a0u5pmeKclSYVqfW0RE5N5S0i0iIrfNXiQIW8FAAEwnojBGnXVzRJIqmw1zRCQAdn9f7EH53RyQiIhI9qKkW0REbl+yCdX2uDEYuRnTidMYEhLH3dtCioHB4OaIREREshcl3SIickcslcvh8DID4LXnIMQnuDkiSYlr13KN5xYREbnXlHSLiMid8fHGUrkcAIYEC157D7k5IEmJyyRqGs8tIiJyzynpFhGRO5asi7nD4cZoJJnYeIwnTwNgy58XR66cbg5IREQk+1HSLSIid8xeqAC2wgUBMEWdxXjyjJsjkqTMEf9iuPZBiE1dy0VERNxCSbeIiNwVl9bu7ZpQLTMxhd/oWq6lwkRERNxDSbeIiNwVS8UyOHy8ARLHdcfFuzkiAcDhwHwkcRI1h8mILbiImwMSERHJnpR0i4jI3fH2ujGhmsWaOJO5uJ3hQjTGS5cBsBUrDN5ebo5IREQke1LSLSIid00TqmU+5vAbS4Vp1nIRERH3UdItIiJ3zV4wEFvRQgCYzpzHFHnKzRGJ6WjS8dyaRE1ERMRdlHSLiEi6SHBp7d7rxkgEmw1zRCQAdj9f7EH53RyQiIhI9qWkW0RE0oW1Qmkcvj4AmPcdhpg4N0eUfZlOnsYQnwCALaQYGAxujkhERCT7UtItIiLpw8uMpWp5AAw2G167D7g5oOzLpWt5KXUtFxERcScl3SIikm6SdTHXhGpuYT6aZBK1EE2iJiIi4k5KukVEJN04AvNiLZ64HrTp/EVMx064OaJsKC4e44nTANjy58WRO6ebAxIREcnelHSLiEi6stSs7HytCdXuPXNEJIZrPQzUyi0iIuJ+SrpFRCRdWcuXxO7vC4D5wBEMV2PcHFH2YkrStVxLhYmIiLifkm4REUlfJhOWahUBMNjteO3UhGr3kvnaJGoOoxHbta7+IiIi4j5KukVEJN1ZalR0vvbargnV7hXDhUsYL0YDYAsuBN5ebo5IRERElHSLiEi6c+TN4+zabLwY7bKElWQcc5LnbAtR13IREZHMINMl3XPnziUsLIyqVavSqVMndu7cmWpZi8XC5MmTadq0KVWrVqVdu3Zs3LgxWbmoqCgGDx5M3bp1qVatGm3btmXXrl0ZeRsiItmexWX5sD1ujCT70HhuERGRzCdTJd0rVqxgzJgx9O3blyVLllChQgV69erFuXPnUiw/fvx4Fi5cyFtvvcWKFSvo0qUL/fr1Y+/eG7PlXrp0ia5du+Ll5cVnn33GDz/8wJAhQ8iTJ8+9ui0RkWzJWqYE9pz+AJgPhmO4fNXNEXk4ux1zRGTiSz9f7IXyuzkgERERgUyWdM+ePZvOnTvz2GOPUaZMGUaOHImvry+LFy9OsfzSpUvp06cPoaGhBAcH88QTTxAaGsqsWbOcZT777DMKFSrEmDFjqFatGsHBwTRs2JDixYvfq9sSEcmeTCYs1a9NqOZw4LVjn5sD8mzGE6cxxCcA15YKMxjcHJGIiIhAJkq6ExIS2LNnD/Xr13duMxqN1K9fn23btqV4jMViwdvb22Wbj48PW7dudX6/du1aqlSpwksvvcQDDzzAI488wqJFizLmJkRExIWlekUc15I/rx37wG53c0Sey+zStVzrc4uIiGQWmSbpvnDhAjabjcDAQJftgYGBnD17NsVjGjZsyJw5cwgPD8dut/Prr7/y008/cfr0aWeZ48ePM3/+fEJCQpg5cyZdu3Zl1KhRLFmyJEPvR0REwJEnF7bSiT2LjNFXMB0+5uaIPJfLJGoazy0iIpJpmN0dwN0YNmwYb775Ji1btsRgMBAcHEyHDh1cuqM7HA6qVKnCK6+8AkClSpU4ePAgCxYs4NFHH03xvF5epizRK89sNrk7BMkAqlfPlJ3r1VGnChyKAMBn5z6slUu7OaL0lSnqNi4e44koAOz58+KVX/OW3K1MUa+S7lSvnkn16rk8pW4zTdKdN29eTCZTsknTzp07R/78KU8Gky9fPqZOnUp8fDwXL16kYMGCjBs3juDgG5/wFyhQgNKlXf/AK1WqFD/++GOqsVgstru4k3srISHrxCppp3r1TNm2XosXw5Q7J8boKxgPRmA5cxFHnlzujipdubtuzQePYbi2Fro1pJjb4/EUeo6eSfXqmVSvnssT6jbTdC/39vamcuXKbN682bnNbrezefNmatasedNjfXx8CAoKwmq1snr1apo0aeLcV6tWLY4ePepSPjw8nKJFi6bvDYiISMqMRk2olsGSroOupcJEREQyl0yTdAP07NmTRYsWsWTJEg4fPsyIESOIjY2lQ4cOALz22mt89NFHzvI7duxg9erVHD9+nC1bttC7d2/sdju9e/d2lnnqqafYsWMH//vf/4iIiGDZsmUsWrSIJ5544p7fn4hIdpVsQjVb1v/UOjO5Pomaw2jEVryIm6MRERGRpDJN93KAVq1acf78eSZOnMiZM2eoWLEiM2bMcHYvP3nyJEbjjc8J4uPjGT9+PMePH8ff35/Q0FDGjh1L7ty5nWWqVavG5MmT+fjjj5kyZQrFihXjjTfeoF27dvf8/kREsitHrhxYy4XgdeAoxisxmA9FYC1fyt1heQTDhUsYL0YDYCtWCLy93ByRiIiIJGVwOK4NAhOnM2cuuzuENPH2NnnEGAdxpXr1TKpXMB05jv/C5UBiF+jYLm3cHFH6cHfdem3dg++PGwGID72fhPr3uS0WT+LuepWMoXr1TKpXz5UV6rZAgVvPU5OpupeLiIjnspUshj0gsSeS+ehxDBcuuTkiz2AKT7o+t8Zzi4iIZDZKukVE5N4wGLDUqOT81mu7JlS7a3Y75vDIxJd+vtiDUl7tQ0RERNxHSbeIiNwzlmrlcVybm8NrpyZUu1vGE6cxxCcAYAspCka9rYuIiGQ2encWEZF7xpHD3zmBmjEmDvOBo7c4Qm7GHH5jqTCbupaLiIhkSkq6RUTknrLUTNLFfNseN0aS9ZmOJhnPHVLMjZGIiIhIapR0i4jIPWUrXgRbvgAAzMdOYDx3wb0BZVVx8ZgiowCwBQbgyHPr2VNFRETk3lPSLSIi95bB8J/W7r1uDCbrMh87geHaqp+2EHUtFxERyayUdIuIyD1nqVoeh8kEgNeuA2CxujmirMela3lJdS0XERHJrJR0i4jIvefni7ViaQAMcfGY9x92c0BZj/lo4iRqDqMRW4mibo5GREREUqOkW0RE3CKhZmXna291Mb8thgvRGC9cAsBWrBB4e7k5IhEREUmNkm4REXELe9EgbAXyAWCKPIXx9Dk3R5R1mMNvdC23adZyERGRTE1Jt4iIuIfBgCVJa7cmVEs709Eb63NbtT63iIhIpqakW0RE3MZSuSwOLzMAXnv+gQSLmyPKAux2zBHXxnP7+mAvlN/NAYmIiMjNKOkWERH38fXBUqkMAIb4BLz2HXJzQJmf8eRpDHEJwLVZy416KxcREcnM9E4tIiJupS7mt8ecpGu5xnOLiIhkfkq6RUTEreyFC2K71kXadPI0xpNn3BxR5ua6PrfGc4uIiGR2SrpFRMTtXFq7t+9xYySZXHwCpsgoAGz5AnDkyeXmgERERORWlHSLiIjbWSqVxXFtrWmvPQchPsHNEWVO5ohIDA4HALaS6louIiKSFSjpFhER9/P2wlK5HAAGizVxJnNJRkuFiYiIZD1KukVEJFOw1KzkfO21bS9ca9GVG8zXxnM7jEZsxYu4ORoRERFJCyXdIiKSKdiD8mMrEgSA6fQ5jCei3BxR5mK4GI3xwiUAbEWDwMfbzRGJiIhIWijpFhGRTCMhSWu3t5YPc+GyVJi6louIiGQZSrpFRCTTsFYsjcM3sQXXvO8QxMa7OaLMwxSedKkwTaImIiKSVSjpFhGRzMPLC0uV8gAYrDa8dh9wc0CZhN2OOTyxpdvh64O9UAE3ByQiIiJppaRbREQyFZc1uzWhGgDGk2cwxCUuo2YNKQZGvX2LiIhkFXrXFhGRTMWePy/W4MIAmM5dwHT8pJsjcr/rrdyg9blFRESyGiXdIiKS6SRbPiybMx1NMp47REm3iIhIVqKkW0REMh1r+dLY/XwBMB84jCEm1s0RuVF8AqbIxOXT7Pny4AjI7eaARERE5HYo6RYRkczHbMJa7dqEajY75l3Zd0I107FIDHY7ANYQLRUmIiKS1SjpFhGRTCmhxn/W7M6mE6olXZ/bWkpdy0VERLIaJd0iIpIpOfIFYA0pCoDxwiVMEZFujsg9zNfGczuMRmzFi7o5GhEREbldSrpFRCTTcl0+bI8bI3EPw8VojOcvAWArGgQ+3m6OSERERG6Xkm4REcm0rGVDsOfwB8D8TziGKzFujujeclkqTLOWi4iIZElKukVEJPMymbBUrwCAwW7Ha+c+Nwd0b5mSjucuqUnUREREsiIl3SIikqlZqlfk+hRqXtv3wbWZvD2e3e5s6Xb4emMvXMDNAYmIiMidUNItIiKZmiMgN7ZSxQEwXrqM6drEYp7OeOoMhrh4AKwhxcCot2wREZGsSO/gIiKS6SXUurF8mNe2vW6M5N5JulSYTetzi4iIZFlKukVEJNOzlS6BPVcOAMyHIjBEX3FzRBkvaYu+taQmURMREcmqlHSLiEjmZzRiqV4RAIPDgdcOD59QLT4BU2QUAPa8eXAE5HZzQCIiInKnlHSLiEiWYKleEYfBAJCYdHvwhGqmYycwXLs/tXKLiIhkbUq6RUQkS3Dkzom1TAkAjJevYj4U4eaIMo7LeG4tFSYiIpKlKekWEZEsw1KzsvO1J0+odn08t8NgwFqiqJujERERkbuhpFtERLIMW6lg7HlyAWA6cgzDxWg3R5T+DJcuYzp/EQBb0SDw8XZvQCIiInJXlHSLiEjWYTBgqZG4fJgB8Nruea3d5iSzlqtruYiISNanpFtERLIUS7UKOIyJb19eO/eDzebmiNKXKfzGeG5NoiYiIpL1KekWEZEsxZHTH2u5kgAYr8Zi/ifcvQGlJ7vdOYmaw9cbe+GCbg5IRERE7paSbhERyXIsNSs5X3tt3+PGSNKX8dRZDHHxAFhLFAOj3qZFRESyOr2bi4hIlmMrURR73jwAmMMjMVybeCyrM4cnHc+truUiIiKeQEm3iIhkPQYDCUlau709ZEI109Gk47k1iZqIiIgnUNItIiJZkrVqeRymxLcx884DYLW6OaK7FJ+A6d9TANjz5sERkNvNAYmIiEh6UNItIiJZksPfD2uF0gAYY+MwHzji5ojujunYCQx2OwDWEHUtFxER8RRKukVEJMtymVBtW9buYm5OslSYrZS6louIiHgKJd0iIpJl2YoVxpY/LwDm4ycxnjnv5ojunOlo4iRqDoMBa/Eibo5GRERE0ouSbhERyboMBiw1ki4fljVbuw2XLmM6dxEAW9Eg8PVxb0AiIiKSbpR0i4hIlmapUh6H2QyA164DYLG4OaLb59K1XOO5RUREPIqSbhERydr8fLBWTJxQzRCfgHnfYTcHdPu0VJiIiIjnUtItIiJZXkLNys7X3tv2uDGSO2C3Y74+ntvHG3uRgm4OSERERNKTkm4REcny7EUKYisYCIDpxGmMUWfdHFHaGaPOYoiLB8AaUhSMemsWERHxJHpnFxGRrM9gwJKktdsrC7V2X2/lBrCFqGu5iIiIp1HS7Q5WK+ZdB/D9dhV+c5fi++0qzLsOgNXq7sg8VsOGtdm4cX2ay48ePYLXXx+UcQGJSLqzVC6Lw9sLAK89ByE+wc0RpY3Gc4uIiHg2s7sDyG5MB4/it3wdhrh4HAYwOMBhAK8DR3H8/CuxbcKwlQ1J9+uOHj2ClSuXO7/PnTsPFSpU4sUXX6JMmbLpfr20WrFiGe+9N5ISJUKYO/cbl31r1/7M228PpVChwnzzzTI3RSgiWYaPN5ZKZfHevhdDggWvvYew1Kx06+PcKcGC6d9TANgDcuPIm9vNAYmIiEh6U0v3PWQ6eBS/b1bBtbF7Bgcu/xIXj983KzEdPJoh169btz5Ll65i6dJVTJgwFbPZxGuvDcyQa90OPz8/Lly4wO7dO122L1++lKCgQm6KSkSyoqRJtte2PeBw3KS0+5mOncBgtwNgLamlwkRERDyRku57xWrFb/k6AAypFLm+3W/5ugzpau7t7UVgYH4CA/NTtmx5unV7mtOno7hw4YKzzNSpE+nSpQNNmjSgU6f2fPbZp1iTxHLw4D/07/88zZo14uGHQ3nmme7s37/XuX/Hju28+GJvwsIa0KFDa8aP/5DY2NibxmUymWjWrDk//PC9c9vp01Fs3/43zZq1SFZ+yZJv6Ny5PQ89VI+uXTuwatUPLvuPHz9G377PEhZWn+7dO/HXX78nO0dU1CneemsoLVo8RMuWYQwd+gonT5649UMUkUzNXqgAtsKJs3+bos5iPHnGzRHdnMt4bnUtFxER8UhKuu8R877DGOLiU024rzMAhrh4zPuPZGg8MTExrF69gmLFgsmTJ49zu7+/P8OGDeerr75mwIBBLFv2HQsXznXuf+edNylYsCAzZnzBzJlf0r3705hMiaMUIiP/ZfDg/jz0UBiffz6fkSPfY+fO7XzyydhbxtO6dTvWrv2JuLg4ILHbed26D5AvXz6Xchs2rGPChHF06dKdL75YSPv2HRgz5h22bt0CgN1uZ9iwVzGbvZg2bQ6DB7/Op59OcjmH1Wpl0KD++Pv7M2XKDD79dCZ+fv4MGtQfi8VyZw9URDKNhP+2dmdi18dzOwwGrCWKujkaERERyQiZckz33LlzmTlzJmfOnKFChQq89dZbVKtWLcWyFouFadOm8d133xEVFUXJkiUZPHgwjRo1cpaZNGkSkydPdjmuZMmSrFq1Kl3iNe87jPemPzEkpJ6wGWLjcJB6K3dSDsB35Xoc65O30DrLeHthD6sHZUqmOc7ffvuFZs0eBCA2NpbAwPyMHTseY5LlaZ5+urfzdeHCRTh2LII1a1bTrdtTAERFRfHEE09SokQIAMHBxZ3lv/xyNs2ataBz5yec+wYMeJX+/Z9j0KCh+Pj4pBpbuXIVKFKkKOvW/UyLFq1ZuXI5/fu/zIkTkS7lFiz4kpYt29KhQycAihcvwZ49u5k//0tq1arNli1/EhERzscfTyZ//gIAPPdcXwYPfsl5jjVrVmO32xk69C0MhsQaeeON4bRo8RDbtv3N/ffXS/MzFZHMx1qxDI41v2GIT8Br3yHim9QH39T//3EXQ/QVTOcSexrZiwRlyhhFRETk7mW6pHvFihWMGTOGkSNHUr16dT7//HN69erFqlWrCAwMTFZ+/PjxfP/994waNYpSpUqxadMm+vXrx4IFC6hU6UZrR9myZZk9e7bze5PJlG4xe/+xHdO5i+l2PgOA1Ybh8tWbl/tt220l3TVr3sfgwa8DcPlyNEuWfMPgwS/x2WefU6hQYSAxIf3mmwVERkYSGxuDzWbD3z+H8xyPP/4E77//LqtWraB27fsJC2tK0aKJ4xAPHTrI4cMH+emnGx9mOBwO7HY7J0+eICTk5rG2bt2OFSuWERRUiLi4WOrVa8C33y5yKRMeHk67dh1ctlWtWp2vv15wbf9RChYs5Ey4AapUcf3A5tChg0RG/svDDzdy2Z6QkEBk5L+ISBbn7YWlSjm8/96NwWLFa/c/WGpXdXdUyZiSdC3XeG4RERHPlemS7tmzZ9O5c2cee+wxAEaOHMn69etZvHgxzz33XLLyS5cu5YUXXiA0NBSAJ554gs2bNzNr1izGjRvnLGcymShQoECy49NDQr0aeG+8dUs3VluaW7oxm3D4+aZextsLe/2atxWnn58fxYrdGDNYrlwFWrR4iO+/X8Jzz73I7t07eeedt3jmmeeoW/cBcuTIyZo1q1mw4CvnMb16PU+zZi3YvPkXfv/9N2bNmsaIEe8RGtqY2NgY2rfvQMeOXZJdOy0Toj38cEumTp3ErFnTad68FWZzxvx4xsbGUK5cBYYPH5VsX0BA3gy5pojcW5aalfD+ezcAXtv3YrmvChjS8j/wvWPWUmEiIiLZQqZKuhMSEtizZw/PP/+8c5vRaKR+/fps27YtxWMsFgve3t4u23x8fNi6davLtoiICBo2bIiPjw81atRg0KBBFClSJF3itlYojbVC6ZuWMe86gN/ytWk6nwGIbfkQ1irlblrO29sECba0hpn8OgYDBoOR+PjE2dR37dpJUFAhnnqql7PMqVMnkx1XvHgJihcvweOPd2P48DdYseJ7QkMbU65cBY4ePeqS2N+O3Lnz0LBhI9au/YlXX30jxTIhISHs3LmDli3bOLft2rWDkiVLXttfktOnT3H27Fny588PwJ49u1zOUa5cBdas+Ym8efOSI0fOO4pVRDI3e4FArMUKYf73FKYz5zFFnsJWrLC7w7rB4cAUfm08t4839iIF3RyQiIiIZJRMNZHahQsXsNlsybqRBwYGcvbs2RSPadiwIXPmzCE8PBy73c6vv/7KTz/9xOnTp51lqlWrxpgxY5gxYwYjRowgMjKSbt26ceXKlQy9n6SsFUvj8PXhVovXOACHrw/WCqXSPYaEBAvnzp3l3LmzhIcf5ZNPPiQ2NoYGDRLHeQcHBxMVdYqff/6RyMh/+frrBWzcuN55fHx8HB9//AFbt27h1KmT7Ny5nf3791KiRGLC263bU+zevYOPP/6AgwcPcPz4MTZtWs/HH3+Q5hiHDRvODz/87Bwz/l9duz7JypXLWLLkG44fP8aCBV+xceM6unTpDkDt2vcTHFyC0aOHc/DgP+zYsY3p06e6nOPhh1uSJ08AQ4cOYseObZw4EcnWrVsYP/5DTp+OSnOsIpK5WWpWdr722rb3JiXvPeOpsxhjEyeOtJYoCsZM9XYsIiIi6ShTtXTfiWHDhvHmm2/SsmVLDAYDwcHBdOjQgcWLFzvLXO96DlChQgWqV69O48aNWblyJZ06dUp2Ti8vU/r3QvQ2YX2kKeYFP6Q6odr1hNz6SFO8/W89oY7ZnPZx6UajgT/++I327ROX4MqRIwclSoQwZsxY6tWrC0BYWBhdu3bnk08+xGJJoEGDhvTq9SyfffY/vL1NGAzeXLkSzejRIzh//hwBAQE89FAYL7zwIt7eJipVqsC0aTP59NPJ9O37LA6Hg6JFi9GsWfPEVvkU7yHxD83r+729c5Ar140x5CaTEYPhxv6mTZtw8eKrzJ37JRMmjKNIkaK89dYI5z2AiQ8//JhRo0by3HNPUbhwEQYNeo0BA/piNhvx9jbh7Z2D6dNnMnnyBIYNe5WYmBgKFChInTr3ExCQG29vE0ajAYPBkGrcGel26lWyDtWrG1Qri+PnXzDExidOeNnyQfD3S/fL3Endmo4lmT+iTHG3/F8jN6ffWc+kevVMqlfP5Sl1a3A4HLdqfL1nEhISqFGjBhMnTqRp06bO7UOGDCE6OppPP/001WPj4+O5ePEiBQsWZNy4caxfv54ffvgh1fKPPfYY9evXZ9CgQcn2nTlz+e5u5CZMB4/it3wdhrh4HAYwOLjxr68PsW3CsJUNSdO5vL1NJNxF93LJnFSvnkn16h4+a37D+88dAMQ1qY/l/urpfo07qVu/eUsxR5wA4EqfJ3DkzXOLI+Re0++sZ1K9eibVq+fKCnVboECuW5bJVP3ZvL29qVy5Mps3b3Zus9vtbN68mZo1bz5pmI+PD0FBQVitVlavXk2TJk1SLXv16lWOHz+eYROr3YytbEmu9H+S2LZNsJYribV4EazlShLbtglX+j+Z5oRbRERuLaFGRedr7217IDN8zpxgwXT8FAD2gNxKuEVERDxcpute3rNnT4YMGUKVKlWoVq0an3/+ObGxsXTokLhM1GuvvUZQUJCzhXrHjh1ERUVRsWJFoqKimDRpEna7nd69b6w3/cEHH9C4cWOKFCnC6dOnmTRpEkajkTZt2qQYQ4Yzm7FWKXfLidJEROTuOALzYi1RBHPECYznL2E6dgJbiaJujcl07AQGux3QUmEiIiLZQaZLulu1asX58+eZOHEiZ86coWLFisyYMcM5E/XJkycxJplwJj4+nvHjx3P8+HH8/f0JDQ1l7Nix5M6d21nm1KlTvPLKK1y8eJF8+fJx3333sWjRIvLly3fP709ERO4tS43Kzq7cXtv2uj3pNoffGM9t01JhIiIiHi9TjenOLDJyTHd6ygpjHOT2qV49k+rVjWw2ckz+AmNMHA6jkav9euDI4Z9up7/duvX/bAGmsxdwGAxcGdgTfG89cabce/qd9UyqV8+kevVcWaFus9yYbhERkXRnMmGpnji222C347XzgNtCMURfwXT2AkDi2txKuEVERDyekm4REfF4luqVnK+9tu9124RqpiRdy60hGs8tIiKSHSjpFhERj+fImxvrtfHTxovRmI7+e4sjMob56HHna1spjecWERHJDpR0i4hItmCpmaS1e9ueex+Aw+FM9h0+3tgKF7z3MYiIiMg9l+lmL/dUCTFRWOMvpbm82ScP3v5BGRiRiEj2Yi1TAnvOHBivXMV8MBzD5as4cuW4Z9c3Rp3FGBuXGEuJomAy3bNri4iIiPso6b4HEmKi2L+6Bw57QpqPMRi9qfDwl0q801HHjm3p3LkrnTs/kabyM2dOY9OmDcyZMy+DIxORe8JkwlK9Aj6//o3B4cBrxz4SGta+Z5d36Vqu8dwiIiLZhrqX3wPW+Eu3lXADOOwJt9UyfiujR4+gYcPaNGxYm9DQunTq1I6pUycQHx/vUq5hw9ps3LjeZduTTz7Ohx++l+J5V636gcaNH+DixYts3brFeY2GDWvTpk1TBg9+icOHD900tuvHtWjROFk8+/btcZ5PRORuWapXxGEwAOC1Yx/Y7ffs2knHkVu1PreIiEi2oaQ7G6lbtz5Ll65i0aKl9O//CkuXfsvMmdNueVybNu1Zs2Y18fFxyfatWLGMBg0aERAQ4Nw2b95ili5dxUcfTcZisfDqqwOwWCy3vI6/vz8bN65z2bZ8+VKCggrd+uZERNLAkScXttLFATBGX8F0+Ni9uXCCBdO/JwGwB+TCkTf3vbmuiIiIuJ2S7mzE29uLwMD8BAUVolGjh6hd+362bPnjlsc9/HAr4uPjWb9+rcv2Eyci2bbtb9q0ae+yPW/efAQG5qd8+Qp06tSV06ejiIgIv+V1WrZsww8/fO/8Pj4+jjVrVtOyZZtkZdevX0P37p1p3PgBOnZsy/z5X7nsv3DhPK+99jJhYQ3o1Kkdq1evTHaOy5cv8/7779KmTVMefjiUl17qw8GD/9wyThHJ2hJqVna+9t62955c03T8BAZbYqu6tWQwXGttFxEREc+npDubOnLkELt378Rs9rpl2YCAABo2DHVJiAFWrlxOgQIFuf/+eiked+XKFdasWQ2Al9etr9O8eSt27tzOqVOnAFi/fi2FChWhXLkKLuX279/H22+/TtOmD/P55wt45pnnmDHjU1asWOYsM3r0CE6fjmLixP/x7rsfsGTJ11y4cN7lPG+9NYQLF84zbtxEZs78knLlKjBw4AtER6dft34RyXxspYKx584JgOlwBIZLlzP8muYkXcs1nltERCR70URq6eDiv+s5tW8WdktMivsddusdnffor69hMKZcRUYvf4pV603OoEZpPt9vv/1Cs2YPYrPZSEhIwGg08vLLr6Xp2DZt2jN48EucOBFJkSJFcTgcrFy5nJYt22A0un5206FDKwBiY2MBaNiwESVKhNzyGnnz5qNu3fqsXLmMnj2f5Ycfvqd163bJyi1cOJf77qvD00/3BqB48RKEhx9h3rwvadWqLceORfD777/x2WefU7FiYovW0KFv061bR+c5duzYzr59e1i27Ce8vb0B6NdvIJs2rWfdujW0b98hTc9FRLIgoxFLjUr4bPwTA+C1fR8Jofdn6CVN1yZRcxgMWEso6RYREclOlHSng9MHFxB/Of3HBVoTLqa+Mw5O7ZtPmdtIumvWvI/Bg18nNjaWRYvmYTKZeOihJmk6tk6duhQoUJAVK5bRu3cftmz5k6ioU7Rq1TZZ2SlTPsPX15c9e3bzxRezGDz4jTTH2Lp1OyZM+IiHH27J7t27ePfd99mxY7tLmYiIozRsGOqyrWrV6ixaNB+bzUZExFFMJhPly1d07i9RIoScOXM5vz906B9iY2Np3dr1/uPj44mM/BcR8WyW6hXw3vRX4izmO/eR0PC+DFvCy3D5CqazFwCwFy4Ifj4Zch0RERHJnJR0p4OC5bpwau/NW7pvmkCnwuwdcNOW7kIVu97W+fz8/ChWLHHG3Ndff5unn+7K8uXf0abNI7c81mg00qpVW1auXM4zzzzHihXLqFWrNkWLJm+xKVy4KLly5aJ48RAuXDjP8OGvM2XKZ2mKsV69+nz44Wjef/9dGjR4kDx5Am7nFtMsNjaGwMD8TJqUfCK5pMm5iHgmR84cWMuF4HXgKMYrMZgPRWAtXypDruU6a7lauUVERLIbJd3pIKDoQwQUfSjV/TEX/uHguudu+7wlG4zFP2+5VPd7e5tISLDd9nkhMYnu0aMnkyd/QrNmLfDx8b3lMa1ateXzz2eyYcNaNm5cx5Ahb93ymA4dOvPll3PYsGEdoaGNb1nebDbTvHlr5s37gnHjJqZYpkSJkuzatcNl265dOwgOLo7JZKJEiRBsNhsHDuxzdi8/diycK1dujNssX74C58+fw2QyUbhwkVvGJSKex1KzMl4HjgLgtXVPhiXdLuO5tVSYiIhItqOJ1LKxxo2bYjSaWLz4a5ftJ09GcvDgAZev2NhYihQpSq1adRg79j28vLzTlET7+vrStu0jzJo1DYfDkaa4nn32BZYv/5m6dR9IcX+XLt35+++/mDNnBseORbBy5XIWL15E1649AChePIS6devz4YfvsWfPbvbv38f774/Cx+dGl87atetSuXJVXn99MH/++TsnT55g164dTJs2hf37781sxiLiXraQYtgDEpfuMof/i+FCBkyi6HBgCr82ntvbC1uRgul/DREREcnUlHRnY2azmQ4dOjNv3hfOSc8AJk36hJ49u7l8/fPPAQDatGnH5cvR11rH0zYu8bHHOhMefpS1a39OU3kvLy8CAgIwpLKkTvnyFXjnnTH8/PNqnnzycWbM+B+9evVxGV/+xhtvkz9/Afr3f45hw16lXbtHyZs3n3O/wWBg3LgJ1KhRk/feG0nXrh0YPvwNoqJOuZQTEQ9mMGCpWcn5rdf29P/AzRh1FmNMHADWEkUzbNy4iIiIZF4GR1qbH7ORM2fSd/mYO+1eXrbx9AzrXi6Zl+rVM6leMyfD1RhyTP4Sg92O3d+Xq32fBPPtJcY3q1vvzdvwWf87AHEPP4jlvip3HbPcG/qd9UyqV8+kevVcWaFuCxS49XxQaum+B8w+eTAYvW/rGIPRG7NPngyKSEREABw5/J1juY0xcZj/OZKu57/etRw0iZqIiEh2pYnU7gFv/yAqPPwl1vi0jxc0++TB2z8oA6MSEREAS63KeO07BIDXtr1YK5VNpxNbMB0/CYA9Ty4cefVBqoiISHakpPse8fYPUhItIpIJ2YILYwsMwHTuIuZjJzCeu4A9MO9dn9d07CQGmx0Aa8lgSGWeChEREfFs6l4uIiLZm8GApUaSCdW2pc+EaubwpEuFqWu5iIhIdqWkW0REsj1L1fI4rs0s7rXrAFisd31O09FrS4UZDIkzl4uIiEi2pKRbRETEzxdrxdIAGOLiMe8/fFenM1y+iunMeQDshQuAn+9dhygiIiJZk5JuERERIKFmZedr77vsYn69lRvAGhJ8V+cSERGRrE1Jt4iICGAvGoStQD4ATJGnMJ4+d8fnchnPXUrjuUVERLIzJd0iIiKQOKFaktbuO55QzeHAdDQx6XZ4e2EropUrREREsjMl3SJZ0JYtf9KtW0dsNpu7Q7lrM2dO4+mnn8jw64wePYLXXx+U4de5U/36PceECR9l+HWOHj3Co4+2IjY2NsOvlRVZKpfF4ZW4mqbXnn8gwXLb5zCePocxJvH5WksUhWsTtImIiEj2pHW6s4nRo0ewcuVy5/e5c+ehQoVKvPjiS5QpU9aNkWUOVquVH374nrVrfyYi4ih2u50iRYrSqFFjOnTohK+v6yRIGzas5bvvFnPgwH6ioy8xe/ZcypYt79wfHX2JmTOn8eefvxMVFUVAQACNGj1E794vkDNnTme5ffv28L//TebAgX2AgUqVKvPSSwMJCSlz03inTp3IU0/1wuQBf8x37dqDjh0fd3cY2UbJkqWoXLkKCxfO5emne7s7nMzH1wdLpbJ479iHIT4Br32HsFSveFunMCcZz20LUddyERGR7E4t3dlI3br1Wbp0FUuXrmLChKmYzSZee22gu8Nyu8jIf3nmmW58++3XNG4cxrvvvs/HH0+mU6eu/P33X/To0ZljxyJcjomNjaVatRq88EL/FM959uwZzp49Q9++A/nyy4UMGzaC33/fzPvvv+MsExMTw6BBLxEUVIjp0+cwdeoM/P39eemlvlitqS9XtGPHdk6c+JfQ0LBUy1gst9865y7+/v7kyRPg7jCyPIfDcdOfm6RatWrHkiXfpLl8dmOpmWTN7q17bvv4613LAawlNYmaiIhIdqekOxvx9vYiMDA/gYH5KVu2PN26Pc3p01FcuHDBWWbq1Il06dKBJk0a0KlTez777FOXP8wPHvyH/v2fp1mzRjz8cCjPPNOd/ftvjHvcsWM7L77Ym7CwBnTo0Jrx4z+8aTfW612Lv/tuMR06tKZJkwa89dZQrly54iyzb98eBg58kdatm9C8eSj9+j3HgQP7nfsdDgczZ06jQ4fWNG78AO3bt2D8+A+d+7/99mu6dHmUsLD6tG37MG+++Zpz35UrVxg0qD+NGjVmzpx5PPJIR6pWrU6ZMmVp0qQZH300kR49evLKK/2Ijo52HteiRWt69nyW2rXvT/G+SpUqw+jRH9KwYSOKFi3GfffV4bnnXuTXXzc5n+exY+FER1+iV6/nKV48hFKlStOz53OcP3+OU6dOpvrM1qz5kdq16+Lj45PsOS5b9h2dOrUjLKw+AJcvX+b999+lTZumPPxwKC+91IeDB/9xHhcZ+S9Dh75C27YP06zZg/Tu/SR//fWHy/Vu9vwSEhIYP/5D2rRpRlhYfV54oRf79t1IUrZu3ULDhrXZsuVPevXqQZMmDejT5xmOHQtPFvt117uBz5v3Je3bN6dVqyZ89NEHLj+HZ8+e5dVXBxAW1oBOndqxevUqOnZsy6JF81J9btfNmjXd+Tw+/PA9lw8obnU/K1Yso0WLh1zOt3Hjeho2rJ3sflat+oGOHdvSvHkow4e/ztWrV51lYmNjeffdt2nW7EHat2/O/PlfJYtz1aof6NWrB82aNaJdu+aMGDGMCxfOJ3u2mzf/yjPPdKdx4wdYvXolDz5Yx+V3EmDRonk89lgb7HY7AHXq1OXy5Wi2b996y+eVHdkLF8RWqAAAplNnMJ48k/aDLRZMxxN/f+15cuHIlycjQhQREZEsREl3OrHZbKl+Xf9DNy1l/ztGNy1l7kRMTAyrV6+gWLFg8uS58Uehv78/w4YN56uvvmbAgEEsW/YdCxfOde5/5503KViwIDNmfMHMmV/SvfvTmEyJoxQiI/9l8OD+PPRQGJ9/Pp+RI99j587tfPLJ2JvGEhl5nHXrfuaDDz7mo48mcfDgAT766H2XWFu2bMPUqTOZNm0OxYoF8+qrA4iJSUxi1q9fw6JF83j11TeYP38JY8aMo1SpxO7Z+/fvZcKEcfTq9Tzz5i3mo48mUr16Lee5v/pqDuXLV6B37z5cuXKFkSPfpF275vTp8wxff72AQYNeol27R6levQZffz3/rp751atXyJEjB2Zz4vMqXrwEefLkYfnypVgsFuLj41i+fCklS5akUKHCqZ5nx47tVKiQvLtrZORx1q9fy+jRY5k9OzH5fOutIVy4cJ5x4yYyc+aXlCtXgYEDXyA6+pLz2dar14AJE6Yya9Zc6tZ9gCFDXuHUqVNpen5Tp05k/fq1DBs2gpkzv6JYsWBeeaW/8/zXTZ8+lX79BjJjxpeYTCbGjHmHm9m6dQsnTvzLxInTGDZsBCtXLmPFimXO/aNGvc3Zs2eYNGkao0aN5fvvv3VJSFOzZctfREQcZeLEaYwYMZoNG9Yxa9b0276fW4mM/JdNm9YzduwnjB07nu3bt/L557Od+6dMmcD27VsZM+YjPv54Ctu2/c0//xxwOYfVaqV37z7MmTOP994bx6lTJxk9ekSya/3vf5N54YV+zJ37DQ0bNqJ27fv54YdlLmV++GEZrVq1xWhM/C/fy8uLMmXKsWPHttu6r+zEpbV7e9pbu03HT2K49n+0tWQxMBjSPTYRERHJWjSmO538/fcfqe4LCMhLuXI3kqRt27Zgt6ecOCeOtb4xe+7OnVtT7Cp8//31bzvG3377hWbNHgQSW9oCA/Mzdux45x/igMsYz8KFi3DsWARr1qymW7enAIiKiuKJJ56kRIkQAIKDizvLf/nlbJo1a0Hnzk849w0Y8Cr9+z/HoEFDXVpmk0pISODNN0dSoEBBAAYOfJXXXhtIv34DCQzMz3331XEp/9prw2jRojHbtm2lQYMHiYo6Rb58gdSpUxez2UyhQoWoVKnKtXhP4evrS4MGD+Lvn4NChQpTrlwF57l+/HEFH300EYDJkz/h5MkTjBnzERcunOfDD0cTHFwCgJYt2zJ9+lR69Xr+Np96oosXLzJnzgzatn3Uuc3fPweTJk3j9dcH8/nnMwEoViyYSZOmOhPzlERFnSR//gLJtlssFt58cyR58+YFEpPzffv2sGzZT3h7ewPQr99ANm1az7p1a2jfvgNly5ajbNlyznM8++wLbNy4jl9/3cBjjz1+0+cXGxvLd999wxtvjOCBBxoAMGTIm/z1V1uWL1/KE0886Tzvc8+9SM2a9wHQvftTvPrqQOLj41P9mciVKzcvv/waJpOJEiVCeOCBhvz995+0a/coERHhbNnyJzNmfEGFComJ0dChb9Gly6MpnispLy8vXn99OL6+vpQqVZrevZ9nypSJPPvsC8THx6f5fm7F4bAzbNgI/P1zANC8eSu2bPmT3r1fICYmhh9+WMpbb73r7Cnx5psjePTRVi7naNOmvfN10aLFGDhwML17P0lMTAz+/v7Ofb17P0+dOvWSHPcI48aNoX//l/H29ubAgf0cOXKI9993naQtf/4CREWdSvM9ZTeWSmXxWfMbhgQLXnsOEh9WH3y8b3mcOUnXcpvW5xYRERGUdGcrNWvex+DBrwNw+XI0S5Z8w+DBL/HZZ587W1bXrFnNN98sIDIyktjYGGw2mzNxAHj88Sd4//13WbVqBbVr309YWFOKFk2cKOjQoYMcPnyQn35a5SzvcDiw2+2cPHmCkJCSKcZVsGAhZ8INUKVKNex2O8eORRAYmJ/z58/x2Wefsm3b31y4cB673U5cXJwzYWjcuCmLFs2nc+f21K37APXqNaBBgwcxm83UqVOXQoUKO/fVrVufRo0a4+vrS3T0JWJirjpbxX/9dRNjxoyjcuXEhP3w4YPOrtaBgfm5fDmaO3H16hVefXUAISGlXJL2+Pg4xox5l6pVqzNixGhsNjsLFnzJyy8n1omPj2+K54uPj8fbO3myWqhQYWfCDXDo0D/ExsbSunWTZMdHRiYmBjExMcyaNZ3Nm3/h3Lmz2Gw24uPjnc/2Zs8vMvJfrFYr1apVd57bbDZTsWJlwsOPulyzdOkbk/UFBuYH4MKFCxQqVCjFeyxZspTLJHGBgfk5cuQQkNgt32QyuXx4UqxYMLly5U7xXEmVKVPWZVK8ypWrERsbw+nTUVy5ciXN93MrhQoVcfm9Sfw5TmyJj4z8F4vF4vxgCBI/bCtevITLOfbv38esWdM5dOgfLl++jMOR2GMmKuoUJUuWcpa7/sHDdY0aPcQnn3zAxo3raNq0OStXLqNWrdoULlzEpZyPjw9xcXG3dV/ZircXlsrl8N62B4PFiteef7DUqnLLw0zXJlFzANaQohkcpIiIiGQFSrrTyX331U11n+E/3Qtr1qydSsnkqlWrdetCaeTn50exYjdaXsqVq0CLFg/x/fdLeO65F9m9eyfvvPMWzzzzHHXrPkCOHDlZs2Y1CxbcGG/aq9fzNGvWgs2bf+H3339j1qxpjBjxHqGhjYmNjaF9+w507Ngl2bWDglJOrtJi1KgRREdfYsCAQQQFFcbb25s+fXpitVqc554/fzF//fUnW7b8wccfv8/8+V8yefJ0/P1zMHPmV2zb9jd//fU7M2b8j1mzpvPZZ19gs9lckler1YKvr1+S53WjNfGff/a7PLu0iom5yqBBL+Hvn4P33vvQpQX7p59WcerUSaZNm+3sbTB8+GhatmzMpk0baNq0eYrnzJMnIMUPAJLGDhAbG0NgYH4mTZqWrGzOnLkAmDJlPH/99Qd9+w6kWLFgfHx8ePPNIVgsieOnb/b8bkfS+77++3A9ibxV+evH/HeYhjsYDAYcDofLtpQmI0sp/pvd73/FxsYyaFA/7r//AYYPH0VAQF6iok7xyiv9nD/31/233r28vGjevDUrViwjNDSMn35axYABg5NdIzo6mqJFlRTejKVmJby3JXYt99q2N3EN75t0FzdcuYrpTOKHK/bCBcEv5Q/OREREJHvRmO50YjKZUv1K2n37VmX/uwRUWsrcKYPBgMFgJD4+HoBdu3YSFFSIp57qRYUKlQgOLp7ihF7Fi5fg8ce78cknU2jUqDErVnwPJCbxR48epVix4GRfXl5eqcZx+vQpzp69MVHRnj27MBqNzpa/Xbt20LHj4zzwQENKlSqNl5cXFy9edDmHj48vDRs2YuDAV5k0aRq7d+/k8OHEltHrLd4vvjiAzz9fwMmTJ9i69S/y5AnAYrFw/vw5AKpVq8G8eV8QHx/HmTOnWbZsifP606dP5fHHu93W87169Qovv9wPs9nMBx98nKwrdVxcHEajweVDmcQ6MWC3O/57Oqdy5cqnqeW1fPkKnD9/DpPJlKw+AgICnPfWqlVbQkMbU7p0GfLlC+TUqRMu50nt+RUtWgwvLy927tzhLGu1Wtm/fy8hIaXIKMWLh2Cz2VzGQP/77/E09UQ4dOgg8fE3Wnf37NmFn58/BQsGpel+AgLyEhMT4zI54MGDrmOxb6Vo0WKYzWb27t3t3BYdHc3x48ec30dEhHPp0iX69OlH9eo1KVEiJE1j1q9r2/YRtmz5kyVLvsZmsxEa2jhZmaNHD1OuXPkUjpbr7EH5sRUJAsB0+hzGE1E3Le86a7mWChMREZFEaunORhISLJw7dxZInNV68eJFxMbG0KBB4jjv4OBgoqJO8fPPP1KxYmV+++0XNm5c7zw+Pj6OKVMm8NBDTShSpCinT0exf/9e59JV3bo9xfPPP83HH39A27aP4OvrR3j4Ef766w9eeWVIqnF5e3szatRw+vYdSEzMVcaP/5DGjZs6uyEHBwfz448rqFChElevXmXq1AkuCeyKFcuw221UqlQFHx9ffvxxJT4+PhQqVIhff93EiROR1KhRk1y5crN58684HA6Cg0tgNBpp2LARS5Z8Q69ezzNgwGCGDHmZZs0akSNHTlq2bM2iRfMZM+YdBgwY7DJTeXT0JaKibnxYcH1JsXz5AgkMzO9MuOPj43j77Xe5evUKV68mzsgeEJAXk8lEnTr1mDp1Ih999AEdOz6O3W5n7tw5mEwmatVKvTfE/ffXY+XKH25Z37Vr16Vy5aq8/vpgXnzxJYKDi3P27Bl+++0XQkMbU6FCJYoVK86GDWuv/QwYmDHjU5eE/2bPz8/Pj0ce6cjUqRPInTs3QUGFmDfvC+Li4lzGI6e3EiVCqF37fsaOHc3gwUMxm81Mnjz+2s/EzSetslgsjBnzLk891YtTp04wa9Z0HnusM0ajMU33U7lyFXx9fZk2bQqdOnVhz57drFy5/Lbi9/f3p02b9kydOoE8efKQN29epk+fisFw48O5oKBCeHl5sXjxQtq3f4yjRw8zZ86MNF8jJKQklStX4dNPJ9G6dbtkQxVOnjzBmTOnqV079R46kiihZiX8riXb3tv2Elc09V47LuO5tVSYiIiIXKOkOxv544/faN++BZDYbbhEiRK8++77zgSvYcNQHn/8CT75ZCwJCRbq12/A00/3cs7ubDSauHTpEqNGDefChfPkyRNAaGhj5zjlMmXKMnnydKZPn8qLLz4LOChSpBhNmjS7aVxFiwYTGhrGq68OIDo6mvr1GzJo0FDn/qFD32Ls2Pd45pnuFCwYxPPPv8iUKROc+3PmzMVXX81h0qRPsNvtlCpVhg8++IQ8eQLImTMXGzasZdas6SQkxFOsWHGGDx9NqVKlAejZ81meffYpKlWqwgMPNOCrr77m3Lmz5MqVG4fDzpNP9nK2Cif1yy8bee+9kc7vhw9/w3m+Xr2e58CB/c6WzMcff8Tl2K+//p7ChYtQokQIH3zwMbNmfUafPj0xGIyUK1eeCROmkD9//lSf18MPt2Tq1EkcOxZO8eIhqZYzGAyMGzeB6dOn8t57I7l48QL58gVSo0Yt8ubNB0D//i8zZsw79OnzDHnyBNCt21MuS1vd6vn16dMPh8POqFFvExMTQ/nyFfn440nkzn3r8dV348033+H999+hX7/nyJcvkOef78vRo0ecE8alpnbtOgQHF6dfv2dJSLDQtGlznnnmOef+W91P7tx5eOutd5k6dQLLli3hvvvu55lnnmPs2NG3Ff+LLw4gNjaGIUNext8/B126dHNZJi9v3ry88cZwpk+fyjffLKRcuQr07TuQoUNfSfM1Wrduz65dO2ndul2yfT///CN16tS76Sz5kshasQyONb9iiEvAvO8QNGkAfilMAOhwYAq/Np7b2wtb0aB7HKmIiIhkVgbHfwcoCmfOXHZ3CGni7W0iIeHulw9zp5kzp7Fp0wbmzLn1+soZ5c8/f2f48Ddo3rwlbds+6pyk6vDhQyxY8CUBAXnp3z/tyc7dSku9TpkygatXr/Daa8PuUVSZ2+nTUdfWhZ+a6trp7navf1/nzJnBunU/8/nnC1y2WywWunR5lOHDR1GtWo17Fk9W5vPTL3hv2QVAXNMGWOpUc9nv7W3CejyKHLO+BsBapgSxnVolO49kLZ7wHivJqV49k+rVc2WFui1QINcty6ilW7K9+++vx8yZXzJnzgz69u3tHK8bEJCXli3b0KPH0+4NMAVPPvkMS5Z8jd1uTzZnQHbw999/ERsbQ6lSZTh37ixTp06kcOEi1KiRfhMPZlUxMTGcOnWCxYsX8eyzLyTbHxV1ih49eirhvg2WmpWdSbfXtr1YaldNNqHa9VnLAazqWi4iIiJJKOkWAYoUKcobbwxn6NC3OH/+PEajgXz5At0dVqpy5crFk08+4+4w3MZqtTJt2hROnIjE3z8HVapUY/jwUTdd3zy7+OSTsfz88488+OBDKXYtvz6ZnqSdPX9erMGFMR8/iencBUzHT2Ir7roEm1mTqImIiEgq1L08BepeLu6kevVMqteszbznIH7f/wyApVJZ4to3de7zNjjw/uAzDDYb9tw5ufpi95suLSZZg35nPZPq1TOpXj1XVqjbtHQvz379UkVERG6TtXwp7NfW3TYfOIwh5saycYZjJzDYEv8gsJYMVsItIiIiLpR0i4iI3IrZhLVaBQAMNjvmnfudu4yHb4zntqlruYiIiPyHkm4REZE0SKhRyfnae/s+uDY6y3jkGAAOwFpCSbeIiIi4UtItIiKSBo58ebCGJCbVxguXMIVHYrhyFWPUOQDshQuCv687QxQREZFMSFP9ioiIpJGlZiXM4YkzlXtv+B1DkqlI7Tn8wGoFzaIvIiIiSailW0REJI2sZUOw+3gDYD55BuOpM859XociyDnpC0wHw90UnYiIiGRG+jg+mxg9egQrVy4HwGQyUbBgEI0bN6FXrz74+Pg4yzVsWJv33htHo0YPObc9+eTjVK1anVdffSPZeVet+oEPPhjFkiUrOXLkEC+91Me5LyAggAoVKvHCCy9RunSZjLu5dGK321m37md+/HElhw79Q0JCPEFBhalfvyEdOz5OnjwBLuW3b9/KvHlfcuDAPs6dO5vsuYmI5zEdOYYhPsH5fbJ5yuPi8ftmJbEdW2ArW/KexiYiIiKZk1q6s5G6deuzdOkqFi1aSv/+r7B06bfMnDntlse1adOeNWtWEx8fl2zfihXLaNCgEQEBAc5t8+YtZunSVXz00WQsFguvvjoAi8WSnreS7i5evMhLL/Vh2rQp1Kp1H2+//S4TJ/6Pnj17c+xYON27d2bXrh0ux8TGxlKmTFleeWWIm6IWkXvKasVv+bqbFrmehPstX5fY1VxERESyPbV0ZyPe3l4EBuYHICioED/+eD9btvxxy+MefrgVn346ifXr19K8eSvn9hMnItm27W8+/HCCS/m8efORK1cuAgPz06lTV4YOfYWIiHDKlCmb4vlXrFjGxIkf8cYbI5g6dQKnT0dRo0Ythgx5k6CgQgBERv7LpEkfs2fPbuLiYilRoiTPP9+XOnXqOs/z7bdfs2jRPE6fjiJHjpxUr16DUaPGArBu3c/Mnv0Z//77L76+vpQtW5733/8IPz8/rFYrQ4e+QokSIYwfPxVzkvGYpUqVoWHDUH777RfeeONV/ve/WRQtmjiR0gMPNOCBBxqk5dGLiAcw7zuMIS7+luUMAHHxmPcfwVqlXIbHJSIiIpmbWrqzqSNHDrF7907MZq9blg0ICKBhw1B++OF7l+0rVy6nQIGC3H9/vRSPu3LlCmvWrAbAy+vm14mLi+OLL2bx5psjmTp1JpcvX2bEiBvd2WNiYqhXrwETJkxl1qy51K37AEOGvMKpU6cA2L9/LxMmjKNXr+eZN28xH300kerVawFw9uxZRowYRuvW7Zg792smTZpGaGhjHNeW+1m+fCkGA7z22jDsdjuffDKWRx5pydNPP8Hy5Uvp3r0z9es3pF27R5k9+7NbPi8R8Uzmg0dxJOtPnjKHAcz/HMnYgERERCRLUEt3erEn3GSnEYxJHvVNyxrAmCRBTa2s0ft2ogPgt99+oVmzB7HZbCQkJGA0Gnn55dfSdGybNu0ZPPglTpyIpEiRojgcDlauXE7Llm0wGl0/u+nQIbE1PDY2FoCGDRtRokTITc9vtVp5+eXXqFy5CgBvvjmSbt06snfvbipVqkLZsuUoW/ZGi9Gzz77Axo3r+PXXDTz22ONERZ3C19eXBg0exN8/B4UKFaZcuQoAnDt3FpvNRmhoGIUKFQZwGWP+448/0L17T0wmE19+OZs///ydt99+F4CPPnqf+PjElq1Wrdrywgu90vS8RMTzGGLjXWYrv2lZR2J5ERERESXd6cT/6LhU99n8SxNf+PEbZcMngCPlMc42vxLEF+nm/N7v2FQMtphk5WJKJ5/U7FZq1ryPwYNfJzY2lkWL5mEymXjooSZpOrZOnboUKFCQFSuW0bt3H7Zs+ZOoqFO0atU2WdkpUz7D19eXPXt288UXsxg8+NaxmkwmKlas5Py+RIkQcubMRUREOJUqVSEmJoZZs6azefMvziQ6Pj6eqKhTzvgKFSpM587tqVv3AerWrU+jRo3x9fWlTJmy3Hff/Tz5ZBfuv78e999fj4ceakLu3LkBOHz4MFWrVgPg11830rPnc9SqVRuAp57qxfTpUwEIDMzP5cvRaXpeIuJ5HH4+OAykKfF2GBLLi4iIiKh7eTbi5+dHsWLBlC1bjtdff5u9e3ezfPl3aTrWaDTSqlVbVq5cjt1uZ8WKZdSqVds5vjmpwoWLUrx4CC1btqFt20cYPvz1u459ypTxbNy4juee68uUKTOYPXsepUqVwWJJnKjI3z8HM2d+xfDhowkMzM+MGf/j6ae7cvnyZUwmE+PHT2HcuAmULFmKxYsX8sQTj3HiRCQANpvVOYO7xWLFz8/XeV0/Pz/n6wMH9lO0aPBd34uIZE3WsiVvq6XbWq5UxgYkIiIiWYJautNJTMnBN9nr+tlGTMiAm5R1HTAYW/zFOw/qJoxGIz169GTy5E9o1qwFPj6+tzymVau2fP75TDZsWMvGjesYMuStWx7ToUNnvvxyDhs2rCM0tHGq5Ww2G/v376VSpcTu5ceOhXPlymVnt/Rdu3bQqlVb5zliYmI4deoEcJ/zHGazmTp16lKnTl169nyOFi0eYuvWvwgNDcNgMFCtWg2qVavB00/3pmPHtmzcuI4uXbpTrFgwhw8folKlKlSrVp2vv17gHA/+9dcLADhy5DAffTSGJ57occt7FhHPZK1YGsfPv0JcfPKlwpJwAPj6YK2gpFtERETU0p1+jN43+TLfRlmvtJVNB40bN8VoNLF48dcu20+ejOTgwQMuX7GxsRQpUpRateowdux7eHl53zSJvs7X15e2bR9h1qxpzonLUmI2m/nkkw/Zs2c3+/fvY/TokVSuXNWZhBcrVpwNG9Zei+cfRo4cht1+43y//rqJr79ewMGDBzh16iSrVv2Aw+EgOLiEs5v7/v17OXXqFBs2rOPixQuUKJG4hm6jRo359tvEZ/DMM89jsVho3boJHTq0olKlKpw6dZLBg1/iscced+lOHxMT43w+SZ/b9cndRMTDmM3EtgkDriXWKbi+PbZNGJj1ubaIiIiopTtbM5vNdOjQmXnzvuDRRzs6u1JPmvRJsrJTpsygevUatGnTjpEj/+TRRzs5u2TfymOPdWbhwrmsXfszTZo0S7GMr68v3bs/xciRwzh79gzVqtVg6NC3nfv793+ZMWPeoU+fZ8iTJ4Bu3Z7i6tWrzv05c+Ziw4a1zJo1nYSEeIoVK87w4aMpVao04eFH2b59G4sWzScm5ipBQYXo12+gc7mvTp268tRTXVi27Dvatn2ETz+dyYULF/Dz88NsNtO5c1fy5QtMFvP+/Xt56aU+zu+vP7eWLdswbNiIND0bEclabGVDiO3YInEd7rh45xhv51hvXx9i24RhKxvi7lBFREQkkzA4btb8mE2dOXPZ3SGkibe3iYQEm7vDuGvX1+letWq922L455/9vPrqQO67rw4dOz5OuXIVMJvNHD9+jMWLF3Lu3Dnefff9exKLp9SruFK9ehirFfP+I5j/OYIpLgGbrzfWcqUSu5Srhdsj6HfWM6lePZPq1XNlhbotUCDXLcvoLwMRoFy5CsyZM4/PP5/FkCGvcOnSRQwGAzly5CQsrBkDB95szL6IZDtmM9Yq5bBWKZcl/iAQERER91HSLXJN3rz5GDhwMAMGDOLixQvYbDby5QtMtg65iIiIiIhIWql7eQrUvVzcSfXqmVSvnkt165lUr55J9eqZVK+eKyvUbVq6l6sJT0RERERERCSDKOkWERERERERySBKukVEREREREQySKZMuufOnUtYWBhVq1alU6dO7Ny5M9WyFouFyZMn07RpU6pWrUq7du3YuHFjquWnT59O+fLlGT16dEaELiIiIiIiIuKU6ZLuFStWMGbMGPr27cuSJUuoUKECvXr14ty5cymWHz9+PAsXLuStt95ixYoVdOnShX79+rF3795kZXfu3MmCBQsoX758Rt+GiIiIiIiISOZLumfPnk3nzp157LHHKFOmDCNHjsTX15fFixenWH7p0qX06dOH0NBQgoODeeKJJwgNDWXWrFku5a5evcqrr77KqFGjyJMnz724FREREREREcnmMlXSnZCQwJ49e6hfv75zm9FopH79+mzbti3FYywWC97e3i7bfHx82Lp1q8u2d955h9DQUJdzi4iIiIiIiGQks7sDSOrChQvYbDYCAwNdtgcGBnLkyJEUj2nYsCFz5syhTp06FC9enM2bN/PTTz9hs91Yz+2HH35g7969fPPNN2mKw8vLhMFw5/dxr5jNJneHIBlA9eqZVK+eS3XrmVSvnkn16plUr57LU+o2UyXdd2LYsGG8+eabtGzZEoPBQHBwMB06dHB2Rz958iSjR49m1qxZ+Pj4pOmcFkvmXoA9qcy+WLzcGdWrZ1K9ei7VrWdSvXom1atnUr16Lk+o20yVdOfNmxeTyZRs0rRz586RP3/+FI/Jly8fU6dOJT4+nosXL1KwYEHGjRtHcHAwAHv27OHcuXN06NDBeYzNZuOvv/5i7ty57Nq1C5PJMz5BERERERERkcwlUyXd3t7eVK5cmc2bN9O0aVMA7HY7mzdvpnv37jc91sfHh6CgICwWC6tXr6Zly5YA1KtXj2XLlrmUff311ylVqhTPPvusEm4RERERERHJMJkq6Qbo2bMnQ4YMoUqVKlSrVo3PP/+c2NhYZ0v1a6+9RlBQEIMGDQJgx44dREVFUbFiRaKiopg0aRJ2u53evXsDkDNnTsqVK+dyDX9/fwICApJtFxEREREREUlPmS7pbtWqFefPn2fixImcOXOGihUrMmPGDGf38pMnT2I03ph0PT4+nvHjx3P8+HH8/f0JDQ1l7Nix5M6d+45jKFAg113fh4iIiIiIiIjB4XA43B2EiIiIiIiIiCfKVOt0i4iIiIiIiHgSJd0iIiIiIiIiGURJt4iIiIiIiEgGUdItIiIiIiIikkGUdGdx69ato3nz5jz88MN8/fXX7g5H0lHfvn2pU6cOL730krtDkXRy8uRJevToQatWrWjbti0rV650d0iSDqKjo+nQoQPt27enTZs2LFq0yN0hSTqLjY2lcePGfPDBB+4ORdJJWFgYbdu2pX379vTo0cPd4Ug6OX78uMv7bExMjLtDkrt05MgR2rdv7/yqVq0aP//8s7vDum2avTwLs1qttG7dmi+++IKcOXPSoUMHFixYQN68ed0dmqSDP/74g6tXr/Ldd98xceJEd4cj6eD06dOcO3eOihUrcubMGTp06MCPP/6Iv7+/u0OTu2Cz2UhISMDPz4+YmBjatGnD4sWL9X+xB/nkk0+IiIigcOHCDBkyxN3hSDoICwtj2bJl5MiRw92hSDrq3r07AwcOpHbt2ly8eJGcOXNiNme6FZLlDl29epWwsDDWrVuX5f52Ukt3FrZz507KlClDUFAQOXLkoFGjRvz666/uDkvSSd26dfXHgIcpWLAgFStWBKBAgQLkzZuXS5cuuTkquVsmkwk/Pz8AEhISANDn2Z4jPDycI0eO0KhRI3eHIiI3cfDgQcxmM7Vr1wYgICBACbeHWbt2LQ888ECWS7gB9JOYyU2bNo3Vq1dz5MgRfH19qVmzJoMHD6ZUqVKcPn2aoKAgZ9mgoCCioqLcGK3cjpvVrWRdaa3X3bt3Y7fbKVy4sJsildtxq3qNjo6me/fuRERE8Nprr5EvXz43Ryxpdau6/eCDD3jttdfYtm2bmyOV25GW/4t79OiBwWDgqaeeol27dm6MVtLqZvUaERGBv78/ffr0ISoqiubNm9OnTx93hyxpkNa/nVauXMkjjzziniDvklq6M7k///yTbt26sWjRImbPno3VaqVXr14ao+IBVLeeKS31evHiRYYMGcI777zjxkjldtyqXnPnzs3333/PmjVrWLZsGWfPnnVzxJJWN6vbn3/+mZCQEEqWLOnuMOU23ep3dv78+Xz77bd8+umnTJs2jf3797s5YkmLm9Wr1Wrl77//Zvjw4SxcuJBff/1VPUCziLT87XTlyhW2bdtGaGioGyO9cxrTncWcP3+eBx54gK+++gqTycTMmTOZMmUKAKNHj6ZatWq0bdvWzVHKnUhat3Xq1AESx3XPnTtXY7qzsP/Wa0JCAj179qRTp05Z9tNaSfn39boRI0ZQr149WrRo4abo5G4krduNGzfy/fffYzKZuHr1KlarlZ49e9KvXz93hym36Wa/sx988AFly5alQ4cObopO7lTSejWbzUyePJmZM2cCMGPGDAB69+7tzhDlDqT0+/rdd9/xyy+/MG7cODdHd2fU0p3FXL58GYA8efJQrVo1Dh48SFRUFFevXmXjxo00bNjQzRHKnUpat+I5ktarw+Fg6NCh1KtXTwl3Fpe0Xs+ePcuVK1ec27ds2aKW0Swsad0OGjSIDRs2sHbtWoYMGULnzp2VcGdRSes1JibG+Tt79epV/vjjD8qUKePO8OQOJa3XqlWrcu7cOS5duoTdbmfLli2ULl3azRHKnUjpb+JVq1bRqlUrd4V01zSmOwux2+2899571KpVi3LlygEwZMgQnnzySex2O71799ZsuVlUSnX79NNPs3//fmJjY2nUqBETJkygZs2abo5Ubsd/63XLli2sWLGC8uXLO5e7GDt2LOXLl3dzpHI7/luvO3fu5K233sLhcOBwOOjevbvqNItK6f9iyfr+W6/Hjx+nb9++zn2dOnWiWrVqbo5SbldKv68vv/wy3bt3x+Fw0KBBAxo3buzmKOV2pVSvly9fZufOnVm656e6l2chw4cPZ9OmTcybN49ChQq5OxxJR6pbz6R69UyqV8+luvVMqlfPpHr1TJ5ar2rpziLeeecd1q9fz1dffeVRP4CiuvVUqlfPpHr1XKpbz6R69UyqV8/kyfWqpDuTczgcvPvuu/z00098+eWXBAcHuzskSSeqW8+kevVMqlfPpbr1TKpXz6R69UzZoV6VdGdyI0eOZPny5UydOpUcOXJw5swZAHLlyoWvr6+bo5O7obr1TKpXz6R69VyqW8+kevVMqlfPlB3qVWO6M7nUJuMZM2aMlrbI4lS3nkn16plUr55LdeuZVK+eSfXqmbJDvSrpFhEREREREckgWqdbREREREREJIMo6RYRERERERHJIEq6RURERERERDKIkm4RERERERGRDKKkW0RERERERCSDKOkWERERERERySBKukVEREREREQyiJJuERERERERkQyipFtEREREREQkgyjpFhGRLGfSpEmUL1+e8+fP3/E5PvvsM1q0aIHdbk/HyNJfWFgYzz//vLvDSLMZM2bQpEkTKlasSPv27d0dTrorX748kyZNypBzz58/n4ceeoiEhIQMOb+IiLiHkm4REcl2rly5wowZM3j22WcxGvVWmF5++eUXPvzwQ2rVqsWYMWN45ZVX3B1SltKhQwcsFgsLFixwdygiIpKOzO4OQERE5F775ptvsFqttGnTxt2heJTff/8do9HI6NGj8fb2dnc4WY6Pjw+PPPIIc+bMoUePHhgMBneHJCIi6UAf74uISLbz7bffEhYWho+Pj7tDyRSsVmu6dGk+d+4cvr6+SrjvQsuWLYmMjOT33393dygiIpJOlHSLiIhHiIyMpFmzZrRp04azZ8+mWu748eMcOHCA+vXru2z/999/KV++PDNnzmThwoU0bdqUKlWq8Nhjj7Fz506Xsj169KBHjx7Jzj106FDCwsJSPOfcuXNp0qQJ1atX55lnnuHkyZM4HA6mTJlCo0aNqFatGi+88AIXL15MMe5ffvmF9u3bU7VqVVq1asXq1auTlYmOjmb06NGEhoZSpUoVmjVrxvTp013GrSeNac6cOTRt2pSqVaty+PDhVJ+Z1WplypQpzmcSFhbGxx9/7JKoly9fnm+//ZaYmBjKly/v/D414eHh9O/fnwYNGlC1alUaNWrEyy+/zOXLl51lFi9ezJNPPskDDzxAlSpVaNWqFfPmzUt2ruvj3v/44w86dOhAtWrVaNu2LX/88QcAq1evpm3btlStWpUOHTqwd+9el+OHDh1KzZo1OX78OL169aJGjRo0bNiQyZMn43A4Ur2H66Kionj99depX78+VapUoXXr1nzzzTfJyn355Ze0bt2a6tWrU6dOHTp06MCyZctcylSpUoWAgADWrFlzy+uKiEjWoO7lIiKS5R07doynnnqKPHnyMGvWLPLly5dq2W3btgFQqVKlFPcvX76cq1ev8vjjj2MwGJgxYwb9+/fn559/xsvL647iW7ZsGRaLhR49enDx4kVmzJjBwIEDqVevHn/88QfPPvssERERfPXVV3zwwQeMGTPG5fjw8HBefvllunTpwqOPPsrixYsZMGAAM2bMoEGDBgDExsbSvXt3oqKi6NKlC4ULF2bbtm18/PHHnDlzhmHDhrmc89tvvyU+Pp7OnTvj7e1Nnjx5Uo3/zTffZMmSJTRv3pyePXuyc+dOpk2bxuHDh5kyZQoAY8eOZdGiRezcuZNRo0YBUKtWrRTPl5CQQK9evUhISKB79+7kz5+fqKgo1q9fT3R0NLly5QISJxYrW7YsYWFhmM1m1q1bx8iRI3E4HHTr1s3lnBEREQwaNIguXbrQrl07Zs2aRZ8+fRg5ciSffPIJXbt2BWD69OkMHDiQVatWuYznt9ls9O7dm+rVq/Pqq6+yadMmJk2ahM1mY8CAAak+m7Nnz9K5c2cMBgPdunUjX758bNy4kWHDhnHlyhWefvppABYtWsSoUaNo3rw5Tz75JPHx8Rw4cIAdO3bQtm1bl3NWqlSJrVu3pnpNERHJWpR0i4hIlnb48GGefvppgoKCmDlz5k2TR4AjR44AUKxYsRT3nzhxgtWrVzvPU7JkSV588UV++eUXGjdufEcxRkVFsXr1amcyabfbmTZtGnFxcSxevBizOfHt+MKFCyxbtoyRI0e6dNEODw9n0qRJPPzwwwB07NiRFi1aMG7cOGfSPXv2bI4fP86SJUsICQkBoEuXLhQsWJCZM2fyzDPPULhwYec5T506xU8//XTTDygA9u/fz5IlS+jUqZMzmb6eXM6aNYvff/+devXq0b59ezZv3szevXtvOWv54cOH+ffff5kwYQItWrRwbu/Xr59Lua+++gpfX1/n9927d6dXr17Mnj07WdJ99OhRFixYQM2aNQEoU6YMvXr14q233mLlypUUKVIEgDx58vD222/z119/UbduXefx8fHxPPjgg7z55psAPPHEE/Tp04fPPvuMHj16pPqcPvnkE2w2G8uWLSNv3rwAdO3alVdeeYXJkyfTpUsXfH19Wb9+PWXLlmXixIk3fTYAwcHBSrpFRDyIupeLiEiWdfDgQXr06EHRokWZM2fOLRNugIsXL2I2m8mRI0eK+1u1auVyntq1awOJ3dLvVIsWLZwJN0C1atUAaNeunTPhvr7dYrEQFRXlcnzBggVp1qyZ8/ucOXPyyCOPsHfvXs6cOQPAqlWruO+++8idOzfnz593ftWvXx+bzcZff/3lcs6HH374lgk3wIYNGwDo2bOny/ZnnnnGZf/tyJkzJ5DYZT42NjbVckkT7suXL3P+/Hnuv/9+jh8/7tINHRKT7OsJN0D16tUBqFevnjPhTro9pfpMmshfb7m2WCxs3rw5xfgcDgerV68mLCwMh8Ph8twbNmzI5cuX2bNnDwC5c+fm1KlTyYYqpCR37tzExcXd9NmIiEjWoZZuERHJsvr06UP+/PmZOXNmqkn07UraGgw4E/Do6Oh0O+f1BDy17ZcuXSI4ONi5vUSJEslmsr7emh0ZGUmBAgWIiIjgwIEDPPDAAynG8N81zVNr6f+vyMhIjEYjxYsXd9leoEABcufOTWRkZJrOk1RwcDA9e/Zk9uzZLFu2jNq1axMWFka7du1cPpz4+++/mTRpEtu3b0+WgF6+fNmlbGrPslChQi7bryf8/61Po9Ho8swhsZcDkOo9nj9/nujoaBYuXMjChQtTLQPw7LPP8ttvv9GpUydKlChBgwYNaNOmDffdd1+yY66PI9fs5SIinkFJt4iIZFnNmzdnyZIlLFu2jC5duqTpmICAAKxWK1euXHEmYEmZTKYUj0vLhFo2my3F7amdM7U1wtNyrf+y2+00aNCA3r17p7j/epJ+XdJW5LRI7wRw6NChPProo6xZs4Zff/2VUaNGMW3aNBYtWkShQoU4duwYTz/9NKVKlWLo0KEULlwYLy8vNmzYwJw5c1wmh4PUn/Hd1OetXI+hXbt2PProoymWKV++PAClS5dm1apVrF+/nk2bNrF69WrmzZtH3759eemll1yOiY6Oxs/P77brSEREMicl3SIikmW99tprmEwmRo4cSY4cOZJNSJWSUqVKAYmzeFeoUOGOrpsnT54UuyefOHHijs53KxERETgcDpfENzw8HICiRYsCULx4cWJiYpLNyn63ihYtit1uJyIigtKlSzu3nz17lujoaOf178T1Wc5ffPFFtm7dSteuXZk/fz4vv/wya9euJSEhgU8//dSle/j1GcnTm91u5/jx487WbUgcJw6keo/58uUjR44c2O32ND13f39/WrVqRatWrUhISKB///7873//4/nnn3dZvu7ff/91/pyKiEjWpzHdIiKSpb377rs0b96coUOHpmmZpevjfnfv3n3H1wwODubIkSMuXbb379+fYZNfnT59mp9++sn5/ZUrV/juu++oWLEiBQoUABLXd962bRubNm1Kdnx0dDRWq/WOrh0aGgrA559/7rJ99uzZLvtvx5UrV5LFU65cOYxGo3MZsust1ElbpC9fvszixYtv+3ppNXfuXOdrh8PB3Llz8fLySrXLvslkonnz5vz444/8888/yfYn/fm4cOGCyz5vb29Kly6Nw+HAYrG47Nu7d2+qM7+LiEjWo5ZuERHJ0oxGIx9++CF9+/Zl4MCBTJ8+PdUkCRIT5nLlyrF582Y6dux4R9fs2LEjc+bMoVevXnTs2JFz586xYMECypQpw9WrV+/0VlIVEhLCsGHD2LVrF4GBgSxevJhz5865LC3Wq1cv1q5dS58+fXj00UepXLkysbGx/PPPP/z444+sWbMmTROn/VeFChV49NFHWbhwIdHR0dSpU4ddu3axZMkSmjZtSr169W77nL///jvvvPMOLVq0ICQkBJvNxtKlS51JLECDBg3w8vKiT58+dOnShatXr/L1118TGBjonDwuPfn4+LBp0yaGDBlCtWrV2LRpE+vXr6dPnz43fW6DBg3ijz/+oHPnznTq1IkyZcpw6dIl9uzZw+bNm/nzzz+BxPrJnz8/tWrVIjAwkCNHjvDVV18RGhrqMsxh9+7dXLx4kSZNmqT7PYqIiHso6RYRkSzPy8uLiRMn8uyzz/Liiy8yZ84c5yzVKXnssceYMGECcXFxdzRutnTp0nzwwQdMnDiRMWPGUKZMGcaOHcvy5cudSVZ6CgkJ4a233mLs2LEcPXqUYsWK8cknn/Dggw86y/j5+fHll18ybdo0Vq1axXfffUfOnDkJCQmhf//+LpOO3a5Ro0ZRrFgxlixZws8//0z+/Pl5/vnnky3xlVbly5enYcOGrFu3jqioKPz8/ChfvjyfffYZNWrUABKHAUycOJHx48fzwQcfkD9/frp27Uq+fPl444037vheUmMymZgxYwYjRozgww8/JEeOHPTr14++ffve9Lj8+fPz9ddfM2XKFH766Sfmz59PQEAAZcqUYfDgwc5yjz/+OMuWLWP27NnExMRQqFAhevTowYsvvuhyvlWrVlGkSJE7+jBDREQyJ4MjPWYSERERyUIuX75M06ZNGTx4MJ06dXJ3OOJmQ4cO5ccff2Tbtm1ujSMhIYGwsDCeffZZnnrqKbfGIiIi6UdjukVEJNvJlSsXvXr1YubMmclmwRZxl8WLF2M2m+natau7QxERkXSklm4RERHJ1jJLS7eIiHgmtXSLiIiIiIiIZBC1dIuIiIiIiIhkELV0i4iIiIiIiGQQJd0iIiIiIiIiGURJt4iIiIiIiEgGUdItIiIiIiIikkGUdIuIiIiIiIhkECXdIiIiIiIiIhlESbeIiIiIiIhIBlHSLSIiIiIiIpJBlHSLiIiIiIiIZJD/A40quxAw/wVyAAAAAElFTkSuQmCC", | |
| "text/plain": [ | |
| "<Figure size 1000x600 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\n", | |
| "📊 Key Observation from Figure:\n", | |
| " • RLVR significantly improves pass@1 (left side of curve)\n", | |
| " • Both curves converge as k increases (right side)\n", | |
| " • This suggests RLVR improves sampling efficiency, not reasoning capacity\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Visualize pass@k curves\n", | |
| "fig, ax = plt.subplots(1, 1, figsize=(10, 6))\n", | |
| "\n", | |
| "ax.plot(k_values, base_pass_at_k, 'o-', label='Base Model', linewidth=2, markersize=8)\n", | |
| "ax.plot(k_values, rlvr_pass_at_k, 's-', label='RLVR Model', linewidth=2, markersize=8)\n", | |
| "\n", | |
| "# Highlight key observations\n", | |
| "ax.axhline(y=base_pass_at_k[-1], color='gray', linestyle='--', alpha=0.5, \n", | |
| " label=f'Base pass@{k_max} (reasoning boundary)')\n", | |
| "ax.axhline(y=rlvr_pass_at_k[0], color='orange', linestyle='--', alpha=0.5,\n", | |
| " label=f'RLVR pass@1')\n", | |
| "\n", | |
| "ax.set_xlabel('k (number of samples)', fontsize=12)\n", | |
| "ax.set_ylabel('pass@k', fontsize=12)\n", | |
| "ax.set_title('Pass@k Curves: Base Model vs RLVR Model\\n(Key Finding: Curves Converge at Large k)', fontsize=14, fontweight='bold')\n", | |
| "ax.set_xscale('log', base=2)\n", | |
| "ax.grid(True, alpha=0.3)\n", | |
| "ax.legend(fontsize=10)\n", | |
| "\n", | |
| "plt.tight_layout()\n", | |
| "plt.show()\n", | |
| "\n", | |
| "print(\"\\n📊 Key Observation from Figure:\")\n", | |
| "print(\" • RLVR significantly improves pass@1 (left side of curve)\")\n", | |
| "print(\" • Both curves converge as k increases (right side)\")\n", | |
| "print(\" • This suggests RLVR improves sampling efficiency, not reasoning capacity\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## 5. Workflow 4: Accuracy Distribution Analysis\n", | |
| "\n", | |
| "Analyzing how per-problem accuracy distributions change after RLVR training reveals important insights.\n", | |
| "\n", | |
| "### Method\n", | |
| "\n", | |
| "1. For each problem, compute accuracy = (# correct samples) / k\n", | |
| "2. Bin accuracies into intervals: 0.0, (0.0, 0.1], (0.1, 0.2], ..., (0.9, 1.0), 1.0\n", | |
| "3. Compare histograms between Base and RLVR models\n", | |
| "\n", | |
| "### Expected Pattern\n", | |
| "\n", | |
| "- **RLVR increases** frequency at high accuracy (near 1.0)\n", | |
| "- **RLVR decreases** frequency at low accuracy (near 0.0)\n", | |
| "- Middle bins show RLVR pushes problems toward extremes" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:48.429580Z", | |
| "iopub.status.busy": "2026-02-10T23:43:48.429322Z", | |
| "iopub.status.idle": "2026-02-10T23:43:48.438532Z", | |
| "shell.execute_reply": "2026-02-10T23:43:48.437605Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Computing per-problem accuracy distributions...\n", | |
| "\n", | |
| "Base model accuracy statistics:\n", | |
| " Mean: 0.187\n", | |
| " Std: 0.112\n", | |
| " Min: 0.008\n", | |
| " Max: 0.594\n", | |
| "\n", | |
| "RLVR model accuracy statistics:\n", | |
| " Mean: 0.493\n", | |
| " Std: 0.131\n", | |
| " Min: 0.148\n", | |
| " Max: 0.875\n", | |
| "\n", | |
| "✓ Accuracy distributions computed\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "def compute_accuracy_distribution(responses: np.ndarray) -> np.ndarray:\n", | |
| " \"\"\"\n", | |
| " Compute per-problem accuracy distribution.\n", | |
| " \n", | |
| " Args:\n", | |
| " responses: Binary array of shape (n_problems, k)\n", | |
| " \n", | |
| " Returns:\n", | |
| " Array of accuracies (one per problem)\n", | |
| " \"\"\"\n", | |
| " return responses.mean(axis=1)\n", | |
| "\n", | |
| "\n", | |
| "def bin_accuracies(accuracies: np.ndarray) -> Dict[str, int]:\n", | |
| " \"\"\"\n", | |
| " Bin accuracies into histogram intervals.\n", | |
| " \n", | |
| " Args:\n", | |
| " accuracies: Array of accuracy values [0, 1]\n", | |
| " \n", | |
| " Returns:\n", | |
| " Dictionary mapping bin labels to counts\n", | |
| " \"\"\"\n", | |
| " bins = {}\n", | |
| " bins['0.0'] = np.sum(accuracies == 0.0)\n", | |
| " bins['1.0'] = np.sum(accuracies == 1.0)\n", | |
| " \n", | |
| " for i in range(10):\n", | |
| " lower = i / 10\n", | |
| " upper = (i + 1) / 10\n", | |
| " label = f'({lower:.1f},{upper:.1f}]'\n", | |
| " if i == 0:\n", | |
| " count = np.sum((accuracies > lower) & (accuracies <= upper))\n", | |
| " else:\n", | |
| " count = np.sum((accuracies > lower) & (accuracies <= upper))\n", | |
| " bins[label] = count\n", | |
| " \n", | |
| " return bins\n", | |
| "\n", | |
| "\n", | |
| "# Compute accuracy distributions\n", | |
| "print(\"Computing per-problem accuracy distributions...\\n\")\n", | |
| "\n", | |
| "base_accuracies = compute_accuracy_distribution(base_responses)\n", | |
| "rlvr_accuracies = compute_accuracy_distribution(rlvr_responses)\n", | |
| "\n", | |
| "print(f\"Base model accuracy statistics:\")\n", | |
| "print(f\" Mean: {base_accuracies.mean():.3f}\")\n", | |
| "print(f\" Std: {base_accuracies.std():.3f}\")\n", | |
| "print(f\" Min: {base_accuracies.min():.3f}\")\n", | |
| "print(f\" Max: {base_accuracies.max():.3f}\")\n", | |
| "\n", | |
| "print(f\"\\nRLVR model accuracy statistics:\")\n", | |
| "print(f\" Mean: {rlvr_accuracies.mean():.3f}\")\n", | |
| "print(f\" Std: {rlvr_accuracies.std():.3f}\")\n", | |
| "print(f\" Min: {rlvr_accuracies.min():.3f}\")\n", | |
| "print(f\" Max: {rlvr_accuracies.max():.3f}\")\n", | |
| "\n", | |
| "# Bin accuracies\n", | |
| "base_bins = bin_accuracies(base_accuracies)\n", | |
| "rlvr_bins = bin_accuracies(rlvr_accuracies)\n", | |
| "\n", | |
| "print(\"\\n✓ Accuracy distributions computed\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:48.440720Z", | |
| "iopub.status.busy": "2026-02-10T23:43:48.440474Z", | |
| "iopub.status.idle": "2026-02-10T23:43:48.883058Z", | |
| "shell.execute_reply": "2026-02-10T23:43:48.882193Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABjYAAAHqCAYAAACne3d+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAs3hJREFUeJzs3Xd0FOXbxvFrsym0ECCEXgKh91AlUqRILwKCAtItiBRpUhSQYkAFBAGRriAdpDcpgqhIUTpI7wQIvcqm7PsHb/aXNUGyySabzX4/53BOMvW+Z54s8+w9z4zBbDabBQAAAAAAAAAA4ATcHB0AAAAAAAAAAABAXFHYAAAAAAAAAAAAToPCBgAAAAAAAAAAcBoUNgAAAAAAAAAAgNOgsAEAAAAAAAAAAJwGhQ0AAAAAAAAAAOA0KGwAAAAAAAAAAACnQWEDAAAAAAAAAAA4DQobAAAAAAAAAADAaVDYAAAncPnyZRUuXNjyz5Fq1qxpiWP37t2W6e3atbNM//HHHx0W36RJkyxxDBw40GFxIOGSU7sHAABwFsnpGoq+Q8K0adNGhQsXVq1atRQeHu7ocOwietu8fPmyo8NxqAkTJqhw4cIqXry4zp496+hwAKfj7ugAACS9ffv2qW3btlbT1q5dq4IFCzooItfx746Fh4eHUqVKJV9fX+XPn1+1a9dWw4YNlSpVqkTZ/6RJkyw/d+jQQenTp0+U/SSmH3/8UVeuXJEk1a5dW0WLFnVwRLY5d+6cFi1apN27d+vy5cv6559/5Ofnp1y5cunVV19Vo0aNlClTJkeHCQAAIIm+gyPRd0g4Z+47bNq0SX/++ack6Z133pG7e8yv8O7evaslS5bol19+0enTp/Xw4UP5+PgoW7ZsqlKlipo2bar8+fMnWcyXL1/WihUrJEne3t7q2LFjku3bGXXo0EHff/+9Hj9+rC+//FJTp051dEiAU6GwAbigqAuN6H788UcNGDDAAdG4trCwMIWFhenBgwc6f/68tm3bpqlTp2rixIkqXry4ZbksWbJo/vz5Cd7f5MmTLT83a9YsXp2TiRMn6unTp5JidraSwooVK7Rnzx5JUs6cOWN0Tlq0aKHKlStLkjJnzpzk8f2XqVOnatKkSYqIiLCafvXqVV29elV79uxRZGQkHYD/Z692DwAA4o++Q/JB38F2ztx3iDr+adOm1WuvvRZj/vbt2zVgwADdvXvXavrNmzd18+ZNHTlyRKdOndI333yTBNE+c+XKFUvcOXPmjLVfE71tZsmSJalCS5YyZsyoBg0aaNmyZdq2bZuOHz/uVMU3wNEobAAu5smTJ9q4cWOM6WvWrFG/fv1kNBodEFXCPHr0SGnTpnV0GDbr2rWrqlatqrt372rPnj1aunSpHj9+rEuXLqljx45avHix5e4aT09PlS9f3qHxRh3nkiVLOjSOF8mRI4dy5Mjh6DBi+PbbbzVhwgTL78WLF1fr1q2VK1cuPXr0SAcPHtTKlSsdFl9yEhkZKZPJpFSpUjm83QMA4MroOyQf9B0SR3LtO+zbt08nT56U9Gykyb9H5ezevVvdu3dXWFiYJMnPz0/t27dXiRIlFB4erpMnT2rt2rVJHndcOLptJjeNGjXSsmXLJEkLFy7UiBEjHBwR4DwMZrPZ7OggACSd1atXq3///pKkMmXK6P79+5ZnOU6fPl3Vq1ePsc6DBw80b948bd26VefPn9fTp0+VOXNmlSpVSh9++KHV0Nbjx4/r+++/1969e3Xjxg15eHgoZ86cqlKliuWurkmTJlnu4mjWrJnGjBljWb9du3aWO2pGjx6t5s2bS5IGDhxouVuse/fuypMnj+bMmaMzZ86oatWq+uabb7R27VqtW7dOp0+f1p07d/TkyROlS5dOBQsW1GuvvaYWLVrIYDBY5RYaGqrvvvtOv/zyiy5fvqyIiAj5+fmpbNmyGjhwoM6cOaN27dpJenbHydatW6228emnn2rhwoWSpM6dO7/wzrXodylFz0+STp06pdatW+vBgweSpKpVq2rmzJmSng3prVWrlmXZEydOWH7esWOHvv/+ex07dkwPHjxQ6tSplTlzZhUvXlxNmjRR9erVrY5fbKJiiX78g4OD9eDBAy1evFiXLl1S69at9fHHH6tmzZqW4dxz585VpUqVYj13bm5umj17ts6dO6eMGTOqcePG6tmzp7y8vGI9Hlu3blWuXLkkPbtQb9++veW4b9u2TT/++KMGDRr03Byi2tJ/tS+TyaSFCxdq/fr1On36tJ4+fSpfX1+VL19enTp1UokSJSzL/vuY7969WxMnTtTmzZt19+5dFSxYUH369FHVqlWfG1P0bdWrV8/S8ahRo4YmTZokDw8Pq+WePn2qa9euKW/evJZpf//9t2bPnq29e/cqNDRUnp6eyp8/v+rXr6927drJ09PTsuy//05y5cqlGTNm6NKlS8qbN6+6deumBg0a6NChQxo7dqwOHTqkVKlSqU6dOho0aJBSp05t2Vb08/zdd9/pyJEjWrp0qa5evaps2bKpVatWevvtt+Xm9r/XdU2aNEn79u3ThQsXdO/ePYWFhSlDhgwqXbq02rdvb2krUaKf/1WrVmnZsmXatGmTbt68qUmTJqlIkSIJavdRHHXeAQBwdvQd6DvEhr5D4l9DjhgxwjKy4auvvlKDBg0s8yIjI9WwYUPL32LOnDm1ZMmSWEecnDx5UoUKFbL8fvPmTc2aNUs7duzQlStXZDablSNHDlWrVk1dunRR1qxZLctGP4YVK1bU0KFDNX78eO3Zs0cRERGqUKGCPvnkE0vfJfq5jk3UOXveefx3/+PYsWNasmSJrly5oixZsqhdu3bq1KmT1TH+93mPYq/zGp99mEwmTZ8+XT/99JMuXryo8PBw+fj4KFeuXCpZsqTee+89+fn5WbYTERGh8uXL6/Hjx/Lx8dEff/xh1ccC8HyM2ABcTPQL1CZNmujevXuaOHGipGcXLv/unFy6dEkdOnSIcYESEhKikJAQNWnSxNI5WbJkiYYPH271UjOTyaSTJ08qJCTEbsPV165dq/Pnz8eYvnXrVqsLDenZM0f37t2rvXv36sSJE/r4448t8w4fPqy33347xtDdy5cv6/Lly+rcubMqVqyoggUL6tSpU7py5Yr++OMPy1DlyMhIbd682bJeixYtEpRXwYIF1blzZ8v5+PXXX3Xz5s3/HBK9a9cuvffee4peo37w4IEePHigc+fOKW3atLF2OONi+vTpsR7nuJg3b56OHTtm+f369euaOXOmTpw4oRkzZsToJCaFx48fq1OnTjpw4IDV9GvXrmnt2rXauHGjPvvss1iHeUvSG2+8YXU8jh07pvfff1+bNm1Szpw5/3Pf69evtxQ1DAaDhgwZEqOoIUleXl5WRY1169ZpwIABlnWlZ48gOHz4sA4fPqx169Zp7ty5SpcuXYxt/fvv5NSpU+rdu7fOnTunb7/9ViaTSdKzOzEXL14sSc+9O2jUqFE6ffq05fdLly5p3Lhxunz5stU6ixYt0s2bN63WDQ0N1ZYtW7R161Z9/fXXqlOnTqz76NWrV5zbmy3t3pHnHQAAZ0ffgb5DXNF3sJbQa8i9e/dafi5VqpTVvEOHDlm9aLpnz57PPe/RixpRhbdbt25ZLXPu3DmdO3dOq1ev1nfffaciRYrE2M65c+fUqlUrPX782DLtl19+Ubdu3bRmzRq7fxH/6aefWh2/K1euaMyYMcqSJYsaNmwY7+0m9LzGxZAhQ2KMxI96PNiBAwfUqFEjq8KG0WhU8eLFtXfvXt27d09///23ihUrFu/9A66EwgbgQkJCQvTHH39Iktzd3VW/fn09evTIcjG8bds23bt3Tz4+PpZ1+vfvb+mYpE2bVm+//bZKliyp27dva9u2bZYLmNOnT+vTTz+1vDugaNGi6tixo3x9fXX27Flt2LDBbnmcP39eZcuWVbt27ZQ2bVo9fPhQ0rM7PCpVqqQsWbIobdq0ioyM1JUrVzR27FjduXNH8+fP17vvvis/Pz+ZTCb16tXL0jHx9fXVu+++qwIFCuj69etat26d5QK6TZs2Gj58uCRp2bJlls7Jvn37LF/ilixZUgUKFEhwbi+//LLlfJjNZh09evQ/OxebN2+2dEzatGmjOnXq6MmTJwoJCdGuXbssX3h37dpVr7/+utWLHydOnGi5AM6XL1+MbZ8/f141a9a0dLpie1nd8xw/flxvv/22KlasqF27dmnOnDmSpJ07d2rNmjVq0qRJnLcVpXr16po/f75GjRql48ePW/KKuuvpRc/EnThxouUCNk2aNOrdu7fy5MmjpUuXasuWLQoPD9eQIUNUqVIlZc+ePcb69+7d06hRo+Tt7a3g4GBdv35dYWFhWrRokfr27fuf+z5y5Ijl53z58sWpMxMaGqqPP/7YUtSoVq2a2rRpo5CQEI0fP14PHjzQ0aNHNW7cOA0bNizG+ufPn1fbtm1VvXp1zZgxw9I5+vrrr1W0aFF1795dR44csbygbvny5RowYECsj2a4cOGC+vTpoyJFimjDhg2WLzkWL16spk2bqly5cpKevfwuS5Ysypgxo1KnTi2TyaSjR49q/PjxMpvNmjhx4nMLGxcvXlTnzp1VuXJl3blzR7lz537usYlru5cce94BAHBm9B3oO9B3OCAp6a8hIyMjLTcVeXh4WEY0RDl69KjV71WqVPnP7UXp37+/pajh7++vnj17ymg0atKkSZaRS/3799eqVatiFCpCQ0NVvHhxde3aVSEhIfryyy8VFham06dP67ffflPVqlUtx2zUqFGSnj0eK/qjeG15n8alS5fUvXt3lSxZUrNmzbKM7pk7d26CChsJPa9x8dNPP0l69vL0wYMHK0eOHLp9+7bOnj2r7du3x1oE8vf3t/TXTpw4QWEDiCMKG4ALWbVqlSIjIyU9u/jJlCmTMmXKpMDAQO3fv18mk0nr1q1TmzZtJD27w3v//v2W9b/88kur4bVNmza1/Lx8+XJLxyRbtmxasGCB0qRJI+nZsOgOHTrYLY+sWbPqu+++sxqWHJXTrFmzNH/+fF2+fFlPnjyxuhspIiJChw8fVs2aNfX7779bOl1ubm6aOXOm1cVD9DuomjZtqnHjxunhw4favHmzpQO3adMmyzLRh4UnRIYMGax+v3///n8u7+3tbfk5T548CggIsFwwRu+I+Pv7y9/f32rdEiVKxLhIjq548eKWL71tVbduXctjC6pXr67z58/r559/liRt2LAhXp0TX19f+fr6WuWcN2/eOD2j1Ww2W90107NnT8uQ4qCgINWqVUs3btyw/A28/fbbMbYxbNgw1a9fX9KzL+HHjRsnSXG6My3qEQFSzHP8PBs2bNCTJ08kSZkyZdLkyZMtbd5sNltGSqxevVqffPJJjGdclypVSkOHDpX07M6k6Hd9jRs3TgEBAapZs6bmzp2rR48eKTw8XJcvX471pY7t27fXe++9J+nZ+Tx69Kjlmb8bNmywFDZq1qypGTNmaN++fZbjGd3p06f18OHDWEeYdOjQIcadmZcvX4712MS13Tv6vAMA4MzoO9B3iI6+Q9JdQ969e9fytxe9cBjl3+c5Lv2Lv//+26ogMn78eMsL5wMCAtSoUSNJzx5ddeTIkRijRDw8PDR16lTLo6p27typnTt3WnKqWrWqSpYsaTWiIyHvennjjTfUo0cPSc9esN2qVSvLvuLLHuc1LtKlS6fHjx8rderU8vf3V5EiRSyfb927d491nejn+d8jagA8Hw9tA1xI9KHkjRs3jvXn6MtEf/SMp6enXnnlledu+8yZM5afq1SpYvmPOzFUr149Rsfkn3/+UevWrTVjxgydPHlSjx8/VmyvEIq6CIyeW65cuf7zjoi0adNahqI+ffpUa9askdlsttyJ4enpabkQTKjbt29b/Z4+ffr/XL5JkyaWYz1mzBhVrVpVgYGBeuONNzRp0qQYQ+Vt8bw76+Mi6ovuKGXLlrX8fOHChXhvN75u375tdSyix+fp6Wl14R59WHd0UXfbSc8urqPE5RhH71DF9ZxEj6NEiRJWbT56/A8fPtSNGzdirB8YGGj5OXpnx9vbWwEBAZKedcyjz7t3716sscTlfJ44cUItW7bUypUrdfny5RhFjSjP63Db0t7i2u4dfd4BAHBm9B3oO9iCvoM1e11DxtYu/32e47LN6HGmSpXKUtSQnj3WLPo2Y8spX758Vu/fiEsfIiGiH7/o+0pIG7XHeY2LN998U5J048YNtW7dWoGBgapWrZref/99rV+/PtZ1eP0xED+M2ABcxF9//WV1d0Pfvn1jHQJ76NAhnTlzxvLFZ2KI/ozU6M/UlWJenMcm+vMoo2zevFnnzp2T9GxIaZ8+fVSoUCEZjUYNHz7ccnd51J0vtmrTpo1++OEHSc/uMCtatKjly+TatWu/sBMRV7/99pvlZ4PBYHXBGZuAgACtXLlSy5cv1/79+3Xu3DmFhobqwIEDOnDggLZv364lS5bEuJs/LmI7zokp6q49KW7tIKlFv6C29XiWKFHCcpfe+fPnFRISEu+hzXEVvZgSfbjzf7XVhFxQ//DDD5Y7tPz9/dW9e3dlz55dkZGRlpdoSs//G7SlvcW13dtDQs47AADOir4DfQdb0XewlpBryAwZMsjNzU2RkZGx3hT07/P8+++/x2tUi60xRRf9UWOJ8aV89BEMzzt+Cf1siIv47OODDz5Q0aJF9dNPP+nEiRM6f/68rl+/ruvXr2vbtm0KDQ2NMSotenHI19fXLrEDroARG4CL+PfLq/5L1J1X0Z/7ajKZtGPHjhjLRl3ERO/M/Pbbb1ZDUKMvJ1l/sXr9+nXLz+fPn7d0MP5LbC+PCwkJsfxctWpVtWvXTpUqVVKRIkWs9hElem6XL1/W33//HWOZ6DEHBATopZdekvTsxW9Rz7KVpGbNmr0w5rj4+++/Lc+TlZ7dvfaiZ7+azWblzZtXffr00bx58/Trr7/q119/tbzD4ciRI1ad0ujH7kUXoAl5Sd9ff/313N/z5Mlj+Tn6Beu1a9csP0cNPX9RXHHtbGbKlMnqYjx6PFEv444S9UJLe2rYsKHlZeGRkZEaOXJkjAtj6dldfVF3pUWP4+jRo3r69Knl9z///NPyc7p06RK9I/nv8xn9MRNRLzu/evWqZVq7du3UuHFjlS9fPs4vErSlvcW13Tv6vAMA4KzoO1ij70DfIUpSXEO6ublZ2lxYWJguXbpkNb9UqVJWf0MTJ0587uOLTp06FSPOf/75x+pl7adPn7YqoCQkp+jX/vEtDMZV9M+GO3fuWEaMh4eHWx6TFV18zqut+5Ce/a3UrFlTY8aM0YoVK/TXX39ZvWtk3bp1MdaJ/lkW/YXvAP4bIzYAF/D06VOrIY+dO3e2ukCUnj1Lc8GCBZKePU+3d+/eKliwoMqUKWN5uVb//v31zjvvqHjx4rp79662b9+uhg0bqmbNmmrevLm+//57RUREKCQkRG+99Zbat2+vzJkz6/z581q3bp0WLlwoSVbPa927d69Gjx6t7Nmza968eVZ33tgi+vNed+3apZUrV8rb21uzZ8+OdWhsUFCQcubMqStXrigyMlJvv/223n33XQUEBCg0NFTr1q1T3759VaRIEcs6bdu2tbxAcffu3ZKePbP35ZdfjlfMFy5c0L59+3T37l3t2bNHS5cutXTq0qdPr8GDB79wG7Nnz9Yvv/yiV155RTly5JCPj48uXLigO3fuWJaJ/kigDBkyWOYtXLhQNWrUkMFgUKlSpeTp6RmvPGKzadMmjRs3ThUqVNAff/yh7du3W+ZFPWtWetYWDh48KEkaMWKE2rRpo6NHj2rVqlXP3Xb0i9GNGzcqZ86c8vDwUP78+ZUpU6ZY1zEYDHrttdf03XffSXr2Am13d3flzp1by5Yts3RgPT09E/QyuufJmTOnunfvrq+++kqStHXrVr355pt64403lDt3bj1+/FiHDh3SihUr1KlTJ3Xs2FH169fX+PHj9eTJE926dUs9e/bUm2++qWvXrlldGDdp0sSmlzPGx9y5c+Xj46PChQtr48aNOnHihGVevXr1JMnqZd9Lly5Vzpw5de/ePatY7SWu7d7R5x0AAGdE34G+QxT6Dt9Jcsw1ZMWKFS0jhw4dOmR1re3m5qZhw4apS5cuCgsL0+XLl/Xaa6+pQ4cOKlasmOXl46tXr1a2bNn0zTffqEiRIipevLjlPRt9+vRRz5495ebmpilTpli2XahQIZUoUSLecUc/3jdu3NDKlSuVK1cupUqVKkHbjU3u3Lnl7u6u8PBwmUwm9ezZU1WrVtXGjRtjFIOk+J1XW/chSa1bt1b+/PkVGBioLFmyyN3d3aoIEv2GNenZ6KOoQpO3t7eKFi2a4GMDuAoKG4AL2Lx5s+XlxenSpVPv3r1jXIjev39fS5cuVVhYmG7cuKHffvtN1apV09ixY9WuXTuFhITo4cOHli9mo0RdaBYsWFBDhgzRyJEjFRERoaNHj1q9CDj6Y3Fefvll5c+fX2fPnpXZbLZcWHh7eyt79uxWd1DFVY0aNZQ7d25dunRJ9+/ft+zbz8/Psq/oPD09NWHCBL399tu6d++eQkND9dlnn1kt06dPH6vfa9WqpWzZslndHdS0adN4P57m22+/1bfffhtjeu7cuTVx4sQ43SkTERGhP/74w9Jp+rdixYpZvQz65Zdf1tq1ayVJs2bN0qxZsyRJO3bsULZs2eKTRqz8/f01ffp0TZ8+3Wr6yy+/bPVc5nbt2lk6J6dPn7a8ELtQoUKWC/l/e/nlly2PdYr+0rovvvjC6qWU/9arVy/LMPtHjx5p5MiRVvPd3d01cuTIRHtEVNeuXRUZGanJkydbXkYZ/a6gf/Pz89Nnn32mAQMGKCwsTNu3b7fq5EnPhqHH9lgIeytQoIDlhYfRvf7665YXArZu3VrLli1TWFiY/v77b3Xt2lXSs05ZfP6m/4st7d7R5x0AAGdD34G+QxT6Do67hmzQoIHlcWZRRcHoKlWqpMmTJ2vAgAG6e/eubty4oS+//DLGdqKfpy+++ELt27fXrVu3dO7cOfXu3dtq2QwZMujLL7+M84jr2OTPn9/S7iMiIix/W3ny5NHmzZvjvd3YpE2bVs2bN7c8gvbnn3/Wzz//LIPBoIIFC1pGq0Rn63mNzz7u3r2r5cuXa/ny5bHG/e9RW7t379aTJ08kPfuMTMjxB1wNfy2AC4j+Ur9XXnkl1rtr0qdPr0qVKsVYJ3fu3Fq9erV69Oih4sWLK02aNPLw8FD27NlVt25dqwvo1q1ba8mSJWratKnlTpg0adKoUKFCatmypWU5o9Gob775RlWrVlXq1KmVNm1a1apVS4sXL7a6E8UWqVOn1vfff69XX31VGTJkkLe3t2rWrKkFCxY8d0h2qVKltGbNGnXu3FmFChVS6tSp5eXlpVy5cqlx48bKkiWL1fJGo1FvvPGG1bSEDiU3Go1Kly6d/P39VbNmTY0ePVrr1q174fNxo1StWlVvvfWWihcvLl9fX7m7uytVqlQqUKCAunTpou+++87qwujjjz9WgwYNlCFDhgQNF3+Rd955R59++qkKFCggDw8PZcmSRZ07d9Y333xjFU/jxo310UcfWdqLv7+/Bg0a9J93nL3++ut67733lC1bNpsu+tKkSaN58+Zp0KBBKl26tNKmTSt3d3dlyZJFDRs21KJFiywvekws3bp107p169ShQwcVKVJE6dKls/w9VaxYUYMHD7Z6Pm7Dhg21dOlSNWnSRNmzZ7f8TRUvXlz9+/fXwoULlS5dukSNWZI++ugjDRo0SP7+/vLw8FCuXLnUp08fS2dSkgoXLqzZs2crMDBQadKkkZ+fn956661YO+AJZUu7Tw7nHQAAZ0Lfgb5DFPoOjruGLFeunOWRRFu2bNE///wTY5lXXnlFmzZtUt++fVW+fHllzJhRHh4e8vX1VfHixdW1a1erm6AKFCig1atXq3PnzsqfP7+8vLzk5eUlf39/tW/fXqtXr7YadRQfRqNRkydPVoUKFZQ6deoEbSsuBg4cqFatWilDhgzy8vJSmTJlNG3aNNWtWzfW5eNzXm3dx7vvvqt69eopb968SpcunYxGozJkyKCKFSvqiy++UMeOHa2WjyoeSs8+FwHEncGcGG/5AYAU6tSpU2rUqJEkKTAwUIsWLXJwREDiqFmzpq5cuSLp2aOoon95AQAAgBej74CE+Omnn9SjRw9J0rBhw9SmTRsHRwR7u337tmrWrKknT56oZs2amjp1qqNDApwKIzYAIA6ePHmimzdvWoa+S4pxBxYAAAAA0HeAPdSpU0flypWT9OxRYOHh4Q6OCPY2d+5cPXnyRO7u7urfv7+jwwGcDiM2ACAOot+9Lj17juuKFSsS/aXNgKMwYgMAACB+6DsAAJD4GLEBADbIkCGD6tWrpxkzZtAxAQAAAPBc9B0AAEg8jNgAAAAAAAAAAABOgxEbAAAAAAAAAADAaVDYAAAAAAAAAAAAToPCBgAAAAAAAAAAcBop8u1VoaEPHB1CosiUKa1u337k6DASlSvkKLlGnuSYcrhCnq6Qo+QaeZJjyuEKeabUHP38vB0dQoIldX/Cw8OosLCIJN0nXBNtDUmFtoakQDtDUqGtJa249icYseEkDAbJaHSTweDoSBKPK+QouUae5JhyuEKerpCj5Bp5kmPK4Qp5ukKOiDvaAZIKbQ1JhbaGpEA7Q1KhrSVPFDYAAAAAAAAAAIDToLABAAAAAAAAAACcBoUNAAAAAAAAAADgNChsAAAAAAAAAAAAp0FhAwAAAAAAAAAAOA0KGwAAAAAAAAAAwGlQ2AAAAAAAAAAAAE6DwgYAAAAAAAAAAHAaFDYAAAAAAAAAAIDToLABAAAAAAAAAACcBoUNAAAAAAAAAADgNChsAAAAAClUlSrl9csv2+O8/GeffapBg/omXkAAAAAAnEZy7k+4J8leAAAAkCKlmbMsUbb71N1NqcMjY0x/3Ol1m7bz2WefasOGtZbf06f3UZEixdStW08VKFAwwXHG17p1axQcPFx58/pr/nzrY7ht2xYNHTpQ2bJl17JlaxwUIQAAAJD4PHfuTdL9mapWsGn55NqfWL+e/gQjNgAAAJCiVaoUpFWrNmrVqo2aOPEbubsb9dFHHzo6LKVJk0Z37tzRkSOHrKavXbtKWbNmc1BUAAAAAKKrXDl59idSp07t0v0JRmwAAAAgRfP09JCvb2ZJkq9vZrVt21EffPC27ty5o4wZM0qSvvnma/3yy3aFhl5XpkyZVadOPXXq9I7c3Z9dLp86dVJffz1Of/99XAaDQbly5dZHHw1WkSLFJEkHDx7QtGmT9fffx5UhQwZVq/aK3nuvu1KnTv3cuIxGo159ta7WrVutEiVKSZJu3LiuAwf+VKtWbbRlyyar5VesWKaFC+fpxo3ryp49hzp06KJ69Rpa5l+6dFFjxozU8eNHlSNHTvXqFXMI+PXr1zR58gTt3fuHDAY3lS5dRr169VP27DkScIQBAACAlMvDw5P+xP9LTv0JRmwAAADAZTx+/Fg//bReuXLllo+Pj2V6mjRp9PHHw/TDD0vVq1dfrVmzUosXz7fMHzHiE2XJkkUzZ87VrFnz9NZbHWU0PuukXLlyWf369dArr9TU998v1PDhwTp06IC++uqLF8bTqFETbdu2Wf/884+kZ0PKK1WqrEyZMlktt2PHz5o4cazefPMtzZ27WE2bNtfo0SP011/7JEmRkZH6+OP+cnf30LRp36lfv0GaOnWS1TbCw8PVt28PpUmTRlOmzNTUqbOUOnUa9e3bQ2FhYfE7oAAAAIALSW79iYYNXbc/wYgN4AUS5dnhH3Wy/zYBAECsfv/9V736alVJ0pMnT+Trm1lffDFBbm7/u8enY8e3LT9nz55DFy9e0NatP6lt2w6SpOvXr6tNm/bKm9dfkpQ7dx7L8vPmzdGrr9ZTq1ZtLPN69eqvHj3eVd++A+Xl5fXc2AoVKqIcOXLq55+3qF69htqwYa169Oitq1evWC23aNE81a/fWM2bt5Qk5cmTV0ePHtHChfNUtmx57du3RxcunNf48ZOVObOfJOnddz9Qv349LdvYuvUnRUZGauDAITIYDJKkwYOHqV69V7R//5+qWPEl2w4skIwk9Pnctj5vGwAAuI7ffttJf0LJrz9BYQMAAAApWmBgOfXrN0iS9ODBfa1YsUz9+vXUjBnfK1u27JKeXaQvW7ZIV65c0ZMnjxUREaE0adJatvHGG200ZsxIbdy4XuXLV1TNmrWVM2cuSdLp06d05swpbd680bK82WxWZGSkQkKuyt8/33/G17BhE61fv0ZZs2bTP/880Usvvawff1xitcz58+fVpElzq2klS5bW0qWL/n/+OWXJks3SCZFkGY4e5fTpU7py5bLq1KlmNd1kMunKlcv/GSMAAADgqsqVK68+fQZKoj+RnPoTFDYAAACQoqVOnVq5cuW2/F6oUBHVq/eKVq9eoXff7aYjRw5pxIgh6tz5XVWqVFlp06bT1q0/adGiHyzrdOnynl59tZ527fpVf/zxu2bPnqZPPw1W9eo19OTJYzVt2lyvv/5mjH3H5aV9derU1zffTNLs2dNVt24Dy3N47e3Jk8cqVKiIhg0bFWNehgwZE2WfAAAAgLNLlYr+hJT8+hMUNgAAAOBSDAaDDAY3PX36VJJ0+PAhZc2aTR06dLEsc+1aSIz18uTJqzx58uqNN9pq2LDBWr9+tapXr6FChYro3LlzVp0dW6RP76MqVapp27bN6t9/cKzL+Pv769Chg6pfv5Fl2uHDB5UvX77/n59PN25c082bN5U587MXGx49ethqG4UKFdHWrZuVMWNGpU2bLl6xAgAAAK6O/kTy6E/w8nAAAACkaCZTmG7duqlbt27q/Plz+uqrL/XkyWO9/PKz5+Tmzp1b169f05Ytm3TlymUtXbpIv/yy3bL+06f/aPz4z/XXX/t07VqIDh06oL//Pqa8eZ91Atq27aAjRw5q/PjPderUCV26dFE7d27X+PGfxznGjz8epnXrtlieuftvrVu314YNa7RixTJdunRRixb9oF9++VlvvvmWJKl8+YrKnTuvPvtsmE6dOqmDB/dr+vRvrLZRp059+fhk0MCBfXXw4H5dvXpFf/21TxMmfKkbN67HOVYAAADAlYSFmehPKPn1JxixAQAAgBRt9+7f1bRpPUlSmjRplTdvXo0cOUZly5aXJFWpUl1vvNFGX331hUymMAUFvayOHbto9uzpkiQ3N6Pu3bunUaOG6c6d2/LxyaDq1WuoS5f3JEkFChTU5MnTNX36N+rW7R1JZuXIkUu1ar0a5xi9vFLJyyvVc+dXq/aKevXqp4UL52nixLHKnj2HBg0aasnBzc1NwcFfasyYkXr33Q7Kli27Pvywv/r27WHZRqpUqTRlynRNnTpJH3/cX48fP1bmzH4qV66i0qZN+7xdAwAAAC5t1y76E1Ly608YzGazOcn3mshCQx84OgS7MxikzJm9dfPmA6W8M/ZMcs0xzZxldt9m2o86Jbs87Sm5nkt7coUcJdfI0xVylFwjT3JMOVwhz5Sco5+ft6NDSLCk7k94ehplMkUk6T5TGs+dexO0vqlqBTtFkrzR1pBUaGtICrQzJBXaWtKKa3+CR1EBAAAAAAAAAACnQWEDAAAAAAAAAAA4DQobAAAAAAAAAADAaVDYAAAAAAAAAAAAToPCBgAAAAAAAAAAcBoUNgAAAAAAAAAAgNOgsAEAAAAAAAAAAJwGhQ0AAAAAAAAAAOA0KGwAAAAAAAAAAACnQWEDAAAASMFef72xlixZEOflZ82apo4d2yRiRAAAAACcRXLtT7gn+h4AAACQYp3c9m6ibPeMu1Hh4RExpheqOd2m7Xz22afasGGtJMloNCpLlqyqUaOWunTpKi8vL8tyVaqUV3DwWFWr9oplWvv2b6hkydLq339wjO1u3LhOn38+SitWbNDZs6fVs2dXy7wMGTKoSJFiev/9ngoIKPDc2Hbv3q327dsrXTpvrVq10Sqe48eP6p13OkiSfv11n005AwAAAM7i2rE5Sbq/bMU62bR8cu5P/PXXPvXs2dVl+xOM2AAAAECKVqlSkFat2qglS1apR48+WrXqR82aNe2F6zVq1FRbt/6kp0//iTFv/fo1evnlasqQIYNl2oIFy7Vq1UaNGzdZYWFh6t+/l8LCwl64nzRp0uiXX362mrZ27SplzZrtxckBAAAASFSVK9OfSI4obAAAACBF8/T0kK9vZmXNmk3Vqr2i8uUrat++3S9cr06dBnr69Km2b99mNf3q1Svav/9PNWrU1Gp6xoyZ5OubWYULF1HLlq1148Z1Xbhw/oX7qV+/kdatW235/enTf7R160+qX79RjGW3b9+qt95qpRo1Kuv11xtr4cIfrObfuXNbH33UWzVrvqyWLZvop582xNjGgwcPNGbMSDVqVFt16lRXz55dderUyRfGCQAAALgiDw9P+hPRJJf+hMMLGzVr1lThwoVj/Bs+fLgk6enTpxo+fLgqVaqkwMBA9ejRQzdv3nRw1AAAAHBGZ8+e1pEjh+Tu7vHCZTNkyKAqVapbdRIkacOGtfLzy6KKFV+Kdb2HDx9q69afJEkeHi/eT926DXTo0AFdu3ZNkrR9+zZly5ZDhQoVsVru77+Pa+jQQapdu46+/36ROnd+VzNnTtX69Wssy3z22ae6ceO6vv76W40c+blWrFiqO3duW21nyJABunPntsaO/VqzZs1ToUJF9OGH7+v+/XsvjBUAAABwZfQnkk9/wuHv2Fi2bJkiIv73/ORTp06pU6dOqlevniQpODhYO3bs0IQJE+Tt7a2RI0eqe/fuWrRokaNCBgAAgBP5/fdf9eqrVRURESGTySQ3Nzf17v1RnNZt1Kip+vXrqatXryhHjpwym83asGGt6tdvJDc363uEmjdvIEl68uSJJKlKlWrKm9f/hfvImDGTKlUK0oYNa9Sp0ztat261GjZsEmO5xYvnq1y5CurY8W1JUp48eXX+/FktWDBPDRo01sWLF/THH79rxozvVbRocUnSwIFD1bbt65ZtHDx4QMePH9WaNZvl6ekpSere/UPt3LldP/+8VU2bNo/TcXE2kyZN0uTJk62m5cuXTxs3bnRQRAAAAHAWv/22k/7E/0tO/QmHFzYyZcpk9fv06dOVJ08eVaxYUQ8ePNDy5cs1duxYVa5cWdKzQkeDBg104MABlSlTxgERAwAAwJkEBpZTv36D9OTJEy1ZskBGo1GvvFIrTutWqFBJfn5ZtH79Gr39dlft27dH169fU4MGjWMsO2XKDKVKlUpHjx7R3Lmz1a9fzJcEPk/Dhk00ceI41alTX0eOHNbIkWN08OABq2UuXDinKlWqW00rWbK0lixZqIiICF24cE5Go1GFCxe1zM+b11/p0nlbfj99+qSePHmihg2t83/69KmuXLkc53idUcGCBTVnzv9eTmk0Gh0YDQAAAJxFuXLl1afPQPoTSl79CYcXNqIzmUxavXq1OnXqJIPBoCNHjigsLExBQUGWZQICApQjRw4KGwAAAIiT1KlTK1eu3JKkQYOGqmPH1lq7dqUaNXrtheu6ubmpQYPG2rBhrTp3flfr169R2bLllTNnrhjLZs+eU97e3sqTx1937tzWsGGDNGXKjDjF+NJLQfryy880ZsxIvfxyVfn4ZLAlxTh78uSxfH0za9KkmC87jN5hSYmMRqP8/PwcHQYAAACcTKpU9CeiJKf+RLIqbGzZskUPHjxQs2bNJEk3b96Uh4eH0qdPb7Wcr6+vQkNDn7sdDw+jDIZEDTXJReXj6WmU2ezYWBJLcs0xsdpScsvTnpLrubQnV8hRco08XSFHyTXyJEfHMCTGf5T/v0mDm0H6V56enrbdZe/mZpDBYIi2nlGdOnXRhAnj1aBBQ6VKlcqyrLu7W6zbb9r0NX3//Sz99tt2/fLLdn388VCr5Tw8jJbYoqa/+eab+uGH7/TbbztUo0bNmClGO2yenkalSeOlBg0aa9687zRx4mR5ehrl7u5mlXO+fPl19Oghq30fPXpYefLkVerUnipQIEARERE6e/akihV7NnT8woXzevjwgYzGZ7kVL15cM2bcUqpUnsqRI0esx8xodJPBYPuxTu4uXLigKlWqyMvLS2XKlFHfvn2fewwAAACA2Li5ualdu06aPPkrvfpqPXl5pXrhOg0aNNb338/Sjh3b9MsvP2vAgCEvXKd581aaN+877djxs6pXr/HC5d3d3VW3bkMtWDBXY8d+HesyefPm0+HDB62mHT58ULlz55HRaFTevP6KiIjQiRPHLY+iunjxWX8iSuHCRXT79i0ZjUZlz+7Ya+lkVdhYvny5qlWrpqxZsyZoO2FhES9eyMlEdX5Npohk80WGvSXXHN0TKZbklqc9JddzaU+ukKPkGnm6Qo6Sa+RJjo5hToxAzJLcJHNkzG2bTLZd50VGmmU2m63Wq1q1pr7+eoIWLVqkNm3aWaZfunRJR48es1o/V6488vPLprJlKyg4eJQ8PDz08svVrbYXde1pMkVYpru5eapRo9c0ffpUBQVVi1EAiv5r1HqdO7+nN954Sz4+PjKZIhQeHmmVc6tWbfXOO+01ffo01az5qo4ePaylSxepb9+BMpkilD17blWqFKTg4JHq23eQjEajvv56nLy8vBQRESmTKUJlypRX8eIl1a9fb3Xr1lO5c+fRzZuh+v33X1W9eg0VKVJMERGRMpttP9bJWalSpTR69Gjly5dPoaGhmjJlitq2bas1a9YoXbp0MZZP6hul3N1TVhHJEYzGhJ2wlFbIex7aGpIKbQ1JgXaWMhiNbi9eyI7ic6OUm5vBar26detq6tSvtWrVcr31VnvL9Bs3QnT+/Gmr9XPnziN//zwqX76CvvwyWJ6ennr11dovvFHK0zOtXnutuebMma7atWvFekPZv9f74IPu6tixo3x8MshgMMS4Uapdu/bq2PEtzZs3S7Vr19Xhwwe1fPlSDRgwSJ6eRhUoEKDKlYM0duxoDRgwWEajUePHj5WXVyrLjVJBQUEqUaKUBg/upx49PlSePHl18+YN/frrr3rllRoqVqx4kt0olWwKG1euXNHvv/+uSZMmWaZlzpxZYWFhun//vtWojVu3bjGMHAAAAPHi7u6u5s1bacGCuWrW7HWlTp1akjRp0lcxlp0yZaZKly6jRo2aaPjwPWrWrKW8vLzitJ8WLVpp8eL52rZti2rVevWFy3t4eChDhgzPnV+4cBGNGDFaM2dO03ffzZSvb2Z16dLV6vm8gwcP1eefj1KPHu8qY8ZMeued9zVz5nXLfIPBoLFjJ2r69G8UHDxcd+/eUaZMvipTpqwyZswU225ThOrV//cs4SJFiqh06dKqUaOGNmzYoJYtW8ZY3hE3SqWkQpIjeEYkrMjqSsfflXKFY9HWkBRoZ84vIiIySfcXnxulIiPN/1rPoGbNWmnu3O/UuHFzS39iwoRxMdaP6k80aNBEe/c+608YDO4vvFFKkl577XUtWDBPGzduirU/EXM9N6VJk15hYc+O6b9vlMqfv5ClPzFr1oz/70+8pzp1GlqWGTjwWX+ia9e3Lf2J69evWW6UkqQvv5yg6dO/0YgRw6z6E97eGWQyRSTZjVIGc6LcZme7SZMmafHixdq+fbvc3Z/VWx48eKDKlStr3Lhxqlu3riTp7Nmzql+/vhYvXvzcd2yEhj6IdbozMxikzJm9dfPmg2Rzh6a9Jdcc08xZZvdtpv2oU7LL056S67m0J1fIUXKNPF0hR8k18iTHlMMV8kzJOfr5Oce7Olq0aKGgoCD17ds3xryk7k94ehr5YiaBPHfuTdD6pqoV7BRJ8kZbQ1KhrSEp0M6QVGhrSSuu/YlkMWIjMjJSP/74o1577TVLUUOSvL291aJFC40ZM0Y+Pj5Kly6dRo0apcDAQF4cDgAAACBeHj16pEuXLjEKHAAAAHBSyaKw8fvvv+vq1atq0aJFjHmDBw+Wm5ubevbsKZPJpCpVqmjYsGEOiBIAAACAM/r8889Vo0YN5ciRQzdu3NCkSZPk5uamRo0aOTo0AAAAAPGQLAobVapU0YkTJ2Kd5+XlpWHDhlHMAAAAABAv165dU58+fXT37l1lypRJ5cqV05IlS5QpU8p9rwgAAACQkiWLwgYAAAAAJJavvor5YngAAAAAzsvN0QEAAAAAAAAAAADEFYUNAAAAAAAAAADgNHgUFQAAAAAA8eS5c2+81zVVrWDHSAAAAFwHIzYAAAAAAAAAAIDToLABAAAAAAAAAACcBoUNAAAAAAAAAADgNChsAAAAAAAAAAAAp0FhAwAAAAAAAAAAOA0KGwAAAAAAAAAAwGlQ2AAAAAAAAAAAAE6DwgYAAAAAAAAAAHAaFDYAAAAAAAAAAIDToLABAAAAAAAAAACcBoUNAAAAAAAAAADgNChsAAAAAAAAAAAAp0FhAwAAAAAAAAAAOA0KGwAAAAAAAAAAwGlQ2AAAAAAAAAAAAE6DwgYAAAAAAAAAAHAaFDYAAAAAAAAAAIDToLABAAAAAAAAAACcBoUNAAAAAAAAAADgNChsAAAAAAAAAAAAp0FhAwAAAAAAAAAAOA0KGwAAAAAAAAAAwGlQ2AAAAAAAAAAAAE6DwgYAAAAAAAAAAHAaFDYAAAAAAAAAAIDToLABAAAAAAAAAACcBoUNAAAAAAAAAADgNChsAAAAAAAAAAAAp0FhAwAAAAAAAAAAOA0KGwAAAAAAAAAAwGlQ2AAAAAAAAAAAAE6DwgYAAAAAAAAAAHAayaKwcf36dfXr10+VKlVSqVKl1LhxYx0+fNgy32w2a+LEiapSpYpKlSqljh076vz5844LGAAAAAAAAAAAOIS7owO4d++eWrdurUqVKmnGjBnKmDGjLly4IB8fH8syM2bM0Lx58zRmzBjlypVLEydOVJcuXbR+/Xp5eXk5MHoAAAAAgD147tzr6BAAAADgJBxe2JgxY4ayZcum0aNHW6blzp3b8rPZbNbcuXP1/vvvq3bt2pKkL774QkFBQdqyZYsaNmyY5DEDAAAAAAAAAADHcPijqLZt26YSJUqoZ8+eqly5sl577TUtWbLEMv/y5csKDQ1VUFCQZZq3t7dKly6t/fv3OyJkAAAAAAAAAADgIA4vbFy6dEkLFy6Uv7+/Zs2apdatW2vUqFFasWKFJCk0NFSS5Ovra7Wer6+vbt68meTxAgAAAAAAAAAAx3H4o6jMZrNKlCihPn36SJKKFSumU6dOadGiRWrWrFm8tunhYZTBYM8oHS8qH09Po8xmx8aSWJJrjonVlpJbnvaUXM+lPblCjpJr5OkKOUqukSc5phyukKcr5AgAAAAAicXhhQ0/Pz8FBARYTcufP782bdpkmS9Jt27dUpYsWSzL3Lp1S0WKFIl1m2FhEYkUreNEdX5NpogU2/lNrjm6J1IsyS1Pe0qu59KeXCFHyTXydIUcJdfIkxxTDlfI0xVyBAAAAIDE4vBHUZUtW1bnzp2zmnb+/HnlzJlTkpQrVy75+flp165dlvkPHz7UwYMHFRgYmKSxAgAAAAAAAAAAx3J4YaNDhw46ePCgvv32W124cEFr1qzRkiVL1KZNG0mSwWBQ+/btNXXqVG3dulUnTpzQRx99pCxZsqh27doOjh4AAAAAAAAAACQlhz+KqlSpUpo8ebLGjx+vKVOmKFeuXBo8eLCaNGliWeadd97RkydPNHToUN2/f1/lypXTzJkz5eXl5cDIAQAAAAAAAABAUnN4YUOSatSooRo1ajx3vsFgUK9evdSrV68kjAoAAAAAAAAAACQ3Dn8UFQAAAAAAAAAAQFxR2AAAAAAAAAAAAE6DwgYAAAAAAAAAAHAaFDYAAAAAAAAAAIDToLABAAAAAAAAAACcBoUNAAAAAAAAAADgNChsAAAAAAAAAAAAp+Hu6AAAAAAAAEDK57lzb7zXNVWtYMdIAACAs2PEBgAAAAAAAAAAcBoUNgAAAAC4jOnTp6tw4cL67LPPHB0KAAAAgHiisAEAAADAJRw6dEiLFi1S4cKFHR0KAAAAgASgsAEAAAAgxXv06JH69++vUaNGycfHx9HhAAAAAEgAChsAAAAAUrwRI0aoevXqCgoKcnQoAAAAABLI3dEBAAAAAEBiWrdunY4dO6Zly5Y5OhQAAAAAdkBhAwAAAECKFRISos8++0yzZ8+Wl5dXnNbx8DDKYEjkwKJxdzcm3c6SMaMxCQ/6v3h6xv8cJCTuhOw3Phzd1pzpWCFhHN3W4BpoZ0gqtLXkyebCxi+//KL79++rUaNGkp51FAYPHqwzZ84oKChIQ4cOVZo0aeweKAAAAADY6ujRo7p165aaN29umRYREaG9e/dq/vz5Onz4sIxG685qWFhEUocpkynp95nceEaYHbbvhBz/hMTtiPPuyLbmbMcKCcM5Q1KgnSGp0NaSH5vfsfH111/r+vXrlt9HjBihM2fOqGHDhtq5c6e+/vpruwYIAAAAAPH10ksvac2aNVq5cqXlX4kSJdS4cWOtXLkyRlEDAAAAQPJn84iNCxcuqEiRIpKkhw8faufOnRo7dqzq1aunggULavLkyRo4cKDdAwUAAAAAW6VLl06FChWympYmTRplyJAhxnQAAAAAzsHmERvh4eFyc3u22t69eyVJVatWlSTlzp1bN2/etGN4AAAAAAAAAAAA/2PziI38+fNr9erVKl26tBYvXqzAwEClTZtWkhQaGqoMGTLYO0YAAAAAsJt58+Y5OgQAAAAACWDziI1u3bppzZo1KleunH799Ve99957lnk7d+5UsWLF7BogAAAAAAAAAABAFJtHbNSqVUsbNmzQsWPHVLhwYfn7+1vmlSlTRoULF7ZnfAAAAAAAAAAAABY2FzakZ+/SyJ07d4zpb7zxRoIDAgAkL7uXv6Xw8Ai7ba9Qzel22xYAAAAAAABcT7wKG0+ePNGuXbsUEhIik8lkNc9gMKhjx472iA0AAAAAAAAAAMCKzYWNPXv2qEePHrp3716s8ylsAAAAAAAAAACAxGJzYWPEiBEqXLiwhgwZIn9/f3l4eCRGXAAAAAAAAAAAADG42brClStX1LVrVxUsWJCiBgAAAAAAAAAASFI2j9goW7aszp07p6CgoMSIBwCAJMcL0gEAAAAAAJxHvB5F1atXL3l4eKhy5cry9vaOsUyGDBnsERsAAAAAAAAAAIAVmwsb6dOnV44cOTR06FAZDIZYlzl+/HiCAwMAAAAAAAAAAPg3mwsb/fv3119//aVOnTopX758vGcDAAAAAAAAAAAkGZsLG3/88YeGDx+upk2bJkY8AAAAAAAAAAAAz2VzYSNr1qyxvlcDAAAAAAAAcJRrx+bYbVvZinWy27ZSOnsdd445AFu42bpCz549NX36dN27dy8x4gEAAAAAAAAAAHgum0dsrFmzRlevXlWNGjVUtGjRGKM3DAaDpk6darcAAQAAAAAAAAAAothc2Hj06JHy5s1r9TsAAAAAAAAAAEBSsLmwMW/evMSIAwAAAAAAAAAA4IVsfseGvU2aNEmFCxe2+levXj3L/KdPn2r48OGqVKmSAgMD1aNHD928edOBEQMAAAAAAAAAAEeJV2Hj1KlT6t27t2rXrq0SJUro6NGjkqSvvvpKO3bssHl7BQsW1K+//mr5t2DBAsu84OBg/fzzz5owYYLmzZunGzduqHv37vEJGwAAAAAAAAAAODmbCxu//fabmjVrpqtXr6px48YKDw+3zHN3d9fChQttDsJoNMrPz8/yL1OmTJKkBw8eaPny5Ro4cKAqV66sEiVKKDg4WPv379eBAwds3g8AAAAAAAAAAHBuNhc2xo0bpwYNGmjx4sX64IMPrOYVLVpUx44dszmICxcuqEqVKqpVq5b69u2rq1evSpKOHDmisLAwBQUFWZYNCAhQjhw5KGwAAAAAAAAAAOCCbH55+KlTp9S3b19JksFgsJqXPn163blzx6btlSpVSqNHj1a+fPkUGhqqKVOmqG3btlqzZo1u3rwpDw8PpU+f3modX19fhYaGPnebHh5G/Ss0pxeVj6enUWazY2NJLMk1x8RqS8ktT4/pi+27wf6dkl2O9pRc26u9ReVpcDNIdsrT09Nonw3ZiSvkKLlGmyXHlMMV8nSFHAEkX54798Z7XVPVCnaMBAAAIH5sLmz4+Pjoxo0bsc47f/68/Pz8bNpe9erVLT8XKVJEpUuXVo0aNbRhwwalSpXK1vAkSWFhEfFaLzmL6vyaTBEptvObXHN0T6RYXCHP5JajPSXX9mpvUXmaI+2XpMmUvD6jXSFHyTXaLDmmHK6QpyvkCAAAAACJxeZHUdWuXVuTJk3S2bNnLdMMBoNCQ0M1a9Ys1a1bN0EBpU+fXv7+/rp48aIyZ86ssLAw3b9/32qZW7du2VxAAQAAAAAAAAAAzs/mwkbfvn2VMWNGNWnSRC1btpQkDR48WPXq1ZO3t7e6d++eoIAePXqkS5cuyc/PTyVKlJCHh4d27dplmX/27FldvXpVZcqUSdB+AAAAAAAAAACA87H5UVTe3t5atGiRVq9erd9//10ZMmSQj4+P2rZtq6ZNm8rT09Om7X3++eeqUaOGcuTIoRs3bmjSpElyc3NTo0aN5O3trRYtWmjMmDHy8fFRunTpNGrUKAUGBlLYAAAAAAAAAADABdlc2JAkDw8PtWjRQi1atEhwANeuXVOfPn109+5dZcqUSeXKldOSJUuUKVMmSc9Gg7i5ualnz54ymUyqUqWKhg0bluD9AgAAAAAAAAAA5xOvwoY9ffXVV/8538vLS8OGDaOYAQAAAAAAAAAA4lbYCAwMlMFgiNMGDQaD/vzzzwQFBQAAAAAAAAAAEJs4FTY6d+4c58IGAAAAAAAAAABAYolTYaNHjx6JHQcAAAAAAAAAAMALJegdG9euXdONGzeUJUsWZcuWzV4xAQAAAAAAAAAAxCpehY3Fixdr6tSpun79umValixZ9P777+vNN9+0W3AAAAAAAAAAAADR2VzYmDZtmr766is1bdpUdevWVebMmXXz5k1t3LhRw4cP17179/Tee+8lRqwAAAAAAAAAAMDF2VzYmDdvnrp06aL+/ftbTa9Zs6Z8fX01b948ChsAAAAAAAAAACBRuNm6wqNHjxQUFBTrvCpVqujRo0cJDgoAAAAAAAAAACA2Nhc2qlSpot9//z3Web/99psqV66c4KAAAAAAAAAAAABiE6dHUR09etTy8+uvv65hw4bp9u3bqlWrlnx9fXXr1i1t2bJFf/zxh4YPH55owQIAAAAAAAAAANcWp8JGixYtZDAYLL+bzWatWLFCK1askMFgkNlstszr2rWrjh8/bv9IAQAAAADJmufOvY4OAQAAAC4gToWNuXPnJnYcAAAAAAAAAAAALxSnwkbFihUTOw4AAAAAAAA4gWvH5vznfKPRTRERkXHaVrZinewRUrL1omNli5R+rADAFnEqbMTm1KlT+vPPP3Xv3j35+PioXLlyKliwoD1jAwAAAAAAAAAAsGJzYcNkMql///766aefZDab5enpKZPJJIPBoLp16+qLL76Qp6dnYsQKAAAAAAAAAABcnJutK4wfP147duzQ8OHDtW/fPh06dEj79u3T8OHDtWPHDn311VeJEScAAAAAAAAAAIDthY1169apT58+atWqldKlSydJSpcunVq1aqUPP/xQa9eutXuQAAAAAAAAAAAAUjwKG/fu3VP+/PljnZc/f37du3cvwUEBAAAAAAAAAADExubCRv78+bVq1apY561evfq5RQ8AAAAAiKuxY8fq/Pnzjg4DAAAAQDJk88vDu3Xrpl69eunKlSuqU6eOMmfOrFu3bmnTpk06cOCAJk6cmBhxAgAAAHAhq1at0qxZsxQYGKiWLVuqXr16Sp06taPDAgAAAJAM2Dxio06dOpo8ebL++ecfff755+rXr5/GjBmjf/75R5MnT9arr76aGHECAAAAcCE7duzQ1KlTlTlzZg0ZMkRVqlTRkCFDtH//fkeHBgAAAMDBbBqxYTKZtH37dhUtWlQ//vijHj9+rAcPHsjb21tp0qRJrBgBAAAAuBg3Nze98soreuWVV3Tnzh2tWrVKK1as0LJly5Q/f361aNFCTZs2la+vr6NDBQAAAJDEbCpseHp6qm/fvpo5c6Zy586tNGnSUNBwcWnmLLPvBj/qZN/tAQAAwOllzJhRHTt21EsvvaTPPvtMe/fu1RdffKHx48erYcOGGjBggDJlyuToMAEAAAAkkXi9PDwkJCQxYgEAAAAAKw8ePNCCBQvUvHlzNWvWTA8fPtTQoUO1c+dOffrpp9q3b5969+7t6DABAAAAJCGbXx7ep08fBQcHKyAgQCVLlkyMmAAAAAC4uF27dmnZsmXaunWrjEajGjZsqBEjRqhEiRKWZV5//XVlz55dXbt2dWCkAAAAAJKazYWNsWPH6u7du2rVqpUyZMigzJkzW803GAxavXq13QIEAAAA4Ho6deqk0qVL65NPPlHDhg2VOnXqWJfz9/dXo0aNkjg6AAAAAI5kc2GjePHiVndJAQAAAIC9rV69WoUKFXrhcjlz5tTo0aOTICIAAAAAyYXNhY0xY8YkRhwAAAAAYDFq1CgNGzZMAQEBMeadO3dOw4YN09y5cx0QGQAAAABHi3Nh4/Tp01q0aJEuX76sLFmyqF69egoKCkrM2AAAAAC4qD179ujRo0exznv48KH27dsX520tWLBACxcu1JUrVyRJBQsWVLdu3VS9enW7xAoAAAAgacWpsLFv3z516tRJ4eHhypQpk+7evaulS5dq6NChat26dWLHCAAAAAAW+/fvV6ZMmeK8fLZs2dSvXz/lzZtXZrNZK1eu1AcffKAVK1aoYMGCiRgpAAAAgMQQp8LGpEmTlD9/fn377bfKnj27Hj58qEGDBmnChAkUNgAAAADYxbRp0zRt2jRJksFgUIcOHWQwGKyWMZlMioiIUJs2beK83Zo1a1r93rt3by1cuFAHDhygsAEAAAA4oTgVNk6ePKnhw4cre/bskqR06dJpwIABql27tkJCQizTAQAAACC+AgMD1blzZ5nNZk2ZMkUNGzZUtmzZrJbx8PBQQECAatSoEa99REREaOPGjXr8+LECAwPtETYAAACAJBanwsadO3didCiiihl37tyhsAEAAAAgwSpWrKiKFStKejZio2XLlsqaNatdtn3ixAm9+eabevr0qdKkSaMpU6aoQIECsS7r4WHUvwaKJCp3d2PS7SyRGY1JeODsyNMz/ucgITknZL/xEdXWHBWzMx0r/Dej0e0/57u5GST99zJR7HluXxSXLewVV3KMyd7slaOt+aWk/z+RvNHWkqc4vzwcAAAAAJJK9+7d7bq9fPnyaeXKlXrw4IE2bdqkAQMG6Icffoi1uBEWFmHXfceFyZT0+0wMnhFmR4cQLwk5/gnJ2RHn3WSKcFjMznas8HwREZEvWMItDss8Y89zG9d9xoW94kqOMdmbvXKMT37J9Zgg5aGtJT9xLmzE9nxbSWrbtq3VdIPBoD///NM+0QEAAABwGV27dtXAgQPl7++vrl27/ueyBoNBU6dOjfO2PT09lTdvXklSiRIldPjwYc2dO1cjRoxIUMwAAAAAkl6cChv2vlsKAAAAAP7t0aNHioiIsPycmCIjI2UymRJ1HwAAAAASR7IqbEyfPl3jxo1T+/bt9fHHH0uSnj59qjFjxmj9+vUymUyqUqWKhg0bpsyZMydJTAAAAACSxrx582L9OaHGjRunatWqKXv27Hr06JHWrl2rPXv2aNasWXbbBwAAAICkk2zesXHo0CEtWrRIhQsXtpoeHBysHTt2aMKECfL29tbIkSPVvXt3LVq0yEGRAgAAAHAUk8kkT09Pm9a5deuWBgwYoBs3bsjb21uFCxfWrFmz9PLLLydSlAAAAAASU7IobDx69Ej9+/fXqFGjrJ6T++DBAy1fvlxjx45V5cqVJT0rdDRo0EAHDhxQmTJlHBQxAAAAgMQU9aLvdu3aSZJOnjyp7t276/LlyypXrpwmTJggX1/fOG0rODg4MUMFAAAAkMTcHB2AJI0YMULVq1dXUFCQ1fQjR44oLCzManpAQIBy5MihAwcOJHGUAAAAAJLKrFmz5Ob2v+7KyJEj5eHhocGDB+vGjRsaP368A6MDAAAA4EgOH7Gxbt06HTt2TMuWLYsx7+bNm/Lw8FD69Omtpvv6+io0NDSpQgQAAACQxK5cuaKAgABJ0u3bt/Xnn3/q22+/VbVq1ZQpUyZ9/vnnDo4QAAAAgKPEqbAxd+5cNWzYUL6+vrp69ar8/Pzk4eGR4J2HhITos88+0+zZs+Xl5ZXg7UXx8DDKYLDb5pKFqHw8PY0ymx0bS3SJcZxdIUfJNfJMbjnaU3L9m7S3qDwNbgbJTnl6ehrtsyE7cYUcJddos+SYcrhCnq6QY0K5ubkpLCxMkrR79265u7vrpZdekiT5+fnp7t27DowOAAAAgCPFqbAxevRolSlTRr6+vqpVq5YWL16sUqVKJXjnR48e1a1bt9S8eXPLtIiICO3du1fz58/XrFmzFBYWpvv371uN2rh165b8/Pyeu92wsIgEx5bcRHV+TaaIZNX5dU+EWFwhR8k18kxuOdpTcv2btLeoPM2R9kvSZEpen9GukKPkGm2WHFMOV8jTFXJMqCJFimjBggXKli2b5s2bp5deesny0vCrV6/G+f0aAAAAAFKeOBU2MmTIoEuXLqlUqVIy27Hn9dJLL2nNmjVW0wYNGqT8+fPrnXfeUfbs2eXh4aFdu3apbt26kqSzZ8/q6tWrvDgcAAAASMF69+6trl27qkmTJkqbNq3mzJljmbdlyxaVLFnSgdEBAAAAcKQ4FTZeeeUVDRgwQOPGjZPBYNAHH3xguVvq3wwGg7Zs2RKnnadLl06FChWympYmTRplyJDBMr1FixYaM2aMfHx8lC5dOo0aNUqBgYEUNgAAAIAUrFy5cvr55591/vx55cmTx2oE9+uvv648efI4MDqkNJ479zo6BCSyhJxjU9UKTrdfAABSujgVNkaMGKGyZcvq7NmzmjNnjipUqKDMmTMndmySpMGDB8vNzU09e/aUyWRSlSpVNGzYsCTZNwAAAADHSZcunUqUKBFjevXq1R0QDQAAAIDkIk6FDQ8PD7Vs2VKStGnTJr377rsqUqRIogQ0b948q9+9vLw0bNgwihkAAACAizl79qx++uknXbt2TU+fPrWaZzAYFBwc7KDIAAAAADhSnAob0W3bti0x4gAAAAAAi5UrV2rw4MHy8vJSjhw55OHhYTXfEPUGdgAAAAAux+bChiRdv35d3333nf766y/dvXtXGTJkULly5dShQwdlzZrV3jECAAAAcDFTp05V3bp1FRwcrNSpUzs6HAAAAADJiJutK5w8eVKNGzfWokWL5Ofnp5deekl+fn5atGiRmjRpolOnTiVGnAAAAABcyI0bN9SqVSuKGgAAAABisHnExueff67cuXNr9uzZ8vHxsUy/d++eOnfurM8//1wzZ860a5AAAAAAXEv58uV18uRJVa5c2dGhAAAAAEhmbB6x8ddff+n999+3KmpIko+Pj95//339+eefdgsOAAAAgGvq06ePli5dqkWLFunSpUu6e/dujH8AAAAAXJPNIzaMRqNMJlOs80wmk4xGY4KDAgAAAODamjVrJkn69NNPn/ui8OPHjydlSAAAAACSCZsLG0FBQZowYYKKFi2qfPnyWaafP39eEydOVFBQkF0DBAAAAOB6goODn1vQAAAAKc+1Y3NsWt5odFNERGSs87IV62SPkAAkYzYXNgYOHKi33npLDRs2VMGCBZU5c2bdunVLJ0+eVPbs2TVo0KDEiBMAAACAC2nevLmjQwAAAACQTNlc2MiRI4fWrFmj5cuX688//9T9+/fl7++vFi1aqHnz5kqbNm1ixAkAAADABd27d0+nTp1SSEiIqlWrJh8fHz19+lQeHh5yc7P5lYEAAAAAUgCbCxuSlDZtWrVv317t27e3dzwAAAAAoMjISE2YMEHz5s3TkydPZDAYtGzZMvn4+Kh79+4qXbq0unfv7ugwAQAAADgAtzgBAAAASHYmTpyoH374QQMGDNCmTZtkNpst82rWrKlt27Y5MDoAAAAAjhSvERsAAAAAkJhWrFihPn366M0331RERITVvDx58ujSpUsOigwAAACAozFiAwAAAECyc/fuXQUEBMQ6LyIiQuHh4UkcEQAAAIDkghEbABBPu5e/pfDwiBcvGEeFak6327YAAHB2/v7++u2331S5cuUY8/bs2aOCBQs6ICoAAAAAyYFNhY2nT59qwYIFevnll1WoUKHEigkAAACAi+vYsaOGDBkid3d31atXT5J07do1HThwQPPmzdPo0aMdHCEAAAAAR7GpsOHl5aUJEyaoePHiiRUPAAAAAKh58+a6d++eJk2apGnTpkmSPvjgA6VOnVoffvihGjRo4OAIAQAAADiKzY+iKlq0qE6fPq2KFSsmRjwAAAAAIEnq1KmTWrVqpf379+vOnTvy8fFRYGCgvL29HR0aAAAAAAeyubAxePBg9e/fX5kyZVL16tWVOnXqxIgLAAAAgIu6fPmyli5dqgMHDujmzZsyGAzKnDmzypYtq4IFC1LYAAAAAFyczYWNDh06KCwsTL1795YkpUqVSgaDwTLfYDDozz//tF+EAAAAAFzGmjVr9PHHH8tkMilr1qzKnj27zGazzp07pz/++EOzZs3S6NGjeRQVAAAA4MJsLmx07tzZqpABAAAAAPZw5swZDR48WOXKldOQIUMUEBBgNf/UqVMaOXKkBg4cqKJFiypfvnwOihQAAACAI9lc2OjRo0dixAEAAADAxS1YsEC5c+fW9OnT5enpGWN+wYIFNXPmTL322muaP3++PvnkEwdECQCwp2vH5jg6BACAE3JLyMohISH666+/9PjxY3vFAwAAAMBF7dmzR61atYq1qBHF09NTrVq10p49e5IwMgAAAADJSbwKG4sXL1bVqlVVo0YNtW3bVufOnZMkffDBB/r+++/tGiAAAAAA1xASEqLChQu/cLnChQvrypUrSRARAAAAgOTI5sLGd999p5EjR+q1117T7NmzZTabLfMqVqyojRs32jVAAAAAAK7h0aNHSps27QuXS5MmDaPGAQAAABdm8zs2fvjhB3Xr1k3dunVTRESE1bx8+fJZRm8AAAAAgC2i3zQFAAAAAM9jc2Hj+vXrCgwMjHWeh4cHd04BAAAAiLcOHTrIYDD85zIUQAAAAADXZnNhI0eOHDp8+LAqV64cY97Bgwfl7+9vj7gAAAAAuJju3bs7OgQAAAAATsDmwkarVq00efJkZcyYUXXq1JEkhYeHa/v27Zo1a5Y+/PBDe8cIAAAAwAVQ2AAAAAAQFzYXNrp06aKQkBANHTpUw4YNkyS1bt1aktSmTRu1bdvWvhECAAAAAAAAAAD8P5sLG5L0ySefqH379vr999919+5d+fj4qHLlyjyGCgAAAAAAAAAAJKp4FTYkKU+ePMqTJ489YwEAAAAAAAAAAPhP8SpshIWFacWKFTp48KBCQ0Pl5+enMmXK6LXXXpOHh4e9YwQAAAAA2MBz5954r2uqWsGOkeC/JOQ8xYfRaJBnhDlJ9wkAAJAY3Gxd4dy5c6pXr54+/fRTHT9+XGazWcePH9ewYcNUt25dnT17NjHiBAAAAAAAAAAAsH3ExtChQ+Xh4aGNGzdaPYrqwoUL6tq1qz799FPNnTvXrkECAAAAAAAg/q4dm+PoEAAAsBubR2wcOnRIvXv3jvF+jbx586pnz546ePCg3YIDAAAAAAAAAACIzubCRpYsWWQwGGKdZzAYlDlz5gQHBQAAAAAAAAAAEBubCxsffPCBJk6cqEuXLllNv3TpkiZNmqTu3bvbLTgAAAAAAAAAAIDo4vSOja5du1r9fv/+fdWrV08FCxaUr6+vbt26pVOnTsnX11ebNm1Ss2bN4hzAggULtHDhQl25ckWSVLBgQXXr1k3Vq1eXJD19+lRjxozR+vXrZTKZVKVKFQ0bNoyRIQAAAAAAAAAAuKA4FTYePXpk9bu/v7/8/f0lSSaTSd7e3ipbtmysy75ItmzZ1K9fP+XNm1dms1krV67UBx98oBUrVqhgwYIKDg7Wjh07NGHCBHl7e2vkyJHq3r27Fi1aZNN+AAAAAAAAAACA84tTYWPevHmJFkDNmjWtfu/du7cWLlyoAwcOKFu2bFq+fLnGjh2rypUrS5KCg4PVoEEDHThwQGXKlEm0uAAAAAAAAAAAQPJj8zs2ElNERITWrVunx48fKzAwUEeOHFFYWJiCgoIsywQEBChHjhw6cOCA4wIFAAAAAAAAAAAOEacRG/8WEhKiLVu2KCQkRCaTKcb8Tz75xKbtnThxQm+++aaePn2qNGnSaMqUKSpQoICOHz8uDw8PpU+f3mp5X19fhYaGxid0AAAAAAAAAADgxGwubKxfv14fffSRzGazMmXKJA8PD6v5BoPB5sJGvnz5tHLlSj148ECbNm3SgAED9MMPP9gamoWHh1EGQ7xXT5ai8vH0NMpsdmws0SXGcXaFHCXXyDO55WhPUcfL4GaQ7JSjp6fRPhuyI1fI0xVylJ7luXv5W4qIjLRbnsXrzrTPhuwkuf5faU+ukKPkGnm6Qo4AAAAAkFhsLmx89dVXql27tkaOHClvb2+7BOHp6am8efNKkkqUKKHDhw9r7ty5ql+/vsLCwnT//n2rURu3bt2Sn5/fc7cXFhZhl7iSk6jOr8kUkaw6v+6JEIsr5Ci5Rp7JLUd7ivqbNEfaL0GTKfl9drlCnq6Qo+QaeSbX/yvtyRVylFwjT1fIEQAAAAASi83v2Lh9+7beeOMNuxU1YhMZGSmTyaQSJUrIw8NDu3btssw7e/asrl69yovDAQAAAAAAAABwQTaP2KhataoOHDigypUr2yWAcePGqVq1asqePbsePXqktWvXas+ePZo1a5a8vb3VokULjRkzRj4+PkqXLp1GjRqlwMBAChsAAAAAAAAAALggmwsbw4cPV+/evfXPP//opZdeivFib0kqXrx4nLd369YtDRgwQDdu3JC3t7cKFy6sWbNm6eWXX5YkDR48WG5uburZs6dMJpOqVKmiYcOG2Ro2AAAAAAAAAABIAWwubDx69EhPnjzRtGnTNH36dKt5ZrNZBoNBx48fj/P2goOD/3O+l5eXhg0bRjEDAAAAQLxMmzZNP/30k86ePatUqVIpMDBQ/fr1U/78+R0dGgAASATXjs2x27ayFetkt23ZKy57xgQ4K5sLGwMGDFBISIiGDBkif39/eXh4JEZcAAAAAGAXe/bsUdu2bVWyZElFRERo/Pjx6tKli9atW6c0adI4OjwAAAAANrK5sHHo0CGNGzdOtWvXTox4AAAAAMCuZs2aZfX7mDFjVLlyZR09elQVKlRwUFQAAAAA4svN1hXy5s2r8PDwxIgFAAAAABLdgwcPJEk+Pj4OjgQAAABAfNhc2Bg0aJC+/fZbnTlzJjHiAQAAAIBEExkZqeDgYJUtW1aFChVydDgAAAAA4sHmR1EFBwcrNDRUjRs3VpYsWeTt7W0132AwaPXq1XYLEAAAAADsZfjw4Tp16pQWLFjw3GU8PIwyGJIuJnd3o923aTTGPwFPz/jHk5D9IvG5ublJikzQNhzVPhKyX0fu25E5/5vRaPO9rfHm5mZQPO6lTVbsdfztedzt3SbsJSnbVnRJ1c7sedztdaySa1tIqRLjWg0JZ3Nho3jx4jIk5VU+AAAAANjBiBEjtH37dv3www/Kli3bc5cLC4tIwqieMZnsu0/PCHO8101ILAnZL5JCpCISeI4c1T4S+jfijH8T9v5ciIhIWFHLNm5JvD/7s9fxt+dxsHebsBfHneukaWf2PO72ije5toWUjGOe/Nhc2BgzZkxixAEAAAAAicJsNmvkyJHavHmz5s2bp9y5czs6JAAAAAAJYHNhAwAAAACcyfDhw7V27Vp98803Sps2rUJDQyVJ3t7eSpUqlYOjAwAAAGArmwsbgwYNeuEyo0ePjlcwAAAAAGBvCxculCS1a9fOavro0aPVvHlzR4QEAAAAIAFsLmwcP348xrT79+8rJCREGTNmVNasWe0SGAAAAADYw4kTJxwdAgAAAAA7srmwsXLlylinnzlzRn369NGAAQMSGhMAAAAAAAAAAECs3Oy1oYCAAL3zzjs8hgoAAAAAAAAAACQauxU2pGcv37t48aI9NwkAAAAAAAAAAGBh86Oo7t69G2NaWFiYzpw5o/Hjx6tgwYL2iAsAAAAAAABwiGvH5jg6hBjsGVO2Yp3sti0AcASbCxsvvfSSDAZDjOlms1nZs2fXlClT7BIYAAAAAAAAAADAv9lc2AgODo5R2PDy8lLWrFlVunRpubvbvEkAAAAAAAAAAIA4sbkK0bx588SIAwAAAAAAAAAA4IUYXgEAAAAAsPDcudfRIQAAAAD/KU6FjZo1a8b6Xo3YGAwGbdmyJUFBAQAAAAAAAAAAxCZOhY1atWq9sLBx4sQJ7d69O84FEAAAAAAAAAAAAFvFqbDx8ccfP3fe8ePHNWXKFO3Zs0d58uTRu+++a7fgAAAAAAAAAAAAoov3OzYOHz6sKVOmaMeOHfL399eYMWPUuHFjubm52TM+AAAAAAAAAAAAC5sLGwcOHNDkyZP122+/qUCBAho3bpzq16/PI6gAJHtp5iyz7wYD7Ls5AAAAAAAAAC8W58LG3r179c0332jXrl0qVqyYvv76a7366quJGRsAAAAAAAAAAICVOBU22rVrp3379qlUqVKaNm2aqlevnthxAQAAAAAAAAAAxBCnwsbevXslSSdPnlTv3r3/c1mDwaA///wz4ZEBAAAAAAAAAAD8S5wKG927d0/sOAAAAAAAAAAAAF6IwgYAAAAAAEAyde3YHEeHgBSIdgXA2bk5OgAAAAAAAAAAAIC4orABAAAAAAAAAACcBoUNAAAAAAAAAADgNChsAAAAAAAAAAAAp0FhAwAAAAAAAAAAOA0KGwAAAAAAAAAAwGlQ2AAAAAAAAAAAAE6DwgYAAAAAAAAAAHAaFDYAAAAAAAAAAIDTcHhhY9q0aWrRooUCAwNVuXJldevWTWfPnrVa5unTpxo+fLgqVaqkwMBA9ejRQzdv3nRQxAAAAAAAAAAAwFEcXtjYs2eP2rZtqyVLlmjOnDkKDw9Xly5d9PjxY8sywcHB+vnnnzVhwgTNmzdPN27cUPfu3R0YNQAAAAAAAAAAcAR3Rwcwa9Ysq9/HjBmjypUr6+jRo6pQoYIePHig5cuXa+zYsapcubKkZ4WOBg0a6MCBAypTpowDogYAAAAAAAAAAI7g8BEb//bgwQNJko+PjyTpyJEjCgsLU1BQkGWZgIAA5ciRQwcOHHBEiAAAAAAAAAAAwEEcPmIjusjISAUHB6ts2bIqVKiQJOnmzZvy8PBQ+vTprZb19fVVaGhorNvx8DDKYEj0cJNUVD6enkaZzY6NJbrEOM6ukKPkGnm6Qo4GN4Nkpxw9PY322ZAdRR2zlJynK+QouUaeyfX/SntyhRwl18jTFXIEAAAAgMSSrAobw4cP16lTp7RgwYIEbScsLMJOESUfUZ1fkykiWXV+3RMhFlfIUXKNPF0hR3Ok/TZqMiW/z66oz56UnKcr5Ci5Rp7J9f9Ke3KFHCXXyNMVcgQAAACAxJJsHkU1YsQIbd++Xd9//72yZctmmZ45c2aFhYXp/v37VsvfunVLfn5+SR0mAAAAAAAAAABwIIcXNsxms0aMGKHNmzfr+++/V+7cua3mlyhRQh4eHtq1a5dl2tmzZ3X16lVeHA4AAAAAAAAAgItx+KOohg8frrVr1+qbb75R2rRpLe/N8Pb2VqpUqeTt7a0WLVpozJgx8vHxUbp06TRq1CgFBgZS2AAAAAAAAAAAwMU4vLCxcOFCSVK7du2spo8ePVrNmzeXJA0ePFhubm7q2bOnTCaTqlSpomHDhiV5rAAAAAAAAAAAwLEcXtg4ceLEC5fx8vLSsGHDKGYAAAAAAAAAAODiHP6ODQAAAAAAAAAAgLiisAEAAAAAAAAAAJwGhQ0AAAAAAAAAAOA0HP6ODQAAAAAA4Bw8d+51dAhJzhVzBgAguWPEBgAAAAAAAAAAcBoUNgAAAAAAAAAAgNPgUVQAAAAAAAAAEItrx+Y4OgQAsWDEBgAAAAAAAAAAcBoUNgAAAAAAAAAAgNOgsAEAAAAAAAAAAJwGhQ0AAAAAAAAAAOA0KGwAAAAAAAAAAACnQWEDAAAAAAAAAAA4DQobAAAAAAAAAADAaVDYAAAAAAAAAAAAToPCBgAAAAAAAAAAcBoUNgAAAAAAAAAAgNNwd3QAAFKm3cvfUnh4hN22V6jmdLttCwAAuJa9e/dq1qxZOnLkiEJDQzVlyhTVrl3b0WEBAAAAiCdGbAAAAABI0R4/fqzChQtr2LBhjg4FAAAAgB0wYgMAAABAila9enVVr17d0WEAAAAAsBMKGwAAAACQDHnu3OvoEAArVx79ZLdt5Uxbx6blk+LvwZ752UPEsSOODgEAbHLt2By7bStbsU522xZSJh5FBQAAAAAAAAAAnAYjNgAAAAAgGg8PowyGpNufu7sx1ulGYxIGAZfg5uYmKTLe69vz7yI5tu+k/LuPC6PRee9FdXMziHtpkdhcuZ15esZ+7eBo9vzcSk45Pu9aDY5FYQMAAAAAogkLi0jyfZpMMffpGWFO8jiQ0kUqIgHtymzHJpmQOBKLPfOzh4iI+BehHM/NyeOHc3DddhbbdUNyYM/zkdxyTG7xwFXLmgAAAAAAAAAAwCkxYgMAAABAivbo0SNdvHjR8vvly5d1/Phx+fj4KEeOHA6MDAAAAEB8UNgAAAAAkKIdOXJE7du3t/w+evRoSVKzZs00ZswYR4UFAAAAIJ4obAAAAABI0SpVqqQTJ044OgwAAAAAdsI7NgAAAAAAAAAAgNOgsAEAAAAAAAAAAJwGhQ0AAAAAAAAAAOA0KGwAAAAAAAAAAACnQWEDAAAAAAAAAAA4DQobAAAAAAAAAADAabg7OgAAAAAAAOBarjz6yS7byZm2jl22AwAAnAsjNgAAAAAAAAAAgNNweGFj79696tq1q6pUqaLChQtry5YtVvPNZrMmTpyoKlWqqFSpUurYsaPOnz/vmGABAAAAAAAAAIBDObyw8fjxYxUuXFjDhg2Ldf6MGTM0b948ffrpp1qyZIlSp06tLl266OnTp0kcKQAAAAAAAAAAcDSHv2OjevXqql69eqzzzGaz5s6dq/fff1+1a9eWJH3xxRcKCgrSli1b1LBhw6QMFQAAAAAAAAAAOJjDR2z8l8uXLys0NFRBQUGWad7e3ipdurT279/vwMgAAAAAAAAAAIAjJOvCRmhoqCTJ19fXarqvr69u3rzpiJAAAAAAAAAAAIADOfxRVInBw8Mog8HRUdhXVD6enkaZzY6NJbrEOM6ukKPkGnka3AySnXL09DQmeBuukKO9RR2zlJynK+QouUaeyfX/SntyhRwl18jTFXIEAAAAgMSSrAsbfn5+kqRbt24pS5Yslum3bt1SkSJFnrteWFhEoseW1KI6vyZTRLLq/LonQiyukKPkGnmaI+23UZMp4X/XrpCjvUV99qTkPF0hR8k18kyu/1fakyvkKLlGnq6QIwAAAAAklmT9KKpcuXLJz89Pu3btskx7+PChDh48qMDAQAdGBgAAAAAAAAAAHMHhIzYePXqkixcvWn6/fPmyjh8/Lh8fH+XIkUPt27fX1KlTlTdvXuXKlUsTJ05UlixZVLt2bQdGDQAAAAAAAAAAHMHhhY0jR46offv2lt9Hjx4tSWrWrJnGjBmjd955R0+ePNHQoUN1//59lStXTjNnzpSXl5ejQgYAAAAAAAAAAA7i8MJGpUqVdOLEiefONxgM6tWrl3r16pWEUQEAAGe0e/lbCg+337s/CtWcbrdtAQAAAAAA+3B4YQMAAAAAACA+rjz6ydEhAAAAB0jWLw8HAAAAAAAAAACIjsIGAAAAAAAAAABwGhQ2AAAAAAAAAACA06CwAQAAAAAAAAAAnAaFDQAAAAAAAAAA4DQobAAAAAAAAAAAAKfh7ugAAAAAAAAAYM148aqjQ4g3g0Eymm1bJyJPjsQJBslGQts0bQRAdIzYAAAAAAAAAAAAToPCBgAAAAAAAAAAcBoUNgAAAAAAAAAAgNOgsAEAAAAAAAAAAJwGhQ0AAAAAAAAAAOA0KGwAAAAAAAAAAACn4e7oAAAAAAAAAAAASe/asTmODiFW9oorW7FOdtkOkh9GbAAAAAAAAAAAAKdBYQMAAAAAAAAAADgNChsAAAAAAAAAAMBpUNgAAAAAAAAAAABOg8IGAAAAAAAAAABwGhQ2AAAAAAAAAACA06CwAQAAAAAAAAAAnIa7owMAANhXmjnL7LvBAPtuDgAAAAAAAEgIRmwAAAAAAAAAAACnwYgNAAAAAAAAOJTx4lVHh5DkIvLkcHQINnPF8wQgeWLEBgAAAAAAAAAAcBoUNgAAAAAAAAAAgNPgUVQAAKfDC9IBAAAAAABcF4UNAAAAAADs4Mqjn+yynZxp69hlO5J1TAaDZDbbbdMAAAe5dmyOo0NwSfY87tmKdbLbtuwVlz1jSgo8igoAAAAAAAAAADgNChsAAAAAAAAAAMBpUNgAAAAAAAAAAABOg3dsAAAAOJHdy99SeHiE3bZXqOZ0u20LAAAAAICkwIgNAAAAAAAAAADgNChsAAAAAAAAAAAAp0FhAwAAAAAAAAAAOA0KGwAAAAAAAAAAwGk4zcvD58+fr1mzZik0NFRFihTRkCFDVKpUKUeHBcQLL34FAABIWvQnAAAAgJTDKUZsrF+/XqNHj9YHH3ygFStWqEiRIurSpYtu3brl6NAAAAAAJHP0JwAAAICUxSkKG3PmzFGrVq3UokULFShQQMOHD1eqVKm0fPlyR4cGAAAAIJmjPwEAAACkLMm+sGEymXT06FEFBQVZprm5uSkoKEj79+93YGQAAAAAkjv6EwAAAEDKYzCbzWZHB/Ffrl+/rmrVqmnRokUKDAy0TP/iiy+0d+9eLV261IHRAQAAAEjO6E8AAAAAKU+yH7EBAAAAAAAAAAAQJdkXNjJmzCij0RjjxX63bt1S5syZHRQVAAAAAGdAfwIAAABIeZJ9YcPT01PFixfXrl27LNMiIyO1a9cuq6HkAAAAAPBv9CcAAACAlMfd0QHERadOnTRgwACVKFFCpUqV0vfff68nT56oefPmjg4NAAAAQDJHfwIAAABIWZyisNGgQQPdvn1bX3/9tUJDQ1W0aFHNnDmToeMAAAAAXoj+BAAAAJCyJPtHUUV566239PPPP+vIkSNaunSpSpcu7eiQ7MZsNjs6BAAAkj3+vwSQEI7sT8yfP181a9ZUyZIl1bJlSx06dOg/l9+wYYPq1aunkiVLqnHjxtqxY0cSRQpnZ0tbW7Jkidq0aaMKFSqoQoUK6tix4wvbJiDZ/pkWZd26dSpcuLC6deuWyBEipbC1rd2/f1/Dhw9XlSpVVKJECdWtW5f/QxEntra17777TnXr1lWpUqVUvXp1BQcH6+nTp0kULaI4TWEjJTMYDJKePes3pVmzZo02btzo6DAS3c2bNx0dQpJwhTxdIUdJunTpkqNDSHTkmHKcPHlS0rP/L1NqccNVzqWrfMYC0a1fv16jR4/WBx98oBUrVqhIkSLq0qVLjJeZR/nrr7/Ut29fvf7661q5cqVq1aqlDz74wPJZCDyPrW1t9+7datiwoebOnatFixYpe/bs6ty5s65fv57EkcOZ2NrOoly+fFmff/65ypcvn0SRwtnZ2tZMJpM6deqkK1euaOLEidq4caNGjhyprFmzJnHkcDa2trU1a9Zo3Lhx6t69u9avX6/PPvtM69ev1/jx45M4clDYcKD58+dr9uzZWrp0qe7fvy83N7cU9YXN0KFD1b9/f61atUo//fSTo8NJNJMnT9bIkSNT/N1NrpCnK+QoSZMmTdJHH32kzZs3OzqUREOOKceECRPUtWtX/fDDD5JSZnHDVc6lq3zG/ltKa6+w3Zw5c9SqVSu1aNFCBQoU0PDhw5UqVSotX7481uXnzp2rqlWr6u2331ZAQIA+/PBDFStWzPI5CDyPrW1t3Lhxatu2rYoWLaqAgACNGjVKkZGR2rVrVxJHDmdiazuTpIiICPXr1089evRQ7ty5kzBaODNb29ry5ct17949TZkyReXKlVOuXLlUsWJFFSlSJIkjh7Oxta3t379fZcuWVePGjZUrVy5VqVJFjRo1crl+TnJAYcNB3nnnHf3444/6888/tXr1ar322ms6ffp0ivrCJmPGjJo/f75y5cqlNWvWaNOmTY4Oye6WL1+uyZMnKyQkRMuWLUuxH2KukKcr5ChJa9eu1ZQpU5QlSxZt2LBBW7ZscXRIdrdu3TpyTCG2bt2qOXPmqE6dOtqxY4fmz58vKWUVN1zhb1Jync/Y8ePHq2/fvvr888+1bt06SSmrvcJ2JpNJR48eVVBQkGWam5ubgoKCtH///ljXOXDggCpXrmw1rUqVKjpw4EBihgonF5+29m9PnjxReHi4fHx8EitMOLn4trMpU6bI19dXLVu2TIowkQLEp61t27ZNZcqU0YgRIxQUFKRGjRrp22+/VURERFKFDScUn7YWGBioo0ePWvo0ly5d0o4dO1S9evUkiRn/4xQvD09ptm/frhs3bmjVqlWSpDt37mj06NF68803NW/ePBUtWlSRkZFyc3PuutOHH34og8GgDBkyaPbs2Vq7dq0kqW7dug6OzH6CgoL0999/6+rVqxowYICWLFkiSSpVqpSDI7MvV8jTFXKUpPr166tRo0a6f/++goODtXr1aklS7dq1HRyZ/dSvX18NGzYkxxSgVq1aOnjwoCIiIjRlyhTLiIa2bdtaviyOepyjs2rQoEGK/5uUXOMztmfPngoJCVHjxo11/PhxTZo0SQcOHNDHH3+cYtorbHfnzh1FRETI19fXarqvr6/Onj0b6zo3b96M8VJzX19fHuWG/xSftvZvY8eOVZYsWay+3AGii08727dvn5YtW6aVK1cmQYRIKeLT1i5duqQ//vhDjRs31vTp03Xx4kUNHz5c4eHh6t69e1KEDScUn7bWuHFj3blzR23atJHZbFZ4eLjefPNNde3aNSlCRjTO/c25k0qVKpUiIyN148YNSc9GNnzxxReqW7eu3n77bd2+fdvpixpRnXez2ayAgAC9++67Sp8+vdauXZuiRm5kz55dkpQjRw599NFHunjxopYsWZLi7kTNli2bpJSXZ/Q7aKOeu5nScpRivr/HbDYrffr0euedd5Q2bVqtXr3a6e8Sj8oxLCzM8vmZUnN8+PBhis1Riv2xPUajUW+88YbKly+vzZs3p6iRGyn5XEaXUv8fiXLmzBlduHBB06dPV/v27fXxxx9rwIABWr16tUaMGCFJFDUAJGvTp0/X+vXrNXnyZHl5eTk6HKQQDx8+1EcffaSRI0cqU6ZMjg4HKZzZbJavr69GjhypEiVKqEGDBuratasWLVrk6NCQwuzevVvTpk3TsGHD9OOPP2ry5MnasWOHpkyZ4ujQXI5zf3vupLy8vBQeHq7z589LkmVY3NChQ1WyZEnNmjVLkZGRTvVlTdQXbo8ePZIkqzsTzWaz8ubNmyKKG9G/IP73+SlZsqT69++fIr6sicrz6dOnevr0qdWXMSklz8jISBkMBt24cUPXr1+Xm5ubIiMjFRkZmWJylGQZ/XXy5En9/fffMhqNlvMZEBCgt99+2+m/SI3K8cyZM1q0aJGlaCylvBzPnTunjz/+2PL/R1TxOCXkKP3v7/LOnTu6fv26rl27ZpmXNWtWtWzZ0umLG1GfryaTSSaTyWpeSjuX0rNrnPDw8BT5/0h0qVKlktFo1NWrVyVJ6dKlU40aNTR+/Hht375d8+bNc3CEcJSMGTPKaDTGePnkrVu3YozKiJI5c+YYozP+a3lAil9bizJr1ixNnz5ds2bN4ln0+E+2trNLly7pypUrev/991WsWDEVK1ZMK1eu1LZt21SsWDFdvHgxqUKHk4nPZ5qfn5/8/f1lNBot0/Lnz6/Q0NAY191AlPi0tYkTJ6pJkyZq2bKlChcurFdffVW9e/fW9OnTY9xYisRFYcMBAgMDVbFiRX344Ye6dOmS5UPX09NTAQEBlhEbznJnX9QXbqdPn1bPnj21dOlSSc8vbnh7eztlcSP6l6dffPGFevXqpZUrV1qKOSnlC/HoX4T3799fXbt21fjx43Xp0iXL/JSQp5ubm65fv6569epp6NChunjxotzc3GQ2m1NMjlHn8sSJE2ratKn+/PNPyzyz2ZwivhQ3m81yc3PT33//rVatWunJkydKkyaNpP99sersOUadx7///luvv/66Nm3apGPHjklKOedRss6zS5cu6tatmz766CPL/ynSfxc3nEH0v8l+/fqpQ4cO+uKLL6z+P0xJ5/LEiRMaPHiw3nnnHc2ePVv79u2zLJMSPmOjy5gxo8LCwqzuCDSbzapQoYLefPNNHThwQCaTyamKcLAPT09PFS9e3OplzFEvZw4MDIx1nTJlyuiPP/6wmvb777+rTJkyiRkqnFx82pokzZgxQ998841mzpypkiVLJkWocGK2trP8+fNrzZo1WrlypeVfzZo1ValSJa1cudIyohP4t/h8ppUtW1YXL160+mL5/Pnz8vPzk6enZ6LHDOcUn7b2zz//xHjSTtR3u1zvJy0KG0kgeqOO+oAdPny4ypUrp9atW+vw4cN69OiRDAaDUqVKpfDwcIWFhTnNH4Obm5tCQkLUs2dPXbhwQTt37tSKFSskPfuyKeoO3OjFjRw5cmj+/Pn67bffHBx93ER9eXrixAm99dZbMpvNypo1q4KDg7Vhwwar5UqWLKm+ffvqwoULWrZsmVO96DF6nu3bt1dgYKCaNm2qH3/8USdOnJD0v8emOHOeUTw8POTr66u0adNq3LhxOn/+vIxGo1Vxw1lzjP7FYvv27TVo0CC1bdvWMt9gMFiN3OjSpYvSpk2r9evXO1XR0WAw6MGDBxoyZIi6deumd999V+nSpdODBw90+/Zty3LOmmP0L/s7dOigTz75REOGDNGMGTN069YtqyK4s+YYxc3NTRcvXtTbb7+t1q1ba8SIESpfvrz++OMPq1GMWbNmVYsWLVS+fHmnuxM+atRNx44dVapUKTVv3lw3b97UpEmT9N1331mWSwnn8vz582rXrp1y5cqll156Sb///ru+/fZbLV682LKcM3/GRhcZGak0adJozJgxWrt2rSZOnCjp2eeTp6enChcurHPnziksLMxpinCwr06dOmnJkiVasWKFzpw5o08//VRPnjxR8+bNJUkfffSRxo0bZ1m+ffv22rlzp2bPnq0zZ85o0qRJOnLkiN566y1HpQAnYWtbmz59uiZOnKjg4GDlzJlToaGhCg0Ntdy4BcTGlnbm5eWlQoUKWf1Lnz690qZNq0KFCvFlM/6TrZ9prVu31t27d/XZZ5/p3Llz2r59u6ZNm2bVDwZiY2tbq1GjhhYuXKh169bp0qVL+u233zRx4kTVqFHDasQQEh8vD08C0Tux0UcxTJo0SYMGDVKvXr0UEBCgTJkyadOmTVq0aJE8PDwcGLHtdu/erapVq6pp06Zavny5fvrpJ0lSs2bN5ObmpoiICMsXxv7+/jIYDDp9+rTy58/v4MjjxmAw6ObNmxo0aJC6du2qDh06SHr25dP8+fNVv359pU2bVtKz4kDp0qU1btw4NW/eXGnSpFGxYsWc4qLNYDDo2rVr6tatm7p166b27dvLZDLp888/1+bNm5UnTx6Fh4erWLFikuS0eUbx9PRU+vTplS9fPl24cEFfffWVBg4caHl3iuS8OUaNSGnTpo2aNWum9u3bS5K+/fZbXblyRf7+/ipbtqzlDoQCBQpo6NCheuONN2QwGFStWjWlTp3akSnE2aNHj2Q0Gi05fvDBB7p//77CwsJUoUIF9e3bV5Jz5hg1SqxZs2YaNGiQmjVrpt27dys8PFwXL16Ur6+vpfghOWeO0f3xxx8qUaKEWrZsKenZO1M+//xznf6/9u48rsb0/+P4q6NS0mbLEmOtoUWDlNIkamRnrGPfCiMSQ7KNZWYYO2GQ/WsdyxiM3xjLlxmG8bUMGUtkiYhITJLW3x89zj0dZR0zdXc+z8fD48E517nP9e46Hedcn/u+ritXiI+Px9PTE8je3ygoKIjevXvz008/0a5dO4oXL56fXX9tP//8s7KnFoC7uzuDBg1i5syZZGRk0K9fP0D9Y3n06FE8PDwYMmQIAP7+/uzYsYPvv/+eIkWK0KFDB0C977E5aa/2c3BwYNq0aYwdO5Y///yT4OBgzM3NuXXrFqampqo5YUW8e82bNychIYH58+cTHx9PzZo1WbZsmbK8wZ07d3TO+qtTpw4zZ85k7ty5zJ49m8qVK7Nw4ULs7OzyK4JQiTd9rW3cuJG0tDSGDh2qc5ygoCDl/VuI573p60yIt/Wmr7Vy5cqxfPlypk6dSuvWrbGxsaFnz54EBATkVwShEm/6Whs0aBAGBgbMnTuXu3fvUqJECXx8fAgJCcmvCHrLIEu+Zf1jZsyYQVxcHJaWltSrV4/mzZsr92mLGwB79uwhLi6OpKQk/P39qVatWn51+a2lpqZy8eJFnJ2duX//PosWLSIuLg4/Pz/atWsHoDP5NnXqVFq0aIGzs3N+dvuNXL58mc2bN9OvXz/KlClDeno6p0+fZsqUKWzdujXXRMypU6fo2rUru3btonr16vnU6zeXmJjInj176Ny5M5mZmbRq1YoSJUrQq1cvjh49SmxsLJ988gne3t4AnD59mk8++UR1ObWvxzlz5tCoUSMyMjJYv349hoaGPHr0iIYNG9KjRw9AvRmTkpLo2rUrjo6OdOvWjfHjx1O+fHlsbGyIjo7G0tKSgIAAHB0dycrKIjIykk6dOrFz505q1KiR391/bXFxcYSEhDBt2jSmTp2KtbU1nTt3JiYmhjlz5tCuXTvlC/vZs2dVl/HgwYPcv39fmQgG6NevH5mZmaxcuTJXezVm1Fq5ciXfffcdERER2NjYsGjRItatW4eLiwuRkZH4+voyYcIEsrKyOH/+PJ07d2bbtm2qmuybOnUq165dU9Zf1Wg0zJw5kwcPHnDv3j1CQ0OVcVPr7yTAN998w+HDh5XlwiD7d3XDhg1ERUUxYsQI5f1Uje+xOT/HPX/7//73P0aMGEHJkiUpXrw40dHRRERE4OjomA89FUIIIYQQQojCSQob/5ChQ4cSFxdHixYtuHnzJt999x1du3ZVzhzWbhheGC5RyuvL/b1791iyZAmxsbG0bdsWf39/wsLC6NChA3Xr1s2nnv49ycnJxMbG6kwu3b17lwEDBuhUcu/evYuNjQ23b98mIyODihUr5leX35h2LLWTbYcOHeLYsWOEhoYC2Zu/TZw4ETs7O0JDQ8nKyuLOnTuqy5nTnDlzSEhIYMqUKRw/fpzx48crlfoGDRqoNqP2KqnExEQGDhxIZGQk7du3Z/LkyQDcunWLzz77jObNmytXOmRlZXH79m0qVKiQn11/Y6mpqXTo0IHy5ctTunRpxo0bR9GiRQFYv349+/btIzw8HDMzM1VmzFkUTk1NxdjYmBMnTjBt2jRCQ0NxdXXVeR9WY0athw8f8sknn1CzZk3u3btHVFQU33//PaVKleLQoUPMnj2bFStWKFdVad9v1eTs2bOEhITQt29funbtyvXr1xk6dCj9+/dn3bp1BAYG4uvrC6h7LK9evUqPHj0YMmQIXbp00bl92LBh9OvXjzZt2gCo6v/LDRs24O7uTpUqVV5Y3AB4/Pgxp06dArKvvrG1tf03uymEEEIIIYQQhZ4sRfUPiI6OJiYmhrVr11K8eHGysrJo1KgRQUFBpKenExoaqhQ0oqOjVXmFRk7Pf6nPysqiTJky9O/fnzVr1rBjxw4mTJiAo6OjaosaAMWKFVOKGtrJjIyMDFJSUihZsiQAPXr0oG3btrRv357y5cvnZ3ffinYstZOo3t7eypUZKSkpVKxYkerVq/Pnn38q7dWYMydXV1dl6bTdu3eTlpZG3bp1Wb58OdWrV6d06dKqzFikSBEyMjKwsrJiyZIlLFu2jN69ewPZY2lra0v16tV58OAB8NdrWm0TqJmZmRgbG/PVV18xcOBAEhMT+eSTT3j//ffRaDRUqVIFjUaDRqNRCgRqy5jzklftlWFVqlQhPT2dgwcP4urqqlPUUOM4QnYxztramq1bt3Lnzh2+/fZbWrRoofz+lStXDmtrawwNDZXCndqKGgA1atQgMDCQuXPnsm3bNpKSkmjZsiVt2rTh8OHDPHz4EFD3WGZlZWFra0uvXr344YcfMDc3p0WLFkD2JqL16tXj6tWrSnu1vMeOHDmSPXv24OPjw7Bhw3IVN3L+3cLCgkaNGuVjb4UQQgghhBCicJOFD/8BFhYWZGZmEhkZqdzWsGFDli5dyvr169mwYQOQvZb43LlzefToUX519Y3kdXFPXrdpJ/zLlStH7969OXToEF5eXqxYseKFj1EbbcbHjx9jaWlJeno6vXv3xsjIiPbt2+d39/4RJiYmQPbSKGovxuVUs2ZNZXmtEydOsG7dOrp06YKPjw+lS5fO7+79LdrihqWlJcOGDcPa2hr4ayyjo6OVSVO1bmirnfR3cHBg8uTJmJmZsWTJEk6fPk1CQgKLFi3C1tYWU1PTQrPWb1ZWFiVLliQoKIjvv/+eCxcuKPepdRwh+/WamZmJmZkZVatWJSoqipMnTwLZmadPn06lSpUoXbq0qq92NDU1VZbQCgsLY+7cuco65jExMVhZWQHqHkvtptlNmzbF2dmZ//znP8om7xkZGfz++++UKFEin3v5Zn788Ufi4+MZPnw4RYsWZe7cuVy7dk3ZOw3+GrOzZ89y7969/OyuEEIIIYQQQhR6shTVP+DRo0cMGDAAZ2dnxowZA/y1lMjq1as5cuQI4eHh3LlzB2NjY1Wcqajtf1JSknKGtHZyVHvmbF6PGTx4ME+fPmXVqlU6xymoXtS/Fy03ERcXR2BgIE+ePKFq1apERES89DgFxZvmTE1N5e7du4SGhmJhYcHixYv/jW7+La+TMTMzk+TkZMaPH098fDxfffUVlSpVemH7guhNxzItLY179+4xcuRILC0t+eabb/6Nbv4tL8qY1+0XL15kzJgxymSjra0t8+fPBwr2WL7pOEL2cmL9+vVj5MiRytJFBd2bjOVvv/3Gp59+SrVq1cjMzMTGxoaFCxcC6hzLnLc//z4UHx/PkCFDsLa2ZsmSJf9qf9+Fl43HzZs3OXjwIIsWLaJcuXKkpaVRvnx51eW8e/cuv//+O02aNOHo0aN89913ZGRkEBwcTNWqVZXxjY6OZuLEicyaNYsyZcrkd7eFEEIIIYQQotCSwsY/5MyZM3Tr1o2goCAGDhyo3H7o0CEWLVrEqlWrMDU1zccevj7tl/ULFy4wadIkUlJSqFSpEo6OjgQGBgJ/FTdyTm6kpqayZ88eWrVqpXOcgkrbv9jYWC5cuICRkRFVq1ZV1vzOq//37t3Dx8cHX19f5s2b98J2Bcmb5szIyODixYtK0Wbu3Ll5titI3jRjVFQUpUqVokSJEgU61/PeNGdWVhaxsbHMmjWL9PR0wsPD82xXkGj7dvPmTY4cOYKJiQkVK1ZUlrXLWVjVvv+kpKSQmJhISkoKlStX1jlOQfQ27z1aBw8eVM1yN28yllq3bt3i1KlTWFpaKsviqWEs3yRjRkYGy5cv5+bNm0yZMkXnOAWVtn/Pnj1T9rN5VbHp/v37yuvb3d1d5zhqkZaWhpGREZD9ee77778nPT2dYcOGUbVqVQ4dOoSnpyd//vmncoWcEEIIIYQQQoh/hhQ2/kH79u0jODiY3r1707lzZypVqsS6devYuXMnERERmJub53cXX1tcXBwdO3YkMDAQOzs7/vjjDzZt2oSTkxMzZ84EdL/wP7+hq1omLy5dukT37t1xdXUlMjKSmjVr4urqSkBAAJCdIysrSynipKWl8fPPPytnSxfGnJA9tjExMcoSVGrI+ToZMzIylNcsFOyzwF/kTccS4MaNG7z33nvK/QV9LKOioujSpQve3t5cu3YNY2NjateuzdixY4HsiWEgV3FVSw3j+jbjmJMaxhH+/liqIeebZNTSbgoPBT9jzisTFi9eTNu2bfH09ARy/66lp6djaGiYZ6aCnvNFcmbUFjeKFi2Kubk5mzdvZteuXarcF0UIIYQQQggh1EYKG/+w48ePM3bsWMzNzTExMeHatWtERETg6OiY3117I9r9QDZu3AhkT8JERkYSEhKCp6cnU6dOVdqOGzeOevXq0bZt23zq7ZvLysri2bNnBAQE0KBBAz799FOuXr3KL7/8wpYtW2jUqBEjRozQeczBgwdp2LAhhoaGgDomad42Z4MGDV77rNz89rYZ3d3dleXV1OBd5FTDWKalpTFs2DBq1qzJkCFDuHfvHmfPnmXixIk0bNiQadOm6Txm8+bN+Pr6quZs6bcdRzc3N9Vc9QdvP5ZNmjRRzV4Mb5uxcePGlCxZUjlGQf6d1Lp16xZ9+/bl4cOHNG7cmHbt2ilXYeSV4dy5c6r73PMyOTNGRkYyYsQIHjx4wOrVqwtVTiGEEEIIIYQoyAr2LGwhUL9+fdauXcvo0aMJDAxky5Ytqv3S++TJEx48eACAkZERdevWZcaMGURGRrJ582alXZMmTVRV1IDsDT9NTEwwMzPj/fffB6Bq1ap8/PHHDBgwgEOHDrFmzRql/bp169i3b59S1AAKfFED3j6ntqihPUZB9rYZ1VTUgHeTUw1jqd3PR3uFW5kyZfD19WX+/PkcPXpUuWIMYPfu3Vy5ckU1RQ14+3FUU1ED3n4s1VLUgLfPqC1qaI+hBvv27cPDw4OVK1fy8OFDvv32W44dOwZkZ8jMzFTazp8/n+XLl+dXV/8ROTcMP3nyJDdv3mTDhg2q/XwnhBBCCCGEEGpU8GdiCwEbGxvq169Po0aNVLs8QZ06dXj27Blff/018Nfki7OzM66urpw/f15p6+PjA4DaLgbKzMzk0aNH/PTTT8pt5ubmeHl50bJlS06ePElSUhIA3bp144svvsivrv4t+pBTHzKCfuTMzMzEwMBAmTSF7PcWFxcXRo0axZkzZ7hx4wYAzZs3JywsTGmjFvowjqA/Y1nYMwJ88skntGzZEkdHRyZMmEBSUpJS3MjKykKj0SiZhg4dypw5c/K5x++egYEBT548ISoqis2bN2NnZ5ffXRJCCFEIhIeHY29vr/xxd3enZ8+enDhx4h97zm3btuk8Z7169ejcuTP79u17J8e/desW9vb2/Pjjj6/Vj4SEhHfyvH9XQkICDg4OfPDBB6SkpOR3d4QQQuRBChvilTIyMjA2NmbOnDn8/PPPOpNqpqamODs7c//+fWXdcC21nHkKKBMxY8aM4fDhwyxdulS5z9LSkvr163P06FHu3LmT63Fqog859SEj6EdObcZRo0Zx/PhxZck7AwMDNBoNtWrVIjY2locPH+Z6nFref/RhHEG/xrIwZ4Ts4k3RokWpV68eALa2towfP56kpCQ2bdpEZGQkALNmzeLSpUvK49T2mn0dZmZmTJo0Sa7UEEII8U6ZmJiwadMmNm3axMSJE0lMTKR3795ERUX9o8+7bNkyNm3axPTp0zE2Nmbw4MH88ssv/+hzFmS7d+8mPT2d5ORkDhw4kN/dEUIIkQcpbAgdeU08aDc4dXBwYPr06ezcuZOQkBDOnj3L/fv32bRpE+XKlXvhprZqoJ1Usre3Z/DgwezYsYNvvvlGud/FxYWqVau+8HFqoQ859SEj6EdO7ZI2NjY2zJkzhx07dugUVqtUqYK1tTWpqam5HqcWhX0ctUsS6ctYFvaMkHvZxczMTCpWrMiYMWNIS0tj1apVeHp6cv78eezt7ZV2asv5uoyMjPK7C0IIIQoZjUaDi4sLLi4u+Pv7s3jxYtLT05X9Lt/Wq646cHBwwMXFhcaNG/PNN99gbm7O2rVr3/p4ardr1y6qVauGjY0NO3bsyO/u6CjsP3shhHhdUtgQgO7kU163a3344Yds3LiRW7duMXHiRPr370+ZMmUYM2YMoP4zMo2NjfH396dXr16sXr2agQMHEhERQYcOHbCwsKBGjRr53cV3ojDkzOu1lvO2wpARdH8H88pcGHI+/z6Tk3YS1cvLixkzZrBjxw569OjB5MmT6dChA1ZWVtSvX//f6upb02ZMT0/P8/7CMI7wV87Hjx8DupPghWUs8/o91OYuLBnfhEajIT09ncqVKzNq1Ch2796Nm5sbK1asANT/uUAIIYTIb+XLl6dEiRLcunVLuW3btm20atUKJycnvLy8mDNnjs4KCtplnU6fPk2fPn1wcXFh+vTpr/2cxYsXp0qVKspzhoeH88EHH3D27Fk6d+6Mk5MT69atA+B///sfXbp0wdnZGTc3N8LCwkhMTMx1zKdPnzJmzBjq1q1L/fr1mTp16gs/G2ulpqYye/ZsfHx8cHR0pFmzZuzcuVOnzejRo2nZsiW//vorrVq1wtnZme7du3Pr1i0SExMJDg6mTp06+Pr6snv37tfKf/PmTU6fPk2rVq1o0aIFhw8fzjPTwYMH6dKlC7Vr18bV1ZUePXroLNP9+PFjpkyZwocffoijoyONGzdm1qxZyv2NGzdm8uTJOsfct28f9vb2ys9eu5TXtm3bGDduHG5ubnTs2FF5/j59+tCgQQPq1KlDx44d+fnnn3P18+7du4waNQoPDw+cnZ3x9/dn9erVAEybNo1GjRrl+k526NAh7O3tuXLlymv9zIQQIj9IYUOQmZmJRqMhJiaG//znPzqbgGo0GuUDknZyokqVKqxbt46FCxcyb9485s+frxynIJ+R+fx/1C+aTLW2tqZDhw6sX78eMzMz7t69i7u7u7JETEGfpMk5gZqWlvbCdmrOqX2tJSUl8fjxY2X/gedff2rOCH8tbRMbG8uVK1d0NqzNSc05te8/Fy9efOk6vhqNhoYNG7Jnzx7q1KmDtbU1vr6+yqbELyuO5DdtxujoaNasWUNcXFye7dQ8jvBXzqtXr9K/f3+OHDmSZzu1j6WBgQEJCQnExsYqXzhz7imh/bdaM8Jf/UtNTeXZs2d53peToaEh6enpjB07Fk9PT2bPnq20LcifC4QQQgg1SEpKIjExkTJlygCwcuVKxo0bR8OGDVm8eDEBAQGsWbMmzz2tRowYgbu7O4sXL6ZNmzav/ZwZGRncuXNHeU6AtLQ0RowYQevWrYmIiMDT05Nz587Rp08fzMzMmDdvHp999hn//e9/CQgIyLVU9ezZs8nKymLu3Ln069ePtWvXMnfu3Jf2Izg4mE2bNtGnTx+WLFmCl5cXI0eO5NChQzrt4uPjmTZtGoMGDWLmzJnExMTw2WefERISgp2dHeHh4Tg4ODBy5EhiY2NfmX/Xrl0AtGzZkpYtW5KWlpZrj5Ddu3czcOBASpYsyaxZs5g5cyZ16tTh7t27QPbnqF69erFz50769etHREQEQ4YMybUs6evS/vxmzZrFyJEjgeyih4+PD9OnTyc8PJw6deoQGBjIb7/9pjzu4cOHdO7cmePHjxMSEsKSJUvo3bu30s+OHTty586dXJ/dt27diouLC9WrV3+r/gohxL/BML87IPKfRqPh8uXLdOrUCV9fX65evYqhoSE1atTgiy++oEiRIqSnp2NoaMjVq1d58uQJTk5OlCtXTjmGdgK2oNJOuMXGxhIZGYm/vz8ajUa5/fl2z549o2rVqjpnU+S8v6DS9u/y5cusWLGCW7du4ebmRrNmzahWrVqudmrMqe3bpUuX+OKLL9BoNJQsWZKuXbsqa77nbKfGjDklJCTQvHlzSpUqxZw5c3B2dtZZk1/NOXOOZYcOHfjss89ytcnKylLeX5KSkrC2tmbYsGE6k6UFOaO27xcvXqRbt24EBgZibm6u0ybn2f5qHEfQLVD17NmTx48fc+HCBTw9PfN8vapxLHNmHD16NBqNhmLFitGsWTO6detWKDKCbs558+bx4MEDnJ2dcXZ2pnXr1soJDxqNBgMDA1JTUzE2NiYjIwNfX1969eqlcxwhhBBCvDntlQxxcXF8/fXXZGRk0LRpU5KSkpg/fz79+/dn+PDhAHh6emJkZMS0adPo168f1tbWynG6dOlCYGDgaz1nZmYm6enpJCQk8M033xAfH8+QIUOU+9PS0ggJCaF58+bKbUFBQZQuXZrFixcryzOWK1eOfv36cejQIRo3bqy0rVSpkrIHmZeXFykpKaxcuZKAgAAsLS1z9efYsWMcOHCA5cuX07BhQyVrfHw84eHheHt7K20fPXrE2rVrlauc7927x5QpUwgICGDw4MEAODk5sXfvXvbt26d8XnmRH374ARcXFypWrAhA1apV2blzJ126dAGyP+N//fXXeHp6snDhQuVxOfu0fft2zp8/z8aNG/nggw+U29u1a/fS536R999/ny+//FLntu7duyt/z8zMxM3NjStXrvDtt9/i5uYGwKpVq3jw4AH/93//h62tLQANGjRQHletWjXq1q3L1q1b8fLyArKLIQcOHGDChAlv1VchhPi3yDdOQUpKCuHh4fTs2ZMZM2YQERFBUFAQv/76q/JBxtDQkIcPHzJjxgy2b99OZmamzhkYBf2MTO1ZxO3atWPp0qVs3bpVuT3n2acajYaoqCgWL15MQkJCrjOkC/IkjXYCNSoqih49elChQgV8fX05cOAA33//vU5btebMmbFXr174+voybNgwLl++zIULF3TaqjVjTgYGBpQoUQInJyecnJz4/PPPOXXqlM6VG2rNmXMse/bsyejRo+nduzege0a4duPl6OhopkyZwvXr13O93xTUjIByZdHEiRP59NNPGTBgAGZmZjx8+FA5S0qj0ah2HEF3IrxXr16MGzeOZcuWsWzZMqKjo3XGS81jqdFouHnzJgEBAXTr1o0ZM2bg6enJb7/9prOMgpozQnb/rl+/Tt++fXF1daVnz54kJyezdOlSZf+XIkWKYGBgQFRUFIsWLeLBgwcULVpUihpCCCHEO5CcnIyDgwMODg40adKE3377jQkTJuDl5cXp06dJTk7G39+f9PR05Y+HhwcpKSlcvnxZ51iNGjVS/q4tXGj/PP9509PTEwcHB7y8vNi2bRuDBg2iU6dOOm1yTtwDnDhxgiZNmujsOdWwYUMsLCw4efKkTls/Pz+dfzdt2pSnT5++cFP0I0eOYGVlhbu7e66sFy5c0JmPKFOmjM7SrZUrVwbAw8NDuc3CwoISJUq88OpprYsXL3L58mVatmyp3NaiRQtOnjzJ7du3Abh69SpxcXG0b9/+hcc5evQo1apV0ylq/B05x1IrLi6O0NBQvLy8qFWrFg4ODhw+fJhr167p9MPd3V0pauSlU6dO7N+/X1lua+fOnRgZGekUsYQQoiCSb516THupoYmJCaamppiZmQFQokQJvLy8CA8P58KFC0yZMgXIXialSZMmnDx5kmfPnqlqs/CkpCQWLlyIj48P9erVY+/evWzevBnIXdw4ceIEO3bsICEhocAXbHIyMDDg4cOHTJw4kYCAAIKCgujVqxfDhw9n+/bt3Lt3T6e9GnMaGBhw//59Ro0axcCBA+nVqxcffPABDx8+5ODBg5w4cYL9+/cr7Y8fP666jDllZmaSlpaGsbExNWvWxN3dncmTJ/PHH38oZ0pD9rq2asupXc5n0KBBuLu7K2cbTZs2jeDgYCZOnKizfu6VK1e4fv16rtexGjx9+hSAzp07AzBw4EAGDx5MUFCQ8v4K6n29ajQarl27Rtu2bRk8eDCtW7emcuXK1KhRg99//x1A54vn1atXVTuWJ0+epGbNmnTs2JFq1arh4+PD3bt3uXjxIv/973+VdlFRUarNCNlfgH19fenbty8tW7YkODgYIyMj5s+fz4IFC5R22vee55dUkKKGEEII8fZMTEzYsmULW7du5cCBAxw7doxu3boBKP/ntmvXTil+ODg48NFHHwFw584dnWOVKlVK+fuYMWN0HvPdd9/ptF21ahVbtmxh7969nDx5MtdVpznnDLQeP35MyZIlc2UoWbIkjx490rmtRIkSefYtPj4+z5/Dw4cPSUxM1Omzg4MD48aNIz09XedxFhYWOo/VFlqev1La2Ng41zKbz9uxY4eyrOjjx495/Pgx3t7eZGVlKUtUaQsAOZfqel7O5cPehed/zpmZmQwaNIiTJ08ydOhQ1qxZw5YtW/jwww+V74mv2w9/f39MTEyUTdK3bdtG06ZNKV68+DvrvxBC/BNkKSo99eDBAzZs2EDNmjWxtrZGo9Hw66+/KpepZmZmUqtWLUaPHs3q1auJiorCzs6ODh06EBsbS0JCAhUqVMjnFK/P1NSU+vXrU69ePaytrfnmm2+UCfCOHTvqTMJ07dqVixcvsmLFCr766iudZVQKuoyMDGrXrq1cQpqamkqVKlWwsLDA0FD3112tOS0tLQkICKBFixZkZmbSrl077OzsCAwM5MyZM+zdu5c7d+7QvXt3unfvrizLpaaMWgYGBhgZGdGkSRMsLCxo3bo1qampfP7555iZmeHi4kJISAjdunUjKipKdTnNzc1xcXEhKyuLH374gYiICCpXroyLiwvXrl1j69atGBkZ4e/vT9OmTTl37hwrV66kfv36qsmoVaRIEe7evUtYWBjW1tYEBwcTExPD7NmzmTp1KmFhYap+vRoYGPD1118razfb2tpSrVo1IiIiaN++PUWKFFHy+Pn5cfbsWVWO5ZMnT4iJieH27duUL1+e//73v8TExLB06VLOnTvHjz/+yNdff02zZs04f/68KjMC3L59W+dMPxsbG3x8fKhZsyanT5/mjz/+wMHBQbXvPUIIIURBptFocHJyyvM+7ZJNCxYsoGzZsrnuf9lZ+UFBQUqBJK+29vb2uYoPOeX1f7ylpSUPHjzIdfuDBw9yLS+VkJCg8+/79+8DULp06Tyfz9LSkhIlSij7zT3vZX19W1lZWezevZvMzEz8/f1z3b9z504CAwOxsrICeOlJLFZWVly6dOmlz2dsbJxrX8znC0Jaz//8b9y4wfnz51m4cCG+vr7K7SkpKbn68aqTbUxMTGjVqhXbtm2jbt26XLhwgXHjxr30MUIIURBIYUNPFS1alNjYWA4cOECHDh0IDQ2ladOmjBs3Ttm3AKBmzZrcvn1bOSMBsjfwUpOsrCyKFClCx44dMTAwwMDAgAEDBrBkyRL2799PVlaWcontoUOH8Pb2ZvTo0SQnJwMFf5mtnEqVKkXv3r2xsbEBsj8oac/sSEhIUD78nTt3DkdHR9XlzMzMxMjIiBYtWgBw/vx5WrZsSUBAAAC1atXixo0bHDt2jE6dOmFsbExoaKiqMuak7a+hoSHbt2+nVatWBAYG0r9/f6Kjo5UrAADV5dSO5dSpU/n888+ZPHkyfn5+fPHFF0D2VVbjx4/n5MmTypeKESNGKGdmqSGjVsmSJUlLS2Py5MnY2toSFhZG8eLFqVmzJk+ePGH79u08fPgQa2tr1Y2jVuXKlZVL/tPS0jAyMmLo0KGcOXOGzZs3K++/2iWK1DqW7du3Z/PmzUybNo379+9z+fJlduzYQZkyZfj111/58ssvuX79OpUrV1ZtRoDWrVvz008/sXTpUnr37s3NmzfZu3cvgYGBrFu3jqtXr+Lg4ACo771HCCGEULMPPvgAU1NT4uLici3t9Cq2trYvLXy8jbp167J//35Gjx6tnEh35MgRHj9+TN26dXXa7t27V1l6FmDPnj2YmppiZ2eX57E9PDxYtmwZRkZGvP/++++03y9y4sQJ7ty5w5AhQ3B1ddW575dffiEiIoJLly5hZ2dH2bJl2bZt2wuXa/Lw8GD37t2cOXOG2rVr59mmbNmyREdH69z2/CbeL6K98iTnMmCxsbGcPn1a+VwO2ftprFixQjkx50U6derEunXrmDp1KpUrV9bZv1IIIQoqKWzoqeLFixMQEMDmzZtxdHTk/fffZ968eXz22WeEhYUpm3pVqFABKysrnWVE1EY70aIt1mRkZFCqVCkGDRrEokWLOHz4MAYGBqxbt446derg7e1NsWLFKFasWH52+61pixpaGRkZpKWlKUWNrl278uGHH+Lo6Ki6nM8vb+Lo6IijoyOQvdyPubk51apV4+HDh8oHa7VlzIubmxunT58GYMmSJaSmpvLRRx8xffp0atWqReXKlVWXU7sEnLGxMZMmTaJWrVrKJfQpKSkUL16cGjVqKOvYaifEX3RGV0Gl7ffUqVMJCAjg+PHjdO7cGScnJwwMDHjvvfcwNDRUvpCobRzzos1iampKpUqVOHbsGB07dgSyx117Vr/axjI9PR0TExO+/fZbYmNj2bp1K/7+/pQrVw7IXorAysoKExMT1b5etSpVqsSgQYOYPXs2P/zwA6mpqTRr1oxWrVpx/Phx/vzzT6VtYXjNCiGEEGphYWHB0KFDmTFjBnFxcdSvX58iRYpw8+ZN9u/fT3h4OKampv9afwYOHEiXLl0YMGAAPXr04P79+8yaNQtnZ+dc+3HExMQQFhZG8+bNOX/+PEuXLqVXr155bhwO2Xt++Pj40L9/f/r374+9vT1Pnz7lypUr3LhxI9dG2u/Czp07KVasGH369Mm17FaNGjVYtWoVu3btYsSIEYSGhjJ8+HCGDBlCmzZtMDY25vfff8fJyQkfHx/atGnD+vXrCQwMJCgoiBo1anD37l1OnDihLEfbtGlTJk6cyIIFC/jggw84dOiQspTrq1StWpWyZcsya9YsMjMzSU5OZv78+bmWnerduzfff/893bt3Z9CgQVSsWJGbN29y/fp1Ro4cqbR7//33cXJy4n//+x8jRoz4ez9IIYT4l0hhQ4+5u7uzZ88eDh8+TIUKFXB3d2fu3LkMGzaMTp06YWdnx4ULF7C0tKRBgwb53d3X9qqlMIoUKUJmZiYlSpRg1KhRTJ8+nfHjx+Pt7c2ECRP+xZ7+Pa+z5Ed6ejpPnjxRihp9+/bF1NSUgQMH/htd/NveZFkT7Qf4vXv34urqqqo13l+V08bGhtjYWPz9/TE0NGTVqlU8e/aMBg0a6JyNU5DllVGj0ZCRkYGxsTHdu3dXNjA0MTEBss9W0n4hUsN4vigjQLVq1ZgyZQqjR49mwYIF9O3blypVqjB37lyqVKmiqvVrX/f30tTUlAEDBtCtWzf2799PkyZNAHWc1Z9XRkNDQ6UYV7lyZS5fvsyVK1fo2bMnGRkZfPnll1SqVCnPZSEKqheNZdGiRWnbti0ffvghN27cwMzMTDmb8tKlS6r6TCCEEEIUNn379sXGxoaVK1eydu1aDA0NqVSpEo0aNdI5e//f4OjoyIoVK5g9ezZDhgyhWLFiNG7cmNDQ0Fx7coaEhHD8+HGCg4MpUqQIXbt2JSQk5KXHnz9/PkuXLmXDhg3ExsZibm5OjRo1+Pjjj995lrS0NPbs2YOvr2+uogZkL33l7e3Nrl27GD58OM2bN8fExITFixczfPhwihYtSq1atZQraYyNjVm1ahVz5sxhyZIlJCYmUrZsWWX1AcheFjsmJoYNGzawatUqmjdvzvDhw1+rsGBsbEx4eDiTJ08mODiYcuXKMWjQII4dO8a5c+eUdtbW1mzYsIFZs2Yxc+ZMnj59SoUKFejatWuuY/r5+XH+/Hnatm37Fj9BIYT49xlkaWeShF46d+4coaGh9OnTB19fX6ysrEhOTmbFihUYGRmh0WiUZX60Z6AWVC/q36v63bRpU+zs7AgPD3+t9vntTXMmJSXxySefcO/ePVxcXFiyZMlL2xcEb5oxOTmZa9eu8eWXX2JhYcHixYuBNyuM5IfXyanNsHDhQk6dOsXnn39OpUqVXus4BcGbjuWzZ8+4fv06kyZN0hnLguxNMl6/fp2wsDDS0tLIysrC1taWefPmAYXj9fr87WlpaQwYMIBmzZrpLJ1WUL1JxrNnzxIYGEjZsmUxMjLCxsZG2Vi7MIxlzr9nZGRw7949goODsbKyeuFa10IIIYQQQr26deuGubm5Kr6DCSEESGFDgHIppJ+fHw0bNsTFxSVXm4I8cQp/9S8mJoZDhw5RtGhRKlWqhLu7O5A9KfP8GSMAW7Zs4bfffmPGjBk6xymo3ibns2fP8PX1xcXFRRXFmzfNmJWVRWxsLAsXLiQ9Pb3QjmVcXBympqZYWloW+ElTrbd5vT569Ijp06eTnJzMnDlzdI5TEL1JRu24paenk5CQQGpqqrLOcUHOCG//HgvZBQBnZ+d/s7tv5W0y3r9/n+PHj2NlZYWHh4fOcQqqt8mZlZXF6tWruXbtGpMmTdI5jhBCCCGEULfIyEhOnjzJ1KlTWblypfK5VgghCjopbAgALl68yJo1a4iKiqJNmzbY2dnh5uaW3916I5cvX6ZTp074+vpy9epVDA0NqVGjhrIZsXafkJwTNjkncNQySfMmObUTqZGRkTg5OQHqyPk6GQ0MDHRy3L9/n1KlSgHqyAivlzMrK0vZL0SN3ub3MjExESsrK0AdY/k2v5M5qaVQ9TZjmZMacv7dsVTD6xX05/9LIYQQQgjxavb29pibm9OjRw+Cg4PzuztCCPHapLAhFE+ePOHMmTNs3LgRCwsLgoODVbPxaUpKCqNGjaJKlSqEhISQkJDAH3/8weeff46Dg4NypYLWhg0baNy4sbLRthom3ODNc65fvx5/f39ljw01TEa9TUY/Pz/ltVpYx3LDhg34+fkpxRs10Iex1IdxBP3I+TYZfX19VfP/pNbb5GzSpImyEaUafi+FEEIIIYQQQhR+BXuGU/yrzMzM8PDwYObMmUyYMEEVkzVHjhwBsjcbNjU1VTb5KlGiBF5eXoSHh3PhwgWmTJmiPGbfvn1cv35dKWpAwd/M9u/k1BY1oGBvwPx3MuZ8rRbmsVTLJLE+jKU+jCPoR8539Xot6P5OTm1RAwr276UQQgghhBBCCP1RcGc5Rb4xNjbG2Ng4v7vxSg8ePGDDhg0kJCSQlZWFRqPh119/Ve7PzMykVq1ajB49mqioKKKjowHw9fUlLCwMyD7ztKD7OznHjBkDFPyc+pAR9OM1qw9jqQ/jCPqRUx8ygv7kFEIIIYQQQgihP6SwIVSraNGixMbGcuDAAQwMDAgNDeXChQuMGzcOyL46wcDAgJo1a3L79m0ePHiQ6xhqOPNUH3LqQ0bQj5ySsXBkBP3IqQ8ZQX9yCiGEEEIIIYTQH1LYEKpVvHhxAgIC+OGHH7h48SJWVlbMmzePgwcPKmeYAlSoUAErKytlM1S10Yec+pAR9COnZCwcGUE/cupDRtCfnEIIIYQQQggh9IdsHi5ULSEhgUmTJuHk5ETnzp0xNzfnxIkTDBs2jPLly2NnZ8eFCxewtLRkxYoV+d3dt6YPOfUhI+hHTslYODKCfuTUh4ygPzmFEEIIIYQQQugHKWwI1Tt37hyhoaH06dMHX19frKysSE5OZsWKFRgZGaHRaAgICACy1xEvyBtov4w+5NSHjKAfOSVj4cgI+pFTHzKC/uQUQgghhBBCCFH4SWFDFAonTpxgypQp+Pn50bBhQ1xcXHK1KQyTNPqQUx8ygn7klIzZ1J4R9COnPmQE/ckphBBCCCGEEKJwk8KGKDQuXrzImjVriIqKok2bNtjZ2eHm5pbf3Xrn9CGnPmQE/cgpGQsPfcipDxlBf3IKIYQQQgghhCi8pLAhCpUnT55w5swZNm7ciIWFBcHBwZQuXTq/u/XO6UNOfcgI+pFTMhYe+pBTHzKC/uQUQgghhBBCCFE4SWFDFEqpqakAGBsb53NP/ln6kFMfMoJ+5JSMhYc+5NSHjKA/OYUQQgghhBBCFC5S2BBCCCGEEEIIIYQQQgghhGrIzpBCCCGEEEIIIYQQQgghhFANKWwIIYQQQgghhBBCCCGEEEI1pLAhhBBCCCGEEEIIIYQQQgjVkMKGEEIIIYQQQgghhBBCCCFUQwobQgghhBBCCCGEEEIIIYRQDSlsCCGEEEIIIYQQQgghhBBCNaSwIYQQhUjr1q2xt7fnxIkT+d2VAmn06NHY29srf1xcXGjdujWbN2/Waffbb79hb29PZGRkPvVUCCGEEEIIIYQQQryIYX53QAghxLtx+fJlLl26BMDOnTupV69ePveoYKpYsSIzZ84E4MmTJ+zdu5dx48ZRrFgxWrRoAYCDgwObNm2iWrVq+dlVIYQQQgghhBBCCJEHuWJDCCEKiZ07d6LRaHBzc+PHH38kLS0tv7ukSE1NJTMzM7+7AYCJiQkuLi64uLjg6enJxIkTqVmzJj/99JPSpnjx4ri4uFCsWLF87KkQQgghhBBCCCGEyIsUNoQQohDIyspi165duLu706dPHxITE/nll19ytYuOjiYoKIj69etTu3ZtWrduza5du5T7MzMzWblyJc2aNcPR0RFPT0+GDh3Kn3/+CWQv5dSyZUudYz5+/Bh7e3u2bdum3Na4cWMmT55MREQEPj4+ODs7k5iYSHR0NCEhIXh7e1O7dm2aN2/OihUrchU9UlNTmTNnDk2aNMHR0ZEPP/yQ0aNHA3DgwAHs7e25fv26zmMePXqEs7Mz69ate+Ofn5mZGenp6cq/81qKyt7enoiICMLDw/Hw8MDNzY2wsDCSk5N1fhbjxo3Dy8sLJycnvL29CQkJeeP+CCGEEEIIIYQQQogXk6WohBCiEDh16hSxsbEMHjyYhg0bYmVlxa5du2jcuLHS5vr163Tu3Jly5coxduxYSpcuTVRUFLdv31baTJkyhU2bNtGrVy88PT158uQJBw8eJDk5GXNz8zfq008//cR7773H2LFj0Wg0FCtWjEuXLlGlShVatWqFmZkZFy5cIDw8nOTkZIKCgpTHDhkyhGPHjjFgwABcXFxISEhQrqjw9vbGxsaGrVu3MmLECOUx2gJNq1atXtk3bREjOTmZn376iVOnTvH111+/8nHr1q2jbt26TJs2jevXrzN9+nRKlizJZ599BsDUqVP55ZdfGDFiBBUqVCA+Pp6ff/759X9oQgghhBBCCCGEEOKVpLAhhBCFwK5duyhatCgfffQRRkZGNG3alB07dvDkyRPMzMwACA8Px8jIiA0bNlC8eHEAPDw8lGNcu3aNDRs2EBISwoABA5TbmzZt+lZ9SktLIyIiQmc5pwYNGtCgQQMg+yqTunXrkpKSwtq1a5XCxpEjRzh48CCzZs3SuTpE+/ciRYrw8ccfs3XrVoYNG0aRIkUA2Lp1K35+flhYWLy0X5cvX8bBwUHntr59+9K6detXZipdujSzZs0C4MMPP+T8+fPs2bNHKWxERkbSsmVL2rVrpzxGu2+HEEIIIYQQQgghhHg3ZCkqIYRQufT0dH788Ue8vb2VqypatWrF06dP2bt3r9Lu2LFjNG3aVClqPO/YsWNkZWXRoUOHd9IvNze3XHtUPHv2jPnz5+Pn54eTkxMODg7MmTOH+Ph4njx5AsDRo0cxNTV9aUGgQ4cOxMfHK8ttXbx4kT/++OO1+l6pUiW2bNnCli1bWLt2LcOGDeM///kPCxYseOVjcxaCAKpVq0ZcXJzy71q1avHdd9+xfPlyoqKiXnk8IYQQQgghhBBCCPHmpLAhhBAqd+TIERISEvDx8eHx48c8fvwYOzs7SpcurbN/RmJiImXKlHnhcRITEzE0NKRkyZLvpF95HWfGjBksX76cjh07snTpUrZs2cKgQYOA7KKHth+lS5fGwMDghce2tbXF09OTLVu2ANlXa9ja2uLu7v7KfhUtWhQnJyecnJxwdXVl0KBBdOnShcWLF5OYmPjSxz5/NYiRkRGpqanKv8ePH0/r1q1ZuXIlrVq1olGjRqxfv/6VfRJCCCGEEEIIIYQQr08KG0IIoXI7d+4EICwsDFdXV1xdXalfvz7x8fEcPXqUBw8eAGBlZcW9e/deeBwrKyvS09OV9nkxNjYmLS1N57ZHjx7l2TavwsSPP/5I586dCQwMxMPDAycnJwwNdVdFtLKyIj4+nqysrBf2A6Bjx44cPHiQu3fvsnPnTj7++OOXFkNepmrVqqSlpXHjxo23eryWubk5Y8eO5fDhw+zYsQNPT08mTZrEiRMn/tZxhRBCCCGEEEIIIcRfpLAhhBAq9vTpU/bv34+vry9r1qzR+TN79mzS09PZvXs3kL2/xZ49e0hKSsrzWO7u7hgYGLB169YXPl/ZsmWJi4tTlo2C7CtGXtezZ88wMjJS/p2RkcEPP/yg08bDw4OnT5/yf//3fy89VpMmTbCwsGDEiBE8evSIjz/++LX78bzLly8DYG1t/dbHeJ69vT1hYWEAREdHv7PjCiGEEEIIIYQQQug72TxcCCFUbP/+/SQnJ9OjRw/c3Nxy3b9s2TJ27dpFjx49CAoK4uDBg3Tt2pX+/ftTunRpoqOjefr0KQEBAVSpUoUuXbowb948Hj16RIMGDUhJSeHgwYMMGTIEGxsbPvroI+bPn8+YMWPo1KkTly9fVpaDeh0eHh5s3ryZ6tWrY21tzfr163WWctK28fb2ZsyYMcTExFC7dm0SExPZs2cPc+fOVdoZGRnRtm1bli9fTsOGDSlXrtxr9SElJYXff/9d+fuJEyfYvHkznp6eVKpU6bWz5KVLly74+flRo0YNihQpwvbt2zEyMqJevXp/67hCCCGEEEIIIYQQ4i9S2BBCCBXbtWsX5cuXz7OoAdC2bVu++uorYmJiqFy5Mhs3bmTWrFlMmjSJjIwMKleuTGBgoNJ+woQJ2NrasnnzZlavXo2VlRWurq6YmZkBUL16daZNm8aiRYv49NNPqVu3LjNnzqRNmzav1d/x48fz+eefM2XKFExNTWnXrh1+fn6MGzdOp114eDgLFixg06ZNLFiwgJIlS+Lp6ZnreH5+fixfvpz27du/7o+Mmzdv0rlzZyC7OFKhQgX69etHQEDAax/jRerUqcP27du5desWGo0GOzs7Fi9eTLVq1f72sYUQQgghhBBCCCFENoOsVy1iLoQQQhRQ8+bNY/369fzyyy8YGxvnd3eEEEIIIYQQQgghxL9ArtgQQgihOlevXuXatWusXbuWrl27SlFDCCGEEEIIIYQQQo/IFRtCCCFUp0ePHvz+++94eXkxc+ZMihUrlt9dEkIIIYQQQgghhBD/EilsCCGEEEIIIYQQQgghhBBCNTT53QEhhBBCCCGEEEIIIYQQQojXJYUNIYQQQgghhBBCCCGEEEKohhQ2hBBCCCGEEEIIIYQQQgihGlLYEEIIIYQQQgghhBBCCCGEakhhQwghhBBCCCGEEEIIIYQQqiGFDSGEEEIIIYQQQgghhBBCqIYUNoQQQgghhBBCCCGEEEIIoRpS2BBCCCGEEEIIIYQQQgghhGpIYUMIIYQQQgghhBBCCCGEEKrx/63RyUbwYospAAAAAElFTkSuQmCC", | |
| "text/plain": [ | |
| "<Figure size 1600x500 with 2 Axes>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\n", | |
| "📊 Key Observations:\n", | |
| " • RLVR increases frequency at high accuracy bins (right side)\n", | |
| " • RLVR decreases frequency at low accuracy bins (left side)\n", | |
| " • RLVR sharpens the distribution, improving sampling efficiency\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Visualize accuracy distribution histograms\n", | |
| "fig, axes = plt.subplots(1, 2, figsize=(16, 5))\n", | |
| "\n", | |
| "# Histogram comparison\n", | |
| "ax = axes[0]\n", | |
| "bin_labels = ['0.0'] + [f'({i/10:.1f},{(i+1)/10:.1f}]' for i in range(10)] + ['1.0']\n", | |
| "# Remove duplicate (0.9,1.0] since 1.0 is separate\n", | |
| "bin_labels = ['0.0'] + [f'({i/10:.1f},{(i+1)/10:.1f}]' for i in range(9)] + ['(0.9,1.0)', '1.0']\n", | |
| "bin_labels = ['0.0', '(0,0.1]', '(0.1,0.2]', '(0.2,0.3]', '(0.3,0.4]', \n", | |
| " '(0.4,0.5]', '(0.5,0.6]', '(0.6,0.7]', '(0.7,0.8]', '(0.8,0.9]', '(0.9,1.0]', '1.0']\n", | |
| "\n", | |
| "x = np.arange(len(bin_labels))\n", | |
| "width = 0.35\n", | |
| "\n", | |
| "# Reconstruct bin counts in order\n", | |
| "base_counts = [base_bins['0.0']] + [base_bins.get(f'({i/10:.1f},{(i+1)/10:.1f}]', 0) for i in range(10)] + [base_bins['1.0']]\n", | |
| "rlvr_counts = [rlvr_bins['0.0']] + [rlvr_bins.get(f'({i/10:.1f},{(i+1)/10:.1f}]', 0) for i in range(10)] + [rlvr_bins['1.0']]\n", | |
| "\n", | |
| "ax.bar(x - width/2, base_counts, width, label='Base Model', alpha=0.8)\n", | |
| "ax.bar(x + width/2, rlvr_counts, width, label='RLVR Model', alpha=0.8)\n", | |
| "\n", | |
| "ax.set_xlabel('Accuracy Bins', fontsize=11)\n", | |
| "ax.set_ylabel('Number of Problems', fontsize=11)\n", | |
| "ax.set_title('Accuracy Distribution Comparison', fontsize=13, fontweight='bold')\n", | |
| "ax.set_xticks(x)\n", | |
| "ax.set_xticklabels(bin_labels, rotation=45, ha='right', fontsize=9)\n", | |
| "ax.legend(fontsize=10)\n", | |
| "ax.grid(True, alpha=0.3, axis='y')\n", | |
| "\n", | |
| "# Density plot\n", | |
| "ax = axes[1]\n", | |
| "ax.hist(base_accuracies, bins=30, alpha=0.5, label='Base Model', density=True)\n", | |
| "ax.hist(rlvr_accuracies, bins=30, alpha=0.5, label='RLVR Model', density=True)\n", | |
| "ax.set_xlabel('Per-Problem Accuracy', fontsize=11)\n", | |
| "ax.set_ylabel('Density', fontsize=11)\n", | |
| "ax.set_title('Accuracy Distribution (Continuous)', fontsize=13, fontweight='bold')\n", | |
| "ax.legend(fontsize=10)\n", | |
| "ax.grid(True, alpha=0.3)\n", | |
| "\n", | |
| "plt.tight_layout()\n", | |
| "plt.show()\n", | |
| "\n", | |
| "print(\"\\n📊 Key Observations:\")\n", | |
| "print(\" • RLVR increases frequency at high accuracy bins (right side)\")\n", | |
| "print(\" • RLVR decreases frequency at low accuracy bins (left side)\")\n", | |
| "print(\" • RLVR sharpens the distribution, improving sampling efficiency\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## 6. Workflow 7: Solvable Problem Coverage Analysis\n", | |
| "\n", | |
| "Compare which problems are solvable by Base vs RLVR models to understand if RLVR expands the set of solvable problems.\n", | |
| "\n", | |
| "### Categories:\n", | |
| "1. **Both models solve**: Problems within base model capability\n", | |
| "2. **Only Base solves**: Problems RLVR failed (rare, due to reduced diversity)\n", | |
| "3. **Only RLVR solves**: Evidence of expanded reasoning? (Key question)\n", | |
| "4. **Neither solves**: Beyond both models' capability" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:48.885947Z", | |
| "iopub.status.busy": "2026-02-10T23:43:48.885713Z", | |
| "iopub.status.idle": "2026-02-10T23:43:48.893687Z", | |
| "shell.execute_reply": "2026-02-10T23:43:48.893012Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Analyzing solvable problem coverage...\n", | |
| "\n", | |
| "Problem Coverage Analysis:\n", | |
| " Both models solve: 200 problems (100.0%)\n", | |
| " Only Base solves: 0 problems (0.0%)\n", | |
| " Only RLVR solves: 0 problems (0.0%)\n", | |
| " Neither model solves: 0 problems (0.0%)\n", | |
| "\n", | |
| "💡 Interpretation:\n", | |
| " → Very few problems are solved ONLY by RLVR\n", | |
| " → This suggests RLVR does not significantly expand reasoning boundaries\n", | |
| " → RLVR mainly improves success rate on already-solvable problems\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "def analyze_solvable_problems(base_responses: np.ndarray, rlvr_responses: np.ndarray) -> Dict:\n", | |
| " \"\"\"\n", | |
| " Categorize problems based on which model can solve them.\n", | |
| " \n", | |
| " Args:\n", | |
| " base_responses: Base model responses (n_problems, k)\n", | |
| " rlvr_responses: RLVR model responses (n_problems, k)\n", | |
| " \n", | |
| " Returns:\n", | |
| " Dictionary with problem categories and indices\n", | |
| " \"\"\"\n", | |
| " n_problems = base_responses.shape[0]\n", | |
| " \n", | |
| " # A problem is \"solvable\" if any of k samples is correct\n", | |
| " base_solvable = base_responses.any(axis=1)\n", | |
| " rlvr_solvable = rlvr_responses.any(axis=1)\n", | |
| " \n", | |
| " categories = {\n", | |
| " 'both': np.where(base_solvable & rlvr_solvable)[0],\n", | |
| " 'only_base': np.where(base_solvable & ~rlvr_solvable)[0],\n", | |
| " 'only_rlvr': np.where(~base_solvable & rlvr_solvable)[0],\n", | |
| " 'neither': np.where(~base_solvable & ~rlvr_solvable)[0]\n", | |
| " }\n", | |
| " \n", | |
| " return categories\n", | |
| "\n", | |
| "\n", | |
| "# Analyze solvable problem coverage\n", | |
| "print(\"Analyzing solvable problem coverage...\\n\")\n", | |
| "\n", | |
| "coverage = analyze_solvable_problems(base_responses, rlvr_responses)\n", | |
| "\n", | |
| "print(\"Problem Coverage Analysis:\")\n", | |
| "print(f\" Both models solve: {len(coverage['both']):4d} problems ({100*len(coverage['both'])/data_gen.n_problems:.1f}%)\")\n", | |
| "print(f\" Only Base solves: {len(coverage['only_base']):4d} problems ({100*len(coverage['only_base'])/data_gen.n_problems:.1f}%)\")\n", | |
| "print(f\" Only RLVR solves: {len(coverage['only_rlvr']):4d} problems ({100*len(coverage['only_rlvr'])/data_gen.n_problems:.1f}%)\")\n", | |
| "print(f\" Neither model solves: {len(coverage['neither']):4d} problems ({100*len(coverage['neither'])/data_gen.n_problems:.1f}%)\")\n", | |
| "\n", | |
| "print(\"\\n💡 Interpretation:\")\n", | |
| "if len(coverage['only_rlvr']) < len(coverage['both']) * 0.1:\n", | |
| " print(\" → Very few problems are solved ONLY by RLVR\")\n", | |
| " print(\" → This suggests RLVR does not significantly expand reasoning boundaries\")\n", | |
| " print(\" → RLVR mainly improves success rate on already-solvable problems\")\n", | |
| "else:\n", | |
| " print(\" → Significant number of problems solved ONLY by RLVR\")\n", | |
| " print(\" → This might suggest some reasoning capacity expansion\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:48.896215Z", | |
| "iopub.status.busy": "2026-02-10T23:43:48.896003Z", | |
| "iopub.status.idle": "2026-02-10T23:43:49.069104Z", | |
| "shell.execute_reply": "2026-02-10T23:43:49.068101Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkV1JREFUeJzs3Xd8jef/x/H3yRJkSew9StSeDWqvqh2UllKqFEUHVdXWqBpt6aJo1ZdSLWrPUtqqWXvEiD2SFCGJFTLP74/8cjdHEiJyJxKv5+PxfXzPudf5nNu50vM+93Vdt8VqtVoFAAAAAADSnF1GFwAAAAAAQFZF6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBvDEaty4sby9veXt7a0pU6ak++svXbrUeH1vb+8U7zdlyhRjn8aNG5tY4eMpte9/+PDhxn7du3c3sUIAAID/OGR0AQBwrzVr1mjp0qU6duyYrl+/LmdnZ7m7u6tQoULy9vZWgwYNVK9evYwu84kwfPhwLVu2LNFyOzs7ubm56amnnlKLFi3UpUsXOTk5ZUCFT57jx49r8eLF2rNnj4KCgnT79m3lyJFDxYoVU82aNdWuXTuVLVs2o8tECiX1g5vFYpGzs7Py5s2rChUqqFOnTqpTp04GVJd1TJkyRVOnTk203NHRUa6uripVqpSaNWumF198UdmyZbvvvps2bVLhwoWN5wcOHFCXLl2M50OHDlWfPn2SrGPZsmUaPny48fzbb79V06ZNk/1b6+joKA8PD3l7e6tly5by9fWVnR3XzIDMhtAN4LEybNgwrVixwmbZrVu3dOvWLQUGBmrXrl0KCgoidGew2NhYhYWFac+ePdqzZ4+WL1+uOXPmyNXVNaNLy7IiIiI0btw4LVy4MNG6Gzdu6PDhwzp8+LDWr1+vP/74IwMqRFqxWq26c+eOzp8/r/Pnz2vNmjUaOXKkunXrltGlZTlRUVEKCQlRSEiIdu/erd9//10//vij7O3tU3yMKlWqqGTJkjpz5owkaeXKlcmG7oT/ffP09FSDBg0eWF9wcLCCg4O1detWbd++XZMnT05xbQAeD4RuAI+Nv//+2+YLSfny5VWvXj3lyJFDISEhOnr0qPbv35+BFWLYsGGS4kLe2rVrdeHCBUmSn5+fpkyZohEjRjzwGDExMYqMjFT27NlNrTUriYmJ0Ztvvqk///zTWObq6qpmzZqpWLFiioiIkL+/v7Zt25aBVaatJ/FzUqFCBbVs2VJWq1WBgYFavHixIiMjJUnffPONXnzxxYcKg0hev3795OrqqqtXr2rlypW6du2aJGn37t3666+/1KRJk4c6nq+vrxGGT5w4oaNHj6pcuXI221y6dEn//POP8bxNmzZydHRM8njDhg1TbGysgoKCtGLFCt2+fVuStHr1avXp04feLEAmQ+gG8NhIGBiKFSumX3/9NdEXzFu3bsnf3z/J/Xfs2KFffvlFBw4cUEhIiJycnFSsWDE1atRIPXr0kIeHxwNr+PXXX/Xhhx9KkrJnz67t27crR44cxvobN27o2WefNb4If/7552rbtq0uXryouXPn6siRIwoMDNT169cVHR2tXLlyqXz58urcufMDxx9HRUVp5syZWrZsmS5duqS8efPK19dXffv2faiu27du3dL8+fO1ceNGnTlzRhEREcqdO7dq1aql3r17q3Tp0ik+1r169+5tPO7Zs6eaNm2qW7duSZI2bNhghO6EXSWfeeYZffrpp/ryyy+1bds2hYSEaOrUqWratKkk6fLly5ozZ462bt2qgIAARUdHK0+ePKpWrZp69OihSpUqPfD9Tp06VevWrVNISIiKFCmirl27qlu3brJYLCl+b1evXtXcuXO1efNmXbhwQdHR0cqfP7/q1q2rPn36qGDBgjbb3/seP/74Y02aNEk7d+6Uvb296tWrp/fff1+5c+fWjh07NGXKFB05ckTZs2dX48aN9d5778nd3T1Ftf366682gbtq1aqaNm2aPD09bba7fv16kl1U/fz8NHfuXO3Zs0fBwcFycHBQoUKFVLduXfXs2VP58+eXFNeDoUmTJgoKCpIkDRw4UIMGDbI51ueff64ffvhBklS8eHGtX78+zc5hcp+TxYsXa8uWLTpx4oRCQkJ069YtZcuWTUWKFFHdunXVu3fvROdCkvbs2aOvv/5ahw8flpOTk2rXrq2hQ4fq22+/tXndefPm2ez3sO8jICDAJqRNmDBBHTp0SFTPg5QuXdqmjdnZ2emnn36SJIWFhSkkJER58uQxnn///fc6cuSILl68qNDQUEVFRcnNzU3e3t5q166d2rVrl6gNbNq0ST///LMxfCdbtmzy9PRUmTJlVLlyZfXp08em+3JkZKQWLVqkdevW6eTJkwoPD5eHh4eqVaumXr16qWrVqil6b127dtXevXslxQXUiRMn2qz/+eefNWbMGEmSi4uLtm3bJmdnZwUGBuq7777Tzp07denSJVmtVnl4eKhQoUKqXLmyOnfurFKlSj3kmZZeeOEFo4t4nTp1bK5Mnz59+qFDd7t27fTVV18pJiZGUtwV7XtD98qVKxUbG2s8v99nJOHnoEyZMho9erRNfYRuIHMhdAN4bMR/WZHiwm1gYKCKFi1qs42Li4uqV6+eaN+JEydq9uzZNsuioqJ09OhRHT16VIsXL9asWbMeGDiff/55jRs3Tnfu3NGdO3f0xx9/qHXr1sb6DRs2GIHb1dVVzZs3lySdOnVKc+fOTXS8K1eu6MqVK/rzzz81aNAgDRw4MNnXHjhwoP766y/jeUBAgBHUpk2blqIAee7cOb366qsKDAy0Wf7vv/9q2bJlWrNmjT777DM9//zzDzzWg+TKlUvFixeXn5+fpLigkpQrV66oc+fOCg4OTrRu9+7deuONN3T9+nWb5YGBgQoMDNSaNWs0bNgw9erVK8ljR0RE6JVXXjFqkOK+kI4dO1bnzp0zfkB5kP3796t///4KDQ21WX7hwgX9/PPPWrVqlWbMmKEaNWokuX9QUJC6dOli8z5Wr16tI0eOqF+/fnr//feNL9t3797VkiVLdOHCBSNQPciPP/5oPM6WLZu+/vrrJEOmu7u7evbsabNszpw5+vTTT22+7EdGRurkyZM6efKkFi9erG+//VY+Pj6ys7NT+/btNW3aNOM9JAzdVqtVa9euNZ4nDA2Peg7v9zn5+eefdeTIEZtl0dHROn78uI4fP65Vq1bp119/Vb58+Yz1f/75pwYOHKjo6GhJ0p07d/Tbb79p586dKlGiRJI1pMX7SAtWq1VBQUE2PXucnJxsfqS5cuWKZs2alWjfa9euafv27dq+fbv++ecfTZgwwVi3dOlSvf/++zbbR0dH6/bt27p48aI2bdqknj17GmOaQ0JC9Oqrr+rYsWM2+wQHB2v9+vX6/fffNXz4cL3yyisPfE8dOnQwQvfvv/+uMWPG2IydXrNmjfG4VatWcnZ21rVr19SpUyeFhITYHCv+7+r+/ftVvHjxVIXuhBJ+bqS4v22pOUadOnW0ZcsWSTL+diX84XjlypXG43LlyqU4OKdFfQAyFqEbwGMj4VWB0NBQPffcc3r66adVoUIFVahQQT4+PipWrFii/ZYvX24TuEuXLq2mTZvqypUrWr58uWJiYnT58mUNHDhQa9askYND8n/6XFxc9Nxzz2n58uWS4kJHwtC9evVq43HLli3l7OwsSbK3tzdq9fT0lIuLi8LDw7Vv3z6jO+H06dP1wgsvJPoCFW/z5s1q166dChQooA0bNhjjA//44w+tWLFC7du3v+/5i4mJ0cCBA43A7enpqdatW8vd3V1bt27V/v37FRkZqffee08VKlRQkSJF7nu8BwkNDdW5c+eM57lz505yu/htmjdvLm9vbwUFBcnFxUU3btzQwIEDjaDq7OysDh06yMXFRWvWrFFgYKBiY2P16aefqnz58nrmmWcSHfvq1au6ceOGXnzxRbm5uWnlypW6dOmSJGnevHlq3rx5kvsldOvWLb3xxhtGyCpUqJCef/55OTs7a/369Tp58qRu3rypQYMGacOGDUmOWw8ICJCHh4dee+01Xbx40bj6e/bsWb333nvKkyePfH19dfjwYe3YsUNS3A8OBw4cUJUqVe5b3+XLl43PgiTVrVs32c/QvXbv3q2JEyfKarVKkgoWLKhWrVopPDxcS5cu1Z07d3Tz5k0NHjxYGzZskLu7uzp06KDp06fLarXq3Llz8vPzU4UKFSRJe/fuNa6C29vbG5/JtDiHyX1OJMnLy0uNGjVS0aJF5e7uLnt7e12+fFlr165VWFiYLl++rOnTpxtXA+/cuaMPPvjACNwODg7q0KGD3N3dtXz58mSHqaTF+3gUy5YtS7KngiS98sorNj1e7OzsVKpUKVWqVEm5c+eWm5ubIiIidPToUf3555+yWq1aunSpXnrpJaO3yC+//GLsX7FiRTVs2FAxMTG6dOmSDh48qNOnT9u85rvvvmsE7pw5c6p169bKnz+/9u3bpy1btig2NlYTJkxQhQoVkvwxNKH4HzTDw8N169Yt/fXXX3ruueckxf0oGB/Ipf9+zFm/fr0RuOM/mx4eHrpy5YrOnDmjPXv2pOi8JsdqtSo4ONjmxwtnZ2c1bNgwVcfr0KGDEbrjx2DHj9k+cuSITp48aWzr6+v7wOPFdy+fP3++sSxv3rwPPNcAHj+EbgCPjbZt22r+/PnGVcvY2FgdOXJER44cMSaPql69ukaOHGlzhSBh4C5UqJAWL15shOEKFSoYXRbPnTunv/76y+jWnJyOHTsaoXvr1q0KCwuTh4eHgoODtWvXLmO7Tp06GY/r16+v+vXr6+zZszp27JhCQkLk4OCgBg0a6NChQ7pz546io6O1Y8eOZMPzW2+9pX79+kmS+vTpo6ZNmxpf/hcuXPjA0P3XX38ZX+rs7e31yy+/qHjx4pKk/v37q3379jpx4oQiIiL0008/JbrilRLxX07jx3THdy2XpGbNmiW734gRIxJdDZszZ47CwsKM5998843xBTW+63p4eLisVqvmzJmTbHgeP3682rRpI0nq0qWLWrRooaioKEnSokWLHhi6ly5daozndHd319KlS42hCL1791aTJk2MiZaWLVumHj16JHmcadOmGV+G69WrpytXrhjrpk+frooVK+rWrVuqVauWUd/hw4dTFLoTKlmy5H23T2j27NlG4M6ZM6cWL14sLy8vSVKDBg3Ut29fSXFdlZctW6aePXuqSJEiqlmzpvFZX7NmjRG6E16NfPbZZ43wn1bnMKnPiSTNnDlTd+7c0YEDB3Tx4kWFh4ercOHCql69ujZt2iQprq3G++OPP4x6JOnDDz/USy+9JCmuW3HLli2NQJ5QWr2PtNaoUSMNHjzYZtlTTz2ltWvXKigoSIcPH9bVq1fl4OCgGjVq6MiRI8bnZsuWLUbojoiIMPb/8MMPE332AgICjDHGx48ftzmn06ZNU61atYznffv21ebNm2W1WjV79uwHBsGcOXOqRYsWWrp0qaS4z1J86F6zZo3xOS1VqpRRV3yvIklq0aKFzazfkhQeHq7w8PD7vm5ykuo+njdvXn366adGF/6H1bRpU7m7uxs/JK5cudL4m5ZwvhJHR0ebH3OTktSs9sWLF9fXX3+daHZ1AI8/QjeAx4aDg4N+/PFHff/991qyZEmS3ZX37t2rXr16ac2aNfL09NSdO3dsxni3aNHCCNyS1L59eyN0S3FdRx8UumvWrKmiRYvqwoULioqK0oYNG9S5c2etW7fO6AJfunRpm7HGAQEBGjp06AMners3QCXUrl0747GLi4saNWpkfEE9evTofY8rSfv27TMex8TEGF9ok5LaCek+++yzJJeXK1cu0djfeO7u7knOunzgwAHj8b2z+Hp5eal+/fr67bffEm2bkKOjo1q2bGk8L1y4sKpVq2b0Lri3S3JSEp6369evy8fHJ9lt9+/fn2TQKlSokE3oKFSokBG6CxcurIoVK0qK+3f19PQ0Pgf3dqtPawnPW7169YzALcWFbk9PT+NKYsJtO3bsaITutWvXatiwYYqJiTH+PSTbruVpcQ6T+5xIcT8efPPNN/cNWPE9HCTZDDeQbNtWsWLFVK1aNZsf0B71fRQuXDjZuSYeRvxEalLc+1mxYoWuX7+uP//8U/3799d3331n9NQJDQ3V8OHDbYakJCXh35waNWoYdcaPxy5WrJieeuop1ahRwyboJTwXku7bhTylf086dOhg/E3766+/dOvWLaNnS8Jt4lWrVk0Wi0VWq1ULFy6Un5+fSpUqpRIlSqhChQqqVatWsj1sHpaDg4NeeeUV1a5dO9XHcHJyUsuWLY0eBRs3btStW7eUPXt2m/fYqFGjJIeH3E+OHDnUv39/xnIDmRQ3+gPwWHFxcdE777yjrVu3avXq1Ro3bpx8fX2VM2dOY5uQkBDjqsGNGzeMKyRS4i7OOXLkSDQR2oNYLBabrn+rVq2SZNu1/N4JcN54440UffFMeOXmXgkDkWT7Xu7evXvffaWHC3D3jpF8WHZ2dnJ3d1f16tX1/vvva+HChXJzc0ty2yJFiiTZpT9hvUl9cU64LLl/Nw8Pj0ST7SXc7+bNm/d/I0qb85Y3b16b5wlnJL53XcJzkfCzm5x7u5In7Gr+IKk9x88995zR5i5duqTdu3dr+/btxvv38PCwuVKYFucwuc/Jxo0bNXHixAde0YzvPXDve8mZM6fN3wBJyV7JTM82lJT4idR69+6tDz74QFOmTDHWbd26VRs2bDCef/DBBw8M3JLt35x33nlH9evXlxR3lXjbtm36+eef9fHHH6tt27bq3r27cZ7NOBc1a9Y0hghFRETo999/1+nTp40fFR0cHGx69FSqVEnDhw83/v2OHDmilStX6uuvv1afPn1Uv359m9nAH0a/fv00aNAgI8RGR0fr888/17fffpuq48VL+N+Gu3fvav369dq6davNj8gp6Vo+bNgw9e/f3xgGFB4ervfeey/Z4QcAHm9c6QbwWLJYLCpdurRKly6tTp06aeDAgWrWrJkxGVT8+E83NzfjSoiUeDKve7sfJhcM7+Xr66spU6YoNjbWuBf1wYMHJcV9MWzbtq2x7ZkzZ3T8+HHjeevWrTVs2DDlzZtXFotFtWvXTtGX0mvXrqlAgQLG84TvJVu2bA+cwTzhJEvZsmXTm2++mey2qR2LmpqrefcGnngJ602qV0PCZcn9u4WFhSkmJsYmeCfcLyXvM2EdefLkSXbSNkk2/z4JJXfbH0n3nUMgJfLly2dzD+CtW7fqypUricJ8Utzd3Y3u0g9zjrNnz66WLVvq119/lRT3g1PCrslt2rSx+TymxTlM7nOScOK2HDlyaOrUqapRo4ayZcum+fPn6+OPP060T8L3cvv2bd29e9emB0xSk7Wl1ftIS/fO3L9//361bNlS4eHhNoG7du3aGjt2rAoWLCh7e3t16tRJhw8fTnQ8FxcXzZw5U5cuXdKBAwd07tw5nTp1Shs3btSdO3e0a9cu/fDDDxo8eHCimfUHDx5scw5Ty9fXV1999ZWkuM/VxYsXjXX16tVL9ONQz5491aVLFx04cECnTp3S+fPntWXLFp07d8642p9wZv+Uip+9/LXXXtOLL75ojF2fMWOG2rZtm2gSz5SqVKmSnnrqKZ06dUpSXLfyhO8pd+7cxg8f9xM/e3mPHj3Uvn17o8fCxIkT1bRp0zSfTwCAuQjdAB4by5YtU0REhFq3bm1MoBQvR44csrOzM0J3/Jfq7Nmzq2zZssYXpt9++83my2H82Ox4Kb29TYECBVSnTh1t3bpVsbGxeu+994x1DRo0sPkSlXBcshTXxT3+6uQ///yT4qtAK1asMMZ037p1y+aLZPny5R+4f8L3FhERoaeeesqmy3a8gwcPPtQtyMxStWpVrVu3TlLclbLNmzcb9V67dk1///23zbZJiYqK0tq1a40x3QEBATbdYlN63uLrCA0N1bPPPpuoC6fVatWOHTseefK51OrRo4cxSVhERITefPNNTZ8+PdFt8OJvGRY/g3nVqlW1ceNGSXFje69du2b0qNi8ebPNZ/Pec9yxY0cjdK9fv95mDHTHjh1ttjXzHCZsX0WKFNGzzz4rKW7Oh4S3K0sofgx6vDVr1hg1nz9/PlHX6Ud9H2l1y7B73Ruc4//+3bx50+ZuDw0bNjTqOXPmTLI/jp04cUIlSpRQ/vz51aJFC2P5J598Ytw2Lf6qc7Vq1Wz2zZUrl7p27ZromCdPnnyoq+K+vr765ptvFBsbq507d9pM3pZwngwprmu8vb29cufOrdq1axtdv48ePWpcLQ4KClJoaGiqZ/R2dnbW+++/bwwViIqK0vTp021mfX9Yvr6++vzzzyVJu3btsvl727Zt24f6Ic7T01NvvfWWMQdHWFiYfvzxx/veCQPA44fQDeCxERAQoKlTp2r8+PGqXr26ypYtKw8PD4WFhSX60l+vXj3jca9evTRs2DBJcbea6tSpk83s5fGKFy/+ULPSdujQwZhIKCAgwGZ5QsWKFbP5QWDcuHE6duyYwsLCjPGLKfHVV1/pzJkzKliwoNavX29zy6LOnTs/cP+GDRuqVKlSxpfYN954Q82bN1epUqVktVp14cIF7dmzR4GBgZowYYKefvrpFNdmBl9fX02bNs0IVYMHD1bHjh3l4uKi1atXGz0ULBbLfceTjhgxQnv27DFmL0/YzfiFF154YB3xs3WHhoYqOjpaL730klq0aKFixYopMjJSZ8+e1a5du4x7N2dE8O7cubP++OMP44eIffv2qVmzZmrWrJmKFi2qiIgI+fv7a9u2bfLy8jJCd8+ePbVp0yZZrVbdvn1bnTp1UuvWrRUeHq4lS5YYx/fw8EjU5bVq1arGFfaEwffpp59O9Nkx8xyWKFFC27ZtkxTX0+Kdd95RyZIltWXLlmTH+jdp0kReXl7GVf5Ro0bp0KFDcnV11fLly5OcRM3s95ESJ0+eNCYrvPfvl/RfEPby8pKbm5vRjX769Om6du2aoqOjtXTp0mSHonz66ac6fPiwatWqpQIFCsjT01NXrlyx+TsVfwW1bNmyevbZZ41zP3bsWP3999+qUKGCLBaLcUuz06dPa+DAgSm+hVr+/PmNHzSjo6P177//Gu/p3h8J9+zZo6FDh6p69eoqWbKk8ubNq9jYWP3+++/GNo6OjsqePXuKXjs5Pj4+qlq1qjFEaOXKlRo4cKAKFSqU5Pb9+/dPsndL48aNNXDgQLVr105ffPGFYmJiZLVabXqJpKRr+b3atm2rqVOnGnemmDdvnnr16mUz7ArA443QDeCxExERYdxnNimdO3e2mZG6Xbt2OnbsmDGLefz9hxPKmzevpk6d+lBXGJo1a2YzE60U1zXw3uDu5eWlzp07a8GCBZLibn8TPy6wdu3aOnPmzH0nUItXs2ZNmxlu4zVs2PCBM5dLcd2Yv/32W/Xu3VuBgYGKioqymbzncePm5qapU6dqwIABunHjhu7evWtzaxwpbuz4u+++m+wM5Lly5VLu3LmNc59Q165d7zsRVjxXV1dNmzZNAwYMUGhoqHE7rceJvb29vvnmG33yySdavHixpLhxywmDc1Jq1qyp4cOHG/fpDgoK0vfff2+zjaurq7755psku/B36NBBkyZNsll271Xu+GOYdQ579OihZcuW6fbt25L+m0HdwcFBbdq0MeZcSMjZ2Vnjxo0z7tMdFRVlfEbc3d1VpUoVI7BbLJZ0eR8p4efnl2gSuHh16tQxrk47ODioT58+mjx5sqS4q5/x/65lypRRoUKFkp1E8Pr168n2EMiWLZu6d+9uPP/888/Vu3dvHTt2TLGxsfrzzz9T1ZX7Xh07drSZGV2KC5ZJBdnY2Fjt3r1bu3fvTvJYL7/8cpp0e+/Xr59ef/11SXHju2fOnGn0LrnXiRMnklxepkwZSXFDE+rWravNmzfbrC9fvryxzcNwcHBQ7969jaEUYWFh+vnnn9WnT5+HPhaAjMFEagAeG6+88oq++eYbde3aVZUqVVLBggXl7OwsR0dH5cuXT40bN9aUKVM0duzYRPsOHz5cs2fP1nPPPae8efPK0dFROXLk0NNPP60BAwZo5cqVKl269EPV4+TkpFatWtksS65r4EcffaTBgwerUKFCcnR0VMGCBdW7d2/NmDEjxUH/hx9+0IABA1S4cGE5OjqqUKFCGjhwoKZMmWITDO6nRIkSWrlypd59911VrVrVuKdxzpw55e3trRdeeEHffvvtA29Xk15q1qyp1atX69VXX1Xp0qWVPXt24/y1adNGCxYs0Kuvvprs/jly5NDPP/+s7t27K1++fHJ0dFSJEiX0wQcfaOTIkSmuo1q1alqzZo0GDBig8uXLy8XFRfb29nJzc1P58uX18ssva/bs2apZs2ZavO1UyZ49u8aNG6fly5fr5ZdfVtmyZeXm5iZ7e3u5urqqYsWKGjhwoGbOnGmzX8+ePbVo0SK1a9fO+Hw6OzurVKlS6tmzp1atWpXsjxPt2rWzGS9/v1sdmXUOixUrpvnz56tu3brKnj27cuTIoWeeeUZz5sxRnTp1kt2vUaNGxq3mnJ2d5ebmpiZNmmjhwoU2w1fu/bHhcfksODg4yMvLS7Vr19bHH3+smTNn2vxb9O3bVyNHjlTx4sXl6OioPHnyqHPnzpo3b16yV0Bfe+019ejRQ1WqVDHai5OTk4oUKSJfX1/9+uuvNuPIvby8tGjRIo0ePVq1atVSrly5ZG9vrxw5cqhkyZJq27atJk2aZIw/TqmmTZsmGhqRVHf86tWr6+2331bDhg1VtGhR5cyZUw4ODvL09FTt2rU1ceLERLcRS62GDRvaDCVYsmSJzW3/HlZS7+dRhhx06tTJZljTnDlzdPfu3VQfD0D6slhTMnUqAABAJhIREZHk/YwvX76sli1bGveYf/vtt425FAAAMAPdywEAQJazZcsWTZo0Sa1bt1bx4sWVPXt2nTt3Tj/99JMRuHPkyJFkd3kAANISoRsAAGRJZ8+etbnXdUI5c+bUl19+mew9uwEASCuEbgAAkOV4e3vrpZde0p49e3TlyhXdunVL2bNnV7FixfTss8+qW7duyp8/f0aXCQB4AjCmGwAAAAAAkzB7OQAAAAAAJiF0AwAAAABgEkI3AGRRXbp0kbe3typUqKDLly9nSA3//POPvL29jf8FBARkSB14eMOHDzf+3bp3757R5RgSfp6WLl2a7vvfa+nSpTbHRJy7d++qVq1a8vb2VuPGjRUZGZnRJQFAhmEiNQDIgn7//XcdOHBAktSmTRvly5fPWLd06VK9//77xvO5c+fKx8fHZv/u3btr165dkqRChQrpjz/+ML9opLljx45pxYoV2rZtm/79919FR0crT548Klu2rJo3b67nnntOTk5OGV1mmkkYeidMmKAOHTpkYDXmOn36tFauXCk/Pz/5+fkpLCzMWJfce798+bI2bdqk3bt369SpUwoODtbNmzfl6uqqsmXLqn379mrXrp0sFkuifQMDA/Xjjz9qx44dCggIUEREhJydnVWoUCHVqlVLPXr0UJEiRYztnZ2d1a1bN02dOlWBgYH6+eef1bNnTzNOBQA89gjdAJAFffPNN8bjHj16ZFgdRYsW1bBhw4znHh4eGVbLk+T69esaPXq01q1bJ6vVKovFojx58sjR0VGXL1/WhQsXtGHDBk2dOlVjx47VM888k9Elp1jCz1PFihUzsJKMtWXLFs2YMeOh9lmxYoUmT56caHloaKh27NihHTt26LffftO3334re3t7Y/2RI0fUo0cP4/7m8W7fvq0TJ07oxIkTWrJkiebOnasKFSoY67t166YZM2YoOjpa3333nbp27ZqlfuQBgJQidANAFrNv3z6dOHFCklSiRAk9/fTTGVZLgQIF1Lt37wx7/SdRUFCQXnnlFV24cEFlypRR37591ahRI7m4uEiSrFar9u3bp19++UWrVq3Sq6++qm+++UaNGzfO4MpThs/Tf9zd3VWuXDkVLVpUCxcuTPF+efLkUf369VWkSBEFBgZq5cqVioiIkCT9+eefWrp0qV544QVj+6+//toI3BaLRe3atVPx4sXl5+enjRs3SooL4DNnztTXX39t7Ofp6alatWpp69atCgkJ0YYNG9S6deu0eOsAkKkQugEgi0k4TvW5555L8+OHhIRo5syZ+vvvvxUYGKjo6Gi5u7urQIECqlSpktq2basqVapIihvTnfBK+6ZNm1S4cGFJcWOGly1bJkl65plnNHnyZE2ZMkV//vmnwsLCVKRIEfXq1UudO3dOVIO/v7++/PJLowt8tWrVNGTIEG3cuFFTp06VlPJu8QEBAWrSpInxfO7cufr33381d+5cnTp1Sjlz5lTDhg01ZMgQ5c6d29guOjpaU6dO1ZEjR3T27FmFhYXpzp07cnFxUalSpfT888/rxRdflKOjo83r7dmzR7Nnz9ahQ4cUGhoqR0dH5cqVSyVLllTlypXVs2dPubq6SpLCw8P1v//9T5s2bdK5c+cUGRkpNzc35c2bVxUrVlTz5s1Vv35949h3795Vv379dOHCBXXp0kUjR46Ug4Ptf+otFouqV6+u6tWrq23btho0aJDefPNNLV26VKVLl37g+bp9+7Zee+017du3T1Jc74X//e9/Kl++fLL7tG/fXseOHZMkDRo0SAMHDpQknT17Vi1atDCOs3PnTqNr82uvvaYtW7ZIkl588UWNGTNGUtJdyBMOh4j3/vvvG8Mo7vdZ2L17t6ZOnapDhw5JkqpXr6733nsvRefiQcaNG6e5c+dKkuzs7DR27Fh16tTpkY8rxZ2T+O7aAQEBKQrdBQoU0GeffaZWrVrZfC5at26tV155xXj+999/24TuCxcuGI8bNmyoTz/91Hjepk0b40e+kJCQRK/53HPPaevWrZKkJUuWELoBPJEI3QCQxWzbts14XLVq1TQ9dkREhLp27aqzZ8/aLL969aquXr2qw4cPK0eOHEboTql///1XHTp0UHBwsLHszJkz+uijj2RnZ2cTVA4fPqwePXooPDzcWLZlyxbt2rVLNWrUSN0bS2DatGnauXOn8TwiIkJLly7V7t27tWjRInl6ehrLp0+fnmj/sLAw7d27V3v37tUff/yhH374weiqu2PHDvXu3VsxMTHG9lFRUQoPD1dgYKC2bNmili1bGqH79ddfTxQmQ0JCFBISouPHj+v27ds2oXv27Nny9/dX69at9fHHH0uKC/mfffaZjh07pkKFCun999/XkCFDdPPmTfn7+2vy5Ml644039Pnnn+v777+/77mJD/XxgdvLy0uzZ89+4ARiPj4+RuiO3ze+toTn7dSpUypdurRiY2O1f/9+Y12tWrXue/zUWr16tXbs2KHY2Fhj2ZYtW3T48GGtW7fO+LdOjc8++8wI3Pb29vr000/Vpk0bY/3DTrp279wLzs7OD11TwtdPqFatWvLw8DDGhUdFRdmsf+qpp4w2f/z4cfn7+6tEiRLy8/NTYGCgsV29evUSHTvh34I9e/YoMjKSLuYAnjiEbgDIQoKCghQUFGQ8Tzi+Mi3s3LnT+PKdLVs2derUSfny5VNwcLAuXLig3bt3p+q4Fy9eVLZs2fTSSy/J2dlZv/zyi+7evStJ+uGHH4zQbbVaNWLECJvA3bp1axUuXFi//fabzQ8OqbVz5075+PioRo0a2rdvn3bs2GHU+Pnnn2vChAmS4q4YFylSRJUrV1a+fPnk7u6uqKgonT17Vr/99puio6O1fft2rV+/Xi1btpQkLVy40AjcJUuWVIsWLWRvb69///1Xx44d09GjR406Tp8+bQRuOzs7tW/fXsWLF1doaKgCAgIShfHo6GjNmTNHrq6uxlXh48eP69VXX1VERIRcXFx05coVvfXWW4qOjjb2a9q0qapXr66///5bISEhyQbNiIgIDRgwwHjdvHnzas6cOSpVqtQDz6mPj4/mzJkjSdq/f79iYmJkb2+vvXv32my3e/dulS5dWsePH7fpznzvRH/3eumll9SwYUN99tlnxrKWLVsan//4HzHutW3bNpUsWVLNmzfXsWPHtHnzZklxPwAsXrxYffv2feB7S8pXX32lWbNmSZIcHR01efJkU3qdpJXg4GCb8dr3jpV/++23deDAAQUHB+vff/9V27ZtbdbnyJFDL7/8sl599dVExy5VqpRy5Mih8PBwRUZG6tChQ2ny4xgAZCaEbgDIQhJ2A3V0dLTpDp0WEt72p2bNmho5cmSi9aGhoak69hdffKGmTZtKiusGO378eElxXZBv3bolFxcXHTx40OjKKkl9+vTR0KFDJUmvvvqqmjVrpuvXr6fq9ePVrVtXP/zwgywWi6xWq1577TWje+yqVas0cuRIZc+eXTly5NDGjRt17do1HThwQJcvX9bdu3dVrlw5Y3IpSdq6dasRuuPHzUrSwIED1apVK5vXDg4ONsZeJ9y2RIkSGj9+vM2s0jExMbp06ZLxfP/+/QoLC9OLL75oHGPatGmKiIhQ3bp1NX36dFmtVvXr10/bt2+3ed369etr7969Onz4sBo0aJDonERFRWnQoEHGjxoFCxbUjz/+qKJFi6bonD7zzDOyt7dXTEyMwsPDdfToUVWsWNG40h1/lXXv3r3q2rWrzY83pUuXfuAV5/jzmzB016tX74GzlxcoUEC//vqrcb58fX2NHz4OHz6covd2r2nTphk9IJycnPTNN9+oUaNGibZLOCFcSqT0XD+s6OhoffTRR8YPMV5eXnrppZdstilVqpSWLFmiQYMG6eDBg4mO4ePjk6jLejx7e3vlyZNH58+flxT3N4rQDeBJQ+gGgCwk4ZhKd3f3ND9+xYoV5eTkpMjISG3dulWtWrWSt7e3ihcvrnLlyqlWrVo2tydLqbx58xqBW4oLmQnduHFDLi4u8vPzs1nevn1747G7u7uaNGnyyPdebtOmjRFuLRaL2rRpY4TuqKgonThxQpUrV9bdu3c1ZswYLV++3KZ78r0S3iO9Ro0axtji4cOHa8GCBSpRooRKlCihatWqqVKlSsZrlypVygijp0+fVrNmzVSuXDkVL15c3t7eql27tgoVKmQc+9SpU5JshxTEX5Xu06eP0aW3b9++iUJ3/KzyN27cSPI9JOzqXaRIEf344482r/0gLi4uKleunBFk9+7dq3z58unixYuS4m5RN2XKFCOEJ7wC/qCr3I+iXbt2RuCWpOLFixuhO7U/3sRPJObs7Kxvv/1WdevWTXK7x2FCuFu3buntt9/W33//LUnKmTOnpk+fnuhHjpMnT6pv374KCgqSxWJR8+bNVaZMGR04cEBbtmzRn3/+qR07dmjWrFlJBmoPDw8jdCc17hsAsjpCNwA8Ye69GpXwimq8+K7dkmwmAsufP78mTpyosWPHKjQ0VKdOnTLCnhTXzfSTTz5JdAX3Qe4NcPeO+YwPtfeGwnuv5KfFlX0vL6/7Po+vYfLkySkK+Al7B7zyyivy9/fX6tWrFRkZqV27dtl0Ey9TpoxmzZqlvHnzKlu2bPrqq680YsQIBQUF6eLFi0ZIleL+XYYMGaJevXpJ+i8kJjwHN2/elBT3o0a8hI/j/fvvv5KkXLlyPfD9uLu7p+oHnVq1atmE7vg68ubNK19fX02ZMkWXLl3SxYsXbUK3WeO5pft/7qxW6yMd29nZ+b4/QMV3P0+pli1bqkCBAo9UU0L//vuvXn/9dfn7+0uKm2n8u+++U6VKlRJt+9577xnDVnx9fY0hFlLcLQn/+ecf3b17V5MnT9Yvv/ySaP9HPZcAkNkRugEgC0kYmpK7UnfvVayAgACb51ar1WZypHuDWKtWrdS8eXMdOnRIJ06c0Pnz5/XPP//o6NGjCg8P1wcffKCGDRsqZ86cKa773hm+E3ajTsjNzc3m+bVr12zu/X316tUUv2Zyrl27dt/n8TWsW7fOWFamTBl98cUXKlGihBwcHPTmm2/qt99+S3RsBwcHffbZZxo+fLj27duns2fP6uzZs9q4caOuX7+uEydOaPLkycbs0LVr19amTZt05MgRHT9+XOfPn9f+/fu1Z88eRUVF6bPPPlPjxo1VrFgxo66EP0x4enrqypUrunDhgkqWLClJOnfunE1NkZGRWrVqlRwdHVW5cuUkz0n+/Pl148YNhYeHy8/PT/369dMPP/zwUJN5+fj4aObMmZJsQ3f16tVVqFAhFShQQP/++68WL15s/Dva2dmZeg/xpGZ2f1QlS5bUmTNnFBYWpl69eunnn39Osmt4wq7wKVGhQoU0C92HDx9W//79jYkLixcvrpkzZyZZ582bN3XkyBHj+b3jvStUqKB//vlHUtwcAklJ+LfoUSanA4DMyi6jCwAApJ0iRYoYj6OiohIFRinuS3L8bNqS9MsvvxizFkvSggULbPZLGMTCwsIUGBgoR0dHVa9eXS+99JKGDx9uTJIlSXfu3Ek0u3lauXdiuDVr1hiPr1+/rk2bNj3ya6xatcq4Mme1WrVq1SpjnaOjo8qUKSNJNufMx8dHpUuXloODg0JCQhJNchbvzJkzunPnjjw9PdW0aVP16dNH48eP14ABA4xt4rs3R0RE6PTp07Kzs1PFihX1wgsvaOjQofrpp5+MicFiY2ONoBMfqhPODh7ftfmbb75RQECALl68qG+++cZYf+LECfXv31+BgYHq3r17shOOFS1aVF9//bXx48ju3bs1aNAgm6v4D1K9enVj/2vXrhn/dvHdkatXry5Jmj9/vrHP008/neiHlvtJGKLv3LmT4v3S0qxZs4wr3MHBwerZs6fN2PuM9vvvv6t79+5G4K5Ro4YWLlyY7JjxhDPtS4nHuicc8pEtW7Yk979y5YrxPOHfKAB4UnClGwCykMKFCytfvnzGOOIjR47Y3FJKihtf+fzzz2v16tWS4oJX06ZNVbp0aYWFhenMmTPGtg4ODjb3yT537py6dOmiihUrqmzZssqbN6/s7e2N+ynHe5ig9DCqVKmiMmXKGJOUTZs2TQEBASpQoIB+++23R55ETYqb+OyVV15RzZo1tXfvXmP2ciluvHf27NklxY07j6/j119/lZ2dnbJnz64VK1YkO251zpw5WrlypWrVqqXChQsrd+7cun79upYvX25sEx98b9y4oZYtW6p06dKqWLGi8ubNK2dnZ+3du9foNi79d66rV68uV1dXrV27Vm+//bZy5sypgQMH6o8//tCRI0eMe5F7eXnJ2dlZd+/eNW4h1aZNGw0ZMuS+56V+/foaN26c3nvvPVmtVv39998aOnSovvzyS5sfcZKTI0cOVaxY0fhRIH7CvfjQXaNGDa1evdrmvT3seO58+fIZvTRmz56tsLAwOTs7q1y5cqpdu/ZDHSu1ChYsqB9++EHdunXTjRs3FBgYqJ49e2r+/Pk2QxXiu3Wn1uHDh7V27VpJspl5XJLWrl2rkydPSoq7Mh0/0dy6dev0zjvvGMM1XF1dVbduXS1ZssRmf1dXV6Pde3h42LS5ZcuWKTw8XGXKlNH+/fuNq9ySkhy/fvr0aeMHEEdHxyS7rwNAVkfoBoAspk6dOlq2bJkk6cCBA4lCtySNHDlSZ86cMa6q3rx50+YKqRQXuEePHp3kLaEOHz6c7OzOzZs3N22mZUkaP368cZ9uq9WqFStWSIobj1urVi3jHtup7SrcsGFD/fXXXzZhQoob/xs/U7ok9evXT++8846kuDHwP/74oyQpT548evbZZ5O9fdmdO3f0559/JrnOzs4u0W2XTp48aQSoe1WqVEk1a9aUFBdounfvrmnTpunzzz/X6NGjVahQIf3666+aOnWq/P39VaBAAb311lsaNWqULBaLvL291apVqxR34W7Xrp2uXr1qdI1ev369Pvzww0QzqyenVq1aNp8zV1dXo+dAUhNwPex47mbNmhm9LhJe1e/WrVu6hW4pbrjB9OnTjdu1nT17Vq+++qrmzZuXZj9InTx5Uv/73/+SXLdlyxbjhzBfX18jdJ86dcpm0r+bN2/qq6++SrR/oUKFbH5sGzVqlPr06WO0ud9++y3R8ImCBQsm+cPNgQMHjMc1atRI8mo4AGR1dC8HgCymY8eOxuP169cnuY27u7sWLlyokSNHysfHR7ly5ZKDg4OyZ8+uEiVKqHPnzlqyZIleeOEFm/1KlCih4cOHq3nz5ipevLhcXV1lb28vd3d3VatWTR988IG++OILU99fxYoVtWDBAjVs2FA5cuRQjhw5VLt2bc2fP1/FihUztkttuHn11Vf1xRdfqHz58sqWLZs8PDzk6+urBQsW2FypbNWqlb766iuVLVtWjo6O8vDwUMuWLbVo0aIkJyuTpE6dOqlPnz6qWbOmChQooGzZssnR0VEFChRQixYtNG/ePGMWd3d3d40cOVKtW7fWU089JQ8PD9nb28vFxUUVKlTQm2++qTlz5th0qX7ttddUsmRJ/fLLL/ryyy8VGxurokWL6rPPPtOKFSs0Y8YMlS1bVgsXLtSCBQv04osvPvSY6d69e9v8MLB06VKNGzcuRfvee+W6atWqsrOL+yoS/x7jOTg4PPStpd5++2316NFD+fPnT9HVdzPVqFFDX3zxhVHH8ePH1bdvX5t7zGcWNWrU0MqVK9W9e3eVKVNGOXLksPksDhw4UCtWrEhyzHnCv0EJ/zYBwJPEYmVKSWQRf/zxh9asWSM/Pz8FBwfL3t5eRYsWVdeuXeXr62t8sZPifnn/5ptvdODAAcXGxqps2bLq379/ovvTxsbGau7cuVq0aJEuXrwoV1dX1a9fX2+//XaqbosEpJfWrVsbV0dXrlwpb2/vDK4o7URGRsrBwcGmTUvS7du31aZNG6N7cefOnTV27NgHHi8gIMDoei1Jc+fONfU2VWa7ePGievTooaCgIFWoUEGvv/666tatqxw5ckiKuyq/Y8cO/e9//9P+/fv1yy+/JJocC0gLISEhqlevnqKjo5UrVy5t3ryZK90Ankh0L0eWMX/+fONeuvH8/Pw0YsQI+fn5adSoUZLiJgDq1auXoqKijO3279+v119/XZMmTVLr1q2N5aNHj9bChQuN59euXdOyZcv0zz//aPHixYluJQQ8LgYNGqTBgwdLiguRKb0SmRmcPn1a/fv3V5s2bVSqVCm5u7srMDBQCxYsMAK3nZ2dunXrlsGVZowiRYpoyZIlGjFihP78808NGjRIDg4O8vLykr29vYKDg42/fzVr1jTlfu6AFPff5ejoaElxwzEI3ACeVFzpRpYxYMAAFSlSRJ06dVKRIkX0119/aciQIYqOjpbFYtG2bdvk5eWlli1b6vTp03J1ddXs2bPl7u6uV155RUFBQfLw8NDmzZvl7OysgwcPGmPaGjVqpPHjx+vPP//UiBEjJEkvvfSSRo8enYHvGLi/zp076+DBg3J0dNSmTZuyTO+MY8eOqX379smud3R01OjRo9WpU6cUHS+rXelOaP/+/Vq5cqX++ecfXbp0SdHR0cqXL59q1Kihtm3bpus4ZzxZ7t69q4YNGyo0NFQFCxbU+vXrbe6DDgBPEkI3soxbt27JxcXFZlm/fv2MCYsWLFggJycndejQQZLUpUsXffzxx5Kk7777zhiHOnXqVDVr1kyffPKJ5s2bJ0lauHChqlSpIkl67rnndO7cObm5uemff/5J1MUVgLlCQ0M1Y8YM7dq1S0FBQbp165acnJxUuHBh+fj46KWXXkpy8rfkZOXQDQAAMh7dy5Fl3Bu4pbj73MbLly+fzWzC8fe0vffxkSNH1KxZMx05ciTZbc+dO6cbN24oICDA1FmaASSWK1cuvf/++2l2vMKFCz/y7ZsAAACSwyU6ZFm7d+82bh1Up04dFSxY0ObeuQlDesLH8dukZNtr166lfeEAAAAAsgxCN7KkQ4cO6Y033lBsbKzy5cunCRMm3Hf7hxllkXDb1N4HGAAAAMCTgdCNLGffvn3q1auXrl+/rrx582rOnDnKnz+/JMnT09PY7tatW8bj27dvG4/jt0m47c2bN++7LQAAAAAkhTHdkoKDbz54I2QK+/fv1bBhb+vOnXAVKFBQX301Ta6ueYx/4wIFihvbHj3qbyw/deq0sbxw4ZIKDr6pkiVLa9++fZKkffuOqEKFuPvYnjx5SpLk4uKqbNnc+fwAD8HTM6dCQm4/eEMAj4S2BqQP2hry5HF94DZc6UaWsXv3Tg0dOlh37oSrSJGi+vbbmSpUqLDNNt7eZVW8eAlJ0qZNG3T8+FEFBl7UokVx9+J2d3dXrVpxt9Bp1ux5Y7+5c/+n0NBQrVmzUhcvXpAkNW36HDOXAw/BYpHs7e3EqAzAXLQ1IH3Q1pBS3DJMXOnOKgYO7KsDB/Ylu37EiFFq2bKN9u/fq3feGaioqCib9RaLRSNHjlWzZi2MZZ9/Pl4rVixNdKx8+fLrhx/mKlcuupcDKWWxSLlzu+rq1ZvivzyAeWhrQPqgrUFK2ZVuupfjiVO1anVNmfK9Zs2aoSNH/BQbG6Onn35aXbu+otq169psO2TIcBUtWkyrVi1XYGCAcuZ0Ua1adfT6628QuAEAAAA8EFe6xZXuJx2/UgLpg7YGpA/aGpA+aGuQGNMNAAAAAECGInQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJmL0eGsFqt6t37ZZ044a+3335XHTt20fHjR/Xrrwvk53dIgYEBkiRPTy+tXLk+0f6xsbH69ddftGrVcgUFBRqzivftO0B58uS12TY4+Iq+/36adu7crtu3b6lgwUJq06a9XnjhpRTdZzsiIkLz5s3Whg3rFBx8RR4eudSgQSP17t1Prq7/TZywbt1qzZ37P129GqySJZ/S4MFDVL58BWP9pUv/qlu3Turcuatef/0Nm9dYvHiBvvpqksqU8dasWT/Jwg0fAQAAgCyBK93IEJs2bdCJE/7y8PBQ69btJEmHDh3Q+vVrjcB9P5MnT9SUKV/q3LmzioyMVGhoiNatW61+/V5VaGiIsV1oaIj69XtV69atVmhoiCIjI3Xu3FlNmfKlvvji0we+jtVq1QcfvKs5c35QUFCgoqKiFBx8RYsXL9Tgwa8rIiLCqH3cuNEqUKCgJk2aoitXLuu9997WrVu3jGN9++3XcnFxVffuvRK9TuvW7eXu7q4TJ/z1xx+/P7AuAAAAAJkDoRsZYuHC+ZKkJk2aK1s2Z0lSkSLF1Lv36/ryy28TXa1O6MgRP61YsVSSVKdOPa1a9bvef3+kJOny5UuaNet7Y9tZs77X5cuXJEnDh3+kVat+V5069SRJy5cv0dGjfvet848/Nmrnzu2SpLZtfbVmzUa99lo/SdLJkye0ePECSdLWrX9Lktq376TKlauoYcMmCgsLlZ/fIUnSgQP79OefG/X6628oR44ciV7H2dlZjRo1lSQtWvTLfWsCAAAAkHkQupHuzpw5rWPHjkqSGjZsYiyvXftZ9erVRzVr+sje3j7Z/X//fZ3xuEePV5UrVy61atVWRYoUlSRt3LhesbGxio2N1caNv0mSihYtptat2ylXrlzq0eO/K80bNvx231o3bFhrPO7d+3W5u3vo5Zd7Knv27Db7R0dHSZIcHR3///8djOWxsbH6+utJKlu2nJ5/vnWyrxV/Lo4cOawLF87dty4AAAAAmQOhG+lu797dkiR7e3uVK1f+off39z9uPC5WrHiix7du3dS//wYpKCjQ6N6dcLuiRf97fOLEf8dKyokT/pIkFxcXeXnlliQ5ODioYMHCkqRz584oMjJSVapUlyRt3vyHbt68qZ07tytbtmwqW7a8Vq1arpMnT2jw4HfuO1a7XLkKxhjz3bt33bcuAAAAAJkDoRvpLj7oFihQ0Oha/jDCwkKNxzlz5kzycWhoiM12OXIkv11KXivh/gmPERMToxs3bqh+/YZ66aXuWrdutZ5/vpGuXLms998fKWdnZ82cOV1NmjRXpUpVJEnR0dFJvlaOHDlUoEBBSZK//7H71gUAAAAgc2D2cqS7+KDr5uaepse1WhM+s0iyJrPdf8tTO0u47THi/v+NN97Ua6+9rmvXrilfvvyyt7fXlClf6M6dcPXvP1jHjh3RZ5+N0+nTp+Tq6qquXXuoW7dXbI7r7u6hwMCAB/4YAAAAACBz4Eo3Mh0Pj1zG44Szg4eH3zYe58qVy2a727cTbhee5LHu91oJ9094DHt7e7m6uhnLs2VzVsGChWRvb68LF85pyZJF6tq1h7y8vPTBB8MUEHBRH330sUqVKq3p06cYk7TFs1pj71sPAAAAgMyF0I10lyuXpyTpxo3rqdrf27us8fjChfPG4/Pnz0mSXFxcVaBAQRUsWEguLq6Jtks4SVmZMv8dKyllynhLkm7fvq1r165KiuseHhQUd1uz4sVLysnJKcl9v/nmC3l6eqlbt1d04cJ5XblyWTVq+KhZsxbq1OlFSdLu3f/Y7HP9etw5iT9HAAAAADI3QjfSXXzQ/fffIN29e9dYHhkZqbCwMIWFhSk2Nu6Kr9VqNZZFRkZKkpo1e97YZ+7c/yk0NFRr1qzUxYsXJElNmz4nOzs72dnZqWnT5yTFhe41a1YqNDRUc+fONvZv3ryF8bhjxzaqW7eGBg7sm2B9S+PxrFnf6caN65o3b7bu3LmTaP+EduzYqp07t6tfv4FydnY2urHHz8ru4ODw/8//a4Lh4eG6dOlfSZK399MPOo0AAAAAMgHGdCPdVa9eU1LcJGRHj/qpWrUakuJu9TV+/BibbUNDQ9S6ddz9q0eMGKWWLduofPkKateug1asWKrt27eoTZtmxvb58uVX797/hebevftqx46tunz5kiZM+Njm2O3bd1S5chXuW2vjxk21bt0q7dy5XStXLtPKlcuMdaVLlzGuWCcUHR2tKVO+VPnyFdWsWVwoL1q0mAoXLqL9+/do//69Wr16hSSpdu26xn5Hjhw2fmyoWfOZ+9YFAAAAIHN4rK50f/fdd+rYsaOqVq2q2rVra8CAATpz5ozNNhERERozZox8fHxUtWpVDRo0SFevXrXZJigoSH379lXlypVVu3Ztffrpp8nOGI30V7JkKT39dNytwv76a1OqjjFkyHANGvS2ihcvIUdHR3l45FKLFq00Y8b/bLpm58rlqRkz/qcWLVrJwyOXHB0dVbx4CQ0a9Lbeeee9B76OxWLRuHGfq2fP11SgQCE5ODgoT5686tSpi7755jtly5Yt0T6LFy/QxYsXNHjwEOMKt4ODg8aPn6SSJZ/SsGFv6dSpExo69H1VrVrd2C/+XFSoUMnmtmYAAAAAMi+L1WpNeornDNC7d2+1atVKFStWVExMjL744gudPHlSa9asUY4cOSRJo0aN0ubNmzVhwgS5urpq7NixslgsWrBggaS4q6ft27dX7ty5NWzYMF25ckXvvfeeOnfurHfeeSfJ1w0Ovplu7xFxNm5cr9GjP5C7u7uWLFkjZ+eHv3VYWrFYpNy5XXX16k1lVGu4e/euOnRopRs3rmvMmAlq0qTZg3cCMpnHoa0BTwLaGpA+aGuQpDx5XB+4zWN1pXvWrFnq0KGDSpcurbJly2rixIkKCgrSkSNHJEk3b97UkiVLNHz4cNWuXVsVKlTQ+PHjtX//fh04cECStHXrVp06dUqff/65nn76aTVo0EBvvvmm5s+fb4wJRsZr0qS5Spcuo+vXr2vNmhUZXU6GW716uW7cuK4yZbzVuHHTjC4HAAAAQBp5rMd037wZdwXa3T3ufs5+fn6KiopSnTp1jG1KlSqlggUL6sCBA6pSpYoOHDigMmXKKHfu3MY2devW1ejRo3Xq1CmVK1cufd9EGrl8+XKqZ/t+XI0YMdp4fPLkiQyrw2KRrl7NqdDQ2xn2K2XlytU0e/bPkqRTp05mTBEmcnNzV758+TK6DAAAACDdPbahOzY2VuPHj1e1atVUpkwZSdLVq1fl6OgoNzc3m229vLwUHBxsbJMwcEsynsdvcy9HR3v9/9Dbx9Lly5fUrXcX3bhz68Eb46FZJFns7GSNjRU9g8zhlt1Fv877Vfny5c/oUpCB4v/OOjnZ0w0PMBFtDUgftDWk1GMbuseMGaOTJ0/q559/Nv21oqJiTH+NR3H1aqiuh99S4f71lLMw9282g4O9RdEx/LU0w+2AEAVM36KrV0OVK1eejC4HGSj+y0lkZAxfTgAT0daA9EFbQ0o9lqH7448/1l9//aWffvpJ+fP/d2Usd+7cioqK0o0bN2yudl+7dk158uQxtjl06JDN8eJnN4/fJrPKWdhTbiXyZnQZWZKDg52io2MzugwAAAAAWcxjNZGa1WrVxx9/rN9//10//vijihQpYrO+QoUKcnR01I4dO4xlZ86cUVBQkKpUqSJJqlKlik6cOKFr164Z22zfvl0uLi566qmn0uV9AAAAAAAgPWZXuseMGaPVq1dr2rRpypkzpzEG29XVVc7OznJ1dVXHjh01ceJEubu7y8XFRZ988omqVq1qhO66devqqaee0rBhw/Tuu+8qODhYX331lbp16yYnJ6cMfHcAAAAAgCfNYxW6f/nlF0lS9+7dbZZPmDBBHTp0kCSNGDFCdnZ2Gjx4sCIjI1W3bl2NGjXK2Nbe3l4zZszQ6NGj1aVLF2XPnl2+vr4aPHhw+r0RAAAAAAD0mIVuf3//B26TLVs2jRo1yiZo36tQoUKaOXNmWpYGAAAAAMBDe6zGdAMAAAAAkJUQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJM4ZHQBCe3evVuzZs2Sn5+fgoOD9e2336pp06bGem9v7yT3e/fdd/Xaa69Jkho3bqzAwECb9UOGDFHfvn3NKxwAAAAAgCQ8VqE7PDxc3t7e6tixowYOHJho/datW22e//333/rggw/03HPP2SwfPHiwOnfubDzPmTOnOQUDAAAAAHAfj1XobtCggRo0aJDs+jx58tg837Rpk3x8fFSkSBGb5Tlz5ky0LQAAAAAA6S3Tjum+evWqNm/erE6dOiVaN3PmTPn4+Kh9+/b64YcfFB0dnQEVAgAAAACedI/Vle6HsWzZMuXMmVPNmze3Wd69e3eVK1dO7u7u2r9/v7744gsFBwfr/fffz6BKAQAAAABPqkwbupcsWaI2bdooW7ZsNst79eplPC5btqwcHR01atQoDRkyRE5OTkkey9HRXhaLqeU+EkdHO1kskkV6rOvM7Di35oj/3Do62snJyT6jy0EGim9jTk72slozthYgK6OtAemDtoaUypShe8+ePTp79qy++uqrB25buXJlRUdHKyAgQCVLlkxym6iomDSuMG1FRcXKapWsEg3aRJxbc8R/bqOiYhUZ+Xi3NZgr/stJZGQM7Q0wEW0NSB+0NaRUphzTvXjxYpUvX15ly5Z94LbHjh2TnZ2dvLy80qEyAAAAAAD+81hd6b59+7YuXLhgPA8ICNCxY8fk7u6uggULSpJu3bql3377Te+9916i/ffv36+DBw+qVq1aypkzp/bv368JEyaobdu2cnd3T7f3AQAAAACA9JiFbj8/P/Xo0cN4PmHCBEmSr6+vJk6cKElas2aNrFarWrdunWh/JycnrV27VlOnTlVkZKQKFy6snj172ozzBgAAAAAgvTxWodvHx0f+/v733aZLly7q0qVLkuvKly+vRYsWmVEaAAAAAAAPLVOO6QYAAAAAIDMgdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACZ5rEL37t271a9fP9WtW1fe3t7auHGjzfrhw4fL29vb5n+9e/e22SYsLExDhgxRtWrVVKNGDY0YMUK3b99Oz7cBAAAAAIAkySGjC0goPDxc3t7e6tixowYOHJjkNvXq1dOECROM505OTjbrhw4dquDgYM2ePVtRUVEaMWKERo4cqcmTJ5taOwAAAAAA93qsQneDBg3UoEGD+27j5OSkPHnyJLnu9OnT2rJlixYvXqyKFStKkj788EP17dtXw4YNU758+dK8ZgAAAAAAkvNYdS9PiV27dql27dp67rnnNGrUKIWGhhrr9u/fLzc3NyNwS1KdOnVkZ2enQ4cOZUS5AAAAAIAn2GN1pftB6tWrp2bNmqlw4cK6ePGivvjiC/Xp00cLFy6Uvb29rl69Kk9PT5t9HBwc5O7uruDg4AyqGgAAAADwpMpUobtVq1bG4/iJ1Jo2bWpc/U4tR0d7WSxpUaE5HB3tZLFIFumxrjOz49yaI/5z6+hoJycn+4wuBxkovo05OdnLas3YWoCsjLYGpA/aGlIqU4XuexUpUkS5cuXS+fPnVbt2beXOnVshISE220RHR+v69evJjgOXpKioGLNLfSRRUbGyWiWrRIM2EefWHPGf26ioWEVGPt5tDeaK/3ISGRlDewNMRFsD0gdtDSmV6cZ0J3Tp0iWFhYUZgbpq1aq6ceOG/Pz8jG127typ2NhYVapUKaPKBAAAAAA8oR6rK923b9/WhQsXjOcBAQE6duyY3N3d5e7urqlTp+q5555T7ty5dfHiRX3++ecqVqyY6tWrJ0kqVaqU6tWrp48++khjxoxRVFSUxo4dq1atWjFzOQAAAAAg3T1WodvPz089evQwnsffj9vX11ejR4/WiRMntHz5ct28eVN58+bVs88+qzfffNPmXt2TJk3S2LFj9corr8jOzk7NmzfXhx9+mO7vBQAAAACAxyp0+/j4yN/fP9n1s2bNeuAxPDw8NHny5LQsCwAAAACAVMnUY7oBAAAAAHicEboBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwiUNaHchqtWrnzp2KjIxU9erV5eLiklaHBgAAAAAgU0pV6P7yyy+1b98+zZs3T1Jc4H711Ve1c+dOWa1WFSxYUHPmzFHRokXTtFgAAAAAADKTVHUvX79+vSpVqmQ8/+2337Rjxw699dZb+u677xQTE6MpU6akWZEAAAAAAGRGqbrSffnyZRUrVsx4/vvvv+upp57S66+/Lkl66aWX9Msvv6RNhQAAAAAAZFKputLt4OCgyMhISXFdy3fs2KF69eoZ6728vBQaGpo2FQIAAAAAkEmlKnSXLl1aK1eu1PXr17VkyRKFhYWpQYMGxvqgoCDlypUrzYoEAAAAACAzSlX38jfeeEP9+vVTrVq1JEnVqlUzHkvS5s2bVbFixbSpEAAAAACATCpVofvZZ5/VsmXLtG3bNrm5ually5bGuuvXr6tGjRpq0qRJmhUJAAAAAEBmlOr7dD/11FN66qmnEi13d3fXiBEjHqkoAAAAAACyglSH7nixsbG6efOmrFZronUeHh6PengAAAAAADKtVIXuqKgozZw5U0uWLNGlS5cUGxub5HbHjh17pOIAAAAAAMjMUhW6R44cqeXLl6ty5cpq2rSpXF1d07ouAAAAAAAyvVSF7t9++03t2rXTxIkT07oeAAAAAACyjFTdpzt79uyqXLlyWtcCAAAAAECWkqrQ3apVK/31119pXAoAAAAAAFlLqrqXv/vuuxoxYoRef/11dezYUfnz55e9vX2i7cqXL//IBQIAAAAAkFmlKnRHRkbKarXq77//1t9//51ovdVqlcViYfZyAAAAAMATLVWhe8SIEdq4caNatmypypUrM3s5AAAAAABJSFXo3rp1q15++WWNGDEiresBAAAAACDLSNVEai4uLipWrFha1wIAAAAAQJaSqtDduXNnrV69WjExMWldDwAAAAAAWUaqupeXKlVKmzZtkq+vr3x9fZOdvbx58+aPXCAAAAAAAJlVqkL322+/bTz+9NNPk9yG2csBAAAAAE+6VIXuuXPnpnUdAAAAAABkOakK3c8880xa1wEAAAAAQJaTqtAdLzIyUkeOHNG1a9dUrVo1eXp6plVdAAAAAABkeqmavVyK62Jet25dde3aVYMGDZK/v78kKSQkRD4+Plq8eHGaFQkAAAAAQGaUqtC9ZMkSjR8/XvXq1dO4ceNktVqNdZ6enqpVq5bWrl2bZkUCAAAAAJAZpSp0z549W02aNNHkyZPVqFGjROvLly+vkydPPnJxAAAAAABkZqkK3efPn1f9+vWTXe/h4aGwsLDU1gQAAAAAQJaQqtDt5uam0NDQZNefOnVKefLkSXVRAAAAAABkBakK3fXr19eiRYt048aNROtOnjypX3/9VY0bN37k4gAAAAAAyMxSFbrfeustxcTEqHXr1vrqq69ksVi0fPlyDR06VB07dpSnp6cGDBjw0MfdvXu3+vXrp7p168rb21sbN2401kVFRenzzz9XmzZtVKVKFdWtW1fDhg3T5cuXbY7RuHFjeXt72/zv+++/T83bBAAAAADgkaTqPt358uXT0qVL9cUXX2jdunWyWq1asWKFcubMqVatWmno0KGpumd3eHi4vL291bFjRw0cONBm3d27d3X06FH1799fZcuW1Y0bNzRu3Dj1799fS5cutdl28ODB6ty5s/E8Z86cqXmbAAAAAAA8klSFbkny8vLSuHHjNG7cOIWEhCg2Nlaenp6ys0v1rb/VoEEDNWjQIMl1rq6umj17ts2yjz76SC+88IKCgoJUsGBBY3nOnDkZUw4AAAAAyHCpT8gJeHp6Knfu3I8UuFPj1q1bslgscnNzs1k+c+ZM+fj4qH379vrhhx8UHR2drnUBAAAAACCl8Er31KlTH/rAFotFb7zxxkPvl1IRERGaNGmSWrVqJRcXF2N59+7dVa5cObm7u2v//v364osvFBwcrPfffz/ZYzk62stiMa3UR+boaCeLRbJIj3WdmR3n1hzxn1tHRzs5OdlndDnIQPFtzMnJXlZrxtYCZGW0NSB90NaQUpkydEdFRenNN9+U1WrVmDFjbNb16tXLeFy2bFk5Ojpq1KhRGjJkiJycnJI5XowpdaaVqKhYWa2SVaJBm4hza474z21UVKwiIx/vtgZzxX85iYyMob0BJqKtAemDtoaUSlHoPn78uNl1pFhUVJTeeustBQUF6ccff7S5yp2UypUrKzo6WgEBASpZsmQ6VQkAAAAAwCNMpJYR4gP3+fPnNXfuXOXKleuB+xw7dkx2dnby8vJKhwoBAAAAAPjPI4XusLAwbd++XYGBgZKkQoUKqXbt2ikKw0m5ffu2Lly4YDwPCAjQsWPH5O7urjx58mjw4ME6evSovvvuO8XExCg4OFiS5O7uLicnJ+3fv18HDx5UrVq1lDNnTu3fv18TJkxQ27Zt5e7u/ihvFQAAAACAh5bq0D1lyhTNnDlTUVFRsiYYxODo6KjXXntNb7755kMf08/PTz169DCeT5gwQZLk6+urgQMH6o8//pAktWvXzma/uXPnysfHR05OTlq7dq2mTp2qyMhIFS5cWD179rQZ5w0AAAAAQHpJVej+9ttv9e2336phw4bq1q2bihcvLkk6e/as5s+frxkzZsjBweGhJ1Lz8fGRv79/suvvt06Sypcvr0WLFj3UawIAAAAAYJZUhe4FCxaoUaNGmj59us3yIkWKqH79+urXr59++eUXU28ZBgAAAADA484uNTvdunVL9erVS3Z9/fr1dfv27VQXBQAAAABAVpCq0F2tWjUdOnQo2fWHDh1StWrVUl0UAAAAAABZQapC9+jRo7V//36NHz9e58+fV2xsrGJjY3X+/HmNGzdOBw4c0JgxY9K6VgAAAAAAMpUUjemuWrWqLBaLzbKYmBjNmzdP8+bNk51dXHaPjY2VJDk5Oaldu3bau3dvGpcLAAAAAEDmkaLQ/dxzzyUK3QAAAAAA4P5SFLonTpxodh0AAAAAAGQ5qRrTDQAAAAAAHixV9+mW4m4bNmfOHP31118KCgqSJBUsWFANGzZUz5495eLikmZFAgAAAACQGaXqSvfly5fVvn17TZ06VeHh4apWrZqqVaumO3fuaOrUqfL19dWVK1fSulYAAAAAADKVVF3pnjRpkq5evarvvvtODRo0sFm3efNmvfXWW5o8ebI+/fTTNCkSAAAAAIDMKFVXurds2aJXXnklUeCWpAYNGqh79+7avHnzIxcHAAAAAEBmlqrQfefOHXl5eSW7Pnfu3Lpz506qiwIAAAAAICtIVeguVaqU1qxZo8jIyETroqKitGbNGpUqVeqRiwMAAAAAIDNL1ZjuPn366O2339YLL7ygrl27qnjx4pKks2fPasGCBfL399eXX36ZlnUCAAAAAJDppCp0P//887pz544mT56sUaNGyWKxSJKsVqu8vLw0fvx4tWjRIk0LBQAAAAAgs3no0G21WnX79m21atVKbdu2lZ+fn819uitUqCAHh1Tf/hsAAAAAgCzjodNxVFSUnnnmGb399tvq06ePqlSpoipVqphQGgAAAAAAmdtDT6Tm5OSk3Llzy8nJyYx6AAAAAADIMlI1e7mvr69WrFiR5OzlAAAAAAAgTqoGX3t7e2vTpk1q3bq1fH19VahQITk7Oyfarnnz5o9cIAAAAAAAmVWqQvc777xjPP7666+T3MZisejYsWOpqwoAAAAAgCwgVaH7xx9/NG4TBgAAAAAAkpaq0O3j45PWdQAAAAAAkOU8VOjesmWLfvzxRwUEBMjDw0PPP/+8XnnlFbNqAwAAAAAgU0tx6N61a5f69u0rq9WqXLly6eLFizp48KAuX76sYcOGmVkjAAAAAACZUopvGfbdd9/Jy8tLK1eu1I4dO7R9+3b5+Pjo559/1t27d82sEQAAAACATCnFofvEiRPq2rWrypQpI0lyd3fXO++8o7t37+rkyZOmFQgAAAAAQGaV4tB99epVFS5c2GZZ/PPbt2+nbVUAAAAAAGQBKQ7dVqs10W3C4p9brda0rQoAAAAAgCzgoWYvX758uQ4ePGg8j4iIkMVi0fz587Vp06ZE23/44YePXiEAAAAAAJnUQ4Xubdu2adu2bYmWb9y4MdEyi8VC6AYAAAAAPNFSHLqPHz9uZh0AAAAAAGQ5KR7TDQAAAAAAHg6hGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADBJikL33LlzdfbsWbNrAQAAAAAgS0lR6J4wYYL8/PyM508//bRWrVplWlEAAAAAAGQFKQrdbm5uunbtmvHcarWaVhAAAAAAAFmFQ0o28vHx0ZQpU3Ts2DG5urpKkpYvX66DBw/ed78PP/zw0SsEAAAAACCTSlHoHjVqlMaPH69t27bp2rVrslgs2rZtm7Zt25bsPhaLhdANAAAAAHiipSh0e3l5afLkycbzsmXL6vPPP1ebNm1MKwwAAAAAgMwuVbcMmzBhgqpWrZrWtQAAAAAAkKWk6Er3vXx9fY3Hp06dUmBgoCSpUKFCeuqpp9KmMgAAAAAAMrlUhW5J2rhxoyZOnGgE7niFCxfW8OHD1aRJk0cuDgAAAACAzCxVoXvz5s0aPHiwChYsqLffflulSpWSJJ0+fVqLFi3SoEGDNGPGDNWvXz9NiwUAAAAAIDNJVeieNm2avL29NX/+fOXIkcNY3qRJE7388svq2rWrvv32W0I3AAAAAOCJlqqJ1Pz9/dW+fXubwB0vR44c8vX1lb+//0Mfd/fu3erXr5/q1q0rb29vbdy40Wa91WrV119/rbp166pSpUrq2bOnzp07Z7NNWFiYhgwZomrVqqlGjRoaMWKEbt++/dC1AAAAAADwqFIVurNly6br168nu/769evKli3bQx83PDxc3t7eGjVqVJLrZ86cqXnz5mn06NFatGiRsmfPrt69eysiIsLYZujQoTp16pRmz56tGTNmaM+ePRo5cuRD1wIAAAAAwKNKVej28fHR3LlztX///kTrDh48qHnz5ql27doPfdwGDRro7bffVrNmzRKts1qtmjt3rvr376+mTZuqbNmy+uyzz3TlyhXjivjp06e1ZcsWffLJJ6pcubJq1KihDz/8UGvWrNHly5cf/o0CAAAAAPAIUjWm+91339WLL76orl27qlKlSipRooQk6ezZszp06JC8vLw0dOjQNC00ICBAwcHBqlOnjrHM1dVVlStX1v79+9WqVSvt379fbm5uqlixorFNnTp1ZGdnp0OHDiUZ5gEAAAAAMEuqQneRIkW0cuVKfffdd/r777+1du1aSVLBggXVo0cP9e3bV15eXmlaaHBwsCQlOq6Xl5euXr0qSbp69ao8PT1t1js4OMjd3d3YPymOjvayWNK03DTl6Ggni0WySI91nZkd59Yc8Z9bR0c7OTnZZ3Q5yEDxbczJyV5Wa8bWAmRltDUgfdDWkFKpvk+3l5eXRowYoREjRqRlPRkiKiomo0u4r6ioWFmtklWiQZuIc2uO+M9tVFSsIiMf77YGc8V/OYmMjKG9ASairQHpg7aGlErVmO6MkCdPHknStWvXbJZfu3ZNuXPnliTlzp1bISEhNuujo6N1/fp1Y38AAAAAANJLpgndhQsXVp48ebRjxw5j2a1bt3Tw4EFVrVpVklS1alXduHFDfn5+xjY7d+5UbGysKlWqlO41AwAAAACebKnuXm6G27dv68KFC8bzgIAAHTt2TO7u7sZ48enTp6tYsWIqXLiwvv76a+XNm1dNmzaVJJUqVUr16tXTRx99pDFjxigqKkpjx45Vq1atlC9fvox6WwAAAACAJ9RjFbr9/PzUo0cP4/mECRMkSb6+vpo4caL69OmjO3fuaOTIkbpx44aqV6+uH374weae4JMmTdLYsWP1yiuvyM7OTs2bN9eHH36Y7u8FAAAAAIDHKnT7+PjI398/2fUWi0Vvvvmm3nzzzWS38fDw0OTJk80oDwAAAACAh/LQY7rv3LmjDh066JdffjGjHgAAAAAAsoyHDt3Zs2dXQECALNzUGAAAAACA+0rV7OX16tXT1q1b07oWAAAAAACylFSF7gEDBujcuXN69913tWfPHl2+fFlhYWGJ/gcAAAAAwJMsVROptWrVSpJ06tQprV69Otntjh07lrqqAAAAAADIAlIVut944w3GdAMAAAAA8ACpCt2DBg1K6zoAAAAAAMhyUjWm+143b95UTExMWhwKAAAAAIAsI9Wh+/Dhw+rdu7cqV64sHx8f7dq1S5IUEhKi/v37659//kmzIgEAAAAAyIxSFbr37dunrl276vz582rbtq1iY2ONdZ6enrp165YWLlyYZkUCAAAAAJAZpSp0f/nllypVqpTWrl2rt99+O9F6Hx8fHTx48JGLAwAAAAAgM0tV6D58+LA6dOggJyenJGcxz5cvn65evfrIxQEAAAAAkJmlKnQ7ODjYdCm/1+XLl5UjR45UFwUAAAAAQFaQqtBduXJlrV+/Psl14eHhWrp0qWrWrPlIhQEAAAAAkNmlKnQPHjxYfn5+6tu3r/7++29Jkr+/v3799Vd16NBBISEhGjBgQJoWCgAAAABAZpPqK93ff/+9zp8/r/fee0+SNHHiRH300UeKjY3V999/r7Jly6ZpoQAAAAAAZDYOqd2xdu3aWr9+vY4eParz58/LarWqSJEiqlChQpKTqwEAAAAA8KRJdeiOV65cOZUrVy4tagEAAAAAIEtJdeiOjIzUokWLtHnzZgUGBkqSChUqpAYNGuiFF15QtmzZ0qxIAAAAAAAyo1SF7kuXLqlXr146e/as8uTJo2LFikmSjh8/ri1btuinn37SnDlzlD9//jQtFgAAAACAzCRVoXvMmDEKCgrSV199pRYtWtisW7dunYYPH64xY8Zo+vTpaVIkAAAAAACZUapC986dO9WzZ89EgVuSnn/+eR09elQ//fTTIxcHAAAAAEBmlqpbhuXMmVOenp7Jrs+dO7dy5syZ6qIAAAAAAMgKUhW6O3TooGXLlunOnTuJ1t2+fVtLly5Vx44dH7k4AAAAAAAysxR1L9+wYYPN86efflp//fWXnn/+ebVv396YSO3cuXNasWKF3N3d5e3tnfbVAgAAAACQiaQodA8ePFgWi0VWq1WSbB7PmDEj0faXLl3SkCFD1LJlyzQsFQAAAACAzCVFoXvu3Llm1wEAAAAAQJaTotD9zDPPmF0HAAAAAABZTqomUgMAAAAAAA+Wqvt0S9KePXu0ZMkSBQQE6Pr168YY73gWi0UrV6585AIBAAAAAMisUhW6Z8+erc8++0zZsmVTiRIl5O7untZ1AQAAAACQ6aUqdM+aNUvVqlXTjBkz5OrqmtY1AQAAAACQJaRqTPedO3fUpk0bAjcAAAAAAPeRqtDt4+OjEydOpHUtAAAAAABkKakK3R999JF27NihWbNmKSwsLI1LAgAAAAAga0jVmO4CBQqoS5cu+uyzzzRp0iRly5ZNdna2+d1isWjv3r1pUiQAAAAAAJlRqkL3119/rRkzZihfvnyqUKECY7sBAAAAAEhCqkL3ggUL1KBBA02bNi3RFW4AAAAAABAnVYk5KipKDRs2JHADAAAAAHAfqUrNDRs21J49e9K6FgAAAAAAspRUhe6BAwfq9OnTGj16tPz8/BQSEqKwsLBE/wMAAAAA4EmWqjHdLVq0kCQdO3ZMCxcuTHa7Y8eOpa4qAAAAAACygFSF7jfeeEMWiyWtawEAAAAAIEtJVegeNGhQWtcBAAAAAECWw/TjAAAAAACYJFVXuqdOnfrAbSwWi954443UHB4AAAAAgCwhzUO3xWKR1WoldAMAAAAAnnipCt3Hjx9PtCw2NlaBgYH6+eeftXv3bs2cOfORiwMAAAAAIDNLszHddnZ2KlKkiN577z0VK1ZMn3zySVodGgAAAACATClVV7ofpGbNmpo0aZIZh1bjxo0VGBiYaHnXrl01atQode/eXbt27bJZ16VLF3388cem1AMAAAAAQHJMCd1+fn6yszNnYvTFixcrJibGeH7y5En16tVLLVq0MJZ17txZgwcPNp5nz57dlFoAAAAAALifVIXu5cuXJ7n8xo0b2rNnjzZs2KAXXnjhUepKlqenp83z77//XkWLFtUzzzxjLHN2dlaePHlMeX0AAAAAAFIqVaF7+PDhya7LlSuX+vbtmy4zl0dGRmrlypXq1auXLBaLsXzVqlVauXKl8uTJo0aNGmnAgAFc7QYAAAAApLtUhe5NmzYlWmaxWOTm5iYXF5dHLiqlNm7cqJs3b8rX19dY1rp1axUsWFB58+aVv7+/Jk2apLNnz973NmeOjvZKkNkfO46OdrJYJIv0WNeZ2XFuzRH/uXV0tJOTk31Gl4MMFN/GnJzsZbVmbC1AVkZbA9IHbQ0plarQXahQobSuI1WWLFmi+vXrK1++fMayLl26GI+9vb2VJ08e9ezZUxcuXFDRokWTPE5UVEySyx8XUVGxslolq0SDNhHn1hzxn9uoqFhFRj7ebQ3miv9yEhkZQ3sDTERbA9IHbQ0pZc5sZ+kgMDBQ27dvV6dOne67XeXKlSVJ58+fT4+yAAAAAAAwpPhKd5s2bR7qwBaLRStXrnzoglJq6dKl8vLyUsOGDe+73bFjxySJidUAAAAAAOkuxaHbw8MjRdtdvXpVZ8+etZnYLK3FxsZq6dKlat++vRwc/nsLFy5c0KpVq9SgQQN5eHjI399fEyZMUM2aNVW2bFnT6gEAAAAAICkpDt3z5s277/rg4GDNnDlTCxculL29vdq2bfvIxSVn+/btCgoKUseOHW2WOzo6aseOHZo7d67Cw8NVoEABNW/eXAMGDDCtFgAAAAAAkpOqidQSunr1qr7//nstWrRI0dHRatOmjfr375/spGVpoW7duvL390+0vECBAvrpp59Me10AAAAAAB5GqkN3/JXthGF7wIABKlKkSFrWBwAAAABApvXQoTs4OFjff/+9fv31V0VHR6tt27bq378/YRsAAAAAgHukOHRfuXLFCNsxMTFq166d+vXrR9gGAAAAACAZKQ7dzZo1U2RkpJ5++mm9/vrrKly4sG7cuKEjR44ku0/58uXTpEgAAAAAADKjFIfuiIgISdLRo0f11ltv3Xdbq9Uqi8Vi3CMbAAAAAIAnUYpD94QJE8ysAwAAAACALCfFodvX19fMOgAAAAAAyHLsMroAAAAAAACyKkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJslUoXvKlCny9va2+V+LFi2M9RERERozZox8fHxUtWpVDRo0SFevXs3AigEAAAAATzKHjC7gYZUuXVqzZ882ntvb2xuPx48fr82bN+urr76Sq6urxo4dq4EDB2rBggUZUSoAAAAA4AmX6UK3vb298uTJk2j5zZs3tWTJEk2aNEm1a9eWFBfCW7ZsqQMHDqhKlSrpXCkAAAAA4EmXqbqXS9L58+dVt25dNWnSREOGDFFQUJAkyc/PT1FRUapTp46xbalSpVSwYEEdOHAgg6oFAAAAADzJMtWV7kqVKmnChAkqUaKEgoOD9e2336pbt25atWqVrl69KkdHR7m5udns4+XlpeDg4AyqGAAAAADwJMtUobtBgwbG47Jly6py5cpq1KiR1q1bJ2dn51Qf19HRXhZLWlRoDkdHO1kskkV6rOvM7Di35oj/3Do62snJyf6B2yPrim9jTk72slozthYgK6OtAemDtoaUylSh+15ubm4qXry4Lly4oDp16igqKko3btywudp97dq1JMeAJxQVFWN2qY8kKipWVqtklWjQJuLcmiP+cxsVFavIyMe7rcFc8V9OIiNjaG+AiWhrQPqgrSGlMt2Y7oRu376tixcvKk+ePKpQoYIcHR21Y8cOY/2ZM2cUFBTEJGoAAAAAgAyRqa50f/rpp2rUqJEKFiyoK1euaMqUKbKzs1Pr1q3l6uqqjh07auLEiXJ3d5eLi4s++eQTVa1aldANAAAAAMgQmSp0X7p0Se+8847CwsLk6emp6tWra9GiRfL09JQkjRgxQnZ2dho8eLAiIyNVt25djRo1KoOrBgAAAAA8qTJV6P7yyy/vuz5btmwaNWoUQRsAAAAA8FjI1GO6AQAAAAB4nBG6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkzhkdAEP47vvvtOGDRt05swZOTs7q2rVqho6dKhKlixpbNO9e3ft2rXLZr8uXbro448/Tu9yAQAAAABPuEwVunft2qVu3bqpYsWKiomJ0RdffKHevXtrzZo1ypEjh7Fd586dNXjwYON59uzZM6JcAAAAAMATLlOF7lmzZtk8nzhxomrXrq0jR46oZs2axnJnZ2flyZMnvcsDAAAAAMBGph7TffPmTUmSu7u7zfJVq1bJx8dHrVu31uTJk3Xnzp2MKA8AAAAA8ITLVFe6E4qNjdX48eNVrVo1lSlTxljeunVrFSxYUHnz5pW/v78mTZqks2fPaurUqRlYLQAAAADgSZRpQ/eYMWN08uRJ/fzzzzbLu3TpYjz29vZWnjx51LNnT124cEFFixZN8liOjvayWEwt95E4OtrJYpEs0mNdZ2bHuTVH/OfW0dFOTk72GV0OMlB8G3NyspfVmrG1AFkZbQ1IH7Q1pFSmDN0ff/yx/vrrL/3000/Knz//fbetXLmyJOn8+fPJhu6oqJg0rzEtRUXFymqVrBIN2kScW3PEf26jomIVGfl4tzWYK/7LSWRkDO0NMBFtDUgftDWkVKYK3VarVWPHjtXvv/+uefPmqUiRIg/c59ixY5LExGoAAAAAgHSXqUL3mDFjtHr1ak2bNk05c+ZUcHCwJMnV1VXOzs66cOGCVq1apQYNGsjDw0P+/v6aMGGCatasqbJly2Zw9QAAAACAJ02mCt2//PKLJKl79+42yydMmKAOHTrI0dFRO3bs0Ny5cxUeHq4CBQqoefPmGjBgQEaUCwAAAAB4wmWq0O3v73/f9QUKFNBPP/2UTtUAAAAAAHB/mfo+3QAAAAAAPM4I3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYxCGjCwAAZG3BwVf0/ffTtHPndt2+fUsFCxZSmzbt9cILL8nOjt9+gbRCWwPSB20ND4vQDQAwTWhoiPr1e1WXL18ylp07d1ZTpnypixcvaOjQ9zOwOiDroK0B6YO2htTgpxgAgGlmzfre+GLy/vsfaceOHXr22XqSpOXLl+joUb+MLA/IMmhrQPqgrSE1CN0AAFPExsZq48bfJElFixZT69bt5OnpqR49ehnbbNjwW0aVB2QZtDUgfdDWkFqEbgCAKYKCAnXr1i1JUrFixY3lRYv+9/jEiePpXBWQ9dDWgPRBW0NqEboBAKYICws1HufIkdN4nDPnf49DQ0PStSYgK6KtAemDtobUInQDANKV1Wo1HlsslgysBMjaaGtA+qCt4UEI3QAAU3h45DIe3759y3gcHh6e5DYAUoe2BqQP2hpSi9ANADBFwYKF5OLiKkm6cOG8sfzChXPG4zJlyqZ3WUCWQ1sD0gdtDalF6AYAmMLOzk5Nmz4nKe7LyZo1KxUSEqK5c2cb2zRv3iKjygOyDNoakD5oa0gtQjcAwDS9e/dVvnz5JUnjx3+s2rVra9u2LZKk9u07qly5ChlZHpBl0NaA9EFbQ2oQugEApsmVy1MzZvxPLVq0kodHLjk6Oqp48RIaNOhtvfPOexldHpBl0NaA9EFbQ2o4ZHQBAICsLU+evPrwwzGyWKTcuV119epNJZjoFUAaoa0B6YO2hofFlW4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAICsVqtefbWb6tatoSVLFhrLz58/pxEj3tXzzzdW48bP6tVXu2ndutUpPu7Nmzf11Vefy9e3pRo2rK2mTZtq5swZioiIsNlu/vwf9cILbdW8eQO99dYAXbhwzmb9kSN+qlevplasWJroNaZM+VJ169bQ++8Pebg3DWQA2hqQPmhreJwQugEA2rRpg06c8JeHh4dat24nKe6Lyeuv99Lff/+pmzdvKDIyQidO+GvcuNH66ac5DzxmRESEBg9+XYsXL1Rw8BVFRUXp4sWLmjPnB33wwbuy/v9Urxs2rNP06VNUuXJVjRv3qY4c8dOIEe8qJiZGUtwXp6+/nqRSpUqrTZv2iV6nS5eucnBw0JYtm+XndzjNzglgBtoakD5oa3icELoBAFq4cL4kqUmT5sqWzVmSNGXKF7p166bs7e31+edfa/ny3+Tt/bQkadas73TlyuX7HnPx4gU6efKEJKl379e1du1GdenSRZK0c+d2/fHHRknS1q1/S4r7klGzZi3VqFFT586dVUDARUnSb7+t0dGjfho8+B3Z2SX+z1bevPlUvfozkqRff/3lkc4DYDbaGpA+aGt4nBC6AeAJd+bMaR07dlSS1LBhE0lSWFiYdu3aKUmqXv0Z1a79rHLnzq0XX+wmSYqKitKff26873E3bFgnScqePYe6d+8ld3cPDRw40Fj/++/rjGNJkqOjkyTJwcHRWB4eHq7vvvtWDRo0UrVqNZJ9rUaNGkuStmz5S7dv30rxewfSE20NSB+0NTxuCN0A8ITbu3e3JMne3l7lypWXJJ086a/Y2FhJUrFixY1tEz4+ceJ4sseMjIzUuXNnJUmFChWWg4ODJClv3rzKmTPn/+/vL0mqWrWaJOnPPzfq2rWrOnhwvzw9vVS0aDHNmzdbN25c14ABb973PVSoUNl43YMHD6TkbQPpjrYGpA/aGh43hG4AeMLFf8koUKCg0QUvLCzUWB//ZSLusYvxODT0v23udePGDWPsWsL9Ex4jNDREktShQ2c999zzmjXrO7Vr10J2dnYaNeoTXb0arIUL56tz564qVKiwpP+uHtyrWLHixhcgf/9jKXjXQPqjrQHpg7aGx41DRhcAAMhY8V8S3NzcH7ht/CQxcSyper34Y1gscfs7ODjoo4/GasiQ4bpx44by5csvi8WiESPelaurq3r06KWdO7frq68+V0DAReXOnUevv/6Gnn++9X+VWCxyc3NXSMg1hYSEpKouwGy0NSB90NbwuOFKNwAgEQ+PXMbjW7f+G0sWHn7beJwrl0ey+7u5ucne3j7R/gmPkfA1JClHjpzKn7+ALBaL9u7drb///lN9+76hiIgIjRz5vu7cuaNx4z6Tm5ubJk4cqzNnTtnsH99tEMhMaGtA+qCtISMRugHgCZcrl6ck6caN68ay0qW9jRlVL1w4byw/f/6c8bhMmbLJHtPJyUnFi5eQJAUFBSg6OlqSdOXKFd2+ffv/9/dOct+YmBh9881keXs/rZYt2+jIET+Fh99WkybN1KBBY7Vu3U4xMTHat2+PsU9sbKxu3rwhSfL09EzxewfSE20NSB+0NTxuCN0A8ISL/5Lx779Bunv3riTJw8NDzzxTS5K0b99u7dy5XVevXtWCBXG3YHF0dFSjRk2NY9StW0N169bQuHGjjWXNmz8vSbpz544xcczUqVON9c2aPZ9kPStWLNXp06c0ePAQWSwW40uSvb2Dzf/b2dkb+5w/f84Yaxd/+xfgcUNbA9IHbQ2PG0I3ADzhqlevKSnul/ijR/2M5YMGvSMXF1dFR0dr6NDBat++hTGZS+/erytv3nz3PW6nTi+qdOkykuLuf/r88020cOFCSVKtWnXUuHHTRPvcuHFDs2bNUJMmzVS5chVJUoUKleTm5q4tWzbLz++Qfv/9Nzk6OqpmTR9jPz+/Q5LirkTE7wc8bmhrQPqgreFxk2VD9/z589W4cWNVrFhRL7zwgg4dOpTRJQHAY6lkyVJ6+um4W6r89dcmY3mxYsX13XezVb9+I7m6usnJKZvKlPHWBx+M1v+1d/9xOd77A8dft9Q0vym/kiLcJCnkR2MRmpxVh7JZh0mtyZxjRVPmwSOFzJDJ48wd8qvDUERpnXPastVBlnkc3+NRaWn92GT5sYYQ1fcPD9fcq4j1e+/n43H/cV/X5/pc7+uu93Vfn+vzuT737Nkez6z3pZdeYssWDW5ub2Jo2I3WrVvTu3dvPDzeYc2aj5UJZ54UGanh3r17LFjw60+pdOjQgdDQjbRr1w5f3/e4ffs2q1aFYmzcRymTnPwo7ldfnag1E60QTYnkmhANQ3JNNDWqSu0p+1qEhIQEli5dyqpVqxg2bBh79uwhMTGRxMREunbtWqV8cfGtRoiy9rKzL+E+3x31Ghc69O3W2OG0SK1bt+LhQ5msoj78kvsTWcuPsV+zX7k7LJqepKR/EhS0nI4dOxITc4I2bdrU+T5UKjAwaM+1a7eoy2+en366ysyZzpSXl6PR7GbIEIu6q1yIOia5JkTDkFwTDcXQsP0zy7TInu5du3bxxhtv4OrqSv/+/Vm1ahVt2rQhJiamsUMTQogmadIkBwYMGEhJSQknThxr7HCey8GD+ykvL2f8+AlyYSKaPMk1IRqG5JpoSlpcT3dZWRlWVlZs2bKFyZN/fa4iICCAX375hU8//bTKNs2lp7v3gvG07S2zF9aH1joqHpa3qFRoMu4U3qDw05Rm09N9/fp1bty43thhtEgqFXTu3JabN+/UaY+A+FWXLl2rHdHVFEmu1R/JtfrVnPIMJNfqk+Ra/WouuVabnu7WDRBHg7p58ybl5eVV/kBdu3bl8uXL1W5Tmw+qMRkajuD7/8tq7DCEeHHvNXYAtffofGDa2GEI0eJJrgnRMCTXhGh8LXJ4uRBCCCGEEEII0RS0uEZ3586d0dHR4fp17WE0169fx8DAoJGiEkIIIYQQQgjxR9TiGt16enoMGTKE06dPK8sqKio4ffo01tbWjRiZEEIIIYQQQog/mhb3TDfAvHnzCAgIwMLCAktLS/bs2cPdu3eZMWNGY4cmhBBCCCGEEOIPpMX1dANMmzaNgIAAtmzZgouLCxkZGezYsUOGl/9BFBYWolarycjIaPB9z5kzhzVr1jT4foVoSI2ZY0L8UUieCdG02Nvbs3v37qeWCQ8Px8XFpWECEs1Ki2x0A8yePZvk5GT+97//cfjwYYYNG9bYIYknBAYGolarldfo0aPx8vIiMzPzuet57726mRo7MzMTHx8fxo4dy9ChQ7G3t8fX17fK/ABCNFdXrlxh2bJljBs3DgsLCyZOnMjq1au5efNmg8cSHh6udQ4YMWIE7u7unD17tsFjEaIuNdU8Gzx4MHZ2dqxYsYKff/5Zq1x1jQkfHx+8vLyqrTc9PR21Wk1mZqZyc+Dxa9SoUcyePZv09PR6Oiohns/ja86IiAit5UlJSajV6lrXEx0dzZtvvqm8V6vVJCUl1VmcomVrsY1u0fSNHz+e1NRUUlNT2b17N61bt8bHx6dRYrlx4wZz586lU6dO7Ny5k4SEBNauXUu3bt0oLS1tlJiEqEsFBQW4urqSl5fHpk2b+Ne//kVQUBBnzpxh1qxZVS7CG8KAAQOUc8DBgwcxMTFh/vz53Lp1q8FjEaIuNOU8O3nyJKGhoaSkpBAUFPTM7dzc3Dh16hRFRUVV1sXExGBhYcGgQYOUZbt37yY1NZWoqCi6devG/PnzuXbtWl0eihAv7KWXXmL79u2UlJS8cB1dunRBX1+/DqOqncrKSh4+fNjg+xV1SxrdotHo6elhaGiIoaEhgwcPxtvbmytXrnDjxg2lTFZWFm+//TaWlpaMHj2aFStWcOfOHeDRHfyjR4/yxRdfKHfY09LSlG0LCgqYM2cOw4YNw9nZmfPnz9cYy7fffsvt27dZvXo15ubmGBsbM2bMGD788EOMjY2VcmfPnsXNzQ0LCwvGjRvHhg0bajwRbtq0iZkzZ1ZZ7uzszNatW5X3hw8fxtHRkaFDhzJ16lT+8Y9/1P5DFKKWVq1aha6uLpGRkYwaNYpevXphZ2fHrl27uHr1KmFhYUpZe3t7tm3bxrJly7C2tmbChAkcPHiw2norKyuZMmUKO3fu1FqekZGBWq0mLy+vxph0dHSUc0D//v15//33KS0tJTc3Vymza9cunJycsLKyws7OjqCgIOUcAPDDDz/g4+ODjY0NVlZW/OlPf+Krr75S1l+6dIl33nkHa2trbG1t+eCDD7TOMULUpaacZ927d8fW1papU6dy6tSpZx7LhAkT6NKlC0eOHNFafufOHRITE3Fzc9Na3qlTJwwNDRk4cCDz58/n9u3b/Pe//33mfoRoCLa2thgYGKDRaGosk56ejru7O5aWltjZ2bF69WqtjpcnR4TY29sDsHDhQtRqtfL+sdjYWOzt7RkxYgR+fn7cvn1bWVdRUYFGo8He3h5LS0ucnZ1JTExU1qelpaFWq/nqq6+YMWMGQ4cO5dy5c3XxMYhGJI1u0STcuXOH48ePY2JiQqdOnQAoLS3Fy8uLjh07Eh0dzebNmzl16hQhISEAeHp64ujoqNVj/uQM9WFhYXh5eREbG4upqSlLliypsYFsYGDAw4cP+fe//01lZWW1Za5evcq7777L0KFDOXbsGEFBQURHR/Ppp59WW97JyYkLFy6Qn5+vLMvOziYrKwsnJycAjh8/zieffIKfnx8JCQksXryYLVu2cPTo0ef+DIWoyc8//0xqairu7u60adNGa52hoSFOTk58/vnnWv/7u3btwsLCgtjYWNzd3QkKCuLy5ctV6lapVLi6ula5MI+JicHGxgYTE5NaxVhWVkZMTAwdOnSgX79+WvUvX76c+Ph41q1bx5kzZ/j444+V9cHBwZSVlREVFUVcXBz+/v68/PLLAPzyyy/MnTsXc3NzoqOj2bFjB9evX8fX17dWMQnxPJpDnhUWFpKamoquru4zy7Zu3RoXFxeOHj2qFXNiYiIVFRW8/vrr1W537949YmNjAWq1HyEaQqtWrVi8eDFRUVHVjt7Iz8/H29sbBwcHjh8/TlhYGOfOnVOuOX8rOjoagNDQUFJTU5X3j+v64osv2LZtGxqNhm+++Ybt27cr6zUaDbGxsaxatYoTJ07g4eHBBx98UOXxqo0bN7JkyRISEhKeaxi8aJqk0S0azcmTJ7G2tsba2prhw4fz5ZdfEhYWRqtWj/4t4+PjKSsr46OPPmLgwIGMHTuWlStXcuzYMa5du0bbtm1p06aNVo+5np6eUr+npycTJkygb9++LFq0iB9++KHG3gArKyt8fHzw9/dnzJgxvPPOO+zYsUNraNz+/fvp0aMHK1euxMzMjMmTJ/O3v/2NyMhIKioqqtQ5YMAABg0aRFxcnLIsLi6OYcOGKRdI4eHhBAYG4uDggLGxMQ4ODsydO7fG3g4hXkReXh6VlZWYmZlVu97MzIySkhKtHuBXX32Vv/zlL5iYmODt7U3nzp21RpI8afr06eTm5nLhwgUAHjx4QHx8PK6urk+N69KlS8o5wNLSksjISDZu3Ei7du2UMh4eHowZM4bevXszduxYfH19+fzzz5X1P/74I8OHD0etVmNsbMzEiROxsbEBICoqCnNzcxYvXoyZmRnm5uasXbuWtLQ0rd50IepCU88zS0tLJk2aRHZ2Nt7e3rU6JldXV/Lz87UaA0eOHMHBwYH27dtrlZ01axbW1tZYWVkRGRnJkCFDGDt2bK32I0RDmDJlCoMHD2bLli1V1mk0GpycnPDw8MDU1JThw4ezfPlyYmNjuX//fpXyXbp0AaBDhw4YGhoq7+HRyJTQ0FAGDhzIyJEjcXZ2Vn7KuKysDI1Gw9q1axk/fjzGxsbMmDEDZ2fnKtd+ixYt4pVXXqFPnz5Kh5RovlrkT4aJ5mH06NHKc2UlJSUcOHAAb29vDh8+jJGRETk5OajVaqXXCmD48OFUVFSQm5v7zNnon7wraGhoCDx6drumCyI/Pz88PDw4c+YMFy5c4LPPPkOj0RAVFYVarSYnJwdra2tUKpWyzYgRIygtLaWoqIhevXpVqdPJyYmYmBgWLlxIZWUl8fHxzJs3D3jUk5+fn8/y5ctZsWKFss3Dhw+rXMwIURdqGsVRnSfzR6VSYWBgUOOkgt27d8fOzo7o6GgsLS1JTk6mrKyMqVOnPnUfffv2VUaK3Llzh4SEBN5//3327t3L0KFDATh16hQajYbLly9z+/ZtysvLuX//Pnfv3kVfX5+3336boKAgUlNTsbW1xcHBQXnONDMzk7S0NK0RMI/l5+fTt2/fWn8eQtRWU82z+/fvc/z4cTIyMpg9e3at4jMzM8Pa2pqYmBhGjx5NXl4e6enp7N27t0rZsLAw+vXrR3Z2Nh9//DHr1q2Tnm7R5Pj7+zN37twqkwRmZmaSlZWl1VFSWVlJRUUFhYWFNV47VsfIyEjr5nG3bt2UvM7Ly+Pu3bt4enpqbfPgwQMGDx6stezx96BoGaTRLRqNvr6+1pC4IUOGMHLkSA4dOoSfn9/vrv/JL/vHDeXqeqSf1LlzZxwdHXF0dMTPz4/p06cTGRnJRx999EIxvP7662zYsIGLFy9y7949ioqKmDZtGoDynFBISEiV2fUf9/YLURf69OmDSqUiJyeHKVOmVFmfk5NDx44dte7Ut26t/fWgUqme2piYOXMmS5cu5cMPP+TIkSNMmzbtmRPO6Orqap0DzM3NSUpKYs+ePWzYsIHCwkLmz5/PW2+9hZ+fHx07duTcuXMsX76cBw8eoK+vz8yZMxk3bhwnT57kP//5DxEREQQEBDBnzhxKS0uZOHEi/v7+Vfb9+EacEHWlOeSZv78/7777Llu3bq31YxZubm6sXr2alStXcuTIEfr06cOoUaOqlOvZsyempqaYmpry8OFD/vrXvxIfH681Ak2IxmZjY8O4cePYuHEjM2bMUJaXlpYya9Ys5syZU2Wbnj17Ptc+fpvX8OvNuMfXfhqNhu7du2uV+W2uNMakbaL+yJW9aDJUKhUqlUoZxmNmZkZWVpbWJBbffvstrVq1UnqodHV1n9mQflF6enoYGxtz9+5dJZ7z589rXRCdO3eOtm3b0qNHj2rr6NGjBzY2NsTFxREXF4etrS1du3YFHj1H3q1bNwoKCjAxMdF6PTl5mxC/V+fOnXnllVfYv38/9+7d01pXXFxMXFwcjo6OWqM4npednR36+vocOHCAlJSUZw55rYmOjo5yDrh48SKVlZUEBgZiZWVF3759+emnn6ps07NnT9566y22bt3KvHnzOHToEPDoRl52djZGRkZVcuzJETRC1IXmkmcLFiwgMjKSq1ev1qr845jj4+OJjY3F1dX1mccwdepUdHR02L9//3PHJ0R9W7JkCcnJyVoT7Jqbm/Pdd99V+a4wMTGp8caRrq4u5eXlz7VvMzMz9PT0+PHHH6vs53kb96J5kUa3aDRlZWUUFxdTXFxMTk4OISEhSs8UPBqaraenR2BgIJcuXeLMmTOEhITg4uKiDC03MjIiKyuLy5cvc+PGDR48ePBCsSQnJ+Pv709ycjK5ublcvnyZnTt38vXXXyszUrq7u1NUVERISAg5OTkkJSURHh7OvHnzntoz7ezszIkTJ0hMTFQmUHts0aJFREREsHfvXnJzc8nKyiImJoZdu3a90HEIUZMVK1ZQVlaGl5cX33zzDVeuXOHrr7/G09OT7t27/+7RJTo6OsyYMYONGzdiYmJS7ZDu3yovL1fOAd9//z1///vf+e6775g0aRIAJiYmPHjwgH379lFQUEBsbCyfffaZVh1r1qwhJSWFgoICLl68SFpamjIM0N3dnZKSEhYvXqxMapiSksKyZcue+0JJiNpoinn2W9bW1qjV6iqzOF+9epWMjAytV0lJCW3btmXatGls2rSJ4uJipk+f/sx9qFQq5syZQ0REhHLjWoimQq1W4+TkxL59+5Rl3t7enD9/nuDgYDIyMvj+++9JSkoiODi4xnqMjIw4ffo0xcXFtf4psnbt2uHp6UloaChHjx4lPz+fixcvsm/fPplEt4WT4eWi0aSkpDBu3DgA2rZtS79+/fjkk08YPXo08GhYzc6dO1mzZg1ubm7o6+vj4OBAYGCgUscbb7zB2bNncXV1pbS0lL1792JkZPTcsfTv3x99fX3WrVtHUVERenp6mJiYsHr1av785z8Dj56ni4iIYP369Rw6dIhOnTrh5ubGggULnlr3a6+9RnBwMDo6OkyePFlr3cyZM2nTpg07d+5k/fr1vPzyywwcOJC5c+c+9zEI8TSmpqbExMQQHh6Or68vJSUlGBgYMHnyZBYuXFgnk7S4ubmxbds2rSF7T5Odna2cA/T19TE2NiYoKEjJuUGDBrFs2TK2b9/Opk2bGDlyJIsXLyYgIECpo6KiguDgYIqKimjXrh3jx49n2bJlwKOcPXDgABs2bMDLy4uysjJ69erF+PHj5REOUS+aYp5Vx8PDg8DAQLy9vZXetcjISCIjI7XKrV+/HhcXF9zc3IiOjsbOzq7KkNiaTJ8+nc2bNxMVFVXriduEaCiLFi0iISFBeT9o0CD27dvH5s2bcXd3B8DY2Fh5JLA6AQEBrFu3jsOHD9O9e3e+/PLLWu3b19eXLl26oNFoKCwspH379pibm+Pj4/P7Dko0aarK55nxQwghhKhBeno6Hh4enDx58pkTHQohXozkmRBCND/S0y2EEOJ3KSsr48aNG4SHh/Paa69JQ0CIeiB5JoQQzZeMrxNCCPG7xMfHM3HiRG7dusXSpUsbOxwhWiTJMyGEaL5keLkQQgghhBBCCFFPpKdbCCGEEEIIIYSoJ9LoFkIIIYQQQggh6ok0uoUQQgghhBBCiHoijW4hhBBCCCGEEKKeSKNbCCGEEEIIIYSoJ9LoFkIIIYQQQggh6ok0uoUQQgghhBBCiHoijW4hhBBCCCGEEKKeSKNbCCGEEEIIIYSoJ/8PQYek07UjegEAAAAASUVORK5CYII=", | |
| "text/plain": [ | |
| "<Figure size 1000x600 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "✓ Coverage analysis complete\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Visualize problem coverage\n", | |
| "fig, ax = plt.subplots(1, 1, figsize=(10, 6))\n", | |
| "\n", | |
| "categories_list = ['Both Solve', 'Only Base', 'Only RLVR', 'Neither']\n", | |
| "counts = [len(coverage['both']), len(coverage['only_base']), \n", | |
| " len(coverage['only_rlvr']), len(coverage['neither'])]\n", | |
| "colors = ['#2ecc71', '#3498db', '#e74c3c', '#95a5a6']\n", | |
| "\n", | |
| "bars = ax.bar(categories_list, counts, color=colors, alpha=0.8, edgecolor='black')\n", | |
| "\n", | |
| "# Add value labels on bars\n", | |
| "for bar, count in zip(bars, counts):\n", | |
| " height = bar.get_height()\n", | |
| " ax.text(bar.get_x() + bar.get_width()/2., height,\n", | |
| " f'{count}\\n({100*count/data_gen.n_problems:.1f}%)',\n", | |
| " ha='center', va='bottom', fontsize=11, fontweight='bold')\n", | |
| "\n", | |
| "ax.set_ylabel('Number of Problems', fontsize=12)\n", | |
| "ax.set_title('Solvable Problem Coverage: Base vs RLVR\\n(Using pass@k with k=128)', fontsize=14, fontweight='bold')\n", | |
| "ax.grid(True, alpha=0.3, axis='y')\n", | |
| "\n", | |
| "plt.tight_layout()\n", | |
| "plt.show()\n", | |
| "\n", | |
| "print(\"✓ Coverage analysis complete\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## 7. Workflow 10: Perplexity Analysis\n", | |
| "\n", | |
| "**Research Question:** Do RLVR reasoning paths already exist in the base model's output distribution?\n", | |
| "\n", | |
| "### Method\n", | |
| "\n", | |
| "Compute perplexity of RLVR model responses under the base model's probability distribution:\n", | |
| "\n", | |
| "$$\n", | |
| "\\text{PPL}(y) = \\exp\\left(-\\frac{1}{|y|} \\sum_{t=1}^{|y|} \\log P_{\\text{base}}(y_t | y_{<t}, x)\\right)\n", | |
| "$$\n", | |
| "\n", | |
| "**Lower perplexity** → RLVR responses are likely under base model distribution\n", | |
| "\n", | |
| "**Higher perplexity** → RLVR generates novel reasoning patterns\n", | |
| "\n", | |
| "### Simulation Approach\n", | |
| "\n", | |
| "Since we don't have actual LLMs, we simulate token-level perplexity using statistical distributions that mimic the paper's findings." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:49.071555Z", | |
| "iopub.status.busy": "2026-02-10T23:43:49.071303Z", | |
| "iopub.status.idle": "2026-02-10T23:43:49.080476Z", | |
| "shell.execute_reply": "2026-02-10T23:43:49.079592Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Simulating perplexity analysis...\n", | |
| "\n", | |
| "Perplexity Statistics:\n", | |
| "\n", | |
| " Base responses under Base model:\n", | |
| " Mean PPL: 7.59\n", | |
| " Std PPL: 2.20\n", | |
| "\n", | |
| " RLVR responses under Base model:\n", | |
| " Mean PPL: 8.94\n", | |
| " Std PPL: 3.38\n", | |
| "\n", | |
| " RLVR responses under RLVR model:\n", | |
| " Mean PPL: 6.75\n", | |
| " Std PPL: 1.73\n", | |
| "\n", | |
| " Teacher (o1) responses under Base model:\n", | |
| " Mean PPL: 18.81\n", | |
| " Std PPL: 10.22\n", | |
| "\n", | |
| "✓ Perplexity analysis complete\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "def simulate_perplexity_analysis(n_samples: int = 100) -> Dict[str, np.ndarray]:\n", | |
| " \"\"\"\n", | |
| " Simulate perplexity computation for different response types.\n", | |
| " \n", | |
| " Based on paper findings:\n", | |
| " - RLVR responses under base model: LOW perplexity (similar to base)\n", | |
| " - Base responses under base model: LOW perplexity (baseline)\n", | |
| " - Ground truth (teacher) under base model: HIGHER perplexity (novel patterns)\n", | |
| " \n", | |
| " Returns:\n", | |
| " Dictionary mapping response types to perplexity arrays\n", | |
| " \"\"\"\n", | |
| " np.random.seed(42)\n", | |
| " \n", | |
| " # Perplexity values (simulated based on paper patterns)\n", | |
| " perplexities = {\n", | |
| " 'base_under_base': np.random.lognormal(mean=2.0, sigma=0.3, size=n_samples),\n", | |
| " 'rlvr_under_base': np.random.lognormal(mean=2.1, sigma=0.35, size=n_samples), # Slightly higher\n", | |
| " 'rlvr_under_rlvr': np.random.lognormal(mean=1.9, sigma=0.25, size=n_samples), # Lower (own dist)\n", | |
| " 'teacher_under_base': np.random.lognormal(mean=2.8, sigma=0.5, size=n_samples) # Much higher\n", | |
| " }\n", | |
| " \n", | |
| " return perplexities\n", | |
| "\n", | |
| "\n", | |
| "# Simulate perplexity analysis\n", | |
| "print(\"Simulating perplexity analysis...\\n\")\n", | |
| "\n", | |
| "perplexities = simulate_perplexity_analysis(n_samples=200)\n", | |
| "\n", | |
| "print(\"Perplexity Statistics:\")\n", | |
| "print(f\"\\n Base responses under Base model:\")\n", | |
| "print(f\" Mean PPL: {perplexities['base_under_base'].mean():.2f}\")\n", | |
| "print(f\" Std PPL: {perplexities['base_under_base'].std():.2f}\")\n", | |
| "\n", | |
| "print(f\"\\n RLVR responses under Base model:\")\n", | |
| "print(f\" Mean PPL: {perplexities['rlvr_under_base'].mean():.2f}\")\n", | |
| "print(f\" Std PPL: {perplexities['rlvr_under_base'].std():.2f}\")\n", | |
| "\n", | |
| "print(f\"\\n RLVR responses under RLVR model:\")\n", | |
| "print(f\" Mean PPL: {perplexities['rlvr_under_rlvr'].mean():.2f}\")\n", | |
| "print(f\" Std PPL: {perplexities['rlvr_under_rlvr'].std():.2f}\")\n", | |
| "\n", | |
| "print(f\"\\n Teacher (o1) responses under Base model:\")\n", | |
| "print(f\" Mean PPL: {perplexities['teacher_under_base'].mean():.2f}\")\n", | |
| "print(f\" Std PPL: {perplexities['teacher_under_base'].std():.2f}\")\n", | |
| "\n", | |
| "print(\"\\n✓ Perplexity analysis complete\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:49.083016Z", | |
| "iopub.status.busy": "2026-02-10T23:43:49.082770Z", | |
| "iopub.status.idle": "2026-02-10T23:43:49.397936Z", | |
| "shell.execute_reply": "2026-02-10T23:43:49.396992Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABjYAAAHqCAYAAACne3d+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAn2tJREFUeJzs3Xl8VNX9//H3nckkkI0lhJ2AICKILILsuOMCKSpaFS1SpfZXrWLrvlWi4tZvtYJLrTZaxBaXahVRFHCXTVRAVkWWhD17Mllnu78/KCOBBJLMTO4sr+fjwYPJzJ1z35ncZO6Zzz3nGKZpmgIAAAAAAAAAAIgANqsDAAAAAAAAAAAANBSFDQAAAAAAAAAAEDEobAAAAAAAAAAAgIhBYQMAAAAAAAAAAEQMChsAAAAAAAAAACBiUNgAAAAAAAAAAAARg8IGAAAAAAAAAACIGBQ2AAAAAAAAAABAxKCwAQAAAAAAAAAAIgaFDQBoRm+//bb69OmjPn36aMqUKVG/32C56667/Pmffvppy3LU9zquXLnSf/9ZZ51lWT5J/hx9+vTRrl27LM0CAABgJc69m4Zz74bj3Dt6hMtxD6Dh4qwOAACN9fbbb+vuu+8+4n6Hw6E2bdpo4MCBmjJlioYPH25Busjzz3/+U06nU5J08cUXq2vXriHZz9NPP61nnnnG/7XNZpPD4VBqaqo6d+6sgQMH6pe//KVOOOGEkOx/5cqV+vrrryVJffv21TnnnBOS/YTSrl279N///leSlJKSol//+tfWBgIAAFGPc+/g4tw7ckT6ubfb7db777+vDz/8UBs3blRxcbFatGihDh06aPDgwcrMzOT3FkBEo7ABIGq43W7l5eVp8eLFWrx4se67776IvEIqFE4//XT961//knTgpPxQr7zyinbv3i1JGjZsWMg6V4fz+XyqqalRfn6+8vPztXbtWr3yyiu65pprdNtttyku7ue3qN/97ne69NJLJUmdO3du0v6+/vprf+fu4osvblLn6mivY3PYvXu3/3vo0qVLnZ2rg/kkqX379s0VDQAAxBjOvevHuTfn3lbbvn27pk+frh9//LHW/S6XS2VlZdqyZYsWLlyob775xqKE4ScYxz2A5kVhA0DEO3gyuW/fPj399NPasWOHJOnPf/6zxo8fr7S0tKDuz+12yzRNxcfHB7XdUEpLSwv66xCI9PR0PfXUU3K73crJydHbb7+ttWvXSpJefvllVVdXKysry799jx491KNHD2vCSqqurlZ8fHzYvY51GTp0qNURAABAFOPc+9jC7ZyRc+/QCcdz74KCAl1zzTXau3evJCkhIUFXXHGFRo4cqRYtWmjnzp36+OOPtXr1aouThoeKigolJSVZftwDaDzW2AAQ8YYOHaqhQ4cqMzNTDzzwgP9+l8tV62TN6/Xqtdde05VXXqlTTz1V/fv315lnnqn77rtPO3furNXmrl27as2XmpeXp7vuuksjR47UySefrK1btx4xt+uePXt06623avjw4Ro4cKCuuuoqffvtt436Xj744ANde+21Gj58uPr3768xY8bolltu0ebNm2ttd+ONN/r3fejUAAUFBRoxYoT/sc8++0xS3fPTPv300+rTp4//ijFJuvrqq2vNKzplyhT/12+99VatDPn5+erbt6/69Omjk08+WSUlJQ3+PuPj4zV06FCNHDlSV1xxhV5//XVddtll/sfnzZvn72xJ9c93WlZWpscff1znn3++BgwY4H/NfvWrX+nxxx9XVVWV/2d56FD8//73v0fMy3v4z3P79u268cYbdeqpp2rgwIEqLy9v8HzJ+/fv1x133HHUY+Hg69+nTx/dddddtR479HV/++23JUlnnXWWrr76av82u3fvrnNO36PN87t582bdcccdOvPMM9W/f3+dcsopuvTSS5WdnS2Xy1Vr28Nf848//liXXXaZBgwYoBEjRuj+++9XZWVlreesWbNG119/vcaMGaOTTjpJp5xyisaNG6ebbrpJ8+fPr/f1AgAAkYNzb869OfcOj3Pv+syePdtf1HA4HHrppZd0zz336Mwzz9TIkSN12WWX6e9//7vmzp1b63kul0tz5szR5ZdfriFDhqh///46/fTTdeutt2r9+vW1tq3rd/aWW27RkCFDdOqpp+q2225TcXGxXC6XZs2apdNPP10nn3yyJk2apK+++qpWW4f/nH/88Uf97ne/05AhQzR48GD99re/1ZYtW2o9Z926dbrtttv0i1/8QiNGjNBJJ52kwYMH68ILL9Ts2bNVUVFRa/vDf/5ffvmlrrjiCg0aNEhXXnllnT+Dgxpy3IfDzx2IRYzYABBVUlNTa3198MShurpav/3tb7Vy5cpaj+/Zs0dvvvmmPvroI2VnZ2vAgAF1tjtlyhT/1Wh1cTqduvzyy5WXl+e/75tvvtHUqVP10ksvadiwYUfN7fP5dPvtt2vBggW17s/Pz9f777+vxYsXa9asWf6OwMyZM7V+/Xrt3btXb7/9ts4991x/R7G4uFiSNHXqVJ1xxhlH3e+xXHXVVf65cd966y1dcskl/scWLVokn88n6cCJf+vWrZu8H8MwdNddd2nhwoX+OYf/+9//auDAgUd93g033KBVq1bVuu/g8PpVq1bp2muvbVKesrIyXXnllSoqKmr0cysqKjR58uRandbGHAuh8v777+vOO++U2+323+d2u7Vu3TqtW7dO77//vl555RUlJycf8dz33nuvVue0pqZGr7/+uiTpwQcflCRt3bpVU6ZMqXWy7vF4VFFRodzcXFVWVmrixImh+vYAAIAFOPfm3Jtz77qF+ty7Pm63u9ZxPXHixHpHlfTp08d/u7KyUtdcc43WrFlTa5t9+/ZpwYIF+vDDD/Xwww/roosuqrOtw39n33vvPe3atUvt2rXT4sWL/fdv2LBBv/vd7/TRRx+pS5cuR7STm5urK664olZh4vPPP9d3332n119/Xb169ZIkrV+/Xu+9916t53o8Hm3evFmbN2/WZ599pjfeeKPWFGsHffPNN3r33Xf9v0/H0pDjvmXLlpKs+7kDsYrCBoCosW/fPs2ePbvWfX379pV04AqNgx2rrl276ve//706dOigRYsW6bXXXlNZWZluueUWffjhh3We/OzZs0fTp0/XwIEDtWfPHrVp00ZlZWX+x8vKypSenq577rlHpmlq1qxZ2rFjh9xut/70pz/pww8/lGEY9WZ/7bXX/Cegbdq00U033aTjjjtOX3/9tZ5//nm5XC7dcccd+vjjj9WqVSu1bt1a//d//6epU6fK6/XqT3/6k6655hp9+umnkqSTTjpJt91221Ffr0suuUQjR47UH/7wB+Xn50uS7rvvPv9r1rlzZ7Vv317t27dXXl6evv32W23btk09e/aUJH344Yf+tiZNmnTUfTVEUlKSBg0apC+//FKSjrgq6HBFRUX+E8xOnTrpjjvuUJs2bZSfn68ff/xRn3/+uQzDUPv27fWvf/1Lb731lv8KrNNOO03/7//9P0kHhmYfzul0KjU1Vffcc4+OP/54bd26tcHTH5SUlCgtLU1PPfVUk46F+syaNUtr1qzRzJkzJf08pcBBR5vTNz8/X/fee6//BPu0007TlVdeqb179+rJJ5+U0+nUhg0b9MQTT2jGjBlHPD8nJ0eZmZn6xS9+oc8++0zz5s2TdKDDfeeddyopKUmfffaZ/8OM888/X5deeql8Pp/27dt3REcAAABEPs69Offm3LtuzXHuXZ8dO3bUKgqMGTOmUd+vJCUmJuqPf/yjMjIy9Oabb2rJkiXyeDz605/+pOHDh6tTp05HPN/tduuvf/2rSkpK9OCDD8o0Ta1evVo2m0033XST+vfvr0cffdT/s3nttdd06623HtHOvn37dMopp2jatGkqKyvTE088oYKCAjmdTs2cOVMvv/yyJPlHXnTr1k1JSUmy2WwqLi7WP/7xD61bt04bNmzQ4sWLdcEFFxyxj507d+r444/Xb3/7W6WlpflHt9Sloce9ZO3PHYhVFDYARLxDrzQ51MUXX6zjjjtOpmn6T6qlA1eTZGRkSJJ+8Ytf6OOPP1Z+fr527typ5cuXa+zYsUe0dccddxwx/DknJ6fW17NmzVLv3r0lSRkZGf4rrHbs2KFNmzapX79+9X4P//nPf/y3J02a5P+exowZo88//1wbN26U0+nUwoULdcUVV0iSTj31VF1//fV65plnlJ+frz//+c+SDpyIPvnkk8fsDHTu3FmdO3eutd0JJ5xwxBU9l19+uX8o7ltvvaXbb79dhYWF/uHd6enpDT5hPpZDrzw7ePVYfZKSkmS32+X1epWSkqLu3bvr+OOP93eWDu1cDh06VMuXL/d/nZaWdsz5cB9//HH/VXqjR49u1PcRyLFQn5NPPrnWMOSDUwo0xMKFC/1DpNu2batnnnnG/zqZpum/Amj+/Pm67777ZLfbaz2/d+/e+stf/iLDMHTaaafpnXfeUVVVlTwej38Y+qELOnbu3Fm9evVSp06dZBiGLr/88kZ/vwAAIDxx7s25N+feR9cc5971ObQAKKlBI3tM09Q777zj/3r69On+abhGjRqls88+W3l5eXK5XHr//ff1m9/85og2ZsyYodNPP13SgXV4fvrpJ0nSeeedpxtvvFHSgRHeB39v6huR1aJFCz377LNq27atpAPH3fTp0yVJy5cvV3Fxsdq0aaMBAwZo48aNys7O1tatW+V0Oo8YgbF27do6CxstW7bUnDlz1K5du2O+No057q38uQOxisIGgKjTtm1bXXXVVf6rgoqKimoNa3700Ufrfe6WLVvq7Fyde+65R91nq1at/CfTktS/f3+1aNFC1dXVkg6cuB3thHrr1q3+29nZ2crOzq4336FuuOEGLV26tNZ8xvfee29QFz27/PLL9fzzz8vtduvdd9/VH//4Ry1evFher1eSdOGFFx5xUtZUB4fyS6r1QXldEhISdNFFF+mtt97Sjz/+qEmTJslms6lTp04aOHCgJk2aVOfPsiHi4+N15plnNum5gR4LobBt27ZaeQ69Um7IkCH+2+Xl5crLyzviKqwRI0b4r0Sy2WxKTU31n7SXlpZKks4++2zNnj1b+fn5eumll/TSSy+pRYsW6tmzp0aMGKGrr766zqu7AABAZOPcm3Nvzr1ra45z7/ocPj1cQ9ZiKSoqqrXdoRnj4+M1YMAALVmy5Ijv7VCnnHKK//ahxZRBgwb5b7dp0+aYuXr27OkvahyexTRN7dy5U23atNE999yjd99996jfV32v1SmnnNKgoobUuOPeyp87EKsobACIeP/6178kHVgYrW3bturatWuThhtLqndhrqMNNW5Oh+crLy/Xvn37at23adOmoO4zPT1d48aN0wcffKD8/Hx9/vnn+uijj/yPB2MovHTgezm0k9i/f/9jPuehhx7SiBEj9Nlnn2nLli3KycnR7t27tXv3bn3wwQd69tlndc455zQ6S7t27Zp8DDXUoe17PJ5ajzVlfuFQatWqVa2vD50ywjRNSQeuxHv77bf15ptv6ttvv9X27du1d+9ebdy4URs3btRHH32k+fPn1zmfLAAAiByce3Puzbl3aDXk3Ls+PXr0UFJSkn86qmXLlmn8+PHBD3mYQwtjNpvNf/vwQksw7N+/v1ZRY+rUqTr99NOVkJCgN9980z/6pL7XKj09vVH7C9Vxf7hAfu5ArKKwASDiHWtIcNu2bdWmTRv/FUnZ2dl1Dt+urKxUYmJinW0c60S7tLRUW7du9S9mtmHDBv9VQpLUvXv3oz6/V69e2rBhg6QDC4PVNXWPy+U6Isd9993nnxM0Li5OHo9Hr776qkaPHu0fyn0sh7ZZ3wJqV111lT744ANJ0ksvveSff3XgwIH+7zkQPp9PjzzySK35YC+++OJjPs9ms2nixIn+Ral9Pp9efvll/xDn999/33+S2ZDv86BAOlYNPRYOPcnfv3+///aOHTu0ffv2Ots+tJPQ0MXuJPnnZj6Yp6amxn8F0cFpDSQpOTm50Sf6B5mmqfbt2+v3v/+9/76ysjL99re/1erVq7V792599913Ou2005rUPgAACA+ce3Puzbn30TXHuXd9HA6HMjMz/YtOv/POO5o0aVKtERUH/fjjjzrhhBPUtm1btW7d2j+K4rvvvtOAAQMk/bzwdV3fWyhs27bNP93UwSwHGYahbt261ZqWrnXr1rrnnnv8Xx+6+HZ9Gnu8NfS4t/LnDsQqChsAop5hGJo0aZJ/iPmdd96p6667TieccIIqKyu1Z88erV27Vp9++mmtE6fGuvnmm/0f6h66kGKPHj2OOfz5kksu8XeuHnvsMRUVFenkk0+W2+3W3r17tX79en3yySf6z3/+o65du0qS5s2bp0WLFkmSTjzxRN1+++267rrr5PP5dPfdd2v+/Pnq0KHDMXO3bt1au3btknTgxNdms8lut+vEE0/0X10/dOhQnXDCCfrxxx/1zTff+J/b1CvGXC6XvvnmG7ndbuXk5Ojtt9/W2rVr/Y9PnjxZAwcOPGY748aN0+mnn66TTjpJ7du3l9frrbVQdU1Njf/2oUOfv/nmG3322Wf+k8pjdX4bqyHHwqFTFqxatUqPPvqoOnXqpLlz5/qnGjjcocO68/Ly9M4776hr165q0aLFUa+yu+CCC/Tkk0+qqqpKhYWFmj59uq644grt27ev1iKIEydOrHMBz4ZYuHCh/vnPf+rss89Wt27d1LZtW+Xl5fmPLUn+xcUBAED04tz76Dj35tz7oEDOvY9m+vTp+uKLL7R371653W5dc801mjx5skaOHKn4+Hjt2rVLn376qb799lutXLlShmHooosu0j//+U9JB17DuLg4devWTf/5z3/8haD4+HhNmDAh6HkPVV1drRtvvFHXXHONnE6nnnjiCf9jI0aMUJs2bWoVmUpKSvS3v/1N/fv310cffVRrbZdgaehxb/XPHYhF/CYBiAnTp0/XunXr9PXXX6ugoOCoc/02RevWrVVZWak//OEPte53OBzKyso65lUhkydP1nfffacFCxaosrKy1olPXbZs2aLHHntM0oETzD//+c/q06ePrrnmGmVnZ6ukpES33367/vnPf9a60qguo0eP1vr16yUd6FwdHLr7r3/9q9YVeVdddZVmzJjh/zohIaHJJ7b5+fm66qqr6nzsmmuuqbUI29Hs379fr776ar2PX3TRRf7bI0aMkM1mk8/n0+7du/3zQF966aV6+OGHGx7+GFJSUlRSUnLMY2H06NHq2bOntm3bJtM0/R2JlJQUderUyX814KF69uypjh07at++ffJ6vbrzzjslHVgkcfHixfVmSk9P18MPP6w777xTbrdbn332mT777LNa25x00km69dZbm/x9m6aptWvX1uokH6pjx44aMWJEk9sHAACRg3Pv+nHuzbm3FPi599G0a9dOL7/8sqZPn64ff/xR1dXVevnll/Xyyy/X2u7Q6aNuvvlmrVmzRmvWrFFFRYUeeuihWtvGxcXpoYceCvmaeV26dNGWLVtqjQKXDoxyuPfeeyUdmAJ3woQJev/99yXJ//trt9s1dOjQWsXAYGjocW/1zx2IRUd/xwWAKNGiRQv985//1EMPPaRhw4apdevWiouLU7t27XTSSSfp17/+tebOndvk9pOSkjRv3jxNnDhRrVu3VkJCgoYMGaKXX35ZI0eOPObzbTabnnjiCT311FMaO3as2rZtq7i4OLVp00Z9+vTRFVdcoRdeeEGdOnVSTU2NbrnlFv8Q6z/84Q/q06eP/3bfvn0lSStXrtTf//73Y+77+uuv1+WXX660tLSjdgInTpxY6+R33Lhxx1xk8GgMw1B8fLzS09M1cOBATZ06Ve+9957uuuuuBl/Bcuutt+qss85Sly5dlJiYKLvdrrZt22rs2LF64YUXai082atXLz3++OPq3bu3HA5Hk3MfS2pqql577TVdcMEFatWqVb3Hgt1u13PPPaexY8eqZcuWSkpK0tlnn63XX39d3bp1q7Ntu92uZ555RqeeeqpatmzZqFwTJkzQm2++qYkTJ6pTp05yOBxKTEzUSSedpNtvv13z5s0LaP2LAQMG6Nprr9XgwYOVnp4uh8Oh+Ph4de/eXVdccYVef/111tcAACBGcO5dP869gytWz72P5bjjjtPbb7+txx9/XGeeeabat28vh8OhlJQUHX/88frlL39Za9qmxMREzZ07V3fffbcGDhyopKQkxcXFqX379powYYJee+21WoWrUOnSpYtee+01nXXWWUpOTlZiYqLGjh2rf//737UWiZ85c6amTp2qjh07qkWLFho4cKBeeOGFkFxI1Zjj3uqfOxBrDJMVaACgSVauXKmrr75a0oETsE8++cTiRKE3ffp0/+KF9c2XDAAAAAQb596ceyM6vf3227r77rslScOGDQuo6AkgtjAVFQDgqDwej6qrq/XDDz9o6dKlkqRu3bpp1KhRFicDAAAAogvn3gAANAyFDQDAUc2fP99/Bc1Bt9xyyzHnDwYAAADQOJx7AwDQMBQ2AAAN4nA4lJGRoWuvvVbjx4+3Og4AAAAQtTj3BgDg6FhjAwAAAAAAAAAARAzGMgIAAAAAAAAAgIhBYQMAAAAAAAAAAEQMChsAAAAAAAAAACBiRP3i4fn5TqsjxIy2bZNUVFRhdQwg6Di2Ea04thGtOLabV3p6itURmh19jMDwO4pYxHGPWMRxj1jEcR+4hvYvGLGBoDAMyW63yTCsTgIEF8c2ohXHNqIVxzYQ3vgdRSziuEcs4rhHLOK4b14UNgAAAAAAAAAAQMSgsAEAAAAAAAAAACIGhQ0AAAAAAAAAABAxKGwAAAAAAAAAAICIQWEDAAAAAAAAAABEDAobAAAAAAAAAAAgYlDYAAAAAAAAAAAAEYPCBgAAAAAAAAAAiBgUNgAAAAAAAAAAQMSgsAEAAAAAAAAAACIGhQ0AAAAAAAAAABAxKGwAAAAAAAAAAICIEWd1AAAAACAYvF6vVq5cpsrKUiUmttLw4aNkt9utjgUAAAAACDIKGwAAAIh4CxbMV1bWvcrNzfHfl5HRXVlZDyszc6KFyQAAAAAAwcZUVAAAAIhoCxbM17RpU9S3bz8tXLhETqdTCxcuUd++/TRt2hQtWDDf6ogAAAAAgCAyTNM0rQ4RSvn5TqsjxATDkNq1S1FBgVPRfUQh1nBsI1pxbCNaeL1eDR8+SH379tOcOfNkt9v8x7bX69PUqZO1adMmrVy5mmmpQiQ9PcXqCM2OPkbT8f6DWMRxj1jEcY+w5nKHpFnDkNLSklVYWB664z7eEaKGw0dD+xdMRQUAAICItWLFMuXm5uj557Nls9UejGyz2TR9+i2aMGGcVqxYptGjx1qUEgAAAEC4SHniHyFru0ZScshal5x3Xx/C1iMLU1EBAAAgYu3fv0+SdOKJ/ep8vG/ffrW2AwAAAABEPkZsAAAAIGJ16NBRkrR580YNHTrsiMc3bdpYazsAAAAAsc1562+C3qZt12IlvZ4jSao+a5fcA++TbHz0Hkq8ugAAAIhYI0aMUkZGd82a9YR/jY2DfD6fZs9+UhkZPTRixCgLUwIAAAAIG6FYp8Lu+/l2nCk5DMke/ethWImpqAAAABCx7Ha7srIe1qJFH2rq1MlatWqlnE6nVq1aqalTJ2vRog+VlTWThcMBAAAAhIzhO2xB8sO/RtCFXWFj//79uu222zR8+HANGDBAv/jFL7Ru3Tr/46ZpatasWRozZowGDBigX//619qxY4d1gQEAAGCpzMyJys6eq02bNmr8+HFKTU3V+PHjtGnTJmVnz1Vm5kSrI8JC9C8AAAAQer7aX5q+ujdD0ITVVFSlpaWaPHmyhg8frhdffFFt2rRRTk6OWrVq5d/mxRdf1Ny5c/XYY4+pa9eumjVrlqZNm6YPPvhACQkJFqYHAACAVTIzJ+qCCyZo5cplqqwsVWJiKw0fPoqRGjGO/gUAAACahek5+tcIurAqbLz44ovq2LGjHn30Uf993bp18982TVOvvPKKrr/+ep1zzjmSpD//+c8aNWqUlixZogkTJjR7ZgAAAADhif4FAAAAmsXhIzRMrzU5YkhYTUX1ySefqH///po+fbpGjhypiy66SG+88Yb/8V27dik/P1+jRv28+GNKSooGDhyo1atXWxEZAAAAYWDBgvkaPnyQLrpogq688kpddNEEDR8+SAsWzLc6GixE/wIAAADN4ogRGxQ2Qi2sChs7d+7UvHnz1KNHD2VnZ2vy5MmaOXOm/vvf/0qS8vPzJUlpaWm1npeWlqaCgoJmzwsAAADrLVgwX9OmTVHfvv20cOESOZ1OLVy4RH379tO0aVMobsQw+hcAAABoFqZZ60uDNTZCLqymojJNU/3799ctt9wiSerXr5+2bNmi1157TRdffHGT2nQ47DKMYKZEXQ6+xvHx9sN/j4GIxrGNaMWxjWjh9XqVlXWvzjvvAs2d+2+tXLlc7733nlJT2+jVV+dpypQr9cAD9+nCCyey3kYMCkX/QqKPEQjefxCLOO4RizjuEWuMQ7oadrtNhsOQ4ul/hFJYFTbS09PVq1evWvf17NlTH330kf9xSSosLFT79u392xQWFurEE0+ss023m2E/zeHgG5bL5eUNC1GFYxvRimMb0WLp0i+Vm5ujKVN+rSFDBio3N8f/WEZGd/3qV1P14Ycf6IsvvtTo0WMtTAorhKJ/IdHHCATvP4hFHPeIRRz3iDV2j0fx/7vt9frkcXlkOjhnDKWwmorqlFNO0fbt22vdt2PHDnXp0kWS1LVrV6Wnp2v58uX+x8vLy7V27VoNHjy4WbMCAADAevv375MkPfLIg3VORfXoow/V2g6xhf4FAAAAmsURU09R0Qu1sCpsTJ06VWvXrtXzzz+vnJwcvffee3rjjTd05ZVXSpIMw9DVV1+tv/3tb/r444/1ww8/6I477lD79u11zjnnWJweAAAAza1duwNX3A8bNkJz5szT0KHDlJycrKFDh2nOnHk69dThtbZDbKF/AQAAAEswVCnkwmoqqgEDBuiZZ57Rk08+qWeffVZdu3bVPffco4kTJ/q3ue6661RVVaX7779fZWVlGjJkiP7xj38oISHBwuQAAACwguFf6KDujsPBhw0WRIhJ9C8AAACA6BRWhQ1JOvPMM3XmmWfW+7hhGLr55pt18803N2MqAAAAhKP8/DxJ0sqVKzR16mTdfPMtGjNmuFatWqlZs57UypUram2H2EP/AgAAAM2PERuhFlZTUQEAAACN0aFDR0nSvfdmadOmjRo/fpxSU1M1fvw4bdq0SffcM6PWdgAAAAAQcgYfu4da2I3YAAAAABpqxIhRysjorm++Wanly7/TqlUrVFlZqsTEVjr11BG69tpfKSOjh0aMGGV1VAAAAADR6ohCBlPhhhqlIwAAAEQsu92urKyHtWjRh7r22l8pPj5emZmZio+P17XX/kqLFn2orKyZstvtVkcFAAAAELUOL2RQ2Ag1RmwAAAAgomVmTlR29lxlZd2r8ePH+e/PyOih7Oy5ysyceJRnAwAAAECAjMMKGdQ1Qo7CBgAAACJeZuZEXXDBBK1cucw/FdXw4aMYqQEAAACgGRw2MZJBPyTUKGwAAAAgKtjtdo0ePVbt2qWooMAp07Q6EQAAAICYcNgaGyYrQIQcrzAAAAAAAAAAAE11+AiNIxYTR7DxCgMAAAAAAAAA0FSHFzKYiirkKGwAAAAAAAAAANBURtzRv0bQUdgAAAAAAAAAAKDJDvuY3caIjVCjsAEAAAAAAAAAQBOZNkZsNDcKGwAAAAAAAAAANBVTUTU7ChsAAAAAAAAAADSVzfHzbcNg8fBmQGEDAAAAAAAAAICmOnSEhhF3oLiBkKKwAQAAAAAAAABAUx26xsbh620gJHiVAQAAEBW8Xq9WrlymyspSJSa20vDho2S3MwQcAAAAQIjZ4n++bTjq3w5BQ2EDAAAAEW/BgvnKyrpXubk5/vsyMrorK+thZWZOtDAZAAAAgGhnHjoV1aFFDoQMU1EBAAAgoi1YMF/Tpk1R3779tHDhEjmdTi1cuER9+/bTtGlTtGDBfKsjAgAAAIhmhywebtoYsdEcKGwAAAAgYnm9XmVl3atzzz1fc+bM09Chw5ScnKyhQ4dpzpx5Ovfc85WVdZ+8Xq/VUQEAAABEq0NHabDGRrOgsAEAAICItWLFMuXm5ujmm2+VzVb71NZms2n69FuUm7tDK1YssyghAAAAgKh36CgNRmw0CwobAAAAiFj79++TJJ14Yr86H+/bt1+t7QAAAAAg2GpNP8UaG82CwgYAAAAiVocOHSVJmzdvrPPxTZs21toOAAAAAIKu1lRUjNhoDhQ2AAAAELFGjBiljIzumjXrCfl8vlqP+Xw+zZ79pDIyemjEiFEWJQQAAAAQ9YyfCxumwYiN5kBhAwAAABHLbrcrK+thLVr0oaZOnaxVq1bK6XRq1aqVmjp1shYt+lBZWTNlt9utjgoAAAAgWh26YDgjNpoFS7QDAAAgomVmTlR29lxlZd2r8ePH+e/PyOih7Oy5ysycaGE6AAAAAFGv1lRUjNhoDhQ2AAAAEPEyMyfqggsmaOXKZaqsLFViYisNHz6KkRoAAAAAQs84ZGIkChvNgsIGAAAAooLdbtfo0WPVrl2KCgqcMk2rEwEAAACIOUxF1SxYYwMAAAAAAAAAgCAwGbHRLChsAAAAAAAAAAAQDBQ2mgWFDQAAAAAAAAAAgoGpqJoFhQ0AAAAAAAAAAIKBwkazoLABAAAAAAAAAEAw2JmKqjlQ2AAAAAAAAAAAIAhMg8JGc6CwAQAAAAAAAABAMDAVVbOgsAEAAAAAAAAAQDAYFDaaA4UNAAAAAAAAAACCwRZndYKYQGEDAAAAAAAAAIBgYCqqZkFhAwAAAAAAAACAYDDsVieICRQ2AAAAAAAAAABAxKCwAQAAAAAAAAAAIgaFDQAAAAAAAAAAEDEobAAAAAAAAAAAgIhBYQMAAAAAAAAAAEQMChsAAAAAAAAAACBiUNgAAAAAAAAAAAARg8IGAAAAAAAAAACIGBQ2AAAAAAAAAABAxKCwAQAAAAAAAAAAIgaFDQAAAAAAAAAAEDEobAAAAAAAAAAAgIhBYQMAAAAAAAAAAEQMChsAAAAAAAAAACBiUNgAAAAAAAAAAAARI6wKG08//bT69OlT69/555/vf7ympkYPPPCAhg8frsGDB+umm25SQUGBhYkBAAAAhCv6FwAAAEB0irM6wOF69+6tl19+2f+13W73337kkUf0+eef66mnnlJKSooeeugh3XjjjXrttdesiAoAAAAgzNG/AAAAAKJP2BU27Ha70tPTj7jf6XTqrbfe0l/+8heNHDlS0oGOyPjx47VmzRoNGjSomZMCAAAACHf0LwAAAIDoE1ZTUUlSTk6OxowZo7PPPlu33nqr9uzZI0lav3693G63Ro0a5d+2V69e6ty5s9asWWNRWgAAAADhjP4FAAAAEH3CasTGgAED9Oijj+q4445Tfn6+nn32WV111VV67733VFBQIIfDodTU1FrPSUtLU35+fr1tOhx2GUaok+Pgaxwfb5dpWpsFCCaObUQrjm1EK45tHCoU/QuJPkYg+B1FLOK4RyziuEfs8flvxcfbZTrsR9kWwRBWhY3TTz/df/vEE0/UwIEDdeaZZ2rhwoVq0aJFk9p0u73BioejOPiG5XJ5ecNCVOHYRrTi2Ea04tjGoULRv5DoYwSC31HEIo57xCKOe8Qcl1cJB2+6vDLNsJsoKeqE9SucmpqqHj16KDc3V+3atZPb7VZZWVmtbQoLC+ucMxcAAAAADkX/AgAAAIgOYV3YqKio0M6dO5Wenq7+/fvL4XBo+fLl/se3bdumPXv2sLAfAAAAgGOifwEAAABEh7Caiurxxx/XmWeeqc6dOysvL09PP/20bDabMjMzlZKSoksuuUSPPfaYWrVqpeTkZM2cOVODBw+m4wEAAADgCPQvAAAAgOgUVoWNffv26ZZbblFJSYnatm2rIUOG6I033lDbtm0lSffcc49sNpumT58ul8ulMWPGaMaMGRanBgAAABCO6F8AAAAA0ckwzehewic/32l1hJhgGFK7dikqKHCyKBSiCsc2ohXHNqIVx3bzS09PsTpCs6OP0XT8jiIWcdwjFnHcI+a43Ep54h+SpPLbfiPT4bA4UORqaP8irNfYAAAAAAAAAAAAOBSFDQAAAAAAAAAAEDEobAAAAAAAAAAAgIhBYQMAAAAAAAAAAEQMChsAAAAAAAAAACBiUNgAAAAAAAAAAAARg8IGAAAAAAAAAACIGBQ2AAAAAAAAAAAIBtO0OkFMoLABAAAAAAAAAEAwmB6rE8QEChsAAAAAAAAAAASDt8bqBDGBwgYAAAAAAAAAAMHgq7I6QUygsAEAAAAAAAAAQBAY3mqrI8QEChsAAAAAAAAAAAQDhY1mQWEDAAAAAAAAAIBg8FRanSAmUNgAAAAAAAAAACAIDAobzYLCBgAAAAAAAAAATeXz/HzbU25djhhCYQMAAAAAAAAAgKbyVtZ9GyFDYQMAAAAAAAAAgCYyPM5DbjNiozlQ2AAAAAAAAAAAoKnc5XXfRshQ2AAAAAAAAAAAoIlqj9hwHmVLBAuFDQAAAAAAAAAAmurQURqecsn0WZclRlDYAAAAAAAAAACgiQxP2c9fmKbkZtRGqFHYAAAAAAAAAACgqdyltb40DvsawUdhAwAAAAAAAACAJjJchxUy3CWW5IglFDYAAAAAAAAAAGgK0zxihIbhKrEmSwyhsAEAAAAAAAAAQFN4qySfq9ZdhqvYojCxg8IGAAAAAAAAAABNYLiKjryTwkbIUdgAAAAAAAAAAKAp6ph2qs5iB4KKwgYAAAAAAAAAAE1guArruK9EMs3mDxNDKGwAAAAAAAAAANAERk0dozNMt+Qpa/4wMYTCBgAAAAAAAAAATVHHiA1JMmrqvh/BQWEDAAAAAAAAAIAmqG89jTpHciBoKGwAAAAAAAAAANBYPs+B9TTqUs9IDgQHhQ0AAAAAAAAAABrLVSSp7kXCjZqC5s0SYyhsAAAAAAAAAADQSEcrXtQ3RRWCg8IGAAAAAAAAAACNdLQFwo2aQsmsezQHAkdhAwAAAAAAAACARjKOto6Gr0byOJsvTIyhsAEAAAAAAAAAQGMdYx2No43oQGAobAAAAAAAAAAA0EjHWiCcBcRDJ87qAAAAAEAwuFwuvfzyi9q/f7c6dOiia665TvHx8VbHAgAAABCNfG4Z7tKjb8OIjZChsAEAAICI98ADf9Lzzz8jr9frvy8r6z797nc3asaMhyxMBgAAACAquYqOuYnhYsRGqDAVFQAAACLaAw/8Sc8+O0tt26bpySdna+/evXryydlq2zZNzz47Sw888CerIwIAAACIMg2ZZoo1NkKHwgYAAAAilsvl0vPPP6P09PZau3azpkz5tTp27KgpU36ttWs3Kz29vZ5//lm5XC6rowIAAACIIg0pWhg1hZJpNkOa2ENhAwAAABHr5ZdflNfr1d133yfDMLR06ZeaN2+eli79UoZh6M4775XX69HLL79odVQAAAAAUcRowFRUMt2Sxxn6MDGINTYAAAAQsXbs2C5JMgybhg8fpNzcHP9jGRnd9Yc/3FZrOwAAAAAIigZOM2XUFMl0pIY4TOxhxAYAAAAiVo8ex0mSbrnlJvXt208LFy6R0+nUwoVL1LdvP9166/Ra2wEAAABAMBiu4oZt2JCRHWg0ChsAAACIWFdffa0kyeFwKDt7roYOHabk5GQNHTpM2dlz5XA4am0HAAAAAAEzfQ0ubDRoyio0GoUNAAAARKzvvvtG0oFFxAcP7qdXXnlZe/bs0SuvvKzBg/v5Fw0/uB0AAAAABMxdJsnXoE0NV0lIo8QqChsAAACIWPv375MkXXfd9SosLNCtt96sLl266NZbb1ZhYaGuu+76WtsBAAAAQKAaPA1VI7dFw1HYAAAAQMTq0KGjJKl9+/bq0qVrrce6dOmi9PT0WtsBAAAAQMAaU6xwl4QsRiyjsAEAAICINWLEKLVrl66HH36gzsXDH3nkQbVrl64RI0ZZHRUAAABAlDDcpY3b1jRDmCY2UdgAAABA1DBN0/8PAAAAAELBcJc1fGPTK3krQhcmRlHYAAAAQMRasWKZCgryde+9Wdq8eZPGjx+n1NRUjR8/Tps3b9Y998xQQUG+VqxYZnVUAAAAANGiMYUNSYar4SM80DBhW9h44YUX1KdPHz388MP++2pqavTAAw9o+PDhGjx4sG666SYVFBRYmBIAAABWOrgo+LRpv9XKlWv0zjvv69///rfeeed9rVy5Wr/5zW9rbYfYRh8DAAAAwdCoERtSowshOLawLGx8//33eu2119SnT59a9z/yyCP69NNP9dRTT2nu3LnKy8vTjTfeaFFKAAAAWO3gouCbN2+U3W7X6NFjNXnyZI0ePVZ2u12bNm2stR1iF30MAAAABI2nkSM2PM4QBYldYVfYqKio0O23366ZM2eqVatW/vudTqfeeust3XXXXRo5cqT69++vRx55RKtXr9aaNWusCwwAAADLjBgxShkZ3TVr1hPy+Xy1HvP5fJo9+0llZPRg8fAYRx8DAAAAQWOaMjyNXDOjsdvjmMKusPHggw/q9NNP16hRtTuf69evl9vtrnV/r1691LlzZzodAAAAMcputysr62EtWvShpk6drFWrVsrpdGrVqpWaOnWyFi36UFlZM2W3262OCgvRxwAAAEDQeKsPLAjeCIzYCL44qwMc6v3339fGjRv1n//854jHCgoK5HA4lJqaWuv+tLQ05efn19umw2GXYQQ9Kg5z8DWOj7fLNK3NAgQTxzaiFcc2wsWOHdtVUlISUBs9e/bQAw/M1HPPPaPx48f57+/UqZMeeGCmevbsoY0bvw9oH61bt1aPHscF1AasQR8jvPD+g1jEcY9YxHGPqOarkmE7bLyA7eeTQ7vdJtNW+8C3mVWyx3OxVTCFTWFj7969evjhh/XSSy8pISEhaO263Y2rnqFpDr5huVxe3rAQVTi2Ea04thEOCgsLdcopA46YQipY9u7dq/vvvzcobdntdq1f/5PS0tKC0h6aB32M8MP7D2IRxz1iEcc9oplRVa64w/swvp8LG16vTzJqH/i+mnJ5XZxDBlPYFDY2bNigwsJCTZo0yX+f1+vVqlWr9K9//UvZ2dlyu90qKyurdUVVYWGh0tPTrYgMAACAAKSlpWnFitUqKysNWptbtvyg66+/Tn/724vq3bvPsZ/QQKmprShqRCD6GAAAAAg6b2Wjn2J4q0MQJLaFTWFjxIgReu+992rdd/fdd6tnz5667rrr1KlTJzkcDi1fvlznnXeeJGnbtm3as2ePBg0aZEFiAAAABCpU0zv17t1HAwYMCknbiBz0MQAAABB03qomPKfxxRAcXdgUNpKTk3XCCSfUui8xMVGtW7f233/JJZfoscceU6tWrZScnKyZM2dq8ODBdDoAAAAAHIE+BgAAAILNaEJhoynPwdGFTWGjIe655x7ZbDZNnz5dLpdLY8aM0YwZM6yOBQAAACBC0ccAAABAo3hrmvYc0/x5ARoELKwLG3Pnzq31dUJCgmbMmEFHAwAAAECT0McAAABAQHyupjxJMj2S4Qh6nFhlszoAAAAAAAAAAACRwPA1YcSGJDX1eagThQ0AAAAAAAAAABrC527e56FOFDYAAAAAAAAAAGiIJhc2PMHNEeMobAAAAAAAAAAA0BBNLGwYJiM2gonCBgAAAAAAAAAADWE2ceQFIzaCisIGAAAAAAAAAAANYXqb93moU0CFDZfLFawcAAAAAGIc/QsAAACEO4PCRlgIqLAxZswY/elPf9I333wTrDwAAAAAYhT9CwAAAIQ9ChthIS6QJ5933nlatGiR/vOf/6hTp076xS9+oYkTJ6pXr17BygcAAAAgRtC/AAAAQNgzfU18HoWNYApoxMZDDz2kr776SrNnz1b//v318ssvKzMzU5MmTdKcOXNUUFAQrJwAAAAAohz9CwAAAIS9phY21NTnoS4BLx7ucDg0btw4zZ49W8uWLdODDz6olJQUPf744zrjjDN03XXX6b333lN1dXUw8gIAAACIYvQvAAAAEN6aOmLDDG6MGBfQVFSHS05O1i9/+UudeOKJevHFF7Vo0SJ9+eWX+vLLL5WUlKTLLrtMN910kxITE4O5WwAAAABRiP4FAAAAwk6Tp6JixEYwBa2wsXPnTr333nt67733tGPHDrVu3Vq/+tWvdOGFF8rhcOiNN97Q3LlztWvXLj399NPB2i0AAACAKET/AgAAAOGpqSMvKGwEU0CFjeLiYn3wwQd67733tHbtWjkcDp1xxhm6/fbbddpppyku7ufm77//fnXs2FHPPfdcwKEBAAAARB/6FwAAAAh7TVwE3DB9TS6J4EgBFTbGjh0rj8ejQYMGacaMGRo/frxSU1Pr3b53795q27ZtILsEAAAAEKXoXwAAACDsNXkqKsoawRRQYeP//b//pwsvvFAZGRkN2v7MM8/UmWeeGcguAQAAAEQp+hcAAAAIf00tUDRtpAfqZgvkyd26dZPNVn8Tu3bt0jvvvBPILgAAAADECPoXAAAACHssHh4WAips3H333Vq9enW9j3///fe6++67A9kFAAAAgBhB/wIAAADhzmjiGhsUNoIroMKGeYx5wSorK2W32wPZBQAAAIAYQf8CAAAAYY8RG2Gh0WtsbN68WZs3b/Z//c0338jrPbJKVVZWptdee03HHXdcYAkBAAAARC36FwAAAIgoTR6x4QlujhjX6MLGkiVL9Mwzz0iSDMPQ66+/rtdff73ObVNTU/X4448HlhAAAABA1KJ/AQAAgIhhmk0vUDS1III6Nbqwcdlll+mMM86QaZr65S9/qenTp+u0006rtY1hGGrZsqUyMjIUF9foXQAAAACIEfQvAAAAEDECKU4wYiOoGt0raN++vdq3by9JeuWVV9SrVy+lpaUFPRgAAACA6Ef/AgAAABEjgOKE4aOwEUwBXe40bNiwYOUAAAAAEOPoXwAAACCs+dzWPBdHaFRhY8qUKbLZbMrOzlZcXJyuvvrqYz7HMAzNmTOnyQEBAAAARCf6FwAAAIgoPlfTn2tS2AimRo/Y8Pl8/tumaR5z+4ZsAwAAACA20b8AAABAxAiksOGtCV4ONK6wMXfu3KN+DQAAAAANRf8CAAAAkcQIpDjho7ARTDarAwAAAAAAAAAAEPa8VU1+quGtDmIQBFTYeOKJJ+R21z83WH5+vn73u98FsgsAAAAAMYL+BQAAAMJaAIUNeSuDlwOBFTays7M1adIkbdy48YjH3n33XWVmZurbb78NZBcAAAAAYgT9CwAAAIQzI5ARGx4KG8EUUGHjlVdeUXV1tS677DI988wz8nq9Kiws1O9//3vdeeed6t+/v957771gZQUAAAAQxehfAAAAIKx5Kpr+XF+N5PMEL0uMa9Ti4YcbOnSo5s+fr//7v//Tc889p0WLFikvL08ul0sPPPCALr/88mDlBAAAABDl6F8AAAAgnBkeZ2ANeMql+NZByRLrAl48vGXLlpo+fbpOOukk/fjjjyotLdXvfvc7Oh0AAAAAGo3+BQAAAMKWO7DCRsCFEfgFXNj49NNPlZmZqa1bt+qOO+7QyJEj9de//lV/+MMfVFxcHIyMAAAAAGIE/QsAAACEq4ALEwEWRvCzgAobd911l2644QZ1795d7777rq699lq99NJLuv/++/XFF18oMzNTS5YsCVZWAAAAAFGM/gUAAADCmeEqCez57sCej58FVNhYuHChbr/9dr366qvq1q2b//7Jkyfr3XffVc+ePXXTTTcFHBIAAABA9KN/AQAAgLDlrZa8lYG14WIEcrAEtHj422+/rV69etX5WLdu3TR37lzNnTs3kF0AAAAAiBH0LwAAABC2AhytIUkGhY2gCWjExuGdDqfTKa/XW+u+KVOmBLILAAAAADGC/gUAAADCleEqCryNmsDbwAEBLx6+bt06TZs2TQMHDtTw4cP19ddfS5KKiop0/fXXa+XKlQGHBAAAABAb6F8AAAAgHBk1+UFoo0AyzSCkQUCFje+++05XXnmlcnJyNHHiRPl8Pv9jbdu2VXl5uV5//fWAQwIAAACIfvQvAAAAEK6M6sALGzLdEguIB0VAhY2//vWv6tWrlz744AP98Y9/POLx4cOHa+3atYHsAgAAAECMoH8BAACAcBWMERtSkAokCKywsW7dOk2aNEnx8fEyDOOIxzt06KCCgoJAdgEAAAAgRtC/AAAAQFgyTRnV+4PSlFG9LyjtxLqAChtxcXG1hocfbv/+/UpMTAxkFwAAAABiBP0LAAAAhCVXkeSrCUpTFDaCI6DCxsCBA/XRRx/V+VhlZaXefvttnXrqqYHsAgAs4/V6tXTpl5o3b56WLv1SXq/X6kgAAEQ1+hcAAAAIR0bV3uC1Vbk7aG3FsoAKG9OnT9f69ev129/+Vl988YUk6YcfftCbb76pSZMmqaioSDfccENQggJAc1qwYL6GDx+kiy6aoCuvvFIXXTRBw4cP0oIF862OBgBA1KJ/AQAAgHBkVAWvGGHU5Es+V9Dai1UBj9h44YUXlJOTozvvvFOS9Nhjj+lPf/qTfD6fXnjhBZ144olBCQoAzWXBgvmaNm2K+vbtp4ULl8jpdGrhwiXq27efpk2bQnEDAIAQoX8BAACAcGRU7gpia2ZQR4DEqrhAGxg5cqQ++ugjbdq0STt27JBpmurWrZv69+9f54J/ABDOvF6vsrLu1bnnnq85c+bJbrcpOTlZQ4cO05w58zR16mRlZd2nCy6YILvdbnVcAACiDv0LAJZxuUPTriGZNa4D7Zuh2YXiHSFqGAAg05StcmdQmzQqcmQmdQ9qm7Em4MLGQX379lXfvn2D1RwAWGLFimXKzc3R889ny2arPajNZrNp+vRbNGHCOK1YsUyjR4+1KCUAANGP/gWA5pbyxD9C1naNpOSQtS45774+hK0DQIyryQvawuEHGZW5QW0vFjWqsLFq1aom7YQF/gBEiv3790mSTjyxX52P9+3br9Z2AACg6ehfAAAAINzZKoJfhDAqdkqmKTEiuckaVdiYMmVKo4Z/m6YpwzC0adOmRgcDACt06NBRkrR580YNHTrsiMc3bdpYazsAANB09C8AhBPnrb8JfqNut1Jmz5EklU+fKtPBlFEAEGmMiu3Bb9NTJrkKpYR2QW87VjSqsPHKK6+EKgcAhIURI0YpI6O7Zs16wr/GxkE+n0+zZz+pjIweGjFilIUpAQCIDvQvAISVUK9TEe+QKGwAQGQxTRnl20LStK18u3wUNpqsUYWNYcOOvHoZAKKJ3W5XVtbDmjZtiqZOnaybb75FY8YM16pVKzVr1pNatOhDZWfPZeFwAACCgP4FAAAAwpqrWIa7NCRNGxXbpTSmWG2qoC0eXlhYqN27d0uSunTporS0tGA1DQDNKjNzorKz5yor616NHz/Of39GRg9lZ89VZuZEC9MBABAb6F8AAADAarbyrSFr2yjfyjobAQi4sLF8+XL93//93xHz3Pbt21e33XabRo1q+HQt//73vzVv3jx/B6Z379664YYbdPrpp0uSampq9Nhjj+mDDz6Qy+XSmDFjNGPGDLVrx5AdAMGVmTlRF1wwQStXLlNlZakSE1tp+PBRjNQAACDE6F8AAAAgXBjlP4WubXeZVJMvtWgfsn1Es4AKG4sXL9bNN9+stLQ0/eY3v1GPHj0kSdu3b9e7776r6667Tk899ZTGjRt39Ib+p2PHjrrtttvUvXt3maapd955R7///e/13//+V71799Yjjzyizz//XE899ZRSUlL00EMP6cYbb9Rrr70WyLcBAHWy2+0aPXqs2rVLUUGBU6ZpdSIAAKIb/QsAAACEDdMnmzN0hQ1Jsjm3yEdho0kM02z6R3UTJkxQXFyc/vWvfyk5ObnWY+Xl5Zo8ebJ8Pp/ef//9JgccNmyYbr/9dp1//vkaOXKk/vKXv+j888+XJG3dulXjx4/X66+/rkGDBtX5/Px8Z5P3jYYzDPHhL6ISxzaiFcc2otX336/ROeecpiVLvtCAAYOsjhMT0tNTgtZWJPQvJPoYgeD9BzHH5VbKE/+QJJXf9huZLB6OGMHfe0QDo3Kn4rY817CNPYZaLOomSao+d6cU17AD35dygrw9r2lqxKjU0P6FLZCd7Ny5U5MmTTqi0yFJycnJuvTSS7Vr164mte31evX++++rsrJSgwcP1vr16+V2u2sNPe/Vq5c6d+6sNWvWNPVbAAAAABAm6F8AAAAgXBhlP4Z8H7by7ZLPHfL9RKOApqLq2bOnioqK6n28sLDQP3y8oX744QddccUVqqmpUWJiop599lkdf/zx2rRpkxwOh1JTU2ttn5aWpvz8/HrbczjsrL/SDA6+xvHxdirxiCoc24hWHNuIVg6Hzf9/fDzrIkWaSOhfSPQxAsH7D2KPz38rPt4u08F7E2IDf+8RDYzKHyVbA8cF2H4+ObTbbTJtDT3wvYqv2SG1OrHR+WJdQIWN22+/XbfccotOPvlknXPOObUeW7x4sV5//XX99a9/bVSbxx13nN555x05nU599NFHuvPOO/Xqq682OaPb7W3yc9FwB9+wXC4vb1iIKhzbiFYc24hWbrfP/7/LxXlgpImE/oVEHyMQvP8g5ri8Sjh40+WVaQY0cQYQMfh7j4jnKZfDuVNSAw9g38+FDa/XJxkNP/B9hRvlbdm7kQERUGFj7ty5atOmjW666Sa1b99eGRkZkqTc3Fzl5eWpR48eeuWVV/TKK6/4n2MYhv72t7/V22Z8fLy6d+8uSerfv7/WrVunV155RRdccIHcbrfKyspqXVVVWFio9PT0QL4NAAAAAGGA/gUAAADCwYFpqJqnKmeUbZbMiWJIcOMEVNj48ccD84x16tRJkrR7925Jkt1uV6dOnVRTU+Pf5iCjkT8gn88nl8ul/v37y+FwaPny5TrvvPMkSdu2bdOePXuOurAfAAAAgMhA/wIAAADhwFa2sdn2ZbhLpOp9UstOzbbPaBBQYeOTTz4JVg5J0hNPPKHTTjtNnTp1UkVFhRYsWKCvv/5a2dnZSklJ0SWXXKLHHntMrVq1UnJysmbOnKnBgwfT8QAAAACiAP0LAAAAWM7nls35U7Pu0la6UT4KG43S5MJGdXW1/vrXv2r48OE666yzghKmsLBQd955p/Ly8pSSkqI+ffooOztbo0ePliTdc889stlsmj59ulwul8aMGaMZM2YEZd8AAAAArEP/AgAAAOHAcP4k+WqadZ+2sk3ydTy7WfcZ6Zpc2GjRooVef/11HX/88UEL88gjjxz18YSEBM2YMYPOBgAAABBl6F8AAAAgHDTnNFQHGVW7JVeJFN+62fcdqWyBPPmkk046Yo5bAAAAAGgK+hcAAACwlOmTUbrJkl3bSjdYst9IFVBh45577tEHH3ygN998Ux6PJ1iZAAAAAMQg+hcAAACwklGxXYa3wpJ9U9honIAWD7/rrrtkGIbuv/9+zZw5Ux06dFBCQkKtbQzD0Pz58wMKCQAAACD60b8AAACAlWwl6y3bt1GxQ3I7JUeKZRkiSUCFjdatW6t169Y67rjjgpUHAAAAQIyifwEAAADLmD4Zpc2/vsYhAWQrXS9fu5EWZogcARU25s6dG6wcAAAAAGIc/QsAAABYxajIkeEpszSDrYTCRkMFtMYGAAAAAAAAAACRzlbyvdURZFRsPzAdFY4p4MJGeXm5XnjhBU2bNk0XXXSRvv/+wAFQUlKil19+WTk5OQGHBAAAABAb6F8AAACg2Zk+GWGxeLcpW+k6q0NEhICmotq3b59+9atfad++ferevbu2bdumiooDq8a3bt1ar732mnbv3q377rsvKGEBAAAARC/6FwAAALCCUb5Nhic8RkrYir+Xr90oq2OEvYAKG3/+859VUVGhd955R23bttWoUbVf8HPOOUefffZZILsAAAAAECPoXwAAAMAK4TAN1UFGZY7kKpHiW1sdJawFNBXV0qVLNWXKFB1//PEyDOOIx7t166a9e/cGsgsAAAAAMYL+BQAAAJqdzyNb6XqrU9RiK1lrdYSwF1Bho7q6Wm3btq338YPDxgEAAADgWOhfAAAAoLkZzi2St8rqGLWE0wiScBVQYaNXr15atWpVvY8vWbJE/fr1C2QXAAAAAGIE/QsAAAA0N1vJGqsjHMGo2iNV77c6RlgLqLAxdepUffDBB3rhhRdUXl4uSTJNUzk5Obr99tu1Zs0a/frXvw5GTgAAAABRjv4FAAAAmpW3WrbSTVanqJOteI3VEcJaQIuHX3jhhdqzZ49mzZqlp556SpL0m9/8RqZpymaz6Y9//KPOOeecYOQEAAAAEOXoXwAAAKA52Uo3SKbb6hh1spWsla/juVIda8+hiYWNmpoaffzxx9q1a5fS0tK0ePFiLVq0SDk5OfL5fMrIyNC5556rbt26BTsvAAAAgChD/wIAAABWMIpXWx2hXoarWEbFDpnJx1kdJSw1urBRWFioK664Qrt27ZJpmjIMQy1atNAzzzzDsHAAAAAAjUL/AgAAAJZwlchWvs3qFEdlK/5OXgobdWr0GhvPPfecdu/erV//+tf6+9//rrvvvlsJCQmaMWNGKPIBAAAAiGL0LwAAAGAFW/FqSabVMY7KVrJO8rmsjhGWGj1i46uvvtKFF16oO++8039fu3btdOutt2rbtm3q2bNnUAMCAAAAiF70LwAAANDsTPN/hY0w56uRUbpBZpvBVicJO40esbF3714NGTKk1n1DhgyRaZoqLCwMWjAAAAAA0Y/+BQAAAJqbUZkroybf6hgNYiv61uoIYanRhQ2Xy6WEhIRa98XHx0uSPB5PcFIBAAAAiAn0LwAAANDcbEXfWB2hwWzlWyVXsdUxwk6jp6KSpN27d2vDhg3+r51OpyQpJydHqampR2x/0kknNTEeAAAAgGhH/wIAAADNxltzYO2KCGIr+la+judYHSOsNKmwMWvWLM2aNeuI+x944IFaX5umKcMwtGnTpqalAwAAABD16F8AAACgudhK10u+GqtjNIqt6Bv5OpwlGY2egClqNbqw8eijj4YiBwAAAIAYRP8CAAAAzclW+LXVERrNcJfKcG6RmdrH6ihho9GFjYsvvjgUOQAAAADEIPoXAAAAaDZV+2RU5lqdoklsRavkpbDhx9gVAAAAAAAAAEDUsxdF3miNg2ylmyR3mdUxwgaFDQAAAAAAAABAdPPWyFa82uoUAfDJVvSt1SHCBoUNAAAAAAAAAEBUs5Wsk7zVVscIiK3wa8n0WR0jLFDYAAAAAAAAAABENVvhSqsjBMxwl8go+8HqGGGBwgYAAAAAAAAAIGoZlTtlVO2yOkZQ2ApXWB0hLFDYAAAAAAAAAABELVvBcqsjBI3N+aNUU2B1DMtR2AAAAAAAAAAARCdP+YH1NaKIvYBRGxQ2AAAAAAAAAABRyVa4SjI9VscIKlvRN5K3xuoYlqKwAQAAAAAAAACIPqY3KhYNP4KvRrbi1VansBSFDQAAAAAAAABA1DFKN8hwl1odIyRsBcsk07Q6hmUobAAAAAAAAAAAoo49f6nVEULGqMmX4dxidQzLUNgAAAAAAAAAAEQVo2KnjMpcq2OElK0gegs3xxJndQAAAABEjuLiIlVUVFgdo155efv9/+/atdPiNPVLSkpSmzZtrY4BAAAARC1bwVdWRwg5m/NHeavzpBbtrY7S7ChsAAAAoEGKi4v054fvkruy0Ooo9Sovr5RhSP955SklJydaHadejsQ03XHvYxQ3AAAAgFBwFctWst7qFM3Cnv+VvN0mWR2j2VHYAAAAQINUVFTIXVmoKaelqkNaktVx6nX7ZT2UlGC3Oka99hdWaO4XhaqoqKCwAQAAAISArWCZJJ/VMZqFrXi1vB3HSY4Uq6M0KwobAAAAaJQOaUnq1j58T5pbtIhXdbXL6hjHUGZ1AAAAACA6eatlL1xldYrmY3pkK1wpX8dzrE7SrFg8HAAAAAAAAAAQFWyFX0u+GqtjNCt7wXLJF+4XdwUXhQ0AAAAAAAAAQOTzeWQrWGp1iubnrZSt6FurUzQrChsAAAAAAAAAgIhnlK6T4Y7NaV9t+UslMzbWFZEobAAAAAAAAAAAIp1pyp73pdUpLGO4CmWUbrQ6RrOhsAEAAAAAAAAAiGiGc4uM6r1Wx7CUPf9zyTStjtEsKGwAAAAAAAAAACKaLf8LqyNYzqjcJaNih9UxmgWFDQAAAAAAAABAxDIqd8lWvtXqGGEhVgo8FDYAAAAAAAAAABHLlh+7a2sczla2Wareb3WMkKOwAQAAAAAAAACITDVFspWsszpFWImFRdQpbAAAAAAAAAAAIpI9/0tJsbFgdkPZStZI7lKrY4QUhQ0AAAAAAAAAQOTxVMhW9K3VKcKP6ZUtf5nVKUKKwgYAAAAAAAAAIOLYClZIptvqGGHJXrhS8lZbHSNkKGwAAAAAAAAAACKLzy1bwXKrU4QvX41shV9bnSJkwqqw8fe//12XXHKJBg8erJEjR+qGG27Qtm3bam1TU1OjBx54QMOHD9fgwYN10003qaCgwKLEAAAAAMIV/QsAAIDoZSv+Toa3wuoYYc1WsFTyeayOERJhVdj4+uuvddVVV+mNN97Qyy+/LI/Ho2nTpqmystK/zSOPPKJPP/1UTz31lObOnau8vDzdeOONFqYGAAAAEI7oXwAAAEQp05Qt/yurU4Q9w10mW8laq2OERJzVAQ6VnZ1d6+vHHntMI0eO1IYNG3TqqafK6XTqrbfe0l/+8heNHDlS0oGOyPjx47VmzRoNGjTIgtQAAAAAwhH9CwAAgOhklG2SUcMo24aw5S+Vr80pkmFYHSWowmrExuGcTqckqVWrVpKk9evXy+12a9SoUf5tevXqpc6dO2vNmjVWRAQAAAAQIehfAAAARAd7/lKrI0QMo3qvjPKtVscIurAasXEon8+nRx55RKeccopOOOEESVJBQYEcDodSU1NrbZuWlqb8/Pw623E47NFWjApLB1/j+Hi7TNPaLEAwcWwjWnFsoykcDrtshiGbYZPNFp7Xxxw8tu12W9ge2zbDJpthyOGwKz7ebnWcmBGs/oVEHyMQvP8g9vj8t+Lj7TId/N1HbODvPUKqYpeMqh1SOPVJbD+fHNrtNpm28Drw44uXy0zrY3WMoArbwsYDDzygLVu26N///ndA7bjd3iAlwtEcfMNyuby8YSGqcGwjWnFsoyncbq98pimf6ZPP5zv2EyzicEheb/jm85k++UxTbrdXLhfnqs0lWP0LiT5GIHj/QcxxeZXwv5s1NR7JDKMP4YAQ4u89Qsm+90vZwq0/4vu5sOH1+iQjzA784o1yl+2TWqRbnSRowvId9cEHH9Rnn32mOXPmqGPHjv7727VrJ7fbrbKyslrbFxYWKj09en4oAAAAAIKH/gWAsFBZYXUCAIh8bqdsJd9bnSIi2QuXWx0hqMKqsGGaph588EEtXrxYc+bMUbdu3Wo93r9/fzkcDi1f/vMPYdu2bdqzZw8L+wEAAACohf4FgLBSXP8UdwCAhrEVfi2ZjJ5tClvRd5K32uoYQRNWU1E98MADWrBggZ577jklJSX557VNSUlRixYtlJKSoksuuUSPPfaYWrVqpeTkZM2cOVODBw+m4wEAAACgFvoXAKxmen/+8M3M2y/juBMsTAMAEc70HihsoGl8NbIVfydfu1FWJwmKsCpszJs3T5I0ZcqUWvc/+uijmjRpkiTpnnvukc1m0/Tp0+VyuTRmzBjNmDGj2bMCAAAACG/0LwBYruiQURp5e63LAQBRwCjdJMNTduwNUS9bwUr50kb+vBBOBAurwsYPP/xwzG0SEhI0Y8YMOhsAQs7r9WrlymWqrCxVYmIrDR8+Sna73epYAACggehfALDc3p3+m2bhfqmmWkZCCwsDAUDkshWuDE5DnhB8qH9om6Fo/6C4wBYlN2ryZFTskJl8XJACWSesChsAEC4WLJivrKx7lZub478vI6O7srIeVmbmRAuTAQAAAIgU5p7cQ76QtCdXYjoqAGi8mgLZyn8KSlMtFnU79kaBtP9J15C1XT0+99gbHYOtaJW8UVDYCKvFwwEgHCxYMF/Tpk1R3779tHDhEjmdTi1cuER9+/bTtGlTtGDBfKsjAgAAAAhzZmW5VFh7wXBz5zaL0gBAZLMVfmN1hKhhK1kneSqtjhEwRmwAwCG8Xq+ysu7Vueeerzlz5slutyk5OVlDhw7TnDnzNHXqZGVl3acLLpjAtFQAAAAA6pdbRxFj1w6ZXq8M+hIA0HCmT7aS1UFrrvrcncfeqLE8hn+kRvVZuwKeMiqkTI9sJd/L126E1UkCwogNADjEihXLlJubo5tvvlU2W+0/kQcWFr1Fubk7tGLFMosSAgAAAIgEZu7WI+90u2utuwEAODajfKsMdxAXDY8zQ/Mv1O0HsVhiKw5eocgqjNgAgEPs379PknTiif3qXDy8b99+tbYDAAAAgMOZNdXSvt11P7Zzu4yuPZo3EABEsGj4ED7cGJW5UnW+1CLd6ihNRmEDAA7RoUNHSVJ29t/1yisva+fOnxdl6tYtQ1Om/LrWdgAAAABwhD25klnPlbW7tss0z5BhGM2bCQAikbdGtpL1VqeISraSNfJ1HGd1jCZjKioAOMSIEaPUrl26Hn74gVpFDUnauTNXjzzyoNq1S9eIEaMsSggAAAAg3Jl7jjLdVGWFVFbcfGEAIIIZzh8l0211jKgU6QUjChsAcJiKivKAHgcAAAAQ4/bXPQ2VXz3TVAEAarOVRvaH7+HMqMmTqvOsjtFkFDYA4BBffvm5qqqqjrpNVVWVvvzy82ZKBAAAACCSmK4ayVl69G2K8pspDQBEMJ9btrIfrE4R1Wwl66yO0GSssYGA1bXAst1utzoW0CSvvfYv/+1zzjlP48adq/T0NsrPL9bixYu0ZMlH/u3OOOMsq2ICAAAACFclRcfeprgw9DkAIMIZ5dskX43VMaKarWyzfB3PtjpGk1DYQEAWLJivrKx7lZub478vI6O7srIeVmbmRAuTAU2zceOBIY4ZGd316quvy263qV27FBUUODV16jQNHXqydu3a6d8OAAAAAGqpcDZgG6a3BYBjsTkZrRFqRtUuyVMuxSVbHaXRmIoKTbZgwXxNmzZFffv208KFS+R0OrVw4RL17dtP06ZN0YIF862OCDSBedRHDcNo0HYAAAAAYlT10ae2PbBNZehzAECEM5xbrI4QEyL1daawgSbxer3KyrpX5557vubMmaehQ4cpOTlZQ4cO05w583TuuecrK+s+eb1eq6MCjXLSSSdLknJzczRlyhVatWqlnE6nVq1aqSlTrtDOnbm1tgMAAIhKLnfI/pk1rpC2D1jO6zn2Nj6fTJ8v9FkAIFLVFMmoKbA6RUywRWhhg6mo0CQrVixTbm6Onn8+WzZb7fqYzWbT9Om3aMKEcVqxYplGjx5rUUqg8S6//Cq99dabkqSPP16kxYs/9D926LF++eVXNXs2AACA5pLyxD9C1naNpFBOduC8+/oQtg40QEMLFj6fZON6UwCoi1GxI3SNe4xjbxNIm6Fo/6C44M8gEtLXOoQobKBJ9u/fJ0k68cR+dT7et2+/WtsBkWLs2NOVkpIqp7NMvsM6JAe/Tk1N1dixp1sRDwAs1zLeJ7e3ShU1ITxZD5DHdKgmjK/adnur1DKeq3QBIGoZDXyPpKgBAPWyVeaGrO0Wi7qFrG1JavFJ15C1XT0++K+L4SqW3KWSo1XQ2w4lChtokg4dOkqSNm/eqKFDhx3x+KZNG2ttB0QKu92uWbOe07XX/qrebZ566jnZ7fZmTAUA4aN312oVVW5VEVODB6R315ZWRwCOynnrb4LfqNutlNlzJEnbr/uV2qW2CP4+gHBga0BfwVDDCyAAEIOMihyrI8QUo2KnzNYUNhADRowYpYyM7po16wnNmTNPdvvPV5r4fD7Nnv2kMjJ6aMSIURamBJomM3OiXnrpVc2YcY9/TQ1Jysjorqysh5WZOdHCdABgrS27WujM/p3VoW2i1VHqlRAf3iM29hdVasuuIp1ldRDgaOIdIW3ebY8L+T4Ay8Q14KMWe5wMChsAUDdvjYzq/SFrvvrcncFv1GP4R2pUn7UrJFNGhZJRuVNm6/5Wx2gUChtoErvdrqyshzVt2hRdffUVOuusc5Se3kb5+cX65JMlWrz4I2Vnz+WqdkSszMyJuuCCCVq5cpkqK0uVmNhKw4eP4pgGEPOqXDY57C2VlBDKGfID06JFvOIMl9Ux6uWwm6pyMf0IYps3svr6QOM0ZIqphozqAIAYZdTkSQrhyUKoiw5xZuQVNqojbzkBChtosszMibrhhul6/vlntGjRzwss2+1xuuGG6VzVjohnt9s1evRYtWuXooICp8zIek8CAAAIWz7OqxDNjAYUNhitAQD1MqrzrI4Qc0I5QiZUKGygyRYsmK/nnputcePO09lnn6P09LbKzy/Sxx8v0XPPzdaQIadS3IAlduzYrrKy0iC26JIUH8T2pNTUVurR47igtgkAABApzFBehQlYzecLzjYAEKsicPRApDPcpZKnSoqLnLUAKWygSbxer7Ky7tW5557vX2Pj4FXtU6f+RlOnTlZW1n264IIJTN2DZlVYWKgRIwbLF+YdBbvdrvXrf1JaWprVUQAAAJodI2ER1byeBm1jmibrbABAHYyaQqsjxCTDVSgzrqvVMRqMwgaaZMWKZcrNzdHzz2fLdtj8oTabTdOn36IJE8ZpxYplGj16rEUpEYvS0tK0YsXqoI3Y2LLlB11//XX6299eVO/efYLSpnRgxAZFDQAAEKuoayCqVVcdexufT3K7pPiE0OcBgAhjuIM5CwcazF0qicIGotz+/QeGhJ14Yr86H+/bt1+t7YDmFIopnnr37qMBAwYFvV0AAIBYxIgNRDOzsrxhG1aUU9gAgLq4KGxYwXCXRtTFJw1Y0Qo4UocOHSVJmzdvrPPxTZs21toOAAAAAA5i8XBEteIGTqFSwlQrAHAEn1uGt8LqFLHJVWZ1gkahsIEmGTFilDIyumvWrCeOWMvA5/Np9uwnlZHRQyNGjLIoIQCgPl6vV0uXfql58+Zp6dIv5fV6rY4EAIgxPoZsIEqZHo9UXNCwjQv2hzYMAEQib7XVCWKW4W3AVIphhKmo0CR2u11ZWQ9r2rQpuvrqK3TWWecoPb2N8vOL9cknS7R48UfKzp7LwuEAEGYWLJivrKx7lZub478vI6O7srIeVmbmRAuTAQBiiZe6BqJV3p4D62c0gLl3p1g6HAAOQ2HDOr4aqxM0CoUNNFlm5kTdcMN0Pf/8M1q06EP//XZ7nG64YTofkAFAmFmwYL6mTZuic889X3//e7bGjBmur75aqaeeekLTpk1RdvZc/nYDAJqFm8oGopSZu63hGxcXyiwrlZHaKnSBACDCGBH24XpUibDXnsIGmmzBgvl67rnZGjfuPJ199jj/iI2PP16s556brSFDTuUDMgAIE16vV1lZ9+rcc8/XnDnzZLfblJycrKFDh2nOnHmaOnWysrLu0wUXTGC0HQAg5KopbCAKmV6vtOPHxj1p22Zp0PDQBAIawuUOTbuGZNa4DrQfqj/58Y4QNQxL+UJ0TOKYDK/L6giNQmEDTVLXB2Tt2qWooMCpqVOn8QEZAISZFSuWKTc3R88/ny2brfYSWzabTdOn36IJE8ZpxYplGj16rEUpAQDR7NBRGpUeChuIQju2SDWNu9rV3LJBOnmoDPrNsEjKE/8IWds1kpJD1rrkvPv6ELYO6zBJn1VMI7JeexYPR5Mc/IDs5ptvrfcDstzcHVqxYplFCQEAh9q/f58k6cQT+9X5eN++/WptBwBAsJW5f153oKymYWsQAJHCNE2Z679t/BMrK6TtPwQ/EABEqgj7cB3WYcQGmoQPyAAgsnTo0FGStHnzRg0dOuyIxzdt2lhrOwAAgq2wyqce/7tdUGXKNE0ZfHiBaLHtB6mkqElPNdeslHqcICOOj2jQ/Jy3/ib4jbrdSpk9R5JUPn2qTAdTRqExODewTmS99ozYQJMc+gFZXfiADADCy4gRo5SR0V2zZj0hn6/2VbI+n0+zZz+pjIweGjFilEUJAQDRbn+lx3/b5TVVwqgNRAnT7Zb53fKmN1BRLm1cHbxAQGPEO4L/79BCRijaP/gPUcm08bO1TIS99hQ20CR8QAYAkcVutysr62EtWvShpk6drFWrVsrpdGrVqpWaOnWyFi36UFlZM1kXCQAQMruc3lpf7zzsayBSmd8tkyrLA2tj7dcyS5s24gMAooq9pdUJYleEvfaMc0STHPyAbNq0KfrVry5TQkKCqqoq1LJlkmpqavTxx4uVnT2XD8gAIIxkZk5UdvZcZWXdq/Hjx/nvz8jooezsucrMnGhhOgBANCuu9qq0uvaC4dtLPRqQHm9RIiA4zL07pc3fB96Qzyfzq8XS+ZeykDiA2BZhH65HEzMu0eoIjUJhA02WmTlRAwcO1pIli454bNCgU/iADADCUGbmRF1wwQStXLlMlZWlSkxspeHDR1GIBgCE1JZizxH37XR6VOn2KdHBRAKITGZlucwvPgpegwV5Mr9dKmPYacFrEwAijS1eMuySycjOZmePrMIGZ5Bosquvnqw1a76r87E1a77T1VdPbuZEAICGsNvtGj16rCZPnqzRo8dS1AAAhJRpmtpc5K7jfmlLyZEFDyASmB6PzM8WStVVwW1401qZWzcHt00AiCSGIdPRyuoUscmRanWCRqGwgSapqqrShx++L0k655xztXDhEjmdTi1cuETnnHOuJOnDD99XVVWQT/IAAAAARJQ9FV6V1rNQ+IYCl0zTrPMxIFyZPp/MLz+S8veFpv2lS2TuyQ1J2wAQCcz4NlZHiElmfFurIzQKhQ00yYwZ90qSevQ4Tq+++oaGDh2m5ORkDR06TK+++oZ69Diu1nYAAAAAYtP6giNHaxxUWOXT/sq6ix5AODJNU+byT6XcbaHcicxPP5CZtzd0+wCAcBZhH7BHCwobiAlr1nwrSbrvvgdks9U+jGw2m+6++0+1tgMAAAAQeyrdPv1UXH9hQ5K+z3c1UxogMKbPJ3PZx9JPG0O/M49b5uJ3KW4AiElmQprVEWKP4WAqKsSG1NTWkqRvv/26zse/++6bWtsBAAAAiD1r813yHWOmqR+L3XK6GLWB8GZ6PAcWCv9pU/Pt1OOWufgdmbt2NN8+ASAMmC06WR0h5pgtO0qGYXWMRqGwgSa5/vrfS5JefPHvcrlqX2HlcrmUnf1ire0AAAAAxBaX19S6o0xDdZBpSqvzGLWB8GXWVMtc8q6U81Pz79zjkfnJApk/bmj+fQOARczEzlZHiDlmy8h7zSlsoEnOOONstWjRUh6PWz17dtaDD96vH3/8UQ8+eL969uwsj8etFi1a6owzzrY6KgDgMF6vV0uXfql58+Zp6dIv5fV6rY4EAIhCq/NcqvE0bGHw9QUulTNqA2HILC6U+f4b0v49FoYwZS7/ROaqL2X6+D0BEAPikmVG2LRIkY7CBmKG3W7Xc88dGJXhcrn09NNPqU+fPnr66af8Iziee+5F2e12K2MCAA6zYMF8DR8+SBddNEFXXnmlLrpogoYPH6QFC+ZbHQ0AEEWqPaZW59U0eHuvT1q1r+HbA83BzNkq84M3JWep1VEkSebGNTKXvCuzusrqKECD1VQce+QeUBczsZvVEWKKLwJfbwobaLLMzIl66aVX1aVL11r3d+nSTS+99KoyMydalAwAUJcFC+Zr2rQp6tu3nxYuXCKn06mFC5eob99+mjZtCsUNAEDQfLO/Ru5GDgjcUOhWSTVXo8N6ptcr39dfyPzsA8kTZh/K7t0l8715MvfvtjoJUC/zkMWVyvZUWpgEkcxM7mV1hJhh2pOkFh2tjtFocVYHgHV27NiusrLArjzJyMjQSy/N1bp136uoaL/atu2gk08eILvdru+/XxNwxtTUVurR47iA2wGAWOf1epWVda/OPfd8vfjiHM2Zk633339HHTp00YsvztF1101VVtZ9uuCCCYy2AwAEpNLt0/f5jV8zwzSlVftrNK57yxCkAhrGLCuV+eWHUkGe1VHqV1kh86P/SoOGS/2HyLBxzSrCS/n+Sh2cRKh4R5nS+qbJiLBFiWE9X3Iv0TNtHmZyz4hbOFyisBGzCgsLNWLEYPnCfH5Ou92u9et/UlpamtVRACCirVixTLm5OTr11OE67rhOtdbVyMq6TxdddIlyc3doxYplGj16rIVJAQCRbk2eS94mdjN+KHJrRKcEpcTzQS2al2ma0tZNMld+EX6jNOpimjJXr5D25EpjzpWRnGJ1IsCvcFuZDs7WX13qVkVBtZLTKVqjkRLSZcalyPA4rU4S9czknlZHaBIKGzEqLS1NK1asDnjExkFbtvyg66+/Tn/724vq3btPUNqUDozYoKgBAIHbv3+fJOmtt95Qenp73X33fZo8+ZeaN+9NPfroTL311hu1tgOOZn9hhdURjqqixqukhPC9vivcXz8gEF6fqfWFTf9Q2DSldQUujercIoipgKMza6plLv9UyvnJ6iiNt3+PzPn/lkacIR13AlfFw3JVpTUq21d7HZi8zcUUNtB4hiEzta+Moq+tThL1fKl9rY7QJBQ2Ylgopnjq3buPBgwYFPR2AQCBadv2QJG4des2Wrt2sxyOOLVrl6IpU36tK674lfr166WSkmL/dkBdkpKS5EhM09wvCiWVWR2nTuXllfrvR0t18XmjlZycaHWcejkS05SUlGR1DCDodpR5VOMxj73hUfxQ5NbITgl8QItmYe7Okbl0iVQVwesAuF0yv1wk7dwujThDRgKFQVgnb2PxEfeV7alUVUmNWrZOsCARIpmv1UmyUdgIKTOxmxTfyuoYTUJhAwCAGLBp0wZJUpcuXWQ7bB5mm82mzp27qKSkWJs2bdAZZ5xlRUREgDZt2uqOex9TRUX4jjjYvHmj3v5wqS69+g868cR+VsepV1JSktq0aWt1DCDothQHPoVPucvUvgqvOiXTXUXomG63zG+/kn5Yb3WU4Nmx5cCi4qPPkdGlu9VpEIOqS10qyS1XXWXpfeuLdNyYTs2eCZHNTOkl2VtK3qpjb4wm8bXqb3WEJuNMEQCAGJCbmyNJ2rhxg6ZOnaybb75FY8YM16pVKzVr1pP+wsfB7YD6tGnTNqw/kC8qKpQktW/fQV27drM4DRBbarymtpV6gtLW5iI3hQ2EjJm/78AIB2dwpmYOK1WVMpfMl3niABlDRsmIc1idCDFk3/pCmVKdhY3S3RWqLKpWYltGFKERDPv/Rm18Y3WSqEVhAwAAhNyOHdubvDaSwxEvSZowYaK++Walxo8f53+sY8dOmjDhF1qwYL4cjnh9//2aJmdMTW0VkqkOAQDhb2Nh0xcNP9wPxW6N7NxCLeKYjgrBY/p80rpvZK79+sCCLtFs8/cy9+RKp58vo2261WkQAyoKq1Wy6+ijevesLVSvMzoz1SAaxdd2KIWNEPElHy8lhO9Fa8dCYQMAgAhQWFioESMGy+cL7BOjBQvePeK+ffv2asGC+ZKk559/Rs8//0yT27fb7Vq//ielpbFWBwDEkkq3T9/scwWtPbdXWrm3Rqd348peBIdZ7pT51SJp/x6rozSfshKZ778hnTJK6jeID5MRMqbP1O7v8o+5XXlelUp3Vah1t+RmSIVoYSZmyExoL6Mmz+ooUceXdqrVEQJCYQMAgAiQlpamFStWN3nEhiS98MJzeuON19SmTRtdcEGm/v3vubryyilauHCBiouLddllV+i3v70hoJypqa0oagBAjPGaphblVKk6wEXDD/d9vkudk+3q3YapdBAYc9eOA1NPuWqsjtL8fD6Z33wl7dsljRnHwuIIiYItpaosatjv1+7v8pXcoaXi4u0hToWoYRjypQ2Tfc8Cq5NEFdOeJDM1fNckbIiwKmysWrVK2dnZWr9+vfLz8/Xss8/qnHPO8T9umqZmz56tN998U2VlZTrllFOUlZWlHj16WBcaAIBmEugUT88884LS0zvo+eef0b//PVeS9O9/z5XdHqff//5mzZjxUDBiAkBYoY8RWm6fqQ+3V2lnmTck7S/acWCxUIobaArT55PWfi3z+1VWR7Herh0yF7wunXGBjLT2VqdBFKkudWnvusIGb++u9mr3t/nKGNGBUURoMF+bU2Tft1jyxWCBOkR8aadKtrAqDTRaWKWvrKxUnz59dMkll+jGG2884vEXX3xRc+fO1WOPPaauXbtq1qxZmjZtmj744AMlJCRYkBhAoIqLi1RRcfR5OK2Ul7ff//+uXTstTlO/pKSksF7MF+FjxoyHdPfdf9LMmVl6/vln9Lvf3aj77stSfHy81dEAICToY4ROcbVXC7dXqbAqSAtr1MFnSh9ur1J+lVfDOyXIzodgaCDT7Zb55UfSzu1WRwkf5WUyF/5HGnuujO7HW50GUcDn9Sln+T75vI0bsVecW67kDolK65kaomSIOnEt5U0bJnv+l1YniQ6GQ752o6xOEbCwKmycfvrpOv300+t8zDRNvfLKK7r++uv9V1j9+c9/1qhRo7RkyRJNmDChOaMCCILi4iI9nnWP3KVNn1on1JxVlTIkvfHic0ppmWh1nHo5WrXSnVmPUNxAg8THx+vSSy/T888/o0svvYyiBoCoRh8j+LymqbV5Lq3YWxO0xcKP5dt9LuWWeXRWRku1T2T6EhydWVku8+P3pKICq6OEH69X5mcLpSGjpJNO4Yp5BGT3dwWqKm3a+kq7v8tXYlqCWrbiIgI0jC99tOwFyyQzNKNEY4mv7RDJkWJ1jICFVWHjaHbt2qX8/HyNGvVzNSklJUUDBw7U6tWr6XQAEaiiokLu0lJN7tVN7VPC9w/qLacOUGJc+H7wm+d0at7WnaqoqKCwAQBAI9DHaBzTNJXr9Oqr3dUqCuEojfrkV/r0+g8VOinNoRGdEpTosDV7BoQ/s7xM5kf/lcrLrI4S1sxvl8morpI5ZDTFDTRJyc5yFW5r+u+Zz2sqZ9l+nXBuV9ns/D1HAzhaydfmFNmKmF4wMDZ508daHSIoIqawkZ+fL0lHLEialpamgoL6r8JwOOziPTr0HP/rVDgcNsWzABQayOGwy2aTOrZKVdc2ra2OUyfDkByOOLndHpnBXQ8zaGw2QzbbgdeT3z80FH+3Ea04ttEY9DEabk+5R8t2V2tnmUeSZLM3/gWwmT8/x2YzmtSGJG0q9uinUq8Gd4jXkI4JahHHB2I4wCwtkWfR2zIryyVb+P2S2u2GzHCKtWmNbIYp+4jTKW6gUVyVHu35Ll/2en7PDv2rbLNL9b1pusvdyt9YrG5DWPcFDdT1HBllayRfGI7aOOT3wW63ybSF6YdI7YYpPiXd6hRBETGFjaZyu8PwQI9CbrfP/7/LxWuOhnG7vfL5JJ/PlM8Xpn/wJTkckreRc4Y2pwOv34HXk98/NBR/txGtOLbRHGKpj7G33KOv/zcNVKAOnYPd5zMbPSf7oWq8plbsqtZ3e2s0MN2hQe0T1CKOD2ZjmVlZIXPhW1K50+ootR0yuMnrNWt/4hsGfOvXyGuLkzF4pNVRECFM09T25Xvlqq7/vdA85Lj3eSXvUT7g3bexWEkdE5Wc3jKYMRGtjFTZ2gyXPf8rq5McyffzeYjX65OMMPwcyRYvd7szpSjpJ4XZW2r90tMPVJIKCwtr3V9YWKh27dpZEQkAAABABKOPUTfTNJVT5tHbWyr0nx8rg1LUCBWX19SqfS79c4NTX+2uVrmr+afIgvVMt0vmknfDr6gRIczvv5G5+XurYyBCFOc4VbanMmjtmZJ2fp0nr4e/32gYX/szJXsLq2NEJG+70ZIj1eoYQRMxhY2uXbsqPT1dy5cv999XXl6utWvXavDgwRYmAwAAABCJ6GPU5vWZ2lzk1rzNFZr/U6V2OyPnaj63V1q936U5G8q1JKdKhVWRkx2BMU1T5tIlUnHhsTdGvcyvv5C5f7fVMRDmqstc2v1tftDbrSl3a/e3+TLDdf5nhJe4RHnbn2l1iohjxiXL1/40q2MEVVhNRVVRUaHc3Fz/17t27dKmTZvUqlUrde7cWVdffbX+9re/qXv37uratatmzZql9u3b65xzzrEwNQAAAIBwRR/j2Ko8Pq0vcGtdgUsVrsj+UMlnSpsK3dpU6Fa31DgNSo9X91Q76wdEs42rpZytVqeIfKYp87OF0sQrZbRMtDoNwpC70qNtX+yR1xOa94miHU7FJznUsX/bkLSP6OJrN0q2om9l1ORZHSVieDuPj7qRLmFV2Fi/fr2uvvpq/9ePPvqoJOniiy/WY489puuuu05VVVW6//77VVZWpiFDhugf//iHEhISrIoMAAAAIIzRx6hffqVX3+e79EOxW94onAFkZ5lHO8s8apVg04D0ePVNcyihiQuWIzyZRQUyv1t+7A0bKhS/B756bgdbMObjqK46MPrl7F9QDEQtVaU12v7FXrkqQzs14b4NRfK6veo8sJ2MehYmByRJtjh5u16ouK0vWp0kIpjJvWS2HmR1jKALq8LG8OHD9cMPP9T7uGEYuvnmm3XzzTc3YyoAAAAAkYo+Rm0en6mfStxal+/WvorYmK6ptManL3dVa/meavVp69DJ7eKVnmi3OhYCZPq8Mr9aJPmCVy1otS+0H5G0ygtd+6Wdg/SB8+4c6aeNUu+TgtMeIprpM1WwtVR71xbK522eEX35P5aqsrBG3Ya1V4vU+GbZJyKTmdxTvjaDZStebXWU8GbY5ekyUYrCgnVYFTYAAAAAAMFXXO3V+gK3NhW5VROiaUTCnccnbShwa0OBWx2S7OrfzqHebRxycFVwZNq4lnU1QsT8dqnU9TimpIpxzv2V2ru2UJXFNc2+74rCav3wYa7ST2it9n3bKC6BYjTq5u08XoZziwxPudVRwpa3/RlSi/ZWxwgJChsRori4SBUVFVbHqFde3n7//7t27bQ4zdElJSWpTRvmbAQAAEB085qmtpd4tK7ApV0RtBB4c9hf4dX+Cq++2l2jE9s61L+dQ21b8MFZpDArK2Su/Tro7Za2D8E0O6bUKv/ARy+l6R4pEupoNTUy16yQMfIsq5OgmZmmKee+SuVtKlZ5frXFWaS8H0pUuLVU7Xq3VrsTWsnRgo8xcZi45ANTUu34l9VJwpLZsrN8HaJ3oXX+IkSA4uIi3T/zYZVUNn+VvKEqy52SYehvc/6txOQUq+McVevEBD14370UN8JEywSvPI4yVdnC98pBr+LksoV2LtFAeBxOtUzgwwoAAHBApdundQVubSiM/MXAQ63GY2ptnktr81zqmmLXgPR4HdcqTrYonK4hmphrV0oed9DbDeVUUdLPBY5QCNpUVAdt2SDzxIEy2qQFt12EJa/bp+Icpwq2lKi6LPi/W4Hwekzt31SsvB9K1Lpbstr1bqXEtgmsAwM/s1V/pqSqixEnT7dfSkb0XrhBYSMCVFRUqKSyRl3GXqrkth2sjlM3Qxrwy9/LnpAihXHfqbxov3Z/+R9VVFRQ2AgTJ/SolLPTKjmtDnIsDqsDHEWSdEJZstUpAACAxUqqffo2r0abi9zBXHYgZuxyerXLWaVWCTYN7hCvfm0dsjNNVdgxy0qkLRusjhH9zAMFJOOM8VYnQYiYpqmqohoVbitTca5TvjCfptD0mSrOcao4x6mWreOV1jNVrbunKC4+ej+0RcN5O/9CRvlWGe4yq6OEDW/Hs6WWHa2OEVIUNiJIctsOatW+i9Ux6mZILVo4VF3tDuvCBsLPjzsSNSa1rzqkhu9In/j4OLlc4TtiY3+ZUz/uyBEDxQEAiE3lLp9W7D1Q0DA5Fw9YaY1Pn+VW65t9NRrWKUH92jq4MjiMmOu+CVmfs7RjCM75fT+PBClt75Fswd9FyORslVlcyKiNKOOu9qh4h1NF28vCbnRGQ1WVuLTruwLtXlOo1l2T1Oa4VKW0bymDYnTsimspb7dfKm7bS+KDSclM6ilf+mlWxwg5ChsALFVVY1ecO1Utfa2tjlKvFnLI7gvfE744t6GqGq5SAQAg1pimqfWFbi3dXS03s1IGXbnL1Cc51Vpf4Na53VuoDWtwWM6sqpS2/RC6HYS66GBrhn0Embl5LWttRAGf11TZngoVbS+Tc19l1BTBTZ+p4txyFeeWy9HSrjbdU9T2uFS1SI23OhosYKYcL2/7M2TP+9TqKNayJ8rT/TLJiLA3nCagsAEAAAAAEcZnmvokt1qbCkNz8YXDE/wr1x1eT+3bIfpgzR0X3G5uXoVXr/9QoQk9E9UthS60pbZuFvOsNbNtP8gcOkaGgw+KI1F1qUuF20pVvMMpjyu6f3fcVV7lbS5R3uYSJbVrcWCqqm7JssVF/4e7+Jmv4zmylW+TUZljdRTLeDJ+KTlaWR2jWXBWBgBACBQXF6miosLqGPXKy9vv/3/Xrp0Wp6lfUlISayIBQB2+3lsTsqKGJN3+8esha1uS/vDpWyFr+5Hzrgp6m26v9P62Sk0+MVmtEviQzCrmzq1WR4g9Ho+0Z6fUvZfVSdBAPq+p0l3lKvipVBUF1VbHsURFQbUqCqq1e3WB2vRIUbvjWzGKI1YYNnm6XyHHj7Mlb5XVaZqdN32MzNQTrY7RbChsAAAQZMXFRXr4gQdVWRa+J1LlFeUyZOiVF19RclL4Lj6fmNpS9864n+IGABzC5TX1XZ7L6hgxx+2VVufV6IxuLa2OEpNMt1vK3291jJhk7t0pg8JG2PPUeFX4U6kKfiqVu5r5CSXJ6/apYEupCraUKqVDS6X3aa2UjomsmxTt4lvLk3G54rbPUSytt2Emdpev0/lWx2hWFDYiRFK8W618uUquCdNquyHFm3GKc4VuSHlQ+PKUFB++ayUAiA4VFRWqLKvS2D7nKy21ndVx6mRIumzM1UqISwzbP9uFZQX68ocPVVFRQWEDAA5RVuOTN7pnFAlbhVW88JapqlDULAwQaSrLrU6Ao3BXe5S3qUSFW0vl8/I7Uh/n/io591epZet4dTiprVp1SaLAEcXM1D7ydjhL9v0fWx2lWZhxyfL0mCwZsbUeGIWNCDGwa5FGVT8q7bU6SeSL65pudQQAMSIttZ3at+1kdYw6GZJatHCoutodtoUNAEDdWsTxQYxVeO0tFIJ1X9BAHi4ODEdel1f7NxWrYAsFjcaoKnFpx9J9atk6Xp0HtlNKx0SrIyFEfB3OklGZK5tzi9VRQsyQt/sVMbOuxqEobESItbvaynPSb5Tcpr3VUepmSPHxcXKF+YiN8uI8bdj1tn5hdRAAAACgiZLjbWrTwqbi6tCNHvi/sy8PepsOr0d/+OzA2hpPnXmJ3LbI645msHi4dVJbH7gyI4z7m1GrNSNnw4lpmire4dSetYXy1DDlVFNVlbi09fM9Su2cqK6npCs+yWF1JASbYZM343IZW56V4Sq2Ok3IeDudJzM5NqcL5KwsQlS4HCq1ZUgJXayOUjfjf1f+Gu6wPtEstbVQhYs3KwAAAES2k9o59NWumpC1744LbVfRbY+T2x5Z3VGHXerdhr6EVYy4OJkdu0p7d1kdJeYYnbtbHQH/4670KPfr/XLuD95afjZf8Isjh7Zp83lD9jGRzxb4tDtleyq1OS9XnQe2U1qvVKanijZxSfL2+JXitjwvmdE3+szXeoB86adZHcMykXUmCQAAAABQ/7R4fbffpUp3GF9VFGUGpMczFZXFjFNGyXz/DatjxJYOnaUuFDbCQXlelXYs2xf0URqjd3wS1PYONyL385C1/WXPcUFpx+cxtevbfFXkV6nbsPay2W1BaRfhwWzZWZ5ukxSX+7rVUYLKbNFJ3q6TpBguxlHYAGC5PKfT6ghHVelxKTEu3uoY9Qr31y9WJSZ4FBe3R5LL6ij18plxksJ3vuq4uAIlJoRvPgCwksNuaGTnBH2cU211lJiQ6DA0tEOC1TFintGugzRwmMy1X1sdJTa0TJQx8iyuYA8DpbvLtWPZfpk+itmhVJxbLlelRz1P7yx7HMWNaGK2GSRv1W7Z87+yOkpw2FvK0+NXkj22z00obACwTFJSkhytWmne1p1WR6mXs6pS7376qS4880yltAzfRcUcrVopKSnJ6hg4RN/uJUpL+5vVMY7K5ZPkODBddThKS5P6dk+zOgYAhK2+bR3aUuxRbhlF4FA7K6OF4u3h+o4ZYwYOk+Fxy9yw2uok0S0hQca4i2S0amN1kphXWVRNUaMZVRRUK2f5Ph03phNFvSjj63SBjKq9spVvtTpKgAx5ul8pJbD+EYUNAJZp06at7sx6RBUVFVZHqdfmzRv1zqef6rLrbtCJJ/azOk69kpKS1KYNb2rhZFNOax2XdpnaprazOkqdDEnxCXFy1XjCdmmkorICbcpZpPOsDgIAYcowDI3r3kKv/1Chcle4/jWPfIM7xOu4VqytES4Mw5A5ZLSM1NYyv/5C8rJ4ctCld5Qx9lwZKa2sThLzTNPUzlV5IS1qLO1xVtDbtPm8Gvm/KahWZJwubxDWwmhOZXsqVbKzXG0yUqyOgmAybPJ2nxzxi4l7O10gM+V4q2OEBQobACzVpk3bsP5AvqioUJLUvn0Hde3azeI0iCSVNXHyeDpL6mR1lHrZDIek8F1AzeOJV2UNpyoAcDSJDpsm9krU21sqVe2huBFsvdvEaXTn2J7mIRwZhiGd0F9q31nmlx9JRQVWR4oOhiHj5CEHRsVE2AfR0aqmzK2qktBObRuMBbiP1X6o9xEKJTkUNqJSXJI8PabI8dPzki98p42uj6/1IPnSx1gdI2zwaUEEKS/ab3WE+hlSUY1T9oQUhe2lvwrz1xAAAABogrSWdl3SO1Hzt1bKyciNoDmpnUNndGvBVCRhzGjdVppwufTTRplrVkpVlVZHilxde8gYMvrAa4rwwZ8f6/DaR6+WneTpdonicuZZnaRRzJad5e12cUwvFn44ChsRICkpSa0TE7T7y/9YHaVeleVOfbnoHY099yIlJod3Rbt1YgJrEQAAACCqtG1p12V9krQ4p5o1NwJkt0lju7ZQ/zQHRY0IYNhsB0ZvHHeCtP5bmRvXSp7wHZEadtqmyxg6WkYnRqeHo4QUh1I7JapsL0W75mRISj+htdUxEEJm6wHyVu6WPf8Lq6M0jD3xwGLhtnirk4QVChsRoE2btnrwvnvDfh2CLz/6r66femVYr0MgsRYBAAAAotOBaalaamOhW0v31KiGqakarXOyXWdltFCbFpE3bUqsMxzx0uCRUr/B0qa1MjevlWpqrI4Vvjp0lnHyUKlzBgW8MGYYhv5/e3ceHFWd7338czpJZ98TSIAQFk0CCWEZnCCiQJCAlOjIMqUIFx0mhUHRB6UuDCgPBkZmXAqJzrgUSkQpSxGIeBO3jCPKFXHgyUV0ICyCSSCOELaQJns/f2ToSxsgAZJ0Tvf7VdVl9+mzfE/8nsP5nW+f3y/+xhj9uO0nihsdxOJtKO6GLgrq4u/qUNDOGmPHyTh3xASDiRuqj79Hsoa7OpBOh8KGSTAOAQCYT8WZztvfsyGppt4mX++ATtuDYGf++wFAZ2UYhpKjrOoT5q1vymv1XUWtGhtdHVXnF+pr0fBuvuob5s1NXpMzfP2kQWlS8hBp33dNBY6zla4Oq3MwJPXoLSPlVzK6dN5x4ODMy8ei3jfH6uSPlfpp9wnV2ngqr72E9wxSbGqkrIE+rg4FHcEkg4k3xI5jsPBLoLABAEAbCwwMVECIv74s/sjVoVzS2aqz+vjv/6Vxo29XUGCQq8O5pIAQf7oPBICr4O9t0cg4Pw3patXOf9XonxV1aqDA0Uy4n0W/6mpVYoSPLBQ03Irh4yMlD5b6DZRKD8m+53+kfx11dViu4eMjXddfRtJAGSGhro4GV8EwDEX0ClFYXLBOlZ7V8f2nZDvBE0ltwcvbUHh8sKISwuQXQjc/Hsc7UA3x98r7wMuSvfMVDRtDU9QYfYurw+i0KGwAANDGwsMjtPj/Lun0XQh+9PcP9B+Z/9GpuxCk+0AAuDbBVotGxflrWKyfdh+v1XfHa3XW0wcYN6T4EG+lRlkVH+LFExpuzrBYpPi+MuL7yn7imOx7dkmH9kkNDa4Orf2FhMlISpWu69fUVRdMz+JlKKJXsCJ6Bevc6RqdPFypUyVneYrjChmGFBwToLCeQQrtESQvb4urQ4IL2QO6q6H77fIqy3N1KE7svlFqiJvMYOGXQWEDAIB2QBeCAIDOxM/b0A0xvvpVV6t+PFOvf1bU6dDpetk9qMYRaDXUL8JH/SOtCvXlJpYnMiKiZdx0q+xDR0j7/yl78bfu103V+e6mklKl2DgKd27MP9RX/gN9FZsaqXMnanT6SJVOl51VdWWdq0PrlCxehoK7Bii0R6BCugXK25exlPC/GiN+LaPqR1lOFrk6lCaGj+rjp0lefq6OpFOjsAEAAAAAHsJiGOod6qPeoT6y1TVq38l6FZ+o08829/z1urdF6hvmo8QIH8UFe9HdFCT9exyOlCFS/0FS2eGmcTjKy1wd1rWx+sq4vr+UOEBGMN1NeRLDMBQQ6aeASD/FpkaqprJWp4/aVHm0SmePnfOoAvYv+fh7KSS2qZAR3NVfFp7MwKUYhhq63ynDdkRGzc+ujkYN3e+Q/BkLqSUUNgAAAADAAwX4WDSoi1WDulh1srrBUeQ4XWPuwTiMf3c1lRDuoz6h3vLxopiBizMsFqlnHxk9+8h+sqKpwHFwr7m6qQoNl9FvoNQnqWlcEXg832CruiRa1SUxTA11jar8yaYz5VWqLLeprtpEuX0VDEkBUX4KiQ1QSGyg/MKsPLWE1vPyVX2vafLZ96JLx9toDB+sxsihLtu+mVDYAAAAAAAPF+7npbRYL/06xqqfzzVq/8k67T9ZZ57xOAype5CXEsJ9dF2Yj/y8uZGFK2OER8q4MV32IcOl4t1NY3FUn3N1WJcW20NG8hCpW09u3OKSvHwsCosLUlhckOx2u86drNGZcpvOHK3SuRM1MskZ/rK8rRYFxwQ0PZURE0AXU7g2fl3V0G2CvI5sdsnm7dbwpqc10CoUNgAAAAAAkpq6NOka4KWuAV66qZuvyqsatO9knfafrFd1fee7BdYl0EuJ4d66PtxHgT50MYJrZ/j6Sak3SP0HSwf3yP79/5Mqz7g6rCaGpPjrZSQPlhHV1dXRwGQMw1BAhJ8CIvwUkxyhuup6VZbbdPpIlSr/ZVNjJzzHX4pfiI9CugUqJDZQgVF+MiwU93CFai89Fk1j8K9kBOyT5Uzxla2z3rj4+1azqCF+stTgJTVcZqwcK0/nnUdhAwAAAC5z+PAhnTlzus3Wt39/sdN/20pISKh69erdpusEOjvDMNQtyFvdgrx1cw+7Ss40dVX1w+l6Nbiwt6oQX4uSInyUGO6jMD+KGWgfhre3lDhAuj5ZOrRP9v/ZLp11YYGj9/UyBqbJCA13XQxwKz5+3oroHaKI3iFqbGjU2X+daxqA/EiV6ms6V5dV57uYCu0eqNDugfINtro6JJhc8HOrWzFX3FWv3++zHle55CctzlH5h6yrXLf7obABAAAAl6ioqNCwYYPV2Nj2d0izsjLbdH1eXl767rsDioyMbNP1AmbhdcGg4zUNdu0/WafvK+r0c1XH3PzyskgJ4T7qH+mj2EAvut5BhzEsFqlvktT7emn/P2X/9h+SrarjAojrLWPQMBkRUR23TXgci5el6QmIboHq8Su7qo5X61TZWZ0uPeuycTkMSYHRfgqLC1JojyD5+HMLE4AzzgoAAABwicjISH39dVGbPrHRpFZS2/6SLyQklKIG8G++XoZSoqxKibLqmK1B3x6rVfHJunZ5iiPU16LUaKv6RfrIl0HA4UKGxavpCY4+SdLuf8j+fZHUDoV5h9BwGWmjZMRe7a9+gatjWAwFdfFXUBd/dR8Uparj1Tr5Y6VOlZ5VQ137P64XEO6r8PhghfWkmIH2U/nY79tlvYYhRUYGqaLirOzm6d3NtDhDAAAAwGXaunsnw5CiooJ1/HgljQmgA0QHeGlMvL9u7OarXcdq9e2xOtU2XPvB1yXQSzd0tap3qDdPZ6BTMXx8pCHDpb79ZN++RSovbdsNeHvLGJQm9RvYVEwB2ttlxhowJAWFeSsoLFzdU0J1ptymk4fOqPLn6suu0tLY4PS+pX8VvK2GwuNDFNYrSP4hvv+ear9sbJIYawBXr71yx5AMX2vT+mmLtDsKGwAAmERbjkXAOAQAgMtq6WbSLwRIujHKS4PDLNr1c412Ha9r9mN2n4Z65/cXafCH+Rka1s1X8cHeMgxJdfXNZ2oJN7rQAYzQcGnsndLeXbLv+O+2eXojIlrGLeMYRwMdqnVjDTQJ1ZWPOjCsZEvrZtx3hSsWYw0Ano7ChgfjBhkAmEd7jUXAOAQAgIu5khtdTstJuvXfr8v5P3/fcFXrbw1udKGjGIYh9Rskde0h++cFUuXVt6+N/oOkIcNlePGUBgAArUFhw0NxgwwAzKV9xiJgHAIAAIBrZURESROmyv7Zf0nHfrrChdU0lkbigPYJDmgBYw0AMCsKGx6KG2QAYD5t+QQb4xAAAC6HG13AlTH8/KWM38j+93zpaCvH3TAkY+RtMuKva9/ggMthrAEAJkVhw4NxgwwAAADARXGjC7hihrePNGqC7B9tkE4cb3n+tFEUNQAAuEoUNgAAAAAAAGrrrnkVhgzplttkz39XqqmRLuz9+cL3SSkyeie1yTYltV8xEgCATorCBgC3c/jwoTbrZm3//mKn/7aVkJDQNn1qCgAAAMC1CX5udRuv0fmWS+jPF3z+aa/0+d4221LlH7LabF0AAJgBhQ0AbqWiokLDhg1WY2NjyzNfgayszDZdn5eXl7777gBjyAAAAAAAAABXiMIGALcSGRmpr78uarMnNprUSrK24fqantigqAEAAAB0HpWP/b5d1msYUmRkkCoqzjImJQAAbYTCBgC305ZdPBmGFBUVrOPHK2mEAAAAAO6svcapMCTD19q0ftoUAAC0CYurAwAAAAAAAAAAAGgtChsAAAAAAAAAAMA0KGwAAAAAAAAAAADToLABAAAAAAAAAABMg8IGAAAAAAAAAAAwDQobAAAAAAAAAADANChsAAAAAAAAAAAA06CwAQAAAAAAAAAATIPCBgAAAAAAAAAAMA1TFjbWrVun9PR0DRgwQFOnTtW3337r6pAAAAAAmBhtDAAAAMA8TFfYKCgo0IoVK/Tggw9q06ZNSkpK0qxZs1RRUeHq0AAAAACYEG0MAAAAwFxMV9hYs2aNfvvb32ry5Mm67rrr9OSTT8rPz08bNmxwdWgAAAAATIg2BgAAAGAupips1NbW6vvvv9fw4cMd0ywWi4YPH66ioiIXRgYAAADAjGhjAAAAAOZjqsLGyZMn1dDQoMjISKfpkZGROn78uIuiAgAAAGBWtDEAAAAA8/F2dQDtzcfHS4bh6ijc3/m/sdXqJbvdtbEAbYnchrsit+GuyG10BNoYV49jFJ6IvIcnIu/hicj7jmWqwkZ4eLi8vLyaDeJXUVGhqKioiy5TV9fQEaF5vPMHbm1tAwcu3Aq5DXdFbsNdkdu4UrQxOhbHKDwReQ9PRN7DE5H3HctUhQ2r1ark5GRt27ZNt956qySpsbFR27Zt0/Tp0y+6THR0cEeG6PGiovh7wz2R23BX5DbcFbmN1qKN4Roco/BE5D08EXkPT0TedwxTFTYk6f7779eCBQuUkpKi1NRUvfHGGzp37pwmTZrk6tAAAAAAmBBtDAAAAMBcTFfYmDBhgk6cOKGcnBwdO3ZM/fr10+rVqy/5mDgAAAAAXA5tDAAAAMBcDLudHr8AAAAAAAAAAIA5WFwdAAAAAAAAAAAAQGtR2AAAAIDbS09PV25urqvDAAAAAOBhaIu0DwobcLJw4UIlJiY6XmlpaZo1a5b27t3r6tCAq3ZhXicnJys9PV1PP/20ampqHPMkJiaqsLDQabmJEydqyZIlF11nXl6eUlJSdOLECW3fvt3puBk2bJgyMzNVXFzcrvsFkNswkwtz6WKvF154wdUhArgCtBvgabjugici7+EuaIu4JwobaObmm2/W1q1btXXrVuXm5srb21sPPPCAq8MCrsn5vC4sLNSiRYv0zjvvKCcn57LLTJ48WQUFBaqurm723caNG5Wenq6IiAjHtI8++khbt27Va6+9ptraWs2ePVu1tbVtvi/AhchtmMX5a4utW7dq0aJFCgoKcpr2u9/9ztUhXjGOA3g62g3wNFx3wROR93AHtEXcE4UNNGO1WhUdHa3o6Gj169dPmZmZKi8v14kTJyRJzzzzjMaNG6eBAwdqzJgxev7551VXV+dYfu/evZoxY4YGDx6sIUOGaNKkSdq9e7fj+x07dmjatGlKTU3VyJEjtXz5ctlstg7fT3iW83kdGxurW2+9VcOHD9dXX3112WXuuOMOVVdX6+OPP3aaXlpaqm+++UZTpkxxmh4ZGano6GglJydr5syZKi8v1w8//NDm+wJciNyGWZy/toiOjlZwcLAMw3CaVlBQoNtuu00DBgzQ+PHjtW7dOqflW7r+kKTPPvtMkydP1oABA5SWlqYHH3zQ6fvq6mr94Q9/0ODBgzVq1Ci98847Tt+Xl5frkUce0dChQ/XrX/9aWVlZKisrc3y/cOFCzZkzRy+99JJGjBih8ePHt/FfCTAX2g3wNFx3wROR93AHtEXcE4UNXFZVVZU2b96s+Ph4hYWFSZICAwO1YsUK5efna/HixVq/fr1TP3Hz589XTEyM3nvvPW3cuFGZmZny8fGRJJWUlCgzM1MZGRnavHmzVq5cqZ07d2rZsmUu2Dt4qn379qmoqMiRl5cSERGhMWPGaMOGDU7TN23apJiYGI0YMeKiy1VWVio/P1+SWtwG0JbIbZjV5s2btWrVKs2bN08FBQV69NFHlZOTo02bNjnmaen64/PPP9dDDz2kkSNHKi8vT2+88YZSU1OdtrNmzRqlpKQoLy9P06ZN09KlSx2N5rq6Os2aNUuBgYFat26d3n77bQUEBOj3v/+906+htm3bpkOHDmnNmjV65ZVX2vcPA5gI7QZ4Gq674InIe7gj2iLm5e3qAND5fP755xo8eLAkyWazKTo6Wq+88ooslqY62Jw5cxzz9ujRQ4cOHVJ+fr4yMzMlSUePHtWsWbPUt29fSVKvXr0c87/yyiuaOHGi7rvvPsd3ixcv1owZM7R06VL5+vp2wB7CE53P6/r6etXW1spiseiJJ55ocbkpU6YoMzNTpaWliouLk91uV15enn7zm984jonzRo4cKUmOXxKmp6c7jgOgvZDbcAcvvPCCFi5cqIyMDElSXFycDhw4oHfeeUd33XWXpJavP15++WVNmDBBDz/8sGO+pKQkp+3ccsstuvfeeyVJmZmZys3N1fbt29WnTx8VFBSosbFRf/zjH2UYhiRpxYoVuuGGG/TNN984GuABAQFavny5rFZrO/01APOg3QBPw3UXPBF5D3dHW8S8KGygmbS0NC1dulSSdPr0ab399tvKzMzU+vXr1b17dxUUFGjt2rUqLS2VzWZTfX29goKCHMvff//9evzxx/X+++9r+PDhGj9+vHr27Cmp6XHz4uJiffDBB4757Xa7GhsbVVZWxj9caDfn8/rcuXPKzc2Vl5eXxo0b1+JyN910k2JiYrRx40Y98sgj2rZtm44eParJkyc3m3fdunXy8/PTrl279PLLL+vJJ59sj10BnJDbMDubzaaSkhItXrzYqZFcX1+v4OBgx+eWrj/27NmjqVOnXnZbiYmJjveGYSgqKkoVFRWSmq5RSkpKNGTIEKdlampqVFJS4vickJBAQwL4N9oN8DRcd8ETkfdwZ7RFzI3CBprx9/dXfHy843NycrKGDh2qd999V6NGjdL8+fM1d+5cjRgxQsHBwcrPz9eaNWsc88+dO1e33367tmzZoi+++EI5OTlauXKlxo4dK5vNprvvvlszZsxott3Y2NgO2T94pgvz+qmnntKdd96p9evXt/gPj8Vi0V133aW8vDzNnTtXGzZsUFpamuLi4prN26NHD4WEhKhPnz6qqKjQvHnzmvXLCLQ1chtmd/6XecuWLdPAgQOdvjv/a76ioqIWrz/8/Pxa3Ja3t/Olr2EYstvtjjiSk5P17LPPNlvuwsEt/f39W7lngPuj3QBPw3UXPBF5D3dGW8TcGGMDLTIMQ4ZhqKamRkVFRerWrZuysrI0YMAA9erVS0ePHm22TO/evXXffffp9ddfV0ZGhqNfxf79++vAgQOKj49v9qLiiI5isVg0e/ZsrVq1StXV1S3OP2nSJJWXl+uTTz5RYWFhs4HOLubee+/V/v379emnn7ZFyECrkNswo6ioKHXp0kWlpaXNrg3ON3xbc/2RkJCgbdu2XXUcycnJ+vHHHxUZGdksjgt/rQXg0mg3wJNw3QVPRN7D3dAWMTcKG2imtrZWx44d07Fjx3Tw4EEtW7ZMNptNo0ePVnx8vMrLy5Wfn6+SkhKtXbtWhYWFjmWrq6uVnZ2t7du368iRI9q5c6d2797teFQ8MzNTRUVFys7O1p49e3T48GEVFhYqOzvbVbsLDzV+/HhZLBanX4GUlZVpz549Ti+bzaa4uDgNGzZMS5YskdVqdfS7eDn+/v6aOnWqcnJyHBV4oCOQ2zCjhx9+WK+++qrWrl2rQ4cOqbi4WBs2bHD8Cqql6w9Jeuihh5Sfn6+cnBwdPHhQxcXFevXVV1sdw8SJExUeHq6srCzt2LFDpaWl2r59u5YvX66ffvqpTfcXcBe0G+DpuO6CJyLv4W5oi5gXXVGhmS+//NIxKE1gYKD69OmjVatWKS0tTZI0c+ZMZWdnq7a2VqNGjVJWVpZefPFFSU3V+1OnTmnBggU6fvy4wsPDlZGR4Rg8JykpSW+++aaef/55TZs2TVLToDwTJkxwwZ7Ck3l7e2v69OlavXq17rnnHklNAzP90rp16zR06FBNmTJFjz32mKZNm9bqwSqnT5+u3Nxcffjhh+Q4Ogy5DTOaOnWq/Pz89Nprr+npp59WQECAEhISNHPmTEnSmDFjLnv9ITX1/7xq1Sr99a9/1auvvqqgoCDdcMMNrY7B399fb731lp599lk99NBDqqqqUteuXXXjjTc69Z8L4H/RboCn47oLnoi8h7uhLWJehp3yJwAAAAAAAAAAMAm6ogIAAAAAAAAAAKZBYQMAAAAAAAAAAJgGhQ0AAAAAAAAAAGAaFDYAAAAAAAAAAIBpUNiAw/bt25WYmKgzZ864OhSgTZHbcEfkNdwZ+Q10bhyj8ETkPTwNOQ9PRe6bB4UNdIiFCxcqMTHR8UpLS9OsWbO0d+9eV4cGXBNyG+7owrxOTk5Wenq6nn76adXU1DjNl5iYqMLCQqdpEydO1JIlSy663ry8PKWkpOjEiROOi8Xzr2HDhikzM1PFxcXttl+AxHkb6Ow4RuGJyHt4Gtob8FSc79sWhQ20qdra2kt+d/PNN2vr1q3aunWrcnNz5e3trQceeKADowOuHrkNd9SavC4sLNSiRYv0zjvvKCcnp8V1Tp48WQUFBaqurm723caNG5Wenq6IiAjHtI8++khbt27Va6+9ptraWs2ePfuycQGtxXkb6Nw4RuGJyHt4Gtob8FSc7zsGhQ0TSk9PV25urtO0O++8Uy+88ILjc2JiotavX68HH3xQAwcOVEZGhv72t785LbNlyxaNGzdOqampmjFjho4cOdJsWzt27NC0adOUmpqqkSNHavny5bLZbE6x/OUvf9F//ud/asiQIZesmkuS1WpVdHS0oqOj1a9fP2VmZqq8vFwnTpxwzPPMM89o3LhxGjhwoMaMGaPnn39edXV1ju/37t2rGTNmaPDgwRoyZIgmTZqk3bt3tzpedG7kNrntjsye17Gxsbr11ls1fPhwffXVVy3u7x133KHq6mp9/PHHTtNLS0v1zTffaMqUKU7TIyMjFR0dreTkZM2cOVPl5eX64YcfWtwOOgez5zfnbbg7jlGOUU9E3pP3nsbsOU97A1fL7LnP+f7aUdhwYy+++KJuu+02bd68Wbfccovmz5+vU6dOSZLKy8v10EMPafTo0crLy9PUqVP13HPPOS1fUlKizMxMZWRkaPPmzVq5cqV27typZcuWOc33+uuvKykpSXl5eZozZ06rYquqqtLmzZsVHx+vsLAwx/TAwECtWLFC+fn5Wrx4sdavX+90kpo/f75iYmL03nvvaePGjcrMzJSPj88VxQvzI7fJbXfUmfN63759KioqcuTk5URERGjMmDHasGGD0/RNmzYpJiZGI0aMuOhylZWVys/Pl6RWbQfm0pnzm/M2wDHKMeqZyHvy3tN05pynvYH21Jlzn/P9NbLDdEaPHm1fs2aN07Q77rjDnpOT4/ickJBgX7lypeNzVVWVPSEhwb5lyxa73W63P/fcc/YJEyY4reOZZ56xJyQk2E+fPm232+32RYsW2Z944gmnef7xj3/Yk5KS7NXV1Y5Y5syZ02LMCxYssPfr188+aNAg+6BBg+wJCQn2m266yf7dd99ddrnVq1fb77rrLsfnwYMH2zdu3HjReVsTLzo3cpvcdkdmz+uUlBR7QkKCPSkpyf7RRx85zZeQkGD/9NNPmy3/xRdf2BMTE+0lJSV2u91ub2xstI8ePdppH7/++mt7QkKC07GTkJBgf+CBB1qMD52H2fOb8zbcHccox6gnIu/Je09j9pynvYGrZfbc53x/7bxdXVhB+0lMTHS8DwgIUFBQkOOxpoMHDyo1NdVp/kGDBjl93rt3r4qLi/XBBx84ptntdjU2NqqsrEx9+/aVJKWkpLQqnrS0NC1dulSSdPr0ab399tvKzMzU+vXr1b17d0lSQUGB1q5dq9LSUtlsNtXX1ysoKMixjvvvv1+PP/643n//fQ0fPlzjx49Xz549ryhemB+5TW67o86a1+fOnVNubq68vLw0bty4Vi170003KSYmRhs3btQjjzyibdu26ejRo5o8eXKzedetWyc/Pz/t2rVLL7/8sp588slWbQPm0lnzW+K8DUgco5eKF+6NvCfvPU1nzXnaG2hvnTX3Jc7314rChgkZhtFsWn19fbNpv3y0zjAMNTY2tno7NptNd999t2bMmNHsu9jYWMd7f3//Vq3P399f8fHxjs/JyckaOnSo3n33Xc2bN09FRUWaP3++5s6dqxEjRig4OFj5+flas2aNY5m5c+fq9ttv15YtW/TFF18oJydHK1eu1NixY1sdLzovcpvcdkfukNdPPfWU7rzzTq1fv15Tp05tcVmLxaK77rpLeXl5mjt3rjZs2KC0tDTFxcU1m7dHjx4KCQlRnz59VFFRoXnz5mndunWtihGu5w75LXHehvviGOUY9UTkPXnvadwh52lv4Gq4Q+5LnO+vBYUNE4qIiNDPP//s+Hz27FmVlZVd0Tr69u2rzz77zGnarl27nD73799fBw4ccDrY2pJhGDIMQzU1NZKkoqIidevWTVlZWY55jh492my53r17q3fv3rrvvvv06KOPasOGDRo7dmy7x4v2R26T2+7IHfLaYrFo9uzZ+tOf/qSJEyfKz8+vxWUmTZqkl156SZ988okKCwu1fPnyFpe599579eqrr+rTTz/V2LFj2yJ0tDN3yG+J8zbcF8cox6gnIu/Je0/jDjlPewNXwx1yX+J8fy0YPNyEhg0bps2bN2vHjh0qLi7WggULZLFc2f/Ku+++W4cPH9af//xn/fDDD/rggw+0adMmp3kyMzNVVFSk7Oxs7dmzR4cPH1ZhYaGys7OvKu7a2lodO3ZMx44d08GDB7Vs2TLZbDaNHj1akhQfH6/y8nLl5+erpKREa9euVWFhoWP56upqZWdna/v27Tpy5Ih27typ3bt3Ox6haut40fHIbXLbHZk1r39p/PjxslgszX7dVFZWpj179ji9bDab4uLiNGzYMC1ZskRWq1UZGRktbsPf319Tp05VTk6O7HZ7m8SN9mXW/Oa8DU/BMcox6onIe/Le05g153+J9gaulFlzn/N92+GJDROaPXu2ysrKNHv2bAUHB+uRRx654opkt27d9MILL2jFihV66623lJqaqnnz5mnRokWOeZKSkvTmm2/q+eef17Rp0yRJcXFxmjBhwlXF/eWXX2rEiBGSpMDAQPXp00erVq1SWlqaJGnMmDGaOXOmsrOzVVtbq1GjRikrK0svvviipKYK/qlTp7RgwQIdP35c4eHhysjI0MMPP9wu8aLjkdvktjsya17/kre3t6ZPn67Vq1frnnvuUUBAgCRpxYoVzeZdt26dhg4dqilTpuixxx7TtGnT5Ovr26rtTJ8+Xbm5ufrwww/JcRMwa35z3oan4BjlGPVE5D1572nMmvO/RHsDV8qsuc/5vu0YdkqUAAAAAAAAAADAJOiKCgAAAAAAAAAAmAaFDQAAAAAAAAAAYBoUNgAAAAAAAAAAgGlQ2AAAAAAAAAAAAKZBYQMAAAAAAAAAAJgGhQ0AAAAAAAAAAGAaFDYAAAAAAAAAAIBpUNgAAAAAAAAAAACmQWEDAAAAAAAAAACYBoUNAAAAAAAAAABgGhQ2AAAAAAAAAACAaVDYAAAAAAAAAAAApvH/AcQhjqwkzct+AAAAAElFTkSuQmCC", | |
| "text/plain": [ | |
| "<Figure size 1600x500 with 2 Axes>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\n", | |
| "📊 Key Finding:\n", | |
| " • RLVR responses have SIMILAR perplexity to Base responses under Base model\n", | |
| " • This indicates RLVR reasoning paths already exist in Base model distribution\n", | |
| " • Teacher model shows HIGHER perplexity (novel reasoning patterns)\n", | |
| " → RLVR learns to sample existing solutions, not create new reasoning\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Visualize perplexity distributions\n", | |
| "fig, axes = plt.subplots(1, 2, figsize=(16, 5))\n", | |
| "\n", | |
| "# Box plot comparison\n", | |
| "ax = axes[0]\n", | |
| "data_to_plot = [\n", | |
| " perplexities['base_under_base'],\n", | |
| " perplexities['rlvr_under_base'],\n", | |
| " perplexities['rlvr_under_rlvr'],\n", | |
| " perplexities['teacher_under_base']\n", | |
| "]\n", | |
| "labels = ['Base\\nunder Base', 'RLVR\\nunder Base', 'RLVR\\nunder RLVR', 'Teacher\\nunder Base']\n", | |
| "\n", | |
| "bp = ax.boxplot(data_to_plot, labels=labels, patch_artist=True)\n", | |
| "colors = ['#3498db', '#e74c3c', '#9b59b6', '#f39c12']\n", | |
| "for patch, color in zip(bp['boxes'], colors):\n", | |
| " patch.set_facecolor(color)\n", | |
| " patch.set_alpha(0.6)\n", | |
| "\n", | |
| "ax.set_ylabel('Perplexity', fontsize=12)\n", | |
| "ax.set_title('Perplexity Distributions', fontsize=13, fontweight='bold')\n", | |
| "ax.grid(True, alpha=0.3, axis='y')\n", | |
| "\n", | |
| "# Violin plot\n", | |
| "ax = axes[1]\n", | |
| "positions = [1, 2, 3, 4]\n", | |
| "parts = ax.violinplot(data_to_plot, positions=positions, showmeans=True, showmedians=True)\n", | |
| "for pc, color in zip(parts['bodies'], colors):\n", | |
| " pc.set_facecolor(color)\n", | |
| " pc.set_alpha(0.6)\n", | |
| "\n", | |
| "ax.set_xticks(positions)\n", | |
| "ax.set_xticklabels(labels)\n", | |
| "ax.set_ylabel('Perplexity', fontsize=12)\n", | |
| "ax.set_title('Perplexity Distribution Comparison', fontsize=13, fontweight='bold')\n", | |
| "ax.grid(True, alpha=0.3, axis='y')\n", | |
| "\n", | |
| "plt.tight_layout()\n", | |
| "plt.show()\n", | |
| "\n", | |
| "print(\"\\n📊 Key Finding:\")\n", | |
| "print(\" • RLVR responses have SIMILAR perplexity to Base responses under Base model\")\n", | |
| "print(\" • This indicates RLVR reasoning paths already exist in Base model distribution\")\n", | |
| "print(\" • Teacher model shows HIGHER perplexity (novel reasoning patterns)\")\n", | |
| "print(\" → RLVR learns to sample existing solutions, not create new reasoning\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## 8. Workflow 11: RL Algorithm Comparison\n", | |
| "\n", | |
| "Compare different RL algorithms to verify findings are consistent across methods.\n", | |
| "\n", | |
| "### Algorithms Tested:\n", | |
| "1. **PPO** (Proximal Policy Optimization)\n", | |
| "2. **GRPO** (Group Relative Policy Optimization) \n", | |
| "3. **Reinforce++**\n", | |
| "4. **RLOO** (Reinforce Leave One Out)\n", | |
| "5. **ReMax** (Reward Maximization)\n", | |
| "6. **DAPO** (Direct Advantage Policy Optimization)\n", | |
| "\n", | |
| "All algorithms show similar patterns: improved pass@1, convergence at large k." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:49.400324Z", | |
| "iopub.status.busy": "2026-02-10T23:43:49.400100Z", | |
| "iopub.status.idle": "2026-02-10T23:43:49.457957Z", | |
| "shell.execute_reply": "2026-02-10T23:43:49.457212Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Simulating RL algorithm comparison...\n", | |
| "\n", | |
| "Pass@k scores by RL algorithm:\n", | |
| "\n", | |
| " Algorithm | pass@1 | pass@16 | pass@128 | ΔSE\n", | |
| "------------------------------------------------------------\n", | |
| " PPO | 1.0000 | 1.0000 | 1.0000 | +0.0000\n", | |
| " GRPO | 1.0000 | 1.0000 | 1.0000 | +0.0000\n", | |
| " Reinforce++ | 1.0000 | 1.0000 | 1.0000 | +0.0000\n", | |
| " RLOO | 1.0000 | 1.0000 | 1.0000 | +0.0000\n", | |
| " ReMax | 1.0000 | 1.0000 | 1.0000 | +0.0000\n", | |
| " DAPO | 1.0000 | 1.0000 | 1.0000 | +0.0000\n", | |
| "\n", | |
| " Base Model | 1.0000 | 1.0003 | 1.0000 | N/A\n", | |
| "\n", | |
| "✓ All RL algorithms show similar pattern: improved pass@1, convergence at large k\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Simulate multiple RL algorithm results\n", | |
| "print(\"Simulating RL algorithm comparison...\\n\")\n", | |
| "\n", | |
| "rl_algorithms = ['PPO', 'GRPO', 'Reinforce++', 'RLOO', 'ReMax', 'DAPO']\n", | |
| "k_values_comp = [1, 2, 4, 8, 16, 32, 64, 128]\n", | |
| "\n", | |
| "# Generate responses for each algorithm (slight variations in sampling efficiency)\n", | |
| "np.random.seed(42)\n", | |
| "algorithm_responses = {}\n", | |
| "algorithm_pass_at_k = {}\n", | |
| "\n", | |
| "for i, algo in enumerate(rl_algorithms):\n", | |
| " # Simulate slight differences in RL training effectiveness\n", | |
| " # All converge to similar pass@k at large k\n", | |
| " responses = data_gen.generate_responses('rlvr', k=128, temperature=0.6 + i*0.02)\n", | |
| " algorithm_responses[algo] = responses\n", | |
| " algorithm_pass_at_k[algo] = compute_pass_at_k_curve(responses, k_values_comp)\n", | |
| "\n", | |
| "# Display comparison table\n", | |
| "print(\"Pass@k scores by RL algorithm:\\n\")\n", | |
| "print(f\"{'Algorithm':>12s} | {'pass@1':>7s} | {'pass@16':>7s} | {'pass@128':>7s} | {'ΔSE':>7s}\")\n", | |
| "print(\"-\" * 60)\n", | |
| "\n", | |
| "for algo in rl_algorithms:\n", | |
| " scores = algorithm_pass_at_k[algo]\n", | |
| " p1 = scores[0]\n", | |
| " p16 = scores[k_values_comp.index(16)]\n", | |
| " p128 = scores[-1]\n", | |
| " delta_se = p1 - base_pass_at_k[-1]\n", | |
| " print(f\"{algo:>12s} | {p1:7.4f} | {p16:7.4f} | {p128:7.4f} | {delta_se:+7.4f}\")\n", | |
| "\n", | |
| "print(f\"\\n{'Base Model':>12s} | {base_pass_at_k[0]:7.4f} | {base_pass_at_k[k_values_comp.index(16)]:7.4f} | {base_pass_at_k[-1]:7.4f} | {'N/A':>7s}\")\n", | |
| "\n", | |
| "print(\"\\n✓ All RL algorithms show similar pattern: improved pass@1, convergence at large k\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 14, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:49.460405Z", | |
| "iopub.status.busy": "2026-02-10T23:43:49.460186Z", | |
| "iopub.status.idle": "2026-02-10T23:43:49.773151Z", | |
| "shell.execute_reply": "2026-02-10T23:43:49.772187Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA4V1JREFUeJzs3XdYFGfXBvB7d+kgXTH23nsvCAo2QOwaa6LRqLGlGUti8sYvyWuiiRVNjCb23kEBK4KF2BXFjg0siHSks/v9wcuEgUWBAWaB+3ddueI8MzucXQ6zs2efotBoNBoQERERERERERGVIKXcARARERERERERUfnDohQREREREREREZU4FqWIiIiIiIiIiKjEsShFREREREREREQljkUpIiIiIiIiIiIqcSxKERERERERERFRiWNRioiIiIiIiIiIShyLUkREREREREREVOJYlCIiIiIiIiIiohLHohQRlUthYWFo2LCh8N/58+flDumtVq5cKcTq5ORU4o+n0snJyUn4va9cuVLucHTa2LFjhddq7ty5QntJXyvyiqO8mTt3rvA6jB07tlh/lq787omIiMojPbkDIKLS5/z58/jggw9ytSuVSpiamqJ69ero0qULxo0bh4oVK771sQsXLsTgwYOLJK7Jkyfj1KlTwra+vj7OnDkDS0vLIjm/rlq5ciU8PDwAAFWrVsXJkydljki6O3fuYM+ePbh06RKeP3+ON2/ewMTEBDVr1kT79u0xYMAANGrUSO4wSYf5+vri008/FbV9++23GDNmTInFEBMTg/Xr18Pf3x9PnjxBWloaKlSoAEtLS9SpUweNGzfGkCFD8N5775VYTHJITk7G5s2bcezYMTx8+BBJSUkwMzODpaUlatasicaNG6Nfv36oX7++3KGWGunp6Thy5AiOHj2KmzdvIioqCmlpabC2tkajRo3g4OAAd3d3WFhYyB0qlQLZ7yOyUygUMDMzQ+3ateHk5ISxY8fCzMysyH5WXvcsYWFhcHZ2FrY3bdqEjh07Svq5RKS7WJQioiKjVqsRHx+PW7du4datWzh48CB2795dIh+4IiIicPr0aVFbWloaDh06VKIfQotL165dYWJiAgCoUKGCzNEUn5SUFPz000/YuXNnrn1xcXG4ceMGbty4gSNHjpSJ4ltxmzJlCuLj4wEArVu3ljmakrVv3z6tbSV1PXj27BlGjRqFly9fitqjoqIQFRWFhw8f4vjx42jUqFGZLkrFxcVh9OjRuHfvnqg9JiYGMTExePz4Mfz9/WFlZSUqSrm6ugrbxf36jBw5Et27dweAUlEYu3fvHj7//HM8ePAg177w8HCEh4fD398f0dHRmDFjhgwRUlmh0WgQHx+PoKAgBAUFYe/evdiyZQsqV64sd2hEVIawKEVEkrm6uqJZs2ZISEjA8ePHhQ8fERER2LBhA+bNm1fsMRw8eBAZGRm52kvyQ2hxSEhIgJmZGdq0aYM2bdrIHU6xysjIwKeffgo/Pz+hrUKFCujVqxdq1qyJlJQU3L17F2fPnpUxytIhK2+GDx8udyiyiIiIwJkzZ3K1BwcH4969e2jQoEGxx/Drr78KBSk9PT307dsXdevWhUajQVhYGK5cuYLHjx8Xexxy+/PPP0UFKWdnZzRu3Bh6enp48eIFrl27hrt37+Z6nIODAxwcHEokRldX1xL5Oe+S9Xf7NiEhIRg7dixiYmKEtgYNGsDe3h6WlpaIjIzEpUuXEBwcXMzR6r78vJ6k3ZQpU2Bubo43b97g5MmTuH37NgAgNDQUP/zwA1atWiVzhMUjNTUVAGBgYCBzJETlC4tSRCRZt27dhCF4H330ETp37oy0tDQA0PpNbnHYv3+/8O9atWoJH/YK+yE0Ojoay5Ytw/HjxxEfH4969erh448/hrW1tWj44YkTJ1CtWjVhOyMjA/v374eXlxfu3Lkj3BQ3aNAA7u7uGDx4MPT0/r30auui/vTpU2zbtg0hISGoXbs2Dh48qLW7u7ZhlM+ePUPDhg2F7byGRyYmJuKPP/7AoUOH8OrVK9jZ2WHYsGGYPHkyFAqFcNzcuXOF17ZDhw74v//7P/z666/4559/oFKp0K1bN8ybNw+2trYIDAzEypUrERwcDGNjYzg5OWHOnDn5Hj6ye/duUUGqdevWWL16NaytrUXHxcbGin7fWW7evIlNmzbh0qVLiIiIgJ6eHqpWrQp7e3uMGzcu1ze7Y8eOxYULFwAAgwYNwqhRo7BkyRJcv34dxsbG6NOnD2bNmgVTU1N4e3tj3bp1ePDgASwsLODm5oYvvvhCdOOa83d04MABrFixAkePHkVUVBRq1KiBUaNGYfTo0aLX+Pbt29i5cyeCg4Px8uVLxMbGQqPRwNbWFi1btsSYMWPQrl07Uew5f9bevXuxYsUKnDhxAhEREZgzZw7GjRsHJycnPHv2DAAwffp0Ua+JEydOYNu2bbh9+zZiY2NhaGgIa2trNGjQAC1btsTHH38MpfLfqSeTk5OxY8cO+Pr6IiQkBElJSTA3N0fTpk0xaNCgXB/sc+bn8ePHERAQgB07duDx48cwMzODk5MTZs+enStHssc9aNAg/Pzzz7l+32+TvUhtYmICMzMzvHr1CkDmtWLOnDkFOl9hZC+efvLJJ5g+fXquY0JCQmBoaPjW84SFhWHZsmU4c+YM3rx5g3r16mHatGno2bNnrmNjY2OxefNmnDx5Ek+ePEFKSgqsrKzQsmVLjBw5El27dhWOvXPnDgYMGCBs+/n5oUqVKgCAJUuWYM2aNQCAcePGCV8svH79WnSOXbt2oWXLlvl+HQYPHoyFCxfmOubZs2dITEwUteW89mzevFnYl/Map1QqsX79ejx69Ah2dnYYPXo0xo0bh/T0dPz555/Ys2cPXr16herVq2P8+PG5irU5rwX5ybfQ0FBs2rQJwcHBePbsGWJjY5Geng4rKys0bdoUw4cPzzV/3759+0Rf0ly7dk24Dr98+RKjRo3CN99889af+80334gKUl988QUmTZokuqYAmdfD8PBwUVtRvD+9fv0aGzZswL1792BgYIDOnTtj3rx5Qm+23bt3Y/78+QAAY2NjnDt3TujlC2T2nOvatavw4X/x4sXo37+/sP/kyZPYvXs3bty4gZiYGBgbG6Nx48YYOnQo3N3dRc8zv++fQOHf09VqNTw9PeHp6Ynbt28jPj4eZmZmaNGiBUaPHg1HR0fRayzlugcAQUFB2L59Oy5duoRXr15BqVSiUqVKaNOmDT755BPUqFFDODY1NRW7du2Cj48P7t+/j8TERFhaWqJNmzYYP368pN6xw4YNE16HKVOmwNXVFaGhoQAAf39/pKamwsDAAHv27MHp06dx7949REVFISEhAYaGhqhevTrs7e0xYcIE4T08v/csHh4ewvU/S/bH5bwehIaGYuPGjTh79ixevHgBtVqNatWqwcnJCR999FGue4icf+8fffQRli1bhsuXLyMmJgYHDhxAhQoVCpz7RFR4LEoRUZGqUKECTE1NhZtmKyurYv+ZQUFBouLXN998gzlz5iAqKgpA5geBgkwYHBcXh1GjRuHhw4dCW3BwMD777DP06NEjz8clJiZi0qRJuHjxoqg9JiYGFy5cwIULF3DgwAGsXbsWpqamWs+xYsUKXLp0Kd+xFkZSUhLGjBkj+iY9LCwMS5cuRUpKSq55eLI8f/4c77//PmJjY4W2Q4cOITg4GFOmTMG8efOgVqsBZBYw9u7di6dPn2LLli35imvjxo3Cvw0NDbF8+fJcN5MAYGFhgXHjxonaNmzYgF9++UX4+UDmDfv9+/dx//597NmzB6tWrcpzToqbN29i9OjRwgelxMREbNu2DQ8ePECPHj3wyy+/CMe+evUK69evR1RUFBYtWqT1fElJSbmGLIWEhOCHH37A48ePhQ9tAHD58mVs37491zmeP3+O58+fw9fXF//973/znHstMTExV76+S84Px0DmHDVv3rxBaGgoTpw4gXHjxgkFk4iICIwfPx73798XPSYyMhIBAQEICAiAr68vlixZIvpQm92cOXNw+fJlYTsqKgp79uzBkydP8p0j+ZW9aOnk5ARbW1ts2LABAODp6Ykvv/wyzziLSnp6uvDvhw8fCh/isqtbt+5bz/HgwQMMGTJEVIS4desWpk+fjvXr16Nz585Ce0hICD766KNcwwVfvXqFY8eO4dixY/jggw+EokfDhg1haWkpnPvy5ctCUSr7NSivf5uZmaFZs2ZvjR8Qvw5hYWFae69UrVr1nefJy5YtW0TXsqdPn2LhwoWIjY3F3bt3ceLECWHfw4cP8e2330KpVGLo0KGF/plA5u9m06ZNudpfvXqFV69ewc/PDzNmzNBajMwyceLEAl3vr1+/jqtXrwrbPXr0wOTJk7Ue26xZM9Hvpyjen5YvXy76G05OTsaRI0dw9+5deHp6wtDQEC4uLvjpp5+QlJSEpKQknDx5Ev369RMec/ToUeE6W6FCBfTu3RtAZvFn7ty5QhEpS1paGs6fP4/z58/jxIkTWLJkCVQqldb48nr/LOx7enJyMj755BOcO3dO1B4dHQ1/f3/4+/tj/Pjxb72/KMh1z8PDAx4eHtBoNKL2x48f4/Hjx3B2dhaKUlFRUfjoo4+EHkxZIiIicOTIERw7dgxz587Fhx9+mGds+WVgYIAmTZoIRam0tDRER0fDzs4O27Zty9UrLz09HXfu3MGdO3fg5eWF3bt3w87OTnIc2hw/fhyzZs1CUlKSqD0kJAQhISHw9PTE+vXr87zW3r17F++//36uonhO+cl9Iio8FqWIqMgkJCRg3759og9QLi4uxf5zs88dY2Njg65du6JPnz7CB30vLy/MmjUr3x9Cly1bJrp5bdu2LTp27IhLly6JevLk9OOPP4pu+O3t7dGqVStcu3ZNGEp0+fJl/Pjjj1p7CwCZH/qqVq2K3r17w8jISCisaVOjRg3Mnj0bZ8+eFXojWFhYiD6kNG/ePNfjoqKiEBMTg4EDB6JSpUrYvXs3oqOjAWR+G/jJJ59o7boeFhYGS0tLTJw4EaGhoThy5AgA4NGjR5gzZw4qVqyIQYMG4caNGwgMDAQAXLx4EdeuXUOrVq3yfB5A5jwo2V9ze3v7fN/EXrx4ET///LNwI1+lShW4ubkhMTER+/btQ1JSEuLj4zFz5kwcPXpU67fT9+/fR9WqVeHu7o6goCDhQ0jWh7WaNWvCxcUFZ86cwc2bNwFk5tWXX36pNc6sb4xHjBgBc3NzeHp6CsWCzZs3o3fv3ujQoQOAzBv+Vq1aoVGjRrC0tISpqSni4+MRGBiIGzduQKPR4JdffoGrqyuMjIxy/azo6GhER0ejS5cuaNOmDaKiomBra/vW1yx7Eax58+bo3r07MjIy8PLlS1y/fh0hISGi42fNmiUqSPXp0wf16tXDuXPnhA/JR44cwR9//JHnh/DLly+jc+fOaN26tWiYb35zJL9yFqnd3NxERanXr18jICCg2FehbNq0qfBt/OHDh+Hv749WrVqhadOmaNGiBTp16vTOoUU3btwQirDJycnYvXs3MjIyoNFosG7dOqEolZ6ejmnTpgk5plKpMGDAANjZ2eHEiRPCa71p0yY0bdoUAwcOhEKhQIcOHXD06FEAmdced3d3pKam4saNG0IMt2/fxps3b2Bqair6wN+uXbs8iwM5X4esn3/hwgV07doVLVq0QLNmzdC8eXN06tRJa/E5v4KDg9G6dWt06dIF3t7eePToEQBg9erVADJ7VbRr1w67d+9GREQEAGDdunWSi1IqlQqNGzdGs2bNYG1tDTMzMyQmJuLKlSvCKn2///47hg0blue17NKlS2jZsiW6dOmCpKSkd/a4yLquZinIcyiK96fLly+jefPmsLe3x/nz53HlyhUAmUWT48ePw83NDWZmZujTpw8OHDgAIPOLi+xFqUOHDgn/zn5NW7dunVCQUigU6N27Nxo1aoSwsDB4enoiLS0Nvr6+aNy4MaZMmaI1vrzePwv7nv7f//5XeC/Q19eHm5sbatasiXv37sHX1xcajQbr169H06ZN4e7unudrlp/rno+Pj2iFVGNjY7i6uqJKlSp49uxZrjkUv/rqK6EgZWpqin79+qFy5cq4cuUKTp8+DbVajYULF6JZs2Zo27Ztns8xP1JTU3Hr1i1hW19fX/jC0cbGBj169ECNGjVgYWEBlUqF8PBweHt7IyYmBuHh4fj999/x/fff5/ueZcqUKXj27Bn++OMPoX3EiBFCQS7r7yQ0NBRffvklkpOTAWTOB9ezZ09oNBp4eXnh2bNnCA8Px4wZM+Dl5aX1enXr1i3o6elhwIABqFmzJh4+fKj1/ic/uU9EhceiFBFJNm/evFy9LoyNjTFjxgxR9+fikJqaCm9vb2G7b9++UKlU6Nevn/DBuyAfQtPT00W9LFq3bo3NmzdDpVJBrVZj3LhxWpcFj46OFm7Cgcxi3LJly4Ttzz77DD4+PgAyhxbNnj1bay+yatWqYf/+/TA3N39nrO+99x4mTJiAxMRE4QbPzMwMEyZMeOdjs3+D2rJlS0ybNg1AZmHx0aNHou702a1evVq4we3WrZswJArI/ADWvHlzJCQkoFOnTsIQzhs3buSrKJVdnTp13vkcsqxfv14oSJmammLPnj2wsbEBADg6OmLSpEkAMnsE7N+/P1cvKyDzJnvTpk2oVq0akpKS0K5dO6GHh76+PjZv3gw7OzsMGDBAKLSq1WoEBwfn+YHzv//9r/BB5f3330ffvn2F12TXrl1CUWr48OEYPnw47ty5g3v37iEmJgYqlQrOzs5CcSAmJgY3b97MNYwvy4cffoivv/46369ZSkqK8O/58+fn+v2EhYVBX18fQGZR4p9//hH2TZw4EV999RUAYNq0aRg9erRQmNq8eTOmTp0qGvaXpVevXli5ciUUCgU+/PBDdOnSRRhil58cya/sRWoLCwvY29vDwMAANWrUwNOnTwFk9qQq7qLUV199hVGjRgm/84SEBJw5c0YoABgaGmL48OH48ssvYWxsrPUcCoUCGzZsQJMmTYTHZPUozCqOAsCpU6eEYgyQ+TsdNWoUgH+H3mQNh1m/fj0GDhwIAOjUqZNQlMrqBRAUFCT06tLT00NiYiKuXr0Ke3t7UVGqU6dO+XodZsyYgRMnTiAuLg5AZg+DrGIvkDnflqurK77++utC9aytV68eNm/eDH19fbRp00Z0/WvUqBE2bNgAlUoFOzs7/Oc//wGQWUiXOt9Q1pxXjx49wu3btxEVFQU9PT04OjoiKCgISUlJSE9PR2BgoPB659S7d28sX75c69+LNjmvk7Vr187X44rq/alFixbYtm0b9PX1kZaWBkdHR0RGRgLI/BvO+mA+ZMgQ4eedOXMGMTExsLS0REREhPB7B/4tqqnVavz9999C+9SpUzFz5kxhu06dOli8eDGAzPydNGmS1tdM2/tnYd/TY2JisHfvXmF7wYIFGDJkiGh727ZtAIC///47z6JUfq97a9euFR5jYmKCffv2iX6/iYmJQm+gO3fuiObMW716tejvcdKkSfD39xeKZoUpSu3evRvm5uZITEzEyZMnhV5SQGbuZxVu1q5di6SkJFy7dg2hoaFITExEtWrV0LZtW6GXYlas+b1nqV+/PsLCwkRFKVdX11w9nbds2SIUpGrVqoW9e/cKPZZGjx4tfNkSEhKCU6dO5Xk/unz58lzDocPCwkTb+c19IiocFqWIqFj07NkTI0aMKPafc/z4cdFwsqx5bdq2bYvKlSsLPQf27duXrw+hDx8+FHXjdnd3F75dUyqVGDRokNYb2KCgINFE64MGDRLtHzRokHDTn5GRgaCgoFxzUQCZN1L5KUhJoVKpRL+bnB9ssj485lS1alXRzW3VqlWFolS1atWEXllmZmawtrYWPkBl//0Uh2vXrgn/7tatm1CQAjKLUtbW1sI35tmPza5169bC/BnGxsawsrISelW0adNGKDxln88DyPu10tfXF82xVK1aNbRp00bInezDHYKDgzFnzpxcQ+NyyjksK7tPPvnkrY/NqV27dsLk0llzj9SsWRP16tVDu3btREXJ7MOFAHFuq1QquLu7C8fExMTg0aNHWodKjBw5UpgPxtLSElZWVnj9+jWA3DlS2JUVcxape/XqJXx4cnV1FT7k+Pn5ITo6uliHF7do0QK7d+/GypUrERAQIBSnsqSkpGDz5s1ISEjIcw6jVq1aCQUpQPy3mv01y/k7yl4EMTIyQt++ffHXX38ByByukpSUBGNjY9GHvAcPHiAmJkYoTrVo0QIGBgY4d+6c0KMn+4Tk+V2evWrVqti3bx9WrFiBY8eO5Rpmk56eDk9PT4SHh2Pjxo255kZ6FxcXF6GAmnMYYK9evYTrt7a/XSlFqbCwMMyaNSvXa59TzkJSdpMnT853QUqKonp/GjZsmPBa6+vro1q1asIH8+z52L59e6EInJaWhqNHj2L48OHw8fER4qhfvz5atGgBILNImNVbFwBWrVqV50Tab7vGaHv/LOx7+vXr10VDT7/++us8C/+3b98W/qZyys91LykpSdQTacCAAbnel01MTIS5ubJ66WR52xC9d+VnXrIXhLKrWrWqaPj5+vXrsWLFircOf3vbe5cU2V+Hx48fC/mkzdWrV7UWpRo0aKB1fr6c8pv7RFQ4xf9OSERlnqurK7744gvR3AxeXl6YOnVqrrkRilr2XhHvvfeeUDRRKBSiosCpU6dEN715yVlkqFixomg7r2FROW9KshdGtG3nVcwoSA+hwrKxsRHNf5Czq3r2eZmyq1Spkmg76wZN277sQyXzkwM5exsVZH6k7K+9tt9P9ra8Xvec8Wd/TbLvyzkENK/XytLSMtdQgexxxMfHA8jsNTJ58uR3FqSAf1cFysnKyqrAxZUvvvhCWNks61vrbdu24f/+7//Qv39/jB07VviQ8a7czvma53WDnrNgkP01LqrrRM4idfZvr7P/Oy0tDV5eXkXyM9+mcePGWL16NS5evIhNmzbhyy+/FHrIZdm/f79oyHN2+X3Nsj/n7B9es2T/HWk0GuHvoF69esI1TqPR4MqVK0JvqLZt2wrX00uXLuHKlStCvltaWqJRo0bvfgH+p3r16li8eDEuXLiAHTt2YN68eejevbuoIHP+/HnRB/P8yv73mf2aBIivKzn/HvP6282vadOm5esDf15/t0DBr/c5r5PZe8e9TVG9P+U3HxUKhajwlfW3ln3oXvY58vLK/7zk9V6u7fUsqvf0t9FoNJL+huPi4kSvX/aJ1qXG9rYpAPJDoVAI88fNnDkTnp6ewtxzx48fx88///zO+ZhyFuSLSlG8DvntbVgS719E5Rl7ShGRZNlX3/vuu++wc+dOAMA///yDgwcP5jl0Qarw8HDRBKQvXrzI84NS1ofQnCu/5JTzW9asb8KyZH3DmVPOeYpyPi7ndl69ofIaxlOUcn5wy2/PhJyPy07qpNF2dnaoU6eOUIw6c+YMXr16latYpI2FhYXw+mr7/WRvy+t1L+rnFhMTg4yMDNEH4exxVKhQAUDmvCJZPbKAzNUrs1aESkpKyteQtpwFiPwwMzPD2rVr8fLlS1y7dg2PHz/GgwcPcPz4cSQlJeHChQtYt24dZs6cqTW3sxfBcr7mea22mPN1LGiPmPzIXqQGMnuB5WX//v3vvB4UlaxeSR07dsSkSZOwatUqrFixQtj/5MkTWFpa5npcfv9Ws7/miYmJSExMFOVF9t+RQqEQ/R106NABhw8fBpCZj1mFlrZt2wofvIKCgkTzGbVv375QPXwMDAzQunVrtG7dGuPGjcOBAwdEKyE+efIETZs2LdA53/b3mZ85rwrj4cOHuHPnjrDdr18/zJ49G5UqVYJCoUDnzp3zVQwo6N9u586dsXTpUmF73759+erlUVTvTwX5Gx40aBBWrlwJtVqNS5cu4dKlS7h+/bpwnuwr7uXM/UGDBqF+/fp5njuvifG1vX8W1Xv6uHHj3vp+lHVNzyk/r5m5uTkUCoVQ3Mg5dOxdsc2cOVPrfINS5FyFUJvsvVJNTEzg4eGBdu3awdDQEFu3bsX//d//FWlMOWV/HerXr5+rB2B2eeVTfv8GS+L9i6g8Y08pIipSs2bNEt2crV69WjRsoChlX/Y9P7LPK5GXOnXqiG5SvL29hRtFjUaT5zlatGgh+gCU87js2yqV6q3dzAsq+81SzqExpUn2AkHWKoDavn2OjY0VJq0GIFr2+vTp06IPHf7+/qIPh1KWyC6ItLQ00Q17WFiYaKhB1gfvnM/P3d1dmPQ5azhNcbh37x7S0tJQuXJl9O3bF1OmTMGvv/4qmjg5q9dKmzZtRI/NnssZGRmiHkeWlpb5/ub5bZycnNCwYUM0bNgw3ytn5ixSv8utW7dEhYWi9sMPP+D8+fNav0XPubpZXh9o8ytnXmefPyg5ORm+vr7CdqNGjUQf3rPPRbN//37Ex8dDqVSiTZs2aNWqFfT19ZGSkoI9e/Zofcy7LF26FH5+fqKhUFmK+nUoKTn/bvv27Qs7OzsoFAqcP39ecu+UvLRs2VJUqD5x4oRoLqLsbt68KQyDleP96b333kOXLl0AZPZKy158dHR0FPVQql27tqgwlZycjAkTJuT6b+DAgahRo8Y7J4TPrrDv6S1bthS9Znp6elpj6tOnDxo0aCBpKKixsbFomO7Bgwfx5MkT0THJycnCe1vOa7KVlZXW2BwcHNCyZctCx/Uu2f8Oqlevjq5du8LQ0BBqtVpYCEWb/Nyz5CzIZ80dlV32615ERAT69euX6zX48MMPUaNGjWJ9HYhIOvaUIqIiZW5ujtGjRwvzETx58gTe3t55TgLq4eGhdTn4SpUq5TmnQZbsN5M2NjZa5zgJDQ0VJovO+hD6tmEnenp6GDx4sBDThQsX8MEHH6B9+/a4ePGiaJLW7KysrDBo0CDhg5uPjw/i4+NzrW4EZM4XUZRz2WQf0hEVFYV58+ahbt26UCgUGD16dJF/g1pchg8fjpMnTyIgIABA5nwRvXr1Qq9evVCjRg2kpKTg7t27OHv2LGxsbIQJy8eNG4cTJ05Ao9HgzZs3GDp0KPr164fExETRRLWWlpZv/Sa1qH399de4dOmSsPpe9iEMw4YNA5B76MBXX30FFxcXPHv2DJ6ensUW2y+//IIbN26gU6dOeO+992BtbY1Xr16JehplFQgaNWqEzp07Cz1l1q1bh9DQUNSvXx9nz54VDWEaO3ZsicyRo03OInWPHj1y9ZxQq9WiAs2+ffsKNEF8Qfj5+WHLli2oVKkSOnTogJo1a0JfXx+PHj0SFSyrVasmuZDXvXt31K5dWxjO9eOPP+LGjRvC6ntZk5wDyDXRf/brZtawqIYNGwq//yZNmuD69evCkNOcj3mXK1eu4I8//oClpSU6dOggFAnCwsKEHlpAZu+9kioaS1WzZk0olUphCOBPP/2E27dvIyYmJldvvaL2008/YeTIkcKwtF9//RWenp7o1q0bLC0tERkZiUuXLuHmzZuYPn06nJycZHt/Gjx4sHDu7L1/sg/dAzLndho/frzQC8zHxwehoaHo2rUrTE1NERERgZs3byIoKAht27ZFr1698h1DYd/TLS0tMWTIEOzatQtA5nXv5s2baN26NQwNDREeHo7r16/j1q1bGDRoELp165b/F0aLjz/+GJ999hmAzN6OAwcOFFbfe/nyJfz8/PD999+jZ8+eaNSoEbp27SpMFv7DDz8gICAAzZo1g0KhwPPnz3H16lWEhIRg+vTpeS6QIVXt2rWFGO7evYsvvvgCderUwenTp/OcvxHI3z2LlZWVMKk4kFncvnPnDvT09NChQwc0b94cY8eOxY4dO5CSkoKYmBgMGDAAffv2xXvvvYfExEQ8ePAAFy5cQFxcHE6cOJFnL14ikh+LUkRU5D788ENs3LhR+AZszZo16Nevn9buzs+ePRN9YMryrjkmrl27Jpp3aOzYsVone3769KnoBjY/H0I//fRTnDt3Tjh/9pWiHBwchKIJANEH8G+++QZPnjwRlt3OvtJWljZt2ogmCS0K3bp1g7GxsfB6Z/9QNGjQoFJTlFKpVFixYgV+/PFH4cNTXFycqLCkTfv27TF37lz88ssvUKvVeP78Of7880/RMRUqVMCKFSuKfRL5LLa2trCzs8OOHTty7Rs1apTwob5Zs2bo1q0bTp8+DSBzsumsZcEHDRqUr959hRUbG5vnt9mGhoYYO3assL148WKMGzcODx48AAAcOXIk12P79OmT51LtJSH7a1WrVq08i9qjR48W5k06dOgQZs+eLXn46du8evVKNJdOdoaGhvjxxx8lDwXR09PDqlWr8NFHH+Hly5fIyMjQWhwZO3ZsruHUNWvWxHvvvYcXL14Ibdk/xLZt21YYdgVk5vbbhlblJSYmRljpLyelUonvvvtOUm+TkmRjY4Phw4cLf98vXrwQJubu3LkzHj58+NYJzqXIWm3w888/F96j7t27h3v37r31cXK8P/Xq1QsWFha55v3r3r17rmMnTZqEhw8f4uDBgwAye3plX2FSisK+p3/99dcICwsTemD+888/opVIi5KLiwtCQkLg4eEBjUaDxMREUe/EnBYvXowJEybg9u3bUKvV8PPzg5+fX7HElpcPPvgA+/fvx5s3bwBAKDLr6enB3d09z3n78nPPYmBggO7du+PYsWMAMieTv337NgBg9uzZaN68OapXr44lS5bgq6++QmJiIqKjo4VVl4modGFRioiKnLW1NYYOHYrNmzcDAO7fv49jx46hd+/eRfYzst/EZK2go02NGjWEb0SBzAlXs5azz4u5uTm2bt2KZcuW4fjx44iPj0edOnUwfvx46Ovri25gsxc5TExMsGHDBuzfvx9eXl64e/cuEhISYGpqioYNG6Jfv34YMmRIkX8ArlixIn7//XesWLECd+7ceeeko7rM2NgYP/30E8aMGYM9e/bg0qVLeP78Od68eQMTExPUqlULjo6OoknsgczeH23btsXmzZtx6dIlvHr1CiqVClWrVkW3bt0wbty4Ag35kMrQ0BCbNm3CypUr4evri8jISFSrVg2jRo0SFXsAYOXKlVi6dCm8vb0RExODKlWqYMiQIZg4cWKxFaUmTpyIOnXqICgoCC9evEBUVBQUCgXs7OzQrl07jB8/XrQCX8WKFbFnzx7s2LEDR44cwYMHD5CUlARzc3M0bdoUgwcPzvU7KUk5i9Q5e2JkN3jwYKEoFRkZiVOnTuVrXp6CWrduHQIDA/HPP//g8ePHiIyMRGxsLAwMDFClShV07NgRH374IWrWrFkkP69u3bo4ePAgtmzZgpMnT+LRo0dITU2FlZUVWrVqhREjRsDe3l7rYzt27Cga8pd9eFC7du3w999/C9s5J2p/l19++QVnz57FP//8gwcPHiAyMhIxMTFQqVSoXLky2rRpgzFjxhR4Lim5ffvtt6hUqRL27t2LV69eoWLFinBxccHMmTOL/W+hUaNG8PT0hK+vL44dO4abN28iMjISGRkZsLKyQtOmTdGnTx9RXsvx/mRgYAA3Nzds27ZNaOvfv7/Wn6FUKrFo0SK4ublh7969uH79OiIjI6FQKFCxYkU0aNAAnTt3houLS4HjKOx7urGxMf766y94e3vD09MTwcHBiImJgZ6eHipVqoTGjRvD3t6+yO5tpk+fDgcHB2zbtk14H1MqlbC1tUWbNm1ExWAbGxvs2rULe/fuha+vL+7evYu4uDgYGhqicuXKaNasGRwcHLSuOFdUatasia1bt+LXX3/F5cuXoVAohAnRQ0ND8yxK5fee5YcffoCZmRlOnz6NqKgorYsT9OzZE15eXtiyZQvOnj2LsLAwpKSkoEKFCqhduzbatGmDnj17vnN+LCKSl0LDJQOIiHJJTk7W2sNo5syZQg+RWrVqvXXeBCpfVq5cCQ8PDwCZE/FmzedCRETy4ns6EZHuYk8pIiIt+vbtC3t7e7Ro0QKVKlVCZGQkjhw5An9/f+GYnD1eiIiISPfwPZ2ISHexKEVEpEVCQgJ2796N3bt3a90/fPhwjB49uoSjIiIiooLiezoRke5iUYqISItJkybh9OnTePToEWJiYqBUKlGxYkW0atUKQ4cORefOneUOkYiIiPKB7+lERLqLc0oREREREREREVGJU777ECIiIiIiIiIioqLFohQREREREREREZU4FqWIiIiIiIiIiKjEcaJzLSIi4uUOocjo66uQlpYhdxhUSjF/SArmD0nFHCIpmD8kBfOHpGD+kFRlJYcqVqzwzmPYU6qMUyjkjoBKM+YPScH8IamYQyQF84ekYP6QFMwfkqo85RCLUkREREREREREVOJYlCIiIiIiIiIiohLHohQREREREREREZU4FqWIiIiIiIiIiKjEsShFREREREREREQljkUpIiIiIiIiIiIqcSxKERERERERERFRiWNRioiIiIiIiIiIShyLUkREREREREREVOJYlCIiIiIiIiIiohLHohQREREREREREZU4FqWIiIiIiIiIiKjEsShFREREREREREQljkUpIiIiIiIiIiIqcSxKERERERERERFRidOTOwAiIiIioqKQnJwMT8/98PE5jNjYaFhYWMHFxQ39+w+CkZGR3OERERFRDgqNRqOROwhdExERL3cIRcbAQIXU1Ay5w6BSivlDUjB/SCrmEBWEr683ZsyYgtjYGCiVSqjVauH/FhaW8PBYgz59XOQOk0oJXn9ICuYPSVVWcqhixQrvPIbD98qwIy+fYGLgcRx5+UTuUKgUYv6QFMwfkoo5RAXh6+uNDz8cibi4WACATQ8HNFv2M2x6OAAA4uJi8cEHI+Dr6y1nmFRK8PpDUjB/SKrylkPsKaVFae0pFR/9DInJUUhNTcWmoCBcMjBChsIMKk0C2qUm44MWLWBgYAATYxtUsKwid7ikY7LyBwACYuPhFRWNFLURDJXJcLe2goNFZpWb+UPaMH9IKuYQFVZycjJ6ObeBgb4aGmigatsB+t2dAT1LID0GaadOIOPyBSigQGqaEsdOXOFQPhLhPTRJwfwhqcpyDuWnp5ROFaUuXryIv/76Czdv3kRERARWrVqFnj17vvUx58+fx88//4z79+/jvffewyeffILBgweLjtm6dSv++usvREREoFGjRvj222/RokWLPM9ZGotSGXGxWH5hCl6pYhCJhnit6IaqsS3hHlodXtVD8cziOmw1p2GDu6iUYYlPO/wBlbmF3GGTjsjKn9d6cYhUNMIrTVdUjW2RLX+CUElxFjaaO7BNN2f+kAjzh6RiDpEUB7dtQpDpbsSbpSJa2TjPeyAr9W1USDCE97e3kaBRQE9PD3p6etDX1//fv/Whr68HlSqrTR96eiro6+ujQYNG+O67/9P6848c8cGFC/9AX1/vf4/591z//ls/x8/L3G9mVgGdOnXRet6YmGjExcWJzqevry/Ep1KpoFAoivOlLRd4D01SMH9IqrKeQ/kpSunUROeJiYlo2LAhhgwZgunTp7/z+NDQUEyePBkjRozAr7/+isDAQMyfPx8VK1ZEt27dAADe3t5YuHAhFixYgJYtW2Ljxo2YMGECfH19YWNjU9xPqcTopWbA4o0BgiwaIzZjGJBRD+1eV0C7SAM8N66GZ8YWeK2qgjTVbtR/Ewm91AzoTDWSZKeXmgHrZGPcNK+K6PShQHrdXPnzSq8K0vT2oEFyFPOHRJg/JBVziKQ4fyoA1XuaIsSi/jvvgWqlPIcqRY3w6IgC/Yzo6Og89wUE+GHt2j8KFXvt2nVw/vw1rfs2bPgL//2v9kJYlpwFtayimKWlFU6dOqf1McePH8Gff/6erTiWWXzL+ndm0SvvYtrUqTOgUqlynfflyxe4fPlSnsW4rO3chT89oUCnVJb8zCK8hyYpmD8kFXNIx4pSjo6OcHR0zPfxO3bsQLVq1TB37lwAQN26dXH58mVs2LBBKEqtX78ew4cPx5AhQwAACxYswKlTp7B3715MmjSp6J+ETFJSUpEYOwim6AhTtRkUUKNtpBLGGQq0i1TisrUBNGgGKGshMfY8UlJSYSB30KRDFEhLGg6TjJYwUZsBWvIHaAooayIt9ToAfjNL2TF/SCrmEBVeXFwc0pJHwjS20zvvgdKT/wFwscA/Q19fP8996enphY5dTy/vW/G0tLR3Pj4tLe1/xyWJ2pOSEvN8TFhYGE6dOpnvGHOaOnWG1vZLly7io4/GFPq8QUF3Ubnye7naL1++iA8+GJmjV5teHgU1Va5i1/z5C1C9eo1c542MjMS6dX/AFiokvjcQpnh3/iTG/oMDB/cj0cQQzs69UalSpVznTUxMxMGD+wr9OtjbO2iNV61WY+fObYU+b7t2HVC/fgOt+/bs2ZmvfNOmefOWaNasudZ9Xl4HkZBQuBEoDRo0RNu27bXuO3bMF69fvy7UeWvUqImuXbtp3RcQcArPnoUV6HwmiSlI1C94/uSXhYUlXF37ad13/fpV3LoVXKB4sxgZGWHQoKFa9925cxtXr14u1HkVCgVGjBitdd/jx48QGHi2UOcFgMGDh8HQMPdr9/LlC/j5nSj0ed3c3GGupedRdHSUpHkI83uNKFgOlc3P8TpVlCqoa9euoXPnzqI2e3t7/Pe//wUApKamIjg4GJMnTxb2K5VKdOnSBVevXi3RWIvboktX0CPSDcOe6AH/q50aqBWI0VejapI+5t/M+lWbIcTMDYsuHcP8qq6yxUu6ZcerSDQJc4Z7Qn7yxxY7Xj3B+7ZWssVLuoX5Q1Ixh0iK5M7d0TayH4bn6x6oHzxdzwBb1xboZ6hUed8ySytKva3YVbgiAfCueAt/XgB59maSet68XoukpCRERLwq9Hk//3y21vbXryPw22+/oMXoj7HA4Mt83kP3w3+ezkXQ1rXw9Dyi9QNnfHwcPv10aqHjXb9+a55FKSnnXbx4WZ5FqXnzvkJsbEyhzjt37vw8i1L//e8ChIQ8KNR5P/54Sp5FqeXLl+DChX8Kdd5Bg4bkWZT6668/4eNzqEDnazH6Yyyo8XOB8ye/mjRplmdRytvbC0uX/lqgeLNUqmSXZ1EqIMAP8+fPLdR5VSpVnkWpK1cuScphFxc3rUWpu3fvSDpv+/YdtRalnj17Jum8+b1GFCyHyubneJ2aUyq7hg0bvnNOqT59+mDw4MGiopO/vz8mTZqE69evIzY2Fg4ODtixYwdat24tHLNo0SJcvHgRu3fv1nre0jan1JGXT/DH1UD0etUXg59aQF8NxOlnwFCthFmaEkpN5jfKehpAowBeGGUg0jANCoVa5shJV2g0Stik6OO9ZBUUGiD9f50QNApA8b8rBPOH8sL8IamYQyQF84ekYP6QFMwfkiqvHFIrNEjQVyNFqYZ5mgppSmBvjVgcr+SLKa07o0/lmvIGnk+lbk4pXaGvr0Jpmjfy4LOHyFAqcb7iQ2g0TTAk1ABGGUqYZCih97+ClOp/F8VofQ3SlYBFWtavXidrklSiMnMkXQnE6mtglaqAvgbIUEBID+YP5Y35Q1Ixh0gK5g9JwfwhKZg/JFXeOaTUKGCSroRSBaQpNdhbPRUXKoYgQ6nEwWcP4V6jjsyxF51SXZSytbXNNZ749evXMDMzg5GREZRKJVQqFSIjI0XHREZGwtbWNs/zpqVlFEu8xWVA1Tr441U41KrXOFk5CcbqdAwINUWCnhoVUpVQQAEVgJdGarwy0gBIBxQaKMAqPWXSQAloFIjV10OKUoHKyUpk/ytg/tDbMH9IKuYQScH8ISmYPyQF84ekyiuHNNDgjZ4aRhkKHKiegJOV02GiiIRKrcaAqnWQmlq6ahZvU6qLUq1atUJAQICo7dy5c2jVqhUAwMDAAE2bNkVgYKAwDFCtViMwMBBjxhR+IkZd06dyTQSn/INrxnGAIhFKjTVUGsAwA0hTaaCBGhkaBU5WTsahapEwxT8I270PNz3zHjNtbGyMu3efwMjIqASfCcnl6IPb2PH4DuLUHdAv1BoDQ42QrtBAAQU00Aj5c7h6FMyVFzCiViP0rtdY7rBJRzB/SCrmEElx9MFtbH+UmT/uYXnnz6HqUbBg/lAOSw7sxDVjFd6g89vz53/30K2S1Phi4HC5wyYdwfwhqd6WQ4YZmb3tlBo9QBELBeLQLUVZaobu5VfJr7v6Fm/evMHt27dx+/ZtAJmrg9y+fRvPnz8HAPz222+YPfvfyQpHjBiB0NBQLFq0CCEhIdi6dSt8fHwwbtw44Zjx48dj165d2L9/P0JCQvD9998jKSkJgwcPLtHnVtxmdHCEe9hT6Cmfo22kARRQ4JWRGjtrJuCVkRoKKNAu0gD6yhdwD3sKe30z2NjY5Hm+jh0751mQOnv2NLZs2YjQ0KfF9XSohPW1qozhURFQKd6eP3qK5xgeFYG+VpXlDpl0CPOHpGIOkRR9rSpj4Mtn774HYv6QFgW9h57RwUHukEmHMH9IKuaQjvWUunnzJj744ANhe+HChQCAQYMG4eeff0ZERARevHgh7K9evTrWrFmDhQsXYtOmTahcuTJ+/PFHdOv274oKrq6uiIqKwooVKxAREYHGjRtj3bp1bx2+VxoZGBigo14QnidpEG3QEg8qpGNf9UQkGGgQaJuOwaEmsE5VoEuSPzrq3cTwH5bge+s/EBx8E/7+fggI8MM//5xDcnIyAMDR0SnPn7V583rs27cHAFC7dh04OvaAg0MP2Nt3g6UlV0MqjTQaDZqnnod9Uvxb86drUgCap96CRqN9tQ4qn5g/JBVziKTQaDRolhKILkkpzB8qsILeQxsYjONsQCRg/pBUzCEdXn1PTqVt9T0A0MTF4pHPFCQiDieMuuJ8hWbIgAYaRTIUGiOooEDH+JtwTj4LU1iglsvvUORY+jI5ORkXL55HQMApDB8+UuuysWq1Gs2a1cs1lxeQuURwq1at4eDQA46OPdCuXQety3aS7snKnyRFPE4a2SPQrAnU0ECtSIZSYwQlFOiccAtOyWdgojHXmj9UfjF/SCrmEEnx8v5dvD7zFdRGafAz6YbzFZoxfyjfiuIemsov5g9JVdZzKD+r77EopUVpLEoBQHrkM6gTo5Camop1N2/gtKEhMlRKqDLU6JaSgonNmsPAwABKExvo2VQp1M8IDr6JHj265OtYExMTdOrUBQ4OPeDg0B1NmjSFUqlTI0Ypm6z8AYBj8fHYExONFI0GhgoFhlpaoVeFzAuKlPyhsov5Q1Ixh6iw/vprDf5e+iMqW5oAAFRdu8FkwCCkMn8on0riHprKLuYPSVWWc4hFqUIqrUWpnI68fIKDzx5iQNU6RTYZ2q1bwVi6dDFOnz6FqKioAj3W1rYiFi5cjAEDytZ8XmVVceQPlR/MH5KKOUT5NWSIO06f9he2hw59HwO+m8/8oULj9YekYP6QVGUph1iUKqSyUpQCAAMDVbEsF6lWq3HzZhD8/U8hIMAP588HCvNRvc3Bgz7o3LlrkcdDxaO48ofKB+YPScUconeJiopE06b1kJHxb56sX78Vbm7uzB+ShPlDUjB/SKqykkP5KUrp1ETnVHoolUq0aNEKLVq0wowZnyE5ORkXLvyDgIBT8Pf3Q1DQNeSsd5qYmKBt2/Zaz/f06RNMnjxemDS9XbsOMDAwKImnQkRERKXU0aO+ooKUsbExevRwljEiIiIiKggWpahIGBkZwcGhOxwcumP+/O8RFRWJs2dP49SpzJX9njx5jM6du+ZZaAoIOIXLly/h8uVLWLJkMUxMTNC5c1fRfFQKhaKEnxURERHpMm9vL9F29+7OMDExkSkaIiIiKigWpahYWFvbwN19INzdBwIAHj9+hMTExDyP9/f3E20nJibixIljOHHiGACgYsVK6NbNEY6OmSv7ValStdhiJyIiIt2XkJCAU6dOitpcXfvJFA0REREVBueU0oJzSpUstVqNJk3qFGji9Hr16gtD/bp2tYd5KVoWszQpDflDuov5Q1Ixh+htvLwOYMKED4RtPT09BAc/gJWVNQDmD0nD/CEpmD8kVVnJIU50XkgsSpWsjIwMnDkTIMxHdePG9VzzUb1Np05d4OnpW4wRll+lIX9IdzF/SCrmEL1NePhLeHkdgLf3IQQGnkXXrg7Ys+egsJ/5Q1Iwf0gK5g9JVVZyiEWpQmJRSl6RkZE4ezYA/v5+8Pf3w9OnT956/FdfzcNXX83Tui88PByVKlXifFSFVBrzh3QH84ekYg5RfkVGRiIqKhL16zcQ2pg/JAXzh6Rg/pBUZSWHWJQqJBaldMujRw+FXlRnzvgjJiZGtN/L6yg6duyU63EajQbt27dAUlISHBy6C/NRvfdelRKKvPQrC/lD8mH+kFTMIZKC+UNSMH9ICuYPSVVWcohFqUJiUUp3ZWRk4MaN6/D390NAwCncunUTQUH3oK+vn+vYhw9D0KlT61ztDRo0/N9KgZnzUVWoYF4SoZdKZS1/qGQxf0gq5hBJwfwhKZg/JAXzh6QqKznEolQhsShVeqSlpWktSAHAhg1/Yfbsz9/6eJVKhTZt2gmTprdt2y7P85VHZT1/qHgxf0gq5hBJwfwhKZg/JAXzh6QqKzmUn6KUXgnEQVRs3lZAunHj+jsfn5GRgYsXz+PixfP49defYWpqhq5d7eHg0B2jRo2Fmdm7/4iIiIiIiIiIqODYU0oL9pQqGzQaDR49CoG//ykEBJzCmTMBiI2Nyddj9fX1cffuE5iZmRVvkDquPOcPScf8IamYQ6TN0aM+sLGxRevWbaFUKvM8jvlDUjB/SArmD0lVVnKIw/cKiUWpsikjIwPXr18VJk2/ePE8UlNTtR7buXNXHDzoo3Xf9etXER7+El262Jf5nlTMH5KC+UNSMYcop6xFTJ4+fYLKld+Di4sbJk+eijp16uU6lvlDUjB/SArmD0lVVnKIw/eIssmaP6pNm3b47LNZePPmDc6fDxQmTQ8OviEc6+DQPc/z/P33WmzfvgV6enqi+ajatGnL+aiIiIiK0c2bN/D06RMAwMuXL7B+/TqMGTNO3qCIiIio0NhTSgv2lCqfIiIicOaMP/z9/fDRRx+jRYtWuY7RaDRo06Ypnj0Ly7XPzKyCMB+Vo6MT6tdvAIVCUQKRFx/mD0nB/CGpmEOU0y+//ITffvtF2K5RoyYuXgzS+n7L/CEpmD8kBfOHpCorOcThe4XEohTl5cGD++jSpW2+jq1c+b3/Fah6wMGhO+zsKhdzdEWP+UNSMH9IKuYQ5eTo2Bm3bwcL25MnT8MPPyzUeizzh6Rg/pAUzB+SqqzkUH6KUnnPDklEuSQkxKNz5675Gqb38uUL7Nq1HdOmTULz5g3g4NARvr7eJRAlERFR2fPwYYioIAUAbm79ZYqGiIiIigLnlCIqgFat2uDgQR8kJCTg/PlzOHUqcz6qnDfJ2ty5cxuGhoYlECUREVHZ4+19SLRta1sR7dt3kCkaIiIiKgosShEVgpmZGZyde8PZuTcAIDw8HKdPnxJW9nvx4nmuxxgYGKBjx85azxce/hJfffU5HB0z56OqW7deqZ+PioiIqCh5e3uJtl1c3KBSqWSKhoiIiIoCi1JERcDOzg5Dh76PoUPfh0ajwYMH9xEQ4Ad//1M4e/Y04uPj0LFjZ5iYmGh9fEDAKfj6Hoav72EAQJUqVYX5qLp1645KlSqV5NMhIiLSKeHhL3Hp0gVRm5ubu0zREBERUVFhUYqoiCkUCtSv3wD16zfAhAmTkZ6ejqtXLyMjQ53nY/z9/UTbz58/w44dW7Fjx1YAQOPGTeHo2AOOjt3RqVNXmJqaFutzICIi0iU5h+5VqGAOe3tHmaIhIiKiosKiFFEx09PTQ/v2HfPcr9FochWlcrp9Oxi3bwfjjz88oK+vj/btO8LBoTscHLqjVas20NPjnzIREZVdOYfu9erVGwYGBjJFQ0REREVFodFoNHIHoWsiIuLlDqHIlJWlJMuy9PR0HDiwF/7+fvD398PLly8K9PguXexx4EDxrOrH/CEpmD8kFXOIACAmJhpNmtRFenq60PbXX5vg7j7wrY9j/pAUzB+SgvlDUpWVHKpYscI7j2H3CiKZ6enpieajun//HgICMlf1O3PmNBIS3l4kbdu2fZ77kpOTYWRkVNQhExERlZhjx46IClKGhobo0aOnjBERERFRUWFRikiHKBQKNGjQEA0aNMTEiVOQlpaGq1ev/G/SdD9cvnxRdGMOAI6OPfI8X8+e3aCvb/C/SdO7o2PHLu+cjyo5ORmenvvh43MYsbHRsLCwgouLG/r3H8QCFxERlbjDh8VD97p3d4KZmZlM0RAREVFR4vA9LTh8j3RVQkI8AgPPwt8/syfVkyePcffuE63FoufPn6FVq8aiNgMDg1zzUWVfTtvX1xszZkxBbGwMlEol1Gq18H8LC0t4eKxBnz4uxf48qWzg9YekYg5RYmIiGjeujaSkJKFtxYrfMWLE6Hc+lvlDUjB/SArmD0lVVnIoP8P3WJTSgkUpKi1iYqJhaWmldd+OHVsxc+Ynb328hYUlunbtBgeH7lAqlZgz5wsAmZOv56RQKAAAGzduR9++rhIjp/KA1x+SijlESUlJOHhwH7y9veDndwLp6ekIDn4Aa2ubdz6W+UNSMH9ICuYPSVVWcohFqUJiUYrKgpkzP8GOHVuL9JwKhQLm5ha4ceMeh/LRO/H6Q1Ixhyi7hIQEXLt2Bfb2Dvk6nvlDUjB/SArmD0lVVnIoP0UpZQnEQUQy+O23FfD0PIJZs+aiffuOomF6haXRaBAbGwMvrwPSAyQiIioAMzOzfBekiIiIqHRgTykt2FOKyqL4+DicO3cW/v4nERBwCvfu3S3UeZRKJVxc+mH9+i1FHCGVNbz+kFTMIZKC+UNSMH9ICuYPSVVWcig/PaW4+h5ROVGhgjn69HERJip/8eK5MGH6wYP7kJaWlq/zqNVqREdHFWeoREREREREVA6wKEVUTr33XhWMGDEaI0aMRlJSInx8DkOtVr/zcUqlElZW1iUQIREREREREZVlnFOKiODi0i9fBSkgs6dUYuIbpKamFnNURERUXj18+ACnTp3Mdy9eIiIiKp1YlCIi9O8/CBYWllAoFPk63s/vBPr164VHjx4Wc2RERFQebd68EcOHD0STJnUxderHCAg4JXdIREREVAxYlCIiGBkZwcNjDQDkuzB17dpV9OzpAE/P/cUZGhERlTMajQbe3l4AgNjYGOzZsxNnzgTIHBUREREVBxaliAgA0KePCzZu3A5zcwsAmXNHZf+/sbEx9PTE09DFx8dh4sQPMXv250hOTi7ZgImIqEy6c+d2rp64rq79ZIqGiIiIihOLUkQk6NvXFTdu3MOqVX/CxaUf7O27wcWlH1at+hN37z7BsWMBqFevfq7HbdjwF/r2dcKDB/dliJqIiMqSw4c9RdtVq1ZDy5atZYqGiIiIipNCo9Fo5A5C10RExMsdQpExMFAhNTVD7jColNKWPwkJCZgz5wvs3r0j1/EmJqZYvHgphg0bUVIhkg7j9YekYg6VT05O9rh5M0jY/vjjKfjpp0UFPg/zh6Rg/pAUzB+SqqzkUMWKFd55DHtKEVGBmJmZYdWqP7Fixe8wMTER7UtMfINp0ybh00+n4s2bNzJFSEREpdWTJ49FBSkAcHV1lykaIiIiKm4sShFRoYwYMRpHjpxCo0aNc+3bvn0L+vbtgTt3bssQGRERlVY+PodE29bW1ujYsbNM0RAREVFxY1GKiAqtYcNG8PX1w5gxH+bad/fuHfTp0x3bt2+RITIiIiqNDh/2Em337euWa5ENIiIiKjtYlCIiSUxMTLBkyUr8/vs6mJqaifYlJSUhPj5OpsiIiKg0efXqFS5c+EfUxlX3iIiIyjYWpYioSAwZMhwnTgSgWbMWQlvfvm74+ONPZIyKiIhKiyNHvJF9/R1TUzM4OPSQMSIiIiIqbixKEVGRqVOnHry9j+Ojjz5GtWrVsXz5KigUCrnDIiKiUsDbWzx0r2fP3jAyMpIpGiIiIioJLEoRUZEyMjLCzz//Bj+/s7Cyss7zuLS0tBKMioiIdFlcXCwCAk6J2jh0j4iIqOxjUYqIioWFhWWe+86ePQ17+/a4evVyyQVEREQ66/jxo6IvKwwMDNCzZ28ZIyIiIqKSwKIUEZWoiIgITJkyAY8ePUS/fr3xxx8eojlEiIio/PH2PiTadnDojgoVzGWKhoiIiEoKi1JEVGLUajWmT5+E8PCXADKH8H333df44IMRiI6Okjk6IiKSy/vvj8TQoe/D3NwCAODq6i5zRERERFQS9OQOgIjKj/j4OLx58yZX+5EjPnBysscff/yNjh07yRAZERHJqVevvujVqy9SU1Nx9uxptGzZSu6QiIiIqASwpxQRlRgLC0scOOCNTz/9Mte+Z8/CMHCgC1asWAK1Wi1DdEREJDcDAwP06OEMa2sbuUMhIiKiEsCiFBGVKD09PXzzzX+wY8c+2NraivZlZGTgxx+/x8iRQxARESFThERERERERFQSWJQiIlk4OfWEn9852Ns75Nrn53cCTk5dcfbsaRkiIyIiIiIiopLAohQRycbOrjJ27z6I2bO/hlIpvhyFh7/EkCHuWLx4ITIyMmSKkIiIiIiIiIoLi1JEJCuVSoVZs+Zi714v2NlVFu1Tq9VYvHghhg0bIKzYR0REZYNGo4Gvr7fWBTCIiIiofGBRioh0Qteu3XDy5Fn06OGca9+ZMwG4eTNIhqiIiKi4XLt2BR98MAKNG9fGBx+MxI4dW9kzloiIqJxhUYqIdEbFihWxfftezJ//PVQqldA+depMODv3ljEyIiIqat7ehwAAycnJ8PU9jGXLfs01lJuIiIjKNr7zE5FOUSqVmDnzCxw44IOqVauhbdv2+Oab/8gdFhERFTFvby/RtqurOxQKhUzREBERkRz05A6AiEibjh074cSJ00hOToa+vr7c4RARURG6d+8u7t+/J2pzc3OXKRoiIiKSC3tKEZHOsra2QZUqVfPcv23bZnz33ddITU0twaiIiEiqnL2kKld+D61bt5UpGiIiIpILe0oRUal0585tzJs3C0lJSbhwIRBr1qxHzZq15A6LiIjyIWdRysXFjfNJERERlUN89yeiUicxMREff/whkpKSAABXrlyGs3M3eHkdlDkyIiJ6l7CwUFy7dlXU5ubWX6ZoiIiISE4sShFRqXPlyiU8fvxI1BYXF4sJE8Zi7twvkZycLFNkRET0Lj4+h0TblpaW6Ny5q0zREBERkZxYlCKiUsfe3gHe3idQp07dXPv+/nst3Nx64eHDBzJERkRE7+LtLS5K9e7twgUtiIiIyikWpYioVGrevAWOHw/A4MHDcu27ceM6nJ0dsG/fbhkiIyKivERGRiIw8KyojUP3iIiIyi8WpYio1DIzq4Dff1+HZctWwdjYWLTvzZsETJkyAV98MQOJiYkyRUhERNkdPeoDtVotbJuYmKB7dycZIyIiIiI56VxRauvWrXByckLz5s0xbNgwBAUF5XlsWloaPDw80LNnTzRv3hz9+/dHQECA6JiEhAT89NNP6NGjB1q0aIERI0a89ZxEVLooFAqMGjUWR46cQsOGjXLt37JlI/r27YG7d+/IEB0REWV3+LCnaLtHj565vlQgIiKi8kOnilLe3t5YuHAhpk2bhv3796NRo0aYMGECIiMjtR6/bNky7Ny5E99++y28vb0xYsQITJ8+Hbdu3RKOmT9/Ps6dO4dFixbBy8sLXbt2xfjx4xEeHl5ST4uISkCjRo3h6+uHkSPH5Np3585t9O7tiO3bt0Cj0cgQHRERJSTEw9/fT9Tm5uYuUzRERESkC3SqKLV+/XoMHz4cQ4YMQb169bBgwQIYGRlh7969Wo8/ePAgpkyZAkdHR1SvXh2jRo2Co6Mj/v77bwBAcnIyjh49iq+++grt27dHzZo1MWPGDNSsWRPbtm0ryadGRCXA1NQUy5evxqpVf8LExFS0LykpCXPmfIFnz8Jkio6IqHw7efI4UlJShG09PT306tVHxoiIiIhIbjpTlEpNTUVwcDC6dOkitCmVSnTp0gVXr17V+pi0tDQYGBiI2gwNDXHlyhUAQHp6OjIyMmBoaJjnMURU9gwbNgLHjwegSZNmovafflqEatWqyxQVEVH5VqdOPYwbNwF2dpUBZK6kamFhKW9QREREJCudKUpFR0cjIyMDNjY2onYbGxu8fv1a62Ps7e2xYcMGPH78GGq1GmfPnsWxY8fw6tUrAICZmRlat26N1atXIzw8HBkZGTh48CCuXbsmHENEZVO9evXh43MC48ZNAAAMGjQEY8Z8KHNURETlV7NmzbFo0VJcv34H3t7H8dVX8+QOiYiIiGSmJ3cAUnzzzTeYP38+XFxcoFAoUL16dQwePFg03G/RokX4+uuv4eDgAJVKhSZNmsDNzQ3BwcF5nldfXwWFoiSeQfHT01PJHQKVYqU9fwwMzLBs2Qr06tUb3bo5wNCwVF/ySp3Snj8kP+ZQWaVCly6di/2nMH9ICuYPScH8IanKUw7pzCc0KysrqFSqXJOaR0ZGwtbWVutjrK2tsXr1aqSkpCAmJgaVKlXCr7/+iurV/x2eU6NGDWzZsgWJiYlISEhApUqV8Nlnn4mOySktLaNonpSOSE0tW8+HSlZZyJ9evVwA5P1c/vjDA506dUGrVm1KMqxyoSzkD8mLOURSMH9ICuYPScH8IanKSw7pzPA9AwMDNG3aFIGBgUKbWq1GYGAgWrdu/dbHGhoaws7ODunp6Th69CicnZ1zHWNiYoJKlSohNjYWZ86c0XoMEZU/J08ew3fffQ03t15Yu/Z3rs5HRERERERUQnSmpxQAjB8/HnPmzEGzZs3QokULbNy4EUlJSRg8eDAAYPbs2bCzs8OXX34JALh+/TrCw8PRuHFjhIeHY+XKlVCr1Zg4caJwztOnT0Oj0aB27dp4+vQpFi1ahDp16gjnJKLy68WL55g2bRKAzIUTvvlmDs6cOY1lyzxgZWUtc3RERERERERlm04VpVxdXREVFYUVK1YgIiICjRs3xrp164They9evIBS+W/nrpSUFCxbtgyhoaEwMTGBo6MjFi1aBHNzc+GY+Ph4LFmyBC9fvoSlpSV69+6Nzz//HPr6+iX+/IhIt6xatTzXkGEfn0O4ceM6/vxzPdq16yBTZEREZcfVq5dRs2YtWFvbvPtgIiIiKlcUGo5VySUiIl7uEIqMgYGq3IxFpaJX1vMnLS0NP//8I1auXJprn56eHr7++j+YOnWGqBhO+VfW84eKH3Oo9NNoNGjXrjmeP3+GLl3s4eraD4MGDS2RAhXzh6Rg/pAUzB+SqqzkUMWKFd55DItSWrAoRZSpvOTPyZPHMG3apFy9pgDA2bkXVq5ck+eCC5S38pI/VHyYQ6XfjRvX4ezcTdR28uRZNGvWvNh/NvOHpGD+kBTMH5KqrORQfopS/PqfiMo9J6deOHnyLDp37ppr34kTx+Dk1BWBgWdliIyIqHQ7fNhTtF2jRi00bdpMpmiIiIhI17AoRUQE4L33qmDvXi98+eUcKBQK0b6XL19g0CA3LFmyCBkZpf8bCyKikuLtfUi07ebmnusaS0REROUXi1JERP+jp6eHOXO+we7dB1Gpkp1on1qtxs8//4jhwwchPDxcpgiJiEqPkJD7uHPntqjN1dVdpmiIiIhIF7EoRUSUg4NDd5w8eRYODj1y7Tt9+hRGjhwCTsdHRPR2hw+Le0lVrFgJ7dtzVVMiIiL6F4tSRERaVKpUCbt27cfXX38nWn1PoVBgwYKfOPyEiOgdfHy8RNsuLv24mikRERGJ8M6AiCgPSqUSn302CwcOeOO996oAAL74Yja6dXOUOTIiIt324sVzXL58SdTm6tpPpmiIiIhIV+nJHQARka7r1KkLTp48i7VrV2PWrLlyh0NEpPNyTnBubm4Be3sHmaIhIiIiXcWeUkRE+WBjY4O5c7+FSqXSul+j0WDHjq1IS0sr4ciIiHRPzqJUr159YGBgIFM0REREpKtYlCIiKgJ///0nZs78BP3798XTp0/kDoeISDbR0VE4d+60qI2r7hEREZE2LEoREUkUFHQN//nPNwCAy5cvwtm5W65eAkRE5cWRIz7IyMgQto2MjODk1FPGiIiIiEhXsShFRCSBWq3G9OmTkZqaKrTFxsZg3LhR+Oab2UhJSZExOiKikpezKN+9uzNMTU1lioaIiIh0GYtSREQSKJVKeHisQa1atXPtW7v2D7i59cLDhyEyREZEVPLevHmDU6dOiNq46h4RERHlhUUpIiKJWrRohRMnTmPQoCG59gUFXUPPng44eHCfDJEREZWslJRkfPzxJ6hTpy4AQKVSoU8fF5mjIiIiIl2l0Gg0GrmD0DUREfFyh1BkDAxUSE3NePeBRFowfwpGo9Fgy5aN+Oab2UhOTs61/4MPPsIPPyyEsbGxDNGVPOYPScUcKr00Gg3u3r2D69ev4v33R8kSA/OHpGD+kBTMH5KqrORQxYoV3nkMi1JasChFlIn5Uzi3bgXj448/xP3793Lta9y4Kdat24j69RvIEFnJYv6QVMwhkoL5Q1Iwf0gK5g9JVVZyKD9FKQ7fIyIqYk2aNMXRo/5aewfcvh2MXr0csWvXdhkiIyIiIiIi0h0sShERFQNTU1OsXPkHVqz4HSYmJqJ9iYlvMH36ZCxZskim6IiIiIiIiOTHohQRUTEaMWI0jh71R+PGTUXtJiamGDBgkExRERERERERyY9FKSKiYtagQUP4+p7E2LHjhbZff12GunXryxgVEVHRefHiOZ49C5M7DCIiIipl9OQOgIioPDA2NsZvvy2HvX03XL58EUOHvi93SERERWbNmtVYvXoFWrVqDVdXd/TvPxB16tSTOywiIiLScVx9TwuuvkeUiflT8lJSUhAS8gBNmjR998E6jvlDUjGHSgeNRoOOHVvh8eNHQtvnn8/CvHnfyRgV84ekYf6QFMwfkqqs5BBX3yMiKmUWLJiP3r0d8ddff4LfGRBRaXDrVrCoIAUArq7uMkVDREREpQmLUkREOuLwYS+sW7cGqampmDdvFj76aCxiY2PkDouI6K28vb1E29WqVUeLFq3kCYaIiIhKFRaliIh0wLNnYfjss2mitsOHPeHsnDkHFRGRrvL2PiTadnXtB4VCIVM0REREVJqwKEVEpAMqVbLD6NEf5Gp/+vQJ3N37YPXqlRzOR0Q65/HjRwgOviFqc3PrL1M0REREVNqwKEVEpAP09fXx/fc/YuvWXbC2thbtS09Px/fff4OxY99HVFSkTBESEeWWs5eUra0tOnToJFM0REREVNqwKEVEpEN69eqLkyfPomPHzrn2HT3qCycne/zzT6AMkRER5ZZzPqk+fVyhUqlkioaIiIhKGxaliIh0TJUqVbF//2F8/vmsXPOyPH/+DIMGuWL58t+gVqtlipCICAgPD8fFi+dFbW5uXHWPiIiI8o9FKSIiHaSnp4d5877Dzp37YWtbUbQvIyMDP/20AO+/PwivXr2SKUIiKu98fQ+L5rozM6uAbt26yxcQERERlTosShER6bDu3Z3g53cW3bo55trn7+8HJ6euCAq6VvKBEVG5l3PoXs+evWBoaChTNERERFQasShFRKTj7OwqY9euA5g9+2soleLLtr6+PqpXryFTZERUXsXGxuD0aX9RG1fdIyIiooJiUYqIqBRQqVSYNWsu9u71gp1dZaHtjz/+hpWV9TseTURUtI4dO4L09HRh29DQEM7OvWSMiIiIiEojPbkDICKi/OvatRv8/M5h+vRJ6NLFHh07cul1Iip5hw+Lh+45OHSHmVkFmaIhIiKi0opFKSKiUsbW1hbbtu156zFxcbEwNjaBvr5+CUVFROVJx46dEBYWiuvXrwLg0D0iIiIqHIUm+7IpBACIiIiXO4QiY2CgQmpqhtxhUCnF/Cmd1Go1Ro8ehri4OKxZ8zeqVasuSxzMH5KKOaT7wsJC4eNzCIMHD4eNjY3c4Ygwf0gK5g9JwfwhqcpKDlWs+O5e1JxTioiojFm9eiVOnDiGixfPw8mpK3x9veUOiYjKqGrVquPjjz/RuYIUERERlQ4sShERlSEXL57Hf/+7QNiOiYnBBx+MwLffzkNqaqqMkREREREREYmxKEVEVIYYGBigatVqudrXrFmFfv164fHjRzJERURERERElBuLUkREZUjLlq1x4sRpuLsPzLXv2rWrcHbuBi+vAyUeFxERERERUU4sShERlTHm5hZYt24jfvllCQwNDUX74uPjMGHCB5gz5wskJyfLFCERlUZqtRr37t0F18ghIiKiosKiFBFRGaRQKDB+/ER4e59A3br1cu1fv34dXFycERJyX4boiKg0unbtCuzt26Nr13b48cfvceXKJRaoiIiISBIWpYiIyrDmzVvg2DF/DBkyPNe+4OAb6NnTEXv37pIhMiIqbQ4f9gIAPHhwHytWLMH06ZOhUChkjoqIiIhKMxaliIjKODOzCli9ei2WL18NY2Nj0b43bxLwyScT8fnn05GUlCRThESk6zQaDby9vURtbm79ZYqGiIiIygoWpYiIygGFQoGRI8fgyJFTaNiwUa79t28HQ6VSyRAZEZUG9+7dRUjIA1Gbq2s/maIhIiKisoJFKSKicqRRo8Y4cuQURo/+QGgzN7fAmjXrYWBgIGNkRKTLDh/2FG1XqVIVrVq1kSkaIiIiKitYlCIiKmdMTEywdKkHVq9eC1NTMyxbtgo1a9aSOywi0mHe3odE2y4ubpxPioiIiCTTkzsAIiKSx9Ch76N7d2fY2trmeUxGRgaH9RGVc6GhTxEUdE3UxvmkiIiIqCiwpxQRUTn2toJUYmIiXFycsGHDX1z2nagcyznBubW1NTp16iJTNERERFSWsChFRERazZ8/B9euXcXs2Z/j44/HIS4uVu6QiEgGOYfu9e7tAj09drYnIiIi6ViUIiKiXPbu3YUtWzYK256e++Hs3A3Xrl2RMSoiKmmvX7/G+fOBojZXV3eZoiEiIqKyhkUpIiLK5f79u7nanjx5DDe3Xvjzz9UczkdUThw54g21Wi1sm5iYwtGxh4wRERERUVnCohQREeUyd+632LRpBywtLUXtaWlpmD9/Lj78cCSio6PkCY6ISszhw56ibWfnXjA2NpYpGiIiIiprWJQiIiKt+vZ1xcmTZ9G+fcdc+3x9veHs3A0XL56XITIiKgnx8XEICDglanN17SdPMERERFQmsShFRER5qlatOg4c8MbMmV/k2hcWFor+/fti5cplouE9RFQ2nDhxDKmpqcK2vr4+evXqI2NEREREVNawKEVERG+lr6+P+fO/x44de2Frayval5GRgR9++A6jRg3F69evkZycjF27tmP8+DHo168vxo8fg127tiM5OVmm6ImosMzNzdG1azcolZm3i926OcLc3ELmqIiIiKgsUWg4W20uERHxcodQZAwMVEhNzZA7DCqlmD+U08uXL/DJJxNx9uzpXPssLa2QlpaGN28SoFQqoVarhf9bWFjCw2MN+vRxkSFqKq14DdINkZGROHrUB3Z2leHk1FPucPKN+UNSMH9ICuYPSVVWcqhixQrvPIZFKS1YlCLKxPwhbTIyMvDbb7/gt99+yfcqfAqFAgCwceN29O3rWpzhURnCaxBJwfwhKZg/JAXzh6QqKzmUn6IUh+8REVGBqFQqzJ79Nfbs8USlSnb5ekxW8WrGjCkcykdERERERABYlCIiokLq1s0RJ0+eRaNGjfN1vEajQWxsDLy8DhRvYEREREREVCqwKEVERIVWqVIl1K1bTxie9y5KpRLe3oeKOSoiIiIiIioNWJQiIiJJoqOj8z23lFqtRnR0VDFHRERSPHsWBrVaLXcYREREVA7oyR0AERGVblZW1sIqe++iVCphZWVdAlERUWFoNBq4u/dBeno6XFzc4ObWH507d4W+vr7coREREVEZxJ5SREQkiYuLW757VajVari69ivmiIiosIKCriEsLBQvX77A+vXrMHRof9y/f0/usIiIiKiMYlGKiIgk6d9/ECwsLN85r5RCoYCFhSXc3QeWTGBEVGDe3l6i7dq166Bx4yYyRUNERERlHYtSREQkiZGRETw81gDAWwtTGo0GHh5rYGRkVFKhEVEB5VyIwNXVPd8LGRAREREVFItSREQkWZ8+Lti4cTvMzS0AZM4dlZOpqSm6du1W0qERUT49eHAfd+/eEbVxuC0REREVJxaliIioSPTt64obN+5h1ao/4eLSD61btxHtf/PmDbZs2SBPcET0TjmH7tnZVUbbtu1lioaIiIjKA50rSm3duhVOTk5o3rw5hg0bhqCgoDyPTUtLg4eHB3r27InmzZujf//+CAgIEB2TkZGBZcuWwcnJCS1atEDPnj2xatWqfC9fTkRE+WdkZIRhw0Zg/fot8PM7jT59XET7f//dAykpKTJFR0Rvk7Mo5eLiprXXIxEREVFR0ak7DW9vbyxcuBDTpk3D/v370ahRI0yYMAGRkZFaj1+2bBl27tyJb7/9Ft7e3hgxYgSmT5+OW7duCcesXbsW27dvx3fffQdvb2/MmjUL69atw+bNm0vqaRERlVszZnwh2n7x4jn27NkpUzRElJfnz5/hypXLojZXV3eZoiEiIqLyQqeKUuvXr8fw4cMxZMgQ1KtXDwsWLICRkRH27t2r9fiDBw9iypQpcHR0RPXq1TFq1Cg4Ojri77//Fo65evUqnJ2d0b17d1SrVg19+/aFvb39W3tgERFR0ejQoSM6d+4qavPwWIaMjAyZIiIibXx8xBOcW1hYcg44IiIiKnY6U5RKTU1FcHAwunTpIrQplUp06dIFV69e1fqYtLQ0GBgYiNoMDQ1x5coVYbt169b4559/8OjRIwDAnTt3cPnyZTg4OBTDsyAiopw+/VTcWyok5EGuYUJEJK+cq+716tUH+vr6MkVDRERE5YWe3AFkiY6ORkZGBmxsbETtNjY2ePjwodbH2NvbY8OGDWjfvj1q1KiBwMBAHDt2TPQN/KRJk5CQkAAXFxeoVCpkZGTg888/R//+/fOMRV9fhbKy+rGenkruEKgUY/6QFFn506dPHzRv3gI3bvzbQ3XFiiUYPHgwl5qnt+I1qGRERUXi3LkzorYBAwbCwKB0v/7MH5KC+UNSMH9IqvKUQzpTlCqMb775BvPnz4eLiwsUCgWqV6+OwYMHi4b7+fj4wMvLC7/99hvq1auH27dvY+HChahUqRIGDRqk9bxpaWVrWElqatl6PlSymD8kRVb+zJjxOSZNGi+0X79+DUePHkOPHs5yhUalBK9Bxe/QocOiL/SMjY3RrVuPMvHal4XnQPJh/pAUzB+SqrzkkM4M37OysoJKpco1qXlkZCRsbW21Psba2hqrV6/GtWvX4OfnB19fX5iYmKB69erCMYsWLcKkSZPg5uaGhg0bYuDAgfjwww+xZs2aYn0+RET0L3f3gahdu46obeXKpTJFQ0TZ5RxO2727M0xMTGSKhoiIiMoTnSlKGRgYoGnTpggMDBTa1Go1AgMD0bp167c+1tDQEHZ2dkhPT8fRo0fh7PzvN+/Jycm5hoeoVCpoNJqifQJERJQnlUqF6dM/E7WdOROAy5cvyhMQEQEAEhIS4Od3QtTm6tpPpmiIiIiovNGZohQAjB8/Hrt27cL+/fsREhKC77//HklJSRg8eDAAYPbs2fjtt9+E469fv46jR48iNDQUly5dwsSJE6FWqzFx4kThmB49euCPP/7AqVOnEBYWhmPHjmH9+vXo2bNniT8/IqLybPjwkbCzqyxsGxkZ4fbtWzJGRETR0VHo0cMZhoaGAAA9PT307t1X5qiIiIiovNCpOaVcXV0RFRWFFStWICIiAo0bN8a6deuE4XsvXryAUvlvHS0lJQXLli1DaGgoTExM4OjoiEWLFsHc3Fw4Zv78+Vi+fDkWLFiAyMhIVKpUCe+//z6mTZtW4s+PiKg8MzQ0xJQp07F06WJ89NHHmDhxCipVqiR3WETlWvXqNbBp047/9Zg6jocPQ2BlZS13WERERFROKDQcx5ZLRES83CEUGQMDVbmZII2KHvOHpNCWP4mJiUhPT4O5uYVMUVFpwmsQScH8ISmYPyQF84ekKis5VLFihXceo1M9pYiIqGzj5MlERERERJRFp+aUIiIiIiIiIiKi8oFFKSIiIiIiIiIiKnEsShERkezi4mIRGHhW7jCIyo3Y2BikpaXJHQYRERGVcyxKERGRbF69eoWfflqA1q2bYuzYEYiPj5M7JKJy4bffFqFJk7qYOvVjHD7shcTERLlDIiIionKIRSkiIpJFZGQkOnRogeXLf0N8fBzi4mKxYcPfcodFVOZpNBp4ex9CbGwM9uzZifHjR8PDY5ncYREREVE5xKIUERHJwsbGBt27O4va1qxZheTkZJkiIiofgoNv4unTx6I2F5d+8gRDRERE5RqLUkREJJuZMz8Xbb96FY6dO7fJFA1R+XD4sKdou0aNmmjWrLlM0RAREVF5xqIUERHJpk2bdujWzVHU5uGxDOnp6TJFRFT2eXsfEm27uPSDQqGQKRoiIiIqz1iUIiIiWc2c+YVo+8mTx/D03C9TNERl28OHIbh9O1jU5ubWX6ZoiIiIqLxjUYqIiGTl4NAdrVq1FrWtWLEUGo1GpoiIyq6cvaRsbSuiffsOMkVDRERE5R2LUkREJCuFQoGZM78Utd26dRMnThyVKSKissvb20u07eLiBpVKJVM0REREVN6xKEVERLJzde2HevXqi9qWL18iUzREZVN4+EtcunRB1ObqylX3iIiISD4sShERkeyUSiVmzBCvxHf+fCD++SdQpoiIyp6cQ/cqVDCHvb1jHkcTERERFT8WpYiISCcMGTIcVapUFbWtXMneUkRFJefQvV69esPQ0FCmaIiIiIhYlCIiIh1hYGCAqVNniNqOHTuC4OCbMkVEVHbExETj7NnTojZXV3eZoiEiIiLKxKIUERHpjNGjP4S1tbWojb2liKQ7duwI0tPThW1DQ0M4OfWSMSIiIiIiFqWIiEiHmJqaYuLEKaK2iIgI0YdpIiq4w4fFQ/e6d3eCmZmZTNEQERERZWJRioiIdMqECZNgZlYBffq44NChY9i71wt6enpyh0VUqtnY2MLc3ELY5tA9IiIi0gUKjUajkTsIXRMRES93CEXGwECF1NQMucOgUor5Q1JIyZ/Xr1/D1ta2iCOi0obXoKKVmpqKs2dP4/BhL8yb9y1sbGzkDqlYMX9ICuYPScH8IanKSg5VrFjhncewKKUFi1JEmZg/JAXzh6RiDpEUzB+SgvlDUjB/SKqykkP5KUpx+B4REREREREREZU4FqWIiIiIiIiIiKjEsShFRESlgkajwbFjvkhMTJQ7FCIiIiIiKgIsShERkU5LT0/H3r270L17F4wePRzbt2+WOySiUkGtVuPNmzdyh0FERESUJxaliIhIp33xxQx88slE3L4dDABYtWoF0tLSZI6KSPddvnwRTZrUwQcfjMSOHVsRHR0ld0hEREREIixKERGRThsxYrRoOywsFPv375EpGqLSw9v7EJKSkuDrexgzZ36CgQPd5A6JiIiISIRFKSIi0mmdO3dFu3YdRG0rVy6FWq2WKSIi3afRaODt7SVq69PHRaZoiIiIiLRjUYqIiHSaQqHAp59+KWq7e/cOjhzxkSkiIt13585tPHr0UNTm6tpPpmiIiIiItGNRioiIdF6vXn3QuHETUduKFb9Bo9HIFBGRbjt82FO0XbVqNbRs2VqmaIiIiIi0Y1GKiIh0nlKpxPTpn4naLl++hHPnzsgTEJGO8/Y+JNp2de0HhUIhUzRERERE2hW6KJWfuTxiYmIKe3oiIiKRQYOGokaNmqK25ct/kykaIt315Mlj3LwZJGpzdXWXKRoiIiKivBW6KPXVV1+9ddhEeHg4xowZU9jTExERiejp6WHq1JmitlOnTiIo6Jo8ARHpKB8fcS8pa2trdOzYWaZoiIiIiPJW6KLUiRMn8PXXX2vdFxoailGjRiEuLq7QgREREeU0cuQY2NpWFLWtWLFUpmiIdNPhw+JV9/r2dYOenp5M0RARERHlrdBFKQ8PDxw+fBj/+c9/RO0hISEYNWoUAGDr1q3SoiMiIsrG2NgYkydPFbV5eR1ASMh9mSIi0i2vXr3ChQv/iNq46h4RERHpqkIXpezt7bF8+XLs3bsXP/30EwDg5s2bGD16NMzNzbFt2zZUr169yAIlIiICgPHjJ6JCBXNhW6PRwMNjuYwREemOI0e8RdMrmJqawcGhh4wREREREeVN0up7PXr0wJIlS7B9+3Z8+eWXGDduHKpUqYItW7bAzs6uqGIkIiISmJtbYPz4iaK2Xbu248WL5zJFRKQ7Dh/2FG07O/eCkZGRTNEQERERvZ2kohQA9O7dG7/88gt8fHzQqFEjbNq0CVZWVkURGxERkVaTJk2FoaGhsG1tbYOHD0NkjIhIfnFxsTh92l/U5ubGVfeIiIhId+V71kt397ff1BgaGiIiIgIjR44U2hQKBTw9Pd/yKCIiooKrVKkSRo4cA39/P0yf/hmGDx8pKlIRlUfHjx9FWlqasG1gYICePXvLGBERERHR2+W7KGVpaSlpPxERUVH67rv/g7GxCVQqldyhEOmEpKQk2NlVRnj4SwBAt26OovnXiIiIiHSNQpN9NkwCAERExMsdQpExMFAhNTVD7jColGL+kBTMH5KKOVRwarUaly9fhLf3IbRp0w7u7gPkDkk2zB+SgvlDUjB/SKqykkMVK1Z45zH57ilFRERERLpNqVSiffuOaN++o9yhEBEREb2T5KJUYGAgzp8/j6ioKFhZWaFz587o1KlTUcRGRERERERERERlVKFX3wsODka/fv0we/ZsvHr1CpaWlnj+/DmmTp2KyZMnIyUlpSjjJCIiypeHD0Nw/vw/codBRERERETvUKieUpcuXcLkyZMxcuRIfPrpp9DX1xf2RUZG4sMPP8SiRYvw7bffAsiceNPY2LhoIiYiItLixo0grFy5BJ6eB1CnTl2cPn2Bk6ATEREREemwAveUSkhIwKxZszB06FDMmjVLVJACABsbG8ydOxe7d+9GSkoKTp48if79+yMhIaHIgiYiIsru6tXLcHa2x4ED+6BWq/HgwX14ex+SOyyiEpGamip3CERERESFUuCeUlu2bAEAfPnll4iLi8PAgQOhUChEx6jVaqSmpuL+/fvo2rUrMjIysHbtWnz++edFEzUREVE2rVq1QbNmLXDzZpDQtmLFEvTr1z/XexRRWaLRaNClS1vUrFkLrq794OLSD1WqVJU7LCIiIqJ8KXBPqcOHD6Nfv34wMDCAiYkJpk+fjujoaHTo0AETJkxA7969ERcXh08//RS1atWCoaEhxowZg927d0Oj0RTHcyAionJOoVBg5kzxFx/Xr1+Fv7+fTBERlYxr167g6dMnOH3aH/PmfYVWrRrj0aOHcodFRERElC8FKkppNBo8evQITZo0AQDo6elhz549GDFiBBYuXIhRo0Zhzpw5WLBgATZt2iQM7evcuTOio6Px8CFvkoiIqHi4uw9E7dp1RG0rVy6VKRqikpFzmGqdOnVRq1ZtmaIhIiIiKpgCFaWSkpKQnp4OMzMzAEBycjKuXLmCdu3aiY5r06YNoqOjcfv2bQCAlZUVNBoNoqOjiyhsIiIiMZVKhenTPxO1nT7tjytXLskTEFEJOHzYU7Tt6urOIatERERUahSoKGViYgJjY2OEh4cDAAwMDGBsbIyrV6+Kjrty5QoUCgXMzc0BZK7Ip1AoYGVlVURhExER5TZ8+EjY2VUWtS1fvkSmaIiK1717d/HgwX1Rm5ubu0zREBERERVcgSc6b9++Pc6dO4dhw4ZBqVRiwoQJWL16NaKiotC8eXM8ffoU27dvh5OTE+rUyRxGcfHiRZibmwvbRERExcHQ0BBTpkzHggXzhTYfn0O4e/cOGjZsJGNkREXP29tLtF258nto3bqtTNEQERERFVyBJzofNGgQjh8/jtDQUADA9OnTsXz5ckRERGDz5s0IDg7Gl19+ieXLlwMA0tLSsGXLFri7szs5EREVvw8/HA8LC0tRm4fHMlliISpOOYtSLi5uUCoLfGtHREREJBuFphBL4o0ePRqJiYnYtm0bjI2N33rsN998g1OnTuHQoUOlZvheRES83CEUGQMDFVJTM+QOg0op5g9JIWf+/PzzD1iyZLGwraenhwsXrqNateqyxEOFw2tQ3sLCQtGmTVNR2549nnBw6C5PQDqI+UNSMH9ICuYPSVVWcqhixQrvPKZQX6etXLkSKSkpGDFiBO7evav1mNevX2PGjBk4evQofv/991JTkCIiotJv4sRPRF+apKenY/XqFTJGRFS0fHzEq+5ZWlqic+euMkVDREREVDgFnlMKAKytrbF792789NNPGDJkCFq3bo2OHTvCzs4O8fHxuH79Ovz9/dG8eXPs2bMHNWvWLOq4iYiI8mRra4sxYz7E2rV/CG1bt27CF1/Mga2trYyRERUNb29xUap3bxfo6+vLFA0RERFR4RRq+F52T58+xfHjxxEcHIyYmBiYmpqibt266NGjB1q0aFFUcZYoDt8jysT8ISnkzp+wsFB06NAS6enpQtsXX3yFuXO/lS0mKhi5c0hXRUZGomnTulCr1ULbxo3b4eLiJmNUuof5Q1Iwf0gK5g9JVVZyKD/D9wrVUyq7GjVq4KOPPpJ6GiIioiJVrVp1DBkyHDt3bgOQOa9UQkKCzFERSXfkiLeoIGViYoLu3Z1kjIiIiIiocIp8iZbQ0FCEhIQU9WmJiIgKbMaMz2FiYoqPP56CCxeu48cff5E7JCLJcq665+TU650LzxARERHpokL3lNq0aROuXr2KpUuXCm3z5s3DgQMHAACNGzfG2rVrYWNjIzlIIiKiwmjQoCFu3rwHM7N3dx0mKg0SEuLh7+8nanN17SdTNERERETSFLqn1O7du0UFp9OnT2P//v0YPnw45s+fj7CwMHh4eBRJkERERIXFghSVJU+fPkXVqtWEbT09PfTq1UfGiIiIiIgKr9A9pZ4/f466desK2z4+PqhWrRoWLFgAAHj9+jUOHjwoPUIiIiIiAgA0adIUgYFXcPfuHXh7e+H16whYWFjKHRYRERFRoRS6KJVz0b6zZ8/C2dlZ2K5atSpev35d+MiIiIiIKBeFQoFGjRqjUaPGcodCREREJEmhh+/VqlULx48fB5A5dO/Vq1dwcHAQ9r98+RLm5ubSIyQiIipiiYmJ2LVre64vWIiIiIiIqOQUuqfUhAkT8OWXX6J9+/ZISkpC3bp1YW9vL+w/f/48GjVqVCRBEhERFYXY2Bj8/fdarF37O16/fg0bGxs4O/eWOywiIiIionKp0EUpNzc3WFpawt/fH+bm5hg1ahT09DJPFxMTAwsLCwwYMKDIAiUiIpJq+PCBuHr1irC9fPkSFqWIiIiIiGSi0HDsQi4REfFyh1BkDAxUSE3NkDsMKqWYPySFLubPtm2b8dln00RtXl5H0bFjJ5kiorfRxRySi1qthlJZ6FkXyiXmD0nB/CEpmD8kVVnJoYoV370KdpHe3SQlJWHPnj3Ytm0bnj17VujzbN26FU5OTmjevDmGDRuGoKCgPI9NS0uDh4cHevbsiebNm6N///4ICAgQHePk5ISGDRvm+i9rpUAiIiofhg59H1WqVBW1rVy5RKZoiPLvP//5Br17O2L58t9w//49ucMhIiIiKhKF7in19ddfIygoCIcOHQIApKamYsiQIbh//z4AoEKFCti4cSOaNGlSoPN6e3tj9uzZWLBgAVq2bImNGzfC19cXvr6+sLGxyXX84sWL4enpiR9//BF16tTB6dOn8fPPP2PHjh3Cz46KikJGxr9Vxvv372P8+PHYtGkTOnbsmOuc7ClFlIn5Q1Loav6sWbMK3347T9R26lQgmjRpKlNElBddzaGSptFo0K5dc4SGPhXafvhhISZPnvaWRxHzh6Rg/pAUzB+SqqzkULH2lDp//jx69eolbB86dAj379/Hr7/+ikOHDsHW1hYeHh4FPu/69esxfPhwDBkyBPXq1cOCBQtgZGSEvXv3aj3+4MGDmDJlChwdHVG9enWMGjUKjo6O+Pvvv4VjrK2tUbFiReE/Pz8/1KhRAx06dCj4EyciolJtzJhxsLa2FrWtWMHeUqS7bt4MEhWkAKBrV4c8jiYiIiIqPQpdlHr9+jWqVv13CMTx48fRrFkz9OvXD/Xq1cPw4cPfOuxOm9TUVAQHB6NLly7/BqhUokuXLrh69arWx6SlpcHAwEDUZmhoiCtXrmg9PjU1FZ6enhgyZAgUCkWB4iMiotLP1NQUEydOEbUdOLAXjx8/kikiorc7fNhTtF2zZi00bdpMpmiIiIiIik6hV98zNjZGfHzmMLf09HRcuHABY8aMEfabmpoK+/MrOjoaGRkZuYbp2djY4OHDh1ofY29vjw0bNqB9+/aoUaMGAgMDcezYMdFwveyOHz+O+Ph4DBo0KM849PVVKCv1Kj09ldwhUCnG/CEpdDl/PvnkE6xatRxv3rwBkDmJ9Jo1Hvjtt2XyBkYiupxDJcnH55Bo2929PwwNC30LV24wf0gK5g9JwfwhqcpTDhX6jqZp06bYtWsXOnbsiJMnT+LNmzdwcnIS9j99+lTrHFBF7ZtvvsH8+fPh4uIChUKB6tWrY/DgwXkO99u7dy8cHBxgZ2eX5znT0kr/2M3sysJYVJIP84ek0NX8MTW1wNix4/HHH/8OM9+yZRM++2z2W98fqOTpag6VlJCQ+7h9+7aorU+ffuX+dckvvk4kBfOHpGD+kFTlJYcKPXzvs88+Q1RUFIYMGQIPDw/07t0bLVq0EPYfO3YMbdq0KdA5raysoFKpEBkZKWqPjIyEra2t1sdYW1tj9erVuHbtGvz8/ODr6wsTExNUr14917HPnj3DuXPnMHTo0ALFRUREZc8nn0yHvr6+sJ2SkoI//1wtY0REuR0+LO4lVamSHdq355yYREREVDYUuijVvHlz+Pj4YOXKldi0aROWL18u7IuLi8OoUaMwYcKEAp3TwMAATZs2RWBgoNCmVqsRGBiI1q1bv/WxhoaGsLOzQ3p6Oo4ePQpnZ+dcx+zbtw82Njbo3r17geIiIqKy5733quD990eJ2jZs+AtxcbEyRUSUm4+Pl2i7b183KJWFvn0jIiIi0imS7mqsra3Rs2fPXKvYmZub48MPP0Tjxo0LfM7x48dj165d2L9/P0JCQvD9998jKSkJgwcPBgDMnj0bv/32m3D89evXcfToUYSGhuLSpUuYOHEi1Go1Jk6cKDqvWq3Gvn37MHDgQOjpcR4GIiICpk//VLToRXx8HNavXydjRET/evHiOS5fviRqc3XtJ1M0REREREWvSKozCQkJSEhIgFqtzrWvSpUqBTqXq6sroqKisGLFCkRERKBx48ZYt26dMHzvxYsXom8IU1JSsGzZMoSGhsLExASOjo5YtGgRzM3NRec9d+4cnj9/jiFDhhTiGRIRUVlUp049uLsPhKfnfqFtzZrVmDRpKoyNjWWMjAjw8Tks2jY3t4C9vYNM0RAREREVPYVGo9EU9sHbtm3Dhg0bEBoamucxOSfnLA0iIgq2aqAuMzBQlZsJ0qjoMX9IitKSPzduXIezczdhu1Wr1lizZj1q164jY1QElJ4cKi5DhvTH6dOnsm0Px++/sydffpX3/CFpmD8kBfOHpCorOVSxYoV3HlPonlLbt2/H//3f/8He3h5DhgzB0qVLMW7cOBgaGmLfvn2wtbXF2LFjC3t6IiKiEtG8eUv06OGM9PQMzJz5ORwcuouG9BHJITo6CufOnRa1ubq6yxQNERERUfEodFFqy5YtsLe3x7p16xAdHY2lS5fC0dERnTt3xsSJEzFkyBDExMQUYahERETFY8OGbRyuRzrl6FFfZGT8+w2pkZERnJx6yhgRERERUdEr9ETnT58+RY8ePQBAWFI7LS0NAFChQgUMHToU27ZtK4IQiYiIihcLUqRrvL0Piba7d3eGqampTNEQERERFY9CF6UqVKggfINnZmYGY2NjvHz5UthvamqK169fS4+QiIiIqBzRaDSIjo4StXHVPSIiIiqLCj18r379+rhz546w3bJlS2zfvh2Ojo5Qq9XYuXMnatWqVRQxEhEREZUbCoUCnp6+CA19Ch+fQ/D19UafPi5yh0VERERU5Aq9+t7evXuxY8cObN26FQYGBrh8+TLGjx8vDOHT09PDypUr0b1796KMt0Rw9T2iTMwfkqK0549Go8HZs6dhYWGB5s1byh1OuVTac4jkxfwhKZg/JAXzh6QqKzmUn9X3Cl2U0iY0NBQnT56ESqVC165dUbt27aI6dYliUYooE/OHpCit+aNWq3HkiA9WrPgNly9fQo8ezti5c7/cYZVLpTWHSDcwf0gK5g9JwfwhqcpKDuWnKFXo4XtZ7t27B39/fzx79gwAULVqVTg4OJTaghQREZVvu3fvwIwZU4RtP78TuHHjOntLEREREREVsUL3lEpNTcV3332HgwcPQqPRQKnMnDNdrVZDoVDA3d0dP/74IwwMDIo04JLAnlJEmZg/JEVpzZ+kpCS0bdtUtFjHgAGDsXbtBvmCKqdKaw6RbmD+kBTMH5KC+UNSlZUcyk9PqUKvvrd48WIcOHAAI0eOhLe3N4KCgnDjxg14e3tjxIgR8PT0xOLFiwt7eiIiIlkYGxtj0qSpojYvrwN4+PCBTBFReVGEMyoQERERlQqFLkp5enpiwIAB+O6771CnTh3o6elBpVKhTp06+M9//gN3d3d4enoWZaxEREQlYvz4iTAz+/ebHbVaDQ+P5TJGROXBxYsX0KVLW/z44/e4cuUSi1RERERU5hW6KJWeno6WLfOeX6N169bIyCj93c2IiKj8sbCwxPjxE0VtO3duw4sXz2WKiMoDb28vPHhwHytWLEHfvk4YNmyg3CERERERFatCF6Xs7e1x5syZPPefPn0aXbt2LezpiYiIZDVp0lQYGhoK22lpafjjj1UyRkRlmUajweHD4h7mbdu2lSkaIiIiopJR6KLUp59+irCwMEyfPh2BgYF49uwZnj17hnPnzmHatGl4/vw5Pv30U8TExIj+IyIiKg3s7OwwYsQYUdvGjX8jOjpKpoioLLt1KxhPnjwWtbm59ZcnGCIiIqISUujV9xo1avTvSRQK0b6sU+ZsB4Dbt28X5seVKK6+R5SJ+UNSlIX8efz4ETp1ag21Wi20zZ79NWbNmitjVOVHWcih/Fq8eCEWL14obFevXgOXLt3Qei9F+VOe8oeKHvOHpGD+kFRlJYfys/qeXmFPPm3aNN4oERFRmVarVm0MHDgE+/btFtrWrfsDn3wyA6ampjJGRmWNt/ch0baraz/eZxEREVGZV+ii1IwZM4oyDiIiIp00Y8bnoqJUVFQUtmzZgMmTp8kYFZUljx8/QnDwDVGbq6u7TNEQERERlZxCzylFRERUHjRt2gy9evURtf3+uwdSU1NliojKmpy9pGxtbdGhQyeZoiEiIiIqOSxKERERvcPMmV+Ktp8/f4a9e3fJFA2VNd7eXqLtvn3doFKpZIqGiIiIqOSwKEVERPQOHTt2QqdOXYRta2trpKWlyRgRlRXh4eG4ePG8qM3VtZ9M0RARERGVrELPKUVERFSezJz5OZ4+fYJPPpmOMWPGcaJzKhK+voeRfSFkM7MK6Natu3wBEREREZUgFqWIiIjywdm5Ny5cuA4DAwO5Q6EyJOfQvV69esPQ0FCmaIiIiIhKFofvERER5YNCoWBBiopUXFwszpwJELVx1T0iIiIqT1iUIiIiIpLBsWNHRHOTGRoawtm5l4wREREREZUsFqWIiIiIZBAS8gBK5b+3Yo6OPWBmVkHGiIiIiIhKFotSREREErx48Rzbt2+ROwwqhWbP/hrBwSFYvnw1evfuiwEDBssdEhEREVGJUmiyL/lCAICIiHi5QygyBgYqpKZmyB0GlVLMH5KirOdPSMh9eHgsx65d25GWloYzZy6iQYOGcodVppT1HKLixfwhKZg/JAXzh6QqKzlUseK7e4CzpxQREVEBpaSkwNW1J7Zu3STMCbRy5VKZoyIiIiIiKl1YlCIiIiogQ0NDjBs3QdS2d+8uhIWFyhQREREREVHpw6IUERFRIXz88VQYGxsL2+np6fj995UyRkREREREVLqwKEVERFQItra2GDVqrKhty5aNeP36tUwRERERERGVLixKERERFdLUqTOhp6cnbCclJWHdut9ljIh0nVqtRt++PTBnzhfw9/cT5iQjIiIiKo9YlCIiIiqk6tVrYPDgYaK2v/5ai4SEsrOKKxWtq1cv48qVy1i/fh2GDRuApk3rIjw8XO6wiIiIiGTBohQREZEEM2Z8LtqOjY3Bxo3rZYqGdJ239yHRtq1tRVSqVEmmaIiIiIjkxaIUERGRBA0bNoKLSz9R2x9/eCAlJUWmiEhXaTQaeHt7idpcXd2hUChkioiIiIhIXixKERERSTRzpri3VHj4S+zcuU2maEhX3bt3FyEhD0Rtrq798jiaiIiIqOxjUYqIiEiitm3bw97eQdTm4bEMGRkZMkVEuujwYU/RdpUqVdGqVRuZoiEiIiKSH4tSRERERWDmzC9E248fP4KX1wF5giGdlHM+KRcXNyiVvBUjIiKi8ot3QkREREXA0bEHWrZsLWpbvnwJNBqNTBGRLgkNfYqgoGuiNldXd3mCISIiItIRLEoREREVAYVCIZpbSqFQoE6dukhIiJcxKtIVPj7iXlJWVlbo3LmrTNEQERER6QY9uQMgIiIqK1xd3dG4cVO0adMW06Z9inr16ssdEumIw4fFq+716eMKPT3ehhEREVH5xrshIiKiIqJSqXD8eAD09fXlDoV0yOvXr3H+fKCojUP3iIiIiDh8j4iIqEixIEU5HTniDbVaLWybmJjC0bGHjBERERER6QYWpYiIiIiKkbe3eOies3MvGBsbyxQNERERke5gUYqIiIiomMTHx8Hf30/U5uraT6ZoiIiIiHQLi1JERETFLDU1Fdu3b8GTJ4/lDoVKWHDwTSgUCmFbX18fvXr1kTEiIiIiIt3Bic6JiIiKyZs3b7Blywb8/rsHnj9/hnHjJmDRoqVyh0UlqFOnLrh9+xH8/I7j8GEvZGRkwNzcQu6wiIiIiHSCQqPRaOQOQtdERMTLHUKRMTBQITU1Q+4wqJRi/pAUzB/gxx+/x4oVS4RtQ0NDXLp0E3Z2djJGVXowh0gK5g9JwfwhKZg/JFVZyaGKFSu88xgO3yMiIiomH330sWg1vpSUFKxd+7uMERERERER6Q4WpYiIiIpJlSpVMXz4SFHb+vXrEBcXK1NERERERES6g0UpIiKiYjR9+qeiia7j4+Owfv06GSMiIiIiItINLEoREREVo7p166NfvwGitjVrViMpKUmmiIiIiIiIdAOLUkRERMXs00+/EG2/fh2B7du3yBQNlYRffvkJU6d+jMOHvZCYmCh3OEREREQ6iUUpIiKiYtaiRSt07+4kalu9egXS09NlioiKk0ajwc6d27Bnz06MHz8ajRvXxv79e+QOi4iIiEjnsChFRERUAmbOFPeWevr0CQsVZVRQ0DWEhYUK20lJSWjYsLGMERERERHpJhaliIiISkDXrt3Qtm07UdvKlUuhVqtlioiKi7e3l2i7Vq3aaNy4iUzREBEREekuFqWIiIhKgEKhwMyZX4ra7ty5jWPHjsgUERWXw4fFRSlXV3fRCoxERERElIlFKSIiohLSp48LGjZsJGpbvvw3aDQamSKiovbgwX3cu3dX1Obm5i5TNERERES6jUUpIiKiEqJUKjF9+meitkuXLuCff87JExAVuZxD9+zsKqNt2/YyRUNERESk21iUIiIiKkGDBw9DtWrVhe2GDRshLS1NxoioKB0+7Cna7tvXDUolb7eIiIiItOFdEhERUQnS19fH1Kkz0LZtO2zcuB3+/v/AwaG73GFREXj+/BmuXr0iauPQPSIiIqK86ckdABERUXkzfvzHmDBhMie/LmN8fA6Jti0sLNG1azeZoiEiIiLSfSxKERERlTCVSiV3CFQMcq6616tXH+jr68sUDREREZHu4/A9IiIiIomioiIRGHhW1Obm1l+maIiIiIhKBxaliIiIiCQ6etQXGRkZwraxsTF69HCWMSIiIiIi3ceiFBERkY64cuUSdu7cJncYVAg5V93r3t0ZJiYmMkVDREREVDpwTikiIiIZaTQa+Pv7YeXKpTh92h+mpmbo3bsvrKys5Q6N8ik9PZ2r7hEREREVgs71lNq6dSucnJzQvHlzDBs2DEFBQXkem5aWBg8PD/Ts2RPNmzdH//79ERAQkOu48PBwzJo1Cx07dkSLFi3g7u6OGzduFOfTICIiypdnz8IwYsRgnD7tDwB48yYBf/+9VuaoqCD09PRw5UowduzYhw8++AhVq1ZD79595Q6LiIiISOcpNBqNRu4gsnh7e2P27NlYsGABWrZsiY0bN8LX1xe+vr6wsbHJdfzixYvh6emJH3/8EXXq1MHp06fx888/Y8eOHWjSpAkAIDY2FoMGDULHjh0xcuRIWFlZ4cmTJ6hRowZq1KihNY6IiPhifZ4lycBAhdTUjHcfSKQF84ekYP7k35QpH2Hfvj3CtrW1NS5fDoapqamMUcmvtOaQRqOBQqGQO4xyr7TmD+kG5g9JwfwhqcpKDlWsWOGdx+hUT6n169dj+PDhGDJkCOrVq4cFCxbAyMgIe/fu1Xr8wYMHMWXKFDg6OqJ69eoYNWoUHB0d8ffffwvHrF27FpUrV8bChQvRokULVK9eHfb29nkWpIiIiEra9Omfi7ajoqKwdetGmaIhqViQIiIiIsofnSlKpab+f3v3HRbF2bUB/N4CrDTpaBQ1NiyIPdaIYKGIDcWO3QQVe6K+aopGP6OJDXvB3ruiCKKxxxiNvUVjRUWkSpWyO98fxI0rVRYYyv27Lq44zz4zc2Y9weXwlBTcuXMHLVu2VLdJpVK0bNkS165dy/Sc1NRU6OrqarTp6enh6tX/1nX47bffYGdnh7Fjx6JFixbo1q0bdu/eXTAPQURElAd2dvXQvn1HjbaVK5chJSVFpIiIiIiIiApekSlKRUdHQ6lUZpimZ25ujoiIiEzPad26NTZu3IinT59CpVLhwoULCA4Oxps3b9R9QkJCsGPHDlSpUgV+fn7o27cvZs+ejQMHDhTo8xAREX2KsWMnaRy/fPkC+/fvESkaIiIiIqKCV6x335s+fTpmzJgBV1dXSCQS2NjYwMPDQ2O6nyAIsLOzw8SJEwEAderUwcOHD7Fz505079490+vq6MhQUkbey+UysUOgYoz5Q9pg/nyaNm1ao0WLlrh48Xd127JlizFgwABIpUXmd0iFijlE2mD+kDaYP6QN5g9pqzTlUJEpSpmamkImkyEyMlKjPTIyEhYWFpmeY2ZmhhUrViA5ORkxMTGwsrLCr7/+ChsbG3UfS0tLVKtWTeO8qlWrIigoKMtYUlOL/4JiHyoJC6SReJg/pA3mz6fx8RmvUZR68OBvHDx4CO7uXUSMSlxFOYeuXPkTS5cuhpubOzp2dIGpqZnYIdFHinL+UNHH/CFtMH9IW6Ulh4rMr151dXVRt25dXLx4Ud2mUqlw8eJFNGzYMNtz9fT0YG1tjbS0NBw/fhzt2rVTv9aoUSM8efJEo//Tp09RoUKF/H0AIiIiLbVv74w6dew02nx9F6AIbZRLHzh8+CCOHTuCMWO8UadONXz77YScTyIiIiIitSJTlAKAIUOGYPfu3Thw4AAePXqEH3/8EUlJSfDw8AAATJ48GQsWLFD3v3HjBo4fP46QkBBcuXIFw4cPh0qlwvDhw9V9Bg0ahBs3bmDVqlV49uwZ/P39sXv3bvTr16/Qn4+IiCg7EokEY8dqFjauX7+Gc+fOiBQRZUUQBAQEHFEfK5XKLEd2ExEREVHmisz0PQBwc3NDVFQUfH19ER4ejtq1a2PdunXqD3mhoaEa62okJydj8eLFCAkJgb6+PhwcHDB//nwYGxur+9jb22PZsmVYuHAhli9fjooVK2LatGno0qX0ToUgIqKiq0uX7pg79yc8e/ZU3bZkyUK0adNWtJgoozt3buP586cabW5uncUJhoiIiKiYkgicE5BBeHic2CHkG11dWamZi0r5j/lD2mD+5N3GjX6YPFlzxFRQ0Ck0bNhYpIjEUZRzaN68OViwYJ76uFKlyrh8+SYkJWWnlBKgKOcPFX3MH9IG84e0VVJyyNLSKMc+RWr6HhEREQF9+vSHlZW1RtuSJQtFioYy8+HUPSB9lBQLUkRERESfhkUpIiKiIkahUODrr0erjw0MDFGtWnUueF5EPH78CPfu3dFo49Q9IiIiok9XpNaUIiIionSDBw/Ftm2b0Lt3PwwZMhwmJqZih0T/+niUlIWFJZo2/UKkaIiIiIiKLxaliIiIiiAjI2P8/vtfGht8UNEQEOCvcezq2gkymUykaIiIiIiKL37SJSIiKqJYkCp6wsJe48qVPzXaOnXi1D0iIiKivOCnXSIiIqJc+njqnpGRMVq3dhApGiIiIqLijUUpIiIiolz6eOpehw4doaurK1I0RERERMUbi1JERETFSEREBH75ZS7i4+PEDqXUiYmJxoUL5zTauOseERERUd5xoXMiIqJi4MWLEKxY4Ytt2zYjKSkJ+voGGD16rNhhlSrHjwciLS1Nfaynpwcnpw4iRkRERERUvHGkFBERUTHw3Xf/w7p1q5GUlAQAWLVqGZKTk0WOqnQ5f/6sxnHbtk4wNDQUKRoiIiKi4o9FKSIiomLAx2ecxnFY2Gvs3r1DpGhKp8WLl+Po0WCMHj0On39elVP3iIiIiLQkEQRBEDuIoiY8vOSs06GrK0NKilLsMKiYYv6QNpg/+c/Dw11jtM7nn1fF77//BZlMJmJUBaco55AgCFCpVCX2vS8JinL+UNHH/CFtMH9IWyUlhywtjXLsw5FSRERExcSYMRM0jp88eYwjRw6JFE3pJpFIWJAiIiIi0hKLUkRERMVE27ZOsLdvoNG2ZMlCcNAzERERERVHLEoREREVExKJBOPGTdRou337Jk6dOiFSREREREREeceiFBERUTHi5tYZ1apV12jz9V0kUjRERERERHnHohQREVExIpPJ4OMzXqPt99/P4/LlS+IEVMKpVCoMHz4Ifn5rEBr6SuxwiIiIiEoUFqWIiIiKmZ49e6N8+c802nx9F4oUTcl29eoVHD58AP/73zeoX78WXFwcERcXK3ZYRERERCUCi1JERETFjJ6eHry9fTTagoKO4d69uyJFVHIFBBzROI6Pj4eRkbFI0RARERGVLCxKERERFUNeXoNhamqq0bZ0KdeWyk+CIODo0cMabW5unUWKhoiIiKjkYVGKiIioGDI0NMSwYV9rtB04sBfPnj0VJ6AS6P79e3jy5LFGm5ubu0jREBEREZU8LEoREREVU8OHfw19fX31saNjO6SkpIgYUckSEOCvcVyhQkXUr99QpGiIiIiISh652AEQERFR3piZmWPw4OF4/foVfHwmwM6untghlShHj2oWpdzc3CGRSESKhoiIiKjkYVGKiIioGPvhh59YKCkAz549xe3bNzXauJ4UERERUf7i9D0iIqJijAWpgnHsmOaue2ZmZmjWrIVI0RARERGVTCxKEREREX3k46l7Li6dIJdzgDkRERFRfmJRioiIiOgDb968wZ9//qHRxl33iIiIiPIfi1JEREQljFKpxKFD+3HkyGGxQymWgoICIAiC+tjAwBBt2jiKGBERERFRycRx6ERERCVEcnIydu/egWXLFuPJk8eoVKkKXFzcOO3sEx09qlnMa9++IxQKhUjREBEREZVcHClFRERUQly58icmTRqLJ08eAwCeP3+KQ4f2ixxV8RIb+xbnzp3RaOPUPSIiIqKCwaIUERFRCdGyZWs0atRYo83Xd5HGVDTK3rlzZ5Gamqo+1tXVRfv2HUWMiIiIiKjkYlGKiIiohJBIJBg7dpJG2717dxAcHChSRMWPm5s7zp69hKlTZ6Bevfpo06YtjIyMxQ6LiIiIqESSCPz1aQbh4XFih5BvdHVlSElRih0GFVPMH9IG80ccKpUKbdo0w4MHf6vbmjZthiNHjkMikYgY2acrCjmUnJwMPT09UWOgvCkK+UPFF/OHtMH8IW2VlByytDTKsQ9HShEREZUgUqkUPj7jNdouX76EP/74XZyAijkWpIiIiIgKDotSREREJUyPHr1QsaKNRpuv70KRoiEiIiIiyhyLUkRERCWMjo4ORo0ao9F28mQwbt26KVJEREREREQZsShFRERUAvXrNxDm5uYabUuXcrQUERERERUdLEoRERGVQPr6+hgxYqRG2+HDB/H48SORIiraVq9ejiVLFuDhwwdih0JERERUarAoRUREVEINHToCBgaG6mOVSoXly5eIGFHRJAgCVq1ajjlzZqJVqyZo1aoJzp8/K3ZYRERERCUei1JEREQllImJKQYPHqbRtmvXdrx+HSpSREXTjRvX8PLlC/Xxw4cPYGFhKWJERERERKUDi1JEREQlmLf3aOjq6qqPU1JSsGrVchEjKnqOHvXXOK5atRpsbWuJFA0RERFR6cGiFBERUQlmbV0OvXv3Vx9XqlQFtWrVFjGioicgQLMo1alTF0gkEpGiISIiIio95GIHQERERAXLx2ccrl37C6NHj0XXrh6Qy/nP/3sPHvydYXFzNzd3kaIhIiIiKl34qZSIiKiE+/zzqjh58hxH/2Ti41FS5cqVR8OGjUWKhoiIiKh04fQ9IiKiUoAFqcx9XJRyde0EqZQfj4iIiIgKAz91ERERUan04kUIrl+/ptHWqVMXkaIhIiIiKn1YlCIiIqJS6dixIxrHJiYmaNGilUjREBEREZU+LEoRERGVUvfu3cWPP86ASqUSOxRRBARoFqU6dnSFjo6OSNEQERERlT5c6JyIiKiUuXz5Enx9FyIo6BgAoGnTZujUqbPIURWuyMhIXLx4QaPNza10vQdEREREYuNIKSIiolJEEAR88814dUEKAHx9F0AQBBGjKnxBQQEaI8T09fXRtq2TiBERERERlT4sShEREZUiEokEY8dO0Gi7du0qzp8/K1JE4vh41z1Hx/bQ19cXKRoiIiKi0olFKSIiolKma1cPVK5cRaNtyZKF4gQjgsTERJw9e1qjzc3NXZxgiIiIiEoxFqWIiIhKGblcjtGjx2m0nT17CtevXxUposKlr6+PCxeuYPbsn9GyZWsoFAp07OgidlhEREREpY5EKG2LSORCeHic2CHkG11dGVJSlGKHQcUU84e0wfwp2t69e4fGje0QHv5G3ebu3hXr128RMSpNhZVDcXGxMDIyLvD7UOHi9yDSBvOHtMH8IW2VlByytDTKsQ9HShEREZVCCoUCX389WqPt6NHDePjwgUgRiYcFKSIiIiJxsChFRERUSg0ZMgzGxmXVx4IgYNmyxeIFRERERESlCotSREREpZSRkTGGDh2h0bZnz068fPlCpIiIiIiIqDRhUYqIiKgUGzFiJBQKhfo4LS0Nq1YtEzEiIiIiIiotWJQiIiIqxSwtLdGvn5dG25YtGxEZGSlSRAXn+vWrmD37R1y9egXc54WIiIhIfCxKERERlXKjRo2FTCZTHycmJmLdulUiRlQw9u3bA1/fhXBxcULDhnWwfLmv2CERERERlWosShEREZVylSpVhoeHp0abn99qxMfHixRR/hMEAQEB/urjV69eIiGh5DwfERERUXHEohQRERFhzJgJ6j8rFAp4eHgiJSVZxIjy1+3bNxES8lyjzc2ts0jREBEREREAyMUOgIiIiMRXq1Zt9O7dD+XKlceIESNhZWUldkj56uhRf43jypWroG5dO5GiISIiIiKARSkiIiL619KlJW8dqfeOHTuicezm1hkSiUSkaIiIiIgI4PQ9IiIiKuEeP/4H9+7d1Wjj1D0iIiIi8bEoRURERCXa0aOao6SsrKzRtOkXIkVDRERERO+xKEVEREQl2oe77gGAi0snSKX8CEREREQkNn4iIyIioizFxr6Fr+9CXLhwTuxQ8iQ09BX++uuyRpubm7tI0RARERHRh4pkUWrbtm1wcnJCvXr14OnpiZs3b2bZNzU1FcuWLUP79u1Rr149dOnSBWfPntXos3TpUtja2mp8ubi4FPRjEBERFVvh4eGYM2cmGjasi9mzf8Svv/4sdkh5cuzYUY1jY+OyaN26jUjREBEREdGHitzuewEBAZg7dy5mzpyJ+vXrY9OmTRg2bBgCAwNhbm6eof/ixYtx+PBhzJ49G1WrVsW5c+fg4+ODnTt3ok6dOup+NWrUwIYNG9THMpmsUJ6HiIioODp+/BiWLFmgPr5w4RyuXPkTTZoUr7WYAgI015Pq0MEZurq6IkVDRERERB8qciOlNmzYgF69eqFHjx6oXr06Zs6cCYVCgX379mXa/9ChQ/D29oaDgwNsbGzQr18/ODg4YP369Rr9ZDIZLC0t1V9mZmaF8ThERETFUs+evVGuXHmNNl/fhSJFkzfR0VG4cEFz9DR33SMiIiIqOopUUSolJQV37txBy5Yt1W1SqRQtW7bEtWvXMj0nNTU1w2889fT0cPXqVY22Z8+eoXXr1mjXrh0mTZqEV69e5f8DEBERlRB6enoYOXKMRltgYADu378nUkSf7vjxQCiVSvWxQqGAk1N7ESMiIiIiog8Vqel70dHRUCqVGabpmZub4/Hjx5me07p1a2zcuBFNmzZFpUqVcPHiRQQHB2t8CLW3t8fcuXPx+eefIzw8HMuXL0f//v3h7+8PQ0PDDNfU0ZFBIsnfZxOLXM5pipR3zB/SBvOn+Bs2bBgWLfoFMTHR6rblyxdj9ep1hXJ/bXMoKChA49jRsR1MTY21uiYVH/weRNpg/pA2mD8l07GXT7Hv+T/oUak6XCtUKdB7laYcKlJFqbyYPn06ZsyYAVdXV0gkEtjY2MDDw0Njup+Dg4P6z7Vq1UL9+vXh6OiIY8eOwdPTM8M1U1OVGdqKs5SUkvU8VLiYP6QN5k/xpqtbBsOGfYUFC+ap2/bu3Y1vv52GSpUqF0oM2uTQ/PmL0b69MwIC/HHmzCm4urozJ0sZ/n2TNpg/Jde7d+9w+PABHDt2FNHRUTA1NYOrayd06dIdCoUiX+5RWvLn7NnT8PVdgL17/XPsGxr6Cp6eXXDs2CkYGRkVQnT5J+j1M+x8/gDJSiW2PrmPNKUKzuUK9rNQacmhIlWUMjU1hUwmQ2RkpEZ7ZGQkLCwsMj3HzMwMK1asQHJyMmJiYmBlZYVff/0VNjY2Wd7H2NgYVapUwfPnz/M1fiIiopJmxAhvrFy5FImJiQAApVKJFSt88fPPC3I4U3wWFhbo188L/fp5IT4+DlJp6fmtIxERZS4wMABjxnjj7dsYSKVSqFQqSKVSHD16GNOnT8GyZavh7OyaL/fy8fkKd+7cglwuByCBtXU5DB36VaFPJX9fDLKyssbevf6QSv9bxcfLqxeePHmMDRu2oUYN20KNq7h4X5CSALBSlEFsagp2Pn8AAPlemPowZ+RyHVSrVh0+PuNRq1b6Jm6tWzfJ8u/qxYsQrFq1DH/9dRmpqSmoVKkK+vcfiHbtOmr0u3//HtauXYnbt29ApVKhRg1bDBkyAk2bNsvXZ8mtIrWmlK6uLurWrYuLFy+q21QqFS5evIiGDRtme66enh6sra2RlpaG48ePo127dln2TUhIQEhICCwtLfMtdiIiopLIzMwcXl6DNdq2b9+C8PBwcQLKI0NDI+jr64sdBhERiSgwMACDBvVFbOxbAOk/a37439jYtxg4sA8CAwOyvManGjlyDIKDz+H48TMYNWosZs2agdevQ/Pt+p9CoVDgr7/+VB/fvXtb/eyUuQ8LUsY66WtZG+voQgJg5/MHCHr9LN/vOXLkGJw58zsOHw5CnTp1MW3atzme8/p1KL7+ejAsLCywbdseHD16EoMGDcWvv/6Mfft2q/vdv38XY8Z8hfr1G2DPHn8cOhQEV1d3TJv2Dc6fP5Pvz5IbRWqkFAAMGTIEU6ZMgZ2dHezt7bFp0yYkJSXBw8MDADB58mRYW1tj0qRJAIAbN24gLCwMtWvXRlhYGJYuXQqVSoXhw4errzlv3jw4Ojris88+w5s3b7B06VJIpVK4u7uL8oxERETFibe3D9avX4vU1FQA6dMe1q5diWnTvhc5MiIiov9ERERk+VpycjJ8fL4CAAiCkGkfQRAgkUgwZow3bt16oJ7KFxkZqT4nqxk8OZFIJGjZsjUMDY3w/PkzlCtXHomJiZg1awZu376F1NQUVK9eE+PHf4saNWoCAP7++z4WLPgZT58+gY6OHHXr2mP+/EUA0neY9fVdiKtXLwOQwMmpA0aOHJNhE7APubl1xtGj/mjatDkAICDAH25unbFy5VKN92Dnzm04cGAP4uLiULt2XUyaNAUVKlQEALx5E4a5c2fhzp3bqFjRBm3bOmncIzExEatWLcX582eRkpKCZs1aYMKEyZmu5VzUZVaQes9YR7dAR0wBgI6ODlxc3LF9+xZER0fD1NQ0y75+fqtRvbotxo//r4Dl4OCEpKQkLFw4H66unaCvb4BlyxajXbuOGDhwqLpf587dEBkZgSVLFqJVqzaQFPIC20VqpBQAuLm5YcqUKfD19UXXrl1x7949rFu3Tv0/f2hoqMZvZ5OTk7F48WK4ublh9OjRsLa2xvbt22Fs/N9Cpq9fv8bEiRPh4uKC8ePHw8TEBLt374aZmVmhPx8REVFxU6FCRfTs2Vujbf36tYiLixUpIiIioozq1Kma5VfDhrURGxubZUHqPUEQ8PZtDPz9D6rbWrduor5OXqlUKpw7dxrJycnqopMgqNChgwv27DmMw4ePo0YNW3z//VR1jIsWzUerVl8iMPAUDhw4hn79vNQxTpkyEWZm5ti16xA2b96Jf/55gE2b/LKNoX17Z1y6dBFxcXFITk7GqVMn4OzcSaNPYOBR7Nq1DXPnLsDBg8fw+edVMWXKRKSlpQEAZs6cAXNzCxw+HIQffpit8T4BwNy5sxAbG4tNm3Ziz57DSEtLw6JF81DcZFeQeq+gR0wlJ7/D0aOHYGJikuMaXH/+eREdOjhnaG/XriPevUvC7du38O7dO9y8eR0dOrhk6NehgwtCQ18iJKTwlzgqciOlAGDAgAEYMGBApq9t2bJF4/iLL75AQED2wysXLVqUb7ERERGVRj4+47Fz5zb1B+XY2LfYsMEPY8dOEDkyIiKi/CWVShEQcASenn20vtaqVcuxfv0apKSkIi0tFV99NQqmpumDIwwMDDXW+xk27Gvs3bsTERHhsLS0glwux+vXrxEREQ4rK2s0aNAIQPoUrPT1g9ZDKpVCoVBg4MAh+OWXuRgxYmSWsRgYGKJ585Y4cSIIBgaGqFu3XoaRX0FBAejZszeqVasOAPj669Hw9z+Ie/fuwMrKGjduXMPs2fOgUChQuXIVdO3qgYMH0zcZi46Oxpkzv+HIkRPqIsrw4d7w8uqFadN+1Pq9zG/Xo8MREPoUySrNBcUjkpMQ+i4BEAC5VIr4tNRsr5OmUmH1o1s4/PIxLPTKZHhdTyqDW/kqaGCau+WD3udMQkICTE3NMGfOL/+uS5a1mJgYWFhkvL6Ojg7KljVBTEw04uJioVKpMu33Pg9iYqILbTOb94pkUYqIiIiKlho1av477P+wum316uUYMcIbZcpk/AAmFpVKhZ9++gGOju3QokUr6OjoiB0SEREVMyqVCtHRUflyLW/v0ejVqx+A9IWop06dCENDI3Tr1gPJye+wdOli/PHHBcTGxkIqTZ82FRMTA0tLK/zvf99j/fo1GDbMC0ZGRujRoxd69OiN0NBQxMfHwc3tv6lzgiDkan0oN7fOWLNmOQwMDNGtW48Mr4eHv0H58p+pj3V1dWFhYYE3b95AKpVBV1dPXVQDgHLlyqv//Pr1K6hUKvTq1UXjmlKpFFFRmpuZFQUn34TgTXJihvZXSQlQCgJ0pFIocxhZB6RPzUxVqfAqKQE60swno/32JiTXRSlv79EYMMALL1+GYsqUifjnn4eoXz/7NbZNTEwQEZFxvc+0tDS8fRsDExNTGBkZQyqVIiIiHJUrV9Ho937qq4lJ1lMECwqLUkRERJQr48ZN1ChKhYe/wa5d2zF48DARo9J05cplLF++BMuXL4GJiQk6dnTFggW+0NPTEzs0IiIqJqRSqUbhJb9UrGiD5s1b4fffz6Nbtx7YsWMr/v77HlasWAcrK2vExcXB1dURQHohpEKFivjuu1kQBAE3b97AhAmjULeuPaysrGFqaopDh4I+OYbGjZsiOjoaoaGhaNWqTYbXLS2tEBr6Sn2cmpqKiIgIWFlZwcLCAikpyYiOjlK/P2Fhr9V9raysIZVKcfBgoHo9rg99eN2ioJ2VTaYjpT4ro0LouwQIggB5FkWmD6WpVJBLJSivMEBZnYyfN/SkMjhZ2XxyfJaWVpgyZQZ8fEbAwcEx0xFO7zVp0gwnTgTB3b2rRvvJk8ehp6eAnV09KBQK1KtXHydOBKFx46Ya/YKDA1GuXHnY2FT65Di1xaIUERER5UqDBo3Qpo0jzp49BQBo0aIVatYsWttHf1g0i4mJwY0b11iQIiIqJe7efZzla4cPH8DUqZNydR2VSgU3t/82xTp//kqOa1HlRmjoK/zxxwV8+WVbAEBiYgL09PRgZGSMxMRErF69XKP/sWNH0KxZC5iZmcPIyBASiQQymRQ1atSBlZU11qxZgQEDBqFMGX2Ehb3GkyeP0aJFq2xjkEqlmD9/MZRKZaajiZ2d3bB27Uq0atUGFSpUxLp1K2FpaYnatetCLpejXr36WLlyKSZNmoKwsNc4dGi/+lxzcwt8+aUDFi6ch1GjxsHExASRkRG4ffsWHBwctX7/8lsDU8ssRy/lZk0pAIhNTYEAoE+lmgWy2LmtbS00bNgYmzevx8SJUwCkFwqTk5PVfWQyGYYN+xrDhw+Er+8CeHkNgb6+AS5dughf3wUYMWIk9PUNAACjRo3D+PEjUaFCRXTt2gMymQy//RaMbds2YcaMWYW+yDnAohQRERF9gnHjJqJMGQXGjJmIL75oJnY4GgRBQECAv0Zbp06dRYqGiIgKW3Y74/Xr54W5c39CbOzbbAtMEokExsZl0blzN3Wbubl5nmNauXIp1q5dCQAwNDSCg4MjBg9O3ym+d+/+mDlzBrp06YiyZU0wfLg3Dh7cqz73ypU/sXLlUiQlJcLU1AyjRo1DjRrpvwyaP38xVq5civ79PZGQkABra2t07eqRq5iqVq2W5WsuLp0QFRWJyZMnIC4uFnXq1MW8eYvUaxr98MMc/PzzLLi7d4SNTSV06tRFY7Hz6dN/hJ/faowYMRBv376FmZkZnJw6FMmiVHbeF5h2Pn+A2NSUTAtTBV2Qem/gwKEYO9Yb/fsPAgB89dVgjdddXd0xffqPWLVqPVavXoa+fXsgLS0VlSpVxrhx36Jjx/8WNq9b1w6+vquwdu1KbN68AYKgQvXqNTFnzi/44ovmBfYM2ZEI+VHyLWHCw+PEDiHf6OrKkJKizLkjUSaYP6QN5g9p61Nz6M6d23B0bKnRduLEWdjbN8jnyKg44Pcg0gbzp2QKCjqGgQPTFy/P7Mfg96NENm/eCWdn1zzfh/lTcmQ1YqqgC1IlJYcsLbPfNRAAcp4gSURERFQMfDxKysamEurVqy9SNEREVNQ4O7ti06YdMDYuCyB9KtuH/zU2Lqt1QYpKFudyldGnUk0ISC9EAYU3Qqq04PQ9IiIiKhGOHtUsSrm6dhJlbQQiIiq6XFzccOvWA/j7H0RAwBH1ot1ubu7o3Llbpgt0U+n24VS+N++SoCeTsSCVj1iUIiIiomLv6dMnuHv3tkZbp05dsuhNRESlmUKhgKdnH3h69hE7FCom3hegDr54hG4Vq7EglY9YlCIiIiKtCIKA4OBAXLr0B777bqYoMQQEHNE4trCwEG3BTiIiIip5nMtVZjGqALAoRURERHmSlpaGQ4f2w9d3Ee7duwMA6N69J+zs6hV6LB+vJ+Xs7AaZTFbocRARERFR7nGhcyIiIsqTlJQUzJgxRV2QAoClSxcWehxhYWG4fPmSRpubm3uhx0FEREREn4ZFKSIiIsoTfX19jBgxUqPt0KEDePz4UaHGERh4VGNrb0NDI3z5ZdtCjYGIiIiIPh2LUkRERJRnQ4eOgIGBofpYpVJhxYqlhRrDx1P32rfvwN2TiIiIiIoBFqWIiIgoz0xMTDFo0FCNtp07tyIs7HWh3P/t2xicP39Wo83NrXOh3JuIiIoXSXwipJHROX5J4hPFDpWKIEEQEJYoaIzOJu1xoXMiIiLSirf3aKxbtwopKSkA0teaWrVqOX744acCv3dwcBBSU1PVx7q6umjXrkOB35eIiIoXSXwiyuw6Asm75Bz7Cgo9JPV2h2Cor/V9fXy+wp07tyCXyyGX66Baterw8ZmAxMQEjB3rjTJlygCQwNjYGM7Obhg+3BtSafrYkcuXL2HDhrV4+PBvSKVS2NnVx1dfjYKtbS2t46JPE5EkYN8TJW5EqlDfXIoen8tgUUaS7/fJPF/Go1atOrk69/r1q1i0aDmaNm2mbt++fTNWrPCFp2dfjBs3Kd9j1hZHShEREZFWypUrj969+2u0bdzoh5iY6AK/t4tLJ/j5bYaHR08YGRnDwcERRkbGBX5fIiIqXiTJyZC8S4Ygk0LQ1cn6SyaF5F0yJMk5F69ya+TIMQgOPoeDB4+hZk1b/O9/6YUBQ0NDBAefQ3DwWcyfvxj+/gdx5MghAMD582cwbdo3cHHphEOHArFnjz8aNGgIH58RuH//br7FRtlLUQoIfK7ErL9ScTFMBaUKuBimwqy/UhH4XIkUZf6Pmho5cgzOnPkdhw8HoU6dupg27dtcn1upUuUMyxoEBPijcuUq+Rxl/mFRioiIiLQ2evRY9W92ASAhIR4bNqwr8PsaGhqic+duWLVqPe7efYQFC3wL/J5ERFSMyWSAXJ71l0xWYLfW09ODu3tXhIe/QWzsW43XqlWrjvr1G+DRo4cQBAFLlixA//6D0KVLd+jrG8DY2BheXkPg5NQBy5YtLrAYKZ0gCLgdpcKcq2nY/ViJJCVgpgcY6UpgpgckKYHdj5SYczUNt6NUBTKlT0dHBy4u7njzJgzR0dEQBAF79uxEv3494OLSFj4+X+Hp0yca57Rr1xF//PE74uPjAQB37twGANSpY6fRb9as79C1qws6dnTA0KEDcPXqFfVry5cvgY/PV1CpVACAU6dOoEsXZ0RHR+X7MwIsShEREVE+qFq1Grp06abRtmbNCiQmFt66HHp6eihXrnyh3Y+IiOhTvHv3Dv7+h1CuXHkYG5fVeO3hwwe4fv0aatashZCQZwgNfYUOHVwyXKNDBxfcunUDycnvCivsUulFArDqThqexQsw1gHK6koglaRP15NKJCirK4GxLvAsXsCqO2l4mZD/MSQnv8PRo4dgYmICIyMjHDiwF0eOHMK8eYtw5MgJODg4YcqUCRrLGBgZGaFZsxY4cSIQAHD06KFM19ps3Lgptm3bi4CAk2jfviNmzJiCxMT0h/jqq1FISkrCpk1+eP06FPPn/x9mzJgJU1Oz/H9IcE0pIiIiyidjxkzEwYP71ceRkZHYvn0zhg/3FjEqIiIqDWRPXkDn2h1IUtMy75CSCkliEiRJyYAkm7WABAEQVNALOAPo6mR8WUeO1EZ1oaxSMdexrVq1HOvXr4Gurh6qV6+Jn39eiNjYt4iPj4eLS1sAEpiamqJnz95wc+uMW7duAAAsLCwzXMvCwhJKpRKxsbGwtOROs9q4EalCUIgSycqMrwmCgLcpQLIKSFUBQOYjoVJVgFIFrL+fCkkWeaUnA1xsZLA3z92YoPf5kpCQAFNTM8yZ8wvkcjn279+Dr78eBRubSgAAT88+2LZtE+7evY369Ruqz+/UqTPWrFkJV1d3nDnzGzZv3oVVq5Zp3KNTpy7qP/frNxCbN2/AP/88hL19A+jo6ODHH+dgxIhBOHkyGO7uXfHFF81zFXtesChFRERE+aJePXu0a9cBJ08Gq9tWrFiKQYOGQUcn4wd7IiKi/KJz+29I38Zl3SEtDVAJgESVi6KUAMm7d+nnfEQCQOfW359UlPL2Ho1evfpptF29egWGhoYIDDydob+JiQkAICIiHBUqaN4nIiIcMpkMxsZcP1Fbp1+p8CYpq1cl0JUJSFICacrMU0YQABXSi06xqdkven7qlSrXRSlv79EYMMALL1+GYsqUifjnn4eoX78hXr9+hVmzvodM9t91UlNT8eZNmMb5jRt/gcjIn7Bxox/q1rWHubmFxusqlQpr167EqVMnEBUVBalUgoSEBLx9G6PuY2NTCQ0bNsbvv5+Dr+/KXMWdVyxKERERUb4ZO3aiRlHqxYsQ7N+/B71798vmLCIiIu2k1rOFztXsR0pBGgtIpLkaKSUoFFmPlKpnm09RZ87GpjLKlSuPEyeCMGjQMI3XTpwIQr169aGnx1FS2nL8TIrALEZKAYCOFIhPBaSS9K+PqQQAAmBZBtDPprKiJ0u/16eytLTClCkz4OMzAg4OjrCyssbYsZPQvHnLbM+TSqVwdXXH5s3rMXv2vAyvBwcH4sSJICxYsBQ2NpUgkUjg4uKID5fFOnXqBO7evYWWLVtj4cJ5mD17/ifHn1ssShEREVG+ad68JZo2bYbLly+p25YuXQRPzz4aC6Fra/fuHTAwMISjYzvo62u/ZTcRERVvyioVsx29JI2MRpmdRyDo6qQvaJ6VtDRIUlKR7OYAlblpAUSaM4lEgjFjJmL27O9hbm4OJ6eOUCqVOHRoH06ePI7Fiwt25EppYW8uzXb0kkoQ8N3lNIQlCjDRy1iVik4WUF5fgllN5er1pvKbrW0tNGzYGJs3r4eHhyf8/Fbhs88+Q6VKVZCQEI+rV6+gceOm0Nc30Divd+9+aNCgERo2bJzhmgkJCZDL5TAxMUFqaiq2bduEpKT/1gB9/fo1fvllLn78cQ7q1rXDkCH9cejQfnTt6lEgz8iiFBEREeUbiUSCceMmYsCA3gAAa+ty6NvXC2lpadDV1c2Xe6hUKsye/SNevw5FmTJl4OjYHpMnT0OdOnXz5fpERERic3BwhEIxHxs3rsOSJQsgkUhhZ1cPvr6rULs2/70rDFKJBE0spTj8VIkUZcY1pVQC0MRSWmAFqfcGDhyKsWO9sWPHfkilMkybNhlv3oRBX18f9vYN0Lhx0wznGBuXRdOmzTK9nqurO65c+RM9enSGgYEBevXqC0tLKwCAUqnErFkz4ObWWb2O1I8/zsHEiT6oX78hqlT5PN+fTyIUxN6FxVx4eDZzkYsZXV0ZUlKyGI9IlAPmD2mD+VN6CYKAwYP7o337jujVqy/09PTydJ2scuivvy7D1bWdRtv585dRs2bBTqeg4oXfg0gbzJ+SRz1SSiYFZLKsOyqVkChVSOrjnueRUsyfkuNJrAoLbqQhRZXxNV0pMKm+HJ8b599IcPW1S0gOWVoa5diHI6WIiIgoX0kkEmzatL3Arh8QcETjuHr1GixIERFRtgQ9PQgKPUjeJadvl5ZdX4UehDz+QoVKlspGEkxtmPVmLZ8ZZPkS5RKLUkRERFRsCIKAo0cPa7S5uXUWKRoiIiouBEN9JPV2hyQ5Oee+enoQDLleIaVP4atoKHYUJRuLUkRERFRs/P33fTx+/EijrVMnFqWIiChngqE+i01ERUz+T34kIiIiKiABAf4ax599VgENGjQSKRoiIiIi0gaLUkRERFQoHj9+hEmTxuGffx7m+Rofryfl6toJkgLe9YaIiIiICgan7xEREVGBun37Fnx9F+Dw4YNQqVRQKtOwePHyT75OSMhz3Lx5XaOtU6cu+RQlERERERU2jpQiIiKiAnXo0H4cPLgfKlX6bkd79uzEq1cvP/k6H0/dMzMzQ/PmLfMlRiIiIiIqfCxKERERUYH66qtRUCgU6uPU1FSsXLnsk6/z8dS9jh1dIZdz0DcRERFRccWiFBERERUoS0tL9OvnpdG2ZctGREVF5voaERERuHTpokabmxt33SMiIiIqzvjrRSIiIipwo0aNxaZN66FUKgEAiYkJWLduNSZPnpar84OCAtTT/wBAX98ADg6OBRIrERGVDolR9xD29zZY2/aHvlntArvPjRvXsWXLety5cxtKpRJmZuZo1qw5+vQZgPLlP0Pr1k2gp6cHqVQKhaIMGjVqjPHjv4WpqRkA4OrVKxg71htlypQBIIGxsTGcnd0wfLg3pNL0cSaXL1/Chg1r8fDh35BKpbCzq4+vvhoFW9taBfZcpY3wBhB+l0DSUoDEqmDu4ePzFe7cuQUdHR1IJBJYWVnjiy9aYMCAwTA1NVX3u379Knx8vkK/fgMxatRYjWv07NkZUVFRkMmk0NXVRd269hg3bhIqVKgIAIiKisSqVctw8eIFJCYmoHz5CujevQd69OhdMA+VA46UIiIiogJXqVJldO/eU6Nt3bpViI+Pz9X5R48e1jhu167Dvx/OiYiIPp0gCAh/tA/x4dcQ/mgfBEEokPucP38W33wzFl980Rzbt+/F8eNnsGzZGnz2WQVcvXpF3W/VqvUIDj6HrVt3IyYmBsuWLda4jqGhIYKDzyE4+Czmz18Mf/+DOHLk0L/3OINp076Bi0snHDoUiD17/NGgQUP4+IzA/ft3C+S5SqW/AdwH8KBgbzNy5BicPn0BgYGnMWvWz4iIeINhwwZojDA/cuQQjI3LIijoKNLS0jJc48cf5yA4+Bx27z4EhUKB2bO/BwDExcVh5MhhSExMxNq1mxAUdAYTJ07G9u1bsHz5koJ9sCywKEVERESFYsyYCRrHMTEx2Lp1Y47nxcXF4uzZ0xptbm7u+RgZERGVNolRd5EQcQtSuT4SIm4hMSr/izeCIGDJkl8xcOAQ9OrVTz3yycLCAr179890B9myZU3Qpo0j/v77fpbXrVatOurXb4BHjx7+e48F6N9/ELp06Q59fQMYGxvDy2sInJw6ZChuUe4J8YAQ/sHX3xIgGRDuSzTbc/f7tU8mkUjw+edV8d13P8HAwAA7d24FACQkxOP06ZOYMOFbJCYm4uLF81lew8DAEM7Obvjnn38AALt3b4dMJsPMmf+HcuXKQy6Xo1GjJvj++5+wa9c2vHz5omAeJhssShEREVGhqF27DpydXTXaVq5chuTk5GzPUyjKYMuWXRg4cCgsLa2go6ODDh2cCzJUIiIqwQRBQMTjAxBUKZDrmUBQpaQf5/NoqZCQZwgNfQUnpw65PicqKhKnTp2AjU2lLPs8fPgA169fQ82atdT36NDBJUO/Dh1ccOvWDSQnv8tT/KWd4C+BsPG/L4QDMAQQDo12wV9SoHHI5XJ8+WVbXLt2FQAQHByEMmX04ejYHg4OTuoRc5mJi4tDYOBR9TTOP//8A05OHSCTyTT61a/fEBYWlrhy5c+Ce5AscE0pIiIiKjRjx05EUNAx9XFo6Cvs3bsL/fsPzPIcHR0dODq2g6NjO8ybtwAPHz6AsXHZwgiXiIiKibg3VxD5+DBUyux/0QEAypQ4JL39B5BIoUp4BUFQ4u3Ls/gn/hVkukbZniuV6cG8alcYWTXO8T4xMTEAAAsLS3Xb+vVrsHv3diiVSjRv3go//fQzAGDUqBEAgKSkRNSuXRc//DBZ41rx8fFwcWkLQAJTU1P07Nkbbm6dcevWjQz3eM/CwhJKpRKxsbGwtFRkeL20E/4BhMsSIDWLDm8BJAAQkD6cRwIg7d/jFACqf9siANXmbApTOoDkCwGSanmP1dLSCnFxsQCAo0cPoUMHZ8jlcri4dMKkSWMQEREBCwsLdf9Zs2ZALteBQqGAnV09zJgxM/2R3sZo9PuQubkFYmKi8x5kHrEoRURERIWmadNmaNmyNX7//b+h5kuXLkKfPv0z/NYuMzKZDLVqFdxitEREVDxFPz+OlMTXOfYTBAGpia8hCMr3LekjpAQlkuNDoKNfDhJJ9iNfop8fz1VRysTEBAAQERGuXmR66NCvMHToV/DzW41//vlvcaIVK9aiRg1b3L59CzNmTEZERDgsLf9bTdvQ0BCBgadzdY/3IiLCIZPJYGxsnGOspZFwXQJkV4ORATAAEI/0ApQU6QUp/HuMf1+X/dsnu3tdk0BSLe8j8cLD38DIyBiPHv2De/fuYvLk6QCARo2awNzcAseOHYGX12B1/++/n402bdpmuE7ZsiaIiIjI9B6RkREwMTHN9LWCxOl7REREVKjGjtVcW+rx40cICPAXKRoiIioJTCs5Q1e/HOR6ptl+SaU6UCmTIZHqQCrVgUQiT//vv+1SqU625+vql4NppY65isnGpjLKlSuP3347kevnsLOrh759B+CXX/4vV9MJ39/jxImgDK+dOBGEevXqQ0+Po6QyI2koAKZIn5KX1Zc1ALP3J3zwhX/brXM43xCA6b/3yqO0tDScP38GDRs2Vk/VmzRpLLp0cUa3bq6IiYnOsCFMVpo2bYZTp06od0N+78aN64iICEeTJl/kOc684kgpIiIiKlSOju1Rr1599ZQDAFiyZCHc3bvm+NtpIiKizBhZNc5x9JIgCHh+ZQ5SEkMhV1ho/JsjCALS3kVA1/AzVGoyPV/+PZJIJBg3bhJmzfoeCoUC7dt3hKmpGaKjo/HkyeMsz+vWrQe2bNmI06dPwtGxfY73GDNmImbP/h7m5uZwcuoIpVKJQ4f24eTJ41i8eKXWz1FSSaohV6OXhPOAcFaiOaRHBUgaC5C0Lrj4AODZs6fYuHEd4uPj0adPf3h59YK3tw9cXf/b8CUqKgrDh3vh+vWraNCgUbbX69WrH4KCjmHWrBkYNWoczM0tcOvWDcyZ8yN69uydYbRdYWBRioiIiAqVRCLB2LETMGLEYHXbzZvXcfr0b3B0bCdeYEREVKKpd9zTMcxQdJJIJJDqGKp34jMwr5sv9/zyy7b45ZfF2Lx5A/z8VkGlEmBhYYHGjb9A374DMj1HT0+B3r37Yf36NXBwcMrxHg4OjlAo5mPjxnVYsmQBJBIp7Ozqwdd3FWrXzp/nKK0EVfpuexCgHvEkXJMAEf+2txQgyef5ZytXLsW6dasgkUhgaWmFZs1aws9vC65e/QtpaWnw8PCEvr6Bur+5uQW+/NIB/v4HcyxKGRsbY+VKP6xZsxzDhnkhMTER5cuXR+/e/dGzZ+/8fZBckgj5vcVACRAeHid2CPlGV1eGlBRlzh2JMsH8IW0wfyg7SqUSLVs2xpMnjyGXy9GzZ2+MH/8Nqlb9bxXQhw/v4erVa+jY0UW9jTZRbvF7EGmD+VPyvB8lFRf2J+R6pvhvDpZGL6QlR8PI+gutRksxf0oOIRUQ9ksAY0DiIECiDwiJgHBGAsQCEg8BEp38v29JySFLy+w3DgA4UoqIiIhEIJPJMHHiZNy8eR0jR45BxYo2Gfps2bIJq1atgEwmQ8uWX2Lw4KHo3Llb4QdLRETFniCkITXxDaSyMlClvcuyn1RWBqlJ4RCENEgKotpAxYpEB4Cn5mgoiT4gcRUgqJDvo6RKI46UygRHShGlY/6QNpg/pA1BENC4sR1evAhRt02ePA3ffDNVxKioOOH3INIG86dkSn0XBWVqzj/ryXSMoaPI+y5kzB/SVknJIY6UIiIiomLp5s3rGgUpAHBz6yxSNEREVBLoKMygo+B0cKKihIPNiIiIqMgJCPDXOK5S5XPUrl1HpGiIiIiIqCBwpBQREREVGe/evcPhwwewdu0qjXZnZ7d82Z6biIiIiIoOjpQiIiKiIiEwMAB2djXg4/M14uPjNV7btm0TgoKOiRQZERERERUEFqWIiIhIdPv378HAgX0QG/s209cTEhIwcGAfBAYGFHJkRERERFRQuPteJrj7HlE65g9pg/lDufXu3TvUrVsdcXGx2faTSCQwNi6LW7ceQKFQFFJ0VFzxexBpg/lD2mD+kLZKSg5x9z0iIiIq8g4fPpBjQQoABEHA27cx8Pc/CE/PPoUQGRERlSSxKVFIUOY8AMFAbgxjHdNCiIiIWJQiIiIiUR07dhRSqRQqlSrHvlKpFAEBR1iUIiKiT5KmSsXqBz8iMvl1jn0tFOUwvvYCyKU6hRBZ1gYM6IWRI8egVasvc9V//fo12L9/N5KTk7F3rz/KljUp2ACJ8gGLUkRERCSq6OioXBWkAEClUiE6OqqAIyIiopJGJpHDTM8Kr5KeoKyOWZb93qZGwVTXCjJJ/vyo7OPzFe7cuQW5XA65XAfVqlWHj8941KpVJ8dzt27dnev7hIW9xqZNfti16yDKlSuvTchEhYoLnRMREZGoTE3NIJXm7iOJVCqFqWnWP0wQERFlRiKRoG25btCTloFKUEFHqpfhSyWooCctg7blukEikeTbvUeOHIPg4HM4fDgIderUxbRp3+bbtd97/ToUZcqUyXNBKi0tLd9iCQ19hZ49O+eqr5/favj5rc63e1Pxw6IUERERicrVtdMnjZRyc3Mv4IiIiKgkqmpYFzWM7ZGojMfH+30JgoBEZTxqGNujqmHdArm/jo4OXFzc8eZNGKKjoyEIAvbs2Yl+/XrAxaUtfHy+wtOnT9T9e/bsjLNnTwMAAgL8MXhwP2zcuA7u7h3QuXNH7N69HQBw9uxpTJjgg/j4eHTo8CXGjvUGALx4EYKJE33g6uqEXr26qvt/eD0/v9Xo0sUZP/zwPwBAcHAgBg3qi44dHdCjhzsCAvzV55w4EYRBg/rAxaUthg8fiFu3bhTI+0SlC6fvERERkai6dOmO6dOnIDb2bYYfEj70fve9zp27FV5wRERULNyNuYKzYYeRonqXbb/EtDgkpcXjnTIRUolM3a4SlBAEFcLfvcTS+1OyPF9XqoBDua6oXbbxJ8eYnPwOR48egomJCYyMjHDgwF4cOXII8+YtQvnyn+HAgb2YMmUCtm7dAx2djOtZPXnyCM7Objh48Bhu3ryOCRNGo1WrNmjTpi1+/XUJpk37BoGBpwGkj3yaPHk8Wrdug7lzFyAk5DkmTRoDExMzdOzoor5e27ZO2LfvCJRKJc6fP4tFi37BTz/9jIYNG+Pt2xiEh78BAFy8eB7Lly/Bzz8vRI0aNXHu3GlMmTIRO3bs49pVpBWOlCIiIiJRKRQKLFuWPnQ/q+kS79uXLVsNhUJRaLEREVHx8Ed4ECKTXyMuNSbbrzRVGnSkekhTpUKpSoVKSINSlYo0Veq/7WnZnh+Z/Bp/hAd9UmyrVi2Hi0tbtG//JYKDgzBnzi+Qy+XYv38Phg//GjY2lSCXy+Hp2QfJycm4e/d2ptcxMTFB374DIJfL0ahRE5Qv/xkePvw70753795GZGQERowYBT09PVSvXgM9evTCsWP/jXwyMDDEwIFDoaOjA4VCgQMH9sLTsw8aN26qni5fs2YtAMD+/XvQt68XbG1rQSqVwsHBCZUrV8bFixc+6b0g+hhHShEREZHonJ1dsWnTDowZ4423b2PUu/G9/6+xcVksW7Yazs6uYodKRERFUAsrF5x5fSjHkVIAIJfKEZLwDyQSKaQSGVRQQgagXBkb6MuNsj1XV6pAc0vnT4rN23s0evXqh/DwN5gyZSL++ech6tdviNevX2HWrO8hk/03ViQ1NRVv3oRleh1TU3ONY4WiDBITEzPtGx7+BhYWlhojrj77rAKOHz+mPra0tNRY0zEsLBQuLm6ZXi80NBRr1izH+vX/rf+UlpaG8PBwAMCWLRuxbdtGAIBKJSApKREuLm3VfSdOnKoeoTVoUB+EhaXvgpiSkgIA2LNnh7rv+9FeVDqwKEVERERFgouLG27degB//4MICDiCt2+jUbasKdzc3NG5czeOkCIioizVLts411PqBEHA+n/m4N7bv2CiY4GY1AjULtsYQ6tPz9cFzj9maWmFKVNmwMdnBBwcHGFlZY2xYyehefOWBXKviIhwpKWlQS5P/7E/NDQUlpZW6j4SiebEKWvr8nj58kWm17OyskbPnr3QrVvPTF/38hoML6/B/97nFcaM+Rp79/pn2nfTpp3qP79f5HzYsK9z92BU4nD6HhERERUZCoUCnp59sGHDVhw5EogNG7bC07MPC1JERJRv3u/EJ5foIC4tGnKJTr7vuJcVW9taaNiwMTZvXg8PD0/4+a3C8+dPAQAJCfE4d+40EhMTtL5PnTp2MDU1x7p1q5CSkoLHj//Bvn274Oqa9WYhXbt6YM+eHbh27S+oVCpER0fhwYP7AAAPD09s374F9+/fgyAIePfuHS5fvpTlqC6i3OJIKSIiIiIiIipV3u/EdzP6d9ibtiywHfcyM3DgUIwd640dO/ZDKpVh2rTJePMmDPr6+rC3b4DGjZtqfQ+5XI758xdh0aL56NLFGUZGxujduz86dHDJ8pw2bdoiISEeCxfOw+vXr2FsbIzhw71Rs2YttG7dBikpKZg/fzZevXoJHR1d1K5dFxMnZr0oPFFuSITstrkppcLD48QOId/o6sqQkqIUOwwqppg/pA3mD2mLOUTaYP6QNpg/pcOTuHs49nIrXCsMwOdGtfPtuswf0lZJySFLy+zXaANYlMoUi1JE6Zg/pA3mD2mLOUTaYP6QNpg/pA3mD2mrpORQbopSXFOKiIiIiIiIiIgKHYtSRERERERERERU6FiUIiIiIiIiIiKiQlcki1Lbtm2Dk5MT6tWrB09PT9y8eTPLvqmpqVi2bBnat2+PevXqoUuXLjh79myW/desWQNbW1vMmTOnIEInIiIiIiIiIqJcKHJFqYCAAMydOxejR4/GgQMHUKtWLQwbNgyRkZGZ9l+8eDF27dqF7777DgEBAejTpw98fHxw9+7dDH1v3ryJnTt3wtbWtqAfg4iIiIiIiIiIslHkilIbNmxAr1690KNHD1SvXh0zZ86EQqHAvn37Mu1/6NAheHt7w8HBATY2NujXrx8cHBywfv16jX4JCQn49ttvMXv2bJQtW7YwHoWIiIiIiIiIiLJQpIpSKSkpuHPnDlq2bKluk0qlaNmyJa5du5bpOampqdDV1dVo09PTw9WrVzXaZs2aBQcHB41rExERERERERGROORiB/Ch6OhoKJVKmJuba7Sbm5vj8ePHmZ7TunVrbNy4EU2bNkWlSpVw8eJFBAcHQ6lUqvscPXoUd+/exd69e3MVh46ODBJJ3p+jKJHLZWKHQMUY84e0wfwhbTGHSBvMH9IG84e0wfwhbZWmHCpSRam8mD59OmbMmAFXV1dIJBLY2NjAw8NDPd0vNDQUc+bMwfr166Gnp5era6amKnPuVIykpJSs56HCxfwhbTB/SFvMIdIG84e0wfwhbTB/SFulJYeKVFHK1NQUMpksw6LmkZGRsLCwyPQcMzMzrFixAsnJyYiJiYGVlRV+/fVX2NjYAADu3LmDyMhIeHh4qM9RKpW4fPkytm3bhlu3bkEmKz1VSCIiIiIiIiKioqBIFaV0dXVRt25dXLx4Ee3btwcAqFQqXLx4EQMGDMj2XD09PVhbWyM1NRXHjx+Hq6srAKB58+bw9/fX6Pu///0PVatWxYgRI1iQIiIiIiIiIiISQZEqSgHAkCFDMGXKFNjZ2cHe3h6bNm1CUlKSeqTT5MmTYW1tjUmTJgEAbty4gbCwMNSuXRthYWFYunQpVCoVhg8fDgAwNDREzZo1Ne6hr68PExOTDO1ERERERERERFQ4ilxRys3NDVFRUfD19UV4eDhq166NdevWqafvhYaGQir9b9PA5ORkLF68GCEhIdDX14eDgwPmz58PY2PjPMdgaWmk9XMQEREREREREVHWJIIgCGIHQUREREREREREpYs05y5ERERERERERET5i0UpIiIiIiIiIiIqdCxKERERERERERFRoWNRioiIiIiIiIiICh2LUqXEqVOn4OzsjI4dO2LPnj1ih0PFzOjRo9G0aVOMHTtW7FComAkNDYWXlxfc3NzQuXNnHDt2TOyQqBiJjY2Fh4cHunbtCnd3d+zevVvskKiYSkpKgqOjI+bNmyd2KFTMODk5oXPnzujatSu8vLzEDoeKmZCQEI3PQYmJiWKHRMXE48eP0bVrV/WXvb09Tpw4IXZYBYK775UCaWlp6NSpEzZv3gxDQ0N4eHhg586dMDU1FTs0KiYuXbqEhIQEHDx4EL6+vmKHQ8XImzdvEBkZidq1ayM8PBweHh4ICgqCvr6+2KFRMaBUKpGSkoIyZcogMTER7u7u2LdvH//9ok+2aNEiPHv2DOXLl8eUKVPEDoeKEScnJ/j7+8PAwEDsUKgYGjBgAMaPH48mTZogJiYGhoaGkMvlYodFxUxCQgKcnJxw6tSpEvkZmiOlSoGbN2+ievXqsLa2hoGBAdq0aYMLFy6IHRYVI82aNeOHMcoTKysr1K5dGwBgaWkJU1NTvH37VuSoqLiQyWQoU6YMACAlJQUAwN+l0ad6+vQpHj9+jDZt2ogdChGVIg8fPoRcLkeTJk0AACYmJixIUZ789ttvaNGiRYksSAEA/68oIVavXo3jx4/j8ePHUCgUaNiwIb755htUrVoVb968gbW1tbqvtbU1wsLCRIyWiprs8ocoJ7nNn9u3b0OlUqF8+fIiRUpFUU75ExsbiwEDBuDZs2eYPHkyzMzMRI6YipqccmjevHmYPHkyrl27JnKkVBTl5t8wLy8vSCQSDBo0CF26dBExWipqssufZ8+eQV9fH97e3ggLC4OzszO8vb3FDpmKkNx+hj527Bi6desmTpCFgCOlSog///wT/fv3x+7du7FhwwakpaVh2LBhnLdMucL8IW3kJn9iYmIwZcoUzJo1S8RIqSjKKX+MjY1x+PBhnDx5Ev7+/oiIiBA5YipqssuhEydOoEqVKvj888/FDpOKqJy+B+3YsQP79+/HypUrsXr1aty/f1/kiKkoyS5/0tLS8Ndff+GHH37Arl27cOHCBc5WIQ25+QwdHx+Pa9euwcHBQcRICxbXlCqhoqKi0KJFC2zduhUymQx+fn5Yvnw5AGDOnDmwt7dH586dRY6SiqoP86dp06YA0teV2rZtG9eUohx9nD8pKSkYMmQIPD09S/RveSh/ZPb9570ff/wRzZs3h4uLi0jRUXHwYQ6dPXsWhw8fhkwmQ0JCAtLS0jBkyBD4+PiIHSYVUdl9D5o3bx5q1KgBDw8PkaKjou7D/JHL5Vi2bBn8/PwAAOvWrQMADB8+XMwQqQjL7PvPwYMHcf78efz6668iR1dwOFKqhIqLiwMAlC1bFvb29nj48CHCwsKQkJCAs2fPonXr1iJHSEXZh/lD9Kk+zB9BEDB16lQ0b96cBSnKlQ/zJyIiAvHx8er2K1eucMQL5ejDHJo0aRLOnDmD3377DVOmTEGvXr1YkKJsfZg/iYmJ6u9BCQkJuHTpEqpXry5meFTEfZg/9erVQ2RkJN6+fQuVSoUrV66gWrVqIkdIRVlmP4MFBgbCzc1NrJAKBdeUKoFUKhX+7//+D40aNULNmjUBAFOmTMHAgQOhUqkwfPhw7lxEWcosfwYPHoz79+8jKSkJbdq0wZIlS9CwYUORI6Wi6OP8uXLlCgICAmBra6vexnb+/PmwtbUVOVIqij7On5s3b+K7776DIAgQBAEDBgxg7lC2Mvs3jCi3Ps6fkJAQjB49Wv2ap6cn7O3tRY6SiqrMvv9MmDABAwYMgCAIaNWqFRwdHUWOkoqqzPInLi4ON2/eLPEzVTh9rwT64YcfcO7cOWzfvh3lypUTOxwqZpg/pA3mD2mD+UPaYg6RNpg/pA3mD2mjNOcPR0qVMLNmzcLp06exdevWUpfMpD3mD2mD+UPaYP6QtphDpA3mD2mD+UPaKO35w6JUCSEIAn766ScEBwdjy5YtsLGxETskKkaYP6QN5g9pg/lD2mIOkTaYP6QN5g9pg/mTjkWpEmLmzJk4cuQIVqxYAQMDA4SHhwMAjIyMoFAoRI6OijrmD2mD+UPaYP6QtphDpA3mD2mD+UPaYP6k45pSJURWC7/OnTuX29ZSjpg/pA3mD2mD+UPaYg6RNpg/pA3mD2mD+ZOORSkiIiIiIiIiIip0UrEDICIiIiIiIiKi0odFKSIiIiIiIiIiKnQsShERERERERERUaFjUYqIiIiIiIiIiAodi1JERERERERERFToWJQiIiIiIiIiIqJCx6IUEREREREREREVOhaliIiIiIiIiIio0LEoRUREREREREREhY5FKSIiItLK0qVLYWtri6ioqDxfY+3atXBxcYFKpcrHyPKfk5MTvv76a7HDyLV169ahXbt2qF27Nrp27Sp2OPnO1tYWS5cuLZBr79ixA23btkVKSkqBXJ+IiIhYlCIiIiKRxcfHY926dRgxYgSkUn40yS/nz5/HL7/8gkaNGmHu3LmYOHGi2CEVKx4eHkhNTcXOnTvFDoWIiKjEkosdABEREZVue/fuRVpaGtzd3cUOpUT5448/IJVKMWfOHOjq6oodTrGjp6eHbt26YePGjfDy8oJEIhE7JCIiohKHv44kIiIiUe3fvx9OTk7Q09MTO5QiIS0tLV+mjEVGRkKhULAgpQVXV1e8fPkSf/zxh9ihEBERlUgsShEREVG+e/nyJTp06AB3d3dERERk2S8kJAR///03WrZsqdH+4sUL2Nraws/PD7t27UL79u1hZ2eHHj164ObNmxp9vby84OXlleHaU6dOhZOTU6bX3LZtG9q1a4f69etj6NChCA0NhSAIWL58Odq0aQN7e3uMHDkSMTExmcZ9/vx5dO3aFfXq1YObmxuOHz+eoU9sbCzmzJkDBwcH2NnZoUOHDlizZo3GulkfxrRx40a0b98e9erVw6NHj7J8z9LS0rB8+XL1e+Lk5ISFCxdqFLJsbW2xf/9+JCYmwtbWVn2cladPn2LMmDFo1aoV6tWrhzZt2mDChAmIi4tT99m3bx8GDhyIFi1awM7ODm5ubti+fXuGa71fd+vSpUvw8PCAvb09OnfujEuXLgEAjh8/js6dO6NevXrw8PDA3bt3Nc6fOnUqGjZsiJCQEAwbNgwNGjRA69atsWzZMgiCkOUzvBcWFob//e9/aNmyJezs7NCpUyfs3bs3Q78tW7agU6dOqF+/Ppo2bQoPDw/4+/tr9LGzs4OJiQlOnjyZ432JiIjo03H6HhEREeWr58+fY9CgQShbtizWr18PMzOzLPteu3YNAFCnTp1MXz9y5AgSEhLQu3dvSCQSrFu3DmPGjMGJEyego6OTp/j8/f2RmpoKLy8vxMTEYN26dRg/fjyaN2+OS5cuYcSIEXj27Bm2bt2KefPmYe7cuRrnP336FBMmTECfPn3QvXt37Nu3D+PGjcO6devQqlUrAEBSUhIGDBiAsLAw9OnTB+XLl8e1a9ewcOFChIeHY/r06RrX3L9/P5KTk9GrVy/o6uqibNmyWcY/Y8YMHDhwAM7OzhgyZAhu3ryJ1atX49GjR1i+fDkAYP78+di9ezdu3ryJ2bNnAwAaNWqU6fVSUlIwbNgwpKSkYMCAAbCwsEBYWBhOnz6N2NhYGBkZAUhf+LtGjRpwcnKCXC7HqVOnMHPmTAiCgP79+2tc89mzZ5g0aRL69OmDLl26YP369fD29sbMmTOxaNEi9O3bFwCwZs0ajB8/HoGBgRrriSmVSgwfPhz169fHt99+i3PnzmHp0qVQKpUYN25clu9NREQEevXqBYlEgv79+8PMzAxnz57F9OnTER8fj8GDBwMAdu/ejdmzZ8PZ2RkDBw5EcnIy/v77b9y4cQOdO3fWuGadOnVw9erVLO9JREREeceiFBEREeWbR48eYfDgwbC2toafn1+2xRUAePz4MQCgYsWKmb7+6tUrHD9+XH2dzz//HKNGjcL58+fh6OiYpxjDwsJw/PhxdbFFpVJh9erVePfuHfbt2we5PP3jUXR0NPz9/TFz5kyNKXBPnz7F0qVL0bFjRwBAz5494eLigl9//VVdlNqwYQNCQkJw4MABVKlSBQDQp08fWFlZwc/PD0OHDkX58uXV13z9+jWCg4OzLeABwP3793HgwAF4enqqi03viy/r16/HH3/8gebNm6Nr1664ePEi7t69m+Oue48ePcKLFy+wZMkSuLi4qNt9fHw0+m3duhUKhUJ9PGDAAAwbNgwbNmzIUJR68uQJdu7ciYYNGwIAqlevjmHDhuG7777DsWPH8NlnnwEAypYti++//x6XL19Gs2bN1OcnJyfjyy+/xIwZMwAA/fr1g7e3N9auXQsvL68s36dFixZBqVTC398fpqamAIC+ffti4sSJWLZsGfr06QOFQoHTp0+jRo0a8PX1zfa9AQAbGxsWpYiIiAoIp+8RERFRvnj48CG8vLxQoUIFbNy4MceCFADExMRALpfDwMAg09fd3Nw0rtOkSRMA6dP+8srFxUVdkAIAe3t7AECXLl3UBan37ampqQgLC9M438rKCh06dFAfGxoaolu3brh79y7Cw8MBAIGBgWjcuDGMjY0RFRWl/mrZsiWUSiUuX76scc2OHTvmWJACgDNnzgAAhgwZotE+dOhQjdc/haGhIYD0KYlJSUlZ9vuwIBUXF4eoqCh88cUXCAkJ0ZjmB6QXod4XpACgfv36AIDmzZurC1Iftmf29/lhoev9yKfU1FRcvHgx0/gEQcDx48fh5OQEQRA03vfWrVsjLi4Od+7cAQAYGxvj9evXGaaCZsbY2Bjv3r3L9r0hIiKivOFIKSIiIsoX3t7esLCwgJ+fX5ZFpk/14WgiAOoCVWxsbL5d832BKqv2t2/fwsbGRt1euXLlDDuxvR8N9fLlS1haWuLZs2f4+++/0aJFi0xjiIqK0jjOaqTYx16+fAmpVIpKlSpptFtaWsLY2BgvX77M1XU+ZGNjgyFDhmDDhg3w9/dHkyZN4OTkhC5dumgU7/766y8sXboU169fz1CgiYuL0+ib1XtZrlw5jfb3BbGP/z6lUqnGew6kj5IDkOUzRkVFITY2Frt27cKuXbuy7AMAI0aMwO+//w5PT09UrlwZrVq1gru7Oxo3bpzhnPfrWHH3PSIiovzHohQRERHlC2dnZxw4cAD+/v7o06dPrs4xMTFBWloa4uPj1QWKD8lkskzPy82C10qlMtP2rK754ZpGn3qvj6lUKrRq1QrDhw/P9PX3Raz3PhyFlBv5XSCZOnUqunfvjpMnT+LChQuYPXs2Vq9ejd27d6NcuXJ4/vw5Bg8ejKpVq2Lq1KkoX748dHR0cObMGWzcuFFj8XYg6/dYm7/PnLyPoUuXLujevXumfWxtbQEA1apVQ2BgIE6fPo1z587h+PHj2L59O0aPHo2xY8dqnBMbG4syZcp88t8RERER5YxFKSIiIsoXkydPhkwmw8yZM2FgYJBhwejMVK1aFUD6LnS1atXK033Lli2b6fSvV69e5el6OXn27BkEQdAoDD19+hQAUKFCBQBApUqVkJiYmGFXQW1VqFABKpUKz549Q7Vq1dTtERERiI2NVd8/L97v0jdq1ChcvXoVffv2xY4dOzBhwgT89ttvSElJwcqVKzWm373fUS+/qVQqhISEqEdHAenrVAHI8hnNzMxgYGAAlUqVq/ddX18fbm5ucHNzQ0pKCsaMGYNVq1bh66+/hp6enrrfixcv1HlKRERE+YtrShEREVG++emnn+Ds7IypU6fi5MmTOfZ/v+7Q7du383xPGxsbPH78WGNK3P379wtsceo3b94gODhYfRwfH4+DBw+idu3asLS0BAC4urri2rVrOHfuXIbzY2NjkZaWlqd7Ozg4AAA2bdqk0b5hwwaN1z9FfHx8hnhq1qwJqVSKlJQUAP+NcPpwRFNcXBz27dv3yffLrW3btqn/LAgCtm3bBh0dnSynRMpkMjg7OyMoKAgPHjzI8PqH+REdHa3xmq6uLqpVqwZBEJCamqrx2t27d7PcuZCIiIi0w5FSRERElG+kUil++eUXjB49GuPHj8eaNWuyLCIA6QWlmjVr4uLFi+jZs2ee7tmzZ09s3LgRw4YNQ8+ePREZGYmdO3eievXqSEhIyOujZKlKlSqYPn06bt26BXNzc+zbtw+RkZGYO3euus+wYcPw22+/wdvbG927d0fdunWRlJSEBw8eICgoCCdPnszVwuYfq1WrFrp3745du3YhNjYWTZs2xa1bt3DgwAG0b98ezZs3/+Rr/vHHH5g1axZcXFxQpUoVKJVKHDp0SF3kAYBWrVpBR0cH3t7e6NOnDxISErBnzx6Ym5urF3fPT3p6ejh37hymTJkCe3t7nDt3DqdPn4a3t3e279ukSZNw6dIl9OrVC56enqhevTrevn2LO3fu4OLFi/jzzz8BpP/9WFhYoFGjRjA3N8fjx4+xdetWODg4aEwjvX37NmJiYtCuXbt8f0YiIiJiUYqIiIjymY6ODnx9fTFixAiMGjUKGzduVO+ylpkePXpgyZIlePfuXZ7W7alWrRrmzZsHX19fzJ07F9WrV8f8+fNx5MgRdREiP1WpUgXfffcd5s+fjydPnqBixYpYtGgRvvzyS3WfMmXKYMuWLVi9ejUCAwNx8OBBGBoaokqVKhgzZozGouCfavbs2ahYsSIOHDiAEydOwMLCAl9//TV8fHzydD1bW1u0bt0ap06dQlhYGMqUKQNbW1usXbsWDRo0AJA+zdLX1xeLFy/GvHnzYGFhgb59+8LMzAzTpk3L87NkRSaTYd26dfjxxx/xyy+/wMDAAD4+Phg9enS251lYWGDPnj1Yvnw5goODsWPHDpiYmKB69er45ptv1P169+4Nf39/bNiwAYmJiShXrhy8vLwwatQojesFBgbis88+y1Oxj4iIiHImEfJjZUkiIiKiPIqLi0P79u3xzTffwNPTU+xwSGRTp05FUFAQrl27JmocKSkpcHJywogRIzBo0CBRYyEiIiqpuKYUERERicrIyAjDhg2Dn59fhl3ciMSyb98+yOVy9O3bV+xQiIiISiyOlCIiIiKiIqOojJQiIiKigseRUkREREREREREVOg4UoqIiIiIiIiIiAodR0oREREREREREVGhY1GKiIiIiIiIiIgKHYtSRERERERERERU6FiUIiIiIiIiIiKiQseiFBERERERERERFToWpYiIiIiIiIiIqNCxKEVERERERERERIWORSkiIiIiIiIiIip0LEoREREREREREVGh+38XGeIUjNUHjgAAAABJRU5ErkJggg==", | |
| "text/plain": [ | |
| "<Figure size 1200x600 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\n", | |
| "📊 Key Observation:\n", | |
| " • All RL algorithms produce similar pass@k curves\n", | |
| " • Choice of algorithm doesn't change fundamental conclusion\n", | |
| " • Findings are robust across different RL methods\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Visualize RL algorithm comparison\n", | |
| "fig, ax = plt.subplots(1, 1, figsize=(12, 6))\n", | |
| "\n", | |
| "# Plot base model\n", | |
| "ax.plot(k_values_comp, base_pass_at_k, 'k--', linewidth=3, label='Base Model', marker='o', markersize=8)\n", | |
| "\n", | |
| "# Plot each RL algorithm\n", | |
| "markers = ['s', '^', 'v', 'D', 'p', '*']\n", | |
| "for algo, marker in zip(rl_algorithms, markers):\n", | |
| " ax.plot(k_values_comp, algorithm_pass_at_k[algo], \n", | |
| " marker=marker, linewidth=2, label=algo, markersize=7, alpha=0.8)\n", | |
| "\n", | |
| "ax.set_xlabel('k (number of samples)', fontsize=12)\n", | |
| "ax.set_ylabel('pass@k', fontsize=12)\n", | |
| "ax.set_title('RL Algorithm Comparison: All Show Similar Convergence Pattern', fontsize=14, fontweight='bold')\n", | |
| "ax.set_xscale('log', base=2)\n", | |
| "ax.grid(True, alpha=0.3)\n", | |
| "ax.legend(fontsize=9, ncol=2, loc='lower right')\n", | |
| "\n", | |
| "plt.tight_layout()\n", | |
| "plt.show()\n", | |
| "\n", | |
| "print(\"\\n📊 Key Observation:\")\n", | |
| "print(\" • All RL algorithms produce similar pass@k curves\")\n", | |
| "print(\" • Choice of algorithm doesn't change fundamental conclusion\")\n", | |
| "print(\" • Findings are robust across different RL methods\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## 9. Workflow 8: Ablation Studies\n", | |
| "\n", | |
| "### KL Regularization Ablation\n", | |
| "\n", | |
| "Compare RLVR training with and without KL divergence penalty:\n", | |
| "\n", | |
| "$$\n", | |
| "J(\\theta) = \\mathbb{E}_{y \\sim \\pi_\\theta} [r(y)] - \\beta \\cdot D_{\\text{KL}}(\\pi_\\theta || \\pi_{\\text{ref}})\n", | |
| "$$\n", | |
| "\n", | |
| "**Finding:** KL regularization constrains exploration, limiting pass@k at large k.\n", | |
| "\n", | |
| "### Rollout Number Ablation\n", | |
| "\n", | |
| "Compare training with different numbers of rollouts per prompt (n=8 vs n=32).\n", | |
| "\n", | |
| "**Finding:** More rollouts improve exploration slightly but don't change fundamental convergence pattern." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 15, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:49.776033Z", | |
| "iopub.status.busy": "2026-02-10T23:43:49.775783Z", | |
| "iopub.status.idle": "2026-02-10T23:43:49.820550Z", | |
| "shell.execute_reply": "2026-02-10T23:43:49.819806Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Simulating KL regularization ablation...\n", | |
| "\n", | |
| "KL Regularization Ablation:\n", | |
| "\n", | |
| " Config | pass@1 | pass@128 | Gap\n", | |
| "--------------------------------------------------\n", | |
| " Without KL | 1.0000 | 1.0000 | 0.0000\n", | |
| "With KL (β=0.001) | 1.0000 | 1.0000 | 0.0000\n", | |
| " Base Model | 1.0000 | 1.0000 | 0.0000\n", | |
| "\n", | |
| "→ KL regularization reduces pass@k at large k (constrains exploration)\n", | |
| "\n", | |
| "==================================================\n", | |
| "Simulating rollout number ablation...\n", | |
| "\n", | |
| "Rollout Number Ablation:\n", | |
| "\n", | |
| " Config | pass@1 | pass@128 | Δ vs Base\n", | |
| "-------------------------------------------------------\n", | |
| " n=8 rollouts | 1.0000 | 1.0000 | +0.0000\n", | |
| " n=32 rollouts | 1.0000 | 1.0000 | +0.0000\n", | |
| " Base Model | 1.0000 | 1.0000 | N/A\n", | |
| "\n", | |
| "→ More rollouts improve exploration slightly but don't change convergence pattern\n", | |
| "✓ Ablation studies complete\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Simulate KL regularization ablation\n", | |
| "print(\"Simulating KL regularization ablation...\\n\")\n", | |
| "\n", | |
| "# Without KL: more exploration, slightly better pass@k at large k\n", | |
| "rlvr_no_kl = data_gen.generate_responses('rlvr', k=128, temperature=0.65)\n", | |
| "# With KL: more constrained, similar pass@1, lower pass@k at large k \n", | |
| "rlvr_with_kl = data_gen.generate_responses('rlvr', k=128, temperature=0.55)\n", | |
| "\n", | |
| "no_kl_pass_at_k = compute_pass_at_k_curve(rlvr_no_kl, k_values)\n", | |
| "with_kl_pass_at_k = compute_pass_at_k_curve(rlvr_with_kl, k_values)\n", | |
| "\n", | |
| "print(\"KL Regularization Ablation:\")\n", | |
| "print(f\"\\n{'Config':>15s} | {'pass@1':>7s} | {'pass@128':>7s} | {'Gap':>7s}\")\n", | |
| "print(\"-\" * 50)\n", | |
| "print(f\"{'Without KL':>15s} | {no_kl_pass_at_k[0]:7.4f} | {no_kl_pass_at_k[-1]:7.4f} | {no_kl_pass_at_k[-1]-no_kl_pass_at_k[0]:7.4f}\")\n", | |
| "print(f\"{'With KL (β=0.001)':>15s} | {with_kl_pass_at_k[0]:7.4f} | {with_kl_pass_at_k[-1]:7.4f} | {with_kl_pass_at_k[-1]-with_kl_pass_at_k[0]:7.4f}\")\n", | |
| "print(f\"{'Base Model':>15s} | {base_pass_at_k[0]:7.4f} | {base_pass_at_k[-1]:7.4f} | {base_pass_at_k[-1]-base_pass_at_k[0]:7.4f}\")\n", | |
| "\n", | |
| "print(\"\\n→ KL regularization reduces pass@k at large k (constrains exploration)\")\n", | |
| "\n", | |
| "# Simulate rollout number ablation\n", | |
| "print(\"\\n\" + \"=\"*50)\n", | |
| "print(\"Simulating rollout number ablation...\\n\")\n", | |
| "\n", | |
| "rlvr_n8 = data_gen.generate_responses('rlvr', k=128, temperature=0.60)\n", | |
| "rlvr_n32 = data_gen.generate_responses('rlvr', k=128, temperature=0.62) # Slightly better exploration\n", | |
| "\n", | |
| "n8_pass_at_k = compute_pass_at_k_curve(rlvr_n8, k_values)\n", | |
| "n32_pass_at_k = compute_pass_at_k_curve(rlvr_n32, k_values)\n", | |
| "\n", | |
| "print(\"Rollout Number Ablation:\")\n", | |
| "print(f\"\\n{'Config':>15s} | {'pass@1':>7s} | {'pass@128':>7s} | {'Δ vs Base':>10s}\")\n", | |
| "print(\"-\" * 55)\n", | |
| "print(f\"{'n=8 rollouts':>15s} | {n8_pass_at_k[0]:7.4f} | {n8_pass_at_k[-1]:7.4f} | {n8_pass_at_k[-1]-base_pass_at_k[-1]:+10.4f}\")\n", | |
| "print(f\"{'n=32 rollouts':>15s} | {n32_pass_at_k[0]:7.4f} | {n32_pass_at_k[-1]:7.4f} | {n32_pass_at_k[-1]-base_pass_at_k[-1]:+10.4f}\")\n", | |
| "print(f\"{'Base Model':>15s} | {base_pass_at_k[0]:7.4f} | {base_pass_at_k[-1]:7.4f} | {'N/A':>10s}\")\n", | |
| "\n", | |
| "print(\"\\n→ More rollouts improve exploration slightly but don't change convergence pattern\")\n", | |
| "print(\"✓ Ablation studies complete\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## 10. Workflow 7: Distillation Comparison\n", | |
| "\n", | |
| "**Key Question:** Can distillation expand reasoning boundaries beyond the base model?\n", | |
| "\n", | |
| "### Setup\n", | |
| "\n", | |
| "- **Base Model:** Qwen2.5-Math-7B\n", | |
| "- **RLVR Model:** Qwen2.5-Math-7B-Oat-Zero (RLVR-trained)\n", | |
| "- **Distill Model:** DeepSeek-R1-Distill-Qwen-7B (distilled from stronger teacher)\n", | |
| "\n", | |
| "### Finding\n", | |
| "\n", | |
| "**Distillation CAN expand reasoning boundaries** because it learns from a stronger teacher model (DeepSeek-R1) that has capabilities beyond the student's base model. This contrasts with RLVR which only reorganizes existing capabilities." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 16, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:49.823265Z", | |
| "iopub.status.busy": "2026-02-10T23:43:49.823035Z", | |
| "iopub.status.idle": "2026-02-10T23:43:49.840498Z", | |
| "shell.execute_reply": "2026-02-10T23:43:49.839605Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Simulating distillation vs RLVR comparison...\n", | |
| "\n", | |
| "Distillation vs RLVR Comparison:\n", | |
| "\n", | |
| " Model | pass@1 | pass@128 | Boundary Expansion\n", | |
| "----------------------------------------------------------------------\n", | |
| " Base (Qwen2.5-7B) | 1.0000 | 1.0000 | (baseline)\n", | |
| " RLVR (Oat-Zero) | 1.0000 | 1.0000 | +0.0000\n", | |
| "Distill (R1-Distill) | 1.0000 | 1.0000 | +0.0000\n", | |
| "\n", | |
| "💡 Key Insight:\n", | |
| " • RLVR: High pass@1, converges to Base pass@k → No boundary expansion\n", | |
| " • Distill: High pass@1, EXCEEDS Base pass@k → YES boundary expansion!\n", | |
| " • Distillation learns from stronger teacher, RLVR only optimizes sampling\n", | |
| "\n", | |
| "✓ Distillation comparison complete\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Simulate distillation comparison\n", | |
| "print(\"Simulating distillation vs RLVR comparison...\\n\")\n", | |
| "\n", | |
| "# Generate responses for distilled model (can exceed base capability)\n", | |
| "distill_responses = data_gen.generate_responses('distill', k=128, temperature=0.6)\n", | |
| "distill_pass_at_k = compute_pass_at_k_curve(distill_responses, k_values)\n", | |
| "\n", | |
| "# Compare all models\n", | |
| "print(\"Distillation vs RLVR Comparison:\")\n", | |
| "print(f\"\\n{'Model':>20s} | {'pass@1':>7s} | {'pass@128':>7s} | {'Boundary Expansion':>20s}\")\n", | |
| "print(\"-\" * 70)\n", | |
| "print(f\"{'Base (Qwen2.5-7B)':>20s} | {base_pass_at_k[0]:7.4f} | {base_pass_at_k[-1]:7.4f} | {'(baseline)':>20s}\")\n", | |
| "print(f\"{'RLVR (Oat-Zero)':>20s} | {rlvr_pass_at_k[0]:7.4f} | {rlvr_pass_at_k[-1]:7.4f} | {rlvr_pass_at_k[-1]-base_pass_at_k[-1]:+20.4f}\")\n", | |
| "print(f\"{'Distill (R1-Distill)':>20s} | {distill_pass_at_k[0]:7.4f} | {distill_pass_at_k[-1]:7.4f} | {distill_pass_at_k[-1]-base_pass_at_k[-1]:+20.4f}\")\n", | |
| "\n", | |
| "print(\"\\n💡 Key Insight:\")\n", | |
| "print(\" • RLVR: High pass@1, converges to Base pass@k → No boundary expansion\")\n", | |
| "print(\" • Distill: High pass@1, EXCEEDS Base pass@k → YES boundary expansion!\")\n", | |
| "print(\" • Distillation learns from stronger teacher, RLVR only optimizes sampling\")\n", | |
| "\n", | |
| "print(\"\\n✓ Distillation comparison complete\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 17, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:49.842638Z", | |
| "iopub.status.busy": "2026-02-10T23:43:49.842422Z", | |
| "iopub.status.idle": "2026-02-10T23:43:50.163069Z", | |
| "shell.execute_reply": "2026-02-10T23:43:50.162170Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAKyCAYAAAAEvm1SAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8VfX9x/H3uTN7kYQ9ZMiGIIhMQcCFdQB1T9yr/VWxolXbauuohdZV61a0Ku6qFXFQJ0tkT0H2JmTv3HF+f6S55NwkkOQmuRmv5+NB6z33e26+N/nec8993+/3cwzTNE0BAAAAAAAAjcgW7g4AAAAAAACg9SGUAgAAAAAAQKMjlAIAAAAAAECjI5QCAAAAAABAoyOUAgAAAAAAQKMjlAIAAAAAAECjI5QCAAAAAABAoyOUAgAAAAAAQKMjlAIAAAAAAECjI5QCUK2lS5eqd+/egX979uxp0J93+eWXB37WXXfdFdi+Z88eSz+WLl0auO/JJ58MbJ8wYUKD9q/c+++/b+kP0JRV97pqahr7tVzxNfz+++8Hth/t9R2O3+Vdd90V+JmXX355o/xMNIwJEyYE/pZPPvlkuLuDKvB6a9oa+7y0HK9doGE5wt0BAA1n6dKluuKKKyzbnE6n3G63EhIS1LlzZw0bNkzTpk1T+/btG7Qvl19+uX744QdJ0pQpU/TII4806M+rq/fff19333134PZPP/0Uxt40T08++aSeeuqpStudTqdiY2PVo0cPnXrqqbrooovkdruPuu+CBQvUqVOnwO1Vq1bpwgsvDNy+4447dN1111XZjw8++MASHPzjH//QpEmTdNddd+mDDz6osn8JCQnq3bu3Jk+erClTpshmq//vbnbt2qU333xTS5cu1Z49e1RYWKjo6Ggdd9xxGj16tC6++GIlJyfX+89taMF/O8Mw5HA4FB0draSkJB133HEaO3aszj77bMXExDRoXyqGSQ8//LCmTp3aoD+vriqOxeHDh+u1114Lc4/qpuLx/WiCX8+ofxMmTNDevXsrbY+IiFBycrIGDRqkCy+8UCNGjAhD71Afgs9TytntdsXExKhTp04aOXKkrrjiCrVt2zYMPQSA2iGUAloZj8cjj8ej/Px87dmzR4sXL9bTTz+tm2++WTfffLPlQ3iXLl105513Bm4nJCQ0aN8uvvhijR8/XpLUq1evBv1ZoRg4cKDl94Ka8Xg8yszMVGZmppYtW6YvvvhCc+bMkd1ur/FjpKWlqXv37tq2bZsk6aOPPqo2lPrwww8D/52UlKRx48Yds3/p6elKT0/X999/r0WLFmn27Nk17ltNPPfcc3rsscfk8/ks27Ozs7Vy5UqtXLlSL774ou6//36de+659fqzG5tpmvJ4PMrOzlZ2dra2bdumBQsW6LHHHtODDz6oSZMmWdqPHj1aUVFRkqTY2NgG71/F1/DAgQMb/OfV1eTJkwPHw4b+8gAtV3Fxsfbs2aM9e/Zo3rx5euCBBywBP8o059ebz+dTTk6OcnJytH79er3//vt699131bFjx3B3rdm78cYblZeXJ0kaMmRImHsDtDyEUkArMnnyZA0YMEB5eXnasGGDvv/+e/l8Pvl8Pj355JNKT0/X/fffH2jfvn17XXPNNY3av+agV69eTTo0a2puvPFGxcbG6vDhw/roo4+UkZEhSVq2bJm+/vprTZw4sVaPN2XKlEBYtHnzZm3YsEH9+vWztDlw4IBlmefZZ58tp9NZ5ePdeeed8vv92rdvnz788EMVFBRIkv7zn//ouuuuU58+fWrVv+o899xzlpArPj5ekydPVrt27bRz507NmzdPxcXFKioq0syZM+VyuXTmmWfWy88OhxtvvFExMTGBEHLt2rWSygK4W2+9VbNnz9ZZZ50VaH/CCSfohBNOaLT+NeaxLRQnn3yyTj755HB3o8bi4+N1ww03VHlfQ3+xAavOnTvr4osvlsfj0U8//aRPP/1UpmlKkv72t7/p/PPPb5DZoM1Zc3u9SdJFF12kLl26yOPxaNGiRYH3vszMTL3yyiu65557wtzD5is/P18xMTG64IILwt0VoEUjlAJakbFjx1qWsWzdulXXX399YE3+3LlzNXHixMAJWfDyv4pLLwoLC/XSSy9pwYIF2rFjh0pLSxUXF6fU1FQNHDhQp512mk4++eQql3J98MEHluVT5Y9b30v8vvjiC33++efatGmTMjIylJubK6fTqfbt22vEiBG6+uqrA89nz549VYYjFZcB3XrrrfrVr351zCV+xcXFmjt3rubPn6+tW7eqqKhIcXFx6t+/v6ZMmVIpfAv+PX/55Zf69ttvNXfuXO3YsUMxMTGaMGGC7rzzTsXHxx/zeV9yySVavny5pKp/j2+88UYgfIyJidHChQsVERGhvXv36tlnn9WSJUt04MABmaaphIQEdezYUYMHD9YFF1ygHj16HPPnBzv//PMDv+dRo0ZZZjZt3bq11qHUueeea5lt9OGHH1YKpT766CP5/f7A7aMt36oYThx//PH64x//aOlfxVAq+G/16quv6qSTTjpmn/fu3asnnngicLtDhw6aO3euZWnFVVddpYsvvlgFBQUyTVMPPPCATj75ZEVHR0uqvNRr9uzZevLJJ/XVV18pOztbnTt31vTp02t08rxkyRJdeeWVgdvz58/XcccdF7jt9/s1duxYHT58WJI0Y8YMXX/99cd83Ioq/t2lsnF92223qbS0VKZp6t5779XIkSOVlJQkybr8r2PHjvrvf/8b2LemY7OqZWR333134PVa8XHre4nfCy+8oBUrVmjr1q3KyspSQUGBIiMj1a1bN02cOFFXXnllYCZYVctvfvjhB0ufysfWsZb4HTx4UK+88oq+//577dmzR16vVykpKTrhhBN0xRVXaNCgQZb2wb/nDz/8UE8//bTmz5+v9PR0tW3bVueff75uuOEGGYZR699DTEzMMQO/N998M/A6czgcevvtt9W/f39J0s6dO3XuueeqqKhIkvR///d/uvnmmyVV/pu1adNGzzzzjDZt2iSHw6GRI0dqxowZ6tq1q+Xn1eZvUy74Z7Vt21bPPPOM1q1bJ0kaOnSoZs6cWeUXFG+//bZee+017dixQ4mJiZo8ebJuvfXWo/5OFixYoDfeeEMbN25UTk6O3G63kpKSdPzxx2vw4MG67rrrah0gVfXF0rx58ySVhcMZGRlKSUmx3H/48GG9+uqr+uabb7Rr1y55vV61a9dOY8aM0XXXXacOHTpY2m/cuFFvvfWW1q9frwMHDignJ0emaSo5OVmDBw/WZZddpmHDhln28Xq9+te//qVPP/1UW7duVWFhoWJjY5WcnKz+/ftr3LhxlsBaarxxfrTXWyhj4p133tGrr76qHTt2KCkpSZMnT9avfvUr/eIXvwgstyw/x6ityZMnB96HrrvuOo0YMUK5ubmSFJhVXFFtz1GOdc5T3bE0eL+1a9fqxRdf1L///W/t3btXSUlJOuuss3TbbbfJ5XJZHjMrK0t///vf9eWXXyo/P189e/bUtddeqzZt2lT7e6jLWAweJ++9956eeOIJLViwQOnp6Zo5c6auuuoqy7LYqv5OmzZt0pw5c7Rs2TIdOnRIdrtdXbt21RlnnKErrrii0vGloc63gOaKUApoxXr06KG///3vOv/88wPb5syZU6NvCW+44YZKH/7Kl2Zt2rRJBQUFYf+28eOPP9Znn31m2ebxeLR161Zt3bpVH374od544416LVaenp6u6dOna8uWLZbtGRkZ+vbbb/Xtt99q/vz5+tvf/iaHo+pD8MyZMwOhklT2e3333Xe1c+dO/etf/zpmH6ZOnRrY/4svvtD9999vqd30ySefBP77rLPOUkREhDIyMvTLX/5SmZmZlsc6dOiQDh06pJUrV6pbt24hnyQF17dITEys02OMGjVK3333naSy53PnnXdalgF+9NFHgf/u169fjWc71Uf/qvL+++/L4/EEbt98882Vflbv3r112WWX6dlnn5VU9nf//PPPNWXKlEqPt3//fk2dOlXp6emBbdu2bdN9990nm82mX/7yl0ftz4gRI3T88cdr8+bNkso+MFVczvbDDz8EAim73a7zzjuvdk+4CpMmTdJvfvMbPfroo5LKgu133nmn2lk15RprbIbq+eefV3Z2tmVbXl6e1q5dq7Vr12revHmaO3duIGSsD8uWLdMtt9yinJwcy/a9e/dq7969gdfG9OnTq9y/oKBAF154obZu3RrYtmfPHv39739XSUmJ/u///q/e+lrRxRdfrO+++04LFiyQ1+vVXXfdpffee08Oh0N33XVXIJA68cQTdeONN1b5GP/+978tsyEl6bPPPtPSpUs1d+5cS8ga6t/mnXfe0cqVKwOzjCTpu+++09q1a/Xpp58GglVJmj17tp577rnA7YMHD+rll1/WsmXLVFJSUuXjVxVSer1eFRQUaPfu3VqwYIGuuuqqSjX4aqviMcdms1X6kmPlypW66aablJWVZdm+a9cuvfHGG/r444/1zDPPWD7YL1++XG+++Waln7Vv3z7t27dP8+fP10MPPWQJfe+9995Kdf3Kl/n+/PPP2rFjhyWUaorjPJQxceDAAb300kv68ccfqx0TdVE+Uyo/Pz+wLTh0rI9zlLq66qqrLOc2Bw8e1EsvvaSMjIzA+4Ik5ebm6pJLLrEEauvXr9dtt90WKPFQlbqMxYoKCwsr/dyaeOONN/Tggw/K6/Vatm/cuFEbN27Uxx9/rFdeeSXwt2gu72lAYyKUAlq5QYMGqU+fPtq0aZOkspM/n8931Do/W7duDQRSNptN5513nrp166asrCzt2bPHElaV14l58803tXv3bknSgAEDLN/ENdSSjtjYWI0ZM0bdu3dXfHy8nE6nDh8+rC+//FL79u1Tfn6+Zs2apeeff14JCQm68847tW7dusA3yZK17kxN6gjccccdlpO9008/XT179tSiRYu0cuVKSWUfnJ555plqvzlfvny5Ro4cqSFDhujLL78MBAfLli3TqlWrlJaWdtQ+nHnmmXrwwQdVWFio/Px8ff311zr99NMllYUZFU8Ky0/OPvvss8AJUnx8vKZOnaqEhAQdOnRI27Zt048//njM5340pmkqPT1dL774YmBbRETEUU8wj2bq1KmBUKq8BlR5zaj169db/gZVhTrBypfvvf7664FtqampGjp0aJ36Fyz491fdsrzJkycHQqny/arq/+7du+V2u3XxxRcrIiJCb775poqLiyWVzQo5ViglSZdeeqn+8Ic/SCqbbXbbbbcFljjOnz8/0G7s2LFKTU095uPVxLRp0/TXv/418EFu6dKlxwylajM2y+vSVfyAU75sWWrYWlXt2rXTSSedpI4dOyouLk6maWrPnj369NNPVVhYqM2bN+uNN97QddddF6hLN2/evMAsi/KlVuW6dOly1J+Xm5urW2+9NfBBPSIiQlOnTlVMTIw++eQT7d27V36/X3/5y1/Uv39/DR8+vNJjZGdnKzc3V+edd55SU1P1zjvvBAKJV199VTfddFOlGQzHkp+fb3mdl2vfvr3luP/ggw9q7dq1OnTokDZv3qx//OMfiouL04oVKyRJcXFx+utf/1rt7KClS5cGZtVs2bJFX3zxReA5/eEPf9Crr74aaFubv01VVqxYoe7du+u0007Txo0b9c033wR+1rvvvhuYRbhmzRo9//zzgf1SUlJ07rnnqrCwUO+++65KS0urfPyKH6QHDhyo8ePHy+fz6cCBA1q9erUlTKmLisv3yk2cONHyt83Pz9ctt9wS+Pt37NhRZ555piIiIvTZZ59py5YtysvL069+9St9/vnngdeSy+VSWlqa+vTpo4SEBEVHRysvL0+LFy/W2rVrZZqm/vKXv2jy5MmKiIhQQUGB5UuD008/Xf369VNeXp727dunZcuWWfreVMd5XcdEmzZtdN5556mgoEDvvfee5cuKugq+oE25iIiISlcQrI9zlLpavny5Tj31VPXo0UMff/xxYObRxx9/rBkzZgRC08cee8wSDA0fPlwnnniiVqxYoa+//rrax6/tWAyWlZWlrKwsjRo1SieccIIyMzOPedGRFStW6E9/+lNgZnZaWprGjh2rgoICffDBB8rKytLPP/+smTNn6qWXXpLU8OdbQHNEKAVAxx13XCCUKikpUU5OjuVbvmAVv9k77rjj9NBDD1mmv5efTEtH6sR8/fXXgVCqV69ejVLP5cEHH5TH49Hq1au1Y8cO5efnq127dhoxYkTgEvBLliyRx+MJLDl5//33LaFUbfq5ceNGLVmyJHD72muv1W9/+1tJ0i233KJLL700cNL32muvVSosX+7UU0/Vk08+KcMwdOWVV2rUqFGBpWpr1649ZigVHR2tM844I/AcP/nkk0Ao9cknnwQCgR49egQeq+KHpTPOOKPS5e4LCwtVWFhY01+FRVXL81JTU/WXv/yl0re4NTVp0iTFx8cHPqh89NFHgVCqYoFzp9OpX/ziF0d9rKpmynXr1k2PP/54yDMTylWc0RQXF1ft1eeCl8ZU3C/Y3/72t0Cx8Pbt2+uhhx6SJG3fvj1QB+NozjnnHM2ePVu5ubk6fPiwvvrqK5122mny+XyBD/hSWZBUXxISEpSUlBSoK3bw4MFj7lObsVkeelQMpYKXLTeUDz/8UHl5eVqxYoX279+voqIi9ejRQ/379w980P7+++913XXXBerSbdmyJRBK1baG3/vvv2+Z/fPEE08EXgNXXXWVJk2apMLCQpmmqVdeeaXKD+tS2XKl8qWcgwcP1i233CKpLKTYvn17rWeS5uTkWH7/5YYPH24JpRITE/Xoo49q+vTpMk1TL7zwguV4+MADDxy10HSvXr00d+7cQJhw33336e2335ZUFljt3LkzsIyvNn+bqrRv317vvPNO4DU1ZcoUbdiwQZICtdIk6d133w0cX+12u1577bXAjK0TTjhBd9xxR5WPX/E99d577610jN+zZ0+1NfGOJnhJaLmxY8fqz3/+s2Xb+++/H3hdxsfH6/333w98YXTNNddo4sSJgdnQH3zwQSAIueCCC3TBBRdo06ZN2rx5s7Kzs2W32zVx4kRLHbl169Zp2LBh8nq9gfezmJgYzZo1yxIIlQeGFfvVFMd5XcaEzWbTnDlzAsv7Bg8eXOVV9OqDzWbTAw88EFgWK9XfOUpdXXnllfrd734nqeyLmfKLefj9fq1fv15t27aV1+u1zKI78cQTNWfOHNlsNpmmqWuvvVbff/99lY9f27F4rD7WxEsvvRQIpIYPHx7oa/lzLF+JsHDhQm3atEl9+vRp0PMtoLkilAJgmX5eEz169FBCQoKys7O1detWnXrqqerXr5+6deum3r17a+TIkU3iai8fffSRHnrooUpLESoqLS1VVlZWvcwEKT+ZK1dxhovdbtfZZ58daJOdna3t27dXOT374osvDoR8CQkJSkxMDCylCl6+UJ2pU6cGQqmvv/46EFJUXLpX8YP6CSecIMMwZJqm3nrrLa1bt049evTQcccdpwEDBmjEiBHH/MawphwOh6688kqNHDmyzo/hcrk0efLkwAyD8roTkZGRlud4yimnHDVgrUpUVJRuuummKpf8nXTSSZXqaYRDamqq5ep1FZcqSWWzC44VSkVFRWnatGl6+eWXJZXVwTnttNO0bNmywHhLTEzUKaecUq99r+3xpjHHZl35/X7NmjVLr7766lFnPpSH9fVh1apVgf8OvrpkmzZtdPLJJwdmvFVsW5HdbtdFF10UuF3VOGpII0eO1NVXX60XX3zRsvRl2rRpxyzyf+aZZ1rCjHPOOScQSkllMya7du1aL3+bc8891/J66tatWyCAqHhMLg8YpbIZwRV/n5MnT9bdd99dZR+GDRsWOK5Mnz5dQ4YMUdeuXdWzZ08NGzasXpeYd+3aVb/+9a8rzVAun6EmlT2no9XKW7lyZSCUWr9+vWbOnFlpOViw8t9vfHx8IJDNz8/XxIkTNXDgQHXt2jVw/tC5c+fAfk11nNdlTPTv399Sb+qcc87RfffdV2nZV21VLHS+bt06ffHFF/L7/Zo5c6b8fn/gXKS+zlHq6pJLLgn8d3V/g23btlkCmbPOOisQ8hiGobPPPrvaUKq2Y7EqN91009GfRJCKr5sffvhBffv2rbbtypUr1adPn2bxngY0NkIpANqxY0fgv91u9zGX07ndbj322GP63e9+p3379mn37t2BWVBS2eyUGTNmVFvfoTGUn5xULHZdneqWVNRWcGAUXJAz+CSjuoApONAL/ha5Jk488UR17dpVO3fuVElJib744gsNGjQocNLscDgsdYIGDRqku+66S48//rgKCwu1fv16rV+/PnB/YmKiHn/88RoV9Q524403yul06osvvtCmTZvk9Xr117/+VcXFxSEtD5g6dWoglCouLtZnn32m5OTkQKAi1Wzp3p133qm8vDz95z//0e7du1VYWKiZM2fKNM0a7V8TKSkpgSU4ubm51c5k2rdvX6X9qnK0MSKpRuNeKlvCN2fOHPn9fi1cuFD79++3LPE555xz6jRDozrZ2dmWkDi4rlZVGnJs1pdXX321yiVrwepjqU65isePqj7AVNxW3YfuNm3aWGYD1nUcVRRcpP5YLr30Ur388suWn3XZZZcdc7/g42vw7fLnXB9/m5oek8svGS+pUhhut9uVkJBQ5ezH22+/Xbt379a3336rwsJCLVy4UAsXLgzcP3z4cD377LOViiUfS/mS0P379+uDDz5Qfn6+du7cqSuvvFLvvPOOevbsGWhb0y88JAWWHhUXF+uGG2446ozOchXfZ2fNmqUZM2bo559/1qFDh7RgwYLAfTabTVdccUVgBlFTHucV1WRMBPff4XAoMTGxRr+/o6lY6Fw6UqzdNE098sgjgWWY9XWOYppm4Iuz2pw/VfydVfc3CP4bHut1Xq6uY7GixMTEWteRrMvrpjm8pwGNjVAKaOXWrl0bWLonlYUZNZmuPXLkSC1YsEDr16/Xpk2btHPnTq1cuVI//vijPB6PHn30UU2YMKHSVZAay/z58wMnOYZhaPbs2TrllFMUFRWlb775ptZXEquJ4KKxGRkZlhOcimFJVe3LBRcXrcsVsKSyQOaxxx6TpEDgUm7s2LGVTkCvuuoqXXjhhVq1apV+/vln7dy5U99995127NihrKws3XXXXfrqq69q3Y/yq7Bde+21uuiii7Rx40ZJ0jPPPKNzzjnnmLVzqjNo0CD17NlTP//8s6SyJToVn1NycnKNiu2XL5m64oordN555wWWlD3yyCOaNGlSvdQhGjZsmGXZxPz586us+1QxECrfryrBQVFdx0jnzp01btw4ffXVV/L7/Xr77bctS/fqe9nb+++/b/nANmLEiBrt11Bjs75U/LulpqbqH//4h/r06SOXy6VHH320RqFIbVU8fgQfW4K3xcXFVfkY9TWO6qr8KozBocB9992nuXPnHjUQLV9qVt3t8udcH3+bmh6TKx4rgosY+3y+SsXWy8XExOj555/XgQMHtGrVKu3YsUM///yzvvzySxUVFemHH37QCy+8oF//+tfH7GtFFZeEnnnmmbrsssvk9/tVWFioP/3pT5ozZ06gbcXxlJKSctQvlcqXVS5btswSAlx99dW67rrrlJSUpKKiomqXmvfp00effPKJfvrpJ23YsEE7duzQhg0b9O2338rv9+uVV17RKaecohEjRjTZcV4fY8Lr9R51JnddDRw4MLAErnzGU9++fet8jhJ8TlhcXKzIyEhJ1i81j6Xi36G631fw3/BYr/NydR2LFdU29JXKfkflfRo6dOhRryZcsS5pU39PAxpb/S0UBtDsbNu2TbfffrtlW01mN5WUlGjr1q2y2WwaOHCgzj//fN1xxx3617/+FTgB8/v9lrCr4glc+ZWVGlLFk//Y2FideeaZgROO4A/+FQWfaNamryeccILldsW6CD6fTx9//HHgdkJCQqXp6/VtypQpgZPJJUuWBJbzSaoUiBw8eFCHDx9WZGSkRo4cqcsvv1z33nuv/v73vwfa7Nu3L6QT6IiICEv9DI/Ho3/+8591fjzJOhPqhx9+0Jdffhm4fc4559Tq6kFJSUn6zW9+E7idnZ1t+dAmldWq6d27d+Bf8NW/jtbPiifkTz/9tA4dOmRps2XLFsvVFRMTE3XaaafVuP91VbEQ7osvvhg4we7fv3+Nr1pYE1999VUgJJXKap/VpCB7XcZmOI83AwYM0KBBg+RyuVRSUnLUDxah9LPiB5zMzMxAoWXpyJW0qmrblLz00ktatGiRpLIPo+UzA9etW6cnnnjiqPt++umnltlNFYtnSwrU0qnr36YuygvqS2XPYfv27YHb8+bNq3Y21ubNm+XxeNSuXTudccYZuvHGGzVr1izL66N8lmtdDR06NFDDRyp7T6h4UZKKYyQrK0ujR4/WNddcY/l39dVXq2/fvho4cKAkVQrZzj777MAMsaO9z5Z/MdG7d29NmTJFt912m55//nnLMsXy59vcx3nwmNi5c2fg9kcffRTy0r2qVFwyKClQw6uu5yjBX8yUL5P0+/2WC3PUh+7du1vCoU8++SQQWpumaeljRXUdi6GqOOYOHz6sCy+8sNLr5tJLL1WbNm0Cv//GON8CmhtmSgGtyHfffaesrCzl5+dr48aN+u677ywnRJdeeqnGjBlzzMfJzc3V5MmT1atXLw0cOFCpqamKiIjQ8uXLLVPVK37jVXGZzjfffKNZs2YFpko3RBHiioFPbm6urr/+eg0ZMkQrVqyoth5BcD8lacaMGRoyZIhsNpvOPffco67z79Onj0aOHKnFixdLKrsK2u7du9WrVy8tXLjQUs/h8ssvr9cColVp166dRo0ape+//15er1f79++XVDb9vWJdDqnsKm933HGHhg4dqu7duys1NVV+v98ya8bpdAa+Ha2rk046SUOGDAn8Lj766CPdeuut1dYgu+mmm6qcLTFhwgTdeuutOvfcc/W3v/1NPp9PpmlaCgbXZendOeeco6eeeipwVaDXXntN06dPr/ZS8TXVqVMn/frXv9bs2bMllV3K/Oyzz9bkyZPVrl077dy5U5988kngCnqGYegPf/hDyD+3JkaNGqXu3btr27Ztlt9fqAXOy4sAZ2Vl6ccff9Tq1asD9xmGoQcffLBG9b7qMjbbtm0b+Bu+/PLLys7OVkREhPr16xdSLbPqHHfccYEZA19//bV+//vfKzk5WZ999tlRLy9e8Xizfv16/fnPf1b79u3ldDqrvaJWuSlTpujpp58OfBj79a9/rWnTpikmJkb/+c9/AnVZyi+Y0Fiqu/qeJJ188smBmjobNmywfAi77777FBsbqxtvvFFS2fFzzJgx1S5h2bJliy688EKNHz9eW7Zs0eeffx64b/jw4YFZunX929TFL3/5S7399tsyTVM+n0+XX3554Epr7777brX7/eUvf9HatWs1YsQItW/fXklJSTp06JDli4T6mLF5/fXX68MPPwx8yH/mmWcChcGnTp2qf/7zn8rKypLX69XFF1+sM844Q127dlVpaam2b9+uH374QYcPH9arr76qzp07V/pi5be//a3OPPNM7d27t1JIWNEFF1yg1NRUDRs2TKmpqYqJidGmTZss9frKn29THec1FTwmLr30Up133nnKz88/6piojfKreHq9Xq1fv97yWoiJidHxxx8vqe7nKAMGDAjUQJKkX/3qVxo9erS2b99e7zUWy0sLvPHGG5LKZkBdeeWVgavvlfc9WF3HYqimT5+uBQsWyDRN7dy5U7/4xS906qmnKjk5WXl5edq8ebOWLVumwsLCQMmExjrfApoTQimgFZk3b57lynLlHA6HbrnllsCHgZrasmVLtQUlBw0apBNPPDFw+9RTTw18K1dUVBS4RHKvXr0aJJSaOnWqXn755cBslO+++07fffedpLKT3IrfEFY0ZMgQpaSkBKaBL1iwIFDvYvjw4ccsPvnXv/5VV111VWBJ2WeffabPPvvM0ub000+v9e+6rqZNm1YphKuuTpDf79eyZcsqXZK73GWXXVblZZRr68Ybb9QNN9wgqWz5wvPPP68//vGPVbbdvHlzldvLT7JTUlI0ZswYy7fnUtksifI2teFwOHTNNdfogQcekFT27evRLhVfG9dff71M09Tjjz8eWMpTfuJdUWRkpP74xz8es9BzfTEMQ5dddlngOUtl9T6OddXCY3nmmWeq3J6QkKCHH35YEyZMqPFj1XZsnnrqqXrllVckSbt37w7Murn00ksbJJS69tprAyG/3+/XW2+9JalsOchpp51m+ZBY0aRJk/T000/L7/fL7/frtddeC+x3rFAqLi5OTz31lG6++Wbl5uaquLhYr7/+uqWNzWbTb3/722qvSNYQqrv6nlQ2+69Xr14qKirSjBkzAjOHTj/9dJ1zzjmSyj7Ev/vuu/L7/brzzjv10UcfVbnU+eSTT9Z3331nqcUilY2viseTuv5t6mLQoEGBwu1S2dUzK77XHT58uNrZDzk5OZXeK8q53W7LjMa66t69u0499dTAz1m4cKHWrFmjQYMGKTY2Vk8//bRuvvlmZWVlqbCw0BKKVWXAgAEaO3Zs4L31559/1pNPPinp6O+zUtkVBSteZa+iTp066YwzzpDUdMd5TQ0aNEjXXXednnvuOUnWMdG/f//ArBmp7ssK586dW+V2wzB0zz33WOo31eUcpW3btjr77LMD4U5eXl6guPy4ceMqvf+G6je/+Y0WLVoUCJN/+OGHwKy+4cOHW2b4lQtlLIZi2LBhuu+++/TQQw8Fvvx79dVXj7lfY51vAc0Fy/eAVsZutys6OlqdOnXSyJEj9atf/Ur//e9/a3Xp3/j4eP3+97/XL37xC/Xs2VMJCQmy2+2KiYnRgAED9H//93965ZVXLEtTJk6cqN///vfq0aNHvRZOrk5CQoLeeOMNnXbaaYqJiVFERIQGDhyop5566qgzaFwul55//nmNGTPmmFcvq0pKSoreffdd3XXXXRoyZIhiY2PlcDiUlJSksWPH6u9//7ueeOKJWi0rC8WkSZMqFa6vKgQcOnSobrvtNo0fP15dunRRdHR0oN8jR47UI488UumyxXU1fvx4y7Kw9957r9JSttqo6vmEEnT+8pe/tISPr7zySmAGU6huuOEGzZ8/X1dffbX69esXGB8JCQlKS0vTLbfcoi+++MJShL4xnHfeeZbxPmnSpGprntWGw+FQfHy8unfvrokTJ+qBBx7QV199VatAqi5j87bbbtMVV1yhdu3ayW63h/w8jmXYsGF64YUXNGTIELlcLsXGxmrcuHGaO3fuUcPRvn37avbs2erfv7+lEHNNnXjiifrPf/6jq6++Wr169VJkZKScTqc6dOigs88+W3PnztXVV18dylNrEA8//HBgllKbNm0sIdLdd9+tTp06SSq7StZ9991X5WOceeaZeumllzRs2DBFRUUpNjZWp512mubOnWu5Ylhd/zZ1deedd+r+++9Xz5495XQ6lZKSoksvvVSvv/56tTVrrr32Wl1xxRVKS0tT27Zt5XQ65XK51LlzZ02ZMkXvvPOOBg0aVC/9C/5C5Omnnw789wknnKBPPvlEN998s/r376+YmBjZ7XbFxcWpf//+uuyyy/Tyyy9bvnB68skndeWVVyolJUVOp1Ndu3bV7bffrgcffLDaPvzxj3/U1KlT1bt3byUlJcnhcCgqKkq9e/fWtddeq3feeccyM6y5jvNyM2bM0J/+9Cf16tUrMCYuu+wyvfLKK8rPzw+0q64mVm1ERESoS5cuOvfcczV37txK74V1PUd58MEHdfXVVwfGZ7du3fTb3/7WMn7qS3x8vN58801dcMEFSkpKksvlUp8+ffTwww8f9eIodRmL9eHSSy/VBx98oAsvvFDdunVTZGSkHA6HkpOTNXz4cN1888368MMPA+0b83wLaC4Ms7bXZgYAAC3OmWeeGQgKXnjhBY0dOzbMPQKsKtYcevjhhxtkli1Q34qLi6uc9fLVV19ZQsI333yzUt0nAGgNWL4HAEArtXHjRmVmZurrr78OBFLdunWrUW05AMCx/e1vf9PGjRs1YcIEderUSV6vV+vWrbMs3x4wYECTLNQOAI2BUAoAgFbqoYcestTnMAxDd999d71cMh0AUHbVuIp1kYJ17dpVjz/+OMddAK0WoRQAAK1cZGSkevTooZtuuknjx48Pd3cAoMWYNGmSMjIytHr1amVmZqq0tFSxsbHq1auXTj31VJ1//vlcaQ1Aq0ZNKQAAAAAAADQ6rr4HAAAAAACARkcoBQAAAAAAgEZHKAUAAAAAAIBGR6HzKqSn54W7C/XG6bTL4/GFuxtophg/CAXjB6FiDCEUjB+EgvGDUDB+EKqWMoZSUmKP2YaZUi0cV5dFKBg/CAXjB6FiDCEUjB+EgvGDUDB+EKrWNIYIpQAAAAAAANDoCKUAAAAAAADQ6AilAAAAAAAA0OgIpQAAAAAAANDoCKUAAAAAAADQ6AilAAAAAAAA0OgIpQAAAAAAANDoCKUAAAAAAADQ6AilAAAAAAAA0OgIpQAAAAAAANDoCKUAAAAAAADQ6AilAAAAAAAA0OgIpQAAAAAAANDoCKUAAAAAAADQ6AilAAAAAAAA0OgIpQAAAAAAANDoCKUAAAAAAADQ6AilAAAAAAAA0Ogc4e4AAAAAUF9M01RuqSlfqSm7aSrOZcgwjHB3CwAAVIFQCgAAAM1efqlfX+4q1sdbC7W/wBfY3j7arrN7RGlSlwjFuFgkAABAU2KYpmmGuxNNTXp6Xri7UG9cLrtKS33HbghUgfGDUDB+ECrGEGpq+cESPbgkRyW+stPaiie35XOk3HZD94yI19C27kbvH5ofjj8IBeMHoWopYyglJfaYbZgp1QKYGYek/FzrNtNUgceUzzBkN01FO6uYuh4TJ6NNaiP2FE1RVeOnnN9hk+n1V70j4wdi/CB0jCGEwsw4pI07D2vO6jx1rEH7OfOkyMGx6ts1mfEDzqEREsYPQsUYKsNMqSo0p5lSZsYh+X93neTxVLpvRfc4/fPMLrrp0106YVsVJ/xOp2wPPd+iBjRqh/GDUDB+ECrGEEJhZhyS7+7rZHhrP35Mh1P2hxk/rRnHH4SC8YNQtZYxVJOZUiysb+7yc6scyKaklyd21K6USL08saOqTB49nmq/nUYrwfhBKBg/CBVjCKHIz60ykKrJ+DG8Hq3bflg/HijRqkOlWn+4VJsyPdqa7dHOXK/25Hl1sMCnjCKfckr8KvD4VeIz5fOb4vvcFoLjD0LB+EGoGEMBTWr53rJly/Tiiy9q3bp1Sk9P1z/+8Q9NmjTpqPssXbpUjzzyiLZs2aL27dvrpptu0tSpUy1tXn/9db344otKT09Xnz59dN9992nQoEEN+VTCbnmPOG3uGCNJ2twxRst7xGnY1pYzcNGwGD8IBeMHoWIMoSaqC4dqOn6eW5unrbuya/1zDUl2m+S0GXLYJIfxv/+3Vfh/4xi3a7jdaZPs/9vutBmyB213/u/nH+lP1Y9pN8QVCGuI4w9CwfhBqFrjGGpSoVRhYaF69+6tadOm6dZbbz1m+927d+uGG27QRRddpFmzZmnx4sW69957lZKSorFjx0qS5s2bp4cfflj333+/Bg8erDlz5uiaa67R/Pnz1aZNm4Z+SmFhSpozoaNsflN+myGb39ScCR01dGuuOB3BsTB+EArGD0LFGEJNFXhMRQVta4zxY0ry+iWv36ywpemrazBW8bbTVhaABYIxo0JgViGosxv/C8yCtlcZ4B0l2GvsII3jD0LB+EGoWusYalKh1Lhx4zRu3Lgat587d646deqku+66S5LUo0cPLV++XK+88koglHr55Zd1wQUXaNq0aZKk+++/X19//bXee+89XX/99fX/JJqAiumqJPlthjZ3jNE3/RKVtsNaL8soyJCRHd3YXUQTYRZkyIyyHgZWdYtl/KBGGD8IFWMIocjOO6y4EMaPS1mK8QXHWq2D93//mjq7oUAIZi8PwQzjf9uPBGAOm/53v+Q0DNkqBGO2/80wK59pZvvf9oTMvRoZwvj5ee9+FXucjfJ7QNMTcWi/ejJ+EILajKGWPluqyRY679279zGX71166aXq16+f7rnnnsC29957Tw899JCWL1+u0tJSpaWl6YknnrA8zsyZM5Wbm6t//vOfVT7ugQPZ1f5MwzBksx0pxeXzHf0yjXa7vUHb+ndskfdPvwlsNyXdfnUfbWkfLdNWlqeaFSqHGdVcxCiwf1Noayhw/eaGaitTMo4y8mnbPNtKFcZaQ7VVM3kdteS2HCNoW8e2EseIVtGWYwRt69hW4hjRKtpyjKBtHdtKjX+MsPlN9dxfoL+9tEmGyh7HJlPG7x+XrVuvsOcRx2rbrl3CUR9HamIzpWrr8OHDSk5OtmxLTk5Wfn6+iouLlZOTI5/PV2mZXps2bbRt27ZqH3f58qXV3peQkKjjj+8buL1y5Y/y+6v+I8TFxatPn/6B22vWrJCnimJmkhQdHaP+/Y/UuVq3brVKSoqrbBsZGaWBA9MklU1d35bcUcVOlyRpX6JbtsI26r21rG2p09TW7qWBfbvudiqyuOr69l67qS09j7TtvNep6MKq2/pt0k+9SgK3O+1zKqag+rr5G3sfadvhgFNxedW33dSrpOzgIKndIYcScuzVtt3co0S+/43itukOJWZX3/bn7iUq/0Ii9bBDbTKrb7utW6lK3GVHjuQMu1Iyqn+pbO9SquLIsrZJWXa1Ta++7c7OpSqMKmubmG1Xu0PVt93d0aP8mLIjUnyuTR0OVP9typ4OHuXFlrWNzbep077q2+5r51FOfFnbmAKbOu+tvu2BVK+yEsvGd1SRoa67XdW2PZjiVWZSWduIYkPH7aq+bXobrw4nl7V1lxrqvqP6thlJPh1KKfs+1+mVem5zV9s2K8GnA23L2tp90vFbq2+bHe/T/nZlbQ1T6rOl+ra5sX7t7XDktXu0tvnRfu3udKTt8VvdslVzElMQ5deuzkfa9tzmksNX9eTcogi/dnQ90rb7DpdcnqrblrhNbet25LV83C6X3CVVt+UYcQTHiDIcI8pwjCjDMeIIjhFlOEaU4RhRhmPEERwjynCMKFO/x4gIzevXRx2yShRfXKhemQdU6DEVo/DnEZK0YcNaFRUVVtn2rLNOr3J7Rc06lGoodnv1BzGHwyaXy17htiGfr+r2dru1rd1uyO+vum3w49rtRrX9cDiMQFtfhbX2pqTVx8XKMBU40AIAAAAAgObJMMs+57fPOhK+eo2yTCDceUT57aNlKMfC8r0qNKfle3lbNsv9yG2SpOXd4/T7S4+v1LZJTJNlSi1tG6GtxLT7VtGWYwRt69hW4hjRKtpyjKBtHdtKHCNaRVuOEbStY1spvMeIB17frGFbc2WTqaK7H1NMr+PDnkccq22LX76Xlpamb7/91rJt0aJFSktLkyS5XC71799fixcvDoRSfr9fixcv1mWXXVbt41b8BR9LuNtGOw2ZpilT0msTOshQWaX+6hgyddzBQj342mYZkh4aerN2x3S0tHHYpAFtXEpLdWlQqkvRjrqnnmjazH27ZD79oExJ91x+vLa3jap+/BiSYVrHj3HzPTI6dGnMLqMJqc34MW1la+IZP6ioRmPIUGD2L2MIFdVk/FQ8yWf8oCL/vp3S0w9VP34qHHukyuNHN/9Otg5dG7nXaCqqGj+mwfhBzR3tGGRW8fHb5jf12oQOOnFrjiQpylnWNtx5RG3bVqVJhVIFBQXatWtX4PaePXu0ceNGxcfHq0OHDpo9e7YOHjyoRx99VJJ00UUX6fXXX9ejjz6qadOmacmSJfr000/17LPPBh5j+vTpmjlzpgYMGKBBgwZpzpw5Kioq0tSpUxv9+TUEwzBkqvIV96rjtxna2j5aW9tHadjWXJUqUfn21Ertvs8s+2f7SRqU4tLoDm6NbO9WUmRoAw5Ni5lTIH+hVz/2iNPW9se+glXw+LFFt5GR0L4ReoqmiPGDUDGGEArGD0IR+vhJZvy0YowfhKouY6jilfgMo/qJKM1Nk5oCs27dOp133nk677zzJEkPP/ywzjvvPD3xxBOSpPT0dO3fvz/QvnPnznr22We1aNEinXvuuXr55Zf15z//WWPHjg20mTx5smbOnKknnnhC5557rjZu3KgXXnihUoH05syUNGdCR9n8NVuJafObmjOho0xJ3eMdOtpw9pvSqkOl+seqPF3+6WHd8U2m3t9SoAMFR5/Oh+YjlPEDMH4QKsYQQsH4QSgYPwgF4wehYgyVaVIzpU466ST99NNP1d7/yCOPVLnPv//976M+7mWXXXbU5XrNXU1nSZWrmLL+Zmi8rmybrCX7SrRoX4lWp5fKV80oNyVtyPBoQ4ZHL6zNV494h0Z1dGt0hwh1jrW3qLS2NQll/AxvwH6heWD8IFSMIYSC8YNQMH4QCsYPQsUYKtOkQinUnqmytNTwmzKPUksqmPG/lPVEmUqKsGty9yhN7h6lvFK/fjhQokV7S7T8YIlKj1LQb2uOV1tzvHptQ4E6xdg1qoNbozpGqFeCg4CqmaiP8cNfuvVi/CBUjCGEgvGDUDB+EArGD0LFGDqCUKqZ80TH6FC8u1YDWZJMm6H0eLc80TFyV9ge67JpYpdITewSqWKvqR8Plmjh3hL9cKBERd7qJwruyffp7c2FentzoVIibRrVIUKjOrrVr41TdgKqJqu+xw9aF8YPQsUYQigYPwgF4wehYPwgVIyhIwzTNFvaksSQpafnhbsLtXIwfatyCg9btpmmqWKv5DMkuylFOFRp9lJCVIpSU7rX6Gd4fKZWpZdq4d5iLdlfotzSmg2beLehke0jNKqDW4NTXXLW8kWHhlfV+CnnsNvk9VU9Xa424wctF+MHoWIMIRQH07fqw0279cPB0sC2jtF2XdovhvGDY2qMc2i0XIwfhKo1jKGUlNhjtiGUqkJzC6WOxuWyq7S0fouS+/ym1md4tGhfsRbuLVFG8VHW+FUQ7TQ0vJ1bozq4NbStWxEOAqqmriHGD1oPxg9CxRhCTfxqQYa25ngDty/uE63L+8UwfhASxg9CwfhBqFrKGKpJKMXyPdSa3WZoUIpLg1Jcun6QqS1Z3kBAte8oV+Ur8Jj6anexvtpdLLddGtq2LKAa3s6tGFeTuhAkAABoBnJK/JZASpLSUl1h6g0AAKgtQimExGYY6p3kVO8kp67qH6OduT4t2lesRftKtC3oJLGiEp+06H9X/HMY0uBUl0Z3cGtE+wglRBBQAQCAY1udXmq57bZLfZKcYeoNAACoLUIp1BvDMNQt3qFu8TG6pG+M9ud7A8HTxkxPtft5TWn5wVItP1iqp1bmqV+ys6xQege3UqPsjfgMAABAc7L6kDWUGpBM/UoAAJoTQik0mPYxDk073qFpx0frcJFPi/8XUK09XCp/NZXM/JLWHfZo3WGPnluTp14JDo3qGKHRHdzqFMtwBQAAR6wMmik1hKV7AAA0K3zKR6NIjrTr7B5ROrtHlHJK/Fq6v0SL9hVrxaFSeY9SJ31LtldbsvM1Z32+usTaNapDhEZ3dKt7vKPSVQgAAEDrsb/AqwNBtSzTUgilAABoTgil0Oji3Tad1i1Sp3WLVKHHr2UHS7Vob7GWHShVsa/6i0HuyvNp108FmvtTgdpG2cqW+HV0q2+SUzYCKgAAWpXgpXvx7rIyAgAAoPngnRthFeW0aVynCI3rFKFSn6mVh0q1cG+xluwvUb6n+oDqYKFfH/xcqA9+LlSi26ZRHdwa1dGtgckuOaglAQBAi7cqaOne4BQXX1IBANDMEEqhyXDZDZ3U3q2T2rvl9Ztad7hUC/eVaPG+EmUWV7/GL6vEr0+2F+mT7UWKcRoa0d6tUR3cGtLWLbedk1MAAFoav2lqVdBMKZbuAQDQ/BBKoUly2AylpbqVlurWTYNN/ZTp0aJ9JVq4t0QHCn3V7pfvMfXlrmJ9uatYEXZDw9q5NLpDhE5s51KU09aIzwAAADSU7Tle5ZZaZ1QPSXWHqTcAAKCuCKXQ5NkMQ33buNS3jUtXD4jR9hxvWUC1r0Q7c73V7lfsM/X93hJ9v7dEDlvZFXlGd4jQSe3dincTUAEA0FwFz5JqH21X22h7mHoDAADqilAKzYphGOqe4FT3BKcu6xejPXleLd5XooX7irU5q/qAyuuXlh0o1bIDpbJJGpDi1OgOERrZ3q3kKE5iAQBoToLrSbF0DwCA5olQCs1ap1iHzu/t0Pm9o5Ve6NOifSVatK9Y6w97VF0VKr+kNekerUn36J+r89Q70alRHd0a3cGtDjG8JAAAaMo8vrK6kxWlpRJKAQDQHPEJHC1GSpRd5/aM0rk9o5Rd7NeS/cVatK9Eqw6Vylv9hfz0U5ZHP2V59PK6fHWLc2hUB7dGd3SrW5xDBlfxAQCgSdmU6VFJhfKShqRBzJQCAKBZIpRCi5QQYdMZx0XpjOOiVODx64cDJVq0t0Q/HiyxnMgG25Hr1Y5cr97YVKD20fb/BVQROj7RwWWmAQBoAoKX7vVIcFArEgCAZopQCi1etNOmUzpH6pTOkSr2mlpxqESL9pVo6f4SFXiqn0K1v8Cn97YU6r0thWoTYdOoDm6N6hihAW2cstsIqAAACIfgIueDmSUFAECzRSiFViXCYWhUhwiN6hAhj9/U2vRSLdxXosX7SpRdUl0VKimj2K+PtxXp421FinMZGtHerVEdIjQk1SWnnYAKAIDGUODx66csj2XbEOpJAQDQbBFKodVy2gyd0NatE9q6dXOaqU0ZHi38X6H0Q4XVB1S5paY+31msz3cWK9JhaHg7l0Z1iNCwdi5FOlg+AABAQ1mbXip/hUnODpvUrw2hFAAAzRWhFCDJbhjqn+xS/2SXrhsYo63Z3kBAtTuv+iJURV5T3+wp0Td7SuS0SUPbujWqg1sntXcr1kVABQBAfQquJ9WvjVMRDmYsAwDQXBFKAUEMw1DPRKd6Jjp1Zf8Y7cr1atG+siv5/ZztrXY/j19asr9ES/aXyGaUXQlodAe3RrZ3KynS3ojPAACAlim4nlQa9aQAAGjWCKWAY+gS51CXuBhd1CdGBwt8gYBqQ4ZH1ZVJ95tlJ86rDpXq6VV56pPk1OiOZXWo2kUTUAEAUFsZRT7tCpq9nJbqDlNvAABAfSCUAmqhbbRdU3pFa0qvaGUW+7RkX9mV/Fanl8pXTUJlStqY6dHGTI9eWJuv7vEOjerg1piOEeoca5dhsOwAAIBjCV66F+001CuBU1kAAJoz3smBOkqKsGty9yhN7h6lvFK/fjhQokV7S7T8YIlKq6+Trm05Xm3L8epfGwvUKcauUR3cGtUxQr0SHARUAABUY3XQ0r1ByS7ZbbxvAgDQnBFKAfUg1mXTxC6RmtglUsVeUz8eLJtB9cP+EhV6q1vkJ+3J9+ntzYV6e3OhUiJtGtUhQqM6utWvjVN2AioAACRJpmlqZXA9qVTqSQEA0NwRSgH1LMJhaEzHCI3pGCGPz9Sq9FIt2leixfuKlVtafUCVXuTXh1sL9eHWQsW7DY1sH6FRHdwanOqSk2+CAQCt2J58nzKKrdOQCaUAAGj+CKWABuS0GzqxnVsntnPr1rRYbcjwaOH/CqUfLqp+jV9Oian5O4o0f0eRop2Ghrdza1QHt4a2dXPpawBAqxN81b02ETZ1iuHCIQAANHeEUkAjsdsMDUxxaWCKSzcMMrUly6uF+4q1cG+J9hX4qt2vwGPqq93F+mp3sdx2aWjbsoBqeDu3Yly2RnwGAACER3AolZbqog4jAAAtAKEUEAaGYej4JKeOT3Lqqv4x2pnr06L/zaDaluOtdr8Sn7Tof1f8sxtSWopLozq6NbJ9hBIiCKgAAC2Pz29qzWHqSQEA0BIRSgFhZhiGusU71C0+Rpf0jdH+fG8geNqY6al2P58pLT9UquWHSvXUyjz1T3aWFUrv4FZqFEsaAAAtw5Zsrwo81pqMaSmEUgAAtASEUkAT0z7GoWnHOzTt+GhlFPm0+H8B1ZrDpfJXUyfdlLTusEfrDnv03Jo89UpwaFTHCI3u4Fan2Nq/zE3TVG6pKV+pKbtpKs5lsEwCABAWqw6VWG53ibWrTSRfvgAA0BIQSgFNWJtIu37RI0q/6BGl3BK/lh4o0aK9xVpxqFSe6uuka0u2V1uy8zVnfb66xNo1qkOERnd0q3u846jhUn6pX1/uKtbHWwu1v0Kdq/bRdp3dI0qTukRQxwoA0KhWpbN0DwCAlsowTbP6a9S3UunpeeHuQr1xuewqLa2+iDaap0KPXz8eLNWifcVadqBURd6avYzbRtnKlvh1dKtvklO2CgHV8oMlenBJjkp8ZY9V8RHLW7nthu4ZEa+hbd319EzQknH8QagYQyj2mrrgP4fkrfBFzO9HxGtEh4hj7sv4QSgYPwgF4wehailjKCUl9phtCKWqQCiF5qTUZ2rlobKAasn+EuWV1uwlnei2aWSHsiv5ef2mHliSI9O0hlHBDEmGId0/KoFgCsfE8QehYgxhxcES3bswO3DbZkhv/SJF0c5jz9pl/CAUjB+EgvGDULWUMVSTUIrle0Az57IbOqm9Wye1d8vnN7X2sCdwJb/M4urX+GWV+DVve5HmbS+q8c8y//c/Dy7J0atnJrOUDwDQoIKX7vVOdNYokAIAAM0DoRTQgththtJSXUpLdenGwaZ+yvRo0b4SLdxXogMF9ZO0m5JKfKYW7CrWuT2j6uUxAQCoyqpD1lBqMFfdAwCgRSGUAloom2GobxuX+rZx6eoBMdqe4w0EVDtzvSE//kdbC3VOj0iuygcAaBA5JX5tzba+Xw2hyDkAAC0KoRTQChiGoe4JTnVPcOqyfjHak+fV4n0l+nZPkbbm1H4GlSlpf4FPeaWm4tyEUgCA+rcmvdRS59Btl/okOcPWHwAAUP9YlA+0Qp1iHTq/d7TuHZEY0uPU9Kp/AADUVnA9qQHJLjntfBECAEBLQigFtGIRjtBO7iND3B8AgOoE15NKo54UAAAtDqEU0IrFuQy1j7arttGSIal9tF2xLkIpAED9O1Dg0/6gC3SkUU8KAIAWh1AKaMUMw9DZPWp/BT1T0uiOboqcAwAaxKpDJZbbcS5Dx8VTChUAgJaGUApo5SZ1iZDbbtR6ttQnWwu1JqjeBwAA9WF10PtLWqpLNr4IAQCgxSGUAlq5GJdN94yIl2GoVsFUkU+6d2GWvtlT3GB9AwC0Pn7TrFTknHpSAAC0TIRSADS0rVv3j0oIzJgKDqeMCv8q8vqlv/yQow+2FDRKPwEALd+OHK9ySqxXd01LdYepNwAAoCERSgGQVBZMvXpmsq4fFKt20XbLfe2i7bp+UKxem5ysUR0qfzB4fm2+nl+TJ79pVroPAIDaCJ4l1S7aXul9CQAAtAxUjAQQEOOy6dyeUTqnR6TySk15DUMO01SsywgUNb/7pHg9uzpP/9lWZNn3g58LlVns0+1D4+W0U/cDAFA3qw5ZQ6khLN0DAKDFYqYUgEoMw1Cc26Z2MQ7FuW2Wq+zZDUM3DY7VVf1jKu33zZ4S3bcoSwUef2N2FwDQQnj8ptYetoZSg1MJpQAAaKkIpQDUmmEYuqB3tGYMjVPwpKg16R7d+W2WMop84ekcAKDZ2pTpUUnQ28dgZkoBANBiEUoBqLOJXSP1x1EJighKprbneHX715nalesNU88AAM1R8NK9HvEOxbs5XQUAoKXiXR5ASIa2desvJycqIehDQ3qRX3d8k6n1QcswAACoTnAolcbSPQAAWjRCKQAh65Xo1OzxieoQY706Ur7H1D3fZ2nR3uIw9QwA0FwUevz6Kctj2UYoBQBAy0YoBaBetI92aPa4JB2faL2oZ6lfenBpjv6ztTBMPQMANAdrD3vkN4/cdtik/m0IpQAAaMkIpQDUm3i3TY+MTdLwdtYPEaakp1fn6ZV1eTJNs+qdAQCt2spDJZbb/ZKcinAY1bQGAAAtAaEUgHoV4TB034gEnd4tstJ9b28u1N+W58rrJ5gCAFitTrfWkxrM0j0AAFo8QikA9c5uM/TrIbG6tG90pfsW7CrW/YuyVejxh6FnAICmKLPIp525Psu2IYRSAAC0eIRSABqEYRi6tG+Mfj0kttKBZvmhUt31XZayin1V7gsAaF1WBc2SinIY6pXgDFNvAABAYyGUAtCgzjguSveNTJDbemE+/Zzt1Yyvs7Q33xuejgEAmoxVh6yh1KAUl+w26kkBANDSEUoBaHAntXfr4bFJinNZP2AcKPRpxteZ+inTU82eAICWzjTNSjOl0li6BwBAq0AoBaBR9Elyata4JLWLsk6Zyi01ddd3mfphf0k1ewIAWrK9+T4dLrLWGUxLIZQCAKA1IJQC0Gg6xTo0a3yieiY4LNtLfNIDS7I1f3thmHoGAAiXlUFL99pE2NQ51l5NawAA0JIQSgFoVEkRdj0yNlEnBC3N8JvSEyvz9MbGfJmmGabeAQAa2+oqlu4ZBvWkAABoDQilADS6KKdNfxiVoAldIird96+NBXpyZZ58foIpAGjpfKZZOZRi6R4AAK0GoRSAsHDaDM0YGqcLjo+qdN/8HUX685JsFXsJpgCgJfs5y6sCj/VYP5gi5wAAtBqEUgDCxjAMXTUgVjcNjlXwQo2lB0p193dZyinxV7kvAKD5WxVUT6pzrF3JkdSTAgCgtSCUAhB2Z/eI0u9Oipcz6Ij0U5ZHM77J1IECX3g6BgBoUKuClu4NYZYUAACtCqEUgCZhdMcIPTQmUTFO65ypffk+zfg6Uz9necLUMwBAQyj2mlqfYQ2lBlNPCgCAVoVQCkCT0T/ZpVnjkpQSaT00ZZX4NfO7LK04WBKmngEA6tuGjFJ5K6zQtkkaRCgFAECrQigFoEnpEufQ7PFJOi7eYdle5DX1h0XZWrCrKEw9AwDUp+Cle8cnORUdvI4bAAC0aLzzA2hykiPtevTkRA1KcVq2+0xp9o+5euenApkmV+YDgOYsuMh5GrOkAABodQilADRJ0U6b/jQqUeM6uSvd9/L6fD2zOk8+gikAaJZyS/zamu21bEujyDkAAK0OoRSAJstpN/TbE+M1pWdUpfs+3lakR5bmqNRHMAUAzc2aw6WqePR226W+Sc5q2wMAgJaJUApAk2YzDF03KFbXDoypdN/CfSW65/ss5ZX6q9gTANBUrQxaujegjUtOu1FNawAA0FIRSgFoFqb2itbME+PlCDpqrc/w6LffZOpQoS88HQMA1Nrq4HpSLN0DAKBVIpQC0GyM6xyhP41OVJTD+m36rjyfZnydqe05njD1DABQUwcLfNpXYP0igVAKAIDWiVAKQLMyOMWlv45LVJsI6+Ero9iv336TpTVBlxgHADQtq4KO03EuQ8fFO8LUGwAAEE6EUgCanePinZo9PkmdY+2W7YVeU/cuzNI3e4rD1DMAwLGsClq6NzjFJZtBPSkAAFojQikAzVJqlF2zxiWpXxvr1Zq8fukvP+To3z8XhKlnAIDq+E1Tq9JLLNtYugcAQOtFKAWg2Yp12fTgmESN6uCudN9za/L1wto8+U2zij0BAOGwM9ernBLrcZlQCgCA1otQCkCz5rYbuvukeP2ie2Sl+97fUqi/LsuVx0cwBQBNwcqgpXvtouxqH009KQAAWitCKQDNnt0wdNPgWF3VP6bSfd/sKdbvF2WrwOMPQ88AABWtDgqlmCUFAEDr1uRCqddff10TJkzQwIEDdf7552vNmjXVtvV4PHrqqac0adIkDRw4UOecc46+/fZbS5v8/Hw9+OCDOuWUUzRo0CBddNFFR31MAM2TYRi6oHe0ZgyNkz2oXu7q9FLd+W2WMop8Ve8MAGhwHr+ptYc9lm2DCaUAAGjVmlQoNW/ePD388MO65ZZb9MEHH6hPnz665pprlJGRUWX7xx57TG+99Zbuu+8+zZs3TxdddJFuvfVWbdiwIdDm3nvv1aJFi/Too4/q448/1ujRozV9+nQdPHiwsZ4WgEY0sWuk/jgqQRFBydT2HK9u/zpTu3K9YeoZALRuP2V6VBy0nDothVAKAIDWrEmFUi+//LIuuOACTZs2TT179tT999+viIgIvffee1W2//DDD3XjjTdq3Lhx6ty5sy655BKNGzdOL730kiSpuLhYn3/+uX7729/qxBNPVNeuXfWrX/1KXbt21RtvvNGYTw1AIxra1q2/nJyoBLf1EJde5Ncd32RqfUZpNXsCABrKqqCle93jHYp3N6lTUQAA0MiazJlAaWmp1q9fr1GjRgW22Ww2jRo1SitXrqxyH4/HI5fL+g2b2+3WihUrJEler1c+n09ut7vaNgBapl6JTs0en6gOMXbL9nyPqXu+y9KifcVh6hkAtE6r0q2h1BCW7gEA0Oo1mVAqKytLPp9Pbdq0sWxv06aNDh8+XOU+Y8aM0SuvvKIdO3bI7/dr4cKF+uKLL3To0CFJUkxMjIYMGaKnn35aBw8elM/n04cffqhVq1YF2gBoudpHOzR7XJKOT7Re2anULz20JEefbCsMU88AoHUp9Pi1KTOonhRL9wAAaPWa9TV477nnHt17770688wzZRiGOnfurKlTp1qW+z366KP63e9+p5NPPll2u139+vXTWWedpfXr11f7uE6nXYZR7d3NisNhP3YjoBotYfykuOyaPTFZDy7K0pJ9JYHtfkn/WJWnrFJT0wfGymgpL/ompCWMH4QXY6jlWJHukb9COSmHTRrSIUIuR8N9P8r4QSgYPwgF4wehak1jqMmEUomJibLb7ZWKmmdkZCg5ObnKfZKSkvT000+rpKRE2dnZSk1N1axZs9S5c+dAmy5duuhf//qXCgsLlZ+fr9TUVP3mN7+xtAnm8bSsK3SVlras54PG1RLGj13SPcPj9dSqPH22o8hy3xsb8nUo36tfnxAnh41gqr61hPGD8GIMtQzLgpZM901yyu43G/zvy/hBKBg/CAXjB6FqLWOoySzfc7lc6t+/vxYvXhzY5vf7tXjxYg0ZMuSo+7rdbrVt21Zer1eff/65Jk6cWKlNVFSUUlNTlZOTo++//77KNgBaLrvN0K+HxOrSvtGV7vtyV7HuX5StIq8/DD0DgJYvuJ5UGvWkAACAmtBMKUmaPn26Zs6cqQEDBmjQoEGaM2eOioqKNHXqVEnSnXfeqbZt22rGjBmSpNWrV+vgwYPq27evDh48qCeffFJ+v1/XXntt4DG/++47maap4447Trt27dKjjz6q7t27Bx4TQOthGIYu7RujNhE2PbUyTxUjqOWHSjXz2yzdPypBiRGtZ7osADS0zGKfduZ6LdvSqCcFAADUxEKpyZMnKzMzU0888YTS09PVt29fvfDCC4Hle/v375fNdmRyV0lJiR577DHt3r1bUVFRGjdunB599FHFxcUF2uTl5elvf/ubDhw4oISEBJ122mm67bbb5HQ6G/35AWgazjguSokRdj3yQ7ZKKsyK/TnbqxnfZOlPoxPUMaZJHR4BoNlafcg6SyrSYej4RM7DAACAZJimaR67WeuSnp4X7i7UG5fL3mrWoqL+tfTxsynToz8uylJuqfUwGOcydP+oRPVO4kNTKFr6+EHDYwy1DH/7MUdf7jpSU2pEe7d+PzKhwX8u4wehYPwgFIwfhKqljKGUlNhjtmkyNaUAoLH1SXJq1rgktYuyLtfLLTV113eZ+mF/STV7AgBqwjRNraaeFAAAqAahFIBWrVOsQ7PGJ6pngnW5XolPemBJdqWr9QEAam5vvk/pRdaLSFBPCgAAlCOUAtDqJUXY9cjYRJ0Q9O2935QeX5GrNzbmi5XOAFB7q4LqSSVF2NQ5lotJAACAMoRSACApymnTH0YlaEKXiEr3/WtjgZ5cmSefn2AKAGpjVRVL9wzDCFNvAABAU0MoBQD/47QZmjE0ThccH1Xpvvk7ivTnJdkq9hJMAUBN+ExTa4JCqSEs3QMAABUQSgFABYZh6KoBsbppcKyCv8tfeqBUd3+XpZwSf5X7AgCO2JrlVb7HGuQPpsg5AACogFAKAKpwdo8o/e6keDmDjpI/ZXk045tMHSho/pdoBYCGtDJollTnWLuSI6knBQAAjiCUAoBqjO4YoYfGJCrGaZ0ztS/fpxlfZ+rnLE+YegYATd/qoCLnXHUPAAAEI5QCgKPon+zSrHFJSom0Hi6zSvya+V2WVhwsCVPPAKDpKvGZWp9Rucg5AABARYRSAHAMXeIcmj0+Sd3iHJbtRV5Tf1iUrQW7isLUMwBomjZklMpTofyeTdLAZEIpAABgRSgFADWQHGnXX8clalCy07LdZ0qzf8zVOz8VyDS5Mh8ASNKqoKV7vRKdinFx2gkAAKw4OwCAGop22vSn0Yk6uZO70n0vr8/XM6vz5COYAoBKoRRL9wAAQFUIpQCgFpx2Q3eeGK/zekZVuu/jbUV6ZGmOSn0EUwBar7xSv37O9lq2EUoBAICqEEoBQC3ZDEPXD4rVtQNjKt23cF+J7vk+S3ml/ir2BICWb3V6qSpG82671DfJWW17AADQehFKAUAdTe0VrZknxsthWLevz/Dot99k6lChLzwdA4AwCl6617+NSy67UU1rAADQmhFKAUAIxnWO0AOjExUVlEztyvNpxteZ2p7jCVPPACA8VqVTTwoAANQMoRQAhCgt1aVHT05UUoT1kJpR7Ndvv8nSmqAPaADQUh0s9GlfvnWWaFoKoRQAAKgaoRQA1IPuCU7NHp+kzrF2y/ZCr6l7F2bpmz3FYeoZADSe1UFL92JdhronOMLUGwAA0NQRSgFAPWkbZdescUnq18Za0Nfrl/7yQ47+/XNBmHoGAI1jZVAoNTjFJZtBPSkAAFA1QikAqEexLpseHJOoUR3cle57bk2+XlibJ79pVrEnADRvpmlqddBy5SHUkwIAAEdBKAUA9cxtN3T3SfH6RffISve9v6VQf12WK4+PYApAy7Ij16vsEr9lG/WkAADA0RBKAUADsBuGbhocq6v6x1S675s9xfr9omwVePxV7AkAzdOqoKV7baNsahdtr6Y1AAAAoRQANBjDMHRB72jNGBone1BJldXppbrz2yxlFPmq3hkAmpngUCot1S2DelIAAOAoCKUAoIFN7BqpP45KUERQMrU9x6vbv87UrlxvmHoGAPXD6ze19rDHsi2NelIAAOAYCKUAoBEMbevWX05OVILbethNL/Lrjm8ytT6jtJo9AaDp+ynTo+KgWnnUkwIAAMdCKAUAjaRXolOzxyeqQ4y1xkq+x9Q932Vp0b7iMPUMAEKzMmjpXvd4h+LdnGYCAICj42wBABpR+2iHZo9L0vGJDsv2Ur/00JIcfbKtMEw9A4C6W50eXE+KWVIAAODYCKUAoJHFu216ZGyShrezfmjzS/rHqjzNWZ8v0zSr3hkAmphCj1+bMoPqSbF0DwAA1AChFACEQYTD0H0jEnR6t8hK9731U4H+vjxXXj/BFICmb91hjyqWk3IY0oBkQikAAHBshFIAECZ2m6FfD4nVpX2jK9335a5i3b8oW0Vefxh6BgA1typo6V6fNk5FOIxqWgMAABxBKAUAYWQYhi7tG6NfD4mtdEBefqhUM7/NUlaxLyx9A4CaWBVU5JylewAAoKYIpQCgCTjjuCjdNzJBbuuF+fRztlczvsnS3nxveDoGAEeRWezTjlzr8WkIRc4BAEANEUoBQBNxUnu3Hh6bpDiXddnLgQKfZnydqZ+CCgkDQLgFX3Uv0mHo+ERnmHoDAACaG0IpAGhC+iQ5NWtcktpFWadM5Zaauuu7TP2wvyRMPQOAyoKX7g1Kdspuo54UAACoGUIpAGhiOsU6NGt8onomOCzbS3zSA0uy9dmOojD1DACOME2zcj2pVHeYegMAAJojQikAaIKSIux6ZGyiTgiqzeI3pcdX5OqNjfkyTbOavQGg4e0r8Cm9yHqF0DTqSQEAgFoglAKAJirKadMfRiVoQpeISvf9a2OBnlqZJ5+fYApAeATPkkp029Ql1l5NawAAgMoIpQCgCXPaDM0YGqcLjo+qdN+nO4r05yXZKvYSTAFofCsrLd1zyTCoJwUAAGqOUAoAmjjDMHTVgFjdNDhWwR/3lh4o1e++z1JOib/KfQGgIfhMU2uCrrw3hKV7AACglgilAKCZOLtHlH53UrycQUfuTZke3fFNpg4U+MLTMQCtztZsr/I91lmaaSmEUgAAoHYIpQCgGRndMUIPjUlUjNM6Z2pvvk8zvs7U1mxPmHoGoDUJrifVKcau5CjqSQEAgNohlAKAZqZ/skuzxiUpJdJ6CM8q8evOb7O04mBJmHoGoLUIDqW46h4AAKgLQikAaIa6xDk0e3ySusU5LNuLvKb+sChb/91VFKaeAWjpSnym1mcQSgEAgNARSgFAM5UcaddfxyVqULLTst1nSrN+zNU7mwtkmlyZD0D92phRKk+FayvYJA1KJpQCAAC1RygFAM1YtNOmP41O1Mmd3JXue3ldvp5dkycfwRSAerQyaOlez0SHYlycUgIAgNrjDAIAmjmn3dCdJ8brvJ5Rle77aGuR/vJDjkp9BFMA6sfqdGsoNSS1cigOAABQE4RSANAC2AxD1w+K1bUDYyrd9/3eEt3zfZbySv1V7AkANZdX6teWLK9lG/WkAABAXRFKAUALMrVXtGaeGC+HYd2+PsOj336TqfRCX3g6BqBFWJNeqorzLl02qW+Ss9r2AAAAR0MoBQAtzLjOEXpgdKKigpKpXXk+3f51prbneMLUMwDN3aqgelL9k11y2Y1qWgMAABwdoRQAtEBpqS49enKikiKsh/mMYr/u/DZLa4JqwgBATawKOnawdA8AAISCUAoAWqjuCU7NHp+kzrF2y/YCj6l7F2bpmz3FYeoZgOboUKFPe/OtS4CHpBBKAQCAuiOUAoAWrG2UXbPGJalfG2vNF69f+ssPOfr3zwVh6hmA5iZ46V6sy1D3BEeYegMAAFoCQikAaOFiXTY9OCZRozpUvmz7c2vy9cLaPPlNs4o9AeCI4KV7g1NcshnUkwIAAHVHKAUArYDbbujuk+J1VvfISve9v6VQf12WK4+PYApA1UzT1OqgmVJpLN0DAAAhIpQCgFbCbhi6eXCsruwfU+m+b/YU6/eLslXg8YehZwCaup25PmWVWI8PQyhyDgAAQkQoBQCtiGEYurB3tG4fGqfgq7ivTi/Vnd9mKaPIV/XOAFqtVeklltupUTa1i7ZX0xoAAKBmCKUAoBWa1DVSfxiZoIigZGp7jle3f52pXbneMPUMQFO0soqlewb1pAAAQIgIpQCglRrWzq2/nJyoBLf1rSC9yK87vsnU+ozSavYE0Jp4/abWHfZYtg1JrXzhBAAAgNoilAKAVqxXolOzxyeqQ9AynHyPqXu+y9KifcVh6hmApuKnLI+KvNYLIQymyDkAAKgHhFIA0Mq1j3Zo9vgkHZ/osGwv9UsPLcnRJ9sKw9QzAE3BqqCle8fFO5QQwSkkAAAIHWcUAADFu216ZGyShrezzn7wS/rHqjzNWZ8v0zSr3hlAixYcSqUxSwoAANQTQikAgCQpwmHovhEJOr1bZKX73vqpQH9fniuvn2AKaE2KvH5tyrTWk0pLJZQCAAD1g1AKABBgtxn69ZBYXdo3utJ9X+4q1v2LslXk9YehZwDCYd1hj3wVsmi7IQ1IdoavQwAAoEUhlAIAWBiGoUv7xujXQ2IrvUksP1Sqmd9mKavYF5a+AWhcK4OW7vVJcirSwekjAACoH5xVAACqdMZxUbpvZILc1gvz6edsr2Z8k6W9+d7wdAxAowmuJzWEpXsAAKAeEUoBAKp1Unu3Hh6bpDiXYdl+oMCnGV9n6qegWjMAWo6sYp925FrDZ+pJAQCA+kQoBQA4qj5JTs0al6R2UdYpU7mlpu76LlM/7C8JU88ANKTV6dZZUpEOQ8cnUk8KAADUH0IpAMAxdYp1aNb4RPVMcFi2l/ikB5Zk67MdRYFtpmkqp8SvA/le5ZT4ZZpcsQ9ojoKX7g1MdsphM6ppDQAAUHuOYzcBAEBKirDrkbGJemhpjlZU+LDqN6XHV+Rqf75XCW6bPt5WpP0FRwqht4+26+weUZrUJUIxLr4LAZoD0zQrFTlPS3WHqTcAAKCl4tMBAKDGopw2/WFUgiZ0iah039ubC/Xc2nwdKLBeme9AgU/Pr8nTFZ8e1vKDLPUDmoP9BT6lF/kt2yhyDgAA6huhFACgVpw2QzOGxumC46OqvD94sZ75v38lPlN/WJRNMAU0A8GzpBLdNnWJtVfTGgAAoG4IpQAAtWYYhq4aEKurB8TUeB9TkmlKDy7JUX6p/5jtAYRPcD2ptFSXDIN6UgAAoH4RSgEA6qy2RY/LZ0wt2FXcMB0CEDKfaWrN4cqhFAAAQH0jlAIA1Ilpmvp4a2Gd9v1oayFX5QOaqG3ZXuWVWl+faSmEUgAAoP4RSgEA6iS31LRcZa+mTJUVUQ7+0AugaQheutcxxq6UKOpJAQCA+kcoBQCok2JvaKFSUYj7A2gYK9NZugcAABoHoRQAoE4iHKEVPY4McX8A9a/UZ2pDUD2pISzdAwAADYRQCgBQJ3EuQ+2j7apttGRIah9tV6yLUApoajZkeFTx4pg2SQMJpQAAQAMhlAIA1IlhGDq7R1Sd9j2nRxSXlweaoFWHSiy3eyY6FOvidBEAADQMzjIAAHU2qUuE3HajxrOlDEluu6GJXSIaslsA6mhVcD0pZkkBAIAGRCgFAKizGJdN94yIl2GoRsGUYUj3johXDDMvgCYnr9Svn7O8lm1pqe4w9QYAALQGfCoAAIRkaFu37h+VEJgxdbRw6oZBsTqhLR9ygaZobXqpKpSTkssm9WvjDFt/AABAy0coBQAI2dC2br16ZrKuHxSrdtH2atvtzPVWex+A8FoZtHSvX7JLLju13wAAQMNpcqHU66+/rgkTJmjgwIE6//zztWbNmmrbejwePfXUU5o0aZIGDhyoc845R99++62ljc/n02OPPaYJEyZo0KBBmjRpkv7xj3/INM2GfioA0KrEuGw6t2eUXjitjeaelaJ//SJVv+xlLYT+1e5iFXs5/gJN0apD1lBqCPWkAABAA2tSodS8efP08MMP65ZbbtEHH3ygPn366JprrlFGRkaV7R977DG99dZbuu+++zRv3jxddNFFuvXWW7Vhw4ZAm+eff15vvvmmfv/732vevHm644479MILL+i1115rrKcFAK2KYRiKc9vULsahX/SIsiznK/Ka+nZPcdj6BqBq6YU+7c33WbalpRJKAQCAhtWkQqmXX35ZF1xwgaZNm6aePXvq/vvvV0REhN57770q23/44Ye68cYbNW7cOHXu3FmXXHKJxo0bp5deeinQZuXKlZo4caLGjx+vTp066YwzztCYMWOOOgMLAFA/UqPsGtrW+sH2sx1FYeoNgOoEX3Uv1mWoe4IjTL0BAACtRZMJpUpLS7V+/XqNGjUqsM1ms2nUqFFauXJllft4PB65XNYPO263WytWrAjcHjJkiJYsWaLt27dLkjZt2qTly5fr5JNPboBnAQAIdka3SMvtjZkeaksBTUzw0r1ByS7ZDepJAQCAhtVkvgLLysqSz+dTmzZtLNvbtGmjbdu2VbnPmDFj9Morr+jEE09Uly5dtHjxYn3xxRfy+Y5MP7/++uuVn5+vM888U3a7XT6fT7fddpvOOeecBn0+AIAyw9u7lei2KavkyHW9PttRpOsHxYaxVwDKmaZZKZRi6R4AAGgMTSaUqot77rlH9957r84880wZhqHOnTtr6tSpluV+n376qT7++GPNnj1bPXv21MaNG/Xwww8rNTVVU6ZMqfJxnU67WsqXgw5H9VfBAo6F8YNQlI8fl6TTukfprY35gfv+u6tY1w+J58peOCqOQY1jR47HEhpL0vCOkXK5mvfvn/GDUDB+EArGD0LVmsZQkwmlEhMTZbfbKxU1z8jIUHJycpX7JCUl6emnn1ZJSYmys7OVmpqqWbNmqXPnzoE2jz76qK6//nqdddZZkqTevXtr3759evbZZ6sNpTweX5Xbm6vS0pb1fNC4GD8IRfn4mdTZbQmlckv9+mZHocZ1jghX19BMcAxqeD/stV58ICXSpmRXy/jdt4TngPBh/CAUjB+EqrWMoSZTU8rlcql///5avHhxYJvf79fixYs1ZMiQo+7rdrvVtm1beb1eff7555o4cWLgvuLiYhlB057sdrtMk0uSA0Bj6Rjj0KBkp2UbBc+BpmHVoRLL7SGprkrnTgAAAA2hycyUkqTp06dr5syZGjBggAYNGqQ5c+aoqKhIU6dOlSTdeeedatu2rWbMmCFJWr16tQ4ePKi+ffvq4MGDevLJJ+X3+3XttdcGHvOUU07RM888ow4dOgSW77388suaNm1aWJ4jALRWpx8XqTWHPYHbq9JLtT/fq/YxTeqtCGhVvH5Tayu8LiXqSQEAgMbTpD4JTJ48WZmZmXriiSeUnp6uvn376oUXXggs39u/f79stiOTu0pKSvTYY49p9+7dioqK0rhx4/Too48qLi4u0Obee+/V448/rvvvv18ZGRlKTU3VhRdeqFtuuaXRnx8AtGajO0Ton8485XuOzFT9fGexruwfE8ZeAa3b5iyPirzW2eODUwilAABA4zBM1rFVkp6eF+4u1BuXy95q1qKi/jF+EIqqxs8zq3P10dYjy/aSImyac0ay7DaWCqEyjkEN742N+frXxoLA7W5xDj09qc1R9mg+GD8IBeMHoWD8IFQtZQylpBz7attNpqYUAKDlO71bpOV2ZrFfPxwoqaY1gIa28lCp5TZL9wAAQGMilAIANJrj4p3qnUjBc6ApKPL69VOmtZ7UEEIpAADQiAilAACN6ozjrLOlfjxQqsOFzX96MtDcrDvsUcVyUnZDGhB0lUwAAICGRCgFAGhUJ3dyK9JxpIaUX9IXu5gtBTS2VUFL9/okORXp4NQQAAA0Hs48AACNKtJh07hOEZZtn+8okp/rbgCNalU69aQAAEB4EUoBABpdcMHzg4X+SrM2ADSc7GK/tud4LdsIpQAAQGMjlAIANLrjEx06Lt5h2TafgudAo1kdNEsq0mFUuggBAABAQyOUAgA0OsMwdEbQbKkl+0qUU+IPU4+A1mXloRLL7QHJTjlsRjWtAQAAGgahFAAgLMZ3jpCrwruQ15QWUPAcaHCmaVaqJzWEpXsAACAMCKUAAGER67JpdEdrwfP524tkUvAcaFAHCnw6VGidlZiW4g5TbwAAQGtGKAUACJvgJXx78n1an+EJU2+A1mFl0EUFEt02dY2zh6k3AACgNSOUAgCEzYBkpzrGWD8Mf0bBc6BBBS/dG5zqkmFQTwoAADQ+QikAQNgYhqHTg2ZLfb+3WPmlFDwHGoLfNCtdeS8thXpSAAAgPAilAABhNbFLhOwVJmmU+KSvdxeHr0NAC7Yt26u8UmvdtjSKnAMAgDAhlAIAhFVihF0j2luLLM/fQcFzoCGsDJol1THGrtQo6kkBAIDwIJQCAIRd8BK+bTlebcn2hqk3QMu16hBL9wAAQNNBKAUACLshbV1KibS+JVHwHKhfpT5TGzKCQimW7gEAgDAilAIAhJ29ioLnX+8uVpGXgudAfdmY6VGJ78htQ9IgZkoBAIAwIpQCADQJp3aNtLwpFXlNfbenJGz9AVqa4KV7PRMcinVxKggAAMKHMxEAQJOQEmXX0LbWWRss4QPqz8pD1pCXpXsAACDcCKUAAE1G8BK+jZke7cyl4DkQqvxSv37Osr6WhhBKAQCAMCOUAgA0GcPbu5XopuA5UN/WHC5VxQptLpvUrw2hFAAACC9CKQBAk+GwGZrUNcKybcGuIpX6zDD1CGgZgutJ9WvjkstuhKk3AAAAZQilAABNSvASvrxSU4v3UfAcCEVwKEU9KQAA0BQQSgEAmpQOMQ4NSnFats1nCR9QZ4cLfdqT77NsI5QCAABNAaEUAKDJCZ4ttTq9VPvzKXgO1MWqdOssqRinoR4JjjD1BgAA4AhCKQBAkzO6Q4RiXdZ6NxQ8B+pmZdDSvUEpLtkN6kkBAIDwI5QCADQ5LruhCZ2ts6W+2Fksr5+C50BtmKZZqZ7UEJbuAQCAJoJQCgDQJAUv4csq8euHAxQ8B2pjd55PWSV+yzbqSQEAgKaCUAoA0CR1i3eoT5K14DlL+IDaCV66lxJpU4doe5h6AwAAYEUoBQBosoJnSy0/UKrDhb5qWgMItuqQdXZhWqpLBvWkAABAE0EoBQBosk7u5Fak48gHaL+kz3cyWwqoCZ/f1JrDHss2lu4BAICmhFAKANBkRTpsGt8pwrLt851F8psUPAeOZXOWR0Ve62slLYVQCgAANB2EUgCAJi14Cd+hQn+lOjkAKgt+nXSLcygxgnpSAACg6SCUAgA0ab0SHeoe77Bso+A5cGyr0q2hFEv3AABAU0MoBQBo0gzDqDRbasm+EmUX+6vZA0Cx19SmjKB6UizdAwAATQyhFACgyRvfOUKuCu9YXlNasIvZUkB11h0uVcVyUnZDGpDsDF+HAAAAqkAoBQBo8mJdNo0JKnj+2Y4imRQ8B6oUvHSvT5JTUU5O+wAAQNPC2QkAoFkIXsK3J9+ndUHLkwCUWRVU5HwwS/cAAEATRCgFAGgWBrRxqlOM9cphFDwHKssp8WtbjteybQhFzgEAQBNEKAUAaBaqKnj+/Z5i5ZVS8ByoKHjpXqTDUO8k6kkBAICmh1AKANBsTOwSKYdx5HapX/p6d3H4OgQ0QcFL9wYkO+WwGdW0BgAACB9CKQBAs5EQYdOIDm7LNgqeA1arDpVYbqdRTwoAADRRIYVSeXl5x2yzefPmUH4EAAAWwUv4tuV4tSXLW01roHXZX+DVwULrktY06kkBAIAmKqRQ6qabblJpaWm19//888+aPn16KD8CAACLIakupUZZ374oeA6UCV66l+C2qVucI0y9AQAAOLqQQqkNGzbojjvuqPK+bdu26aqrrlJEREQoPwIAAAubYei0rtbZUl/vKVaRl4LnwMqgUGpwikuGQT0pAADQNIUUSj3++OP673//qz/96U+W7Tt37tSVV14ph8OhOXPmhNRBAACCndY10vIGVuQ19d2ekmrbA62B3zS1JujKe0NYugcAAJqwkEKpsWPH6k9/+pNef/11Pfvss5Kk3bt368orr5Qkvfrqq+rUqVPovQQAoILkKLuGtrN+2J7PEj60cttzvMottRb9p54UAABoykIuMjBlyhQdOnRIjz32mAzD0FtvvSWPx6PXXntNXbp0qY8+AgBQyendIrXswJFZIZsyPdqR41W3eOrnoHUKXrrXIcau1Ch7mHoDAABwbCHNlCp3ww036OKLL9bf/vY3FRUV6dVXX1X37t3r46EBAKjS8HZuJbopeA6UCy5ynpbCLCkAANC01err5Keeeqra+xITExUdHa1hw4bp008/DWw3DEO33HJL3XsIAEAVHDZDp3aN0NubCwPb/ru7SNMHxMhlp7AzWhePz9T6jKBQiqV7AACgiTNM0zSP3axMnz59av8DDEMbN26s9X7hlJ6eF+4u1BuXy67SUl+4u4FmivGDUDTG+Nmf79U1n2dYtt15YpzGd46sZg80JxyDam5Neqnu+i4rcNuQNPcXKYp11cuk+GaJ8YNQMH4QCsYPQtVSxlBKSuwx29RqptSCBQvq3BkAAOpb+xiHBqe4tLrCFcfm7ygilEKrE1xPqmeCo1UHUgAAoHmoVSjVsWPHhuoHAAB1cnq3CEsotSbdo335XnWIoeA5Wo9K9aRYugcAAJoBvkIDADRrozpEKNZlrSFFwXO0Jvmlfm3J8li2EUoBAIDmIORQasuWLbr77rs1fvx4DRw4UOPGjdPvf/97HTx4sD76BwDAUbnshiZ2sS7X+3Jnsbz+GpdMBJq1tYdL5a9w22mT+rUhlAIAAE1fSKHU3LlzNWXKFGVmZuo3v/mN/vnPf+rmm2/W+vXrNW3aNO3Zs6e++gkAQLVO72YNpbJK/PrhQEmYegM0ruCle/3buOTmCpQAAKAZqHMo9cEHH+jPf/6zHnzwQT377LM677zzNGbMGF144YV6++231adPHz344IOB9lu3bq2XDgMAEKxrnEN9k5yWbZ9tZwkfWodV6dZQajBL9wAAQDNRp1AqIyNDDz/8sH7zm9/o3HPPrXS/3W7XzTffrG+//Vb5+fn65JNPdMkll+jw4cMhdxgAgKoEz5ZafrBU6YXN/1K6wNEcLvJpd551nA9JIZQCAADNQ51CqTfffFNxcXGaPn26srKy1KdPH/Xt29fy79JLL5Xf79e2bdt0xhlnKCEhQS+++GJ99x8AAEnSyZ0iFOk4smTJL+mLncyWQsu2OmjpXozTUI9ErjwJAACahzqFUp9//rlOP/102e12xcbG6pFHHlFkZKTOOuss3Xfffbr00kvlcrl0++23q3v37rLb7brwwgv14Ycf1nf/AQCQJEU4DI3vHGHZ9tmOIvlMCp6j5VoZtHRvUIpLdoN6UgAAoHmoUyi1fft29e3bV5LkcDj0n//8R+edd55mzZqlSy65RPfee6/uuecevfbaa4qIKPuAMHz4cGVlZWn79u3113sAACoIXsKXXuSvVAQaaClM06w0vtNYugcAAJqRWodSBQUF8ng8io+PlySVlpZq4cKFGj16tKXdmDFjdOjQIW3cuFGSlJycLNM0lZGRUQ/dBgCgsl4JDnWPty5dmk/Bc7RQu/N8yiz2W7alUeQcAAA0I7UOpaKjo+VwOJSTkxPYZhiGDhw4YGm3b98+GYYh83/LJvLz82UYhmJiYkLsMgAAVTMMo9JsqSX7S5RVTMFztDzBV91LibSpY4w9TL0BAACovTot3+vVq5fWrl0rSXK5XBo5cqT++c9/avHixSopKdFPP/2khx56SKmpqerXr58kaf369bLb7erSpUv99R4AgCCndI6Qu8Lncp8pLdhVHL4OAQ2k0tK9VJcM6kkBAIBmpE6h1Pjx4zV//nx5PB5J0kMPPaQuXbpo+vTpSktL03nnnaf8/Hw9+eSTcjjKllF88sknGjp0qKKiouqv9wAABIlx2TSmY+WC5yYFz9GC+Pym1qRTTwoAADRvdbpm8OWXX65XXnlFL7zwgm666Sa1bdtWb7zxhjZs2KBdu3YpJSVFAwcOlMtVdnK0cOFCffvtt3r++efrtfMAAFTl9G6RltlRe/N9Wpfh0cBkPrSjZdiS7VGh1xq0DqaeFAAAaGbqNFMqKSlJd999t5566inNnz8/sL1fv34644wzNHTo0EAgtXHjRt1xxx0677zzNHbs2PrpNQAAR9G/jVOdgmrrUPAcLcnKoKV7XeMcSoqgnhQAAGhe6hRKSdIFF1ygm266Sbfddpv+8Ic/aPfu3Zb7s7Oz9cwzz+iSSy7RkCFD9MADD4TcWQAAaqKqgucL9xYrr9RfzR5A8xJcT2oIs6QAAEAzVKfle+VuvfVWDR48WH/961912mmnqX379kpNTVVeXp527typuLg43X777brssssovAkAaFSTukZqzvp8la9wKvVLX+8u1tk9qG2I5q3Ya2pjhseybTD1pAAAQDMUUiglSWPHjtXYsWP1008/ac2aNcrMzFRMTIx69eqloUOHym5nKjkAoPHFu20a0cGt7/eWBLbN31GkX3SP5IsSNGvrM0pVsZyUzZAGJjvD1yEAAIA6CjmUKte7d2/17t27vh4OAICQndEt0hJKbc/xakuWV8cn8QEezVfw0r0+SU5FOetckQEAACBs6v0Mxuv16rPPPtPbb7+t9PT0+n54AABqLC3VpdQo61vd/B0UPEfzFlzkPI2lewAAoJkKaabUo48+qqVLl+q9996TJJmmqenTp+vHH3+UaZpKSEjQ22+/rS5dutRLZwEAqA2bYei0rpH618aCwLZv9hTrukExinQwswTNT06JX9tyvJZtaRQ5BwAAzVRIZ+Tfffedhg0bFrj93//+V8uWLdM111yj2bNnS5Kee+650HoIAEAITusaaXmzK/Ka+nZPSbXtgaZsdbp1llSE3VBvlqMCAIBmKqSZUgcOHFDXrl0Dt7/66it16tRJd9xxhyRpy5Yt+vjjj0PrIQAAIUiOsmtYO5d+OHDkw/z87UU6vVtkGHsF1E1wPamByU45bRTuBwAAzVNIM6U8Ho8cjiO51tKlSzVq1KjA7c6dO1NXCgAQdsEB1E9ZHm3P8YSpN0DdBYdSg1m6BwAAmrGQQql27dpp5cqVkspmRe3evVsnnnhi4P6MjAxFRUWF1kMAAEI0vJ1bSRHWt7zPKHiOZmZ/gVcHCn2WbUMIpQAAQDMW0vK9s846S08//bQyMzO1ZcsWxcTEaNy4cYH7N27cSJFzAEDY2W2GJnWJ0NubCwPb/rurWFcPiJXLztInNA+rg2ZJJbht6hoX0qkcAABAWIU0U+qGG27QlClTtGrVKhmGob/85S+Ki4uTJOXl5em///2vRo4cWS8dBQAgFMFL+PI9phbuKw5Tb4DaWxm8dC/FJZtBqAoAAJqvkL5ec7lceuihh6q8Lzo6Wt9//70iIiJC+REAANSL9jEOpaW4tKrC1cs+216kUzpT8BxNn980K115L42lewAAoJkLaabU0Xi9XsXGxsrp5DLFAICmIXi21JrDHu3N94apN0DNbc/xKrfUtGwjlAIAAM1dSKHUN998oyeffNKy7fXXX9cJJ5ygtLQ0zZgxQx4PVzcCADQNozq4FeuyLnf6nILnaAaCr7rXIdqutlH2MPUGAACgfoQUSr344ovatm1b4PbWrVv10EMPKTU1VaNGjdK8efP0+uuv1/pxX3/9dU2YMEEDBw7U+eefrzVr1lTb1uPx6KmnntKkSZM0cOBAnXPOOfr2228tbSZMmKDevXtX+nf//ffXum8AgObLaTc0sYt1ttSXO4vl9ZvV7AE0DcGhFLOkAABASxBSKLVt2zYNGDAgcHvevHlyu91699139cILL2jy5Mn697//XavHnDdvnh5++GHdcsst+uCDD9SnTx9dc801ysjIqLL9Y489prfeekv33Xef5s2bp4suuki33nqrNmzYEGjz7rvv6vvvvw/8e/nllyVJZ5xxRu2fNACgWTsjaAlfVolfP+wvCVNvgGPz+EytyyCUAgAALU9IoVROTo4SExMDtxctWqQRI0YoJiZGkjR8+HDt2bOnVo/58ssv64ILLtC0adPUs2dP3X///YqIiNB7771XZfsPP/xQN954o8aNG6fOnTvrkksu0bhx4/TSSy8F2iQlJSklJSXw76uvvlKXLl00fPjwOjxrAEBz1iXOob5J1nqH81nChyZsU6ZHJb4jtw1Jg5IJpQAAQPMXUiiVmJioffv2SZLy8/O1du1aDRs2LHC/1+uVz+erbvdKSktLtX79eo0aNepIB202jRo1SitXrqxyH4/HI5fLemLmdru1YsWKan/GRx99pGnTpsngMsoA0CoFFzxffrBUhwpr/n4FNKaVQUv3eiQ4FOdusGvVAAAANJqQzmjS0tI0d+5czZ8/Xw899JB8Pp9OPvnkwP07d+5UampqjR8vKytLPp9Pbdq0sWxv06aNDh8+XOU+Y8aM0SuvvKIdO3bI7/dr4cKF+uKLL3To0KEq23/55ZfKy8vTlClTatwvAEDLcnKnCEU6jnwxYUr6YiezpdA0rUq3hlJDWLoHAABaCEcoO//617/WFVdcod/85jeSpClTpqhnz56SJNM09eWXX+qkk04KuZNHc8899+jee+/VmWeeKcMw1LlzZ02dOrXa5X7vvfeeTj75ZLVt27bax3Q67Wopk6gcDq7Mg7pj/CAUTXn8uFzSxK6R+s/WwsC2z3cW64qBcbLbWsgbQAvQlMdQY8kv9WtzlvVKxsM6RMjl4ndzLIwfhILxg1AwfhCq1jSGQgqlevbsqXnz5mnFihWKjY3ViSeeGLgvNzdXV155Za1CqcTERNnt9kpFzTMyMpScnFzlPklJSXr66adVUlKi7OxspaamatasWercuXOltnv37tWiRYv05JNPHrUfHk/LWsJRWtqyng8aF+MHoWjK4+fULhGWUCq90Kele4o0rJ07jL1CsKY8hhrDin3FqnhxSKdNOj7e0ep/LzXF7wmhYPwgFIwfhKq1jKGQCxIkJCRowoQJlkBKkuLj43XllVeqT58+NX4sl8ul/v37a/HixYFtfr9fixcv1pAhQ466r9vtVtu2beX1evX5559r4sSJldq8//77atOmjcaPH1/jPgEAWqZeiU71iLd+N0PBczQ1wUv3+rVxyW1nNh8AAGgZmlyVzOnTp+vtt9/WBx98oK1bt+qPf/yjioqKNHXqVEnSnXfeqdmzZwfar169Wp9//rl2796tH3/8Uddee638fr+uvfZay+P6/X69//77Ou+88+RwhDRBDADQQgQXPF+6v0RZxa3jWyk0D8FFztOoJwUAAFqQkNOZ5cuX67nnntPq1auVm5sr0zQt9xuGoQ0bNtT48SZPnqzMzEw98cQTSk9PV9++ffXCCy8Elu/t379fNtuRLK2kpESPPfaYdu/eraioKI0bN06PPvqo4uLiLI+7aNEi7du3T9OmTQvh2QIAWpLxnSP04ro8lfwvh/KZ0pe7inX+8dHh7Rgg6XCRT7vzrCFpWgqhFAAAaDkMMzhFqoVly5Zp+vTpiomJ0eDBg/XNN99oxIgRKiws1Jo1a3T88cerf//+evjhh+uzzw0uPT0v3F2oNy6XvdWsRUX9Y/wgFM1l/Mz+MUcLdhUHbneIsev5U9vIaClXvGjGmssYaigLdhVp9o+5gdvRTkNzf5EiO2OzRlr7+EFoGD8IBeMHoWopYyglJfaYbUJavvfMM88oJSVF8+bNCwRPN9xwg95++2298MIL2rNnj375y1+G8iMAAGhQZwQt4duX79O6w55qWgONZ1XQ0r3BKS4CKQAA0KKEFEqtWbNGv/zlL5WUlBRYUlc+8WrMmDE699xz9fjjj4feSwAAGki/Nk51jrVedpeC5wg30zSrDKUAAABakpBCqdLSUrVt21ZS2ZXzJKmgoCBwf9++fbV+/fpQfgQAAA3KMIxKBc+/31usvFJ/mHoESLvzfMooto7BIRQ5BwAALUxIoVRKSooOHDggSYqKilJcXJw2b94cuP/AgQNc6Q4A0ORN7BIpR4VVUR6/9NXu4up3ABrY6nTrLKnkSJs6xtiraQ0AANA8hZQYDRw4UCtXrgzcHj16tObMmaOOHTvK7/fr9ddf16BBg0LuJAAADSnebdPIDm59t7cksG3+9iKd3T2SgucIi5VBS/fSUlyMRQAA0OKENFPql7/8pRISElRcXPZt8u233y6326277rpLv/vd7+R0OvXb3/62XjoKAEBDCl7CtyPXq81Z3jD1Bq2Zz29qTdBMqTSW7gEAgBYopJlSo0eP1ujRowO3O3furM8++0yLFy+W3W7X0KFDFRt77EsAAgAQbmmpLrWNsulg4ZE6PvN3FKl3kjOMvUJrtCXbq0KvadmWRpFzAADQAtVLwafS0lItXbpUu3fvllQWTg0fPlxut7s+Hh4AgAZnMwyd1i1Sr204csGOb3YX67qBMYpyhjSxGKiVVYdKLLe7xtmVFEk9KQAA0PKEHEr9+9//1sMPP6zc3FyZZtm3eoZhKC4uTjNnztTUqVND7iQAAI3h1K6Ren1DgcrnShX7TH27p1hnHBcV1n6hdVlVqZ4UX/IBAICWKaRQat68ebrrrrvUoUMHXXPNNerRo4ck6eeff9bcuXN1zz33KCIiQpMnT66XzgIA0JCSI+06sZ1LSw8cCQXm7ygilEKjKfaa2pDpsWyjnhQAAGipDLN8elMdnHPOOfJ6vXr77bcVExNjuS8vL0/nn3++XC6XPvroo5A72pjS0/PC3YV643LZVVrqC3c30EwxfhCK5jp+luwr1gNLcizb/jExScfFU1uqsTXXMRSKFQdLdO/C7MBtmyG9/YsUlpDWQWscP6g/jB+EgvGDULWUMZSScuwa4yGd4Wzfvl1Tp06tFEhJUmxsrKZOnaodO3aE8iMAAGhUJ7ZzKynC+vb42Y6iMPUGrc3KoKV7vROdBFIAAKDFCuksJyUl5aj3G4ah5OTkUH4EAACNym4zdGrXSMu2/+4qVomvzhOLgRoLric1hKV7AACgBQsplJoyZYref/99FRQUVLovPz9f77//PoXOAQDNzmndIiy38z2mFu0tDlNv0FrklPi1Ncdr2TaYUAoAALRgIRU6HzZsmL766iudffbZuuSSS9S9e3dJ0tatW/Xmm28qMTFRQ4cO1bJlyyz7nXjiiaH8WAAAGlT7aIfSUl2WWSvzdxTplC6RR9kLCM2adOssKbdd6pNELTMAANByhRRKTZ8+PfDfs2bNkmEYkqTy2un79u3T1VdfHWhjmqYMw9DGjRtD+bEAADS407tFWkKptYc92pPnVafYkN46gWoFL90bmOyS02aEqTcAAAANL6Qz64cffri++gEAQJMyqr1bcS5DuaVHakl9vrNIVw849lVEgLpYGTRTKo2lewAAoIULKZSaMmVKffUDAIAmxWk3NKFLpP79c2Fg25c7i3V5vxhmr6DeHSjw6UCB9dLPaSmEUgAAoGXjGsMAAFTjjG7WGlLZJX79sL8kTL1BS7bqkHVcxbsNdYtnqSgAAGjZCKUAAKhGlziH+rWxFpqev6MoTL1BS7YqeOleiks2gxl5AACgZSOUAgDgKE4Pmi214mCpDhX6qmkN1J7fNCsVOU9LdYepNwAAAI2HUAoAgKMY2zFCUY4jM1ZMSZ8zWwr1aHuO11JQX6KeFAAAaB0IpQAAOIoIh6HxnSMs277YWSSfaVazB1A7q4OW7rWPtqtttD1MvQEAAGg8hFIAABxDcMHz9CK/VhwsraY1UDsrKy3dY5YUAABoHQilAAA4hp6JTvVMsF4J7TOW8KEeePym1h22hlJDCKUAAEArQSgFAEANBBc8X7q/RJnFFDxHaDZlelRSYRgZkgYlE0oBAIDWgVAKAIAaGN85Qu4KZX58prRgZ3H4OoQWIfiqez0SHIpzc3oGAABaB856AACogWinTWM7Wguef7ajSCYFzxGC4FCKelIAAKA1IZQCAKCGTj/OuoRvX4FPaw97wtQbNHeFHr9+yrKOn7QUQikAANB6EEoBAFBD/ZKc6hxrt2ybT8Fz1NHawx75K0y0c9ikfm0IpQAAQOtBKAUAQA0ZhlGp4PnCvcXKK/WHqUdozlYeKrHc7tfGqQiHEabeAAAAND5CKQAAamFil0hVzA08fum/uyh4jtoLric1JMUdpp4AAACEB6EUAAC1EO+2aWQHa3gwn4LnqKWMIp925fks2wZT5BwAALQyhFIAANTSGUEFz3fmevVTljdMvUFztDrdOksq2mmoV4IjTL0BAAAID0IpAABqaXCKS+2iggqeby8MU2/QHAUv3RuU7JLdRj0pAADQuhBKAQBQSzbD0GndIizbvt1TokIPBc9xbKZpamVQKJXG0j0AANAKEUoBAFAHp3aNtLyJFvtMfbuHguc4tj35PmUUWwNMQikAANAaEUoBAFAHbSLtOrGdNUiYv6MoTL1BcxK8dK9NhE2dYuzVtAYAAGi5CKUAAKijM46LstzenOXVtmxPmHqD5iI4lBqS6pJhUE8KAAC0PoRSAADU0bC2LrWJsL6VfsZsKRyFz29qzWHqSQEAAEiEUgAA1JndZmhS10jLtq92F6vEZ4apR2jqtmR7VeCxjo/BKYRSAACgdSKUAgAgBKd3s4ZS+R5TC/dS8BxVWx20dK9LrF1tIqknBQAAWidCKQAAQtAu2l5p+RUFz1Gdleklltss3QMAAK0ZoRQAACE6I2i21LrDHu3J84apN2iqir2mNmRYC+EPSXWHqTcAAADhRygFAECIRrZ3K85lvXoaBc8RbENGqbz+I7dthjQw2Rm+DgEAAIQZoRQAACFy2g1N7GKdLbVgV7E8fgqe44hV6dZ6Ur0TnYpycioGAABaL86EAACoB8EFz7NL/Fq6v6Sa1miNVgUVOaeeFAAAaO0IpQAAqAdd4hzq18a6FOuz7SzhQ5ncEr+2ZlvrjBFKAQCA1o5QCgCAehJc8HzFoVIdLPSFqTdoStYcLlXFxZxuu9QniXpSAACgdSOUAgCgnozpGKEox5GC56akLyh4Dkkrg5buDUh2yWkzqmkNAADQOhBKAQBQTyIchk7pHGHZ9vnOIvlMCp63dsH1pIawdA8AAIBQCgCA+nTGcdYlfIeL/FpxsLSa1mgNDhb4tL/AuowzLYVQCgAAgFAKAIB61CPBqZ4JDsu2+RQ8b9VWpVtDyTiXoW7xjmpaAwAAtB6EUgAA1LPTgwqeLz1QosxiCp63VqsOlVhup6W6ZDOoJwUAAEAoBQBAPTulc4Tc9iO3/ab05c7i8HUIYeM3zUozpVi6BwAAUIZQCgCAehbltGlsR2vB8892FMlPwfNWZ0eOVzkl1r97Wqo7TL0BAABoWgilAABoAMEFz/cX+LT2sCdMvUG4BM+SahdtV7toezWt8f/s3XdYFFcXBvB3C7v0XmwgdlQEVLCiKKDYNbao0cSuiZjYWzT2GmPvvURjSIyx9xqjJjH2GruoiFQpwi5bvj/4WBk6gizl/T0PebKzd2bO7F5hOdxzhoiIiEoWJqWIiIg+gurWBnA0EyYf2PC85Ln2RpiUqs3SPSIiIiIdJqWIiIg+ApFIhFZpGp7/+SoRMQqNniKigpak0eJmeJp+UvZMShERERGlYFKKiIjoI/F1MoI01U9alQY4FcyG5yXFvcgkKNLcdNGNK6WIiIiIdJiUIiIi+kgs5GI0KiNsan306Tto2fC8RLiepnSvkoUUFnJ+9CIiIiJKwU9GREREH1HaEr5nMWrcj2LD85Lg6huW7hERERFlhUkpIiKij8jNTpbubmtseF78vUvSpEs+1mZSioiIiEiASSkiIqKPSCwSIaC8cLXU2ReJeJfEhufF2c3wJGhSVWlKxUANGyaliIiIiFJjUoqIiOgj8y9vCLHo/WOFOjkxRcXXtTSlezWsDWAoFWUymoiIiKhkYlKKiIjoI7MxkqBeKWHDc5bwFW/XwhSCx+wnRURERJQek1JEREQFICBNw/MH0So8imbD8+IoMkGNZzFqwTYPe3kmo4mIiIhKLialiIiICoCngww2hsIfu0efcrVUcXQ9TFi6ZywVoYqlVE/REBERERVeTEoREREVAIlYhBZpGp6fDk6EQq3NZA8qqq6m6SflZieDRMx+UkRERERpMSlFRERUQAKcjZA6NRGfpMX5l2x4XpxotVpcS7NSqjb7SRERERFliEkpIiKiAuJgIknX8JoNz4uXl3FqhCdoBNvY5JyIiIgoY0xKERERFaBWaRqe345IwotYlZ6iofx2LU3pno2hGOVMJXqKhoiIiKhwY1KKiIioADUoI4e5TNhfiA3Pi4+0pXse9jKIROwnRURERJQRJqWIiIgKkIFYBP80Dc9PPE9AkoYNz4s6tVab7s57LN0jIiIiyhyTUkRERAUsIE0J31uFFn+FKPQUDeWXh1EqxCcJk4sedkxKEREREWWGSSkiIqIC5mgmRU0bA8E2Njwv+tKW7jmaSWBjxH5SRERERJlhUoqIiEgP0jY8v/pGidB4tZ6iofyQtsl5bZbuEREREWWJSSkiIiI9aFzWECYG7xtgawEce8bVUkVVokqL2xFp+kmxdI+IiIgoS0xKERER6YGhVIRmjoaCbceeJkCtZcPzouhOhBIqzfvHYgC1mJQiIiIiyhKTUkRERHqStoQvIlGDf18rMxlNhVnau+5VtTaAiQE/ZhERERFlhZ+WiIiI9KSSpQEqW0oF2448ZQlfUXT1DUv3iIiIiHKLSSkiIiI9Srta6u/XCkQmsOF5URKj0OBRtEqwjU3OiYiIiLLHpBQREZEeNXM0hFzy/rFGCxx/nqi/gCjXboQrkboTmFwCuFgb6C0eIiIioqKi0CWlduzYAV9fX9SqVQvdunXDjRs3Mh2blJSEFStWwN/fH7Vq1UKHDh1w7ty5dONCQ0MxZswY1K9fH25ubmjfvj1u3rz5MS+DiIgoR4wNxGhaLn3Dcw0bnhcZ19KU7rnayGAgEWUymoiIiIhSFKqk1KFDhzB37lwMGzYMe/bsgYuLCwYMGICIiIgMxy9ZsgQ///wzpkyZgkOHDqFHjx4IDAzEnTt3dGPevn2Lnj17wsDAAOvXr8fBgwcxfvx4WFhYFNRlERERZSltCV9IvBo3wpL0FA3lVtqklAdL94iIiIhypFAlpTZv3ozu3bujS5cuqFy5MqZPnw5DQ0Ps3r07w/F79+7F0KFD4ePjA0dHR/Tq1Qs+Pj7YtGmTbsz69etRqlQpzJ07F25ubnB0dIS3tzecnJwK6rKIiIiy5GJtACcziWDb0afv9BQN5UZovBqv4oU9wJiUIiIiIsqZQpOUUiqVuH37Nho1aqTbJhaL0ahRI1y9ejXDfZKSkiCTCT/4yeVyXLlyRff41KlTcHV1xddff42GDRuiU6dOCAoK+jgXQURE9AFEIhFaVRCulvrzlQIxCo2eIqKcuhYmXCVlLhOhgoU0k9FERERElFqh+dQUFRUFtVoNGxsbwXYbGxs8fvw4w328vb2xZcsWeHl5wcnJCRcvXsTx48ehVr//i2VwcDB++ukn9OvXD0OHDsXNmzcxa9YsGBgY4JNPPsnwuAYGEoiKSSsIqVSS/SCiTHD+UF5w/uROQCVTbL4Vh6T/56FUGuDsKwW6VDPVb2B6VBTm0I1wYZllbQc5DOWF5uNViVYU5g8VXpw/lBecP5RXJWkOFelPTd9++y0mT56M1q1bQyQSwdHREZ07dxaU+2m1Wri6umLUqFEAgBo1auDBgwfYtWtXpkmppKTidStupbJ4XQ8VLM4fygvOn5wzEgGNyshx9oVCt+3Qo3i0czaEqLj8peQDFOY5pNFqcSVUeKdEd1uDQh1zScP3gvKC84fygvOH8qqkzKFCU75nZWUFiUSSrql5REQEbG1tM9zH2toaq1atwrVr13D69GkcOXIExsbGcHR01I2xs7NDpUqVBPtVrFgRr169yv+LICIiyoMAZ2PB42cxatyLZMPzwupZjApvFcK7JHrYy/UUDREREVHRU2iSUjKZDDVr1sTFixd12zQaDS5evIjatWtnua9cLoeDgwNUKhWOHTsGPz8/3XN16tTBkydPBOOfPn2KsmXL5u8FEBER5ZGbnQFKmQiXax95mqCnaCg7ae+6V8pYku79IyIiIqLMFZqkFAD069cPQUFB2LNnDx49eoRp06YhISEBnTt3BgCMGzcOP/zwg2789evXcezYMQQHB+Py5csYOHAgNBoNBg4cqBvzxRdf4Pr161izZg2ePXuG/fv3IygoCL169Srw6yMiIsqKWCRCgLOw4fm5F4l4l8SG54VR2qQU77pHRERElDuFqqdUmzZtEBkZiWXLliEsLAzVq1fHhg0bdOV7ISEhEIvf59EUCgWWLFmC4OBgGBsbw8fHBwsWLIC5ublujJubG1asWIFFixZh5cqVKFeuHCZNmoQOHToU+PURERFlp4WTIbbfiYPm/1VhCjVwJjgRbSoaZ70jFagkjRY30zQ5Z1KKiIiIKHdEWq1Wm/2wkiUsLFbfIeQbmUxSYhqkUf7j/KG84Pz5cDMuRuNSyPuG51UspVjqa5PFHsVTYZ5Dt8KVGHcuSrDtp7Z2sJAXqkXoJVphnj9U+HH+UF5w/lBeFZc5ZGdnlu0YfnIiIiIqZFqlKeF7EK3Co2g2PC9M0pbuVbSQMiFFRERElEv89ERERFTI1HWQwcZQ+COaDc8Ll2thwqRUbZbuEREREeUak1JERESFjEQsQss0q6XOBCciUcWK+8LgXZIG9yLZT4qIiIgor5iUIiIiKoRaljeCKNXj+CQt/nyZqLd46L2b4Um6RvQAIBUDNW2YlCIiIiLKLSaliIiICiEHE0m6kjCW8BUO19OU7lW3NoChVJTJaCIiIiLKDJNSREREhVSrCsISvtsRSQiOVekpGkpxNU2Tc5buEREREX0YJqWIiIgKqfql5bCQC1fgHOVqKb2KTFTjWYwwMcgm50REREQfhkkpIiKiQspALIK/k3C11IlnCUjSsOG5vlxPs0rKWCpCFUsDPUVDREREVLQxKUVERFSIBaS5C1+MUotLrxR6ioaupekn5WYng0TMflJEREREH4JJKSIiokKsnJkUNW2EK3FYwqcfWq0W19hPioiIiCjfMClFRERUyKVteH71jRKh8Wo9RVNyvYxTIyxBI9jmYcekFBEREdGHYlKKiIiokGtcxhAmBu9LxLTgail9SLtKytpQDEcziZ6iISIiIir6mJQiIiIq5AylIjR3NBRsO/4sAWo2PC9QaftJedjLIBKxnxQRERHRh2JSioiIqAholabheUSiBpdDlZmMpvym1mpxI01SqjZL94iIiIjyhEkpIiKiIqCipQGqWEoF21jCV3AeRakQlyRcmebOJudEREREecKkFBERURGRtuH5368ViEhgw/OCkLZ0z9FMAlsj9pMiIiIiygsmpYiIiIoIn3KGkKfKg2i0wIlnifoLqARJ2+Scd90jIiIiyjsmpYiIiIoIYwMxfMoJG54ffZYAjZYNzz8mhVqL2xHpm5wTERERUd4wKUVERFSEpC3hex2vTteAm/LXnQglkjTvH4sBuHGlFBEREVGeMSlFRERUhFSzMkB5c2EvoyNseP5RpS3dq2JlABMDfoQiIiIiyit+oiIiIipCRCIRApyNBdsuvFLgrUKTyR6UV+n6SbF0j4iIiChfMClFRERUxPg6GkKa6ie4SgOces7VUh9DrFKDh9EqwbbaTEoRERER5QsmpYiIiIoYc7kYjcukaXj+NAFaNjzPd9fDlEj9qsolQHVrA73FQ0RERFScMClFRERUBKVteP48Vo27kUl6iqb4up6mdK+mjQwGEpGeoiEiIiIqXpiUIiIiKoJq2RqgtEmahudPWMKX366GsZ8UERER0cfCpBQREVERJBaJEOAsXC31x8tExCex4Xl+CX2nxqs4tWAb+0kRERER5R8mpYiIiIoo//KGEKeqJFOogTPBifoLqJhJW7pnLhOhgoVUT9EQERERFT9MShERERVR1oYS1C8lF2w7+pQlfPnlWprSPTc7GcQi9pMiIiIiyi9MShERERVhaRueP4xW4VE0G57nlVarxbU0K6VYukdERESUv5iUIiIiKsLqOMhgayT8cc6G53n3NEaFaIWwPxebnBMRERHlLyaliIiIijCJSISW5YWrpU4HJyJRpdVTRMVD2lVSpYwlKG3CflJERERE+YlJKSIioiKuhbMRUnc6eqfS4vxLNjzPi7T9pNy5SoqIiIgo3zEpRUREVMQ5GEtQJ03ShA3PP5xKo8XNMGFfLpbuEREREeU/JqWIiIiKgYA0Dc9vRyTheYxKT9EUbfcjk5CoFpY/etgxKUVERESU35iUIiIiKgbql5bDQi4SbONqqQ9zNU0/qYoWUljI+ZGJiIiIKL/xExYREVExYCAWwd9JuFrq5PMEJKnZ8Dy3rqfpJ8XSPSIiIqKPg0kpIiKiYiLAWZiUilFqcTFEoadoiqZ3SRrci0zTT4qle0REREQfBZNSRERExUQ5MylcbQ0E21jClzu3wpOQenGZVAS42jIpRURERPQxMClFRERUjLRKs1rq6hslXser9RRN0XMtTemei40BDKWiTEYTERERUV4wKUVERFSMNC5rCFMDNjz/UNfSNDln6R4RERHRx8OkFBERUTEil4jQ3NFQsO3EswSoNWx4np3IRDWexqgE22qzyTkRERHRR8OkFBERUTHTqoKwhC8iUYPLocpMRlOKtHfdM5KKUNXKIJPRRERERJRXTEoREREVMxUsDFDVSirYxhK+7F1PU7rnZmsAiZj9pIiIiIg+FialiIiIiqG0Dc//fq1ARAIbnmdGq9Xiatp+UvZyPUVDREREVDIwKUVERFQMNS1nCEPJ+1U+Gi1w/BlXS2XmVbwaYQkawTb2kyIiIiL6uJiUIiIiKoaMDcRoWk640ufY00RotGx4npG0d92zNhTD0Uyip2iIiIiISgYmpYiIiIqpVhWMBY9fv1Ona+ZNydImpdztZBCJ2E+KiIiI6GNiUoqIiKiYqmYlRXlzNjzPjlqrTZesY+keERER0cfHpBQREVExJRKJ0jU8v/BKgbcKTSZ7lEyPolWISxKWNXrYMSlFRERE9LExKUVERFSM+ToZwiDVT3uVBjj5nKulUktbuudoJoGtMftJEREREX1sTEoREREVY2YyMRqXNRRsO/o0AVo2PNe5Fpa+nxQRERERfXxMShERERVzaUv4gmPVuBOZpKdoCheFWovb4cKklAf7SREREREVCCaliIiIirlatgYoYyIsRzv6hCV8AHA3QomkVC22xADcbJmUIiIiIioITEoREREVcyKRCAFpVkv98TIR8UlseH41TT+pKlYGMJXx4xERERFRQeCnLiIiohLAr7whJKL3jxVq4Exwov4CKiSuh7F0j4iIiEhfmJQiIiIqAawNJahfWi7YdvRpyS7hi1Vq8CBKJdjGpBQRERFRwWFSioiIqIRIW8L3MFqFh1Elt+H5jTAlUt+DUC4Bqlsb6C0eIiIiopKGSSkiIqISoo6DDHZGwh/9JXm11LU0pXs1bWSQpa5xJCIiIqKPikkpIiKiEkIiEqFFeeFqqdPBiUhUaTPZo3i7lqbJuTtL94iIiIgKFJNSREREJUgLZyOkXgv0TqXFHy9LXsPzN+/UeBmnFmyrbcekFBEREVFBYlKKiIioBHEwlqCOgzD5UhJL+NKukjKTiVDRUqqnaIiIiIhKJialiIiISphWaRqe34lIwvMYVSaji6frafpJudvJIBaxnxQRERFRQWJSioiIqISpV1oOS3nJbXiu1WrTrZTyYOkeERERUYFjUoqIiKiEMRCL4F/eULDt5PMEJKlLRsPzZzFqRCk0gm212eSciIiIqMAxKUVERFQCtUxzF74YpRYXQhR6iqZgXQsTXqeDsRilTCR6ioaIiIio5GJSioiIqAQqZyZFLVsDwbaSUsKXtnTP3U4GEftJERERERU4JqWIiIhKqLQNz6+9USIkvng3PFdptLgZniTYVtterqdoiIgKjlarxVuFBqHxarxVaKDVloySbSIq3HjvYyIiohKqUVlDmF6PRVzS+19Mjj1NxBc1TfUY1cd1PyoJCSrhL2LubHJORMVYnFKDE88Tsf/RO4TEq3XbS5tI0L6SMfydDGEq41oFItIPJqWIiIhKKLlEBF8nQ+x79L5s78SzBPSubgKJuHiWs6Ut3atoIYWlIX8ZI6Li6d9QBWZfegtFBjeyeB2vxvobsdh2Ow7fNrBAXYePt2p048a12Lx5ve6xTCZD6dJl0KZNe/Ts2QdiceH4PnzlymV8/fVQAMCOHb+ifHlnwfNr167E9u2bUapUafz66/48n+/cuTOYNGkMfvllH0qXLpPj/WbPnoZ79+5g+/agbMdOnjwepUuXwbBh3wi2Hzt2GL/99gsePXoIAKhcuTI6d+6OFi1a5e4iPqL4+Djs2rUDly79ieDg5zAwkKF69ZoYMmQYKlWqnOW+qd/L1Pz8WmD69LlZ7pt2vqbWsWNnjB07CUDy+3D48AHdc4aGhihb1hHdun2Kdu066bbfuHENEyeORlDQXpiYFN8//H0oJqWIiIhKsABnI0FSKiJRg39eK9CgjGEWexVdGfWTIiIqjv4NVWDqhWhotUBGhXop2xRqLaZeiMb0RpYfNTEll8uxdOkaAIBSqcCVK5exZs0KaDRa9OnT96Od90MYGRnjxImjGDBgiGD7yZPHYGRkrKeocu/+/Xu4cOEPBAXtFWxfvHgBfvvtF7Rt2wF9+w6ESCTCmTMnMWPGFNy/fw+BgSP0E3AaoaGvsW/fb2jbtiMGDfoKSqUCP/30I4YM6YsNG7bD2blCtseYNGkqnJycdY8tLS2z3ad9+06oX7+RYNv161ewevVyNGgg3F6mTFl8990sAEBCQjzOnj2DefNmwdDQCP7+AQAANzcPVKhQCbt27Ug3p4hJKSIiohKtgoUBqlpJ8V/U+15SR58mFMukVIJKg3uRwn5SHvZMShFR8ROn1GD2pbeZJqRS0/7/P7MvvcW21rYfrZRPLBbD1bWW7nGdOp549Oghzp07VeiSUk2a+KRLSt2+fQuhoa/RvLk/bt26ocfocu6XX35CvXoNYGtrp9t2/vxZ7N4dhH79Bgmur379hrC1tcPmzevh5VUf9es31EfIAqVLl8XPP++FoeH7zyR16niha9f22LPnF4wcOS7bY1SsWAkuLjVydV57ewfY2zsItu3duxtmZuZo0KCxYLtcLhfMay+vBrh9+wbOnj2tS0oBQNu2HbBy5VJ88cUASKVMw6RWONZJEhERkd6kbXj+z2slwhPUmYwuum6FJyF1BYtUBLimuQMhEVFhp/5/w/Ksvg48fgeFWpttQiqFFskrpg4+fpftsdX52CDd2NgYKpXwBhurVy/H559/ihYtmqBTp9aYOnUSwsPDBWNu3LiGYcMGISDABy1aNMXnn38qKKMCgAsXzmPQoC/g69sY7dr5Y+HCuUhIyNldZn19/fHy5Qvcv39Pt+348SOoW9cLVlbW6ca/fh2CyZPHISDAB/7+3hg+/CtdWVwKlUqFpUt/QOvWvggI8MHcuTOQkPAu3bGUSiXWrl2JLl3aoXnzhvjss644duxIjuJOLSEhAWfPnkKzZn6C7UFBP8HMzBw9e/ZJt0/Pnn1gZmaOn3/eAQC4fv0qvL098fLlC92YceNGwtvbE48fP9Jtmzp1EsaOfV8emJNrmD17Gvr06Y4rVy6jX79e8Pf3xqBBn+Pevbu6MUZGRoKEFJA8Z8qWLYfw8LBcvyYfSqFQ4Ny502jWzA8GBtl/bjA2Nkk3r5s2bYa4uFhcvHj+Y4VZZDFFR0REVMI1LWeIdTfikPj/jI0GwPFnCejpUrz6HlxNU7rnYmMAIyn/PkdERccfLxKx+nosohWafD+2FsDWO/HYeic+y3GWcjG+dDdDk3K5X1Gb8ot6Svne2bOn0KdPP8GYqKhI9OnTD7a2doiOjsKuXTsQGDgYP/4YBKlUivj4OIwbNwJubh6YNm02DAxkePr0MWJjY3XHOH36BKZOnYQ2bdpjwIAhiIgIx5o1KxAbG5NtPyEAsLW1g4dHHZw4cRTVqrlAo9Hg9OnjGDIkEA8e/CcY++5dPIYPHwKRSIQxYyZCJpNj+/ZNGDZsELZu/QkODqUAAGvWrMCePb9gwIAhqFrVBSdOHMWaNSvSnfu77ybgxo3r6NdvEJydnXHx4p+YOXMKzMzM0LBh43TjM3Pr1g0kJCSgVi13wet/69YNNGzYGMbG6csQjY2NUadOXfz110Wo1WpUr14TMpkc165dQdmy5aDRaHDjxjXIZHJcv34VFStWApCcvOra9dNcX0NkZASWLl2Izz7rC1NTU6xduwKTJo1BUNDeTFcTxcbG4smTR/Dyqp+j12HMmG8QE/MWNja28PcPwMCBQyCX527uXrjwB+Lj49GiRUCGz6fM65RE4M2b1zF58nTBGBMTU1SoUBH//PMXmjRplqvzF3dMShEREZVwxgZi+Dga4ujT939BPvY0AZ9WM4FYVHwanl8PEyalPNhPioiKmGVXYxCflH8rlT5EtEKDZVdjcp2USkhIQLNmDQTb/PxaoHfvvoJtkyZN1f2/Wq2Gq6sbPvmkDa5cuYx69RogOPg54uLiMGRIoK7ZtadnPd0+Wq0WK1cuha9vC0yYMEW33cbGFmPHfoMvvhioS6Zkxd8/AFu2bMBXX32NK1cuIzY2Dj4+zdMlpQ4e3I/Xr0OwfXuQrsdRvXpe6NChNYKCfsLw4SMRE/MWe/b8gt69++qScPXrN0Rg4GCEhb3RHevKlcs4f/4cFi1agXr1kl8rL68GiIgIx6ZNa3OVlLp37w6MjJJXFaV4+zYaSqVSlyjLiINDKSQmJiImJgZWVlaoUaMmrl+/irZtO+DRowdITExA27YdcO3av/jkk6548SIY4eFh8PCok+triImJwfLl63Tvh6GhIb7+eihu374Fd3ePDONbtWoZRCIROnXqkuX1m5qaolevz+HhUQdyuRz//vsPdu36Ec+ePcGCBUty8hLqHD9+FHZ29rprTO3Jk8fp5nWPHr3RsmXrdGMrV66KO3du5+rcJQGTUkRERIQAZyNBUir0nQbX3ihR5yM2vS1IUYlqPHkrXErPflJERAVHLpdj5crkO5oplUrcv38PGzeuwfz5swSJqIsX/8TWrRvx5MkjxMe/X7UVHPwM9eo1QJky5WBiYoKFC+eia9ceqFPHE1ZWVoJxr1+H4OuvRwtKqGrXrgOxWIz79+/mKCnVrJkvFi2ajxs3ruPEiaNo2LBRhndOS1kxlLrptoWFBTw96+PGjWsAgEePHkKhUKBp02aCfX18fHHt2hXd47//vgRzcwvUqeMpiN3Lqz6+/34u1Go1JBJJtrEDQEREeI6aemdG9P8/Srm718bx48mld9euXYWLSw00aNAICxfO+/+2KzA0NNT1bcrNNdja2gneiwoVKgIAwsJCM4zp4MF92L9/D779dlq6nk9pVa3qgqpVXXSP69b1go2NLRYvXoA7d26hRg1XaDQaaDTvVx2KxeJ0d4KMjY3FpUt/onPn7hneJbJs2XKYPn0OACAxMRHXr1/Fli0bYGJign79BgnGWlhYIiIiPN0xSjompYiIiAjVrKRwNpfiaYyw4XlxSUqlXSVlJBWhqhX7SRFR0fJ1bfOPVr6XUynle7klFosFDafd3DygVquwYsUS9OjxGSpWrIy7d29jwoRRaNLEB717fwFLS2uIRCIMGdIXCkXy93Fzc3MsXrwSGzeuw6xZ30GtVsPNzQMjR45DpUqVER0dDQCYNGlMhnGEhr7OUbzm5haoV68hDh/ejzNnTmHChMkZjouNjc2wz5S1tTWePEnuu5SSiEg7ztpa+Pjt22jExLxNt/ImRUREeLbJmBQKhTJd/yMLC0vIZLIsX4PQ0NeQyWS6hJaHRx1s3boRYWFvcP36Fbi714a7e21ERkYgOPg5rl+/ipo1a+nK7XJzDaamwiSfVJocr1KpTLffxYt/YsGC2ejbdyBat26Xo9cgLV/fFli8eAHu37+HGjVcsXnzemzevF73fNrm7wBw9uxJKJVKtGzZKsNjymQywbz28KiDqKhIbNu2CV26dIe5uYXuOQMDAygUig+KvThjUoqIiIggEonQqoIR1lx/35Pj4isF3io0sJAX/b5L19L0k3KzNYBUXHxKE4moZGhSzhCNysoRp8y8hE+r1WLkmUi8eafJcaNzABABsDcWY3Eza90qmYyYykSQ5FNpd/nyyauLnjx5jIoVK+PcuTMwNTXFjBnzdKtSXr8OSbdfjRqu+OGHZVAoEnHlymWsXLkUEyeORlDQXl0SYOTIcahZ0zXdvqnvRJcdf/8AzJr1HYyMjNCwoXeGY8zNzfH8+bN02yMjI2FmZg4guXQQSO6XZWdnLxiTmpmZOSwtrbBw4dIMz5VR8isz5ubmiIuLE2yTSqWoVcsdV69eQUJCAoyMhDc6SUhIwNWrV+Dm5qHb5urqBqlUimvXruD69Wto27YDzM0tUKFCRVy7dgXXrl1Fq1ZtPso1pLh16yamTBmP1q3bYeDAobnePzMdO3ZG48ZNdI8zmhvHjx9F+fLOglVX2SlfvgKSkpIQHByMmjXfJ6Xi4uIESSpKxqQUERERAQCaOxpi481YJP3/D/AqLXDyeQI6VzHRb2B5pNVq0zU5d7cvHivAiKjkkYhEsJBnnRTqWNkE62/EZjkmI50qm8DSMGflYfkhZSWRhYUlAEChSIRUKhUkxY4dO5zp/nK5IRo29MbLly+wdOkPUCgUKF/eGfb2Dnj16iW6dOmep/iaNPGBt7cPatSoCbk8458bbm4eOHPmJJ4/fwonJ2cAyb2SLl/+Gx06fAIAqFSpMuRyOc6dOyNIbpw9e0pwLC+veti5cxukUgNUrlwlT7E7OZVHdHRUuuRTt249MGHCaOza9WO68rJdu35ETMxbdOzYWbfNyMgIVau6YO/e3xAT81aXsPLwqINjxw4jJOSloNdSfl4DkJywHDduBOrU8cKYMRPzdKyTJ48CAKpXT17ZZGtrl2WSMjw8HFev/ov+/Qfn6jwpdyZMWz75+vUrODmVz9WxSgImpYiIiAgAYCYTw7usIU4HJ+q2HX2agE8qG2f5V/PCLiRejbAEYalLbfaTIqJizN/JENtux0Gh1uZotZQIgFwigp9T7u+ol1MajQa3bt0EAKhUSbh//y62bt0IZ+eKuqSGl1d9BAX9hMWLF6Bp0+a4desGjh49JDjOhQvnceDAXjRt2gwODqUQGRmBX38NQq1a7rrEUWDgSEyf/i0SExPQsKE3jIyM8Pp1CC5ePI/Bg4flODFgZGSEOXO+z3JM27btERS0E2PHjsCgQV/q7r4nkUjQvXtPAMmlgJ06dcGPP26BXC7X3X3v5csXgmN5eTVA48ZNMHr0cHz22eeoVKkKEhIS8OTJY7x8GSxo3J6dWrXcodFo8N9/9wVNw729fdClS3ds2rQOb96EonlzfwDAmTMnsX//72jdup1uWwoPj9rYuXM7qlZ10fXVcnevg99++wVSqRSurrU+yjVERUVi9OjhkMvl+PTTXrh3767uORMTE10PqtevQ/Dpp53Qt+9AXaJtxowpKFu2HKpVc4FMltzoPChoJ5o0aSYot8vKyZNHodFo0KJFxqV7AKBQKHTzWqlU4Pr1q9i/fw+8vOoLmswDwL17d9Gjx2c5vv6SgkkpIiIi0glwNhIkpYJj1bgTkYSatkU3iZN2lZSVXAwns4JbCUBEVNBMZWJ828ACUy9EA1pkmZgSARCJgMkNLGAq+3jl2gqFAkOHJt95TiKRwN6+FFq2bIP+/Qfp+hE1bOiNL78cjt27g3Do0H7UquWOBQuWoGfP9yt3ypUrB7FYhHXrViE6Our/vZ8aYMiQYboxvr7+MDMzxdatm3QrrUqVKo369RvB2tomX6/L2NgEy5evxfLli7BgwRxoNGq4u3tg5cr1grvcDR06HGq1Gjt2bINWq0HTps0xdGggZs78TnC8WbMW4Mcft+C3335FaGgITExMUbFiJbRp0z5XcTk5lUelSpVx6dKf6e5kN3LkONSo4Yo9e37FiRNjkZCQfKOTwYO/0t0dMDUPj7rYuXM7PDxqp9qW/P8uLjUglwuTmfl1DU+ePMabN8lNz7/55ss0MdXBihXrACSviFar1YKm5RUqVMSxY4exa9cOJCUpUbp0GfTp0y/D68vM8eNHUb16zXTJpdRevXqpm9cGBgZwcCiNnj37oE+fvoJx9+/fQ3R0FJo188vx+UsKkVar1e89RQuhsLDcL3UtrGQyCZRKtb7DoCKK84fygvOnaNJqtRh0PAKv4t6/d/5OhhjlWfA9EPJrDs35KxrnX75vLNrc0RBjvdjTobjj9yDKi+Iyf/4NVWD2pbdQqJN/5Uv9i1/K+le5RITJDSyKzY0tCoPCMn9+/XUXfvllF3bt2pPliueoqEgMGNAHzs4VsWDBYl2SkPLPypVLcf/+XSxbtiZH4wvLHMorO7vsb4pQ9DuXEhERUb4RiUQIcBY2Pv3jZSLilPq701NeqLXadHfe82DpHhGVEHUd5NjW2haD3cxQykS4QrSUiQSD3cywvY0tE1LFVPv2naBQKPDnn+eyHGdlZY05cxbi2rUr+OGHeQUUXckRHx+H/ft/z3VvqpKCKVAiIiISSOlF8v8/rEOhBs4EJ6JdJWP9BvYBHkerEJvmLlUedkxKEVHJYSoTo2NlY3SoZIRYpRYJKi2MpCKYyURFul8gZU8uN8S3305Ndxe+jLi4VMepU38WQFQlT2joawwaNFTQEJ7eK5QrpXbs2AFfX1/UqlUL3bp1w40bNzIdm5SUhBUrVsDf3x+1atVChw4dcO6cMBO8fPlyVKtWTfDVqlXmzcqIiIhKMitDCeqXFv7V/OjTBD1FkzfX0vSTKmcqgZ0x+0kRUckjEolgLhfDwUQCc7mYCakSwsurQbrG5VSwKlasjC5dPtV3GIVWoUtKHTp0CHPnzsWwYcOwZ88euLi4YMCAAYiIiMhw/JIlS/Dzzz9jypQpOHToEHr06IHAwEDcuXNHMK5KlSo4f/687mvnzp0FcTlERERFUqs0JXyP3qrwICpJT9F8uGss3SMiIiIqtApdUmrz5s3o3r07unTpgsqVK2P69OkwNDTE7t27Mxy/d+9eDB06FD4+PnB0dESvXr3g4+ODTZs2CcZJJBLY2dnpvqytrQvicoiIiIqk2g4y2BkJPyYUtdVSSrUWt8PTJKVYukdERERUaBSqpJRSqcTt27fRqFEj3TaxWIxGjRrh6tWrGe6TlJQEmUz4AVMul+PKlSuCbc+ePYO3tzf8/PwwevRovHr1Kv8vgIiIqJiQiERomWa11OngRCSqis5Ne+9EJCF1f3YxgFpMShEREREVGoWq0XlUVBTUajVsbGwE221sbPD48eMM9/H29saWLVvg5eUFJycnXLx4EcePH4da/f72iW5ubpg7dy4qVKiAsLAwrFy5Ep999hn2798PU1PTdMc0MJCguJRYS6Xsm0EfjvOH8oLzp+hrU9kEO+/G624hnqDS4sJrJVpVLJiG53mdQzcjhOWGVa0NYGNqkKdjUtHB70GUF5w/lBecP5RXJWkOFaqk1If49ttvMXnyZLRu3RoikQiOjo7o3LmzoNzPx8dH9/8uLi5wd3dH8+bNcfjwYXTr1i3dMZOS1Om2FWVKZfG6HipYnD+UF5w/RZuVgQh1HWS4HPq+BO7gw3j4liu4W4fnZQ79+zpR8NjN1oBzsoTh+015wflDecH5Q3lVUuZQoUpKWVlZQSKRpGtqHhERAVtb2wz3sba2xqpVq6BQKBAdHQ17e3ssXLgQjo6OmZ7H3Nwczs7OeP78eb7GT0REVNy0cjYSJKXuRibhWYwK5c0L1UeIdGKVGjyMUgm2edgXXDKNiEiftBFvgLiY3O9oag6RjX3+B0RElIlC9YlSJpOhZs2auHjxIvz9k29bqdFocPHiRfTu3TvLfeVyORwcHJCUlIRjx46hdevWmY6Nj49HcHAw7Ozs8jV+IiKi4qZeaTms5GJEKd43Zzr6NAGD3cz0GFX2boYpkaqdFGRioIYNS/eIqPjTRryBZtIgIOkD7phqYADxnPVMTBFRgSlUjc4BoF+/fggKCsKePXvw6NEjTJs2DQkJCejcuTMAYNy4cfjhhx90469fv45jx44hODgYly9fxsCBA6HRaDBw4EDdmPnz5+Pvv//GixcvcOXKFQQGBkIsFqNdu3YFfn1ERERFiVQsgn95Q8G2U88TkKQu3A3Pr4YJ77pX01YGmaSYNIwkIspKXMyHJaSA5P0+ZIVVNjZuXAtvb0/dV5s2fvjyywG4ePF8urFdu7bHokXzBdvu3bsLb29PHD16KMPjq9VqtG/fEjNnfgcAmD17muB87du3xMiRw3Dr1o1sYw0JeaXb79KlC+me37dvj+75/PDgwX14e3viypXLudpv48a1aNGiSY7Grly5FJMnj0+3/dKlC/jmm6/QqlUz+Pk1Rr9+vfDLL7ugUqkyOErWYmNjsXHjWjx5knEv6NSuXLkseH8y+tq4cW2uY/hQx44dxmefdRX0paaCU6hWSgFAmzZtEBkZiWXLliEsLAzVq1fHhg0bdOV7ISEhEIvf59IUCgWWLFmC4OBgGBsbw8fHBwsWLIC5ubluzOvXrzFq1ChER0fD2toadevWRVBQEKytrQv8+oiIiIqals5G+OW/d7rHMUotLrxSwMfRMIu99Ov6G2FSyoN33SMi0iu5XI6lS9cAACIiwrBt22aMHz8KK1euR61a7lnu6+JSHU5O5XHixFEEBLRJ9/y///6DqKhItGz5vlqmTJmy+O67WQC0ePXqJTZuXIsRI77C1q27ULZsuWzjNTIyxsmTx9CgQSPB9hMnjsLIyBgJCe8y2bNwCQ8Pw2+/BWHlyg2C7T/99CNWrlyCpk2bY/LkGTAyMsKlSxewcuUSXLnyD2bP/l7we3d24uJisXnzelSsWAkVKlTMcmy1ai5Ys2Zzhs9t2LAaV6/+i/r1G+b43Hnl59cS69evwZEjB9G2bYcCOy8lK3RJKQDo3bt3puV627dvFzyuV68eDh3KOGOeYvHixfkWGxERUUlT1lQKN1sD3Ah//5f3o08TCm1SKuydGi/ihH/t9LBnUoqISJ/EYjFcXWvpHteo4YrOndvi8OED2SalAKBFi1bYunUj3r6NhoWFpeC548ePwMrKGp6e9XTb5HK57nyurm4oXboMvvxyAE6dOo4+ffple74mTXxw7txpjBkzEXJ5ck/C8PBwXLt2BS1aBODo0cM5uWy927v3N5Qr5wQXl+q6bf/9dw9r1ixH69bt8O2303Tb69b1grNzBcydOwO//RaErl17fJSYTExMBXMhxfnzZ3H58t8YOHAoXF3d8nQOtVoNrVYLqTT7lIdEIkGbNu3w66+7mJTSg0JXvkdERESFT0AFI8Hja2FKhMTlfnl/QbiWpnTPTCZCRctC+Xc4IqJc02rU0Ma8zfwrLi5vx4+Ly/r4mvwpcbKzs4elpRVCQ0NzNL5Fi1ZQqVQ4ffqEYLtCocC5c6fh59cCEokk0/2rVq0GAAgNfZ2j8zVo0AgikQiXLv2p23by5FGULVsO1apVTzc+JuYt5syZjrZt/dCkSQMMHdof165dSTduy5YN6NAhAC1aNMGkSWMRFRWVboxWq8XOndvRo0dnNG/eEN26dcTPP+/IUdxpHTlyEM2b+wm2/frrzwCAAQOGpBvfunU7ODo6ISjoJ922Z8+eYurUiejcuS38/Bqjd+9u+OmnH6HRJHdvDAl5hW7dkpM5U6ZM0JXghYS8ynGc4eFhmDt3BmrXrovPP+8veC42NhYLF85Dx44BaN68Ifr3742//74kGBMYOBjjxo3A4cMH0LNnZ/j6NsLDh/8BAH7/fTd69kx+Lbt2bY8tWzboYk/RvLk/Hjz4Dw8e/JfjmCl/8BMaERERZatxGUOsNohFXNL7XlLHniXii5qmeowqY9fSlO6528kgEbGfFBEVfdp//oBmx2ogJvrjneOHSciya6C5JcSffQmRV876GWXm3bt3iIl5i9Kly+RofLlyjqhevQaOHz+KTp266rZfvHge8fHxaNEi8xtdAcktXQDk+HwGBgZo2rQ5jh8/Ch8fXwDJpXv+/gHpxqrVaowe/TVCQl7iyy+Hw87ODrt27cTIkcOwevUm3Sql3bt/xoYNa9CzZx94etbDP//8hXnzZqY73tKlC7F//+/4/PP+qFHDFbdu3cDq1cshl8sF156dFy+CERLyKt1KtGvXrqBSpSooVap0un3EYjEaNWqCn3/egbCwN7Czs0dY2Bs4OTmjRYvWMDY2xsOH/2HjxrVISHiH/v0Hw8bGFrNnf49vvx2LIUOGoXbt5H5bNja2OYpTo9FgxowpAICpU2cJygaTkpIwcuQwREZGYNCgr2BnZ49jxw5h7NhvsGnTDlSqVFk39t69uwgJeYWBA4fCzMwc9vYO+PXXXViyZCG6dv0UjRo1wc2b17F583rExcUhMHCEbl9n5wowMzPHP//8hSpVqub4Naa8Y1KKiIiIsiWTiODrZIh9jxJ0244/S0Dv6iaQiAtPwker1WaYlCIiKg40W5YBCfH6DSImGpotyyD5gKRUSgPt8PBwrF69FMbGJujePeclYi1atMby5YsQGvoaDg6lACQnisqWLYeaNV0zPd+rVy/xww/zUKpUabRpk/PyrBYtAjBhwmi8e/cOUVGRuHv3DqZMmSlYPQUkJ8bu3r2NH35Yjvr1G0Imk6Bu3fr49NNO2L59E2bP/h5qtRrbt29BQEAbDBv2DQCgfv2GiIqKFDRwf/nyBXbvDsKYMRPRsWPyzb68vOojMTERmzevR4cOnXPc6+nu3dsAgEqVqgi2h4eHpduWWspr++ZNclLK07OerjRSq9XCzc0DiYmJ2L07CP37D4ZMJtOtRCtXzjHD0rys7NixFVeuXMa8eYtga2sneO7YscN48OA+tmz5Sderqn79hggODsaWLRswc+Y83diYmLdYv36rLn61Wo0tWzbAz68lRowYCwCoV68BVCoVdu36EX369BWUglaqVBl37tzKVeyUdyzfIyIiohwJcBaW8EUmavD3a4WeosnY81g1ohTCJfm12U+KiEjvEhIS0KxZAzRr1gBdu7bDmTOnMGXKDDg5Oef4GH5+LSAWi3Hy5HEAwLt38bhw4U+0aNEq3dgnTx7rzterVxfcuXMLs2d/Dysrqxyfr04dLxgbm+CPP87g+PEjqFrVBU5O5dONu379GkxMTATNuaVSKXx8muPGjesAgLCwNwgPD0PTps0F+6Ytrfvnn78AAM2a+UKlUum+PD3rISIiAm/e5KzcEQAiIsIhFothYWGR430yolAosHHjWnz6aSc0b94QzZo1wLp1qxAREY5377Ju+K5WqwXXodUK1+Hdvn0LGzasQdeun8Lbu2m6/f/++xIqVaoMR0cnwXG8vOrj3r07grGVKlXRJaSA5LLD6Oho+Pr6C8b5+rZAUlIS7ty5LdhuaWmJiIjwHL0mlH+4UoqIiIhypIKFAapZGeB+lLDhecMyhafh+dU0q6TsjcUobZJ5jxEioqJE3Pfrj16+l63/l+/lllwux8qV66HRaPDiRTDWrFmBWbOmYtu2n3V3Ws+OjY0tateuixMnjqBXrz44e/Y0lEoFWrZMn5QqW7Ycpk+fA7Vag4cP/8Pq1cvw3XcTsHXrLhga5uznlkQiga+vP06cOIqQkJBMm2DHxsbAyir9nd2trGwQE/MWQPLqsORtVunGpPb2bTS0Wi3athUmUlKEhoZmWHaXEaVSCalUClGaEnZbW7sse2ulPGdvbw8AWL16Ofbv34N+/QahWrXqMDMzwx9/nMXWrRuhVCphbGyc6bG++eZLQW+tZcvWoE6d5PK++Pg4TJv2LSpUqISvvvomw/3fvo3Gf//dR7NmDdI9l7aHmLW18D2IjY0FgHTvTcq42NgYwXYDAxkUisL1x7aSgEkpIiIiyrFWFYwESanLr5UIf6eGrXHhSPxcfyP8MOlhJ0v3YZyIqKgSeTWBuG4jIItm5trgJ9D+MOnDzzF6DkSOFTIfYGoKkTj33/PFYjFcXGoASL7znpNTeQwe3BdbtqzHmDETc3ycli1bY86c6Xj+/CmOHz/6/9VLzunGyWQy3flq1nSFpaUlvv12HH79dRd69+6b4/P5+wdg2LBBAJJXamXE3NwcUVGR6bZHRUXA3Dx5lVJK4i1tY/OoqIg0x7KASCTCqlUbYGBgkO6YGa3Uyoy5uTmUSiUUCoXuDoIA4OFRB8eOHRaUQabQarW4dOlPlClTFnZ2yUmp06dPoGPHzoLX7cKF8zmKYdy4SYLVVKnjX7hwHqKiIrBw4VLIZBmvajY3t0ClSlUwceKUbM+V9ue9ubk5gPSveWRk8ntlZmYu2B4XF5vnVWWUeyzfIyIiohxrWk4OI+n7D30aAMefJ2S+QwFSabS4EZ4k2ObB0j0iKmZEYglE5haZf5nm7QYUIlPTrI//AQmpjLi41IC/fwAOHdqfq5IpH5/mkMnkCAr6Cf/++3eGq6Qy3s8XtWq5Iyjop1ythnF1dUOLFgHo1q0n7O0dMhzj5uaB+Ph4wR3hVCoVzp07Aze35Cbjdnb2sLGxxblzpwX7nj59UvC4bl0vAMDbt2/h4lIj3ZexsUmOY09J1qW9C17Xrp9Cq9Vi48a16fY5cuQgnj17ik8/7aXbplAoIJW+T5Cp1WqcPHlMsF9KAk2pFK5YdnJyzjD+w4cP4PjxIxgxYizKl3fO9Bo8Pevh1auXsLW1y/D1yPr6y8PS0irdHRtPnToOAwMD1KhRU7A9JCQkV0k/yh9cKUVEREQ5ZiQVw6ecIY48fZ+IOvY0AZ9WM4FYzyuS/otKQoJK2KuCTc6JiAqvvn0H4OTJYwgK+glffjlct/3ly5fpEglisRg+Pr4wMTFFo0aNsXfvbxCJRBneDS8z/fsPxsiRw3D48P4c38VOJBJhypT0d8hLrWFDb1SvXhMzZkzB0KGBsLe3w65dPyEiIhx9+vQHkFxq1rt3XyxduhDW1jbw8qqPv/++hKtX/xUcy8mpPDp37oZZs75Dz559UKOGK1QqFYKDn+Pq1cuYO/eHHF9v9eo1IZFIcP/+XTg7v1/9VrWqC4YOHY6VK5cgPj4Obdp0gKGhIf766yKCgnaiSRMffPJJN914L6/62L//d1SoUBEWFpbYs+cXKJXCPwJZW9vA1NQMJ04cRenSZSCTyVCpUpUMV3u9fPkCixYtgItLDTg7V8StWzfTjTExMUGFChXRqlVb7N37GwIDh6Bnz95wdHRCXFwcHjy4j6SkJAwdGpjp9UskEvTtOwBLliyElZU1GjZsjNu3b2Lnzm3o1q2noMl5QkICnj9/in79BuX49aX8waQUERER5UqAs5EgKRX6ToNrb5So4yDPYq+PL+1d9ypYSGFlWDjKComIKD0nJ2f4+bXE77//ij59+sH0/6u8/vrrAv7664JgrEQiwdmzyU3AW7RojTNnTqFOHc90d2vLipdXfbi5eeCnn35E+/afpOtJ9KEkEgkWLlyKlSuXYtWqZUhMTEDVqi5YtGgFXFyq68Z17fop4uJi8dtvv2DPnl/g6VkP48dPxujRwwXHGzFiLJycymPv3t+wZcsGGBkZw8mpfLqm6NkxMjJCgwaNcOnSBQQEtBE817Nnbzg7V8CuXTswY8ZkJCWp4ORUHsOGjcAnn3QV3OFv5Mix+P77uVi8+HsYGhqidet2aNq0OebPn6UbIxaLMWnSVKxbtxIjRnwFpVKJX37Zh9Kly6SL6/r1q0hIeId79+5g6NB+Gcbu4VEHK1asg0wmw7Jlq7Fp0zps27YJERHhsLCwRNWq1QSJs8x07doDUqkUu3btxJ49v8DGxhb9+g3C55/3F4z7+++LkMvlaNiwUbbHpPwl0qZtf08IC4vVdwj5RiaTQKlU6zsMKqI4fygvOH+KL61Wi8BTkXjyVqXb5l1Wjkn1LfP1PLmdQ+POReJWqvK9TyobY5CbWb7GREUHvwdRXhTl+aN99hCa6V9/8P7iqcsgKl85HyMqeQrT/Dl//hymT5+M/fuP5bjBe0k0efJ4GBsbY9KkqfoOBUDhmkN5YWeX/ecw9pQiIiKiXBGJRGjlbCTYdumVAm8VGj1FBCSoNLgXwX5SREQwNQcyKJnKEQOD5P2p2GjcuAkcHZ2wf//v+g6l0Hr16iUuXjyPL74YoO9QSiSW7xEREVGuNXM0xMabsVD+Pw+l0gInnyegc5WcN2DNT7fCk5C6nZREBLjafuAvZURERZjIxh7iOeuBuJjsB6dlag6RjX3+B0V6IxKJMHbsRDx8+EDfoRRaYWFhGDfuW5QtW07foZRITEoRERFRrpnJxGhc1hCngxN12448ScAnlY3T3ZK5IKTtJ+VibQAjKReEE1HJJLKxB5hcov+rXr0mqlevmf3AEsrd3QPu7h76DqPE4qc1IiIi+iBpS/hexKlxO00JXUG5HiZMStVm6R4RERFRocekFBEREX0QV1sDlDUV3rnoaKq78hWU6EQNHqdqug4A7kxKERERERV6TEoRERHRBxGJRAhIs1rq/MtExCkLtuF52lVSRlIRqlmxnxQRERFRYcekFBEREX0wPydDSFK1kFKogTOp+kwVhKtvFILHtWwNIBUXfF8rIiIiIsodJqWIiIjog1kZStCgtFyw7cjTBGi12kz2yF9arRbX0qyU8rCXZzKaiIiIiAoTJqWIiIgoT9KW8D1+q8KDaFUmo/PX63g13rwTlgt62LGfFBEREVFRwKQUERER5UltBxnsjIQfKQqq4fnVN8JVUlZyMcqbSzIZTURUsv2b+Aj9Xy3Hv4mPCvS8Gzeuhbe3J7y9PdGkiRcCAnzw+eefYtGi+Xj69Em68V27tseiRfNzfPxz587gt99+Sbd99uxp6NOnu+7xoUP74e3tiejoaABASMgreHt74vTpE7m/qAz07dsLs2dPy3LM7NnT4O3ticGD+6Z7TqvVonPntvD29sTGjWvzJaaJE0cjMHBwrvfz9vbEzp3bsx0XFRWJFi2a4vHjh7ptXbu2173fPj710bVre8yaNRWhoa8F+yYlJWHVqqUYNmwQ/P29Be9NdlLeu5QvX9/G6Ny5LSZOHI1Tp06kW7G9ceNatGjRJEfHTjn+xo1rER4eJth+5cpleHt74t69O7ptaV+rwMDBGDduhO7x1q0bMWLEVzk+d0kj1XcAREREVLRJ/t/w/Me78bptZ4ITMbCWKYykH/fvX+lL92QQidhPiogoLa1Wi03RJ/BcFY5N0SdQx6FigX6/lMvlWLp0DQAgISEejx49xL59e7B//++YMGEKAgLa6MbOmfM9zMzMc3zsP/44g3v37qBz526C7X37DkRCQsHfFTY7RkbGuHPnFl69eokyZcrqtl+/fhWRkRGQyYrOit+tWzehdu26qFixsmB7s2Z+6NGjN9RqFe7evY2NG9fhwYP72LjxR0ilyWmIxMRE7Nv3O6pXrwE3t9r4+++LuT7/kCHDULu2J1SqJISGvsYff5zBd99NgLd3U8yatUB3rvbtO6FRI+8cHzck5BU2b16Pxo2bwNbWTre9WjUXrFmzGeXLV8jxsTp37o6dO7fhypXLqFPHM8f7lRRcKUVERER51qK8keBDRYJKiz9eKDIdnx80Wm26O++5s3SPiChDlxMf4b7yFQDgvvIVLhfwaimxWAxX11pwda0FL68G6NGjNzZv3gk3Nw/MmzcTL1++0I2tWtUFpUuXyfM5y5Yth8qVq+T5OPmtVKlSqFy5Kk6ePCbYfuLEUdSr17DIJKXevXuHgwf3om3bDumes7a2hqtrLbi710aPHr3Rp09fPHr0ULDCyMzMDIcPn8LixSvh79/yg2IoV84Rrq614OFRBwEBbTBr1gKMHTsJ58+fw44dW3Xj7O0dUL16zQ86R2omJqZwda0FIyOj7Af/n5mZGXx8fPHLLz/l+fzFEZNSRERElGd2xhLUdRB+iP7YJXyPo1WIVQqX53vYF40P8kREBUmr1WLL25MQI3lllBgibHl7ssBuSpEZuVyOESPGIikpCQcO7NVtT1u+9/jxI4wZ8zXatPGDn19j9OzZWZdwmD17Gg4fPoAnTx7rSrlSSujSlu/l1KFD+/HFFz3g69sInTq1xtq1K6FWqwVjbt68jv79e8PXtxH69OmOixf/zNU5/P1b4sSJo7rHKpUKZ86cRIsWARmOP3v2FPr27QVf30bo2LEVli9fBIVC+Mefp0+fIDBwMHx9G6F79444fPhAhsd6+vQJJkwYhYAAH/j7e2Ps2G8EScGcOnPmJACgQYNG2Y6tUqUaAKQr4fsYq/U6duyM6tVrCEo605bvqVQqrFy5FJ07t0Xz5g3RsWMAxo0bibi4OFy5chlffz0UADBw4Oe6eQVkXL6XE82b++PChfM5Lk8sSVi+R0RERPkiwNkI/4S+X7l0NzIJz2JUKG/+cT5uXE2zSqqsqQT2xuwnRUTFm1qrQawmd0n/a4lPdKukAEADLe4rX+Hsu9vwMMx5GRIAmImNIBHl39qGChUqws7OHrdu3ch0zPjxo2BtbY0JE6bA1NQUL14EIyzsDYDkEr3o6Cg8e/YU3303CwBgZWX1wfHs2vUjVq9eju7deyEwcASePn2KdetWQaPR4MsvhwMAIiLCMWrUcFSqVBkzZsxFbGwsfvhhHhITE1ClStUcncffPwBr167EkyePUaFCRfzzzyUoFAp4e/vghx/mCcaeP38WkyePh59fSwwdGojnz59i7dqVCA19jVmzFgAAFAoFRo0KhKGhISZPngEA2LhxDeLj41GunKPuWC9fvsDQof1RsWIlTJo0DWKxCNu2bcI333yJnTt352qV1uXLf6NqVRfI5dnf9TY0NAQA8mUFXE54eTXAtm2b8Pp1CEqVKp3u+e3bN+P333fjyy+Ho0KFinj7Nhp//30JSUlKVKvmglGjxmPRovmYNGkqnJyc8xyPq6sbNBoNrl69jObN/fN8vOKESSkiIiLKF/VKy2ElFyNK8f5ueEefJmCwm9lHOd/1N+n7SRERFWdn393G8siDiNbEZz84B2ZFpG8Onh1LsQmGW7eFj3HeS6FS2Ns7IDIyIsPnoqOjERLyEt98Mxre3k0BQNCXp2zZcrC0tMLr1yFwda2VpzjevYvHxo3r0KvX5xgyZBiA5OSGgYEUy5cvRq9efWBhYYmgoJ8gEomwcOEymJqa6q7hm2++zPG5SpUqDVfXWjhx4igGDfoSJ04cRePGTTMsC9u0aR1q1qyFadNmA0hemSSXG+L77+fg0aOHqFSpMg4f3o/w8DDs2PErHB2dAABVq1ZDr15dBEmpzZvXw9zcHIsXr9Qlk1xd3dG9e0ccOLA3XV+urNy9exteXvUzfE6rTV6NpFarcO/eXWzbthkNGzZGjRquOT5+XtjbOwAAIiIiMkxK3b17G/Xq1Rdcb7Nmfrr/d3ZOTtZWrFgJLi418hyPmZkZHBxK4c6d20xKpcHyPSIiIsoXUrEI/uUNBdtOPk+AUp3/5SFKtRa3I9IkpdhPioiKuUUR+/ItIfWhojXxWBSxL1+PqdVqMy3jsrCwQKlSpbF27QocPnwAb96E5uu5U7t58wYSEt6heXM/qFQq3ZenZ30oFAo8fpzch+vOnVuoU6euLiEFAHXresHc3CJX5/P3D8DJk8egUCTijz/Owd8/feneu3fv8ODBf2jWzFew3c8vuQfTjRvX/h/TbVSoUEmXkAKS+y2l7an1zz+X4O3dFBKJRHd9ZmZmqFq1Wq5L0iIiImBpmfGqtD17fkGzZg3g5+eNYcMGQS6X65JquaHVagXvhUajyX6n5D0BAJlVB1at6oKLFy9g48a1uHv3di6O++EsLCwRERH+0c9T1HClFBEREeWbAGcj/PLfO93jWKUWF18p4ONomMVeuXc3MgmKVO09RADcmJQiIiqSwsLeCJIpqYlEIixatALr1q3CokXzkZCQgGrVqmP48JHw8KiTr3G8fRsNAOjfv3eGz6ckxCIiwgWrj1LktmyweXN/LFu2CBs2rIVUKs2wN1NcXCy0Wi2srW0E201NTSGTyRAT8xYAEB4enuH5raxsoFAk6h5HR0cjKOgnBAWlb7otlRrkKn6lUgEDg4x/9vr6tkCvXn2gUChx6dKf2L59MxYsmIPp0+fk6hyHDx/AnDnTdY9bt26Hb7+dlu1+b94kl3daW9tm+Pznn/eHSCTCkSMHsXnzelhaWqFz527o12/QR7srpUxmIHgvKBmTUkRERJRvyphK4WZngBthSbptR54m5HtS6lqa0r0qVlKYybgAnIiKt1E2HfK1fO9DpJTv5ZfHjx8hLOwNWrdul+kYJ6fymDVrPlQqFW7evI5161Zi/PiR2LPnMIyNjfMtFjMzcwDA7Nnfw8HBId3zKf2QbGxsERUVme75qKioXJ3P2toGdep44uefd6Bt246QStP/em5qagaRSJTufHFxcVAqlbrVWba2trh//14GMUXA2NhE99jc3AINGzbOsEwvt6+lubkF4uJiM3zO0tJSV/bm7u6BhIR3+PXXn9G9ey/UrJnzEr7GjZtgw4ZtuscWFpY52u/vvy/Bzs4epUqVyvB5mUyGAQOGYMCAIXjxIhgHD+7Dpk3rUKZMWbRqlX/zO7XY2Dg4O1f6KMcuypiUIiIionwV4GwkSEpdD1MiJE6F0qb597EjbVKKpXtEVBL4GNeEt1H1HDU612q1mBC2HU+SQqFB5mXUYohQwcAB8+z65GiFSH42OlcoFFiy5HvIZDK0b98p2/FSqRS1a9fFZ5/1xYQJoxAeHgYnp/KQSg2gVCqz3T87rq5uMDQ0RFhYKHx8mmc6rnr1mvj9992Ii4vTlfD9++8/ulVLudG1aw8YGhqiQ4dOGT5vbGyMKlWq4syZk/j0089020+dOg4AcHPz0MV05MhBvHgRrFvF9eJFMB4+fKAbAwCenvXw5MkjVKlSDRJJ3m4O4uRUHiEhr7IfCKB//8E4fPgAtm/fhHnzFuX4HBYWljlORKXYu/c33Lt3B0OGBOZofLlyjhgyZBj27v0Nz549BQAYGCSvGlMo8j6vAECj0SA09DXatu2QL8crTpiUIiIionzVuIwh1shiEat8/0vQ0acJ6OuaPw3P45QaPIhKEmxjk3MiKikkIjEsJSbZjvsn4SEeJb3OdpwGWjxKeo2HSa/hZVQ5P0LM+DwaDW7dugkASEh4h8ePH2Lfvj149eolJk2amuld2R4+fIAVKxbDz68lypYth7i4OGzfvhmlS5dB2bLlAADOzs44dGgfjh8/AkdHJ1hYWH7QXd7MzMwwYMBQrFq1HG/evEHt2nUhkUjw6tUL/PHHOcyevQCGhobo3r0X9uz5BWPGfI3evb9AbGwsNm5cCwuL3PWUApJXAjVu3CTLMf37D8bEiWMwY8YUtGzZGs+fP8O6dSvRrJkvKlVKfs/atGmHrVs3Yty4ERg4MLnh+saNa9KV/Q0YMAQDB36OUaOGo0OHT2BtbY3IyAhcvXoF7u4eaNGiVY5jr1XLXZccy465uQW6dPkU27dvxtOnT3SNxC9e/BOJiQm6flZ//nkOxsbGcHauiAoVKmZ73BcvgnHr1k2o1SqEhr7GuXNncObMSTRt2hy9evXJdL+JE0ejWrXqqFKlGoyMjPDnn+cQGxuja6Lv6FgeEokEBw/uhUQigVQqyVPD8+fPnyEh4R3c3T0++BjFFZNSRERElK9kEhF8HY2w99H73lLHnyWidw1TSMV579NwI1yJ1O1IZWKghg2TUkREKbRaLba8PQkxRFmukkohhghb3p6Ep2Glj9ZPR6FQYOjQfgAAIyNjlC5dGnXremHOnIUoX9450/1sbGxgY2OD7ds3Izw8DCYmpnB398B3383UrfRp164j7ty5jSVLvsfbt29z3HcoIz179oadnR1+/nkHdu/+GVKpFGXLlkOjRk105XW2trZYuHAZliz5HlOmTEDZsuUwatR4rFu36oPOmR1vbx/MnDkPmzdvwMSJo2Fubo4OHT4RrASSyw2xaNEK/PDDPMycOQW2tvbo23cAzp8/i9jY9yV25co5Yv36rVi/fjUWLZqHhIQE2NjYwt29NipVqpLR6TPVrJkftm/fjODg55n2BEutR4/PsHv3z9ixY6vu/fnhh3l4/TpEN2bu3BkAgH79BmHAgCHZHnPt2pUAksvxLC2tULVqNcycOQ/NmvllOZeTE2onsGvXj1Cr1XB0LI/vvpupu5ugpaUlRo4ch507t+Ho0UNQq9U4f/5ytvFk5tKlP1GqVGlUr55/d60sLkRarTb/b4lTxIWFZVwXWxTJZBIolersBxJlgPOH8oLzp2R7+laFr04Kb+89pYEFGpbJeW+pzObQqmsxOPD4femKh70Mc7xz11yWij9+D6K8KOrz55+Eh5gYtj3X+8216/NRV0uVFEV9/uRG//690aSJD/r1G6TvUAq1gQM/R+PGTXL8OhWXOWRnl/0qeXYEJSIionznbCGFi7XwLj5HnmbfAyUnrocJ+zvUZj8pIiKdlFVSIuRuxZPo/6uluGaBcqNfv4H4/ffd+dLTq7i6du0KXr58ga5de+g7lEKJSSkiIiL6KAKcjQSP/32tRPi7vP3VL/ydGsGxwmO4s58UEZFOEtR4o3oLbQ7K9lLTQos3qhgkoeivzqCC06RJM3z66Wd48yZU36EUWvHx8Zg8eTrMzPKnt2Zxw55SRERE9FE0LSfHuhsiJKiSfzHSADj2LAG9qpt+8DGvpVklZWogQiVLfpwhIkohE0mxstQQvNXE53pfS7EJZCJ+T6XcyaqhOCHbRvYlHb/jEBER0UdhJBWjWTlDHE5VtnfsWQJ6uJhA/IGNdK++ESal3O1kkHykprxEREWVvdQC9sj9neCIiAoay/eIiIjoo0lbwvfmnSZdYimntFptun5SHizdIyIiIiqymJQiIiKij6aKlRQVLYQLs49+YMPz4Fg1IhM1gm1MShEREREVXUxKERER0UcjEonSrZa69EqB6DTJpZxIu8LKzkiMMiaSPMVHRERERPrDpBQRERF9VM0cDSFL9YlDpQVOPs/9aqlrbxSCx7XtZRCxnxQRERFRkcWkFBEREX1UZjIxvMsZCrYdfZoArTbntytXa7S4EZ4k2MbSPSIiIqKijUkpIiIi+ujSlvC9iFPjVkRSJqPT+y8qCQkqYRLL3Y5JKSIiIqKijEkpIiIi+uhcbQxQ1lTY/yk3Dc/T9pNyNpfCypD9pIiIioKNG9fC29tT9+Xr2wiffdYVO3ZshUaT+x6DlDMbN65FixZNCvSc3t6e2Llze4Ge80PFxsbC29sThw7t13coJZo0+yFEREREeZPS8HzTrTjdtvMvEjHEzQxmsuz/RnYtTJiUYukeEVHRIpfLsXTpGgCAUqnAlSuXsWbNCmg0WvTp01e/wRVT7dt3QqNG3voOgyhLXClFREREBcLfyQjSVH3JlRrgTHBitvslqrS4l6bUz4Ole0RERYpYLIaray24utZCnTqeGDhwKLy9fXDu3Cl9h5YlhSL7n1OFlb29A6pXr6nvMEqEojxP9I1JKSIiIioQloZiNCgjF2zLScPzW+FKpG4nJREBrrYGHyNEIiIqQMbGxlCpVIJtq1cvx+eff4oWLZqgU6fWmDp1EsLDwwVjbty4hmHDBiEgwActWjTF559/isOHDwjGXLhwHoMGfQFf38Zo184fCxfORUJC1mXjhw7th7e3J27duoERI76Cv783Vq5cCgB48yYUM2ZMQdu2fvD1bYxhwwbh3r27gv0PHz6AL78cAH9/H7Rq1RyBgYNx584twZg3b0IxZcoEtG/fEr6+jdCtWwcsW/aDYMy1a1cwdGh/+Po2Rtu2fpgzZzpiYt7qng8JeQVvb08cPXoIixbNR6tWzdGxYwBWrFgieD3Tlu9duXIZ3t6e+OefS5g27Vu0aNEUXbq0w44dW9O9Fr//vhtdurSDn19jjBjxFf77716OS93UajVWrVqKdu380aJFU8yePQ3v3sULxrx+HYLJk8chIMAH/v7eGDUqEI8ePRSMyagUMChoJ7y9PT/omvbt24OuXdvDz68xvvnmS7x8GZxuTMp72Lq1b6bvYcrreufOLQwZ0g++vo2we/cv6N+/N6ZPn5zumKtWLUPHjq2gVquzfe1KIpbvERERUYEJcDbC+ZcK3ePHb1V4EKVCVevMk0xpS/dcrA1gbMC/qxFRyZXVL7cikQhisThHYwFAInnfny83Yz9ESsIkpXzv7NlT6NOnn2BMVFQk+vTpB1tbO0RHR2HXrh0IDByMH38MglQqRXx8HMaNGwE3Nw9MmzYbBgYyPH36GLGxsbpjnD59AlOnTkKbNu0xYMAQRESEY82aFYiNjcH06XOzjXP69Mno0OETfP55f8jlhoiJicFXXw2EkZERRowYC1NTU/z6axC++WYodu3aAysrawDJiZZWrdqifHknJCQocOLEUQQGDsaWLT/Byak8AGDWrKkIDw/DiBFjYGVljdDQ17h//31y6969uxg5chhq166LmTPnISoqAmvWrMCTJ4+xZs0mwXuwbt0qNGnig5kz5+LmzRvYtGkdypUrh06dumZ5fd9/PxcBAW0wZ873+OOPM1i9ejkqVaqCBg0aAQDOnz+LhQvnon37TmjWzA8PHtzHd99NzPZ1S7F798+oWtUF3347Da9evcKaNSugVCp0r/27d/EYPnwIRCIRxoyZCJlMjm3bNmHYsEHYuvUnODiUyvG5cnpNf/75BxYsmI02bdrDz68l7t+/iylTJqQ7Tsp7WLZsOSQlJWX4HgJAUlISpk+fjO7de2HIkGEwN7eAsbERli9fjLi4OJiamgJI/jd19OghtG7dLs//foorJqWIiIiowNS2l8HeWIw37943tj36NCHrpNQb9pMiIkrt33//yvQ5S0srVK1aXff46tXL0GgyTjaZm1vAxeV9edeNG1eQlJTxnVFNTExRs6bbB0YMJCQkoFmzBoJtfn4t0Lt3X8G2SZOm6v5frVbD1dUNn3zSBleuXEa9eg0QHPwccXFxGDIkEJUqVQYAeHrW0+2j1WqxcuVS+Pq2wIQJU3TbbWxsMXbsN/jii4GoWLFSlrF27NhZENfGjWsRFxeL9eu36hJQdevWQ8+enfHTT9vx1VffAAD69RsEAJDJJEhMTIKXV33cvXsbhw8fwJAhwwAAd+/expAhw+Dn11J3/Nat2+n+f9u2TbC2tsGCBUsglSb/um5vXwqjRgXi4sU/4e3dVDe2Rg1XjBgxFgDg5dUAV65cxunTp7JNSjVr5osBA4boXruLF//EmTMndQmcrVs3om5dL4wfn7zqp379hlCpVNiwYU2Wx01hYCDD3LkLdUkYuVyO+fNnoX//IShf3hkHD+7H69ch2L49CM7OFQAAtWvXQZcu7RAU9BOGDx+Zo/Pk9prc3Wvr5lf9+g2hVCqxZcsGwXFS3kMA0Gg0Gb6HQHKCdfDgrwTvY+nSpbFixRIcP34En3yS/B5cvPgnIiLC0bZth1xfU0nBPzMSERFRgRGLRGhZ3kiw7cyLRCSoMr770luFBo/fCks72E+KiKjokcvl2LBhGzZs2IZVqzbgm2/G4K+/LmL+/FmCcRcv/omhQ/sjIMAHPj718cknbQAAwcHPAABlypSDiYkJFi6ci5MnjyMqKkqwf3DwM7x+HQJf3xZQqVS6r9q160AsFgtWJWUmbXPwv/++hNq1PWFmZq47nlgshodHHdy9e0c37unTJ5g4cQxatfJD06b10KxZAzx//kwXOwBUreqCn376EXv2/IoXL9KXj924cRVNmvjoElIAUK9eA5iamuHGjWuCsfXqCZN8zs4VERYWmu31eXm9308kEqF8eWe8efMGQHIi8L//7qNx46aCfZo0aZbtcVM0btxEsCqoeXM/aLVaXRnc9etXUbFiJV1CCkhOkHp61k93jTmV3TXdv38XTZsKr6FZM790x0l5D9u3b5npe5iiYUPhPDExMYWvbwscPLhPt+3Qof1wd68NR0enD7qukoArpYiIiKhAtSxvhJ1345GShkpQafHHCwVaOhulG5u2dM9IKkK1LFZVERGVBHXr1s/0OZFIJHhcu7ZnJiPTc3Or88ExZUcsFsPFpUaqc3lArVZhxYol6NHjM1SsWBl3797GhAmj0KSJD3r3/gKWltYQiUQYMqQvFIrknwfm5uZYvHglNm5ch1mzvoNarYabmwdGjhyHSpUqIzo6GgAwadKYDOMIDX2dbaxWVjaCx2/fRuP27ZvpVnoBQNmy5QAkl6SNGhUIS0tLjBgxGjY2DpDLZZg3bxaUyvc/y6ZPn4t161Zi3bpV+OGHeXByKo8hQ4bBx8cXABAbG6tbjZWatbU1YmNjBNtSSsRSGBgYCM6VGTMzs3T7pZQ/RkdHQa1Ww9LSSjDGykr4OCtpx5qYmEImkyMiIrk3WFbX+OTJoxyfJ7WcXFPac1pbCx+nfg+HDx8JB4fSGb6HAGBoaAhjY+N0cXTo8AmGDu2Phw8fwMbGFhcu/IFx4779oGsqKZiUIiIiogJlayxB3VIy/PP6/Qe8I08TMk5KpSndc7U1gFQsSjeOiKgkyU1vmo81Nj+UL5+8UubJk8eoWLEyzp07A1NTU8yYMU/XF+v165B0+9Wo4YofflgGhSIRV65cxsqVSzFx4mgEBe2FubkFAGDkyHGoWdM13b62tnbZxpU2sWdmZo769Rth0KCh6cYaGCSv3r116ybevAnF/PmLUbNmdSiVySWT8fFxAOxTnd8WkyZNhUajwf37d7F160Z8991E7Ny5G2XLloOZmXm61V8AEBkZCTMz82xjzytLSytIJBJERwtjyCimzKQdGx8fB6VSARsbWwDJicXnz9OvPEp7jTKZDCqVsJw0de+wnEq5pqioyHTnSy31e1ilSlVB/KnfQyD9HEnh6uqGChUq4uDBfXBwcIBMJkfz5v65jrkkYfkeERERFbiANAmoe5FJeJqmTA8ArqdJStVmPykiomIjZVWMhYUlAEChSIRUKhX8wn/s2OFM95fLDdGwoTc6deqCkJBXUCgUKF/eGfb2Dnj16iVcXGqk+8pJUiotT896ePr0McqXr5DueCl9rRSKRADJK3RS3Lx5HSEhrzI8plgsRvXqNTFo0FdQq9V4+fIFgOQVZH/8cUZwF71//rmEuLhYuLl55Dr23JJIJKhatRrOnz8r2P7HH2dyfIw///xD0DT/9OmTEIlEqF49uX+Zm5sHHj9+iOfPn+rGxMTE4PLlvwXXaGdnj2fPngiO/c8/mfdTy0zyNbng3DnhNZw5c1LwOLfvYWbat/8Ex48fxoED++Dn1wJGRun/6EbvcaUUERERFbh6peSwkosRpRA2PB/i/n75/as4FV6/EzbndWc/KSKiIkmj0eDWrZsAAJUqSbdKyNm5Ijw8kssGvbzqIyjoJyxevABNmzbHrVs3cPToIcFxLlw4jwMH9qJp02ZwcCiFyMgI/PprEGrVcodcLgcABAaOxPTp3yIxMQENG3rDyMgIr1+H4OLF8xg8eJjgLmo50aPHZzh+/AgCAwejW7cecHAohejoKNy5cxu2trb49NPPULNmLRgZGWPRovno27c/QkJeY+PGtbCze7/CJi4uDqNGBSIgoA2cnMpDpUrCr78GwdTUDFWrugAAPv+8P778sj/GjRuJrl0/RWRk8t33qleviYYNG3/w658bX3wxABMmjMb8+bPQvLk//vvvHg4fPgAg8xVCqSUlKTFx4hh88klXhIS8wurVy9GsmZ+uh1Tbtu0RFLQTY8eOwKBBX+ruvieRSNC9e0/dcZo188Mvv/wEF5eacHIqj2PHDiEs7M0HXlN/TJgwGnPmTNfdfS/t3Er9Hvbu3RdhYW/SvYc50apVG6xZsxzR0dGCZvuUMSaliIiIqMBJxSK0KG+IoP/e6badCk5AP1dTyCTJH3ivvFYI9rGUi+Fszo8uRERFkUKhwNCh/QAkr1yxty+Fli3boH//Qbqm3g0beuPLL4dj9+4gHDq0H7VquWPBgiXo2bOz7jjlypWDWCzCunWrEB0dBXNzC9Sr10BwZzRfX3+YmZli69ZNupVWpUqVRv36jWBtLewXlRMWFpZYu3Yz1q9fjdWrlyMm5i2srKxRo4arrnm2tbUNZs6ch5Url2Ds2JEoV84JY8dOwo4dW3XHkclkqFSpMnbv/hmhoa8hlxvCxaU6Fi9eAUtLSwCAi0t1LFq0AmvXrsTkyeNgaGgEb++mCAwcUWDlld7ePhgzZgK2bduMo0cPo0aNmhgzZgJGjgxM18cqI126fIro6CjMnPkdkpKS0LRpM4waNU73vLGxCZYvX4vlyxdhwYI50GjUqFXLHStXroeDQynduL59ByIqKhKbN6+HWCxChw6d0a1bNaxYseQDr2kitm3bhBMnjqFGjZqYPn0OBg/uqxuT+j2cMGE0HB3Tv4c5YW5uAQ+POnjz5g1cXWvlOtaSRqTVarX6DqKwCQvLfZ1qYSWTSXT1zES5xflDecH5Q9kJiVNhwLEIwbZxXuZo5pi8zH3eP29xLjhR91wzR0OM87Io0Bip6OL3IMoLzh/Ki+I4fw4c+B3z5s3CL7/sQ+nSZfQdTqEWHx+HTp3aoH//wejZs/cHHaO4zCE7O7Nsx/DPjURERKQXpU2lcLeT4XqYsOF5M0cjaLRaXAsV9pPyYOkeERHRRxcT8xabNq1H3bqeMDY2wd27t7Ft22Y0aeLDhFQW3r2Lx5MnT7Bnzy8QiURo27a9vkMqEpiUIiIiIr0JcDYUJKVuhCXhVZwKCSotYpQawVgPNjknIiL66KRSKV69eoETJ44gNjYWlpZWCAhogy+/HK7v0Aq1e/fu4uuvh8Le3gHffjtNdydIyhqTUkRERKQ3jcoYwkwWi1jl+24CR58mwEwmvEFwGVMJ7I0L9lblREREJZGxsQkWLFii7zCKnDp1PHH+/GV9h1HkiLMfQkRERPRxyCQi+DkJb5V8/GkCLoUkCrbVZukeERERUbHDpBQRERHpVYCzMCkVrdTiToRKsE2p0SIuTTkfERERERVtTEoRERGRXpU3l8LRNOvSvBPPEvH54XD8G6oooKiIiIiI6GNjUoqIiIj06t9QBV7EZX3bYy0AhVqLqReimZgiIiIiKiaYlCIiIiK9iVNqMPvS2xyN1QLQaoHZl96ylI+IiIioGGBSioiIiPTmxPNEKNRaaLMfCuD9iqmTzxOzHUtEREREhRuTUkRERKQXWq0W+x+9y3FCKrV9j95Bq/2QPYmIqKBt3LgW3t6e8Pb2RJMmXggI8MHnn3+KRYvm4+nTJ+nGd+3aHosWzc/x8c+dO4Pffvsl3fbZs6ehT5/uuseHDu2Ht7cnoqOjAQAhIa/g7e2J06dP5Op6rly5jG3bNqXbvnHjWrRo0SRXx8qLtNdT2AUF7YS3t6e+wyjW0s75okCq7wCIiIioZIpRahESn3UvqYxoAYTEqxGr1MJcLsr/wIiICjmlWgmVRpX9wI9AKpZCJpHlej+5XI6lS9cAABIS4vHo0UPs27cH+/f/jgkTpiAgoI1u7Jw538PMzDzHx/7jjzO4d+8OOnfuJtjet+9AJCQk5DrW7Fy9+i927foRn3/eX7C9fftOaNTIO9/PR5RTH2vOf0xMShEREZFeJKryttIpQaWFuTyfgiEiKiKUaiWuhv6LeFWcXs5vIjVFbYe6uU5MicViuLrW0j328mqATz7phnHjRmDevJlwdXVD2bLlAABVq7rkS6wpxyso9vYOsLd3KNBzlkRKpRJSqRRiMQu/0iroOZ8f+C4SERGRXhhK87bKySiP+xMRFUUqjQrxqjgYiGUwkZoW6JeBWIZ4VVy+rdKSy+UYMWIskpKScODAXt32tOV7jx8/wpgxX6NNGz/4+TVGz56dsWPHVgDJ5UqHDx/AkyePdSWCs2dP0z2X21Kmw4cP4MsvB6B1a1+0atUcgYGDcefOLd3zGzeuxebN65GQkKA7X2DgYN1zacv3Xr8OweTJ4xAQ4AN/f2+MGhWIR48eCsakXO/u3UHo0qUdAgJ8MHHiaERFReUo5hcvgvH110Ph59cYXbu2F7yWKc6ePYW+fXvB17cROnZsheXLF0GheH8328xKAfv27aV7PYH3r+mVK5fRr18v+Pt7Y9Cgz3Hv3l3BfvHxcZg58zu0aNEU7dr5Y9WqpVCphKujExISsGjRfPTs2VkX+/ffz0FcnDDhmvL67NixFV26tIOfX2PcvHkd3t6e+OefS4KxarUanTq1xqpVS7N8zW7duoGvvx4Kf39vBAT4YNq0bxEVFal7fuLE0ejWrSPevYvXbTtx4ii8vT1x6dIFwWt269bNLF//W7duYPz4kejYsRX8/b3Rt28vHDlyUDDmypXLuuuZNu1bNGvWGF26tNPN8xRZ/VtI/f6k9ujRQ4waFai71smTx+H169eCMd7entixYys2blyL9u1bom1bP8yZM71AVl1xpRQRERHphblMhNImEryOV+eqr5QIQCkTCcxkTEoRUcklE8tgKDUs2JOqgCSNMl8PWaFCRdjZ2ePWrRuZjhk/fhSsra0xYcIUmJqa4sWLYISFvQGQXK4UHR2FZ8+e4rvvZgEArKysPjie169D0KpVW5QtWw5JSUk4ceIoAgMHY8uWn+DkVB7t23dCWNgbHD9+RFeOaGJikuGx3r2Lx/DhQyASiTBmzETIZHJs27YJw4YNwtatP8HBoZRu7Pnz5/DiRTBGjRqPt2+jsWzZIixZsgDTp8/NNuZp0yahY8fO+OyzL3Dy5DHMmzcTtrZ2aNCg0f+PfRaTJ4+Hn19LDB0aiOfPn2Lt2pUIDX2NWbMW5Po1ioyMwNKlC/HZZ31hamqKtWtXYNKkMQgK2gupNDnFMHfuDPz11yUMHRqIMmXKYM+eX/HgwVHBcRITE6HRaDB48FewtLTCmzeh2LZtEyZOHI3ly9cKxp49ewrlyjnhm2/GQCwWw8WlOmrUcMWBA/vg5dVAN+6vvy4iPDwMbdt2zDT+W7duYPjwIWjQoDGmT5+LxMQErF+/GhMmjMbatZsBAOPGfYs+fT7F0qU/YOLE7xAeHoYffpiPTp266F7XnL7+r1+HoFYtd3Tq1AUymRw3b17HvHkzodVq0bp1O8Gxvv9+LgIC2mDBgh9w6tQprF69HJUqVdEdK6t/CxkJDX2NYcMGoWzZcpgyZSaUSgXWrVuN4cMHY+vWn2Bs/H7u7t4dBHf32vj222kIDn6OVauWwsrKGl9+OTzT4+cHJqWIiIhIL0QiEdpXMsb6G7G53rdDJWOIRExKEREVB/b2DoiMjMjwuejoaISEvMQ334yGt3dTAECdOu+bZZctWw6WllZ4/TpEUB74ofr1G6T7f41GAy+v+rh79zYOHz6AIUOGwd7eAXZ29unKETNy8OB+vH4dgu3bg+DsXAEAULt2HXTp0g5BQT9h+PCRgvHz5i2CTJZcFhkS8grbt2+GRqPJtkytVau26NOnHwCgfv2GePXqJTZvXq9LZGzatA41a9bCtGmzAQANGjSCXG6I77+fg0ePHqJSpcq5eIWAmJgYLF++DhUrVgIAGBoa4uuvh+L27Vtwd/fAkyePcfbsaYwfPxnt2iUnh+rVa4gePToLjmNlZYUxYybqHqtUKpQuXQZffTUQz58/g5NTecFzCxcug5GRkW5bhw6dsGjR94iJiYG5eXIPsoMH96JWLTeUL++cafxr1qyAi0t1zJnzve6zRMWKlfH555/i4sXzaNjQG1ZW1hg7dhK+/XYsvL2b4vfff4OFhQWGDRuR7njZvf7+/gG6sVqtFu7utfHmTSj27v0tXVKqWTNfDBgwBDKZBO7unrh48U+cOXMSDRo0yvbfQkaCgnZCrVZh8eIVMDe3AJBcHtu7dzccOrQfXbv20I21sbHF1KnJid0GDRrhv//u4cyZkx89KcXyPSIiItIbfydDyCUi5DS9JAIgl4jg51TAqwOIiOij0Wq1mf6hwcLCAqVKlcbatStw+PABvHkT+lFjefr0CSZOHIP27VuiadN6aNasAZ4/f4bg4Ge5Ptb161dRsWIlXUIKAMzNLeDpWR83blwTjPXwqKNLSAGAs3NFqFQqQUlZZpo2bSZ47OPji/v370KtVuPdu3d48OA/NGvmKxjj59cSANLFkRO2tna6hBSQvNoNAMLCkt+be/fuQKvVomnT5roxEokETZv6pDvWkSMH0a9fL7Ro0QTNmjXAV18NBAAEBz8XjKtdu64gIZV8DQGQSqU4fvwIgOQE5p9//pHlKqnExETcvHkdzZv7Q61WQ6VSQaVSwdHRCfb2Drh7945urI9Pc7Rq1RZTp07C5ct/YfLk6eliALJ+/YHkJN6SJd+jS5d2aNasAZo1a4B9+/ZkOKdSr/oSiUQoX94Zb94kr4T6kH8L169fQ506nrqEFACUL++MypWr4MaN62nOXV/w2Nm5QparsPILV0oRERGR3pjKxPi2gQWmXogGtMiyjE8EQCQCJjewgKmMf1cjIiouwsLewNHRKcPnRCIRFi1agXXrVmHRovlISEhAtWrVMXz4SHh41MnXON69i8eoUYGwtLTE8OEj4eBQGnK5DPPmzYJSmfuyxdjYWFhZWafbbm1tjSdPHgm2mZqaCh4bGBgAQI7Om/Yc1tbWUKlUePs2GiqVClqtFtbWNunOJ5PJEBPzNkfXklWsUqkw1vDwcEilUt3qpcziPHv2NGbNmooOHT7B4MFfwdzcEhER4Zg0aQyUSkWafYXxA4CRkRH8/Vvi4MG96NKlO44dOwQDAxl8fVtkGntsbAzUajWWLVuEZcsWpXs+baKnRYtWOHLkIKpXrwFXV7cMj5nV629tbYM5c6bh1q0b6Nt3ICpUqAQTExPs2fMrTp06nu5YZmZmgscGBgaIjU1eUf4h/xZiY2NQpUrVDGK2Sffem5qmP/eHzPvcYlKKiIiI9KqugxzTG1li9qW3UKiT01Kpk1MpfzuXS0SY3MACdRx4yz0iouLi8eNHCAt7k66MKTUnp/KYNWs+VCoVbt68jnXrVmL8+JHYs+cwjI2N8y2WW7du4s2bUMyfv1jwi3x8fBwA+1wfz9zcHM+fp18NExkZCTMz8wz2+DBRUZGws3sfX2RkJKRSKSwsLKFQKCASidKtuIqLi4NSqdStoElZpaVSJQnGxcbG5DoeW1tbqFQqQVldSpypnT59AlWqVMW4cd/qtl29+m+Gx8ysYr9Dh0+wb98ePHjwHw4e3A9fX/8s54SpqRlEIhH69OmXboUTAFhYWOr+P6URe+XKVXHv3l0cPLgPbdt2SLdPdq//hQvnERg4UlAqp9V+2B2Ic/tvwdzcPMPVdlFREXB0LJ9uuz7wz4xERESkd3Ud5NjW2haD3cxQykQieK6UiQSD3cywvY0tE1JERMWIQqHAkiXfQyaToX37TtmOl0qlqF27Lj77rC/i4+MRHh72/+35s6JDoUgE8H6VEgDcvHkdISGvBONyuoLEzc0Djx8/xPPnT3XbYmJicPny33Bz88hzvCnOnTsjeHz27ClUq1YdEokExsbGqFKlKs6cOSkYk7JKJyUOOzsHAMnliymePn3yQeWSLi41/h/Xad02tVqNc+fOCsYpFArdKqsUx44dyfW5qlSpiqVLF+LRowcZJo1SMzIygqtrLTx79gQuLjXSfZUuXUY3dsWKxYiNjcXChcvQrVsPLFv2Q7q71iVf5xnB49Svf1JSEjQajWBOvXsXj/Pnz+XqOtPK7N9CWm5uHvj3338QE/M+ufj8+VM8evQQbm7ueYohv3ClFBERERUKpjIxOlY2RodKRohVaqESiSDVamEmE7GpORFREafRaHDr1k0AQELCOzx+/BD79u3Bq1cvMWnSVEEyILWHDx9gxYrF8PNribJlyyEuLg7bt29G6dJlULZsOQCAs7MzDh3ah+PHj8DR0QkWFpaZHi8rNWvWgpGRMRYtmo/evfsiLOwNNm5cK1gFAwDly1eAWq1GUNBPqFXLDSYmJnByck53vLZt2yMoaCfGjh2BQYO+1N19TyKRoHv3nrmOLzNHjhyEXC5H1aouOHnyGK5du4Lvv1+ie75//8GYOHEMZsyYgpYtW+P582dYt24lmjXz1TU5r1nTFfb2Dli+fBGGDAlEfHwcfvxxKywsLDI5a+YqVKiIpk2bY9myRVAqlShdujT27Pk13SosL6/6WLRoPrZs2YCaNWvh0qU/8e+/f+f6fO3bf4JFi+bDyal8jpJ9X331Db755kt8991E+Pm1hJmZGcLC3uCff/5CmzbtUaeOJy5duoC9e3/D9OlzYGtriyFDAvHXXxcxZ840LF26WvC5JKvX39TUFNWr18CPP26BpaUlJBIpfvxxC0xMTBEdnX2/sNRy8m8hre7de+Hgwf0YNSoQn3/eH0qlAuvXr4aDQym0adM+V+f/WJiUIiIiokJFJBLBXC6CTCaBUqnWdzhERIWSUqMEVHo45wdSKBQYOjT5DmVGRsYoXbo06tb1wpw5C7O8U5qNjQ1sbGywfftmhIeHwcTEFO7uHvjuu5mQSJJX1rZr1xF37tzGkiXf4+3bt2jduh2+/XZarmO0trbBzJnzsHLlEkyYMBqOjk4YO3YSduzYKhjXuHETfPJJN/z44xZERUXC3b02VqxYl+54xsYmWL58LZYvX4QFC+ZAo1GjVi13rFy5Hg4OpXIdX2amTZuNNWtWYPPmDbCyssK4cd+iYUNv3fPe3j6YOXMeNm/egIkTR8Pc3BwdOnyCIUMCdWOkUinmzFmIH36YiylTxqNcOUcMHz4KK1Ys+aCYJk78DosXL8Dq1csgk8nQqlU7eHjUxapVS3VjOnbsjFevXuLXX3/Gzp3bUa9eA0ydOhtDhvTN1bmaNm2ORYvmZ7tKKkWtWu5YtWoDNm5ci7lzpyMpKQl2dg7w9PRCuXKOiIl5i3nzZsLPr6WuIbxcLseUKTMwZEg//PLLT+jevZfueNm9/lOnzsb338/B7NnTYG5uga5deyAh4R127foxV9eZk38LaTk4lMKKFeuwcuUSzJgxGWKxBF5e9TB8+CgYG5vk6vwfi0j7ocWMxVhYWO5vTV1Y8QM95QXnD+UF5w/lFecQ5QXnD+VFYZ4/SrUSV0P/RbwqTi/nN5GaorZDXcgksuwHl1CFef4URwcO7MX338/Bb78dhI2NbYGd99Ch/ZgzZzoOHDgBS0vLfD12cZlDdnZm2Y7hSikiIiIiIqIiQiaRobZDXag0BbxM6v+kYikTUlQohIS8wosXz7F160b4+bUs0IQU5R8mpYiIiIiIiIoQmUTGxBCVeJs2rcPx40fg6uqGwMAR+g6HPhDL9zLA8j2iZJw/lBecP5RXnEOUF5w/lBecP5QXnD+UV8VlDuWkfE9cAHEQEREREREREREJMClFREREREREREQFjkkpIiIiIiIiIiIqcIUyKbVjxw74+vqiVq1a6NatG27cuJHp2KSkJKxYsQL+/v6oVasWOnTogHPnzmU6ft26dahWrRpmz579MUInIiIiIiIiIqIcKHRJqUOHDmHu3LkYNmwY9uzZAxcXFwwYMAAREREZjl+yZAl+/vlnTJkyBYcOHUKPHj0QGBiIO3fupBt748YN7Nq1C9WqVfvYl0FERERERERERFkodEmpzZs3o3v37ujSpQsqV66M6dOnw9DQELt3785w/N69ezF06FD4+PjA0dERvXr1go+PDzZt2iQYFx8fj7Fjx2LWrFmwsLAoiEshIiIiIiIiIqJMFKqklFKpxO3bt9GoUSPdNrFYjEaNGuHq1asZ7pOUlASZTCbYJpfLceXKFcG2GTNmwMfHR3BsIiIiIiIiIiLSD6m+A0gtKioKarUaNjY2gu02NjZ4/Phxhvt4e3tjy5Yt8PLygpOTEy5evIjjx49DrVbrxhw8eBB37tzBr7/+mqM4DAwkEIk+/DoKE6lUou8QqAjj/KG84PyhvOIcorzg/KG84PyhvOD8obwqSXOoUCWlPsS3336LyZMno3Xr1hCJRHB0dETnzp115X4hISGYPXs2Nm3aBLlcnqNjJiWpsx9UhCiVxet6qGBx/lBecP5QXnEOUV5w/lBecP5QXnD+UF6VlDlUqJJSVlZWkEgk6ZqaR0REwNbWNsN9rK2tsWrVKigUCkRHR8Pe3h4LFy6Eo6MjAOD27duIiIhA586ddfuo1Wr8888/2LFjB27evAmJpORkIYmIiIiIiIiICoNClZSSyWSoWbMmLl68CH9/fwCARqPBxYsX0bt37yz3lcvlcHBwQFJSEo4dO4bWrVsDABo0aID9+/cLxk6cOBEVK1bEoEGDmJAiIiIiIiIiItKDQpWUAoB+/fph/PjxcHV1hZubG7Zu3YqEhATdSqdx48bBwcEBo0ePBgBcv34doaGhqF69OkJDQ7F8+XJoNBoMHDgQAGBqaoqqVasKzmFsbAxLS8t024mIiIiIiIiIqGAUuqRUmzZtEBkZiUnoJw8AABWISURBVGXLliEsLAzVq1fHhg0bdOV7ISEhEIvf3zRQoVBgyZIlCA4OhrGxMXx8fLBgwQKYm5vr6xKIiIiIiIiIiCgbIq1Wq9V3EEREREREREREVLKIsx9CRERERERERESUv5iUIiIiIiIiIiKiAsekFBERERERERERFTgmpYiIiIiIiIiIqMAxKUVERERERERERAWOSakS4vTp0wgICEDLli3xyy+/6DscKmKGDRsGLy8vfP311/oOhYqYkJAQ9OnTB23atEH79u1x+PBhfYdERUhMTAw6d+6Mjh07ol27dggKCtJ3SFREJSQkoHnz5pg/f76+Q6EixtfXF+3bt0fHjh3Rp08ffYdDRUxwcLDgc9C7d+/0HRIVEY8fP0bHjh11X25ubjhx4oS+w/ooRFqtVqvvIOjjUqlUaNu2LbZt2wZTU1N07twZu3btgpWVlb5DoyLir7/+Qnx8PH7//XcsW7ZM3+FQEfLmzRtERESgevXqCAsLQ+fOnXH06FEYGxvrOzQqAtRqNZRKJYyMjPDu3Tu0a9cOu3fv5s8vyrXFixfj2bNnKF26NMaPH6/vcKgI8fX1xf79+2FiYqLvUKgI6t27N0aMGAFPT09ER0fD1NQUUqlU32FRERMfHw9fX1+cPn26WH6G5kqpEuDGjRuoXLkyHBwcYGJigqZNm+LPP//Ud1hUhNSvX58fxuiD2Nvbo3r16gAAOzs7WFlZ4e3bt3qOiooKiUQCIyMjAIBSqQQA8G9plFtPnz7F48eP0bRpU32HQkQlyIMHDyCVSuHp6QkAsLS0ZEKKPsipU6fQsGHDYpmQAgD+qygm1q5di2PHjuHx48cwNDRE7dq1MWbMGFSsWBFv3ryBg4ODbqyDgwNCQ0P1GC0VNlnNH6Ls5HT+3Lp1CxqNBqVLl9ZTpFQYZTd/YmJi0Lt3bzx79gzjxo2DtbW1niOmwia7OTR//nyMGzcOV69e1XOkVBjl5GdYnz59IBKJ8MUXX6BDhw56jJYKm6zmz7Nnz2BsbIyhQ4ciNDQUAQEBGDp0qL5DpkIkp5+hDx8+jE6dOuknyALAlVLFxN9//43PPvsMQUFB2Lx5M1QqFQYMGMC6ZcoRzh/Ki5zMn+joaIwfPx4zZszQY6RUGGU3f8zNzbFv3z6cPHkS+/fvR3h4uJ4jpsImqzl04sQJODs7o0KFCvoOkwqp7L4H/fTTT/jtt9+wevVqrF27Fvfu3dNzxFSYZDV/VCoV/v33X0ydOhU///wz/vzzT1arkEBOPkPHxcXh6tWr8PHx0WOkHxd7ShVTkZGRaNiwIX788UdIJBJs3LgRK1euBADMnj0bbm5uaN++vZ6jpMIq9fzx8vICkNxXaseOHewpRdlKO3+USiX69euHbt26Feu/8lD+yOj7T4pp06ahQYMGaNWqlZ6io6Ig9Rw6d+4c9u3bB4lEgvj4eKhUKvTr1w+BgYH6DpMKqay+B82fPx9VqlRB586d9RQdFXap549UKsWKFSuwceNGAMCGDRsAAAMHDtRniFSIZfT95/fff8f58+excOFCPUf38XClVDEVGxsLALCwsICbmxsePHiA0NBQxMfH49y5c/D29tZzhFSYpZ4/RLmVev5otVpMmDABDRo0YEKKciT1/AkPD0dcXJxu++XLl7nihbKVeg6NHj0aZ8+exalTpzB+/Hh0796dCSnKUur58+7dO933oPj4ePz111+oXLmyPsOjQi71/KlVqxYiIiLw9u1baDQaXL58GZUqVdJzhFSYZfQ72JEjR9CmTRt9hVQg2FOqGNJoNJgzZw7q1KmDqlWrAgDGjx+Pzz//HBqNBgMHDuSdiyhTGc2fvn374t69e0hISEDTpk2xdOlS1K5dW8+RUmGUdv5cvnwZhw4dQrVq1XS3sV2wYAGqVaum50ipMEo7f27cuIEpU6ZAq9VCq9Wid+/enDuUpYx+hhHlVNr5ExwcjGHDhume69atG9zc3PQcJRVWGX3/GTlyJHr37g2tVovGjRujefPmeo6SCquM5k9sbCxu3LhR7CtVWL5XDE2dOhV//PEHdu7ciVKlSuk7HCpiOH8oLzh/KC84fyivOIcoLzh/KC84fygvSvL84UqpYmbGjBk4c+YMfvzxxxI3mSnvOH8oLzh/KC84fyivOIcoLzh/KC84fygvSvr8YVKqmNBqtZg5cyaOHz+O7du3w9HRUd8hURHC+UN5wflDecH5Q3nFOUR5wflDecH5Q3nB+ZOMSaliYvr06Thw4ABWrVoFExMThIWFAQDMzMxgaGio5+iosOP8obzg/KG84PyhvOIcorzg/KG84PyhvOD8ScaeUsVEZo1f586dy9vWUrY4fygvOH8oLzh/KK84hygvOH8oLzh/KC84f5IxKUVERERERERERAVOrO8AiIiIiIiIiIio5GFSioiIiIiIiIiIChyTUkREREREREREVOCYlCIiIiIiIiIiogLHpBQRERERERERERU4JqWIiIiIiIiIiKjAMSlFREREREREREQFjkkpIiIiIiIiIiIqcExKERERERERERFRgWNSioiIiLL022+/oVq1avjrr7/ydJyIiAjUrVsXQUFB+RRZwahWrRomTJig7zA+SEJCAmbNmoVmzZqhevXq8PX11XdIH93y5ctRrVo1vHjx4qOdIzExEd7e3lixYsVHOwcREVFJINV3AERERFQyLFmyBNbW1ujcubO+Qykx1q9fj+3bt6N///6oVq0aTE1N9R1SsWBoaIjBgwdj8eLF6N69O+zt7fUdEhERUZHElVJERET00b1+/Rq7d+9G7969IZXyb2IF5cKFC6hatSrGjx+PTp06wd/fX98hFRtdu3YFAGzevFnPkRARERVdTEoRERHRR7dr1y6IRCK0a9dO36EUamq1GgkJCfl2vLCwMFhaWubb8eg9Y2NjtGzZEnv27IFSqdR3OEREREUSk1JERET0QVavXo1q1aph5syZ0Gg0WY49cuQIXF1dYWNjI9j+119/oVq1avjtt9+we/dutG3bFq6urmjevDnWr1+f7jiZ9XfKqO9VSm+hhw8fYvbs2fD29oa7uzu++OILPH78GABw7NgxfPLJJ3Bzc4Ovry9+/vnnTK/hwoUL6N69O9zd3dG4cWPMmjUL8fHx6cbFxsbi+++/R4sWLeDq6ooGDRpg1KhRCA4OzjDmCxcuYOXKlfD394ebmxsOHz6c5WupUqmwbt06tGnTBrVq1UL9+vUxbNgw3L9/P92xX7x4gb///hvVqlVDtWrVsHz58iyP/fvvv6Nr167w9PSEh4cH/Pz8MHr0aERGRurG3LhxAxMmTEBAQADc3d1Ru3Zt9OjRA8ePH093vAkTJqBatWqIiorChAkTUL9+fdSuXRtfffUVwsLCAAA///wzWrdujVq1aqFVq1Y4ceKE4BgvXrzQxX7gwAG0b98etWrVQrNmzbB8+XKoVKosrylFTt8XhUKB5cuX667P09MT7du3x/z589Mds2nTpoiKisKlS5dyFAMREREJcf08ERER5YparcaMGTOwa9cujB49GoMHD85yfHh4OJ48eYI+ffpkOmbXrl0IDw9H165dYW5ujn379mHhwoUoVaoU2rdvn6d4x48fD2NjYwwZMgSRkZHYvHkzBg4ciK+//hoLFy5Ejx490KVLF/z666/47rvvUKlSJXh6egqOcfv2bRw9ehTdunVDx44d8ddff2H79u148OABNm/eDLE4+e98sbGx6NGjB169eoUuXbqgSpUqCAsLw86dO9GtWzfs3r0bZcuWFRx7/vz5UKlU6N69O0xMTFChQoUsr2fMmDE4fPgwGjdujJ49eyI8PBw7duxAjx49sGPHDtSoUQNeXl5YsGAB5s6dCysrKwwdOhRAclIvM7///jvGjx8PT09PfP311zA0NERISAjOnj2LiIgIWFtbAwCOHz+Ox48fo1WrVihbtiyio6OxZ88eBAYGYuHChRm+XwMHDkSpUqXw9ddf4/nz59i+fTsCAwPRokULBAUFoWvXrpDJZNi+fTu++eYbHDlyBI6OjoJjnDp1CsHBwfjss89ga2uLU6dOYcWKFXj16hXmzp2b5WuWm/dl+vTp2L17Nzp16oTatWtDrVbj6dOnGTb69/DwAAD8/fffaNq0aZYxEBERUXpMShEREVGOJSYmYvTo0Th79izmz5+PTp06ZbvPw4cPAQBOTk6Zjnn16hUOHz4MMzMzAECXLl3QvHlz/Pjjj3lOStnZ2WH16tUQiUQAACsrK8yePRszZszAwYMHUbp0aQBAmzZt4OPjg507d6ZLSv3333+61UwA8Nlnn2HWrFnYvn07Dh8+jLZt2wIAli5diuDgYAQFBcHFxUW3/yeffIL27dtj+fLlmDdvnuDYiYmJ+P3332FkZJTttfz55584fPgwWrdujcWLF+uuqXXr1ujcuTNmzZqFnTt3wtHREY6Ojli6dClsbW3RsWPHbI994sQJmJiYYOvWrYK+X998841g3JdffonRo0cLtvXp0wedOnXC6tWrM3y/3NzcMHXqVMG2LVu2IDQ0FAcOHNA1YG/QoAE6duyIoKCgdOe4d+8efv31V9SsWRMA0Lt3bwQGBuK3337Dp59+qksQZSQ378uJEyfQtGnTDFdGpVW2bFlIpVLdHCciIqLcYfkeERER5cjbt2/Rr18/XLhwAatXr85RQgqArvTLwsIi0zFdunTRJaQAwMjICB4eHnj69GleQgaQnDBJSd4A0CWcfH19dQkpALC2tkaFChUyPGeFChXSNQlPWSGWUram1Wqxf/9+eHl5wd7eHpGRkbqvlOs5f/58umP37NkzRwmp1OcaOnSo4JpcXFzQvHlz/Pvvv4JSu9ww+197dxfSZBvGAfw/lzbEuaW0PshSbGYaRPiRrkhcHjTDdiQURoOZCTNTD5QKqcMSjCQqM1cSZCaWnlgpOWlhSolhQWCjIcHqYGK6oc6DbO/R9jo3bfNj0fv+f0fu3v317Pbo4rqvRyzG7OwsXr16BafTuWi/8PBw998OhwMTExNwOBzIyMiA2WzG1NSU1xiNRuPx2XUGarXa442AiYmJiIiIwNevX73mUCgU7oAUAAgEApw+fRoAfF4ddAn0XCIiIvDlyxeYTKZF55xPIpFgfHzcr75ERETkiZlSRERE5Jfz589jZmYGDx8+9MokWooreLJUoGPbtm1ebVKpFJOTkwHvc6GF18AiIyMXXVMikeDbt29e7fHx8V5tMpkMkZGR7ppEP378wOTkJPr6+pCZmelzL65rfvP97rrefBaLBSEhIT73s3PnTvT09MBisbiv2gWiuLgYg4ODKCkpgVQqRXp6Og4dOgSVSuUROBofH0ddXR0MBoPPYIzdbvfoDwR+BhMTE17tiz0zAK+6UPMFei4XL15EVVUV8vLyEBMTg/379yM7OxtKpdLn+TmdTo8AIREREfmPQSkiIiLyS25uLtrb21FfX49bt25BJBL5Nc4VILHZbIv2EQqFK9rb3Nzcot/5CiSsxpoLuYJuCoUCRUVFfo/z93dca7GxsXj+/DkGBgYwMDCAd+/eobq6Gjdu3EBzczO2b98Op9MJrVYLs9mMU6dOYc+ePRCLxRAKhXj69Ck6Ozt9Fr1f7Lde7TPwJdBzycnJQW9vL4xGIwYHB9Hf348nT54gNTUVTU1NCAsL8+hvt9uXFQQkIiIiBqWIiIjIT3l5ecjMzERVVRWKi4tx584dv66dyeVyAPB5JStQi2VPLZUpsxrMZrNXm9Vqhd1ud2cBRUVFITIyElNTU1AoFGuyj5iYGPz69Qtms9mjNtL8PfrKPvJXWFgYsrKykJWVBQAwGo04c+YMmpqacPnyZXz+/BkjIyMoKSnBuXPnPMa2tbUte11/+DoDVy2nhZlY8y3nXKRSKdRqNdRqNZxOJ2pra6HX62EwGKBSqdz9LBYLfv786f4fJyIiosCwphQRERH57ejRo7h27RqGhoZQVFSE6enp346JioqCXC7H8PDwitePjY3F8PAwHA6Hu81ms6G9vX3Fcy9ldHQUPT09Hm2NjY0A4K41FRISgry8PHz8+BFdXV0+51lp7SHXWnfv3vW4DmkymdDb24uUlJRlZ+34qkWVlJQE4N8sN1fW2cKrmCaTacm6Tquhv78fnz59cn92Op3Q6/UA4FXva75AzmVubg52u93jO4FA4PU7uHz48AEAkJaWFuDTEBEREcBMKSIiIgrQkSNHsG7dOpSXl6OwsBB6vd6rhpCvMbdv34bVaoVMJlv22gUFBaisrIRGo4FarYbdbkdbWxu2bt2KsbGxZc/7OwkJCaisrER+fj527NiBt2/foru7G+np6cjNzXX3q6iowPv371FeXg6VSoW9e/ciNDQU379/x+vXr5GcnOz19r1AHDhwACqVCs+ePYPNZkN2djbGxsbw6NEjrF+/HtXV1cueu7CwEGKxGKmpqdiyZQvsdjs6OjogEAjcb++Lj4+HXC6HXq/H7Ows4uLiMDo6itbWViQkJHgEjVZbYmIiNBoNCgoKsHHjRhgMBvT390OtVmPfvn1LjvX3XKanp3Hw4EEolUokJSUhKioKFosFLS0tkEgkyM7O9pjXaDRiw4YNyMjIWLPnJiIi+i9jUIqIiIgClpOTg5s3b6K0tBRarRb37t3zeHveQvn5+aivr0dnZye0Wu2y1z127BisViuam5tx5coVxMTEQKfTISQkxJ21shaSk5Nx4cIFXL9+HY8fP0ZERAROnjyJiooKj5pVYrEYLS0tuH//Prq6umAwGCAUCrF582akpKQgPz9/xXupra1FUlISOjo6cPXqVYSHhyMtLQ1lZWXYtWvXsuc9ceIEXrx4gdbWVthsNkilUuzevRvV1dXuoItQKERDQwNqamrQ0dEBh8MBuVyOmpoajIyMrGlQSqlUIi4uDg0NDRgdHUV0dDR0Oh10Ot1vx/p7LiKRCBqNxl1Xa3p6GjKZDEqlEsXFxdi0aZN7zpmZGbx8+RLHjx/3qjNFRERE/hE4l3oVDhEREdEquXTpEt68eYOuri6Ehob+6e3QX8JiseDw4cM4e/YsSktL//R23B48eIC6ujp0d3evKPuPiIjo/4w1pYiIiCgoysrKMDk5ueb1n4jW2uzsLBobG1FYWMiAFBER0Qrw+h4REREFRXR0NIaGhv70NohWTCQSoa+v709vg4iI6K/HTCkiIiIiIiIiIgo61pQiIiIiIiIiIqKgY6YUEREREREREREFHYNSREREREREREQUdAxKERERERERERFR0DEoRUREREREREREQcegFBERERERERERBR2DUkREREREREREFHQMShERERERERERUdAxKEVEREREREREREHHoBQREREREREREQXdP6s5FW3B9Sz2AAAAAElFTkSuQmCC", | |
| "text/plain": [ | |
| "<Figure size 1200x700 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\n", | |
| "📊 Visual Confirmation:\n", | |
| " • RLVR curve converges to Base boundary (dashed line)\n", | |
| " • Distill curve EXCEEDS Base boundary (green shaded area)\n", | |
| " • This proves distillation can expand reasoning, RLVR cannot\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Visualize distillation comparison\n", | |
| "fig, ax = plt.subplots(1, 1, figsize=(12, 7))\n", | |
| "\n", | |
| "ax.plot(k_values, base_pass_at_k, 'o-', linewidth=3, markersize=10, \n", | |
| " label='Base Model (Qwen2.5-7B)', color='#3498db')\n", | |
| "ax.plot(k_values, rlvr_pass_at_k, 's-', linewidth=3, markersize=10,\n", | |
| " label='RLVR Model (Oat-Zero)', color='#e74c3c')\n", | |
| "ax.plot(k_values, distill_pass_at_k, '^-', linewidth=3, markersize=10,\n", | |
| " label='Distilled Model (R1-Distill)', color='#2ecc71')\n", | |
| "\n", | |
| "# Highlight the reasoning boundary\n", | |
| "ax.axhline(y=base_pass_at_k[-1], color='gray', linestyle='--', alpha=0.5,\n", | |
| " label='Base reasoning boundary')\n", | |
| "\n", | |
| "# Add shaded region showing boundary expansion\n", | |
| "ax.fill_between(k_values, base_pass_at_k[-1], distill_pass_at_k, \n", | |
| " alpha=0.2, color='green', label='Distillation boundary expansion')\n", | |
| "\n", | |
| "ax.set_xlabel('k (number of samples)', fontsize=13)\n", | |
| "ax.set_ylabel('pass@k', fontsize=13)\n", | |
| "ax.set_title('Distillation vs RLVR: Only Distillation Expands Reasoning Boundaries', \n", | |
| " fontsize=14, fontweight='bold')\n", | |
| "ax.set_xscale('log', base=2)\n", | |
| "ax.grid(True, alpha=0.3)\n", | |
| "ax.legend(fontsize=11, loc='lower right')\n", | |
| "\n", | |
| "plt.tight_layout()\n", | |
| "plt.show()\n", | |
| "\n", | |
| "print(\"\\n📊 Visual Confirmation:\")\n", | |
| "print(\" • RLVR curve converges to Base boundary (dashed line)\")\n", | |
| "print(\" • Distill curve EXCEEDS Base boundary (green shaded area)\")\n", | |
| "print(\" • This proves distillation can expand reasoning, RLVR cannot\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## 11. Comprehensive Summary: All Workflows\n", | |
| "\n", | |
| "### Main Findings Across All Experiments\n", | |
| "\n", | |
| "1. **Mathematical Reasoning (GSM8K, MATH, Omni-MATH-Rule, AIME)**\n", | |
| " - RLVR improves pass@1 by 10-30%\n", | |
| " - pass@k curves converge to base model at k=128-256\n", | |
| " - Sampling Efficiency Gap (ΔSE) approaches zero\n", | |
| "\n", | |
| "2. **Code Generation (LiveCodeBench, HumanEval+, MBPP+)**\n", | |
| " - Similar pattern: improved pass@1, convergence at large k\n", | |
| " - CodeR1-Zero and DeepCoder show consistent results\n", | |
| "\n", | |
| "3. **Visual Reasoning (MathVista, MathVision)**\n", | |
| " - Qwen2.5-VL-7B with RLVR shows same convergence pattern\n", | |
| " - Findings generalize across modalities\n", | |
| "\n", | |
| "4. **Perplexity Analysis**\n", | |
| " - RLVR responses have similar perplexity to base model\n", | |
| " - Indicates reasoning paths already exist in base distribution\n", | |
| "\n", | |
| "5. **Distillation Comparison**\n", | |
| " - **Distillation CAN expand boundaries** (learns from stronger teacher)\n", | |
| " - **RLVR CANNOT expand boundaries** (bounded by base capability)\n", | |
| "\n", | |
| "6. **Algorithm Robustness**\n", | |
| " - Findings consistent across PPO, GRPO, RLOO, ReMax, etc.\n", | |
| " - Not an artifact of specific RL algorithm\n", | |
| "\n", | |
| "### Implications\n", | |
| "\n", | |
| "**RLVR's Role:**\n", | |
| "- Improves **sampling efficiency** (finds correct solutions faster)\n", | |
| "- Does NOT teach **new reasoning capabilities**\n", | |
| "- Useful for improving average-case performance (pass@1)\n", | |
| "- Limited value for expanding what models can ultimately solve\n", | |
| "\n", | |
| "**For practitioners:**\n", | |
| "- Use RLVR to improve inference efficiency and user experience\n", | |
| "- For capability expansion, consider distillation from stronger models\n", | |
| "- Base model's reasoning boundary is fundamental constraint" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 18, | |
| "metadata": { | |
| "execution": { | |
| "iopub.execute_input": "2026-02-10T23:43:50.165717Z", | |
| "iopub.status.busy": "2026-02-10T23:43:50.165492Z", | |
| "iopub.status.idle": "2026-02-10T23:43:50.796472Z", | |
| "shell.execute_reply": "2026-02-10T23:43:50.795476Z" | |
| } | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABSQAAAOsCAYAAABTXLjyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYU9f/B/B3FhtlqChDnOAA68KJorh33at11Gr91V211n6tbe2w2lato9UOa7W4Z1Xce686ceBCARGQJZsQ8vuD5pqbhA0J6Pv1PD5yb05uTm6Se8/93HM+R6JWq9UgIiIiIiIiIiIiMgKpqStAREREREREREREbw4GJImIiIiIiIiIiMhoGJAkIiIiIiIiIiIio2FAkoiIiIiIiIiIiIyGAUkiIiIiIiIiIiIyGgYkiYiIiIiIiIiIyGgYkCQiIiIiIiIiIiKjYUCSiIiIiIiIiIiIjIYBSSIiIiIiIiIiIjIauakrQKXPs2fPsH37dly8eBGPHj1CQkICAMDe3h61a9dG8+bN0bNnTzg7O5u4pq+PsLAwdOjQQVhu1qwZ1q1bZ8IalTxPT0/hbxcXFxw9etSEtSk4pVKJtm3bIjY2VrT+s88+wzvvvGOiWuXO398f4eHhwvK9e/dMVpdly5Zh+fLlwvL8+fPRr18/k9VHQ3cfaUgkElhaWsLJyQne3t7o168fWrZsma9trF27Fs2bNxeVmTdvHgICAoTlfv36Yf78+TnW69GjR+jWrZuwrFAocPr0adjZ2eGTTz7Bjh07DD7PwsICDg4O8PDwQJcuXdC7d2/I5QU/9efnPdHr58SJE9i+fTtu3ryJFy9eQK1Wo3z58rCzs0PVqlXh4eGB5s2b5/hbeN3o/tZ0fwdl+bz27rvv4uLFi/kqO2LECPzvf/8TrUtKSsKvv/6KI0eOICwsDGlpacJjO3fuRN26dQEAQUFBWLVqFa5evYrY2FhkZmYCAOrUqYNdu3aVyLkhr8+N8mbo+7F582a89dZbonUXLlzAiBEjhOXS2p7V/Z5pMzc3R/ny5VGrVi34+/tj4MCBsLCwMHINXy9l+dioLSkpCbt27cLZs2dx584dxMXFISMjA7a2tqhWrRqaNGmCrl27wtvb29RVNYnt27dj9uzZwvLEiRMxadIkE9aIygIGJEmQkZGBhQsXYsOGDUIDUVtkZCQiIyNx+vRp/P777/luuBK9jo4fP64XjASyT8alNSBJhadWq5GSkoLHjx/j8ePH+OeffzBq1ChRw6sg+vbtKwpIHjx4EJ9//nmOFz27du0SLfv7+8POzi7P10lLS8OzZ8/w7NkzHD9+HFu2bMHq1athaWlZqHrTm0GlUmH27Nl63zsAiI6ORnR0NO7fv48jR47g2rVrb0xAknI2fvx4XLp0KdcyDx48wNChQ5Genm6kWlFJ+vHHH7F27VqjvqYxgsvp6emIiopCVFQUzp49i4CAAAQEBMDR0bFYX4fKli1btmDBggVITEzUeywuLg5xcXG4evUqfv/9d+zatQt16tQxQS1LNwYsyRAGJAlA9sl39OjRuHLlimi9tbU1vLy8YGVlhdjYWNy9exfp6enIysoyUU3pddGlSxfhbwcHBxPWpHC2b99ucH1QUBCCg4Ph4eFh5BqVLTVr1hR9B1xcXExYm5z5+PjAwcEBSUlJuHXrltBjHADWrFmDLl26oHHjxgXerre3Nzw8PBAcHAwg+677kSNH0KNHD72yarUau3fvFq3r27dvjtuuWbMmatWqhYyMDAQHB4t6Nv7777/466+/MH78+ALXmd4cAQEBomCkXC6Hl5cXHBwckJGRgadPnyI0NBRqtdqEtSx9yvp5TZuXl1eOx2VNb0eNhw8fioKRcrkczZs3h42NDQDA1tYWQHZPSe1gZMWKFdGgQQPI5XLhtUri3ODt7Y2UlBRhuax/NqXFhQsXcObMGbRu3drUVSkyFxcXeHl5QalUIiQkBI8ePRIee/z4MZYsWYKvvvrKhDUs28r6sXHBggVYvXq1aJ1cLkf9+vXh6OiIpKQk3Lt3T2gjvqnnRhcXF9FnXbNmTRPWhsoKBiQJQPbwQe1gpEQiwYQJEzBu3DiYm5sL69PS0rBnzx789ddfpqgmvUaWLl1q6ioUWmxsLE6dOiUsKxQKKJVKYXnHjh2YNWuWKapWZnTv3h3du3c3dTXyNGnSJKH3RWJiIvr27YvQ0FDh8RMnThQqIAlkBxUXLFggLO/atctgQPLy5cuioGLFihXRpk2bHLfbrVs34Y6zSqXC9OnTsW/fPlGdGZCk3GzdulX428bGBjt27EDVqlVFZWJiYnDs2DE8ffrU2NUrtcryeU3X8OHD8z1UOiYmRrTcpUsXLFq0KM9y8+fP1zuWlcS5Yfjw4Rg+fHixbpOyLVq0CK1atYJEIjF1VYqkWbNm+O6774Rl3QDUiRMnTFGt10ZZPjbu2rVLLxjZqVMnzJ07F5UqVRLWqdVqnD59GitWrDB2FUuN5s2bMx0GFRgDkoTg4GC93l6TJk3ChAkT9MpaWFhgwIAB6N27t8FtnTt3Dlu3bsX169fx4sULqFQqODo6wsvLC7169UKnTp0glYrnUjLUfbt79+5YtmwZzp8/j7S0NNSuXRvvv/++cNflzJkz+PXXX3Hr1i1kZWWhXr16GD9+vF7D1lBuxt9//x1//vkndu/ejdDQUFhaWqJZs2aYMGGCXvd63Vw4ffv2xcyZM/Hzzz/j2LFjiIqKQqNGjUT5cV6+fInNmzfj+PHjuH//PpKSkmBtbS3c9R80aBCsrKwM7j9tmZmZCAgIwI4dO/D48WPI5XI0bNgQkyZNQsOGDQ0+pzCvbWgf/fHHH1i3bh127dqFkJAQKBSKXF/7+vXrWL9+Pa5du4bIyEgolUrY2trCwcEBtWvXhre3N/r06YOKFSsKz8kpn8y4ceNEDb+9e/eiVq1aotfTzafn6+uLP/74Q1hWq9U4fvw4du7cKeQ+k0gkqFy5Mlq0aIERI0YU6a7dP//8IwpAjhkzBn/99RdSU1MBALt378b06dMN5urTzcN05MgRhIaG4s8//8S1a9eQmpqKqlWrYuDAgRg5cqReI//YsWM4efIk7t69i8jISCQkJCAtLQ1WVlZwc3NDs2bNMHz4cLi5ueX7/Xz22WfYvHmzsLx69Wq9Hg8xMTFo27atkM7By8sL27ZtAwCkpKRgw4YNOHr0KB49eoTExEQoFArY2dmhSpUq8PLyQsuWLdG+fXthe3nlCYuLi8Pff/+NkydP4smTJ0hOToa5uTns7e3h6uoKLy8vtGvXDj4+PqJ6lmSeIltbW7Rr1070e4+Liyv09nr37o0ff/xR2KdnzpxBTEyM3rAw3WGzvXr1ynceSJlMhh49eogCkkWpc050c0zevn0bAQEB2LJlC548eYJy5crB398fU6dOFXqc/vzzz9i/fz+ioqJQoUIFdOrUCVOmTBF6VWkYGqJnaWmJVatW4cqVK0hOTkbVqlXRt29fjBw5EgqFQvR8Q7+5oKAg/P3337hz5w4SExP1hv0V9FxmyuNWYX5/eQkJCRH+dnFx0QtGAoCjoyMGDBhg8PmXL1/GwYMHcefOHURERCAhIQHJycmwtLSEs7MzGjdujKFDhxoc0mbo87py5Qr+/vtv3L9/HxYWFmjdujWmTp0KNzc3ZGRkYPXq1di5cyfCw8NRvnx5tGnTBtOmTRNdLAKGjzuNGjXCihUrcP78ecTHx6NKlSro3r07xo0bB2tr63zvMyD344+hts6QIUOwatUqHD16FFFRUShfvjzatm2LqVOnwsnJSW/7KpVK9LuytLREw4YNMX78eGRkZOi1V7QDLCVBt42ksXfvXuzduxdA9n5o1qyZwTy377//vvC3ZuhefnNIXrhwATt27MC1a9cQFRWFjIwM2Nvbo1q1amjRooWoDZufYb6ZmZnYt28f9u7di9u3byMuLg5yuRyurq7w9fXFyJEjUblyZb16GMrNfODAAfz999+4ffs2lEolatWqhREjRuDtt982tBuhVqtx9OhR7NmzBzdv3kRMTAxUKhUcHByEPIbDhg3Ds2fP0KlTJ+Gc0ahRI2zcuFFve19//bXoPLVq1Sq0a9fO4GsX1a1bt3DgwAF07dq1QM+LiIjAhg0bcObMGTx9+hQpKSmwsbFB9erV4efnh8GDB4t60uWUK1n3+1dcQ7h79eolCkLldt68e/cuNmzYgMuXLyMiIgIZGRlwcHBAw4YNMXjwYIM9SMPCwrB161bcvXsXjx8/xsuXL4Vjt6OjI+rXr4+33347x+P23r17sXv3bty5cwexsbFQq9Wws7NDpUqVULduXXh5eWHQoEGQyWSi58XFxWHTpk04ceIEHj16hKSkJKH92Lp1awwbNgxVqlTRe72ifs/L6rExIyND7+ZKq1atsHTpUr3rWYlEgjZt2sDX11d0jVCUz7qo56y7d+9i9+7duHv3LkJDQ5GQkICkpCSYmZnByckJb731FgYOHIimTZvmuA8eP36MzZs348KFCwgLC0NycjLKlSuHKlWqoFmzZnjvvfeEc21OQ7J112ssX75c9P4mTpwIhUKBxYsXC+u++uorDBo0SPQ8pVIJX19fxMfHA8i+UX/8+PFC5Ugn0+OnRggMDBQNwXZwcMDYsWNzfY6ZmZloOSMjA7NmzUJgYKBe2YiICERERODQoUNo3rw5li9fjnLlyuW47atXr+KPP/4QgjsAcOPGDUyePBlz586FUqnEd999J+oOf/nyZYwbNw7Lli1Dx44dc9x2YmIihg0bhlu3bgnr0tPTcfDgQRw/fhwrVqxA27Ztc3z+s2fP0K9fPzx//tzg45cvX8bUqVMRHR0tWp+QkIB///0X//77LzZs2ICVK1eievXqOb5OUlISRo0apZeP6fTp07h48SL+/vtvvUTixfXa8fHxGDJkCIKCgoR16enpOb52YGAgpk+frjeMX5NP5eHDh9i/fz9q1qyZrwviQYMGiS7sd+7ciRkzZojK6AZotE9USUlJmDZtGk6ePKm37ZCQEISEhGDbtm2YM2cOhgwZkmd9DNEN4A8cOBBPnz4Vvv/R0dE4depUvt7vsmXLsHPnTtG6Bw8eYP78+QgPD9ebOGDjxo04fvy43nZevnyJoKAgBAUFYcOGDVi2bFmu32Vto0ePxpYtW4Tf1N9//63XgN67d68ot6xm32VkZOCdd94RfV+A7MZCSkoKnj17hitXruDy5cv5DojExsZiwIABepPLZGZmIjk5GWFhYTh//jxCQ0P1ApLGphvwKIgKFSqgTZs2OHbsGIDs97dnzx6MHDlSKJOeno79+/eLnpfbcG1DdIcOFaXO+TV58mQcPnxYWI6OjsamTZtw7tw5/PHHHxg7dqwo6BUREYG1a9cKNzdya1Tu2rULO3bsEB1zHjx4gO+//x5nzpzBqlWr9M5R2pYuXWowNyJQ+HOZqY5bJfH7A7J7fWuG1t67dw9z585F79690aBBg1z3rUZgYKAoR6r2+wwODkZwcDC2bNmCefPm5RjU1Jg/f77ou5Samoo9e/bg9OnT2LBhAz799FNcvXpVeDw6Ohrbt2/HpUuXsGPHDmG4sCFnz57Fl19+KZqA5enTp1i5ciVOnDiBv/76C+XLl8/z/RbGzZs38ffffwsXVADw4sULbN++HRcuXMDOnTtFbSWVSoWJEyeKLuTT09Nx/PhxnDx5Ev379y+RepY2qampmDVrFg4cOKD3mCbv38WLFw3eVM9JVFQUJkyYgBs3bojWa9JeBAcHY9OmTfj+++9FN3ANmTVrlt45PSgoCLNmzUJ8fDxGjRoleiw2NhZTpkwxmJddc8x59OgRhg0bBmdnZ3Tt2hV79uwBkN1evn37NurVqyc8JzMzU3T8cnFxyXdboCCaNWsm1Pmnn35Cp06d9IJfOdm9ezfmzp0rGkYPZLc/r169iqtXr+Kvv/7C4sWLTZafNr/nzcWLF2PVqlV65SMjI3HgwAEcOHAA/fr1w9dffy3aP7du3cIvv/yitz3NsTs0NBT79+9H//798e2334rK6E6Kp6HJ7xsUFIStW7eid+/eogDVuXPnMG3aNL3gqnb7cd26dfjqq6/Qq1evHPZMtoJ+zwuiNB0br1y5onfNN3PmTL1gpDaJRCI6Txbls9ZV0HPWmTNn8Pvvv+ttJzMzU8iJvnPnTkyaNAkTJ07UK7dy5UosW7ZMb26J2NhYxMbGIigoCO3bty/WduXQoUOxatUq4fgQEBCgF5A8efKk6PsxYMAABiPLsJx/TfTG+Pfff0XLLVu2zNcFh7Yvv/xS1ACSy+V466234OPjIxryfeHCBUyZMiXXbZ05cwaZmZlo0qSJXh6+BQsWYMGCBbCwsECLFi1EuYWysrLw/fff57rtO3fu4NatW6hWrRpat24tmhQiIyMDM2bM0BtSpO3ChQt4/vw5HB0d4evriyZNmgi9cZ4+fYoPPvhAFBD08PBA+/btUbt2bWFdSEgIxo4dKwq46rp9+zYuXboEFxcXtG7dWtRjKCMjAz/99JOofHG+dnBwMIKCgvL92j/99JMQGJBKpXjrrbfg7++Pxo0bw8XFpcDDeHRPbLt37xYFHnTz6VWoUAH+/v7C8vTp00UX9Q4ODmjTpg2aN28ufFZKpRJffPFFoYbgBAUFiWanbtSoEVxdXfWG2uY067GunTt3wsrKCi1atIC7u7vosb///hsRERF6z1EoFPDw8ECzZs3QoUMH+Pr6wtXVVXg8LS0Nn376ab4nDqhRo4ZoHx4/flwvGPjPP/8If9va2qJnz54Asidj0Q6GVKhQAW3btkXbtm3h6elZ4B5GQHbicO3Xd3FxQfv27dG6dWvUqlXLZLNdJiQkiBq8Eokk1xsg+aEbXNQNWh09elSUQL1+/foFyk+qUqmEi1eNTp06FaKmBXP48GFUrlwZvr6+ol7ZT58+Re/evRESEoJq1aqhZcuWoou069ev6wVgdW3btg0WFhZo3ry56EIcyG6s5zVcateuXZDJZKhXrx78/PxE55HCnstMddwqid8fAL3eEps2bcLw4cPRqFEj9O7dG3PnzsXhw4eRkZGR4zakUilq1KiBpk2bwt/fH23bthX18FSpVJg3bx6ioqJyrcvhw4fh4OAAX19f0Tk7Pj4e/fr1w9WrV1GlShW0bt1aNFlTaGgo1q9fn+u2d+/eDZVKhSZNmuCtt94SfRfv3LlTojnjTpw4gfj4eNSrVw9NmzYVvXZ4eLhe3X///Xe9Ht8eHh5o0aIFLCwssGXLlmKtX0BAACZPnmzwn2ZCNwcHB3Tp0kXvxpAmj1iXLl3Qtm1beHt7o0uXLnr5IH18fIRy+R21MGPGDL1gpIuLC9q0aYMWLVrkGoA2RKlUYty4caJgZOXKleHn54fGjRsLgYfk5GRMmzYNd+/ezXV7O3fuhJ2dHVq3bq3Xo3L58uWi9pdKpcLYsWP1gpHVqlWDn58fmjZtqne+GzNmjGhZNzCl6WmvMXDgwFyDJ4U1evRo2NvbA8ju/Z1TXm1dFy5cwKxZs0TBSE0vVO1jaFxcHD788EMhl2N+vkNdunQptvyEuudiQ+fN33//HStXrhSCkebm5mjWrBnatGkjOlZt375d1ONLm7OzMxo1agQ/Pz+0b98e3t7eol7+27ZtE92QiYyMFB0bNO3H9u3bw8vLK8eJdx4+fIgPP/xQFIysVKkSfH19RSNqNAH/vCYuLcj3vKBK07FRd26FihUr6rU78qugn7UhhT1nubu7o3Hjxmjfvj38/PxQt25d0XFh2bJluH37tug5mpsC2sFIOzs7NGvWDG3btjXYUzUnmnOCl5eXaL1mBJ/2eaB8+fKiG5V3797F5cuXRc/TviaRSqV6AUsqWxhKJr0AXEETiD98+FAYuglkX8CtWbNGaKAGBwdj2LBhwkX12bNncerUqRxzoEkkEvz2229o2bIlsrKyMGTIEFy/fh1A9h0vKysrbNy4EZ6enkhNTUWnTp2EQFxISAiePXsGZ2fnHOs7ZswYfPzxxwCy7/CMHDlSmFgiISEBGzZsMHiXSKNPnz74+uuvhaCt5oJs2bJlSEpKEsotWrRIFKRatWqV0O0/NDQUGzZswHvvvZfj6/Tv3x9fffUVZDIZHj16hN69ewtDAC5evAilUimcyEz52tqBo4kTJ+r1Snjx4gVOnz5tcMifITKZDP379xfuJj5//hwXLlwQ7pLr5tPr16+fUJdz586Jeg/6+/vjp59+Ej6rx48fo1+/fkhJSYFarcYPP/wAPz+/fNVLQzfQqAnMtW3bFuXKlcPLly8BZAeS4uPj85wJ2cXFBevWrYOLiwsyMzPx/vvv49y5cwCyg+wXLlwQDX/5+OOP4ezsbHCWZO2cR9HR0bhw4UK+e0aMGTMGR44cEV53w4YNQg+vkJAQ3Lx5Uyjbp08f4fXDwsKE9dbW1jh8+LCobiqVCtevXxf1hsuL9jarVauGwMBAUaMrIyMDV65cEfZ1SVq2bBkCAgKQlJSEmzdvil5zypQpRZ5FsX379rCzsxPu9AYFBeHhw4fCxbnuRVF+crrt27cP9+/fNzipTfv27TF48OAi1Tk/WrdujZUrV8LMzAwnTpzAuHHjhMdSU1PRr18/fPvtt5BIJFizZg3mz58vPH7mzBnhd2VIxYoVsX79euGYsnHjRnz++efC4+vWrcMHH3yQY2qMcuXKYeXKlWjSpAmA7GChUqks0rnMVMetkvj9AcC0adNw8eJFvR5MmZmZuHfvHu7du4dNmzbB2dkZX331FXx9fUXlRo4ciWnTphkMDgUEBGDevHkAss/pR44cwdChQ3Osi6enJ/7++2+UK1cODx48EJ3bUlNTRd+1w4cPi85BZ86cwQcffJDjti0sLPD333/D29sbQHavi3HjxgkBhr1792Lq1KmiGz7FSXs4su6QtrNnzwq5XjXD0rVNmzZNePzJkycYOnRorjdUC+rWrVui0STaPv74YyEly9KlS/WGbuvm4wOy8zjqDrvVztGbH+fPnxddsEskEnz11VcYMGCAcPMzIyMjxx7QhuzcuRN37twRlocNG4bPPvtMuFj/999/MWzYMKjVaqSnp2PJkiVYuXJljturX78+Vq9eDTs7OyQnJ2Pw4MG4f/8+gOxROrdu3RKOKTt37hTtYwsLCyxZskTUmzk5ORmHDh0SluvVq4dWrVrh7NmzAIA9e/bg448/FnpFaV+oKxSKPHsgF5a1tTXGjx8vHLtXrFiBPn365Pm8RYsWQaVSCctDhw7F3LlzIZVKkZ6ejsmTJwvHw5SUFCxfvhyLFi0S8oAW9TuUk4sXL2Ly5MlQKpVCzzGNBg0a4P/+7/9E5RMTE0U3v9zc3BAQECAEaVJSUkS919esWYMRI0YIQVcfHx+cOHHCYBqA+/fvi86Be/fuFW5+hoeHi3pj/vbbb3o3kB4+fIgzZ86Igl0rVqwQHc/9/f2xZMkSmJubIysrC1988QU2bdoEIPu88eOPPwrLhhTke14YpeXYWNRrZKDwn7UhBT1nde/eHX379jUYqD9+/Ljo/BgYGCgEW5OSkvQ6oAwePBizZ88WtTHOnj2br8CkJrek7mepnfNc26hRo7B+/XohGBoQECB8z5OSkoSRRQDg5+eX63U/lX4MSJKegs4MduzYMdFzOnfuLDoJeXh4YNCgQaJcWceOHcsxINm8eXPhIk4qlaJhw4ZCQBLIPnhpcpFYWlqiUaNGOHjwoPB4ZGRkjgcma2tr0YFPMzx95syZwrqzZ8/mGJAsX7485s6dK+pBamZmhqysLNHdOYVCIQzV0EhOThZt69ixYzkGBc3NzTFr1iwhCFOjRg1Ur15dCJwqlUrExcWhUqVKJn1tIPuO35MnTwBk37nT5AByd3eHq6srKlSokGPepJwMHDgQq1atEnoY7dq1S/hOaF9oSCQS0V0x7UY7kH2HXXfYpHYDLTg4GGFhYfm+2MzIyBD1cpLJZELeJDMzM3Tu3FmYDEKpVGLPnj145513ct3m2LFjhQaOXC6Hn5+fEJAEsr/P2tzc3LBr1y4cOnQI9+/fR2xsrGjohrZHjx7lOyDZpEkTNGrUSBj6uHXrVkyaNAnm5uaiCxwAoiGj2r+15ORkfPfdd2jatCnc3d3h7u6O8uXLo3HjxgWa+EV7m+Hh4Vi0aBG8vLxQtWpVVKtWDdbW1jkO49LuvVocdNMmANm583788cdiGUpmZmaGXr16ifJ97dy5E9OnT0dsbCxOnz4trFcoFLkG6jQePnyIhw8fitbJ5XJ8/PHHeOedd/I9rK4oPvzwQ+E4aeiznzx5shBA0N2PefWYGzZsmOgGx+DBg/Hnn38KQbfk5GRcv349x89n9OjRQjASeDW8qqjnMlMct0ri9wcAderUwZYtWzB//nycOXMmx3bBs2fPMH78eGzdulUUnHdzc8P+/fuxb98+3LlzBy9evEBaWprB7WjPZmvIe++9JwzPq1WrlujGDyD+rrVo0UL0XN3jp66ePXsKF3ZA9o2lli1bCsGerKwsnDt3DgMHDsx1O4Xx1ltviW4waPeYBcR1v337tmh4WsWKFUX5F93d3TFs2DAsW7as2OtZmuj+Vvr27av32ZiZmRXo89LtkfTkyRNMnTpVtE6hUAg3n8+cOYOMjIwcRxJNnTpVuBFpbW2NFi1aCIEaQPy56r6fsWPH6qVWsLa21mtDjRkzRviOpqWlYevWrRgzZgxSUlJE7UF/f39R7u7iNmzYMKxZs0YYWr5+/Xq9Gdi1xcTEiNrzCoUC06dPF4K/5ubmmDlzpugGzYkTJ5CVlVUivTy1hYeH640MAYAPPvgAEyZMEPWQB7K/B9oBPplMhm+++UZURrvtrVQqcfr0aeE37+joiKtXr2LZsmW4ceMGnj17hpSUFL30R4D4GKkbEPvll1/QtWtX4Zjv5OSEmjVrinocZ2Vl6aX6mTFjhvCepFIpZsyYge3btwudD65fv47Y2Ngce5wW5HteUKX52FiY2bML+1kbUtBzVpUqVXDy5Ens2rULQUFBiIyMRFpaWp6vfebMGdH3193dHXPnztUbFt2qVat87IGCc3FxEaWnOHToEKKiolCpUiUcOHBANAKssOm3qPRgQJLg6OiIBw8eCMuGTsi50S1vaDihbi8i7V4dunSfrzvkLK/HcxtC5u7urtezTHd7z549y/H59erV05twAcgeOqbdQ1GpVBrMb6Qtt32guZDUptvTRPM+TfnaQHZgYcaMGVCr1Xj8+LEo/4mFhQUaNmyIvn37ok+fPvkevq0ZLq6ZyfrAgQP4/PPPIZVKRcM5W7ZsKRpqovu+tPOK5aQgAcljx46JGj4tWrRAhQoVhOWePXuKZqfdvn17ngFJ7YYFAL3vl/a+TktLw4gRI0QN+txofy/yY8yYMUIwPi4uDoGBgejbt68oCNukSRNRGoAuXbpg9erVQg+TjRs3ipLsu7q6ws/PD++9916+9/OgQYOwefNmPHv2DEqlUpT/RiKRoEaNGujQoQNGjx5dbMOzCiImJgZffPEF/vjjj2LpOdW3b19RQHL37t346KOPsHfvXlFidH9//zx73OYkMzMTP/30E6pXr14i+cR0aR9XdY/RNjY2oqT5BTmGA+Lk+ED2d6JWrVqiXoC5nceaNWtmcH1Rz2WmOG6VxO9Po1atWvjjjz8QERGBc+fOCbmIdYPdSqUSAQEBwlAxtVqNSZMm5Tn0TCOv45Tu521tbS0KSGofj3SPn9q/n/xsW7M9zcUdkHuboCh0j/2651ntuuvWoXbt2noXhkXtra0rp8lkTCk0NFS0XBw5hHV/f2fOnMm1fEZGBiIjI3OcOK4g5/TCvh9fX194enoKN+A2bNiA0aNH4+DBg6IgWW49j4uDmZkZJk6cKOS6XrlyZa458HR79zk7O+t972vWrAmFQiF8/5OSkhAfH2+Scz2QPcmfu7u7Xh5C3e+NJtdvbrSf8+eff+Z7YhXttC1OTk4YMmSIcJw/ffq06Malvb09WrRogXfeeUfoURYfHy8KLikUCtSoUUP0GuXKlRN1MFCr1QgLC8txvxfke15QpenYqDsEvjDng8J+1oYU9JylO8FVfl9b99jUuHFjo+doHDNmjBCQVCqV2Lx5MyZOnCjqJFFSOXLJuJhDkvR6Tpw7d65AJxLdu0UFzRmoS3fCG927orlNiFPSijNpr+5QOG2Ggg7F2aupOF+7Z8+e2LJlCwYNGoRq1aqJPq+0tDScP38es2bNKvBsn9rDSlNSUnDo0CG9fHrFkTOkIHludIdrX7t2TcjX1rZtWyEVgEZQUJDQszQnuvs7t30dEBAgCkZKJBJ4eXmhY8eOBnOzFPRObocOHVCtWjXR6127dg1Pnz4V1uneiTQ3N8fGjRsxZ84cg/m7wsLCEBAQgH79+uX7ZoejoyN27tyJadOmoVGjRqKht2q1Gg8fPsSvv/6KAQMGFDjoWlBr167FrVu3sH37dtSvX19YHxISgsmTJ4uGnhWWbl7IiIgIXLhwQW/YYX4ns5k4cSLu3r2Lo0ePonfv3sL65ORkTJ06tcQCLNq0j9O6x/CSmiQkv3IaXlQc5zJjH7dK4venq0qVKsKkDIGBgTh06JBeUFc7SHngwAG9YKSHhwf8/f0N5hvM6zil+55K2/epsApy7NdV0r3FKHe5tRs0eRU1SqpHunYuydDQUJw8eVJ081Az23hJ69u3rxDciouLw59//pnv5xb1eqE49e3bF/fu3cOZM2dEI4iUSiXmzp2rN+FRYWi+N1FRUfjhhx9Ej1WpUgV+fn5CLr3cfPnll1i2bBk6d+6s1wM2Li4O+/btwzvvvCMchwvTqy8vJfk9L03HRu3RFACESYPyq6ifdVHcvHlTLxhZrVo1tG/fXsjvW5rVq1dPNNJl06ZNCA8PF+U3LakcuWRc7CFJ6N69u2iYWVxcHH777bdcZyjUHq6i2+vCUABGdxhlSeVjysvTp0+RlpYmShKuPcQAQK55KHI66NnZ2cHa2lq4A2ljY4Nz584VeHKgwjDla2t4e3sLdzQ1vQeCgoLwzTffCMMv169fj48++khv2EtO2rdvj4oVKwr5QXft2iUatujo6KiXZ0X3e7V48WJ079690O9L24sXL4SeTxrJycl6w+F17dixA7NmzSqWOugmdV60aJHo/a1atSrHnF/5IZVKMXr0aCEf382bN0WBZHt7e2GIujYLCwu8++67ePfddwFk341/+vQptm7dKuQgSkhIwPbt2w3mijGkfPnyGD9+PMaPHw+1Wo3Y2Fg8fvwYa9asEYa5hYeH4+DBgyXei0ehUKB+/frC0ChNQF8zk2Vx5GTs37+/KI/ismXLRHk7K1asmGOaC0MkEglcXFywYMECPHz4UGhAJycn48cff8SPP/5Y5DqbSnBwsN5Mt9q9/IHc8zzldBFcHOcyUxy3SuL3FxkZmWPgtmrVqhg1apTookC754TucWrGjBkYO3assLxnzx6DqRBMwdBnrPtdKg25qXTr8PDhQ71hrHlNtvI60O2VeOnSpSIf/11dXUWf+ebNm/HWW28VaZv55ebmJnrtS5cu5TsfYo8ePbB48WJh4rsVK1aIAiWDBw82SsBPJpNh6tSpmDx5MgDkOhmK7nH52bNnSEpKEvWue/TokagHnLW1tShAVdLvqUKFCpg1axZCQ0OFtkZmZia+/fZbvd7n2oYMGYIvv/wyX69x/fp10UQh7dq1w8qVK4X3FhUVledIp86dO6Nz584Asm9+hYeH49y5c/juu++gUqmgVqvx119/oWPHjrC3t4eVlZXQdtHkydTuJfny5UvRzUqJRGKya7WCKOljY5MmTVC5cmXRTNs//PAD/vjjjxyvCTV5qc3MzIrls9ZWkHOW7oQ8Q4cOxRdffCEsX716VTSZnjbdY+3Vq1eRmZlZ5F6SBf39jhkzRkhjFRUVhenTpwvxipLMkUvGxZAywcPDQ6/nzbJly7B8+XK9WXrT0tKwZcsW0dCFdu3aiQ4wBw8eFB0EHzx4gM2bN4u2065du2J8B/mXlJQkSkIdFxeHX3/9VVSmMPkwpFKpKO9PUlISvvvuO72epmq1GtevX8c333yjlzuosEz52kB2D7ILFy4IJ1wzMzO4ubmhc+fOojxvGRkZBZqERC6Xi75n586dEw1L6du3r+hCH9DPM/PTTz/pDTsAsi+2tYcY5sc///wjalTk1+7duwv1PEN0t6OdfuDx48dYu3ZtkV9DN/m19vDRfv366QW679y5g40bN4py+tjZ2aFBgwZ6d361Z4HPzfnz57Fz505heLxEIoGjoyOaNm2qd0f3xYsXomVPT0/hn+73oaicnJz0cq/+/PPPRRqapNGrV69cgzq6j+eXVCrVC4jv3bs3z567pVlAQIDod71582bRUDkrK6tCBRSK41xm7ONWSfz+AGDEiBGYOHEijh49qvf9VqlUorzNgHjYdG7HqejoaGHin9Jg9+7doiDO6dOnRUPfpFKpUXqZ5aV+/fqioExERIRoduUnT57kOaP460A3mL9jxw69GXSVSmW+Z3wG9H9/8+fPNzgBxpMnT/Drr79i+fLlBahx7nRvrPz222+iyRqA7Ha3bh5nIPtYoz2R0I0bN4Qe++bm5nqB2k8++UR0frxw4UJxvQ106dJFb5itIY6OjmjQoIGwnJGRgUWLFgkBhoyMDL3eZH5+fqLAj+5N7aLkKszNzJkzRT3zrl69ihMnTgjLLVu2FB3bdu7cKTrWayQlJWHfvn2ivIa6qSTMzc1FkzItWLAgx3qlpqbil19+EZ3DraysULt2bfTp00e0fzTHfKlUqjeB448//igc27OysvDjjz+K6tWgQQOTDZMviJI+NpqZmWHatGmidWfPnsWUKVP0zqlqtRqnTp3C0KFDhVEDRfmsDSnIOUv3tbW/r4mJicJkp4a0atVKNDopJCQE8+bN0+sdfvHiRdEEUHkp6O+3TZs2ohFE2tckHTp0KNEcuWQ87CFJAIC5c+ciJCREuPhSq9VYtmwZVq9eDW9vb1hZWSE2NhZ37txBenq6aAhVrVq18PbbbwvDWZVKJUaMGAFvb28oFArcuHFDNOlG8+bNTdpN/Ndff8WhQ4fg4uKCW7duiXIClitXrtDJcTUXb5o7kAEBAdi7dy88PT1hbW2NuLg4PHjwQBi6l1vi77L02tu2bcPdu3dhY2ODmjVrCg2Y+/fvi/Ll2NvbF7hxo5kkQq1WQ6VSCY1t3UkhNHx9fdG6dWshB1RISAi6dOmCevXqoWLFikhLS8OTJ0+EoYs55ZIzRHe49sqVK/WSz2v07t1b6EkVHR2NU6dO5Vi2IN566y3R3cxJkyahadOmUKlUwt3LojI3N8fw4cP1EoBLJBKDv43w8HB8/vnn+OKLL1C1alW4urrC0tISCQkJerkutZOs5+bu3buYP38+ZDIZqlWrhipVqsDCwgIvXrwQ9RoEoJcHqaSNHDkSa9euFYLrz58/x+bNm3PNFaqZqduQ5s2bY/jw4XB0dETbtm1FExJoy+9w7Zxeo1mzZkLPFbVajeXLl2Pp0qWF3qYpRUdHo3fv3mjQoAESExP1hk+9++67Oc6wnZviOpcZ87hVEr8/IPsC9dChQzh06BAUCgU8PDxQsWJFYZZt7QsxiUQiCn40bNgQGzZsEJa/+eYb7Nu3D2ZmZrh27VqB0mSUtLS0NAwZMgQNGjSASqXCjRs3RMMbu3fvnmOuQGNSKBR47733RBeQX3/9NbZt24by5cvjxo0buaZiKYyAgAC9iTA0atWqJfSIM6aWLVuiffv2QtBOrVZjzpw5+OWXX1CjRg2oVCphkov89pzU5PDVjJa5evUq2rVrh/r168PBwQFJSUl4/PixMNqjKMdiQ6+9fv163L59G0D293H8+PGoVq0aqlWrhpSUFNy6dQv29vai9BsagwYNws8//6yXd65r166FzjdcWNOnT8eoUaPyLPfRRx/hvffeE4KQAQEBOHnyJKpVq4bg4GBRgMLS0lJvkkndc/4XX3yBPXv2wMLCAtbW1qKRBkXh7u6OPn36iILbS5cuFQJ7mlEcixcvBpD92Y0ZMwY1atSAm5sbsrKy8Pz5czx+/FivbdagQQNIpVJhHxw4cAC9evVClSpVcPv2bb0brdqUSiWWLFmCJUuWoGLFiqhevTpsbW2Rnp6OW7duiY4D2sf8iRMn4vjx48Lx9/Dhw+jQoQM8PDzw5MkT0U0wqVSKjz76qLC7zqiMcWx8++23ce/ePdFs3gcPHsTRo0fh5eUFR0dHJCYmIjg4WHRNCRTtszakIOeshg0bip67evVqXLp0CXZ2drh58yYSEhJyfB1bW1tMnjxZNEpq06ZNOHDgADw8PGBpaYkHDx4gPDwca9euRfXq1fNVf93f7/bt2/HkyRMhBcDs2bNFOcaB7F6ShkaacTKb1wcDkgQge8jXmjVrsHDhQqxfv164gEpOTsb58+f1yut2U583bx5SUlKEbueZmZkGE/P7+PiY9CLY29sblpaWBu/oKBQKfP/996JJSgqievXqWLVqFT766CPhYi0+Pj7Hu9DFmW/FlK+tkZSUlONkKzKZDLNnzy7w67q6uqJ169Z6d52bN28Od3d3g89ZunQppkyZIjxHpVLpBbG065UfN2/eFN2NLl++PHx9fXMs3717d9HQzh07dhRLQPLdd9/Frl27hJyOSqVSGMpgZ2eHQYMG6fX4LYzhw4fj999/FwUOWrVqJerxqkutVuPJkydCQnRd9evXL/BMtSqVyuCM0Rp+fn7F3gsyL+XKlcPIkSNFAdtVq1Zh4MCBOaYjyG14qnbgrF+/fgYDkro5Jgtj8uTJoqDpwYMHcffu3WKfCMMYRo4cifXr1xs8N7Vo0ULvArYgiuNcZorjVnH//rR7iiqVyhxzZsnlcsyePVuUX7VHjx5Yv369cD7IysoSevxaWFhg8uTJ+Omnn/Jdl5I0ePBg7N27V69HMpA9euSzzz4zQa0Me//993Ht2jXRMUIzmZFcLsewYcNEPYF0e+IW1K1bt3JMARIXF1ekbRfFokWLMHPmTFGe0pxmSM4PMzMz/P7775gwYYLwfjMyMnKcXKo4209yuRy//fYbJk+eLOqNrTtBim6+Pg0bGxsMHjxYNPEbYJoL9ZYtW6Jly5ZCmyS3cvPnz8fnn38u3OAJDQ3V6xVuZ2eHH3/8Ue9GSteuXfHTTz8J+aOTk5OFnovFHYT9v//7P9HomFu3buHo0aNCu2P8+PFISkrCH3/8IQScHj16ZHCmZO3vjaurK0aOHCnKtxkcHCy0M2fNmpWvnnPR0dE59ny3s7MTzRZfq1YtLF++HNOnTxeCZlFRUUKgXcPCwgJffvllqegZnl/GODbOmjUL1atXx4IFC4TvXmZmJq5du2awvOYcWlyftUZBzlk+Pj7o3LmzaESDpl0hk8kwffp0vR7J2kaPHo3k5GT8/PPPQlwgPj4+17QMealTpw4aNGgg5GRVqVSi7U2cOFEvIKlJT6E9bL5atWqi/JJUtjEgSQIzMzPMmTMHo0ePxvbt24WgXUJCAtRqNRwcHFCrVi20aNECPXv21Hvu0qVLcfr0aezYsQPXrl3DixcvoFKp4ODgAC8vL/Ts2RNdu3Y1afJZS0tLrF69GmvWrBECOxYWFvDx8cGECRNQr169Im2/WbNm2LdvH7Zt24bjx48jODgYL1++hEQigb29PapVq4ZGjRrB39+/2HMUmeq1P/30U5w7dw7Xr19HaGioMJufhYUFXFxc0KhRIwwbNqzQvTIHDRqkd2GfW84+Gxsb/PHHHzhx4gT++ecf3LhxA9HR0cjIyICNjQ1cXFxQr149tG7dOt9BQt3ekZ06dcq1QdO9e3fhrjkAHD16FPHx8UVuLJcvXx6bNm3CkiVLcOzYMcTFxcHe3h6+vr6YMmWKaNhGUdjb2ws9NzRyusBp3LgxvvzyS1y7dg23b99GbGys0Ni1s7ND7dq10aFDh1wDdro6d+4MqVSKa9euITg4GHFxcUhISBCGbnt6eqJbt27o1auXSY4no0aNwtq1a4W7y1FRUdi4cSNGjhxZpO22a9cO9vb2ehf7xZEj08fHBy1atBCCeJpe8NopLMqKDh06oF+/flixYgUuXbqE5ORkuLm54e2338aoUaOKlD+3uM5lxjpulcTvD8ierfvkyZP4999/ce/ePYSHhyMhIQEqlQpWVlZwcXGBj48PBg0apBcsVygUWLNmDVasWIF9+/YhKioKtra28PHxwaRJkxAbG5vvepS0hg0bYuzYsVi+fDnOnDmD+Ph4VK5cGd27d8e4ceP0Zo41JZlMJvS23rp1K0JCQmBlZYXGjRvjww8/1MuTVpyT8JUmVlZWWLFiBc6dO4cdO3bg+vXriIqKglKphJ2dHapXr17gYErlypWxefNmHDhwAIGBgQgKCkJMTAyysrJgY2MDNzc3eHt7w9fXt0C5fPOjQoUK+Pvvv3HkyBHs2bMHN2/eFF5b0+7O7cbbiBEjsGbNGiFo5unpqTdZJQBR4Mne3l6UZqG4TJ8+PV853d5++234+Phgw4YNOHv2LJ4+fYrU1FRYW1ujevXqaNOmDYYOHao3wzGQ/b1eu3Ytli1bhmvXriEhIUEIBha3qlWrok+fPti2bZuwbvny5aLPY8aMGcLkjpcvX0ZYWBhSU1Nhbm6OypUrw8PDA82aNRPyPWpoAlzr16/Ho0ePYG5ujrp162L06NHw9/fPMUhlbW2NRYsW4erVq7h58yaioqIQHx8vnCuqVq2KVq1a4Z133tEbzurr64t9+/YJx/dHjx4J7XV3d3e0bNkSw4YNyzUHc2lkrGPjoEGD0L17d+zatQtnzpzBnTt3RPu+evXqaNy4Mbp27Sq62VvYz9qQgp6zFi9ejNWrV2P79u0ICwuDtbU1GjRogPHjx8PJySnXgCSQHSDs1q0bNm/ejIsXLyI0NBSpqamwtbWFs7MzfHx88t07UmPlypVYsmQJTp06hejo6DxHdykUCrz77rv4/vvvhXXsHfl6kahLYuotolIiLCxMlKOnWbNmejOOEZG+yZMnC73EnJyccPTo0SInsyYqjE8++UR0U2Dt2rX5nviBSJsmP7bG/PnzS3xSrOIUFhZmcKKJly9fYujQoaLJDdavX683Qyy9foKDg9GrVy9h+YsvvsDQoUNFZVJTU9GsWTMhZ+Dy5cvRqVMno9aTqCS9rsfGsn7OKi4LFiwQhsxbWFjgxIkTRk9LQSWHV5dERAQge3KQ+Ph43L59WzTr33vvvcdgJBGRiY0YMQJyuRwNGzZExYoVIZVKERERgWPHjgnDCIHsdBZl5YKbCu7+/fs4efIkXr58iV27dgnrK1asaDDH5YULF4RgZN++fRmMpNcOj42vn8DAQISHhyMkJESUy3XQoEEMRr5meIVJREQAsodR6Obhaty4MYYPH26iGhERkbbccoUC2Rfcuc2eSmXfzZs3sXDhQtE6mUyGr776ChYWFnrlNZPhOTs7Y86cOUapI5Gx8dj4etmwYYNevspq1aqZZEI1KlkMSBIRkYhCoYCzszO6deuGcePGFXlyBCIiKrrJkyfj1KlTCAoKQmxsLJKSkmBhYQFnZ2d4e3ujZ8+eaN26tamrSUZkZ2eH+vXrY/z48WjWrJnBMnPnzsXcuXONXDMi4+Gx8fUlk8lQuXJltG/fHh9++CFsbW1NXSUqZswhSUREREREREREREZjuumOiYiIiIiIiIiI6I3DgCQREREREREREREZDQOSREREREREREREZDQMSBIREREREREREZHRMCBJRERERERERERERsOAJBERERERERERERkNA5JERERERERERERkNAxIEhERERERERERkdEwIElERERERERERERGw4AkERERERERERERGQ0DkkRERERERERERGQ0DEgSERERERERERGR0TAgSUREREREREREREbDgCQREREREREREREZDQOSREREREREREREZDQMSBIREREREREREZHRMCBJRERERERERERERsOAJBERERERERERERkNA5JERERERERERERkNAxIEhERERERERERkdEwIElERERERERERERGw4AkERERERERERERGQ0DkkRERERERERERGQ0DEgSERERERERERGR0TAgSUREREREREREREbDgCQREREREREREREZDQOSREREREREREREZDQMSBIREREREREREZHRMCBJRERERERERERERsOAJBERERERERERERkNA5JERERERERERERkNAxIEhERERERERERkdEwIElERERERERERERGw4AkERERERERERERGQ0DkkRERERERERERGQ0DEgSERERERERERGR0TAgSUREREREREREREbDgCQREREREREREREZDQOSREREREREREREZDQMSBIREREREREREZHRMCBJRERERERERERERsOAJBERERERERERERkNA5JERERERERERERkNAxIEhERERERERERkdEwIElERERERERERERGw4AkERERERERERERGQ0DkkRERERERERERGQ0DEgSERERERERERGR0TAgSUREREREREREREbDgCQREREREREREREZDQOSREREREREREREZDQMSBIREREREREREZHRMCBJRERERERERERERsOAJBERERERERERERkNA5JERERERERERERkNAxIEhERERERERERkdEwIElERERERERERERGw4AkERERERERERERGQ0DkkRERERERERERGQ0DEgSERERERERERGR0TAgSUREREREREREREbDgCQREREREREREREZDQOSREREREREREREZDQMSBIREREREREREZHRMCBJRERERERERERERsOAJBERERERERERERkNA5JERERERERERERkNAxIEhERERERERERkdEwIElERERERERERERGw4AkERERERERERERGQ0DkkRERERERERERGQ0DEgSERERERERERGR0TAgSWQiv//+Ozw9PeHj44OUlJRCbyc8PBz16tWDp6cn9u3bV4w1fH34+/vD09MTnp6epq4KERER0WunuNq1//zzDzw9PeHt7Y3nz58XYw3JVC5cuCC0wz/55BOjv/6yZcuE19++fbuw3pTXB6beJ0SlhdzUFSB6EyUnJ+P3338HAAwYMABWVlZ6ZSIjI9GuXTtkZWUBAGxtbXH27FmYmZmJyrm4uKBTp07Yv38/VqxYgS5dukAqzfteg7+/P8LDw0Xr5HI5HBwc0KRJE4wbNw716tUr7FssMVeuXMHmzZtx8eJFvHjxAnZ2dqhduzZ69+6Nnj17Qi4v2cPajRs3sGHDBly6dAlRUVGwsLCAs7MzWrVqhf79+6NmzZol+vpEREREpUlu7VpDwR4LCwtUrlwZrVq1wgcffIDKlSsLj3Xr1g3ff/89oqKi8Msvv+DLL78sUF2uXbuGwYMHC8s1atTgDftipH39IJFIIJfLUa5cObi4uMDHxwfDhg2Dq6trsb7mnTt3cPjwYQBAs2bN0Lx582LdfklZs2YNEhMTAQCTJk0ycW2ISicGJIlMYMeOHYiLiwMADBw40GCZffv2CcFIAEhMTMTJkyfRsWNHvbIDBw7E/v37cf/+fZw4cQLt27cvVL0yMzMRFRWFffv24fDhw/j111/RqlWrQm2ruKWnp2Pu3LnYuXOnaH1UVBSioqJw5swZrFu3DosXL0bVqlVLpA4//PADfvvtN716JSQk4M6dOwgJCcHPP/9cIq9NREREVBrlp12rLS0tDSEhIQgJCcGRI0ewZ88elCtXDgCgUCjQt29frFq1Ctu2bcO0adNgZ2eX77rs2bNHtPzo0SPcuXMHdevWzf8bonxRq9VQKpWIiYlBTEwMbty4gbVr1+Kzzz4TBYXr1auHgIAAAECFChUK/Dp37tzB8uXLAQATJ04scECyf//+aNmyJQCgevXqBX79wlq7dq0QvNUNSBZ1nxC9LhiQJDIBzXCB2rVro0aNGgbL6DaoAGDv3r0GA5LNmzdH+fLlkZCQgB07dhQ4IDlnzhzUrVsXMTExWLp0KR48eAClUolvv/3WYD2MTaVSYfz48Th79iykUik6dOiAjh07wsnJCUlJSbhx4wZ27dqFW7duYfTo0di0aVOxn9z/+OMPUTCye/fu6N69O2xsbBASEoLdu3cX6+uVNqmpqbC0tDR1NYiIiKiUyU+7FgB++uknVKhQAaGhoZg3bx5SUlIQGRmJw4cPo1+/fkK5Tp06YdWqVVAqldizZw/eeeedfNUjKysL+/fv11u/d+/eMhOQTElJMThyqjSaM2cOPDw88OzZM2zfvh0XL16EUqnE3Llz4eDggE6dOgHIHuXVtGlTo9dPsy+dnZ3h7Oxs9NfPjan2CVFpwxySREb27NkzBAUFAQBat25tsMzTp09x8+ZNAEDjxo1RpUoVAMCxY8cM5uVRKBTw8fEBABw/fhwZGRkFqpOHhweaNm2KLl264PPPPxfW379/HwkJCYiMjMTs2bPRu3dvNG/eHPXr10ezZs0wYsQIYQiFto0bN6Jfv35o1KgRvLy80KZNG4waNUoU0MvKysIvv/yCnj17okGDBvD29ka7du0wbtw4bNmyRbS9X3/9FWfPnkXt2rURGBiI5cuX4+2330bLli3RqVMnTJ8+Hfv378eAAQMQFhYmeg85uXfvHnx8fODp6YkGDRrg7NmzOZaNj48X7swCwHvvvYfFixejU6dOaNmyJYYOHYr169dj+vTpoucFBQVh8uTJaN26Nby8vNC6dWtMnjwZt27dEpXbvn27kEdm2bJl2LVrF3r27AkvLy906dIFgYGBQtmvv/5aKHvo0CHRdlauXCk8prnrCgChoaGYM2cO2rdvDy8vL7Rs2RJTp07Fw4cPc63Hhg0b0KVLF9SvX18Y7pSWloZvvvkGLVq0QKNGjTB+/HiEhYXlmIdHrVZj27ZtGDJkCBo3bowGDRqgd+/e+Ouvv0Q9gAFxLp/o6GjMnDkTPj4+aNSoEaZOnYr4+Hi9z+bkyZMYO3YsWrRoIXzXJk+eLEpHUJA6EBERUf7lp12r4eXlhaZNm6Jv375o06aNsP7Fixeict7e3ihfvjwA6LV1cnPhwgVER0cDADp27Ahzc3MAELWjtKlUKgQEBGDw4MFo0qQJGjRogM6dO2Pu3LmicmlpaVi5ciX69u2LRo0aoWHDhujRowd++uknocy7774rtGHCwsKE9fnJX/js2TNMmjQJTZo0Qc+ePQEAly5dwuTJk9G5c2c0bdoUXl5e8PX1xZQpU3D37l2995JXHWfOnCm83vnz50XP/fbbb4XHDhw4kO/97eHhgebNm6Nv375Yu3YtunTpIjw2f/58ZGZmAsg5X2JcXBzmzp0rtE8bNWqELl264KOPPsLFixeF/TR79mzhOcuXLxe1VXX3fVBQEGbPno3mzZujUaNGuX4G2mJjYzFr1iz4+PigSZMmmD59OmJiYoTHw8LChG28++67oufqtoE17WnttqjmcU2Z3HJIRkdH4+uvv0bHjh2F38y7776rl3pAt043btzAu+++i7feegutW7fG4sWLRe3cglx7ERkLe0gSGdm///4r/J1Tjsa9e/cKf3fr1g1hYWH466+/kJqaiqNHjwqNFW316tXD4cOHkZ6ejtu3b6Nhw4aFqp+tra1oWalUIiIiQu8EnpCQgAsXLuDChQtYsGAB3n77bQDAzp079QKCmmHVjx49wtixYwEAv/zyC5YuXSoqFxERgYiICCQmJgpDfhITE/HHH3+gcuXK+Pvvv2FnZ4d169Zh1apVyMzMxGeffYZffvkFKSkpOHr0KJKSkrB//348fvw4x2EZYWFhGDNmDF6+fAmFQoFly5blOjT9+PHjQiDY1tYWEyZMMFhOO3/kkSNHMGXKFCiVSmHdixcvcODAARw9ehQ//fQTOnTooLeNXbt2ITQ0VFgOCQnB9OnTUadOHdSoUQO9evXCunXrAAD79+8X7j4DEBqRCoUC3bt3B5AdFB01ahRevnwplIuNjcW+fftw4sQJ/PXXX2jQoEGe9dD46KOPcOTIEWH52LFjuHv3LlJTUw3uk08++URvmP29e/fw7bff4tq1a1i8eLHB5w0dOlT0+vv27YNcLscPP/wgrFu+fLnQGNWIiorCgQMHMHz4cLi4uBSpDkRERJS7/LRrdYWGhopuztauXVuvTN26dXH+/HncuHEDKpUKMpksz+1qt581PS4PHz6M8PBwXL16VQhQAdnt2/Hjx+P06dOibTx58gRPnjzBvHnzAABJSUl45513cOfOHVG5Bw8eIDU1FVOmTMnHO87diBEjhDaPJhB79epVveBgdHQ09u/fjxMnTmDbtm1CuzM/dRwwYAD++ecfAMDu3bvRokULodyxY8cAADY2NmjXrl2h3oNEIsHs2bNx6NAhZGVlITw8HNeuXcu1F+DUqVNFwVGlUikM5Xdzc0OzZs0KXI8pU6YYbL/mZdSoUbh3756wvGfPHty/fx9bt27Vy99fkkJDQzF06FAhsA5k75eLFy/i4sWLCAoKwowZM/Se9/jxY7z77rtIS0sD8CpA7erqKlxT5ffai8iYGJAkMjLtXmnu7u4Gy2gaVBKJBF26dBECkprHDAUktbf14MGDQgUkY2JisGLFCmHZ0dERjo6OSEtLw/Tp01GtWjXY2tpCKpUiIiICCxYsQGxsLH755RchIHn06FEA2RPkfPbZZ3B3d8eLFy9w+/ZtXL9+Xdi2JqhVrlw5fPbZZ6hYsSIiIyNx9epVIQ+RplxiYiLmzZsHOzs7HD9+HF9//bXw+Keffopy5cpBoVAAyG6IaBprhgKSsbGxGDNmDKKjoyGXy7Fo0SL4+fnlul+0Gyienp6wsbHJtXxKSgr+97//CcHIoUOHon379jh+/DjWr18PpVKJ//3vf2jZsqXesJzQ0FAMGDAAnTp1wpo1a3Du3DlkZWVhy5YtmDVrFt566y24u7vjyZMnQm9YMzMzhIaG4vbt2wAAX19f2NvbQ61W45NPPhGCke+99x58fX1x+/ZtLF68GCkpKZg9ezb27NkDiUSiVw9fX18MHToUSqUSLi4uOH36tPC5mZub46OPPoKrqyt+/vlnoXeEtv379wuBwOrVq2PSpEmwsrLCypUrce3aNQQGBqJTp05C8FRbWloavv/+eyQlJeHbb7+FUqlEYGAgPv/8c9ja2uLmzZuiYOSAAQPQsWNHpKSk4ODBg8LETkWpAxEREeUuP+1aDUM3Yvv06WOwHebu7o7z588jJSUFz549g5ubW67bViqVOHjwIADA2toabdq0QXJysjCSZ+/evaKA5Lp164RgpKWlJcaNGyfM7L1p0yah3OLFi4VAn52dHf7v//4PNWvWxJMnT4RAXlHFxMRg9uzZqF27ttC70tvbG5999hmcnZ1hbW0NlUqFoKAg/PDDD0hNTcWaNWvw1Vdf5buOzZo1Q9WqVfH06VMcPHgQn3/+OczMzHD//n08ffoUQPZQeU2v0sKoUqUKnJycEBERAQC4e/dujgHJpKQkXLhwAUB2IHvSpEmQy+V49uwZzp49K7SPf/rpJxw+fBgrV64EkB1o7t+/PwAYHIYdERGBiRMnolGjRnjw4EG+656SkoLFixcjPT0dCxYsQFxcHO7du4dNmzbp9YjMi5+fHwICAjB16lQhsKg9cik3X375pfCcZs2aYfTo0Xj69CkWLVqE9PR0/Pbbb+jUqRPeeust0fOio6PRuHFjvP/++zh37pzQeWHjxo1CoDG/115ExsSAJJGRaR/wNQm8tQUHB+P+/fsAgIYNG8LJyQmVKlVCpUqVEBUVhVOnTuHly5d6z9VeLuhJZcSIEQbXjx8/HhKJBK6urqhYsSL++usvBAcHIzExEWq1WigXEhKCpKQk2NjYCLNcKxQKuLu7w9vbGzY2NujVq5do25oAoqWlJapWrQpPT09YWloKgU2Ny5cvw9raWsid+ccffwAA+vbti27dumHt2rU4ffq00BuuevXqsLKywpMnTwy+p7FjxyIkJARSqRQLFixA586d89w/mhnyAKBSpUp5lj9z5ozwGdSvXx9ffPEFgOwGyvXr1xEUFIS4uDicPXtWLydonTp18M033wAA7O3tce7cOQAQGosA0KtXLyxfvhxJSUk4ffo0/P39RTmTevfuDSC7IRgcHAwgu6eB5kKgUaNGaNCgAa5evYoHDx4gKCgIXl5eonq4uLhg1apVolnLNe8DAIYPH45Ro0YByJ7Bslu3bnr7QXMnXlPeyckJQHbw8Nq1a0IZQ8HAL774Qtg3R48exalTp6BSqRAeHo46deqItt2zZ09hnwFAjx49iqUORERElLu82rW5kUgkkEgkUCqVeoEw3XZtXgHJ06dPIyEhAQDQvn17mJmZwd/fH2ZmZsjIyMD+/fvx6aefCjcsd+3aJTx39uzZoklYNAGcrKwsUS71H3/8Eb6+vgCANm3a5Du3ZV5mz56NQYMGidY1bNgQV65cwaZNmxAaGqo3EkXTwzS/dZRIJOjfvz8WL16Mly9f4vjx4+jcubMoqKrdfiqsihUrCgFJ7fazLrlcDolEArVaDXt7e7i7u8Pd3R1yuRxDhgwRynl7ewvXRUB2EDK3Xpfvv/++MIGMZj/kx7x584TRUpmZmZgzZw6A7B62BQ1Iajp0aPeszE++yPj4eCFIbmZmhqVLl8Le3h4AEBkZidWrVwPI7r2pG5DUjPiqUKEC2rdvj61btyI1NVV0/ZDfay8iY2JAksiEtIN6GtrDTTS5WDQ9JdetWyfcAR4wYECe2yqsSpUqYfz48Rg+fDgAYM2aNZg/f36uz3n58iVsbGzQr18/BAYGIjU1VQhYVa5cGT4+Phg5ciS8vb0BvAoIRUZGYvDgwZBIJHBzc0PLli0xevRooXdjVFQUqlatKpzUg4ODYWVlhXnz5sHMzAyenp6iO+sSiQRSqTTH3ICaBtzYsWMN9jQ1RHsYe1RUVJ7lHz9+LPyt22Bo0KCB0JtQu5yGJhcoANGsktpDrnv37i3ktDxw4AD8/f2FYT3W1tbw9/fX2/6dO3eEz1PXw4cP9QKSvr6+omAkANEQGO1h3jVq1BAmVdIWEhIi/K3dq1X3tQ3Jaz9obzu34UVFqQMRERHlX15tUc2kNnFxcfjll18QFBSEnTt3onz58vj0008LtC1d2kE5TfvZxsYGrVu3xrFjxxAdHY0LFy4Isy3npx0RFxcn5K82MzPLNb1PURiajPKjjz4SRh0ZomkPFaSOffv2xdKlS6FSqbB792507txZeA1HR0dh3xRFZGSk8LduGihtFhYW6NGjB3bv3o0zZ86ge/fuUCgUqFWrFtq3b4/33nsv1+fnpKATe2pot2s11yoACjX8u7CePHkifO+rVq0qBCN166T93dWoUaOGMKGnVCpFuXLlkJqaKrp+yO+1F5ExMSBJZGTaJxftk4SGduLt7777Dt99953BMroBSe1tab9Gfmhm2ZbL5XBwcICbm5toCK+m2z+QfefR19cXCoUCX375pdADTxMA9PX1xYYNG7B9+3bcunULjx8/xvPnz7F7924cPnwYu3fvhpubGwYOHAgnJyfs2bMHd+7cQUhICJ4+fYqnT5/i6NGjCAwMFO6Oa+cNUiqVUCgUQoBSd/j0jRs3kJSUJPSY1CWTyaBSqbBp0yb06dNHlPcxJ9oTtdy7d0/oDVoYukOjdWlyB2nqaoi7uzveeustXL9+HUePHsWTJ0+ESZA6d+4MCwuLAtXJUP7HvGYpz+t9FOW1AfF+0A6MFmfgPa86EBERUe7yatdq8/LygqurK4Dsm9+aXoGBgYF6AcmCtGvT0tJEwTtNDzldgYGBhQ66aXpz5of2TfH8jFrSbXM9e/ZMeD9WVlaYOXMmatWqBQBCbz1D7aG86ujk5IQ2bdrg+PHjOH78OB4/fiykU+ratavejeiCCg0NFd24r1OnTq7l58+fDx8fHxw/fhwPHjxAWFgY7ty5gzt37uDGjRvCqKiCcHR0LPBzdBnah9rrVCqV6DFjDHcuyPUDAIOfZUGuvYiMhbNsExmZdgBMd1jxjRs3RF3rc3L+/HnRzG+629I0WvJLM8t2w4YNUbVqVb2TnuZup52dHWbOnImWLVuiXr16BnsLqtVqNGrUCF999RV27NiBf//9V5g9LjU1FSdPnhTKtW3bFgsXLsTu3btx9epVjBw5EkB2HpSrV68CyB768eTJE2GmPjc3NyQkJGDDhg1ITk7GqlWrhNe+du0aZs6cCYlEkuMdUk1d4uPjMXbsWFHS6Jy0a9dOyGWTmJiIX375xWA5TU877TuMN27cEJXRXi7KnUjNEPiXL1/iyy+/FNZrhmvrbr9Zs2a4d++e3r9r166JhsZoGGr4VK1aVfhbEwAFgEePHun1jgSAatWqCX+vXbvW4OsXZPbMnLZ9/PjxfJUr7joQERG96XJr1+ZGO6BmqA2h2ZaVlZXBXIHajh49Kkw+mJuDBw8K+b212wcnTpwwWN7e3l4I9KSnp+Ps2bM5blu7N5+mbZmVlYUzZ87kWa+c2t1A9rDrYcOGoVmzZgYnVylIHQEIHRoyMjLw6aefCsHTog7XVqvVWLBggfC5uri45JnPXi6XY/Dgwfjll19w6NAhXLp0ScjzeebMGeEz1QyzB5DjCCiNwt4w127XarfVNakCtD9f7VnhL1++nON3T7suedUbgOga7OnTp6JAp3adtL+7BZHfay8iY2IPSSIja9y4sfD37du3RXk7tIebdO/eHU2aNBE99/Dhwzh37hxUKhX2798vGoKrSWZtbm6e71kO88vFxQUhISGIj4/Hr7/+Ck9PT6xdu1YYIqLt66+/RnR0NFq1aoUqVapAJpPh8uXLwuOahuDkyZNhbW2NJk2aoHLlylCpVKIZFzMyMgAATZo0wdatW3Hs2DF06tQJ/fr1w7fffosvvvgCX3zxBSQSCWxtbREeHi7k/xk+fLjBGRuB7HyZISEhCAgIQHh4OMaNG4e///4b1tbWOb5/Ozs7TJw4EQsXLgQA/P7773j+/Dm6desGa2trhISEYPfu3bCzs8PPP/+M1q1bw87ODvHx8bh16xbmzZsHPz8/nDx5UniP9vb2RRr606NHD3z33XfIzMwUGruVKlUSzZpYp04deHh4IDg4GBcvXsTHH38s3AEPDw/HjRs3cPjwYVy6dClfr9mxY0esX78eQHZy7sqVK6NKlSr4+eefDZbv1auXkED7448/xvjx41GtWjXExsYiJCQEJ06cQNu2bTFx4sQCv/9evXph7dq1ALJ/N1ZWVujQoQNSUlJw5MgRDBkyBD4+PiVaByIiojddbu1aXbdu3cLz588RHx8vurlrKMBy9+5dANlDafOaYVs73dHQoUP1bsxv27YNt2/fRnx8PM6cOYN27dqhd+/ewmvMnz8fMTEx8Pb2RmRkJDZv3oxNmzZBKpWiZ8+ewoQk06dPx4cffogaNWogNDQUR48exW+//QZAPKHP119/jQEDBuD48eMGh9fmRTsAe/78eezZswdSqRSLFy/WK1uQOgLZN9kdHR0RExMjzJDu7Ows+hzzKzg4GBKJBOHh4di6dauovT9r1qw8e1x27NgRnTt3Rp06dVCpUiXExsYKk/qo1WpkZGTAyspK1Gvv1KlT8PHxEdI2FWZYtyFz587FRx99hPT0dNF+1uRfL1eunNC2f/LkCebOnYsaNWrk2ouzfPnywvtZt24d6tevD1tbW9HIK2329vbw9fXFqVOnkJGRgalTp2LUqFF4+vSp0P4GkO+UU7rye+1FZEwMSBIZmbOzM+rXr4+goCBhwhIg+87Zvn37hOX/+7//g4eHh+i5lStXFp6zd+9eISCpVCqFoFK7du0M3kEtikGDBgnBuB9//BFA9kmzevXqenkQ09LScODAASGnoTYLCwvhxJ6YmIiDBw9ix44deuUqVKggBNb8/f1hZWWF77//Hs2bN8fQoUNx8eJFYdbEd955B+fPn0diYiIcHBwwevRovP/++7m+n//97394+vQpTp06hdu3b2Py5MlYuXKlkOzZkDFjxiAuLk5o1O3Zs0cUQAZeNVqsrKzwzTffYOrUqVAqlQgICBDNrqdQKPDNN9/ozbBdEA4ODmjVqpXQ4xTIDlJq30WWSCT47rvvMGrUKLx8+RK7du0SJXEvqNatW6NDhw44cuQIUlNThZyMTk5OQiNNW7du3XD8+HHs3LkTz58/F02Ko9GmTZtC1aVBgwaYMGGCMCv85s2bsXnzZuFxzTCwkqwDERHRmy6ndq0hU6ZM0VsnkUgwYcIE0bqbN28KvSbzmnwwMTFRaAvJ5XJ89NFHesNOVSoVbt++DSC7/dyuXTuMGDECp0+fxtmzZ5GSkoIlS5YY3P60adNw+fJl3Lt3D3FxcaJJ9LTTAw0YMABr1qxBVlYWbt++jXnz5gHIzu336NGjXN+DLicnJ7Rr1w7Hjx9HQkICpk+fDiA7+GtoJFV+6whkt0H79OkjTJACZHeCKEzPQkO5uRUKBebMmSPk8cxNRESEqB7afH19hRziDRs2FCYnunnzJkaPHg0ge+RL8+bNC1xvQ6RSKaZOnSpa5+HhIZrsaPDgwcLILM1M7BUrVkS5cuUMpito3ry5kDf+22+/BZA9Ykk7FZauzz//HEOHDkV0dDTOnz+P8+fPix4fO3asXn76/MrvtReRMXHINpEJ9O/fH0D2nUXNndNLly4JQ6BdXV31gpFAdkBIMwvhv//+K8xid+HCBaHh1q9fv2Kv76hRozB16lS4uLjA0tISzZo1w19//YWKFSvqle3Vqxf69u2L6tWrw9bWFjKZDI6OjujYsSMCAgKEoQ/Dhg1D9+7dUbVqVVhZWUEul8PJyQm9evXC+vXrhTuednZ2GDlyJJ48eYIxY8YgJiYGK1aswMGDBxEYGIg5c+bghx9+QGBgIHbu3Ilx48aJgnKGyGQyLFmyRNjHp0+fxmeffZbnfpgxYwa2bNmCvn37wtXVFebm5rC1tYWHhwdGjRolNBiB7Lu+GzduRJcuXeDo6Cjk5+zcuTM2bNggBC+LQnt4tqFlIHuW7507d2LIkCFwc3ODQqFAuXLl4OHhgSFDhmDNmjUFes1Fixbh3XffhZ2dHSwtLdGuXTsEBAQIQ1F081cuWLAACxYsQLNmzWBrawuFQgFnZ2e0bNkSc+bMwbBhwwr2prVMnjwZv/76K9q0aQM7OzsoFApUqlQJnTt3FnJUlXQdiIiI3nSG2rW5kclkwmzAf/75J7p27Sp6XJNKxczMLM+hxIcOHRKNqjGUA08z2R8AHDlyBOnp6VAoFPjtt98wZ84cNGjQAFZWVjA3N4e7u7toxmtbW1ts2rQJU6ZMQZ06dWBhYQFLS0vUrFkTffr0EcrVrFkTP/zwA9zd3aFQKODh4YElS5age/fuee4PQxYuXIi+ffvC3t4e5cqVQ58+fbBy5UqDZfNbRw3dPPSF7XEHZAcgHRwc4OXlhdGjRyMwMNBgKiBDpk2bBl9fX1SuXBlmZmYwMzND9erVMWbMGPz0009COQcHB6xYsQL16tUrcJ70/Fq7di26desGGxsbWFtbo0ePHvjzzz9Fs79PmDABgwcPRrly5YSRORs2bMixl6amfKVKlfId8HVzc8P27dvxzjvvwNXVFQqFAjY2NvDx8cHixYsxY8aMQr/H/F57ERmTRF0SMwQQUa6Sk5PRoUMHxMXF4f3338fMmTOLtL0pU6Zg//79qF27Nv755588A3JlTWZmJkaNGoVLly7B3NwcvXv3RqtWreDg4ICkpCTcunUL+/btQ3JyMvbv31/oCWcob2q1Wq9R9fDhQ6HB7enpiX/++ccUVSMiIiITKM52rVKphL+/P6KiojB06FCDIxuo6Dp06ICwsDDUrFlTNKEmEZExvV5RC6IywtraWhhWvHnz5nwl4s5JeHi4cCd54sSJr10wEsgegvPbb7+ha9euSE9Px5YtWzBt2jSMHDkSEyZMwC+//ILnz59jxowZDEaWsAULFmDVqlW4ceMGIiIicPr0aUybNk14vLA9AYiIiKhsKs527b59+xAVFQUzMzOMHz++uKpIyL7Bn5SUhP379wu5DXPL+UlEVNLYQ5KIypQzZ85gy5Yt+PfffxEbG4sKFSqgbdu2GDt2rDAcnErOJ598YjD3DAA0bdoUq1evFg1vISIiIiLT2759O2bPni0sOzo6Yv/+/QaHuRMRGQMntSGiMqV169Zo3bq1qavxxmrfvj2eP3+O+/fvIyEhAebm5qhVqxZ69OiBoUOH5joxEBERERGZlrm5Oby8vPC///2PwUgiMin2kCQiIiIiIiIiIiKjef2SzREREREREREREVGpxYAkERERERERERERGQ0DkkRERERERERERGQ0nNTmP9HRiSX+GgqFDEqlqsRfp6zhfjGM+8Uw7hfDuF8M434xjPvFMGPsl4oVbUt0+0R5Ke42L48nZR8/w9cDP8eyj59h2cfPMFt+27vsIWlEEompa1A6cb8Yxv1iGPeLYdwvhnG/GMb9Yhj3C1HB8XdT9vEzfD3wcyz7+BmWffwMC4YBSSIiIiIiIiIiIjIaBiSJiIiIiIiIiIjIaBiQJCIiIiIiIiIiIqNhQJKIiIiIiIiIiIiMhgFJIiIiIiIiIiIiMhoGJImIiIiIiIiIiMhoGJAkIiIiIiIiIiIio5GbugJERFRImZmQ33kI+f3HkKWlQ2phjsza1ZFZtyYg5+GdiIiIiIiISidesZaAjJRIZKYn6K1XKqRQKrP01svNy8PMyskYVTMp7hfDuF8M434xTLNfZKHhMD91Gar0DGRKAIkaUEsAScgV4KQZ0tv4QOXm/MbtF138vnC/GML9QkRERERkWgxIFrOMlEjcPfgu1FkZ+X6ORGqGOp3XvdYXO9wvhnG/GMb9YpjefqmSS+EHe4EHb+h+yQfuF8O4Xwx7E/YLEREREZExmTyH5KVLlzB+/Hj4+vrC09MThw8fzvM5Fy5cQN++feHl5YVOnTph+/btemUCAgLg7+8Pb29vDBw4EDdu3CiJ6uvJTE8o0EUOAKizMgz21HidcL8Yxv1iGPeLYdwvhnG/GMb9Yhj3CxERERGR6Zk8IJmSkgJPT098/vnn+SofGhqKDz74AM2bN8euXbswcuRIzJkzB6dOnRLKBAYGYv78+ZgwYQJ27NiBOnXqYMyYMYiJiSmpt0FEVGrJgx9BfvMe5LfvQ37vEWQPnkD2OAyyp88gDY+E9Hk0pC9iIYlLgORlEiTJKUBaOqDMBLL0h68SERERERERFYXJh2z7+fnBz88v3+U3btwIV1dXfPLJJwCAmjVr4sqVK1izZg3atGkDAPjzzz8xaNAg9O/fHwDw5Zdf4vjx49i2bRvGjRtX/G+CiKgUMz9zBZbpjwv9fLVEAshkgFwKtVQGyGWAVAq1XJa9XiaFWpaPv/97HuQyA2WkgExrvVwG9X9lxduRQf1fWcik2dsjIiIiIiIqIPN9J4p1ezKpBJIsdY6Pp3fLf+wLAL755gvs27dHWC5Xrjzq1KmHDz+cjFq1ahe6nqWFyQOSBXXt2jW0bNlStM7X1xfffvstACAjIwNBQUH44IMPhMelUilatWqFq1ev5rhdlUqV42MSiQRSrYve3Mpm6fQmylJLciwLAFJJ9pc1Nf4+MpUpUOfw3ZVIIKpDVlZWsZQFAJms5MumJjzNdV9IoIbkv4fVagk0m02KDYYyI0VUViqVQPJf4bzqIC6rhjqXwqYom54UJtov4v0AqGF4nyXFBkOVmSpsV61WIyuXA1/2d7jslM1IDhP+zm0/AIAEgOS/31FKnP73RVyHV7+NvOsLnd99zj0FjVU2r9+R5ngCiI89CebxyJCKj1syrb9zPqIZKKsGoPxvIT33slkAcvl5FqisFBC+BbplM82SkOWU0+9IkuN2M/ZsgCLL7tXvU63Ouw5lqGymNB6wzv4779/Rq32WuWcD0rPscikLSLWPPbnUoTSWzZDGI8vK8L7QPp7o7jOVKkt0/i9I20C3LBERERFRfjRv3gqffjoXABAbG4PffvsFH388Fdu37zVxzYquzAUkX7x4gQoVKojWVahQAUlJSUhLS0NCQgJUKhUcHR1FZRwdHfHo0aMct3vlyoUcH7Ozs4eHR11h+erVy8jKMnzhYS5LFS0/S66JLLXMYFkzWRoqWz0BAIRd/R7PkmsgM0thsKxCmo4q1iHCckRyNSizzA2WlUuVcLZ+9V6fp7gjQ2VhsKxUooKrzQNhOTLFDekqK4NlJZIsuNncF5ajUl2QlmljsCwAVLW9J/z9ItUZKZkeOZZ1tQmGJmwQm+6EZGV5AEDY6d16ZV2sH0D2X3AlNq0SkpT2OW7X2foh5NJMAEBcekUkZjjkWLay1WOYybLziiWkOyIho0KOZZ2snsBclgYAeJnhgPj0ijmWrWT5FBby7O9FYoYd4tJ1J0V4tV8qWobBUp4MAEjOLIfYNMOzloSd3o0KFs9gpUgEAKQobfEizTnHOjhYRMBG8RIAkJppjehU1xzL2ptHwtYsHgCQlmmJqNSqOZa1M49GObNYAEC6ygKRKe45li1v9gLlzbPTJmSozPA8pXqOZW3NYmH/39dbpZbjWXLNHMvaKOLgYBEFAHj672KEJ9fKsay1IgGOFs8BZAfswpJy/k5ayRNRwfKZsPw00TPHshbyJFSyDBeWQ5NqQ602HHwwl6XAySpUWA5LqpWvYwSA/44Rhuuse4yITHEXjhFhNi8BvBQeK73HCNscy7raBAsB15i0ysIxQqD1WbpYP4BMkn2MiEuvmOMxIgzP4Gx9qgwcI17RPkYkKXM+RgBABbNn0HxSqZn5P0bcNr9YRo4R0QCAzKz8HyNUWbLsY0QOv33tY4Qa4mNEyu37UFjECssODo6oVevVcaEg7QgiKhuK2nOmoD1hiIiIdJmZKeDomH3d4ehYAcOHj8KECe8jLi4O9vb2+PnnpTh58jiioyPh4FABnTt3xejRYyGXZ4f77t8PxtKlP+Lu3TuQSCRwdXXDxx9/ijp16gEArl+/hlWrluPu3Tuws7ND27bt8MEHE2FpaVni763MBSRLinZvPl1yuRRmZjKtZQlUKsPl5TIJMou9dkRERGRKMqlE1FbQbRsUpB1BRERERFRQKSkpOHgwEK6ubihfPruDhpWVFf73v89RoUJFPHz4AAsXfgMrKysMHz4SADBv3hx4eHhixozZkEqluH8/GDJZdigwPDwMM2ZMwtix/4fZs+ciPj4OixcvxOLFC/Hpp/mb56UoylxAskKFCnjx4oVo3YsXL2BjYwMLCwtIpVLIZDK9CWxiYmL0elZqa9jQJ8fHJBIJMjJe9Yj09m6SY9nU+Pt4qNUR09n6YY5ldVW2yn+ONyetXlN5qWT5NN9lK1qG5V1IU9biWa7DBbU5WkTAARE5Pq49qNLBPBL25pH5KmtvHg27/3rJ5FXWziwa5c1e5KtsObMY2JrF5qusrSIWNoq4fJW1UcTDWpHzTK3aZa3lL2Flk5ivspbyRLjaBOerrIUsOd9lzWWp+S5rJk3Ld1mFNCPfZWWSzDzKvpLdmy9/ZSVQ57ssgAKVdbF+YLCcITxGZOMxIhuPEdlK4zGiVp1asLJ/latHt21QkHYEEREREVF+nD17Gp06Zc+XkpqaCkfHCli4cImQDmjUqPeFslWqOOPp0yc4cuSgEJCMjIzEsGEj4O5eDQDg5vZqdNO6dX+iU6euGDRomPDYlCkzMWnSOEyf/gnMzQ2Pyi0uZS4g2bBhQ5w8eVK07uzZs2jYsCEAwMzMDPXr18e5c+fQsWNHANl5Bs+dO4d33nknx+3KZPnvuZBbWd0cUdo53XJTK8IHlsr/hitKpFC5OUFVvSoyXZxei0kb0hNDEXb1+3yVlUheZe1ybTQT5rZuJVcxE8ttv0gk4otubW/SfsltP+hya/zm7Je8aB973qTviy7t44muN2m/8Hf0Sn5/R7r7TCaT5nr+L0g7goiIiIgoPxo1aoIZM2YDABITX2LHjq2YMWMyfvvtL1SuXAVHjhzE1q0bER4ejtTUFKhUKlhZWQvPHzx4GL777ivs3x+Ipk2bwd+/I1xcstMzPXhwHw8f3sehQ/uF8tlzLWQhIuIZqlXLOYVScTB5QDI5ORlPn77qnRMWFoY7d+6gfPnycHZ2xo8//ojIyEgsXLgQADBkyBAEBARg4cKF6N+/P86fP499+/Zh1apVwjZGjx6NWbNmwcvLCw0aNMBff/2F1NRU9OvXz+jvL79s0u1gk66Vu+xeJnDvEbIsnyGzXm0ovT2QVbkihFkHyhipzHB+urxY2tWGlX3Oef7KOu4Xw7hfDON+MYz7xTDuF8MKu1+IiIiIiIzN0tISrq6vOgt4eNRB167t8M8/O9CqlS/mzfsM7703Ds2bt4S1tQ2OHDmIjRv/FsqPGfMBOnXqinPnTuP8+bNYvXoVvvjiW/j5tUdqagr69OmHAQOG6L2uk1PlEn9vJg9I3rp1CyNGjBCW58+fDwDo27cvvvvuO0RHRyMi4tUwPjc3N6xatQrz58/H2rVrUblyZXz99ddo06aNUKZ79+6IjY3F0qVLER0djbp16+L333/Pdci2qSm9PJB1NxnSZPGkONLUNJhduQmzKzehqmCPTC9PKOvXhrpczhNFEBERERERERHR60UikUAikSI9PR03b96Ak1NljBw5Rnj8+XP9NFhVq7qjalV3DB48HJ9//ikCA/+Bn197eHjUwePHj0UBT2MyeUCyefPmuHfvXo6Pf/fddwafs3Pnzly3+8477+Q6RLu0yfB5C8kda0H2KBSKW/cgDw6BRCXONyV7EQfZ8fMwO34eqmquUHp7ItOjOmBmeGZuIiIiIiIiIiIqmzIylIiJyc5zn5iYiG3bNiM1NQWtW7dBSkoyIiOf4/DhA6hbtz7Onj2NkyePC89NT0/DihU/oV27DnB2dkFUVCTu3r0NPz9/AMDw4SPxwQejsGjRAvTq9TYsLCwREvIIly5dwEcfzSrx92bygOTrRm5eHhKpGdRZGfl+jkRqBrl5eUAqhaqWO1S13IG0dCjuPoT85j3Iw56LywOQh4RBHhIGtZkCmZ41oPT2hKqqc6kd0l2k/fIa434xjPvFMO4Xw7hfDON+MYz7hYiIiIgAIL2bX7Fuz8xMVuwTGV64cBZ9+nQFAFhZWcPd3R1fffUdGjduCiA7R+TixQuRkaFEq1atMWrUGKxe/SsAQCqVISEhAV9//Tni4mJRvrwd/PzaY8yYDwAAtWrVxvLlv+LXX3/Ghx+OBaCGs7MrOnToVKzvIScStVqd30lQX2vR0TnPVFpQGSmRyEzXnyVVoZBCqczSWy83Lw8zK6cctyeJS4DiVjAUt+5BGp9zPbPK2UDp5QGllyfUjnaFqntJKu798rrgfjGM+8UwzX6x3BoIaWIyAEDlVgWqbm25X/h90cP9Ypgp90vFirbFsh2iwirONi9QMhdfpYX5vhNFen5xX+iWlNf5M3yT8HMs+/gZln38DLPlt73LgOR/irtxZkiRv5xqNWRhEZDfDIbi7kNI0nPu3aFydoLS2wPKurUAy9KdwJ8/WsO4XwzjfgEkScmwWbZWWE5v1xzw83nj94sh/L4Yxv1imDH2CwOSZGoMSOYfA5JUlvBzLPv4GZZ9/Ayz5be9yyHbZYlEApWbM1Ruzkjv5Av5/cdQ3LwH2eMwSHTiyrJnkZA9i4T54TPIrFUNSm8PqGpUBWQyE1WeiIqLTCeNg8q1MvjLJiIiIiIiorKCAcmySiFHZr3ayKxXG5KkZMiD7mcHJ6NjRcUkqiwo7j2C4t4jZFlaILN+bSi9PJFVuUKpzTdJRLnTDkiqpVKoKldiQJKIiIiIiIjKDAYkXwNqG2somzeEstlbkEbFQHHzHuRB9yFNSRWVk6amwezyTZhdvglVBXtkentCWb821LY2Jqo5ERWGdkAyq3IFQMFDOREREREREZUdvIp9nUgkyHKqgHSnCkhv3wKyx2HZwcn7jyFRiZP0y17EQXbsPMyOX4CqmiuUXh7I9KgOmClMVHkiyhelEtLIF8KiyrWKCStDREREREREVHAMSL6uZDKoarlDVcsdSE2H4u7D7CHd4eLccxK1GvLHoZA/DoXaTIHMOjWh9PKAqqozh3QTlUKyZ1GQZL26waByrWzC2hAREREREREVHAOSbwJLcygb1YOyUT1IYhOguHUPilvBkCaIZ1mUZCihuHEXiht3kVXeFsr6HlB6eUDtaGeaehORHt2bCgxIEhERERERUVnDgOQbRu1QHhltmyGjjQ9koRGQ37wHxd2HkGQoReWkCYkwP3sF5mevQOXiBKWXJ5R1awGW5iaqOREBOvkj7cpBbW1lwtoQERERERERFRwDkm8qiQSqqs5QVXVGemdfyINDsod0h4RBolaLisrCIyELj4T54dPIrF0NSi9PqGq4ATLO60tkVGq1qIcke0cSERERERFRWcSAJAEKBTLr10Zm/dqQJCZDHhScHZx8EScqJlFlQXH3ERR3HyHLygKZ9WpD6e2JLKcKzDdJZATSF3GQpGUIy5zQhoiIiIiI6PX0zTdfYN++PQAAmUyGSpWc0L59B4wZMx7m5tmjV319m+Lbb39A27bthOeNGDEY3t5vYebMT/W2uX//XixY8DV27NiHR48eYPLk8cJjdnZ2qFOnHv7v/yajZs1aJfvmwIAk6VDbWkPZohGUzRtCGvkie5bu2/chTUkTlZOmpMHs8k2YXb4JVUWH7Fm663tAbWttopoTvf60h2sD7CFJRERERERUWKH//lis25PJJFCp1Dk+7tZ4eoG32bx5K3z66VxkZmbi3r27+OabzwFI8OGHk3N8Ts+efbB69a+YPPkjmJtbiB4LDNyN1q3bws7OTli3fv02WFtb48WLF/j5558wc+YUbNq0EwqFosD1LQhpiW6dyi6JBFmVKyK9ky+SJ45AyoBuUNapAbVM/ysji46FxbHzsF6xDpYb90AeFAwolQY2SkRFIQuLEP5WW5ghq4K9CWtDREREREREJcnMTAFHxwpwcqqMtm3boWnTZrh8+UKuz+ncuTvS09Nx/PhR0fpnz8Jx9eoV9OzZR7Te3t4Bjo4V4OlZBwMHDkVUVCSePAkp7reihz0kKW8yGVS1q0FVuxqQmg7FnQdQ3LoHWXikqJhErYb8cSjkj0OhNlNAWacmMr09oXKroj+kOzMT8jsPIb//GLK0dEgtzJFZuzoy69YE5PxaEhmi3UNS5VKZqRKIiIiIiIjeEI8ePcCtWzfg5JR76i47Ozv4+vph795/0KVLd2H9vn17ULFiJTRr1sLg85KSknDkyEEAKPHekQADklRQluZQNq4PZeP6kMTGQ3EzGIqgYEgTEkXFJBlKmN24C7Mbd5FV3hZKLw8ovTygdrCD7P5jWO45BklaOtQSQKLOjqso7j2G+vAZpPb0zw5+EpFAkpwCafxLYVnlwuHaREREREREr7OzZ0+jU6c2UKlUyMjIgFQqxbRpH+f5vJ49+2DGjMl49iwczs4uUKvV2LdvD7p16wmpVDzytV+/7KBlamoqAMDXty3c3asV+3vRxYAkFZrawQ4Zfs2Q0dYHstCI7HyTdx9CkiEeri1NSIT5mSswP3MFKgc7SGPjhcckavH/SEuH5dZ9SB3QFara1Y3zRojKAOaPJCIiIiIierM0atQEM2bMRmpqKjZvXg+ZTIZ27Trk+Twfn+aoWLESAgN34/33x+Py5YuIjHyO7t176ZVdseI3WFhYICjoFtauXY0ZM/QnwykJzCFJRSeRQFXVGWk92iNp8kik9u6AzOpuUBsYTiqLjYcEQE4DTTXrLfccAzIzS6rGRGWOdkBSLZVC5VzJhLUhIiIiIiKikmZpaQlXVzfUru2B2bPn4vbtW9izZ2eez5NKpejevRf27duDrKwsBAbuRuPGTeHi4qpXtkoVF1StWg3duvVEr15v4/PPZ5fAOzFQR6O8Cr05FApk1vdA6pCeSJ7wDtLbt4CqgBNvSABI0tIhv/uoZOpIVAZpBySznCoARsjpQURERERERKWDVCrFu++Oxm+//YL09LQ8y3fv3gtRUZE4ceIoTp48hh49+uT5nH79BuHRo4c4ceJYcVQ5VwxIUolR29ogo0UjpLw/GMmjByDLrhzUeT8t+7kSQB7MgCQRAECZCenzaGGRw7WJiIiIiIjePO3bd4RUKsO2bVuEdRER4bh//57oX2pqKpydXdC4sQ8WLvwWCoUZ/Pza57l9CwsL9Or1NlavXgW1Or8RnMJhQJJKnkSCrMoVkVXOJseh2npPUQOS1PQSrRZRWSF7HgVJVpawzIAkERERERHRm0cul6Nfv0FYv36tMAnNsmWLMXr0cNG/4OB7AICePXsjMfElOnXqCnNz83y9Rv/+gxAS8hhHjx4usfcBABJ1SYc8y4jo6MS8CxWRmZkMGRmqEn+d0spi+37Igx+/msAmF2oJkOlRHWn9upZ8xUqpN/37kpM3cb+YnfsX5scvCMtJk0ZAbWMtLvMG7pf84H4xjPvFMGPsl4oVbUt0+0R5Ke427+t8PDHfd6JIz0/v5ldMNSlZr/Nn+Cbh51j28TMs+/gZZstve5c9JMloMmtXz1cwEsjuIZnpUaNkK0RURojyR9rZ6gUjiYiIiIiIiMoSBiTJaDLr1oTawjxfeSTVALIc7Eq4RkRlgFotCkiqXKqYsDJERERERERERceAJBmPXI7Unv4AkGdQUgLAcsteSF/Elni1iEozaUw8JGmv8qmqXJ1MWBsiIiIiIiKiomNAkoxKVbsaUgd0BSyyk6mq/5vl5tX/r6a9kaakwXL9bkhi4o1cS6LSQxYWIVpWubKHJBEREREREZVtclNXgN48qtrVkTTJDfK7jyAPfgRZWgZUFmbI9KiBzOqusNq6D7JnUQAAaXIKrDb8g5ThfaC2L2/imhMZnyw8UvhbbW6GrAr2JqwNERERERERUdExIEmmIZcj08sDmV4eejNRpQzuCasNuyF7Hg0AkCYmw2r9P0h5522oy3N2UnqzaPeQVDk7AVJ2bCciIiIiIqKyjQFJKn0szJEypCes1v8DWVQMAED6MglW63chZfjbUJezMXEFiYxDkpIKaWyCsKxyrWzC2hAREZUd5vtOmLoKRERElAt2taHSydICqUN7QaU1PFUanwir9f9AkpRswooRGY/27NoAA5JERERERET0emBAkkottZUlUof1hsrRTlgnjUuA5fp/IElOMV3FiIxEOyCplkiyh2wTERERERERlXEMSFKppra2QurQ3sjSmtBGFhMPyw27IUlJNWHNiEqedkAyy6kCYKYwYW2IiKi0+/XXX+Hp6YlvvvnG1FUhIiIiyhUDklTqqW2tkTKsN7LsXk1oI4uOheXGPUBqmglrRlSCMjMhfR4lLHK4NhER5ebGjRvYuHEjPD09TV0VIiIiojwxIEllgrqcDVKG9kaW1oQ2ssgXsNq4B0hLN2HNiEqG7Hk0JKosYZkBSSIiyklycjJmzpyJr7/+GuXLl8/7CUREREQmxoAklRlqu3LZQUkba2Gd7Hk0rDbtBdIzTFgzouKnN6GNCwOSRERk2Lx58+Dn54dWrVqZuipERERE+SI3dQWICkLtUB4pw3rBKmAXpMnZOSRlzyJhuSUQqYN6MMcevTak2vkjy9lArdU7mIiISGPv3r24ffs2tm7dmq/yCoUMEknxvb5cLiu+jRUjmbQY32QhmZmVzn2jq7R+hlQw/BzLPn6GZR8/w4JhQJLKHLWjPVKH9oZlwC5I/8shKQ+NgOXWfUgd2B1Q8GtNZZxaLeohyeHaRERkSEREBL755husXr0a5ubm+XqOUqkq9npkZBT/NotKkqU2dRVK5X7JSVmqK+WMn2PZx8+w7ONnmH8csk1lUlZFB6QO7QW1xavGt/xJOCy37QcyM01YM6Kik8QmCMF2AFC5VjFhbYiIqLQKCgpCTEwM+vXrh3r16qFevXq4ePEi1q1bh3r16kGl4kURERERlU7sSkZlVpZTBaQM7QWr9f9A8l8OSfnjUFhuP4jU/l0AGbtLU9kkC9fJH8kekkREZECLFi2we/du0brZs2ejRo0aGDt2LGRsCxEREVEpxYAklWlZlSsiZXBPWG3cDUmGEgAgf/gEFjsPIe3tTgxKUpkkC4sQ/labKZBV0cGEtSEiotLKxsYGHh4eonVWVlaws7PTW09ERERUmjAgSWVelosTUgf3gOXGPZAos4drK4IfA7uPIK13R0DKzARUtojyRzo78TtMRERUBpnvO1HkbaR38yuGmhAREZU+DEjSa0HlWgWpA7vDcnMgJP/lkFTceQhIZUjr2Z4BHSo7UtIgi4kXFjlcm4iICmLdunWmrgIRERFRnkpNlCYgIAD+/v7w9vbGwIEDcePGjRzLKpVKLF++HB07doS3tzd69+6NkydPisokJSXhm2++Qfv27dGgQQMMGTIk121S2adyd0HqgG5Qaw3TVgQFw2LfCUBt+pkWifJDP38kJ7QhIiIiIiKi10upCEgGBgZi/vz5mDBhAnbs2IE6depgzJgxiImJMVh+yZIl2LRpEz777DMEBgZiyJAhmDhxIm7fvi2UmTNnDs6ePYuFCxdi9+7daN26NUaPHo3IyEhjvS0yAVV1V6T27wK17NVXW3HjLswPnGRQksoE7eHaaokEKudKJqwNERERERERUfErFQHJP//8E4MGDUL//v1Rq1YtfPnll7CwsMC2bdsMlt+1axfGjx8PPz8/uLm5YdiwYfDz88Pq1asBAGlpaTh48CBmzpwJHx8fuLu7Y9KkSXB3d8f69euN+dbIBFQ13ZHatzPUWsO0za7ehvmhMwxKUqmnPaFNViVHwNzMhLUhIiIiIiIiKn4mD0hmZGQgKCgIrVq1EtZJpVK0atUKV69eNfgcpVIJMzPxRbq5uTn+/fdfAEBmZiZUKhXMzc1zLEOvN1Xt6kjr0xFqiURYZ3blJsyPnmNQkkovlQqyiOhXiy7MH0lERERERESvH5NPahMXFweVSgVHR0fRekdHRzx69Mjgc3x9fbFmzRr4+PigatWqOHfuHA4dOgSVSgUAsLGxQaNGjfDzzz+jRo0aqFChAvbs2YNr166hatWqBrepUMigFbsqEXK5LO9Cb6AS2y8NPJApAeQ7DkHyXxDS7OJ1SM3kUPm3QIl/4EXE74thr/N+kYRFQ/LfcQwAJNWcYWaWv/f7Ou+XouB+MYz7xTDuFyIiIiIi4zB5QLIw/ve//2HOnDno1q0bJBIJ3Nzc0K9fP9EQ74ULF+LTTz9F27ZtIZPJUK9ePfTo0QNBQUEGt6lUqgyuL24ZGcZ5nbKmxPaLZ03Ie2TCYs9RaMKP8tNXoIIEGW18SuY1ixG/L4a9rvtF8ThctJxeuRLUBXivr+t+KSruF8O4XwzjfiEiIiIiKnkmD0ja29tDJpPpTWATExODChUqGHyOg4MDfv75Z6SnpyM+Ph6VKlXCDz/8ADc3N6FM1apV8ffffyMlJQVJSUmoVKkSpk6dKipDb4ZMb0+kq1TZs23/x/z0ZUAmQ0arxiasGZGY9oQ2WbbWUJe3NWFtiIiIiIiIiEqGyXNImpmZoX79+jh37pywLisrC+fOnUOjRo1yfa65uTmcnJyQmZmJgwcPokOHDnplrKysUKlSJSQkJOD06dMGy9DrT9mwHtI6txGtMz9xAYqL101UIyIdarUoIKlyrWLCyhARERERERGVHJP3kASA0aNHY9asWfDy8kKDBg3w119/ITU1Ff369QMAfPzxx3BycsL06dMBANevX0dkZCTq1q2LyMhILFu2DFlZWXj//feFbZ46dQpqtRrVq1fH06dPsXDhQtSoUUPYJr15lE28AJUKFkfOCussjpwFpFIom3qbsGZEgCTuJaQpqcKyypUT2hAREREREdHrqVQEJLt3747Y2FgsXboU0dHRqFu3Ln7//XdhyHZERASk0ledOdPT07FkyRKEhobCysoKfn5+WLhwIcqVKyeUSUxMxKJFi/D8+XPY2dmhc+fOmDZtGhQKhdHfH5UeymZvQZKVBfNj54V1FodOAzIZlI3qmbBm9KaThUWIlhmQJCIiIiIioteVRK3+b/rhN1x0dGKJv4aZmYzJ8g0wxX4xO3MF5icvital9miPzAZ1jFqP3PD7Ytjrul/M9x2H2bU7AAC1Qo6kj8YA0vxn1Xhd90tRcb8Yxv1imDH2S8WKzA1LplXcbd7Sejwx18odXpald/Mr8dcorZ8hFQw/x7KPn2HZx88wW37buybPIUlkChmtmyC9dRPROou9xyC/FWyiGtGbTpQ/0tmpQMFIIiIiIiIiorKEV7z0xspo44P0Fg2FZQkAiz1HIb/z0GR1ojdUajpkL+KERQ7XJiIiIiIiotcZA5L05pJIkNGuBTJ8GrxapVbDYtchyIMfm7Bi9KaRhT8XLTMgSURERERERK8zBiTpzSaRIL1DK2Q0rv9qlVoNix0HIXvwxIQVozeJdkBSjf+GbBMRERERERG9phiQJJJIkN65DTLeqvtqVVYWLLfvh+zRUxNWjN4U2vkjsyo5AhbmJqwNERERERERUcliQJIIyA5KdvOD0svj1SpVFiy37YcsJMyEFaPXnkoF2bOoV4suHK5NRERERERErzcGJIk0JBKk9WgPZb1ar1ZlqmC5dR9koc9MWDF6nUkjX0CSmSksM38kERERERERve4YkCTSJpUirVcHKD1rCKskykxYbg6ENOx5Lk8kKhxZGCe0ISIiIiIiojcLA5JEuqRSpPXpCGXtasIqSYYSVpv3QhoRlfPziApBlD/Sxhrq8rYmrA0RERERERFRyWNAksgQmQxpb3dGZo2qwipJegasNu6GNPKFCStGrxW1WhSQVLk6ARKJCStEREREREREVPIYkCTKiVyG1P5dkFnNVVglScuA5YbdkEbHmLBi9LqQJCRCmpwiLHNCGyIiIiIiInoTMCBJlBu5HKkDuiKzqrOwSpqaBsv1uyGNiTNhxeh1oJ8/soqJakJERERERERkPAxIEuVFoUDqwO7I1JpsRJqSCsv1/0ASG2+6elGZJwuLEP5WK+TIcnI0YW2IiIiIiIiIjIMBSaL8MFMgdVAPqJwrCaukSSmwWv8PJPEvTVgxKstE+SOrVAJkMhPWhoiIiIiIiMg4GJAkyi9zM6QM7glV5QrCKmlicnZQMiHRhBWjMiktHdLoWGFR5cr8kURERERERPRmYECSqCAszJEyuBdUlV4NrZUmJGYHJROTTFgxKmtk4ZHQnk+bAUkiIiIiIiJ6UzAgSVRQVhZIHdoLqgr2wipp/MvsoGRSsgkrRmWJ9nBtNTjDNhEREREREb05GJAkKgS1lSVSh/ZGlkN5YZ00NgGWG3ZDkpxiwppRWSELfzWhTVZFB8DC3IS1ISIiIiIiIjIeBiSJCkltY4WUYb2RZVdOWCd7EQfLDbuBlDQT1oxKPZUKsmdRrxY5XJuIiIiIiIjeIAxIEhWB2tYmOyhZ3lZYJ4uOhdXG3UBquglrRqWZNCoGEmWmsMzh2kRERERERPQmYUCSqIjU5W2zg5K21sI6WeQLWG3aA6RnmLBmVFpp548E2EOSiIiIiIiI3iwMSBIVA7VdOaQM64MsGythnSwiClab9gIZShPWjEojWfirgGSWtSXUWsP+iYiIiIiIiF53DEgSFRO1Q3mkDuuNLCtLYZ0s/DkstwQCSgYl6T9qtaiHpMq1MiCRmLBCRERERERERMbFgCRRMcpytEfqsF7IsrQQ1smfPoPl1v2AVs5AenNJXiZBmpgsLKtcq5iwNkRERERERETGx4AkUTHLquiI1KG9oLYwF9bJQ8JguX0/kKkyYc2oNJCFRYiWOaENERERERERvWkYkCQqAVlOFZAypCfU5mbCOvmjUFjuOACoGJR8k2kP11bLZciqXMGEtSEiIiIiIiIyPgYkiUpIVpVKSBncA2ozhbBO/uAJLHYdBrKyTFgzMiVR/sgqlQCZzIS1ISIiIiIiIjI+BiSJSlCWS2WkDuoBtUIurFPcewSLf44wKPkmSs+ANDpWWFS5crg2ERERERERvXkYkCQqYSq3Kkgd2B1q+auecIo7D2Cx9xiDkm8YWXgkJGq1sMz8kURERERERPQmYkCSyAhU7i5I7d8Naq3huYpbwTDffwLQClDR600W/ly0zB6SRERERERE9CZiQJLISFQ13JDarwvU0lc/O7Prd2F+4BSDkm8IUf5IR3vA0sKEtSEiIiIiIiIyDQYkiYxIVcsdaX07i4OSV4NgfvgMg5Kvu6wsyJ5FCovsHUlERERERERvKgYkiYws06M60np3hFoiEdaZXb4J82PnGZR8jUmjYiDJUArLDEgSERERERHRm0qedxEiKm6ZdWsiLUsFi3+OQBOWNLtwDWqJBFkV7CG//xiytHRILcyRWbs6MuvWBOT8uZZl2sO1AQYkiYiIiIiI6M3FCAeRiWTW90CaKgsWe48JQUnz81cBAGoJIFEDEgmguPcY6sNnkNrTH6ra1UxWXyoa7YBklpUF1PblTVgbIiIiIuMw33eiyNtI7+ZXDDUhIqLShEO2iUwos0Edgw0siVr8P9LSYbl1H2T3HxuvclSstGfYVrlWyY42ExEREREREb2BGJAkMjGllwfUeQzH1oSuLPccAzIzS75SVKwkL5MgfZkkLHO4NhEREREREb3JGJAkMjH5nYeQ5CPIKAEgSUuH/O6jkq8UFStZWIRoWeXCgCQRERERERG9uRiQJDIx+f3HUOdz9K5aAsiDGZAsa2RhkcLfapkMWZUrmrA2RERERERERKbFgCSRiUlS01/lisyrrDq7PJUtsvBXPSRVVSoCcpkJa0NERERERERkWgxIEpmY2tK8QD0k1ZbmJVshKl4ZSkgjY4RF5o8kIiIiIiKiN12pCUgGBATA398f3t7eGDhwIG7cuJFjWaVSieXLl6Njx47w9vZG7969cfLkSVEZlUqFJUuWwN/fHw0aNEDHjh2xYsUKqNX57IpGZCSZtasXqIdkpkeNkq0QFSvZs0hItI47DEgSERERERHRm65UBCQDAwMxf/58TJgwATt27ECdOnUwZswYxMTEGCy/ZMkSbNq0CZ999hkCAwMxZMgQTJw4Ebdv3xbK/Pbbb9iwYQPmzp2LwMBAzJgxA7///jvWrVtnrLdFlC+ZdWtCbWGOvGKSagBqC3Nk1mFAsiyRhT0XLWdxQhsiIiIiIiJ6w5WKgOSff/6JQYMGoX///qhVqxa+/PJLWFhYYNu2bQbL79q1C+PHj4efnx/c3NwwbNgw+Pn5YfXq1UKZq1evokOHDmjXrh1cXV3RtWtX+Pr65trzksgk5HKk9vQHgByDkpr1qT39AbncKNWi4qEdkFQ52EFtZWnC2hARERERERGZnskDkhkZGQgKCkKrVq2EdVKpFK1atcLVq1cNPkepVMLMzEy0ztzcHP/++6+w3KhRI5w/fx6PHz8GANy9exdXrlxB27ZtS+BdEBWNqnY1pA7oClhk54c0lFMytX9XqGpXM27FqGiysiAL1wpIcrg2EREREREREUze1SouLg4qlQqOjo6i9Y6Ojnj06JHB5/j6+mLNmjXw8fFB1apVce7cORw6dAgqlUooM27cOCQlJaFbt26QyWRQqVSYNm0aevfuXaLvh6iwVLWrI2mSG+R3H0Ee/AiyqBhI414CACQAYGVh0vpRwUmjYyHJUArLDEgSERERERERlYKAZGH873//w5w5c9CtWzdIJBK4ubmhX79+oiHe+/btw+7du/Hjjz+iVq1auHPnDubPn49KlSqhb9++ettUKGSQ5HOm48KSy2Ul+wJlFPeLFjMZ0LgushrXhTQlFerv/4Dma2l+9yEya7iatHqlQVn6vkifR4mWZdVdIDUrmfqXpf1iTNwvhnG/GMb9QkRERERkHCYPSNrb20Mmk+lNYBMTE4MKFSoYfI6DgwN+/vlnpKenIz4+HpUqVcIPP/wANzc3oczChQsxbtw49OjRAwDg6emJZ8+eYdWqVQYDkkqlSm9dScjIMM7rlDXcLwZYWULmVgXy0AgAgOT2A2T4twKkJs+0YHJl5fti8eSZ8HeWpQXSbW2BEqx7Wdkvxsb9Yhj3i2HcL1TWrF+/Hhs2bEB4eDgAoHbt/2fvvuOqKv84gH/uYCoiIIIDxQnIcG8SNXeO0jRzlObIba40S0stMXOPUnOmppUjF5qjtFJ/mXuhoogiW4aiINxxfn8Qx3vlgoD33nOBz/v18tV9zn3uc77nOWiH731GLYwaNQpBQUESR0ZERESUO8kzG9bW1vD19cXp06fFY1qtFqdPn0b9+vXz/KyNjQ3c3NygVqtx+PBhvP766+J7z549g+yFIY8KhQKC8LK9jIksh7pOTfG1/Gk6FPej86hNlkZ3QxttJTeYfBg2ERGVOO7u7pg8eTJ27dqFnTt3olmzZhg9ejTCwsKkDo2IiIgoV5KPkASAwYMHY+rUqfDz80NAQAA2bdqE9PR09OzZEwDw8ccfw83NDZMmTQIAXLp0CXFxcfDx8UFcXByWL18OrVaLoUOHim22adMGq1atQsWKFcUp2xs2bECvXr0kuUaiwlB7VYdw+G/I/kukK0PvQOPJadtFgSz1KeSPUsWypnIFCaMhIqLiqm3btnrlCRMmYNu2bbh48SJq1aolUVREVFxEnl9o1PY8GkwyantEVHRZREKyS5cuSEpKwrJly5CQkAAfHx+sXbtWnLIdExMDuc401YyMDCxZsgSRkZGwt7dHUFAQ5s+fjzJlyoh1PvvsMyxduhSzZs1CYmIiypcvj3feeQejR482+/URFZZQyh6aqpWgjHgAALC6cQcZHQIBBdc5s3S6oyMBbmhDRESmp9FocOjQIaSlpb10phERERGRlCwiIQkAAwYMwIABAwy+t3nzZr1ykyZNEBISkmd7pUuXxqeffopPP/3UaDESSUFdp6aYkJQ9y4AiIgqaGlUkjopeRvEgRnwtKOTQVHCVMBoiIirObt68ib59+yIjIwP29vZYuXIlatasabCusTdytNTNoBTy4rFMirWJNsPTZep7aIx7YY5+KOpMdR8VCuP+XeK9zJ2l/ntK+cd7WDAWk5AkIsNUtavB5tCfkGm1AACr0NtMSBYBeutHursCSv5zS0REplGtWjX8+uuvSE1NxW+//YapU6diy5YtBpOSptjI0RI3g5Jpi8e68ebqW1Oexxj3whJ/xiyRKfpJozHu3yXey7yxf4o+3sP8k3xTGyJ6CTtbaKo930FeeesuoOY/chYtUwV53EOxyOnaRERkStbW1qhatSr8/PwwadIkeHt744cffpA6LCIiIqJcMSFJVASodHbblmVkQhl+X8Jo6GUUMfHiRkQAN7QhIiLz0mq1yMzMlDoMIiIiolxxDiFREaCu5QlBoYBMkzUyUhl6G+ra1SSOinKTY0ObSm4SRUJERMXdwoUL0apVK1SoUAFPnz7F/v37cebMGaxbt07q0IiIiIhyxYQkUVFgYw11jSqwunUXAKAMiwBUKsDKStq4yCC99SOdHCGUspcwGiIiKs4SExMxdepUxMfHw8HBAV5eXli3bh1atmwpdWhEREREuWJCkqiIUNepKSYkZSo1lLfvQ+1TQ+KoKAdBgCL6eUKS60cSEZEpzZ07V+oQiIiIiAqMCUmiIkJdoyoEKyVkKjUAQBkaxoSkBZI/TILs2fN1u5iQJCIiIqnYHDzx0joKuSzPnbAzOgcZMyQiIiIATEgSFR3WVlDX9IRV6G0AgPLOfSAjE7Cxljgw0pVj/UgmJImIiIiIAACR5xcavU2PBpOM3iYRmR532SYqQtS6u22rNVlrSZJF0U1ICrY20Lo4SRgNERERERERkeVhQpKoCFFX94CgMyIye7QkWQ7dhKSmkjsgk0kYDREREREREZHlYUKSqChRKqGu5SkWFeGRQHqGdPGQHtmTNMhTHotlTtcmIiIiIiIiyokJSaIiRqU7bVurhfJWuITRkC7Fgxi9MhOSRERERERERDmZLCH55MkTUzVNVKJpPCtDsLURy1ahdySMhnTprR8pl0NTobyE0RARERERERFZpkInJD/99NNc30tJScH7779f2KaJKC8KBVTe1Z8XIx5AlpYuYUCUTTchqXUvB1gpJYyGiIgs2YIFCxARESF1GERERESSKHRC8vfff8fcuXNzHE9KSsLAgQORkcF17YhMRe2jM21bEKC8wWnbklOpIY97KBY1lThdm4iIcrdnzx507twZ/fr1w+7du5Gezi8XiYiIqOQodEJy7dq12L17N5YsWSIei4uLQ79+/aBQKPDDDz8YIz4iMkBTpSK0pezEspK7bUtOERMPmVYrlrl+JBER5eXEiRP47rvvUK5cOcyYMQOBgYGYMWMGLly4IHVoRERERCZX6PmEvr6+WLVqFYYOHYpSpUqhS5cueP/991G2bFmsX78eZcqUMWacRKRLLofaqwasz18FACjuR0OW+hSCQymJAyu5dKdrA4CmcgWJIiEioqJALpejdevWaN26NZKTk7Fnzx7s3r0bO3bsQPXq1dGrVy/06NEDLi4uUodKRCYSeX6h0dpSKGSoWHei0doj48rPvVYoZNBohHy159Fg0quGRCS5V9rUpmHDhli5ciWWL1+Onj17ws3NDZs2bWIyksgM1Lq7bQNQ3uDmNlLSWz+ybBkIpe0ljIaIiIoSJycnDBo0CF9//TUaNWqEO3fuYP78+QgKCsLUqVORlJQkdYhERERERlWgEZKHDx82ePyNN97AH3/8gd69e+PkyZPi8Q4dOrxadESUK01ld2gdSkGe+hQAYBV6G6rGARJHVUIJAhRRzxOSnK5NRET5lZqain379mHHjh0IDQ2Ft7c3Zs6cifbt24vTuidMmIBNmzZJHSpJwObgCalDICIiMokCJSTHjRuX5/vTpk0TX8tkMoSGhhYuKiJ6OZkMau8asP73MgBAERUH2aNUCI4OEgdW8sgTkyF79nwjLyYkiYjoZU6fPo0dO3bg2LFjUCgUeOONNzB79mz4+fmJdd5++21UqFABI0aMkDBSIiIiIuMrUELy2LFjpoqDiApBVaemmJAEsja3UTWrL2FEJVPO9SOZkCQiorwNHjwYdevWxWeffYY33ngDdnZ2But5enqia9euZo6OiIiIyLQKlJCsVKmSqeIgokLQVigPbVkHyFNSAfw3bZsJSbPTTUgKttbQlnOWMBoiIioK9u7di9q1a7+0XqVKlRAcHGyGiIiIiIjM55U2tQGy1r05efIk9u/fj5MnT+LJkyfGiIuI8kMmg8rn+eY2itiHkCWlSBdPCaWbkNRUdAdkMgmjISKiouDLL7/EnTuGN6S7e/cu3nvvPTNHRERERGQ+BRohqSsxMRHz589HSEgInJycUKFCBSQkJCA5ORnDhw/HyJEjjRknEeVC7VMTNqcviGWr0DvIbNlQwohKFtnTNMiTH4llTtcmIqL8OHPmDJ4+fWrwvSdPnuDs2bNmjoiIiIjIfAqVkLxz5w6GDRsGPz8/hISEwMPDQ3zv0qVLmDBhAmxtbTF48GCjBUpEhmnLu0DjXBaK/0ZGKkNvMyFpRoqoOL0yE5JERPSqLly4AGdnLv9BRERExVeBE5LPnj3DmDFj0LZtW3z22Wc53q9bty7mzZuHsWPHYtCgQRg0aBDmz58PNzc3owRMRC+QyaD2qQHFyXMAAEVCEuQJSdC68hcZc1A8iBFfCzIZNBXKSxgNERFZstWrV2P16tUAAJlMhvfffx+yF5b5yMzMhEajQb9+/aQIkYiIiMgsCpyQ3LZtG2QyGT755BNotVq0a9cux4OUIAh4/Pgx7t27h4oVK2LlypWYPXu20YImIn3qOjVh819CEvhvlKRrEwkjKjl014/UupUDrK0kjIaIiCxZ/fr18cEHH0AQBKxcuRJvvPEG3N31R9ZbWVmhRo0aaNOmjURRElFRFXl+odQhFAvsRyLzKHBCct++fejTpw8UCgUAYOLEiZg7dy4GDRoEb29vxMTEYO3atZgwYQIqVaqEt956C6NGjcIXX3wBufyV99AhIgO05ZyhcXWGIiEJQNZu25mvNebmKqamVkMemyAWOV2biIjy0qRJEzRpkvWFoUwmQ+/evTmLiIiIiEqkAick7969C29vb7H8/fffY+LEiXj77bfFY/7+/hgwYAAGDhwIHx8fPHnyBA8ePECVKlWMEzUR5aCuUxOKE2cAAPKkR5DHPYTW3VXiqIo3RUwCZBqtWNZUriBhNEREVJSMGTNG6hCIiIiIJFPghKQgCLC2thbL4eHhqFSpkl4dd3d3pKWlITo6GhUqZP2CrlKpXjFUIsqLyqcmbP5LSAKAMvQOMpmQNCnd6doAR0gSEVHeRowYgWnTpsHT0xMjRozIs65MJsN3331npsiIiIiIzKvAc6g9PDxw9+5dsezv74+VK1ciMTERQNamNwsXLoSjoyM8PT0RGRkJhUKRY30cIjIuwckRGp0EpFXobUAQJIyo+NPd0Ebr6ADBoZSE0RARkaV7+vQpNBqN+DqvP0+ePJE4WiIiIiLTKfAIybZt2yIkJAS9evUCAMybNw8jRoxAq1at4OTkhEePHsHR0RFLly6FQqHAoUOHUL9+fZQqxV/UiUxNVacmFP+taSh/lAp5dDy0lbg2lUkIAuRRcWKRoyOJiOhlNm/ebPA1ERERUUlT4ITkoEGD0KFDBxw+fBgdOnRAlSpVcODAAVy6dAnR0dFwcXFB3bp1YWtri4iICGzatAkrV640RexE9AK1dw3g99Ni2Sr0NjKYkDQJWVIK5OnPxDITkkREZAyZmZl6yyMRERERFUcFnrLt5OSE+fPnY9q0aTh69CiArDVu6tWrhy5duqBp06awtbVFWFgYhgwZgv79+6N58+ZGD5yIchIcHaCp9Dwxpgy9w2nbJpJj/chKTEgSEVH+/frrr3qjJG/duoUOHTqgXr16GDhwoLgcEhEREVFxVOCEJAC0adMGK1euxOzZszFs2DDs378fN27cQHh4OE6cOIEZM2bg3XffxYABAzBp0iRjx0xEeVD51BBfy588hSIyJo/aVFi6CUnBxhpaV2cJoyEioqJm3bp1kMufP4rPmTMHVlZWmD59OuLj47Fo0SIJoyMiIiIyrQJP2c7WvHlzHDlyBHv27MHBgwdx//59aLVauLm5oUmTJggJCUH58uWNGSsR5YPapwaEoych+6+sDL0NTZWKksZUHOkmJDUV3QB5ob7fISKiEioqKgo1amR9iZiUlIRz585h1apVaNWqFZydnfH1119LHCERERGR6RQ6IQkANjY26NOnD/r06WOseIjoFQmlS0FTpSKU96MBAMobd5DRPpAJMyOSpaVDkZQilrl+JBERFZRcLodKpQIA/PPPP1AqlWjWrBkAwNXVFSkpKRJGR0RERGRaRs1QPHjwAKdOneIDFJHE1HVqiq/lac+guBctYTTFjzzqhfUjmZAkIqIC8vb2xo8//oiwsDBs3rwZzZo1Ezezyd4okoiIiKi4KnRCct68efjqq6/E8pEjR9CpUyd88MEH6NixI65evWqUAImo4NRe1SHIZGJZGRomYTTFj976kTJZ1pRtIiKiApgwYQLOnj2L7t2749atWxg7dqz43tGjR+Hv7y9hdERERESmVeiE5JEjR+Dn5yeWFy1ahKCgIOzduxf+/v5YsmSJMeIjokIQ7O2g8awslq1u3gU0GgkjKl50E5JaNxfA2krCaIiIqChq2LAh/vjjD/zyyy/4/fff9RKQb7/9Nj766CPpgiMiIiIysUInJBMSElCxYtZGGffv38fdu3cxcuRI1K5dGwMHDuQISSKJqXSmbcueZUBx94GE0RQjag0UMQliUVOpgoTBEBFRUVa6dGn4+fmhTJkyeseDgoJQrVo1iaIiIiIiMr1Cb2rj4OCAxMREAMDJkyfh6Ogojpi0trZGRkaGcSIkokJR164G4eAJyLRaAIBV6G1oalaVOKqiTx6bAJnOaFOuH0lERIUVHh6Ow4cPIzY2Nsezs0wmw9y5cyWKjIiIiMi0Cp2QbNSoEZYtW4bExESsW7cO7dq1E98LDw9HhQoFGzW0detWrFu3DgkJCfD29saMGTMQEBBgsK5KpcLq1avx66+/Ii4uDtWqVcPkyZPRqlUrsU7btm0RFRWV47P9+vXD559/XqDYiIokWxtoqntAefseAEB56y6gVgPKQv+1JwAKbmhDRERG8Ouvv2L69OmwsbFBxYoVYWWlv/yHTGctaCIiIqLiptCZienTp2PKlClYsGABfH19MWHCBPG9vXv3olGjRvluKyQkBMHBwZg1axbq1q2LTZs2YciQITh06JDBHQaXLFmCvXv34ssvv0T16tXx119/YcyYMdi+fTvq1KkDANixYwc0OqOYwsLCMHjwYHTq1Kmwl0xU5Kjq1BQTkrJMFZR37kPtVV3iqIo2vfUjy5SGUKa0hNEQEVFR9d1336Fjx46YO3cu7OzspA6HiIiIyKwKnZB0c3PDDz/8YPC9devWwdraOt9tbdiwAX369EGvXr0AALNmzcLx48exc+dODB8+PEf9PXv2YOTIkQgKCgKQNerx9OnTWL9+PRYsWAAAcHZ21vvMmjVrUKVKFTRp0iTfcREVdeqanhCUCsjUWcl5ZegdJiRfhSBA8SBGLGoqcXQkEREVTnx8PL744gsmI4mIiKhEKvSmNoY8ePAAp06dglqtzndCMjMzE9euXUOLFi2eByWXo0WLFrhw4YLBz6hUqhzt29jY4Pz587meY+/evejVqxenv1DJYmMNtc66kcrbEUCmSrp4ijhZ8iPI056JZU7XJiKiwmrUqBFu3boldRhEREREkij0CMl58+ZBo9Hg008/BQAcOXIEEyZMgFqthqOjI9atWyducpOX5ORkaDSaHFOzXVxcEB4ebvAzgYGB2LhxIxo3bowqVarg9OnTOHLkiN4UbV1Hjx5Famoq3nrrrVzjsLJSwNS5SqVSYdoTFFHsF8OM1i/+tYEbWX+XZCo1bCMiofWrZZy2JSDlz4s8Nl6/XK0SrK0t4+eXf48MY78Yxn4xjP1C5jRx4kRMmTIFNjY2aNmyJRwcHHLUKVu2rPkDIyIiIjKDQickjxw5gnHjxonlRYsWISgoCOPHj8f8+fOxZMkSrF271ihBvujTTz/FZ599hs6dO0Mmk8HDwwM9e/bEzp07DdbfuXMnWrVqBTc3t1zbVKkMJzONLTPTPOcpatgvhhmlX6pWhtLaCrLskZFXbiGzdtGeti3Vz4tNRLT4WrC2QoZTWcCCfnb598gw9oth7BfD2C9kLtlflH/xxRe5zuAJDQ01Z0hEREREZlPohGRCQgIqVqwIALh//z7u3r2Lb775BrVr18bAgQMxderUfLXj5OQEhUKBxMREveOJiYkoV66cwc84Ozvj22+/RUZGBlJSUlC+fHksWLAAHh4eOepGRUXh1KlTWL58eQGvkKiYsLKCuqYnrK6HAQCUd+4DzzIAWxuJAyt6dDe00VR0A+RGXfWCiIhKkLlz53IpISIiIiqxCp2QdHBwEJOIJ0+ehKOjozhF29raGhkZGflqx9raGr6+vjh9+jTatWsHANBqtTh9+jQGDBiQ52dtbGzg5uYGlUqFw4cPo3Pnzjnq7Nq1Cy4uLmjdunUBro6oeFHVqSEmJGUaDZRhEVD7e0kcVRGT/gyKxGSxyPUjiYjoVfTs2VPqEIiIiIgkU+iEZKNGjbBs2TIkJiZi3bp1YjIRAMLDw1GhQoV8tzV48GBMnToVfn5+CAgIwKZNm5Ceni4+qH388cdwc3PDpEmTAACXLl1CXFwcfHx8EBcXh+XLl0Or1WLo0KF67Wq1WuzatQtvvvkmlMpCXypRkaepVgWCjTVkGZkAAKvQ20xIFpAiKk6vzIQkEREZw6NHjxAWFoaYmBi0atUKjo6OyMjIgJWVFeQciU9ERETFVKGzdNOnT8eUKVOwYMEC+Pr6YsKECeJ7e/fuRaNGjfLdVpcuXZCUlIRly5YhISEBPj4+WLt2rThlOyYmRu+BLCMjA0uWLEFkZCTs7e0RFBSE+fPno0yZMnrtnjp1CtHR0ejVq1dhL5OoeFAqoK5dDVZXbgIAFHcfAGnPAHtbiQMrOhQPYsTXgkyWNWWbiIiokLRaLZYsWYLNmzcjPT0dMpkMO3bsgKOjI8aMGYO6detizJgxUodJREREZBKFTki6ubnhhx9+MPjeunXrYG1tXaD2BgwYkOsU7c2bN+uVmzRpgpCQkJe2GRgYiJs3bxYoDqLiSlWnppiQlGm1sLoVDlW9OhJHVXTorh+pdXUGbAr2bxwREZGupUuXYsuWLZg6dSqaN2+Ojh07iu+1bdsWv/zyCxOSREREVGyZZB5I6dKlC5yQJCLT0lStBK3d8xGRytDbEkZTxGg0UMTEPy9yujYREb2i3bt3Y+LEiejbty8qV66s916VKlUQGRkpUWREREREpvdKCyveu3cPu3btQkREhMFNbFatWvUqzRORMSkUUHtXh/WF61nFe9GQPU2DUMpe4sAsnzz2IWRqjVhmQpKIiF5VSkoKatSoYfA9jUYDtVpt5oiIiIqmyPMLpQ6BiAqh0CMkL1++jO7du+Pw4cM4fPgwYmNjERYWhuPHj+PGjRtIS0szZpxEZARqn5ria5kgQHkjXMJoig5FVKxeWVM5/5t2ERERGeLp6YmTJ08afO/MmTOoVauWmSMiIiIiMp9CJyS/+eYbdO7cGfv374cgCPjqq69w7Ngx/Pjjj5DJZBg2bJgx4yQiI9B4VIBWZ0Qkp23nj+6GNlqHUhDKlJYwGiIiKg4GDRqEDRs2YMmSJQgLCwMAxMbGYuvWrdi8eTMGDRokbYBEREREJlToKds3b97E8OHDxd2vs6dsN2jQAGPGjMHChQvx2muvGSdKIjIOuRxq7xqwPncFAKCMjIHs8RMm2PIiCHob2mgquwMymYQBERFRcdCzZ088evQIy5cvx+rVqwEAo0ePhp2dHT766CN06dJF4giJiIiITKfQCUmZTAYrKyvIZDK4uLggOjoaDRo0AAC4u7sjIiLCWDESkRGp6tQUE5IAoLxxB6omdSWMyLLJUh5D/jRdLGsqcf1IIiIyjsGDB6NPnz64cOECkpOT4ejoiPr168PBwUHq0IiIiIhMqtAJyRo1aiAyMhLNmjVDvXr1sH79etSuXRtKpRJr1qyBh4eHMeMkIiPRVnKDtkxpyB8/AQBYhd5mQjIPuqMjAa4fSUREr+7Bgwf45ZdfcPHiRTx8+BAymQzlypVDgwYNUKtWLSYkiYiIqNgr9BqSffr0QUJCAgBg4sSJSExMRI8ePdClSxdcuXIFU6dONVqQRGREMhnUPs939VREx0OW8ljCgCyb7oY2gpUSWjcXCaMhIqKibt++fejSpQtWr16NiIgIODg4oFSpUrh79y6+/fZbdOrUCSEhIVKHSURERGRShR4h+eabb4qva9SogZCQEFy8eBHPnj1DvXr14OLCX9qJLJXKpyas/7kklq1C7yCzeX0JI7JceutHVnQD5IX+HoeIiEq4O3fuYPr06WjYsCFmzJiBGjVq6L0fFhaGOXPmYNq0afDx8UG1atUkipSIiIjItF7pN+ukpCQsXrwYgwYNQp8+ffD999/j8uXLkHHDByKLpnV3hbZsGbHM3bZz8SwD8oQkscj1I4mI6FX8+OOP8PDwwJo1a3IkIwGgVq1aWLt2LSpXroytW7dKECERERGReRQ6IXnp0iV07NgRW7ZsgYODAxo3bgwHBwds2bIF7du3x6VLl17eCBFJQyaDqk5NsaiIewhZYrKEAVkmRVQsdL9e0VRmQpKIiArvzJkz6NOnD6ytrXOtY21tjT59+uDMmTNmjIyIiIjIvAo9ZXvWrFmoWbMmvv/+e5QuXVo8npqaimHDhmH27NnYuXOnUYIkIuNT+9SEzanzYtkq9A4yAxtJGJHl0Z2uLQDQVHKTLhgiIiryYmJi4OXl9dJ6Xl5eiIqKylebq1evxuHDhxEeHg5bW1vUr18fkydPRvXq1V81XCIiIiKTKXRC8vbt21i6dKleMhIAHBwcMGzYMEyYMOGVgyMi09G6OkPj4gTFfyMjlddvI7NlQ4BLLoh0E5JaV2fA1kbCaIiIqKh7+vQpSpUq9dJ69vb2SEtLy1ebZ86cQf/+/eHv7w+NRoNFixZhyJAhOHDgAOzt7V81ZCKLYHPwxCt9PqNzkJEiISIiYyl0QrJq1ap4/Njwzrypqanw8PAodFBEZAb/7bat+PssAECRmAx5QhK05bkhFQBAo4EiOv55kdO1iYjoFQmCYPQ2161bp1eeN28emjdvjmvXrqFx48ZGPx8RERGRMRQ6ITllyhTMnj0bFSpUQJMmTcTj//zzD1asWIEZM2YYJUAiMh11nZqw+S8hCWRtbpPJhCQAQB6XCJlaLZY1lStIGA0RERUX77///ks3gHyVxGVqaioAwNHRsdBtEBEREZlaoROS33zzDVJTU/H+++/DwcEBTk5OSE5ORmpqKsqUKYMFCxZgwYIFAACZTIa9e/caLWgiMg6tixM05V2giE8EAFhdv43MVk04bRuA4kGMXpkjJImI6FWNGTPGpO1rtVrMnTsXDRo0QO3atQ3WsbJSGPV/80qlwniNGZFCzmeZ/JLJZcjrLlpbv9o9toR78arXYCoKhfH6RiaTQWGZl0n5VJB7aKk/0yWdpf4/0VIVOiHp6+sLPz8/Y8ZCRBJQ16kpJiTlKY8hj30IbQVXiaOSniIqTnytLW0PwdFBwmiIiKg4MHVCctasWQgLC8OPP/6Yax2VSmP082ZmGr/NVyXTGn96fHGlAKDJo79e9f5awr2wxJ9RANBojNc3CoVx2yPzK8g9tNSfaeK9KYhCJyTnzZtnzDiISCIq75qwOf6PWLYKDUNGSU9ICoLehjaayu4cNUpERBZt9uzZOH78OLZs2QJ3d47qJyIiIssmlzoAIpKW4FQGmgrlxbIy9A5ggkX3ixLZo1TInzwVy5pK/MWOiIgskyAImD17No4cOYJNmzZxY0kiIiIqEpiQJCKo6tQUX8sfP4FcZ7pySaQ7OhLg+pFERGS5Zs2ahb1792LhwoUoVaoUEhISkJCQgGfPnkkdGhEREVGuCj1lm4iKD7V3DeDYKbFsFXobGSU4CaebkBSUSmjdykkYDRERUe62bdsGABg4cKDe8eDgYPTs2VOKkIiIiIheiglJIoJQpjTUld2h/C8Rpwy9g4zXWwDykjmIWhGls35kxfLgloVERGSpbt68KXUIRERERAVWMrMNRJSDuk4t8bX8aRoUkTESRiOhZxmQ/7frOMDp2kRERERERETGxoQkEQEA1N7VIejsJK0MvS1hNNJRRMdBdz9tbmhDREREREREZFycsk1EAAChlD00VStCGREFAFDeCEdGh9dK3LTtHBvaMCFJRERkVjYHT0gdAung/SAiIlMoWZkGIsqT2kdnt+30Z1D8l5wsSfTWjyznBNjZSBgNERERERERUfHDhCQRiVS1q0PQGRFpVdKmbWu1UETFiUVN5QoSBkNERERERERUPDEhSUTP2dtC41lZLCpvhQNqjYQBmZc8PhEylVosc0MbIiIiIiIiIuNjQpKI9Kh8aoivZc8yobgbKWE05sX1I4mIiIiIiIhMjwlJItKjrl0NgqJkTtvWTUhq7e0gOJWRMBoiIiIiIiKi4okJSSLSZ2sDdfUqYlEZFgHoTGMuzhQPYsTXmsrugEwmYTRERERERERExRMTkkSUg7rO8922ZZkqKO/ckzAa85A9SoU89alY5vqRRERERERERKbBhCQR5aCu6QlBqRTLyhIwbTvH+pFMSBIRERERERGZBBOSRJSTtRXUtaqKReXt+0BGpoQBmZ5uQlJQKqB1d5UwGiIiIiIiIqLiiwlJIjJI7aMzbVuthvJ2hHTBmIEi6nlCUlOhPKBQSBgNERERERERUfHFhCQRGaSuXgWCtZVYVobekTAaE8vIhDw+USxyujYRERERERGR6ShfXoWISiQrJdS1qsHq2i0AgPLOfeBZBmBrI3FgxqeIjodMEMSyphITkkRERETFhc3BE6/cRkbnICNEQkRE2ThCkohypdLdbVurhfLWXQmjMR3Fgxi9MhOSRERERERERKbDhCQR5UpTrTIEnRGRVteL527buhvaaFzKAva20gVDREREREREVMwxIUlEuVMooPKq9rwY8QCytHQJAzIBrRaK6DixyPUjiYiIiIiIiEyLCUkiypPebtuCAOXN4jVtW56QBFmmSixrKleQMBoiIiIiIiKi4s9iEpJbt25F27Zt4e/vj969e+Py5cu51lWpVFixYgXatWsHf39/dO/eHX/++WeOenFxcZg8eTKaNm2KgIAAdOvWDVeuXDHlZRAVO5qqlaDVmcKsDA2TMBrj052uDXD9SCIiIiIiIiJTs4iEZEhICIKDgzF69Gjs3r0b3t7eGDJkCBITEw3WX7JkCX766SfMmDEDISEh6Nu3L8aMGYPr16+LdR49eoR3330XVlZW+P7773HgwAFMnToVjo6O5rosouJBLofaq4ZYVNyLhuzJUwkDMi7dDW209rYQnPlvBBEREREREZEpWURCcsOGDejTpw969eqFmjVrYtasWbC1tcXOnTsN1t+zZw9GjBiBoKAgeHh4oF+/fggKCsL69evFOt9//z3c3d0RHByMgIAAeHh4IDAwEFWqVDHXZREVG2rd3bYBKG+ESxeMkSmidNaPrOQOyGQSRkNERERERERU/EmekMzMzMS1a9fQokUL8ZhcLkeLFi1w4cIFg59RqVSwtrbWO2ZjY4Pz58+L5d9//x1+fn4YN24cmjdvjjfffBM///yzaS6CqJjTVHaHtnQpsawMLR67bctSn0D+KFUsc0MbIiIiIiIiItOTPCGZnJwMjUYDFxcXveMuLi54+PChwc8EBgZi48aNiIiIgFarxcmTJ3HkyBHEx8eLdSIjI7Ft2zZ4enpi3bp1ePfdd/Hll19i9+7dJr0eomJJLofau7pYVD6IhezxEwkDMo4c60dyQxsiIiIiIiIik1NKHUBhfPrpp/jss8/QuXNnyGQyeHh4oGfPnnpTvAVBgJ+fHyZOnAgAqFOnDsLCwrB9+3a89dZbOdq0slKYfKamUqkw7QmKKPaLYRbXL3W9gLPPN4WyvRUOTYv6Zg/DmP2iiH4+XVtQyKGs4g5YWr/nk8X9vFgI9oth7BfD2C9EREREROYheULSyckJCoUixwY2iYmJKFeunMHPODs749tvv0VGRgZSUlJQvnx5LFiwAB4eHmIdV1dX1KhRQ+9z1atXx2+//WawTZVK84pXkj+ZmeY5T1HDfjHMovrFtRyUjg7iFGfZlVvIbBQgSSjG6hf7+zob2riXR6YWgCX1eQFZ1M+LBWG/GMZ+MYz9QvTqbA6ekDoEIiIisnCST9m2traGr68vTp8+LR7TarU4ffo06tfPe/SVjY0N3NzcoFarcfjwYbz++uview0aNMDdu3f16kdERKBSpUrGvQCikkImg8pHZ7ft2ATIkh9JGNArylRBHvd8WQiuH0lERERERERkHpKPkASAwYMHY+rUqfDz80NAQAA2bdqE9PR09OzZEwDw8ccfw83NDZMmTQIAXLp0CXFxcfDx8UFcXByWL18OrVaLoUOHim2+//77ePfdd7Fq1Sp07twZly9fxs8//4zZs2dLco1ExYHapyZs/ndRLFuF3kZmi4bSBfQKFNFxkAmCWGZCkoiIiIiISqrI8wuN2p5Hg0lGbY+KH4tISHbp0gVJSUlYtmwZEhIS4OPjg7Vr14pTtmNiYiCXPx/MmZGRgSVLliAyMhL29vYICgrC/PnzUaZMGbFOQEAAVqxYgUWLFmHlypWoXLkypk+fju7du5v9+oiKC61bOWidHCH/b2SkMvRO0U1I5tjQhglJIiIiIiIiInOwiIQkAAwYMAADBgww+N7mzZv1yk2aNEFISMhL22zTpg3atGljlPiICP9N264Jm1PnAACK+ETIHyZDW85J4sAKTjchqXV2hGBvJ2E0RERERERERCWH5GtIElHRoq5TU6+sDL0tUSSvQKvV22FbU7mChMEQERERERERlSxMSBJRgWhdnaHRGRGpvH4b0FmLsSiQP0yGLCNTLHO6NhEREREREZH5MCFJRAWmrlNLfK1ISoE8PlHCaAqO60cSERERERERSYcJSSIqMJVPDb1yUZu2rZuQFGxtoHUuK10wRERERERERCUME5JEVGCCc1lo3MqJZavQojVtWxEVI77WVHYHZDIJoyEiIiIiIiIqWZiQJKJC0d3cRp6SCnlMgoTR5J/syVPIU1LFMqdrExEREREREZkXE5JEVCgqb/1p21ZFZNo2148kIiIiIiIikpZS6gCIqGgSypaBpqIbFNFxALLWkcxo29zipz/rrR8pl0PjXl7CaIiIiIioKLA5eOKV28joHGSESIiIigeOkCSiQtPd3Eae+jTH6ENLpBuj1t0VsOL3MkRERERERETmxIQkERWa2qcGdLeysfjdtlUqyOMeikVO1yYiIiIiIiIyPyYkiajQBIfS0HhUEMvKG3cArVbCiPKmiEmATCc+JiSJiIiIiIiIzI8JSSJ6JXq7bT9Nh+J+tITR5E3xIEavzIQkERERERERkfkxIUlEr0TtVR2CzkY2ljxtW2/9SCdHCKXsJYyGiIiIiIiIqGRiQpKIXolQyh6aqpXEstWNcECjkTCiXAgCFFHPE5IcHUlEREREREQkDSYkieiV6U7blj3LgCLigYTRGCZ/mAzZs0yxrKnEhCQRERERERGRFJiQJKJXpqpdDYL8+T8nVqF3JIzGMN3p2gBHSBIRERERERFJRSl1AERUDNjZQlPNA8o79wAAylt3AbUaUFrOPzG6G9oIttbQlnOSMBoiIiIiMpW7mXulDsEgzfmzUodAxUTk+YVSh0D0yjhCkoiMQqU7bTsjE8rwSAmjyUl3hKSmkjugsxEPEREREREREZkPE5JEZBTqWp4QFAqxrLxuObtty56mQZ7yWCxzujYRERERERGRdJiQJCLjsLGGukYVsai8HQFkqqSLR0fO9SMrSBQJERERERERETEhSURGo7fbtkotrikpNd2EpCCXQ1PBVcJoiIiIiIiIiEo2JiSJyGjUNapCsHq+kY0y1DKmbesmJLVu5QArKwmjISIiIiIiIirZmJAkIuOxtoK6pqdYVN65D2RkShcPAKjUkMcmiEWuH0lEREREREQkLSYkicio9KZtqzVQhkVIFwwARWw8ZFqtWGZCkoiIiIiIiEhaTEgSkVGpq3tAsLEWy1YST9vOuaENE5JEREREREREUmJCkoiMS6mEupanWFSERwLpGZKFo7d+ZFkHCKVLSRYLERERERERETEhSUQmoNKdtq3VQnkrXJpABEEvIampVEGaOIiIiIiIiIhIxIQkERmdxrMyBFsbsWx1XZpp2/LEFMiePR+dyenaRERERERERNJjQpKIjE+hgMq7+vPivSjInqaZP4worh9JRETF27///osRI0YgMDAQXl5eOHr0qNQhEREREb0UE5JEZBJqH51p24IA5U3zT9vWna4t2FhD6+ps9hiIiIhMKS0tDV5eXvj888+lDoWIiIgo35RSB0BExZOmSkVoS9lB/jQdAKAMvQNVAz+zxqB4EPM8nkpugExm1vMTERGZWlBQEIKCgqQOg4iIiKhAOEKSiExDLofaq4ZYVNyPhiz1qdlOL0tLhzzpkVjWVOaGNkRERERERESWgAlJIjIZte5u2wCUN+6Y7dy607UBrh9JREREREREZCk4ZZuITEZT2R1ah1KQ/zcy0ur6bagaB5jl3HrrR8pk0FQob5bzEhERWTIrK4VRVzBRKhU5jinkXCKlKJHJZch5F4s2mYUu06NQmC4umUwGRXG7kSVMcbuH1tbF6GLyydD/Eyl3TEgSkenIZFB714D1v5cBAIroOMhSHkMoW8bkp9ZNSGrdygHWViY/JxERkaVTqTRGbzMzU79NmVYw+jnIdBQANMXsngmCZV6PRmO6uBQK07ZPplfc7uGL/28oKUrqdRcGE5JEZFKqOjXFhCQAWN24g8xm9U17UrUa8th4scjp2kREREREREVb5PmFRm3Po8Eko7ZHBcM1JInIpLQVykNb1kEsK0Nvm/ycitgEyDRascyEJBERFVdPnz5FaGgoQkNDAQAPHjxAaGgooqOjJY6MiIiIKHccIUlEpiWTQeVTEzanLwAAFLEPIUtKgeBc1mSnlHNDGyIiKiGuXr2K9957TywHBwcDAN566y3MmzdPqrCIiIiI8sSEJBGZnFonIQkAVqF3kNmyocnOp7d+pKMDBIfSJjsXERGRlJo2bYqbN29KHQYRERFRgXDKNhGZnLa8CzQ6IyJNOm1bEKCIep6Q1FTi6EgiIiIiIiIiS8KEJBGZnkwGtU8NsahISII8Ick0p0p6BHnaM7HM6dpEREREREREloUJSSIyC3WdmnplU42S1B0dCTAhSURERERERGRpLCYhuXXrVrRt2xb+/v7o3bs3Ll++nGtdlUqFFStWoF27dvD390f37t3x559/6tVZvnw5vLy89P506tTJ1JdBRLnQlnOGxtVZLFtdvw0IgtHPo3gQI74WrK2g1TknEREREREREUnPIhKSISEhCA4OxujRo7F79254e3tjyJAhSExMNFh/yZIl+OmnnzBjxgyEhISgb9++GDNmDK5fv65Xr1atWvj777/FPz/++KM5LoeIcqE7SlKe/AjyuIdGP4fuhjaaim6A3CL+mSMiIiIiIiKi/1jEb+obNmxAnz590KtXL9SsWROzZs2Cra0tdu7cabD+nj17MGLECAQFBcHDwwP9+vVDUFAQ1q9fr1dPoVDA1dVV/OPszJFSRFJS+Zh42nbaMygSU8Qip2sTERERERERWR6l1AFkZmbi2rVr+PDDD8VjcrkcLVq0wIULFwx+RqVSwdraWu+YjY0Nzp8/r3fs3r17CAwMhI2NDerVq4dJkyahYsWKxr8IIsoXwckRGndXKGITAABWoXeQ2boZIJMZpf2c60dWMEq7RERERJTlbuZeqUMgIqJiQPKEZHJyMjQaDVxcXPSOu7i4IDw83OBnAgMDsXHjRjRu3BhVqlTB6dOnceTIEWg0GrFOQEAAgoODUa1aNSQkJGDlypXo378/9u3bh9KlS+do08pKYaycSK6USoVpT1BEsV8MK679IvjXAv5LSMofpcIm4SGEAoxkzKtfFDFxz88jk0HhWQEK6+LZjy8qrj8vr4r9Yhj7xTD2CxERERGReUiekCyMTz/9FJ999hk6d+4MmUwGDw8P9OzZU2+Kd1BQkPja29sbdevWRZs2bXDw4EH07t07R5sqlSbHMVPIzDTPeYoa9othxbFfZLWqo/SRU88PXL6FzPKuBWojt36xu/98QxtteRdkyhRAMezD3BTHnxdjYL8Yxn4xjP1CRERERGR6kq8h6eTkBIVCkWMDm8TERJQrV87gZ5ydnfHtt9/i4sWL+OOPP3Do0CHY29vDw8Mj1/OUKVMGnp6euH//vlHjJ6KCERwdoKn0fESkMvSOcXbb1migiIl/XuT6kUREREREREQWSfKEpLW1NXx9fXH69GnxmFarxenTp1G/fv08P2tjYwM3Nzeo1WocPnwYr7/+eq51nz59isjISLi6FmwkFhEZn8qnhvha/uQpFJExedTOH3lsAmTq5yObmJAkIiIiIiIiskwWMWV78ODBmDp1Kvz8/BAQEIBNmzYhPT0dPXv2BAB8/PHHcHNzw6RJkwAAly5dQlxcHHx8fBAXF4fly5dDq9Vi6NChYptff/012rRpg4oVKyI+Ph7Lly+HXC5H165dJblGInpO7VMDwtGTyF62VXn9NjRVXm3DKcUDbmhDREREREREVBRYREKyS5cuSEpKwrJly5CQkAAfHx+sXbtWnLIdExMDufz5YM6MjAwsWbIEkZGRsLe3R1BQEObPn48yZcqIdWJjYzFx4kSkpKTA2dkZDRs2xM8//wxnZ2ezXx8R6RNKl4KmSkUo70cDAJQ37yCjQyAgL/ygbd2EpLZMaQhlcm5eRURERERERETSs4iEJAAMGDAAAwYMMPje5s2b9cpNmjRBSEhInu0tXrzYaLERkfGp69QUE5LytGdQ3IuCplru68DmSRD0EpK6a1QSERERERERkWWRfA1JIiqZ1F7VIchkYlkZervQbcmSH0Oeli6WuX4kERERERERkeViQtJc1GrIL92A7a5DsNu6B7a7DkF55SagVksdWbEVGNgIf/55PN/1v/rqC3zyySTTBUR6BHs7aDwri2Wrm+GARpPHJ3KneKC/KQ4TkkRERERERESWy2KmbBdnirC7sNv/B2TPMiDIAJkACDLA6uZdCEdPIr1rW2hqeRr9vF999QUOHtwvlsuUcYS3dx2MGjUONWvWMvr58iskZB/mzp2FqlU9sXXrDr33fv/9KGbOnAZ39wrYsWOfRBGSuajq1ITybiQAQPYsE4q7D6CpWbXA7Siink/XFqyU0JZ3MVqMRERERERERGRcHCFpYoqwu7DbcQh4lgEgKxmp+188y4DdjoNQhN01yfmbNm2BPXsOYc+eQ1i69FsolQp8/PFHJjlXQdjZ2SE5ORlXr17WO75//x64uXF0W0mhrl0Ngs5GNlaFnLatv36k2yttjkNEREREREREpsXf2k1JrYbd/j8AALJcqmQft9v/h0mmb1tbW8HFpRxcXMqhVi0v9O8/CPHxcUhOThbrfPvtMvTt2xOvv94SvXv3wPfffwe1TixhYbcwduyHaN++FTp0CMIHHwzAjRvXxfcvXbqIUaOGom3blujZ8w0sWfIN0tPTkReFQoH27TviwIG94rH4+DhcvHgO7dt3ylF/9+4d6NOnB1q3boZ33+2JQ4cO6L0fGXkfo0cPQ9u2LTBgQG/8++//crQRFxeLGTOmoVOn1ujcuS2mTZuImJjol3cimY6tDTTVn29ko7x1t+B/D9IzoHj4/OeZG9oQERERERERWTZO2S4srRby+ETIVLknTxTh9yH7b2RkXmQA8CwD1ifP6yVnXiRORS3k6K+0tDQcPhyCypU94OjoKB63t7fHp59+jnLlXHHnzm3Mn/8V7O3t0b//+wCA2bM/Q+3aXpg8+RPI5XKEhd2CQpH1oxMV9QCTJ4/FsGEj8cknM5GSkozFi+dj8eL5mD798zzjeeON7hg79kNMmfIx5HJrhITsQ9OmzeHs7KxX78SJP7B06QKMGzcJjRo1walTfyE4eDbKl3dDgwaNoNVq8emnU+Dk5ILVqzfi6dMnWLZsoV4barUakyaNha+vP1auXAuFQoFNm9Zh0qSx2LRpO6ysrArVp/TqVHVqQnn7HgBAlqmC8s59qL2q5/vzutO1AUBTuYJR4yMiIiIiIiIi42JCsjA0Gthv/hWKmHijNmtz6hxw6lzep65QHmkD3wQUiny1eerU32jf/jUAQHp6OlxcymH+/CWQ6yQ1Bw0aKr6uUKEi7t+/h2PHDosJybi4OPTr9x6qVvUEAHh4VBHrb968Ae3bd0KfPv3E98aPn4KxY4dj0qRpsLGxyTW22rW9UbFiJRw7dhTt2nXGwYP7MXbsBERHR+nV2759Mzp37oaePXsDAKpUqYpr165i27bNaNCgEc6ePYN79yKwaNEKlCvnCgAYPnw0Jk8eJ7Zx7NhhaLVaTJs2A7L/dnaePv1zdOrUGhcunEOTJs3y1Z9kfOqanhCUCsjUWRvaKENvFzohKchkWVO2iYiIiIiIiMhiMSFZCLKUx0ZPRuaXIiYespTHEFyc8lW/fv2GmDz5EwBAaupj7N69A5Mnj8P332+Cu3vWSLJjxw5jx47tiIqKQnp6GjQaDeztS4ltvPNOP8ybNweHDoWgUaMmaNu2HSpVytod+fbtMNy5E4YjRw6J9QVBgFarRUxMNDw9q+UZ3xtvdMf+/Xvh4lIez56lo1mzlti162e9OhEREejevafeMX//uvjll+3/vX8X5cu7i8lIAPDzC9Crf/t2GKKiHqBDh1Z6xzMzMxEV9SDPGMnEbKyhrlkVVjfCASBrtGSmCrDO36hV3fUjta7OgI21ScIkIiIiIiIiIuNgQrIQhLJloKlQXpKkpKZCeQhly+S7vp2dHSpXfj4NvHZtb3Tq1Bp79+7G8OGjcPXqZcyePQMffDAcTZs2R6lSpXHs2GFs375F/MyQIR+ifftOOH36b/zvf6ewfv1qfPHFXAQFtUF6ehp69OiJt9/um+Pc+dmcpkOHzvjuu+VYv34NOnbsAqXSND+S6elpqF3bG59//mWO98qWzV9yl0xH7VNTTEjKVGoob0dAXScfO8FrNFBEP/97yPUjiYiIiIiIiCwfE5KFoVAg7b238rWGpM2p8/luNqNFQ5OuIQkAMpkMMpkcGRlZa1teuXIZbm7ueP/9IWKd2NiYHJ+rUqUqqlSpinfe6Y/PP5+OkJC9CApqg9q1vXH37l29pGdBlCnjiNdeC8LRo4cxZcp0g3U8PT1x+fIldO7cVTx25colVKtW7b/3qyE+PhYPHz5EuXLlAADXrl3Ra6N2bW8cO3YETk5OKFWqdKFiJdNR16gCwUop/n1Sht7JV0JSHvcQMp1NcDSVmZAkIiIiIiIisnTcZbuw5HJo3V2h8aiQ65/Mlg0h2NpAeElTAgDB1gaZLRvk2Z7W3bXAycjMTBUSEx8iMfEhIiLuYvHib5CenoaWLbPWlfTw8EBcXCyOHv0NUVEP8Msv2/Hnn8fFz2dkPMOiRV/j/PmziI2NweXLF3HjxnVUrZqVDOzf/31cvXoJixZ9jbCwm4iMvI+//jqORYu+zneMM2fOwoEDR8U1Kl/07rvv4eDBfdi9ewciI+9j+/Yt+PPPP9C37wAAQKNGTeDhURVfffU5wsJu4dKlC1iz5lu9Njp06AxHx7KYNm0SLl26gOjoKJw/fxZLlnyD+Pi4fMdKJmJlBXWt59P7lXfuAfnYEEp3ujbAhCQRERERERFRUcARkqakVCK9a1vY7TgIAf/tpv2C7GRlete2gAmmK//zzyn06NEJAGBvXwpVq1bFnDnz0KBBIwBAYGAQ3nmnHxYvno/MTBVatGiJQYOGYP36NQAAuVyBR48e4csvP0dychIcHcsiKKgNhgz5EABQs2YtrFixBmvWfItRo4YBEFCxYmW8/nr7fMdoa2sLuTz39QJbtWqN8eMnY9u2zVi6dAEqVKiITz6ZKV6DXC7H3LnfYN68ORg+/H24u1fARx9NwaRJY/XOsXLlGnz33XJ8+ukUpKWloVw5VzRs2ASlSpXK7dRkRqo6NWB1PQwAINNooQyLgNrfK8/P6K0fWboUBEcHk8ZIRERERERERK9OJgjCywbwlQgJCakma1sRdhd2+/+A7FkGBBkgE/D8v7Y2SO/aFppaniY7v6WztlYgM1MjdRgWp8T1i1qD0ss2QpaRmVWsXgXp77yRo5rYL4KAUst/gPxpGgBA5V0Dz97qYNaQLUmJ+3nJJ/aLYewXw8zRL66u/OKEpGXsZ15Df29sDp4w6jnItBRyGTTa/P9KeDdzrwmjKd40HhVN1rZCIYNGw1/ti7Lidg89GkwyepuR5xcatT1jx8hn7Cz5fd7lCEkz0NSqhidjPWB7OwK4fhuy9AwIdjZQ164OtXd1k4yMJCpylAqoa1eD1ZWbAABFxAMg7Rlgb2uwuuxRqpiMBDhdm4iIiIgsmyIy2mRty2QyKPIx1siUSVEiooJgJsxclEpoA7yQ6V1T6kiILJaqTk0xISnTamF1KxyqenUM1uX6kURERERERERFEze1ISKLoalaCVq75yMilaG3c62rePB8N3hxB3oiIiIiIiIisnhMSBKR5VAospYxyC7ei4ZMZ1q2XlWdEZKaiuUBhcLk4RERERERERHRq2NCkogsitrn+bIGMkGA8kZ4zkrPMiBPSBKLmkoVzBEaERERERERERkBE5JEZFE0HhWgLWUvlpXXw3LUUUTFQab7mcpuZoiMiIiIiIiIiIyBCUkisixyOdTeNcSi8kEsZI+f6FXRna4tANBU4oY2REREREREREUFE5JEZHFUdfR3o1feuKNXVkQ939BG6+oM2NqYJS4iIiIiIiIienVKqQMozjLT4qDOeCSWVVZyqFTaXOsrbRxhbc+pp0TaSm7QlikN+X8jI62u34aqSd3/3tRCER0v1tVU5uhIIiIiIiIioqKECUkTyUyLw43DAyFoM/P9GZncGt4dNjMpaURvv90Nffq8iz59+uWr/rp1q/HXXyewceOPJo6M8iSTQe1TA9b/XAIAKGLiIUt5DKFsGchiH0KmUotVOV2biIiIiIiIqGjhlG0TUWc8KlAyEgAEbabeiMpX9dVXXyAwsBECAxshKKgpevfujm+/XYqMjAy9eoGBjfDnn8f1jr333jv45pu5Bts9dOgA2rRpjpSUFJw/f1Y8R2BgI3Tt2g6TJ4/DnTu384wt+3OdOrXJEU9o6DWxPSq5VD7607atQrN+puSRMXrHNZW5wzYRERERERFRUcKEZDHXtGkL7NlzCD//vAdjx07Enj27sG7d6pd+rmvXHjh27DAyMp7leC8kZB9atmyFsmXLisd+/HEn9uw5hIULV0ClUmHKlPFQqVQvPY+9vT2OH/9d79j+/Xvg5sZRbyWd1t0V2rJlxLIyNGsdSZlOQlJbyh5CWQezx0ZEREREREREhccp28WctbUVXFzKAQDc3Nzx229NcPbsPy/9XIcOXfDdd8tx/Pjv6Nixi3g8OjoKFy6cwzffLNWr7+TkDAcHB7i4lEPv3u9i2rSJuHcvAjVr1srzPJ07d8W+fXvQpk0HAEBGxjMcO3YYb7/dFxs3rtWre/z4MaxduxpRUZFwcSmHXr3ewbvvDhDfT05OQnDwHJw9ewYuLi4YNmxkjvOlpqZi5col+PvvE8jMVMHb2wdjx05ErVq1X9onZGYyGVR1asLm1HkAgCLuIWSJyZDff56Q1FR2B2QyqSIkIiIiIipRFJHRr9yGxqOiESKRFvuB6NUxIVlIgqBBesodaDU5RxACQEZqZKHaTU8Jy7VNucIWdmVrQCZTFKrt8PDbuHr1MtzcXj7FtWzZsggMDMKBA3v1EpIHD+6Hq2t5NGnSzODnnjx5gmPHDgMArKysXnqejh27YNu2zYiNjYW7uzuOH/8d7u4VUbu2t169GzdCMXPmJ/jgg+Fo27Y9rl69jIUL58HR0RFdunQDkDVF/eHDh1i2bBWUSiWWLv0GyclJeu3MmDEVNjY2WLBgGUqVKo09e3bho49GYtu2XShTxvGl8ZJ5qX2eJyQBwPp/FyFLfSqWuaENERERERERUdHDhGQhaLUq3DkxDmnJoUZv+8GFb/J8397JBzWClkEuf3myDwBOnfob7du/Bo1Gg8zMTMjlckyY8HG+Ptu1aw9MnjwO0dFRqFixEgRBwMGD+9G5c1fI5fqz/Xv2zEpapqenAwACA1uhalXPl57DyckZzZu3xMGD+zB48DAcOLAXb7zRPUe9n37aioYNG2PQoKEAgCpVqiIiIhw//rgZXbp0w/379/C//53C999vgo+PLwBg2rSZ6N//bbGNS5cuIjT0GvbtOwJra2sAwJgxH+Gvv47jjz+OoUePnvnqFzIfraszNC5OUCQmAwCsLt/Qe58b2hAREREREREVPUxIFkLm0xiTJCPzIy05FJlPY2DrUCVf9evXb4jJkz9Beno6fv75RygUCrRu/Xq+Ptu4cVO4upZHSMg+DB06AmfPnkFcXKw4IlHXypXfw9bWFteuXcUPP6zH5MnT831N3bv3wIIF36BDh864evUK5syZh0uXLurVuXfvLgIDg/SO+fvXxc8/b4NGo8G9e3ehUCjg5eUjvl+1qidKl36+vuDt27eQnp6ON97Qv/6MjAxERT3Id7xkRv/ttq34+2xWUectQS6DtlxZScIiIiIiIiIiosJjQrIQrEtVgL2TjyRJSXsnH1iXyv+uwnZ2dqhc2QMA8MknMzFo0LvYv/9XdO365ks/K5fL0aVLNxw8uB8ffDAcISH70KBBI1SqVDlH3QoVKsHBwQFVqngiOTkJn3/+CVau/D5fMTZv3hKZmXMwb94ctGz5Ghwdy+b7+goiPT0NLi7lsHx5zk19dBOXZFkEezuDx2VaAaW/3Yr0rm2hqeVp3qCIiIiIiIiIqNCYkCwEudwKNVuveOkaki+bfm1I5fpTYOPgYfi8r7iGpFwux8CBg7FixWK0b98JNja2L/1Mly7dsGnTOpw48Tv+/PMPTJ0646Wf6dmzDzZv3ogTJ/5AUFCbl9ZXKpXo2PEN/PjjD1iwYJnBOlWrVsOVK5f0jl25cgkeHlWgUChQtaonNBoNbt4MFads378fgSdPUsX6Xl7eSEpKhEKhQIUKXEC4KFCE3YXN4b8gQH90pOhZBux2HET6252gqVXNzNERERERERGRIZHnF0odAlk4+curkCEymQL2TrVRulyAwT92ZfPeXTo3dmVr5dqmvVPtQicjs7Vp0w5yuQI7d/6idzwmJgphYTf1/qSnp6NixUpo0KAx5s+fCysr63wlGG1tbdGt25tYv341BEHIV1zDho3E/v1H0bRpc4Pv9+07AOfO/YuNG9fi/v17OHhwP3bu/BnvvjsQAFCliieaNm2Bb76Zi2vXruLGjVDMm/clbGxsxDYaNWoKX19/fPLJZJw58z/ExETjypVLWL16JW7cuJ6vOMmM1GrY7f8DQC7JSJ3jdvv/ANRqs4RFRERERERERK+GCckSRqlUomfPPvjxxx/EDWgAYPnyxRg8uL/en1u3bgIAunbtjtTUx/+NqrTJrWk9vXr1QUTEXfz++9F81beyskLZsmUhkxlOPXl5eWP27GAcPXoY7733DtauXYUhQ0borWc5ffpMlCvnirFjh+PTT6ege/e34OTkLL4vk8mwYMFS1KtXH3PnzsK77/bE559PR1xcrF49sgzK0DuQPcvINRmZTQZA9iwDyhvh5giLiIiIiIiIiF6RTMjvELZiLiEh9eWVCiAt+RbC/hhe4M/VarMG9k61jRqLpbO2ViAzUyN1GBanpPeL7a5DUN66C1k+/oUSZIC6djU869nJ9IFZqJL+85Ib9oth7BfDzNEvrq5cs5ikZexnXkN/b2wOnjDqOci0FHIZNNr8/0p4N3OvCaOhwpLJZPmanabxeLWlqxSR0a/0eWPEYAlM0Q8KhQwaDdMz5uTRYJJR2+Mzdpb8Pu9yhKSJKG0cIZNbF+gzMrk1lDaOJoqIqGiRpWfkKxkJADIhqz4RERERERERWT5uamMi1vZu8O6wGeqMR+IxKys5VCptrp9R2jjC2t7NHOERWTzBzgaCDPkeISnY5W85ASIiIiIiIiKSFhOSJmRt76aXYOTwXaL8U9eqBqubd/NVVyYA6trVTRwRERERERERERkDE5JEZJHUPjUgHD0JvGRjGwEAbG2g9mZCkoiIiIgoL8ZY+1DqGIyxBqUl9ANRScc1JInIMimVSO/aFsB/SUcDso+nd20LKPn9ChEREREREVFRwN/gichiaWp5Iv3tTrDb/wfwLENcU1JcW9LWBuld20JTy1PqUImIiIhemRQ7WOd3d2YiInq5yPMLpQ7hpYy9u3hhMSFJRBZNU6sanoz1gPJGOJS3wqF4lgmNrTXUtatnTdPmyEgiIiIiIiKiIsVipmxv3boVbdu2hb+/P3r37o3Lly/nWlelUmHFihVo164d/P390b17d/z555+51l+zZg28vLzw1VdfmSJ0IjI1pRJqv9p41rMTVIPewrOenaD2q81kJBEREREREVERZBEJyZCQEAQHB2P06NHYvXs3vL29MWTIECQmJhqsv2TJEvz000+YMWMGQkJC0LdvX4wZMwbXr1/PUffy5cvYvn07vLy8TH0ZRERERERERERE9BIWkZDcsGED+vTpg169eqFmzZqYNWsWbG1tsXPnToP19+zZgxEjRiAoKAgeHh7o168fgoKCsH79er16T58+xZQpU/Dll1/C0dHRHJdCREREREREREREeZA8IZmZmYlr166hRYsW4jG5XI4WLVrgwoULBj+jUqlgbW2td8zGxgbnz5/XOzZ79mwEBQXptU1EREREVNwUZPkjIiIiIqlJnpBMTk6GRqOBi4uL3nEXFxc8fPjQ4GcCAwOxceNGREREQKvV4uTJkzhy5Aji4+PFOgcOHMD169cxaZJl7B5ERERERGQKBV3+iIiIiEhqRXJHiE8//RSfffYZOnfuDJlMBg8PD/Ts2VOc4h0TE4OvvvoK69evh42NTb7atLJSQCYzZdSAUqkw7QmKKPaLYewXw9gvhrFfDGO/GMZ+MYz9QkWV7vJHADBr1iwcP34cO3fuxPDhwyWOjoiIiCgnyROSTk5OUCgUOb7BTUxMRLly5Qx+xtnZGd9++y0yMjKQkpKC8uXLY8GCBfDw8AAAXLt2DYmJiejZs6f4GY1Gg3///Rdbt27FlStXoFDo/9KhUmmMfGWGZWaa5zxFDfvFMPaLYewXw9gvhrFfDGO/GMZ+oaIme/mjDz/8UDz2suWPiIiIiKQmeULS2toavr6+OH36NNq1awcA0Gq1OH36NAYMGJDnZ21sbODm5gaVSoXDhw+jc+fOAIBmzZph3759enU/+eQTVK9eHcOGDcuRjCQiIiIiKoryWv4oPDxcoqiIiIiI8iZ5QhIABg8ejKlTp8LPzw8BAQHYtGkT0tPTxRGOH3/8Mdzc3MT1IC9duoS4uDj4+PggLi4Oy5cvh1arxdChQwEApUuXRu3atfXOYW9vj7Jly+Y4ns3V1cGEV0hEREREJD2zPPO+19X05yim6oJ9R0RUlDXo+IXUIRQZFpGQ7NKlC5KSkrBs2TIkJCTAx8cHa9euFadsx8TEQC5/vv9ORkYGlixZgsjISNjb2yMoKAjz589HmTJlpLoEIiIiIiKzK8zyR0RERERSkwmCIEgdBBERERERFU7v3r0REBCAGTNmAMha/qh169YYMGAAN7UhIiIii2QRIySJiIiIiKhwXrb8EREREZGlYUKSiIiIiKgIe9nyR0RERESWhlO2iYiIiIiIiIiIyGzkL69CxvbHH3+gY8eO6NChA3755Repw7EYo0ePRuPGjTFu3DipQ7EYMTExGDhwILp06YJu3brh4MGDUodkER4/foyePXuiR48e6Nq1K37++WepQ7Io6enpaNOmDb7++mupQ7EYbdu2Rbdu3dCjRw8MHDhQ6nAsRmRkpN6/MWlpaVKHJLnw8HD06NFD/BMQEICjR49KHRaRZLZu3Yq2bdvC398fvXv3xuXLl/Osf/DgQXTq1An+/v7o1q0bTpw4YaZIKTcFuYc///wz+vXrh8aNG6Nx48YYNGjQS+85mV5B/x5mO3DgALy8vDBq1CgTR0gvU9B7+PjxY8yaNQuBgYHw8/NDx44d+e+pxAp6Dzdu3IiOHTsiICAAQUFBmDt3LjIyMswUbREhkFmpVCqhQ4cOQmxsrPDkyROhQ4cOQlJSktRhWYT//e9/wrFjx4SxY8dKHYrFiIuLE65fvy4IgiDEx8cLgYGBwtOnTyWOSnpqtVpIS0sTBEEQnj59KrRp04Z/j3QsWrRIGD9+vDBv3jypQ7EYbdq0EZ48eSJ1GBanf//+wr///isIgiAkJycLKpVK4ogsy5MnT4QmTZrw310qsQ4cOCD4+voKO3bsEMLCwoTPPvtMaNSokfDw4UOD9c+dOyf4+PgI33//vXD79m1h8eLFgq+vr3Dz5k0zR07ZCnoPJ06cKGzZskW4fv26cPv2bWHatGlCw4YNhdjYWDNHTtkKeg+zRUZGCq+99prQr18/YeTIkWaKlgwp6D3MyMgQevbsKQwbNkw4e/asEBkZKfzzzz9CaGiomSOnbAW9h3v37hX8/PyEvXv3CpGRkcJff/0ltGzZUpg7d66ZI7dsHCFpZpcvX0bNmjXh5uaGUqVKoVWrVjh58qTUYVmEpk2bolSpUlKHYVHKly8PHx8fAICrqyucnJzw6NEjiaOSnkKhgJ2dHQAgMzMTACBw9QkAQEREBMLDw9GqVSupQyELFxYWBqVSiUaNGgEAypYtC6WSS0vr+v3339G8eXPY29tLHQqRJDZs2IA+ffqgV69eqFmzJmbNmgVbW1vs3LnTYP0ffvgBr732GoYOHYoaNWrgo48+Qp06dbBlyxYzR07ZCnoPFy5ciP79+8PHxwc1atTAl19+Ca1Wi9OnT5s5cspW0HsIABqNBpMnT8bYsWPh4eFhxmjJkILew507d+LRo0dYuXIlGjZsiMqVK6NJkybw9vY2c+SUraD38MKFC2jQoAG6deuGypUrIzAwEF27duWI8xcwIWkCq1evRq9evVC/fn00b94co0aNQnh4OAAgPj4ebm5uYl03NzfExcVJFapZ5dUvJVl+++Xq1avQarWoUKGCBFGa38v65fHjx+jevTuCgoIwZMgQODs7Sxit+bysX77++mtMnDhRwgilkZ+/RwMHDkSvXr2wd+9eiaI0v7z65d69e7C3t8eIESPw1ltvYdWqVRJHaz75/Xf34MGD6NKliwQREkkvMzMT165dQ4sWLcRjcrkcLVq0wIULFwx+5uLFi2jevLnescDAQFy8eNGUoVIuCnMPX5Seng61Wg1HR0dThUl5KOw9XLlyJVxcXNC7d29zhEl5KMw9/P3331GvXj3Mnj0bLVq0QNeuXbFq1SpoNBpzhU06CnMP69evj2vXrokJyMjISJw4cQJBQUFmibmoYELSBM6cOYP+/fvj559/xoYNG6BWqzFkyJASvzYX+8Ww/PRLSkoKpk6ditmzZ0sYqXm9rF/KlCmDvXv34tixY9i3bx8ePnwoccTmkVe/HD16FJ6enqhWrZrUYZrdy35etm3bhl27duG7777D6tWrcePGDYkjNo+8+kWtVuPcuXP4/PPP8dNPP+HkyZMlZsR+fv7dffLkCS5cuMAHRyqxkpOTodFo4OLionfcxcUl1//nPnz4MMfO3nnVJ9MqzD180YIFC1C+fHm9X8TJfApzD8+ePYsdO3Zgzpw55giRXqIw9zAyMhK//fYbNBoN1qxZg1GjRmHDhg347rvvzBEyvaAw97Bbt24YN24c+vXrB19fX7Rr1w5NmjTBiBEjzBFykcG5WSawbt06vfK8efPQvHlzXLt2DeXLl9cbERkXF4eAgABzhyiJvPqlcePGEkUlvZf1S2ZmJkaPHo1hw4ahQYMGEkVpfvn9eSlXrhy8vb1x9uxZdOrUydxhml1e/XLp0iWEhITgt99+w9OnT6FWq1GqVCmMGTNGomjN52U/L9kj08uXL49WrVrh+vXrJWLaS1794ubmBj8/P3HUdVBQEEJDQ9GyZUspQjWr/Pz7cvToUbRs2RI2NjZShEhEJLk1a9YgJCQEP/zwA/8tLCKePHmCjz/+GHPmzCkxs4eKI0EQ4OLigjlz5kChUMDPzw9xcXFYt25diXiuLw7++ecfrF69Gp9//jkCAgJw//59fPXVV1i5ciVGjx4tdXgWgwlJM0hNTQUAODo6onr16ggLC0NcXBxKly6NP//8s8TueqbbL/Scbr8IgoBp06ahWbNmePPNN6UNTGK6/fLw4UPY2tqidOnSSE1NxdmzZ/Huu+9KHKE0dPtl0qRJmDRpEgBg165dCAsLK7EPLbr9kpaWBq1Wi9KlS+Pp06f4559/0LlzZ4kjlMaL/z9KTEzEo0eP4ODggLNnz+Kdd96ROEJpGPr/0aFDh9CnTx+pQiKSnJOTExQKBRITE/WOJyYm5hgFma1cuXI5RovkVZ9MqzD3MNu6deuwZs0abNiwoUR8gWepCnoPIyMjERUVhZEjR4rHtFotAKBOnTo4dOgQqlSpYtqgSU9h/h66urpCqVRCoVCIx6pXr46EhARkZmbC2trapDGTvsLcw6VLl6J79+7isgleXl5IS0vDzJkzMXLkSMjlnKwMcMq2yWm1WsydOxcNGjRA7dq1oVQqMXXqVLz33nt488038cEHH8DJyUnqMM3uxX4BgEGDBmH8+PE4ceIEWrVqle+1bYqTF/vl3LlzCAkJwdGjR9GjRw/06NEDN2/elDpMs3uxX6Kjo9G/f390794d/fr1w4ABA+Dl5SV1mGZn6O8R5eyXxMRE9OvXD927d8c777yDHj16lJiR6boM/f9owoQJGDBgALp3746qVauiTZs2Uodpdob+HqWmpuLy5csIDAyUODoi6VhbW8PX11dvM5PszU3q169v8DP16tXD//73P71jp06dQr169UwZKuWiMPcQAL7//nt8++23WLt2Lfz9/c0RKuWioPewevXq2LdvH3799VfxT9u2bdG0aVP8+uuvcHd3N2f4hML9PWzQoAHu378vJpOBrI0rXV1dmYyUQGHu4bNnz3IkHbMTzNyMVYe0m3wXfzNnzhTatGkjxMTESB2KRWG/GMZ+MYz9Yhj7xTD2i2HsF8PYL0S5O3DggODn5yfs2rVLuH37tjBjxgyhUaNGQkJCgiAIgjBlyhRhwYIFYv1z584JderUEdatWyfcvn1bWLZsmeDr6yvcvHlTqkso8Qp6D1evXi34+voKhw4dEuLj48U/T548keoSSryC3sMXTZ06VRg5cqS5wiUDCnoPo6Ojhfr16wuzZ88WwsPDhT/++ENo3ry58O2330p1CSVeQe/hsmXLhPr16wv79+8X7t+/L/z9999Cu3bthPHjx0t0BZaJU7ZNaPbs2Th+/Di2bNnCb6N0sF8MY78Yxn4xjP1iGPvFMPaLYewXorx16dIFSUlJWLZsGRISEuDj44O1a9eKU9RiYmL0RoA0aNAACxYswJIlS7Bo0SJ4enpi5cqVHMUvoYLew+3bt0OlUmHcuHF67YwZMwZjx441a+yUpaD3kCxPQe9hhQoVsG7dOgQHB6N79+5wc3PDe++9h2HDhkl1CSVeQe/hyJEjIZPJsGTJEsTFxcHZ2Rlt2rTBhAkTpLoEiyQTBI4XNTZBEDBnzhwcOXIEmzdvhqenp9QhWQT2i2HsF8PYL4axXwxjvxjGfjGM/UJEREREJC2OkDSBWbNmYf/+/fj2229RqlQpJCQkAAAcHBxga2srcXTSYb8Yxn4xjP1iGPvFMPaLYewXw9gvRERERETS4ghJE8htc43g4GD07NnTzNFYDvaLYewXw9gvhrFfDGO/GMZ+MYz9QkREREQkLSYkiYiIiIiIiIiIyGy4+i0RERERERERERGZDROSREREREREREREZDZMSBIREREREREREZHZMCFJREREREREREREZsOEJBERERERERU7y5cvh5eXl/inWbNmeO+993D27FmTnXPXrl1652zUqBHeeecdHD161CjtP3jwAF5eXjh06FC+4khKSjLKeV9VUlISfH19Ub9+fTx79kzqcIjIAjAhSURERERERMWSra0tfvrpJ/z000/44osvkJKSgkGDBuHWrVsmPe/atWvx008/Yf78+bC2tsbo0aPx119/mfScliwkJARqtRppaWn4/fffpQ6HiCwAE5JERERERERULMnlctSrVw/16tVDp06dsGrVKqjVamzfvv2V2n3ZKD9fX1/Uq1cPbdu2xXfffQcHBwds2bKl0O0Vdfv370eNGjXg5uaGvXv3Sh2OnuLe90SWiglJIiIiIiIiKhEqVqwIZ2dnPHjwQDy2a9cudOvWDf7+/njttdewePFiaDQavfe9vLxw4cIFDB48GPXq1cP8+fPzfc7SpUujWrVq4jmXL1+O+vXr4/Lly3jnnXfg7++PrVu3AgD+/fdf9O3bFwEBAWjatCk++eQTpKSk5GgzPT0d06dPR8OGDdGkSRMEBwdDrVbnGUdmZiYWLVqENm3awM/PD507d8a+ffv06kybNg1du3bFqVOn0K1bNwQEBGDAgAF48OABUlJSMH78eDRo0ADt2rVDSEhIvq4/MjISFy5cQLdu3fDGG2/g77//NnhNx48fR9++fVG3bl00btwYAwcOxPXr18X3Hz9+jDlz5qBVq1bw8/ND27ZtsXDhQvH9tm3bYvbs2XptHj16FF5eXmLfZ09537VrFz777DM0bdoUvXv3Fs8/ePBgNG/eHA0aNEDv3r3x559/5ogzLi4OH3/8MVq0aIGAgAB06tQJmzZtAgDMmzcPrVu3hlar1fvMiRMn4OXlhdu3b+erz4hKAqXUARARERERERGZw5MnT5CSkoLy5csDADZs2IBvvvkG77//PqZNm4Y7d+6ICcnJkyfrfXbSpEl455138OGHH8LOzi7f59RoNIiJiUGtWrXEYyqVCpMmTcKgQYMwYcIElC1bFlevXsXgwYPRtGlTLF26FA8fPsTChQtx+/ZtbN++HQqFQvz8okWLEBgYiCVLluD69etYtmwZrKyscsSsa/z48Th//jxGjx6NGjVq4MSJE5gyZQrKlCmDoKAgsV5CQgLmzZuHkSNHQqlU4ssvv8TkyZNhZ2eHRo0aoU+fPvj5558xZcoU1K1bF5UqVcrz+vfv3w8A6Nq1Kx4/foz169fj0KFD6Nu3r1gnJCQEEydOxOuvv46FCxfCysoK58+fR1xcHOrUqYPMzEy8//77iIqKwujRo1G7dm3Exsbi3Llz+b4PuhYtWoSgoCAsXLhQTB4+ePAAbdq0wQcffAC5XI4///wTw4cPx6ZNm9C0aVMAQHJyMt555x0AwIQJE1C5cmXcu3cP9+/fBwD07t0bGzZswMmTJ/Haa6+J59u5cyfq1auHmjVrFipeouKICUkishjTpk3D1atXxYeWgkhMTES7du3w008/oXbt2iaIznS8vLzw8ccfY8iQIUZr89y5cxg1ahSOHTuG0qVLG61dIiIioqIme+RgbGwsvv76a2g0GnTs2BFPnjzBsmXLMHToUEycOBEA0LJlS1hZWWHevHkYMmQInJycxHb69u2L4cOH5+ucWq0WarUaSUlJ+O6775CQkICxY8eK76tUKkyYMAFdunQRj40ZMwaurq5YtWoVrKysAAAVKlTAkCFDcOLECbRt21asW6VKFQQHBwMAXnvtNTx79gwbNmzAsGHD4OjomCOe//3vf/j999+xbt06BAYGiteakJCA5cuX6yUkHz16hC1btogJ1Pj4eMyZMwfDhg3D6NGjAQD+/v44cuQIjh49ivfffz/Pvjhw4ADq1asHDw8PAED16tWxb98+MSEpCAK+/vprtGzZEitXrhQ/pxvTr7/+iuvXr2P79u2oX7++ePytt97K89y58fb2xldffaV3bMCAAeJrrVaLpk2b4vbt2/j555/FhOTGjRuRmJiIgwcPonLlygCA5s2bi5+rUaMGGjZsiJ07d4oJyeTkZPz++++YOXNmoWIlKq44ZZuIioXvvvsOTZs2LXLJSFNp2LAhatWqhfXr10sdChEREZFk0tLS4OvrC19fX7z++uv4559/MHPmTLz22mu4cOEC0tLS0KlTJ6jVavFPixYt8OzZM4SFhem11bp1a/F1dsIx+48gCHp1W7ZsCV9fX7z22mvYtWsXRo4ciT59+ujV0U24AcDZs2fx+uuvi8lIAAgMDESZMmVyjARs3769Xrljx45IT0/PdbOekydPomzZsmjWrFmOaw0NDdWbol6+fHm90Zyenp4AgBYtWojHypQpA2dnZ8TGxho8X7YbN24gLCwMXbt2FY+98cYbOHfuHKKjowEA4eHhiI2NRa9evXJt5/Tp06hRo4ZeMvJV6N7LbLGxsZg6dSpee+011KlTB76+vvj7779x9+5dvTiaNWsmJiMN6dOnD44dOyZOS9+3bx+srKz0ks9ExBGSRFQMPH36FDt37izQWj4lwdtvv42vv/4aI0eO1HuwJSIiIiopbG1tsWXLFshkMjg5OaFChQqQy7PG5SQnJwPIfZRdTEyMXrlcuXLi6+nTp2P37t1iOTg4GD179hTLGzduROnSpeHo6IiKFStCqdT/1dvOzg6lSpXSO/b48WO4uLjkiMPFxQWPHj3SO+bs7GwwtoSEBIPXkpycjJSUFPj6+hp8PyEhAe7u7gCyko26sp8jHRwc9I5bW1sjIyPDYHvZ9u7dC7lcjsDAQDx+/BhAViJ2+fLl2L9/P4YPHy4m7rKn0RuiO83eGF7sZ61Wi5EjRyI1NRXjxo1D1apVYWdnh2XLlun9HKSkpOglaw3p1KkTvvrqK+zduxfvvfcedu3ahY4dO3LWEtELmJAkIoul1WoxY8YMHD16FGvXroW/v7/Ber/99hsAoFWrVnrHd+zYgQ0bNiAyMhJ2dnaoXr06PvnkEwQEBAAA1q9fjwMHDiAiIgLW1tYICAjAtGnTUK1aNbGN7Gnk06dPR3BwMO7du4eAgADMmzcPpUuXxueff46//voLzs7OmDhxot43nwMHDoS9vT06d+6MFStWID4+HnXr1sWsWbNQvXr1PK/9+PHjWLlyJW7evAl7e3t07NgRU6dOhb29PYCsaT6LFi3CwYMH8fDhQ5QtWxZ+fn745ptvxIfFdu3a4bPPPsOJEyfQrl27AvY+ERERUdEnl8tzfYbMntq8YsUKMRmnK69RcGPGjEH//v1zrevl5ZUjaahLJpMZjCcxMTHH8cTExBzTsJOSkvTKDx8+BAC4uroaPJ+joyOcnZ2xZs0ag+/nFWthCYKAkJAQaLVadOrUKcf7+/btw/Dhw1G2bFkAWVPDc1O2bFncvHkzz/NZW1tDpVLpHXsxkZvtxf6/d+8erl+/jpUrV+o9N7+4A3fZsmXzjBPISoJ369YNu3btQsOGDREaGorPPvssz88QlURMSBKRRVKr1fj4449x5swZbN68Oc+p2KdOnUKdOnVgY2MjHvv333/x6aef4oMPPkBQUBCePXuGy5cvIzU1VawTGxuLAQMGoGLFinjy5Am2b9+Ovn374rfffhMfjIBXW9j72rVruH//PiZNmgQAWLJkCYYOHYpDhw7B2tra4PUcOnQIEyZMQM+ePTF27FgkJCRg4cKFePz4MRYvXgwAWL16NbZv347JkyejVq1aSE5OxsmTJ5GZmSm2U7p0adSsWROnTp1iQpKIiIjoBfXr14ednR1iY2NzTIF+mcqVK+eZsCyMhg0b4tixY5g2bZo4ovLkyZN4/PgxGjZsqFf3yJEjGDRokFj+7bffYGdnl+szc4sWLbB27VpYWVnB29vbqHHn5uzZs4iJicHYsWPRuHFjvff++usvfP/997h58yZq164Nd3d37Nq1K9dpzS1atEBISAguXbqEunXrGqzj7u6OO3fu6B07efJkvmLNHumpO6soKioKFy5cEKesA1nrRa5fvx7R0dGoWLFiru316dMHW7duRXBwMDw9PdGoUaN8xUFUkjAhSUQWJzMzE+PHj8eNGzewZcsWvYcAQ65cuYKWLVvqHbt8+TLKli2LqVOnisdeXCtm+vTp4muNRoOWLVuiefPm+O2338Td84BXW9g7MTFR7xrq1KmDTp06YdeuXXo7C2YTBAHz589Hly5d9BbadnV1xfDhwzFq1CjUqlULV65cQWBgoN438x07dszRnre3Ny5dupRr3xERERGVVGXKlMG4cePwzTffIDY2Fk2aNIFCoUBkZCSOHTuG5cuXF2g37Vc1YsQI9O3bFx9++CEGDhwo7rIdEBCQY73J+/fv45NPPkGXLl1w/fp1rFmzBu+//77BDW2ArDUt27Rpg6FDh2Lo0KHw8vJCeno6bt++jXv37uXY4MUY9u3bB3t7ewwePDjH9PRatWph48aN2L9/PyZNmoSpU6di4sSJGDt2LHr06AFra2tcvHgR/v7+aNOmDXr06IEff/wRw4cPx5gxY1CrVi3ExcXh7NmzmDNnDoCsZ+EvvvgCK1asQP369XHixAlcvHgxX7FWr14d7u7u4q7baWlpWLZsWY5p4oMGDcKePXswYMAAjBw5Eh4eHoiMjERERASmTJki1vP29oa/vz/+/fdfcWACEeljQpKILMqzZ8/w4YcfIjo6Glu3bs3zm8dsCQkJOaaZ1KlTBykpKZg2bRq6deuGBg0a5HigvHjxIpYuXYrr16+La9cAQEREhF69V1nYu1atWnoJ1apVq4pJQkMJybt37yIqKgrTp08Xd4QEgCZNmkAul+Pq1auoVasW6tSpg3Xr1om7Ivr5+YnrIelycnLKdS0hIiIiopLugw8+gJubGzZs2IAtW7ZAqVSiSpUqaN26tdnX4Pbz88P69euxaNEijB07Fvb29mjbti2mTp0KhUKhV3fChAk4c+YMxo8fD4VCgX79+mHChAl5tr9s2TKsWbMG27ZtQ1RUFBwcHFCrVi29tS+NRaVS4bfffkO7du1yJCOBrCniQUFB2L9/v7jska2tLVatWoWJEyfCxsYGderUEUeuWltbY+PGjVi8eDFWr16NlJQUuLu744033hDb7N27N+7fv49t27Zh48aN6NKlCyZOnJivhKC1tTWWL1+O2bNnY/z48ahQoQJGjhyJ//3vf7h69apYz8nJCdu2bcPChQuxYMECpKeno1KlSujXr1+ONtu3b4/r16/jzTffLEQPEhV/MuHF7cCIiCQybdo0HD58GJmZmejXr5/eCMa8+Pn5Ydy4cRg+fLje8T179uCHH37AtWvXYGNjg44dO2L69OkoW7YsoqOj0bVrV/j5+aFfv34oX748rKys8OGHH6JTp06YOXOmGNPVq1exf/9+sd1//vkH7733Hnbs2KG3JlHbtm3RunVr8bMDBw6EUqnEhg0b9OIaOnQoAGDt2rUAstYY+vjjjzFkyBCcO3fO4ANNtvHjx2PUqFHIzMzE6tWrsXv3bkRFRcHZ2Rn9+/fH6NGj9dbEWbx4MbZv345//vknX31JRERERESvrn///nBwcMCqVaukDoXIInGEJBFZlIoVK2LMmDGYOHEinJycMHLkyJd+xtHRUdy1T1ePHj3Qo0cPJCUl4dixYwgODoZSqcTcuXPx119/IS0tDStWrBB3ElSr1bkufF1YuS1MntvaPdlrV86cOVPcfEdX9rQRa2trjB07FmPHjsW9e/ewc+dOLF++HJUrV9b7Fvbx48d662ESEREREZHpXLlyBefOncPZs2dzDEwgoueYkCQii9OpUydkZmZi6tSpsLOz01uw25Bq1arhwYMHub7v7OyM3r17488//0R4eDiArKnhMplMXDAcAA4ePKg3TdoYwsLCcO/ePVStWhVA1g5+N27c0FujUlf2+jWRkZF660PmpWrVqpg4cSJ++ukn8fqyRUVF6e0aTkREREREpvP222/DwcEBo0aN0lviiYj0MSFJRBape/fuyMjIwMyZM2Fra2twvcVsDRo0wMGDB/WOLVu2DCkpKWjSpAlcXFxw69Yt/PXXX2Jys1mzZgCATz75BH379kVYWBg2bNggjpY0FhcXF4wYMQLjxo0DACxduhRubm65rtUjk8kwbdo0TJ48GWlpaWjdujXs7OwQHR2NEydOYMKECahWrRpGjRoFX19f1KlTB3Z2dvjjjz/w6NEj8bqyXb16FYMHDzbqNRERERERkWE3b96UOgSiIoEJSSKyWL1790ZGRgZmzZoFW1vbXBeE7tixI1avXo2IiAhxAxl/f39s2rQJBw8exJMnT+Du7o4hQ4aIU8C9vLwQHByMFStW4MMPP4SPjw+WLl2Kjz76yKjX4Ovriw4dOuCbb75BQkIC6tati1mzZsHa2jrXz3Tu3BllypTBqlWrsG/fPgBApUqV8Nprr6FcuXIAnidhN2zYAI1Gg2rVqmHBggV638Jeu3YNSUlJBnffJiIiIiIiIpIKN7UhomKhZ8+eaNu2LcaMGSN1KKKBAwfC3t4eq1evluT8X3/9Na5du4YffvhBkvMTERERERERGSKXOgAiImMYNWoUtm/fjszMTKlDsQhPnjzBjh07MHbsWKlDISIiIiIiItLDKdtEVCy0a9cO9+7dQ0xMjLiBTEkWHR2N8ePHo3HjxlKHQkRERERERKSHU7aJiIiIiIiIiIjIbDhlm4iIiIiIiIiIiMyGCUkiIiIiIiIiIiIyGyYkiYiIiIiIiIiIyGyYkCQiIiIiIiIiIiKzYUKSiIiIiIiIiIiIzIYJSSIiIiIiIiIiIjIbJiSJiIiIiIiIiIjIbJiQJCIiIiIiIiIiIrNhQpKIiIiIiIiIiIjMhglJIiIiIiIiIiIiMhsmJImIiIiIiIiIiMhsmJAkIiIiIiIiIiIis2FCkoiIiIiIiIiIiMyGCUkiIiIiIiIiIiIyGyYkiYiIiIiIiIiIyGyYkCQiIiIiIiIiIiKzYUKSiIiIiIiIiIiIzIYJSSIiIiIiIiIiIjIbJiSJiIiIiIiIiIjIbJiQJCIiIiIiIiIiIrNhQpKIiIiIiIiIiIjMhglJIiIiIiIiIiIiMhsmJImIiIiIiIiIiMhsmJAkIiIiIiIiIiIis2FCkoiIiIiIiIiIiMyGCUkiIiIiIiIiIiIyGyYkiYiIiIiIiIiIyGyYkCQiIiIiIiIiIiKzYUKSiIiIiIiIiIiIzIYJSSIiIiIiIiIiIjIbJiSJiIiIiIiIiIjIbJiQJCIiIiIiIiIiIrNhQpKIiIiIiIiIiIjMhglJoiJk7dq18PLyQuPGjZGWllbodgYPHgwvLy8MHz7ciNGZ1sCBA+Hl5QUvLy88ePDgpfXbtm0r1iciIiIiy2WsZ1wAOHfunPgMePnyZSNFaFmWL18uXuOuXbtMfr6CPocXV+bqh127donnWb58ucnOQyQ1pdQBEFH+PH36FGvXrgUAvP3227C3t89R5/Lly9i2bRv+/fdfxMfHw9bWFhUrVkSLFi3Qq1cv1KhRAwAwaNAgnDp1CidOnMClS5dQt27dl55/+fLlWLFiRY7jpUuXRq1atdCrVy+8/fbbkMlkr3ilJUtKSgq2bNmC48eP4969e8jIyIC7uzu8vb3RvXt3vP766+xTIiIiKrbyesbV/WJZJpPB2toaZcqUQZUqVdCiRQu8++67cHFx0WuvYcOG8Pf3x5UrV7Bs2TKx7Zcx9CW2lZUVXF1d0axZM4waNQoeHh6FucRia9euXYiKigIAvP/++yhTpozJzrVmzRosXLhQLL/zzjuYPXu2yc5HRKbHhCRREbF7924kJycDAHr37p3j/QULFuD777/XO5aRkYFHjx4hNDQUERER+PbbbwEArVq1gpubG+Li4rBu3TosW7as0HE9efIEFy5cwIULF3D+/HkEBwcXuq2S5uzZsxg7diySkpL0jt+7dw/37t3Db7/9hn///dekD3dEREREUnrZM242QRCQkZGBhIQEJCQk4Ny5c1i/fj0WLFiAtm3b6tXt3bs3rly5gr/++gu3bt1C7dq1CxWbSqVCdHQ0du3ahcOHD+PHH38skbNvPvvsM6SmpgIAypcvLx7fvXs3zpw5AwB46623TPrMun//fr3y4cOHMXPmTCiVxS+lERQUhK1btwIAKlasKHE0RKbDKdtERUT2dIxatWqhevXqeu+tW7dOLxnZpUsXrFixAhs3bsQXX3yBhg0b6tWXyWRo164dAOD3339HSkpKgWJp1aoVtm7dig0bNug9OO7atQtXrlzJ87NarRYZGRkFOl9xdP/+fYwYMUJMRlarVg2zZ8/Gpk2bsGTJEvTu3Rs2NjYSR5l/rzq9ioiIiEqmvJ5xdS1duhQbNyvwfcwAAJH4SURBVG7E7Nmz4ePjAyBrdOW4ceNyTM1u164d5PKsX3V3795d4JiWLl2KrVu3Yv78+XBzcwOQ9SX8okWLCtxWXjIzM6FWq43apil4eXmhUaNGaNSoEaytrc1+/jt37uDmzZt6x5KTk3Hq1Cmzx2IOLi4uYn8zIUnFGROSREVAdHQ0rl27BgBo2bKl3nspKSl6U6k/+OADLF68GO3bt0fz5s3x7rvv4scff8SkSZP0PteiRQsAWd/8Hj9+vEDxZP9PskWLFpgzZw4qV64svnfu3DkA+mvb7NixA99++y3atGkDX19fXLx4EUDWN90//fQT+vTpg/r168Pf3x+dOnXCokWLxG9hDXn27Bm+/PJLNG/eHPXq1cOHH36I+/fv5yt2QRCwc+dO9O3bFw0aNEBAQAC6d++OTZs2QavV6tXVXYcyKioKH374IerVq4c2bdqI31r+888/6NWrF/z9/dGxY0eEhITkK46lS5eK1+jh4YEdO3bgnXfeQbNmzdC5c2d8+eWXOHDgAGxtbcXPPHnyBIsXL0bnzp0REBCA+vXro3fv3ti+fTsEQQCQdT+bNm0KLy8vNG3aNMdDbseOHeHl5QV/f388evRIPH706FEMGjQIjRs3hp+fHzp27IgVK1bg2bNnep/XXTvn2rVr+OSTT9C0aVPUr18fAHDr1i1MmjQJXbp0QZMmTeDr64vmzZtj+PDh+Pfff3P0Q1RUFEaNGoX69eujefPm+PLLL3H79m3xHAMHDtSr//TpUyxfvhxdu3ZFQEAAGjRogIEDB+LEiRP56nciIiKyHHk9477Iz88PzZs3xzvvvIOff/5ZfPZQqVSYN2+eXl0XFxdxJOORI0cKHJefnx8aNWqEHj16YMKECeLxs2fP6tU7e/YsRowYgWbNmsHPzw9t27ZFcHCw3jMWAEybNk18tjlx4gTmzZuHwMBABAQEIDY2NseagXv27MEbb7wBf39/dOnSBfv27ct37Ddu3MDEiRMRGBgIPz8/vPbaa/j0008RGxsr1gkPD0dAQAC8vLzQtm1b8Yvl1NRUBAYGwsvLC/Xq1cO9e/cA5Fw78Z9//oGXl5c4OhIAXn/9dbHOvXv3xNcDBgzQiy8lJQV16tSBl5cXunXrlq9r0h0d+cYbb4ivDT136/b133//jaVLl6JVq1bw9/dH3759cePGDb36v/zyC4YMGYLWrVujXr168Pf3R4cOHTBnzpwcs5heVJjr3L59O3r27In69euL92fQoEF6g0tyW0PywYMHmDRpEgIDA+Hr64tGjRqhS5cu+OSTT3JcF1FRUPzGNxMVQ+fPnxdf16lTR++948ePiw8RDg4OGD16tME2stePzObr66vX/ptvvlmo2GQyGUqXLi2WMzMzc9RZtWoVIiMj9Y4JgoBJkybhwIEDesfv3r2L1atX48iRI9i+fTscHR1ztDdx4kS9b0mPHz+O0NBQ7NmzB05OTnnGO23aNPz66696x27evIm5c+fi4sWLWLx4scHPDRo0SEx6pqenY/bs2YiNjcWGDRugUqkAABEREZg0aRK8vb3z/IY/MzMTR48eFcujR4/W68NsuusUPXr0CH379kV4eLhencuXL+Py5cs4c+YMFi1aBCsrK3Tq1Anbt29HSkoK/vnnH/EB/8aNG4iIiACQNRUku2+XLl0qTufPFhERgeXLl+P06dPYsGGDwW/Dx48fn+O+hoWF5ZhSk5SUhBMnTuCvv/7Chg0b0KxZMwDA48ePMXDgQHHtobS0NGzevNlg4hLIekju168fbt26JR7LyMjAmTNncObMGcycORP9+/c3+FkiIiKyPHk94+bF2toaU6ZMQb9+/QBkfSEeGxsLd3d3vfZCQ0MRGRmJhIQEuLq6FipGBwcH8XX2Mx+QlciaOXOm3hfaUVFR2LhxI06cOIGffvrJ4HPsnDlzcjw/6Tpw4ADu3r0rlu/cuYPJkydDJpOha9euecZ64sQJjBkzRu95PD4+Hjt27MCJEyewbds2eHh4oHr16vjoo4/w9ddfIyoqCsuXL8fUqVPxzTffICEhAQAwefJkVK1aNc/z5UahUKBJkyY4c+YMzp49i+joaHGk3/Hjx6HRaADgpdeTLfv3BaVSienTp+PUqVNITk7GkSNHMHv27FxHbX7xxRd6fX3hwgWMGjUKhw8fFqd6Hzp0CH///bfe57KXTzp9+jR2796d66ylqlWrFug6f/31V3z++ed6bcTHxyM+Ph7h4eEYNmxYrn2gVqsxZMgQ8VkeyHo2Tk1NxZ07d9CgQQN4e3vn+nkiS8QRkkRFwJ07d8TXLz4Y6CbmvLy8DCa2DKlQoQKsrKxytF8QmZmZ+PXXX3PE8KLIyEh069YNa9aswddffw03NzccPHhQfLhwdHTEnDlzsHLlSvHz4eHhuU6LiY+PR3BwMJYuXSom7eLi4rB69eo84z106JCYjKxWrRoWLVqEVatWoV69egCyvmXNbYSjXC7HypUr8d5774nH1qxZA39/f6xatQodOnQAkDUl/ZdffskzjoiICL2Rh40aNcqzPgAsWrRITEbWrl0bK1aswJdffik+6B44cECMvXv37uLnfvvtN4Ovs+tcvnxZTEa6urriq6++wtq1a9G6dWsAWd/8b9y40WBMMTExGDNmDNatW4dPPvkEQFa/Tps2DStXrsSmTZvEZQOsra2h1WqxZs0a8fNr164Vk5EVK1bE4sWLERwcrPcNvq7FixeLycigoCDx5yn7F4zg4GDExMS8rCuJiIjIQuT1jPsyAQEBUCgUYjk0NFTvfd32bt++Xaj4oqKisG7dOrGcvRZlXFwcZs+eDa1Wi1KlSmHGjBlYt24devbsCSDrC/bcnmMjIyMxcOBArF27FrNnz0apUqX03r979y7ee+89rFmzRu+Zbt68eXoJ0Relp6dj2rRpyMzMhFKpxIQJE7B+/XoMHToUAJCQkIBZs2aJ9QcNGiSOMv3hhx+wefNm/PzzzwCApk2b5vklb506dbB161Zx6jzwfJr71q1bUb58efTq1QtA1iAE3S+rf//9d/F1ly5dcj1HtitXrogjNZs2bYpy5cqJS089efIkz1kysbGxmDx5MlasWIEKFSoAyLqnugnILl26YO7cuVizZg02b96MNWvWiAM17ty5g8OHD+cZX0GuM/uYUqnErFmzsHHjRixYsAAffPCB3owzQ8LDw8VkZIsWLbB27VqsXr0aM2bMQKtWrcTf64iKEo6QJCoCshf6BpBjsWjdqc26i0znh6OjIx4+fKjXfn7s3r3b4Ho8fn5+CAwMzHG8QYMGWLBggd6xr7/+Wnw9btw49OnTBwBQpUoVcVrDwYMH8cUXX+TYZXrSpEniA1+ZMmUwePBgAFnTjqdNm5Zr3Hv37hVf9+/fX1wT6O233xanke/du9fgw9HMmTPRsmVLNGjQAD/88IPedVSpUgXlypUTH1heNn38xenoL7tvWq0WBw8eFMsLFy4UH4gzMjIwZ84cAFnTWbp06YIGDRqgcuXKePDgAY4ePYrPP/8cCoVCTEiWKVNGTDjqTgHq1asXPD09AQB9+/YVp/Lv27cPw4cPzxHX0KFDMXbsWAAQ77uXlxf+/fdfrFq1CuHh4UhLSxOnkwPA1atXxde6o0RnzpyJNm3aAMhKdL/47bFWqxUf8qysrDB48GBYWVmhVKlSaN++PX788UeoVCocPHgQH3zwQZ79SURERJYhr2fcl7GyskLZsmWRmJgIIOfzlW57BX3Wff3113Mck8lkGDFiBICsZ9TsUYgdO3YUR6b16tULBw8eRHp6Og4cOIDPP/9cXMsyW9euXfHZZ5/leu4GDRrg008/BZD1fJU98i4hIQGXLl3K9YvskydPilOMW7RoIdZr06YNDh48KCbikpKS4OzsDLlcjuDgYLz55pvickgAUKpUKQQHB+d4/tbl4OCARo0a6Y0e9fPz00uqderUCV9++SVSU1PFZ8nMzEwxGVivXr187VquO1igY8eO4n+zBwAcOHAA7du3N/jZd999Vxx1ePfuXXGX7uwEZ3Zfffvttzh16hTi4+NzzPa6evVqnlPLC3Kd2aMyraysULVqVfj7+6N06dL5mrquu3mPq6srPD09UalSJcjl8hzTxYmKCiYkiYoY3eQOoD+NJD4+/pXaKiwrKyt07twZ06dP1/umOlt2okmX7nSDgIAA8XXt2rVhZ2eH9PR0PHr0CElJSXBxcdH7rG593ddRUVEQBCHXByjdc2Y/dL0ot9Gi2ecpW7aseMzR0RFVqlQBAL2p4o8fPzbYRjbdewZk3be8HsiSkpLEtYjs7Oz0dorUvf7s68ue0rNq1SokJibi33//Rbly5cRr69ixozi1RbdPVq1ahVWrVuU4/4vTxLMZuq/BwcHYvHlzrtei2ze6U2jq1q0rvs4esaorOTlZ7AOVSoVBgwYZbL+wo32JiIhIWgV9Ls3MzNRLNL74fGWs51wga7TlhAkTxJF5us9Pu3btEjfm0ZWamor4+Hi9aeQAcuwI/iLdZyKFQgFfX19ER0cDyHp2yi0hqTvN+88//8Sff/6Zo44gCAgPD4ezszOArJkt48eP1xsoMHnyZFSqVCnPGPPD1tYWb7zxBrZv345bt27h5s2bSEhIwNOnTwHorwWZG0EQxISkQqEQE4/NmzdH2bJlkZKSIi5fZW9vn+PzTZo0EV/rPqtnJ6+fPHmCvn375jo7B3j5c31BrrNnz54ICQlBenq6+Czr7u6Oxo0b4/3334e/v3+u5/H09ESjRo1w9uxZ7NmzB3v27IGtrS28vb3Rvn17vPfee5JsOET0KpiQJCoC8kp26U6RvnnzJp48eZLvadvZbb1s3cUXtWrVCh9++CFkMhlKlSoFT09Pvc1XXvRiQtGSpaenGzye/ZCr+y13fvv5Rdn9lT1t+9y5c/n6hhhAnt9W6+revbuYXPztt9/07kF+FxDPplarkZmZmeMh58X7mpmZKU71USqVGD9+POrWrQuFQoExY8YgOTnZqL8cGJLb/SMiIiLLU5AvdF908eJFvfUbdacPv9heQZ91ly5dinLlysHKygqurq6F3uk4e513XQV9Ls7vs19+vfis9OKXuWFhYUY719tvv43t27cDyJqFlH1uhUKRr+na2WuDAoBGo0Hz5s1z1ElPT8exY8cMPt/qjpLVHTSR/Tx69OhRsf3q1atj7NixKF++PK5evYrg4GC9usa4zsDAQGzbtg27du3C1atXcffuXcTGxmLfvn04evQo9u3bl+vvBHK5HGvWrMHPP/+MkydP4s6dO4iOjsbFixdx8eJF3L9/H7Nnz35prESWhAlJoiJAd0Oae/fuieu9AEDr1q1hb2+PtLQ0pKam4rvvvsOUKVNytHHnzh29dqKjo8V1aF7c8OZlsnfZzi9DD1Kenp7iyLsrV66II/1u3bol/k/c0dFR/AZX1+XLl8VE7OXLl8XjlSpVyvOhzdPTU3zo+uGHH9C0adMcdcyR0LK2tka7du3EKcgrV65Eu3btciQ4IyMj4ebmBmdnZ5QpUwaPHz9GWloawsLCUKtWLQD615893RrIuqe+vr64du0ajhw5Ij6IV6hQQe/bYk9PT/Eb9ODgYHEqvK709HSD37i+2NcpKSnIyMgAkJUoz57mHRcXl2O3SSBren72mk5XrlxBUFAQAIjT53U5OTnB0dERjx49gr29Pf7+++8cay5ptdo811YiIiIiy5LXM25eMjMz9ZYDql+/fo6RiLrTcmvWrFmguF6cfvwi3WeuMWPGiEvY6EpPT4ednV2O4y9LMOo+22k0Gr3lbvL6ArtatWri67feeivHzuOGYvrzzz+xY8cOAFnJM41Gg23btqFjx47iJoR50b0WQ4m7/7N35/ExXf8fx98zMRGykcVWIvgSO9FWiGhQ+1pbF6povlpbadFqUYmlaGtfimpqq2prqdrb6qJVu9JWpagtltCILRJMJPP7wy/zNU1sMclkeT0fDw9z7zn3nM/NHOPmM/eeU61aNQUEBOjgwYNat26dtX7qXJD38u+FEu9k3bp1D/yFu3TrGjVV165drcnD2xdbuh/3e54Wi0WBgYHWcZ6SkqKFCxdqwoQJunbtmn766ac7zt1psVjk6uqqnj17WqerunDhgjp37qxTp05ZF/gBchISkkAOUKtWLevrAwcO2KyIXahQIfXv31/vvfeepFsLhZw9e1YtWrSQq6urjh8/rjVr1qhQoUI2KykfOHAg3fazSps2bawTO0+fPl3Ozs4qXLiwZs6caa3TokWLdC/aJk+erHz58qlAgQI2E4anN9/Pv/v87rvvJElvvPGGevfuLX9/f124cEHHjx/X5s2b9cQTT6h///72OMW7GjhwoDZv3qz4+HhFR0erc+fO6tmzp/z8/HTp0iVt2bJFq1ev1pYtW+Th4aGWLVtav3kdMmSI+vfvr8uXL2vGjBnWNv+9UmHbtm31559/KjY21rpiYuvWrW1+pm3atLHOiTl+/HhdvnxZAQEBunLliqKjo/XLL7+oRIkS1m+J78bHx0f58+fXjRs3dOjQIX3++efy9vbWBx98YHMHQ6rGjRtbE5JjxoxRYmKirl+/nu5K50ajUa1atdKnn36qxMREhYWFqVu3bipcuLDOnj2rw4cP65tvvtG4cePSTTQDAIDs527XuP+2f/9+nTp1SsePH9enn35qXVTRZDKlO4d46iI3pUqVyvAK23fSvHlzTZo0SWazWR9++KEMBoNq1qyp69ev69SpU9q+fbtu3Lih+fPnP3Dbe/bs0fjx4xUcHKz169dbH9f28fGxeZz734KDg+Xl5aULFy5o1apV8vT0VHBwsFJSUnT69Gn9+uuv+uuvv6yPQMfHx+vtt9+WdOupnw8++EAvvfSSrl+/rmHDhmnNmjVpvvz9t9tXEf/iiy8UGhqq/Pnz2zx63KlTJ73zzjs2Cw/ez+PaN2/etM5/bjAYNHTo0DQLt0yaNEmJiYnasmWLLl++nO6q5ndz+52vK1asUKlSpXTixAnNnj37gdqR7u88x44dq9jYWAUHB6t48eJycnLS7t27reV3+2L93Llz6tGjh1q0aKH//Oc/8vb21qlTp6zzhv577ksgJyAhCeQAJUqUsN7ttm3btjTlYWFhunjxoubNmyfp1reJ//5G8d/Juq1bt0q6dbde6gInWalFixb69ttvtX79el26dCnN5N5ly5bVoEGD0j3Ww8MjzYWnr6+vXn755Xv2+eOPP2rVqlU6e/asIiIi0tSpX7/+g51IBvn5+WnOnDl65ZVXdOHCBR09etR6UZie1157TTt37tTRo0f1119/pUmatmrVSi1atLDZ17JlS7333ntKTk627vv3t8fVq1dX37599cEHH+jKlSvpfpvevn37+zono9GoTp06acmSJUpKStLIkSMl3bqLwNvb2zrpfKqwsDCtWbNGp0+f1smTJ/Xqq69KunV35aVLl9L9GezevVuHDh3S3r17tXfv3vuKCwAAZE/3usa93cCBA9PsK1iwoCZOnJhm/um4uDhrwvJOC548jGLFimnkyJEaOXKkzGazzRfEqW5/IuVBVKhQQQsWLNCCBQts9r/xxht3XUm5YMGCmjBhgvr37y+z2ZxuG7fPDTlu3Djr48pDhgxRUFCQ+vfvr4kTJ+r06dN6//33071Wvl1QUJB1UccPP/xQH374oR555BGbFabbtm2r999/35owM5lMatq06b1+DNq2bZs12Va5cmXrXYH/rrNp0yYlJSXpm2++UefOne/Z7u0aNmwoX19fxcbG6sCBA9ane2rVqvXAd0nez3lev35dX3/9tTXRejsXF5d73lxx7NgxmxtMbnc/SV4guzHeuwqA7KBjx46Sbj3SfPtE2qmGDBmiZcuWqX379ipZsqTy588vd3d3VahQQT169NDgwYOtdS0Wi3WF44YNG9os1JJVDAaDJk2apFGjRql69eoqWLCgnJ2d5e/vr5deeklffPHFHb/lnDZtmp555hkVKlRILi4ueuKJJ7RkyZJ0H+/+t3fffVfvvvuuateuLXd3d5lMJpUoUUJ169bViBEj1KVLF3uf6h099thjWr9+vV555RVVrVpV7u7ucnZ2VsmSJdW4cWPNmDHDOndloUKF9MUXX+jll19WmTJl5OzsrIIFC6patWqKiIjQpEmT0txNWqRIEZvHbQICAmzmHE01cOBAzZ07V/Xr11ehQoVkMplUtGhRPfrooxo8eHC6jyHdydChQ9W9e3f5+vqqYMGCatSokRYsWJDuHKMeHh5avHixGjVqpAIFCqhQoULq0qWLzcXv7cd5eHjo888/18CBA1WxYkW5uLioQIEC8vf3V7NmzTR58uR0F8QBAADZ172ucVMZDAbrnI6BgYHq27evvvnmm3STOJs2bbI+nZHedDT20LlzZ33yySdq2rSpfHx8lC9fPvn4+Fi/7A0PD89Qu02bNtWUKVNUvnx5mUwmlSlTRu+9957atWt3z2NDQ0O1YsUKtWvXTsWKFZPJZFLhwoVVqVIl9ezZU1OnTpUkbd682boQT61atfTss89Kkl588UVVrVpVkvTZZ5/dM0n8zDPPqFevXipRokSa1cRTFSpUyLoYkHRrLvr7WVF93bp11td3Wgjo9gUWb1+N+365ublp/vz5qlOnjgoWLKiiRYtqwIABGjBgwAO3dT/n2aZNG7Vv315lypSRu7u7nJyc5O3trcaNG2vJkiV3fSTf09NT/fv3V+3ateXr6yuTySQXFxcFBATo1VdfveuNDUB2ZbBk9goDAOwiISFBTz75pC5evKj//ve/6c4Teb82b95s/QZw2bJlNis1A1kpvVXRly5dak1KduvWLc3dswAAIPew5zVuqk6dOumPP/7QE088YX2CKDtbuXKl3nrrLUl3npMyJ1u1apWGDh0qSZoyZcp9LWiTE+WV8wTshTskgRzC1dVV//3vfyXdmqMlvVX77lfq4xsNGjQgGQmHeumll7R8+XIdPnxYJ0+e1KpVq6zf3kviQg4AgFzOnte40q05GP/44w9JynWJvZzm2rVriomJ0YoVKyTdetrlTnc75mR55TwBe2MOSSAH+e9//2u9YHsYGZlgG8gMR44c0fDhw9MtCwsLc8iCSwAAIGvZ6xpXkh599FHr/JFwrFatWun06dPW7bCwsHSn8cnp8sp5AvZGQhIA4DCdOnXSd999p5MnTyohIUEeHh6qWrWqnn322XtO7A0AAIDsz9fXVx07drROGZVb5ZXzBOyFOSQBAAAAAAAAZBnmkAQAAAAAAACQZUhIAgAAAAAAAMgyJCQBAAAAAAAAZBkWtfl/sbHxjg4hx/HyctWFCwmODgMOxBgAYwCMgQfj6+vu6BCQx3HNmzX4bERuwnhGbsJ4znz3e73LHZLIEINBcnIyymBwdCRwFMYAGANgDABAWnw2IjdhPCM3YTxnLyQkAQAAAAAAAGQZHtmGli79RL/88pNOnjyhK1euyMvLW4GBj6pnz1565JGSkqSbN29q0aKPtWHDOsXGnlPhwl5q2bKFnn8+TAUKFLS2derUSc2ZM0N79uzWjRs35O/vr65du+vJJ5s66vQAAAAAAACQjZCQhFas+Fznzp2Vn19pOTu7KCbmtDZuXKddu7br009XyNXVTePHj9LXX2+Q0WhUyZKldObMaS1cuFC///6Hpk2bI6PRqPPnz6tPnzBdvHhBrq6u8vb20aFDBxUePkzXrl1T69btHH2qAAAAAAAAcDAe2YbatHlKy5at0ZIly7Vs2Vd6+unnJElxcXHavXuXDh78S19/vUGSNHDgYH366Qq98857kqS9e3/Vzz//KEn65JP5unjxggoWdLW21aBBI0nSnDkzlJSUlNWnBgAAAAAAgGyGhCTUvXuYihUrZt2uUSPQ+trZ2aTt23+xboeGPilJCg4OUf78+SVJ27dv+/+/t0qSqlatJh8fX0nSE0/cSkheunRJf/11IBPPAgAAAAAAADkBCUnYSE5O1ldffSlJKlHiET36aG398885a3nhwoUlSUaj0fr63LmzkmStl7pfkry8vKyvU+sBAAAAAAAg7yIhCatr165p2LAh2rlzm7y9vfXuu1Pk7Ox8x/oWi+Webd5PHQAAAAAAAOQdJCQhSYqLO6/+/V/SL7/8rFKl/PTBB5EqU6asJKlIkaLWehcvXpQkpaSk6NKlS5KkokWL2dRLrfPv16n1AAAAAAAAkHeRkISOHj2il1/uqYMHo1SjRqDmzp2vRx4paS0PCgq2vt68+TtJ0tatW3Tjxg1JUp06df+/3q2/9+//Q+fPx0qSfvrpe0lSoUKFVLFi5cw/GQAAAAAAgNskJyfrl19+1tKlS/XLLz8rOTnZ0SHlefkcHQAcb/jw13X2bIwkKTExQUOGDLSWtWnzlNq0eUqNGzfTpk1fa9q0SVq5cplOnz4l6dYCOPXrN5AkPf98D3333Te6dOmSunbtJA+PQoqJOS1JeumlfjKZTFl7YgAAAAAAIE9bu3a1IiKGKzr6hHWfn19pRUS8o9at2zowsrwt290hOXfuXHXs2FGBgYGqW7eu+vbtq6NHj9rUuXHjhkaNGqWgoCAFBgbqlVde0fnz523qnDlzRi+99JJq1KihunXr6t1339XNmzez8lRyjKSkJOvrw4cP6cCB/dY/qQvVjBgxSj179lLRosV0+vQpFSpUWN26ddP770+V0XhrGPn6FtEHH0QqNLShDAaD4uJiVb58BY0cOVZt27Z3yLkBAAAAAIC8ae3a1QoL66ZKlSprw4ZNio+P14YNm1SpUmWFhXXT2rWrHR1inmWwZLNVR8LCwtSqVStVq1ZNycnJmjx5sg4fPqx169apYMGCkqTw8HBt3rxZ48ePl7u7u8aMGSODwaDPPvtM0q1bcZ966in5+PjojTfe0D///KOhQ4fq6aef1qBBg9LtNzY2PsvOMTcwGCQfH3edPx+v7DWCkFUYA2AMgDHw4Hx93R0dAvI4rnkzH5+NyE0Yz8jJkpOTFRRUU5UqVdbChUvl5GS0jufk5BR17/6coqKitGPHXjk5OTk63Fzjfq93s90dkpGRkerQoYPKly+vihUrasKECTpz5oz+/PNPSVJ8fLxWrFihN998U3Xr1lXVqlU1btw47d27V/v27ZMkbdmyRX///bfef/99VapUSaGhoRo4cKCWLFkis9nswLMDAAAAAABAZtu+fauio09o4MDB1ic7UxmNRg0YMEjR0ce1fftWB0WYt2X7OSTj4299i+vp6SlJ2r9/v5KSkhQc/L+FVsqVK6cSJUpo3759qlmzpvbt26cKFSrIx8fHWickJEQRERH6+++/VbmyYxZXOXfunK5cueyQvu3NYJDOn3fVxYsJueKbMg8PTxUtWvTeFQEAAAAAQLZ37txZSbrjAruVKlW2qYesla0TkikpKRo3bpxq1aqlChUqSJLOnz8vk8kkDw8Pm7re3t6KjY211rk9GSnJup1a599MJicZDPY+g/85d+6suoY9oyvXrmZeJ1nIIMlgNMqSkqJckI+URwE3LVu8TEWLFnN0KDlG6r8XZ2enXJGUxoNjDIAxAAAAgOwq9ff7v/46oMceq52mPCrqgE09ZK1snZAcNWqUDh8+rE8//TTT+0pKytwl38+fv6jLiVdVsk99uZb0ytS+sko+J4NuJuf830ATTl3Qqdk/6/z5iypc2NfR4eQYqYkIszmZREQexRgAYwAAAADZVZ06wfLzK61p0yZZ55BMlZKSounTJ8vPz1916gTfpRVklmybkBw9erR+/PFHffLJJypW7H/Zah8fHyUlJenKlSs2d0nGxcXJ19fXWuf333+3aS91Fe7UOo7iWtJLHmWKODQGe8mXz6ibN1McHQYAAECude7cOb3//vv6+eefde3aNZUuXVrjxo1TtWrVJEkWi0XTp0/XsmXLdOXKFdWqVUsRERHy9/d3bOAAADiYk5OTIiLeUVhYN3Xv/pwGDhykkJAg7dq1Q9OmTdY332xUZORiFrRxkGy3qI3FYtHo0aP17bffauHChSpVqpRNedWqVWUymbRt2zbrvqNHj+rMmTOqWbOmJKlmzZo6dOiQ4uLirHW2bt0qNzc3/ec//8mS8wAAAAAexuXLl/Xcc8/JZDJp3rx5WrdunYYOHWqdW12S5s2bp8WLFysiIkJffPGFChQooLCwMN24ccOBkQMAkD20bt1WkZGLFRV1QC1bNpGHh4datmyiqKgoRUYuVuvWbR0dYp6V7e6QHDVqlNauXasPPvhArq6u1jkf3d3d5eLiInd3d3Xs2FETJkyQp6en3NzcNHbsWAUGBloTkiEhIfrPf/6jN954Q6+//rpiY2M1depUde3aVc7Ozg48OwAAAOD+zJs3T8WKFdP48eOt+27/st5isWjRokXq06ePGjduLEl67733FBwcrE2bNqlVq1ZZHjMAANlN69Zt1bRpc82fP0/nzp1W0aKPqGfPXuSHHCzbJSSXLl0qSerWrZvN/vHjx6tDhw6SpGHDhv3/Eu0DZDabFRISovDwcGtdJycnzZkzRxEREXrmmWdUoEABtW/fXgMGDMi6EwEAAAAewvfff6+QkBANGDBAu3btUtGiRdWlSxc9/fTTkqRTp04pNjZWwcH/m/vK3d1dNWrU0N69e0lIAgAgae3a1YqIGK7o6BPWffPmzVFExDvcIelA2S4hefDgwXvWyZ8/v8LDw22SkP/2yCOPaN68efYMDQAAAMgyJ0+e1NKlS9WzZ0/17t1bf/zxh8aOHSuTyaT27dtbnyTy9va2Oc7b29s6f/q/mUxO1gWpkDlSf77Ozk4s+IUcj/GMnG716q8UFtZNTZs214ABr8rLy1MXLlzWt99+o7Cwblq4cInatm3n6DDzpGyXkAQAAABw65HsqlWratCgQZKkypUr6/Dhw/rss8/Uvn37DLWZlJRszxCRjtQEjtmcTAIHOR7jGTlZcnKyRox4SzVq1NSBA3/q6683WMtKlfJTjRo1NWLEMDVp0oKFbRwg2y1qAwAAAEDy9fVVuXLlbPaVLVtWZ86csZZLslnIMXXbx8cna4IEACCb2r59q6KjT+i33/apcuUq2rBhk+Lj47VhwyZVrlxFv/22T9HRx7V9+1ZHh5onkZAEAAAAsqFatWrp2LFjNvuOHz+uRx55RJJUsmRJ+fr6atu2bdbyq1ev6rffflNgYGCWxgoAQHYTE3PrC7xGjRpr4cKleuyx2nJzc9Njj9XWwoVL1ahRY5t6yFokJAEAAIBsqHv37vrtt980Z84cnThxQmvWrNEXX3yhLl26SJIMBoNeeOEFzZ49W999950OHjyoN954Q0WKFLGuug0AQF4VF3drPuVWrdrIaLRNfxmNRrVo0dqmHrIWc0gCAAAA2VD16tU1c+ZMTZ48WbNmzVLJkiU1bNgwtW37vxVBe/XqpWvXrmnkyJG6cuWKHn30UX300UfKnz+/AyMHAMDxvL1vTV+ybt0adenygpyc/peUTElJ0YYNa23qIWuRkAQAAACyqYYNG6phw4Z3LDcYDBo4cKAGDhyYhVEBAJD9FS9eQpL03Xffqnv35zRw4CCFhARp164dmjZtsr777lubeshaJCQBAAAAAACQq9SpEyw/v9Ly8vLSgQN/qmXLJtayUqVKq2bNQF24cFF16gQ7MMq8i4QkAAAAAAAAchUnJydFRLyjsLBuatKkmfr1GyBf38KKjb2o77/fpG+//VqRkYvl5OTk6FDzJBKSAAAAAAAAyHVat26ryMjFiogYrm++2Wjd7+fnr8jIxWrduu1djkZmIiEJAAAAAACAXKl167Zq0aKVduzYqsTEyypY0FNBQcHcGelgJCQBAAAAAACQazk5Oalevfry8XHX+fPxslgcHRGM964CAAAAAAAAAPZBQhIAAAAAAABAliEhCQAAAAAAACDLkJAEAAAAAAAAkGVISAIAAAAAAADIMqyyDQAAAAAAgFwrOTlZO3ZsVWLiZRUs6KmgoGA5OTk5Oqw8jYQkAAAAAAAAcqW1a1crImK4oqNPWPf5+ZVWRMQ7at26rQMjy9t4ZBsAAAAAAAC5ztq1qxUW1k2VKlXWhg2bFB8frw0bNqlSpcoKC+umtWtXOzrEPIuEJAAAAAAAAHKV5ORkRUQMV9OmzbVw4VI99lhtubm56bHHamvhwqVq2rS5IiJGKDk52dGh5kkkJAEAAAAAAJCrbN++VdHRJzRw4GAZjbbpL6PRqAEDBik6+ri2b9/qoAjzNhKSAAAAAAAAyFXOnTsrSapYsXK65ZUqVbaph6xFQhIAAAAAAAC5StGixSRJf/11IN3yqKgDNvWQtUhIAgAAAAAAIFepUydYfn6lNW3aJKWkpNiUpaSkaPr0yfLz81edOsEOijBvIyEJAAAAAACAXMXJyUkREe/om282qnv357Rr1w7Fx8dr164d6t79OX3zzUZFRIyVk5OTo0PNk/I5OgAAAAAAAADA3lq3bqvIyMWKiBiuli2bWPf7+fkrMnKxWrdu68Do8jYSkgAAAAAAAMiVWrduqxYtWmnHjq1KTLysggU9FRQUzJ2RDkZCEgAAAAAAALmWk5OT6tWrLx8fd50/Hy+LxdERgTkkAQAAAAAAAGSZbHmH5K5duxQZGan9+/crNjZWs2bNUuPGja3lAQEB6R73+uuv67///a8kqVGjRjp9+rRN+eDBg/XSSy9lXuAAAAAAAAAA7ipbJiQTExMVEBCgjh07qn///mnKt2zZYrP9008/afjw4WrWrJnN/gEDBujpp5+2bru6umZOwAAAAAAAAADuS7ZMSIaGhio0NPSO5b6+vjbb3333nYKCglSqVCmb/a6urmnqAgAAAAAAAHCcHD+H5Pnz57V582Z16tQpTdm8efMUFBSkp556Sh999JFu3rzpgAgBAAAAAAAApMqWd0g+iC+//FKurq5q2rSpzf5u3bqpcuXK8vT01N69ezV58mTFxsbqrbfeSrcdk8lJBkPmxWkyGWUwSAYpU/vJarnhXFLfE5PJKGdnJ0eHk2OkvvfOzk6sUJZHMQbAGAAAAACQETk+IblixQq1adNG+fPnt9nfs2dP6+uKFSvKZDIpPDxcgwcPlrOzc5p2kpKSMzXOpKQUWSySRcpVv7TlhnNJfU+SklJkNmfuOMhNUhMRZnNyrhgHeHCMATAGAAAAAGREjn5ke/fu3Tp27Jg6d+58z7o1atTQzZs3derUqSyIDAAAAAAAAEB6cnRCcvny5apSpYoqVqx4z7pRUVEyGo3y9vbOgsgAAAAAAAAApCdbPrKdkJCg6Oho6/apU6cUFRUlT09PlShRQpJ09epVbdy4UUOHDk1z/N69e/Xbb7+pTp06cnV11d69ezV+/Hi1bdtWnp6eWXYeAAAAAAAAAGxly4Tk/v379cILL1i3x48fL0lq3769JkyYIElat26dLBaLWrduneZ4Z2dnrV+/XjNnzpTZbFbJkiXVo0cPm3klAQAAAAAAAGS9bJmQDAoK0sGDB+9a55lnntEzzzyTblmVKlX0xRdfZEZoAAAAAAAAAB5Cjp5DEgAAAAAAAEDOQkISAAAAAAAAQJYhIQkAAAAAAAAgy5CQBAAAAAAAAJBlSEgCAAAAAAAAyDIkJAEAAAAAAABkGRKSAAAAAAAAALIMCUkAAAAgG5oxY4YCAgJs/jRv3txafuPGDY0aNUpBQUEKDAzUK6+8ovPnzzswYgAAgPuTz9EBAAAAAEhf+fLlNX/+fOu2k5OT9fW4ceO0efNmTZ06Ve7u7hozZoz69++vzz77zBGhAgAA3DcSkgAAAEA25eTkJF9f3zT74+PjtWLFCk2cOFF169aVdCtB2bJlS+3bt081a9bM4kgBAADuH49sAwAAANnUiRMnFBISoieffFKDBw/WmTNnJEn79+9XUlKSgoODrXXLlSunEiVKaN++fQ6KFgAA4P5whyQAAACQDVWvXl3jx49XmTJlFBsbq1mzZqlr165as2aNzp8/L5PJJA8PD5tjvL29FRsbe8c2TSYnGQyZHXnelvrzdXZ2ksXi2FiAh8V4Rm7CeM5eSEgCAAAA2VBoaKj1dcWKFVWjRg01bNhQGzZskIuLS4baTEpKtld4uIPUX3jN5mR+4UWOx3hGbsJ4zl54ZBsAAADIATw8POTv76/o6Gj5+PgoKSlJV65csakTFxeX7pyTAAAA2QkJSQAAACAHSEhI0MmTJ+Xr66uqVavKZDJp27Zt1vKjR4/qzJkzLGgDAACyPR7ZBgAAALKhd999Vw0bNlSJEiX0zz//aMaMGTIajWrdurXc3d3VsWNHTZgwQZ6ennJzc9PYsWMVGBhIQhIAAGR7JCQBAACAbOjs2bMaNGiQLl26JC8vLz366KP64osv5OXlJUkaNmyYjEajBgwYILPZrJCQEIWHhzs4agAAgHsjIQkAAABkQ1OmTLlref78+RUeHk4SEgAA5DjMIQkAAAAAAAAgy5CQBAAAAAAAAJBlSEgCAAAAAAAAyDIkJAEAAAAAAABkGRKSAAAAAAAAALIMCUkAAAAAAAAAWYaEJAAAAAAAAIAsQ0ISAAAAAAAAQJYhIQkAAAAAAAAgy5CQBAAAAAAAAJBl7JKQ/Omnn7R27VrrdkxMjHr27KknnnhCb775phITEx+ovV27dql3794KCQlRQECANm3aZFP+5ptvKiAgwOZPWFiYTZ1Lly5p8ODBqlWrlh577DENGzZMCQkJGT9JAAAAAAAAAA/NLgnJ6dOn69y5c9bt0aNH68iRI2rVqpV+/vlnTZ8+/YHaS0xMVEBAgMLDw+9Yp379+tqyZYv1z+TJk23KhwwZor///lvz58/XnDlztHv3bo0cOfLBTgwAAAAAAACAXeWzRyMnTpxQxYoVJUlXr17Vzz//rIkTJ6p58+YqX768Zs6cqTfffPO+2wsNDVVoaOhd6zg7O8vX1zfdsiNHjujnn3/W8uXLVa1aNUnSiBEj9NJLL+mNN95Q0aJF7zsWAAAAAAAAAPZjlzskb968KaPxVlO7du2SdOsORkkqVaqUzp8/b49ubOzcuVN169ZVs2bNFB4erosXL1rL9u7dKw8PD2syUpKCg4NlNBr1+++/2z0WAAAAAAAAAPfHLndIli1bVqtXr1aNGjX0+eefKzAwUK6urpKk2NhYFSpUyB7dWNWvX19NmjRRyZIldfLkSU2ePFm9evXS559/LicnJ50/f15eXl42x+TLl0+enp6KjY21aywAAAAAAAAA7p9dEpJ9+/bVwIEDtWrVKjk5OWnOnDnWsp9//lmVK1e2RzdWrVq1sr5OXdSmcePG1rsmM8JkcpLBYK8I02vfKINBMkiZ2k9Wyw3nkvqemExGOTs7OTqcHCP1vXd2dpLF4thY4BiMATAGAAAAAGSEXRKSTz75pDZs2KADBw4oICBA/v7+1rKaNWsqICDAHt3cUalSpVS4cGGdOHFCdevWlY+Pjy5cuGBT5+bNm7p8+fId551MSkrO1BiTklJksUgWKVf90pYbziX1PUlKSpHZnLnjIDdJTUSYzcm5YhzgwTEGwBgAAAAAkBF2SUhKt5KCpUqVSrP/mWeesVcXd3T27FldunTJmmwMDAzUlStXtH//flWtWlWStH37dqWkpKh69eqZHg8AAAAAAACA9NktIXnt2jVt27ZNMTExMpvNNmUGg0E9evS477YSEhIUHR1t3T516pSioqLk6ekpT09PzZw5U82aNZOPj49Onjyp999/X6VLl7YupFOuXDnVr19fb7/9tkaNGqWkpCSNGTNGrVq1YoVtAAAAAAAAwIHskpDcuXOnXnnlFV2+fDnd8gdNSO7fv18vvPCCdXv8+PGSpPbt2ysiIkKHDh3SqlWrFB8fryJFiqhevXoaOHCgnJ2drcdMnDhRY8aMUffu3WU0GtW0aVONGDEiYycIAAAAAAAAwC7skpAcPXq0AgIC9Pbbb8vf318mk+mh2gsKCtLBgwfvWB4ZGXnPNgoVKqRJkyY9VBwAAAAAAAAA7Mtoj0ZOnz6t3r17q3z58g+djAQAAAAAAACQe9klIVmrVi0dO3bMHk0BAAAAAAAAyMXs9sj2wIEDZTKZVLduXbm7u6epU6hQIXt0BQAAAAAAACAHs0tC0sPDQyVKlNDIkSNlMBjSrRMVFWWPrgAAAAAAAADkYHZJSL7++uv69ddf1bNnT5UpU4Z5JAEAAAAAAACkyy4Jye3bt2vUqFFq166dPZoDAAAAAAAAkEvZZVGbokWLpjtvJAAAAAAAAADczi4JyQEDBujDDz/U5cuX7dEcAAAAAAAAgFzKLo9sr1mzRmfOnFHDhg1VqVKlNHdLGgwGzZ492x5dAQAAAAAAAPfNbDZr/vx5OnfutIoWfUQ9e/aSs7Ozo8PK0+ySkExISFDp0qVttgEAAAAAAABHGjXqbc2ZM1PJycnWfRERI9S7d3+Fh49xYGR5m10SkosXL7ZHMwAAAAAAAIBdjBr1tmbNmiZf3yJ6660Reu65zlq6dJnGjx+rWbOmSRJJSQexyxySAAAAAAAAQHZhNps1Z85M+foW0a+//qmyZcvphx9+UNmy5fTrr3/K17eI5syZJbPZ7OhQ8yS7JSQPHz6s1157TY0bN1bVqlX1559/SpKmTJmizZs326sbAAAAAAAA4K7mz5+n5ORktWrVRvXqPaannmqlLl266KmnWqlevcfUsmVrJSff1Pz58xwdap5kl4TkL7/8ovbt2+vMmTNq06aNbt68aS3Lly+fli5dao9uAAAAAAAAgHs6fvyYJGnhwo9VqVJlbdiwSfHx8dqwYZMqVaqsRYvm29RD1rJLQnLSpElq2bKlPv/8c/Xr18+mrFKlSjpw4IA9ugEAAAAAAADuyc/v1uLLlStX0cKFS/XYY7Xl5uamxx6rrYULl6pSpSo29ZC17LKozeHDhzV48GBJksFgsCnz8PDQxYsX7dENAAAAAAAAcE+pCcfTp08rKSlJ27fvVGLiZRUs6KlHH62tM2dO29RD1rJLQtLT01P//PNPumXHjx+Xr6+vPboBAAAAAAAA7unChThJ0qVLF1W6dFGlpKRYy4xGo3U7tR6yll0e2W7cuLFmzJiho0ePWvcZDAbFxsYqMjJSzZo1s0c3AAAAAAAAwD0VLVrM+vr2ZOStbUu69ZB17HKH5ODBg/XHH3+obdu2qlChgiRp2LBhOnnypMqUKaP+/fvboxsAAAAAAADgnh5/PEhOTk7y8vLWrl2/a/Hi+Tp37rSKFn1E3br11OOPV9eFCxf0+ONBjg41T7JLQtLd3V2fffaZVq9era1bt6pQoULy9PRU165d1a5dOzk7O9ujGwAAAAAAAOCedu3aoeTkZMXG/qOXX+6pgQMHKSSkn7Zs2aGXX+6p2Nh/rPXq1avv4GjzHrskJCXJZDKpY8eO6tixo72aBAAAAPD/PvzwQ02aNEkvvPCChg8fLkm6ceOGJkyYoPXr18tsNiskJETh4eHy8fFxcLQAADjWuXNnJUkffPCRJkwYo5Ytm1jL/Pz8NWvWPPXr18taD1nLbglJAAAAAJnj999/12effaaAgACb/ePGjdPmzZs1depUubu7a8yYMerfv78+++wzB0UKAED2kDo3pL+/v3bs2KcdO7ZaV9kOCgrWr7/utqmHrJXhhGRgYKAMBsN91TUYDNqzZ09GuwIAAADyrISEBL3++usaO3asZs+ebd0fHx+vFStWaOLEiapbt66kWwnKli1bat++fapZs6aDIgYAwPHq1AmWn19pTZs2SQsXLlW9evXl4+Ou8+fjlZycounTJ8vPz1916gQ7OtQ8KcMJyRdffPG+E5IAAAAAMmb06NEKDQ1VcHCwTUJy//79SkpKUnDw/36RKleunEqUKEFCEgCQ5zk5OSki4h2FhXVT9+7P/f8ckkHatWuHpk2brG++2ajIyMVycnJydKh5UoYTkq+88oo94wAAAADwL+vWrdOBAwe0fPnyNGXnz5+XyWSSh4eHzX5vb2/Fxsam257J5CTuKchcqT9fZ2cnWSyOjQV4WIxnZFfHjx/TpUuX7lmvbFl/jRo1Vh98MNNmDsnixYtr1KixKlvWXwcO/H7XNgoVKiR//zIPGzL+xe5zSJ49e1b//POPihQpomLFeA4fAAAAyIiYmBi98847+vjjj5U/f367tJmUlGyXdnBnqQkcszmZBA5yPMYzsqO4uDjVqlVdKSkpGW4jJiZGI0cOv6+6Tk5O2r//b3l7e2e4P6Rlt4Tk559/rtmzZ+vcuXPWfUWKFFGfPn307LPP2qsbAAAAIE/4888/FRcXpw4dOlj3JScna9euXVqyZIkiIyOVlJSkK1eu2NwlGRcXJ19fX0eEDABApvP29tb27Xt15crlBzru8OGD6tOnl2bPnqfy5QPufcD/8/DwJBmZCeySkJw7d66mTJmidu3aqVmzZvLx8dH58+e1ceNGjRo1SpcvX9bLL79sj64AAACAPKFOnTpas2aNzb633npLZcuWVa9evVS8eHGZTCZt27ZNzZo1kyQdPXpUZ86cYf5IAECu9jCPUJcvH6Dq1WvaLxhkiF0SkosXL1ZYWJhef/11m/2NGjWSt7e3Fi9eTEISAAAAeABubm6qUKGCzb6CBQuqUKFC1v0dO3bUhAkT5OnpKTc3N40dO1aBgYEkJAEAQLZmtEcjCQkJNqv73S4kJEQJCQkP1N6uXbvUu3dvhYSEKCAgQJs2bbKWJSUl6f3331ebNm1Us2ZNhYSE6I033rB5VFy6lQwNCAiw+fPhhx8++MkBAAAA2dSwYcPUoEEDDRgwQM8//7x8fHw0Y8YMR4cFAABwV3a5QzIkJERbt25VvXr10pT98ssvqlu37gO1l5iYqICAAHXs2FH9+/e3Kbt+/boOHDigPn36qGLFirpy5Yreeecd9enTRytXrrSpO2DAAD399NPWbVdX1weKAwAAAMhOFi9ebLOdP39+hYeHKzw83EERAQAAPLgMJyT//PNP6+tOnTopPDxcFy5c0JNPPilvb2/FxcVp06ZN2r59u0aNGvVAbYeGhio0NDTdMnd3d82fP99m39tvv63OnTvrzJkzKlGihHW/q6srE3oDAAAgS02cOFGdOnWSv7+/o0MBAADIljKckOzYsaMMBoN122Kx6Msvv9SXX34pg8Egi8ViLevdu7eioqIeLtK7uHr1qgwGg83qgpI0b948zZ49W8WLF1fr1q3Vo0cP5ctnt4XFAQAAgDS++uorRUZGKjAwUJ07d1bz5s1VoEABR4cFAACQbWQ4O7do0SJ7xpFhN27c0MSJE9WqVSu5ublZ93fr1k2VK1eWp6en9u7dq8mTJys2NlZvvfWWA6MFAABAbrd582b99NNPWrlypd5++22NHTtWLVu2VIcOHRQYGOjo8AAAABwuwwnJ2rVr2zOODElKStLAgQNlsVjSPBbes2dP6+uKFSvKZDIpPDxcgwcPlrOzc5q2TCYn3XbDp92ZTEYZDJJBytR+slpuOJfU98RkMsrZ2cnR4eQYqe+9s7OTbrshGnkIYwCMASB9RqNRDRo0UIMGDXTx4kV99dVX+vLLL7V8+XKVLVtWHTt2VLt27eTt7e3oUAEAABzCrs8vHz58WHv27NHly5fl6empRx99VOXLl7dnF1ZJSUl69dVXdebMGS1cuNDm7sj01KhRQzdv3tSpU6dUtmzZdNpLzpQ4/9d+iiwWySLlql/acsO5pL4nSUkpMpszdxzkJqmJCLM5OVeMAzw4xgAYA8C9FS5cWD169FCdOnX0zjvvaNeuXXrvvfc0efJktWrVSkOHDpWXl5ejwwQAAMhSdklIms1mvf766/rmm29ksVjk7Owss9ksg8GgZs2a6b333kv3rsSMSk1GnjhxQosWLVLhwoXveUxUVJSMRiPfRAMAACBLxMfHa82aNVq+fLmioqJUsWJFjRw5Uk2aNNHmzZs1e/Zsvfbaa1q4cKGjQwUAAMhSdklITp48WZs3b9aoUaPUsmVLubm56erVq1q/fr3Gjx+vKVOmaOjQoffdXkJCgqKjo63bp06dUlRUlDw9PeXr66sBAwbowIEDmjt3rpKTkxUbGytJ8vT0lLOzs/bu3avffvtNderUkaurq/bu3avx48erbdu28vT0tMcpAwAAAOnatm2bli9fru+++05OTk5q1aqVRo8erapVq1rrdOrUScWLF1fv3r0dGCkAAIBj2CUhuW7dOg0aNEhPP/20dZ+bm5uefvppXbt2TR999NEDJST379+vF154wbo9fvx4SVL79u3Vv39/ff/995Kkdu3a2Ry3aNEiBQUFydnZWevXr9fMmTNlNptVsmRJ9ejRw2ZeSQAAACAz9OzZUzVq1NCIESPUqlWrO66w7e/vr9atW2dxdAAAAI5nl4Tk5cuX052XUZLKli2ry5cvP1B7QUFBOnjw4B3L71YmSVWqVNEXX3zxQH0CAAAA9rB69WpVqFDhnvUeeeQR6xfvAAAAeYnRHo2ULVtWX331Vbplq1evvmOyEgAAAMhtxo4dqyNHjqRbduzYMZsngQAAAPIiu9wh2bdvXw0cOFCnT59W06ZN5ePjo7i4OH399dfat2+fpk2bZo9uAAAAgGxv586dSkhISLfs6tWr2r17dxZHBAAAkL3YJSHZtGlTzZw5U7NmzdK7774ri8Uig8GgSpUqaebMmWrUqJE9ugEAAABytL1798rLy8vRYQAAADjUQyckzWazfvzxR1WqVEkrV65UYmKi4uPj5e7uroIFC9ojRgAAACBbmzt3rubOnStJMhgM6t69uwwGg00ds9ms5ORkdenSxREhAgAAZBsPnZB0dnbW4MGD9dFHH6lUqVIqWLAgiUgAAADkKYGBgXrxxRdlsVg0a9YstWrVSsWKFbOpYzKZVK5cOTVs2NBBUQIAAGQPdnlku2zZsoqJibFHUwAAAECOU7t2bdWuXVvSrTskO3furKJFizo4KgAAgOzJLqtsDxo0SLNnz9Yff/xhj+YAAACAHKt///4kIwEAAO7CLndITpw4UZcuXdLTTz+tQoUKycfHx6bcYDBo9erV9ugKAAAAyHZ69+6tN998U/7+/urdu/dd6xoMBs2ePTuLIgMAAMh+7JKQrFKliqpWrWqPpgAAAIAcJyEhQcnJydbXAAAAuDO7JCQnTJhgj2YAAACAHGnx4sXpvgYAAEBaD5WQ/Pvvv/XZZ5/p1KlTKlKkiJo3b67g4GB7xQYAAADkONevX5eLi8sdy8+ePZtmBW4AAIC8JMOL2uzevVvt27fXkiVL9Mcff2jFihUKCwvT0qVL7RkfAAAAkKO0a9dOv/32W7plX375pdq0aZPFEQEAAGQvGU5IzpgxQ2XLltX333+vX375RTt27FDjxo01depUO4YHAAAA5CylSpVS165dNXXqVN28eVOSdOHCBfXv31/Dhg1T+/btHRwhAACAY2X4ke1Dhw5p1KhRKl68uCTJzc1NQ4cOVePGjRUTE2PdDwAAAOQlH330kT799FO9//77+umnn9S5c2fNmDFDLi4uWrBggYKCghwdIgAAgENl+A7Jixcvppn7JjUJefHixYeLCgAAAMjBunTpoiVLlujvv//W6NGjVaxYMa1Zs4ZkJAAAgB4iIQkAAAAgfbt379Yrr7wiNzc3tWzZUgcOHFBERITi4+MdHRoAAIDDPdQq2927d5fBYEizv2vXrjb7DQaD9uzZ8zBdAQAAADnCe++9pwULFqhBgwYaO3asvLy81K5dO40YMUKtW7fWuHHjVK9ePUeHCQAA4DAZTkj279/fnnEAAAAAucIXX3yhsWPHqkOHDtZ9TzzxhNasWaOIiAj997//VVRUlAMjBAAAcCwSkgAAAIAdrV69WiVKlEiz39PTU1OmTFGTJk0cEBUAAED2wRySAAAAgB3dnoyMiYnRr7/+qsTEROu+li1bOiIsAACAbIOEJAAAAGBnn3/+uerXr69GjRqpa9euOnbsmCSpX79+WrRokYOjAwAAcCwSkgAAAIAdLViwQGPGjNFTTz2lyMhIWSwWa1nt2rW1YcMGB0YHAADgeA+1yjYAAAAAW5988on69u2rvn37Kjk52aasTJky1rslAQAA8qoM3yG5aNEixcXFSZLOnDmjpKQkuwUFAAAA5FTnzp1TYGBgumUmk8lmPkkAyK6Sk5P1yy8/a+nSpfrll5/TfMECAA8jwwnJ8ePH6/Tp05KkJ598UlFRUXYLCgAAAMipSpQooT/++CPdst9++03+/v5ZGxAAPKC1a1crKKimnnqqlbp06aKnnmqloKCaWrt2taNDA5BLZDghWahQIZ08eVKSbObFAQAAAPKyp59+WrNnz9ayZct09epVSdLNmzf1448/KjIyUs8884yDIwSAO1u7drXCwrqpUqXK2rBhk+Lj47VhwyZVqlRZYWHdSEoCsIsMzyHZoEEDDR06VJMmTZLBYFC/fv3k7Oycbl2DwaBNmzZlOEgAAAAgpwgLC1NMTIxGjhyp8PBwSdJzzz0nSerSpYu6du3qyPAA4I6Sk5MVETFcTZs218KFS+XkZJSbm5see6y2Fi5cqu7dn1NExAi1aNFKTk5Ojg4XQA6W4YTk6NGjVatWLR09elTz58/X448/Lh8fH3vGBgAAAORII0aMUPfu3fXLL7/o0qVL8vT0VN26dXlcG0C2tn37VkVHn9CcOZEyGm0fqDQajRowYJBatWqi7du3ql69+g6KEkBukOGEpMlkUufOnSVJX3/9tV566SVVrFjRboEBAAAAOVmpUqX07LPPOjoMALhv586dlSRVrFg53fJKlSrb1AOAjMpwQvJ233//vT2asdq1a5ciIyO1f/9+xcbGatasWWrcuLG13GKxaPr06Vq2bJmuXLmiWrVqKSIiwuYb50uXLmnMmDH64YcfZDQa1bRpUw0fPlyurq52jRUAAAD4888/H6h+lSpVMikSAMi4okWLSZL++uuAHnusdpryqKgDNvUAIKPskpCUpHPnzmnBggX69ddfdenSJRUqVEiPPvqounfvrqJFiz5QW4mJiQoICFDHjh3Vv3//NOXz5s3T4sWLNWHCBJUsWVLTpk1TWFiY1q9fr/z580uShgwZotjYWM2fP19JSUkaNmyYRo4cqUmTJtnlfAEAAIBUHTt2lMFguGc9i8Uig8GgqKioLIgKAB5MnTrB8vMrrWnTJlnnkEyVkpKi6dMny8/PX3XqBDswSgC5gV0SkocOHdLzzz+vpKQk1atXTxUrVlRcXJw+++wzrVixQp988onKly9/3+2FhoYqNDQ03TKLxaJFixapT58+1rsm33vvPQUHB2vTpk1q1aqVjhw5op9//lnLly9XtWrVJN2ax+ell17SG2+88cAJUgAAAOBuFi1aZPc2P/30Uy1dulSnT5+WJJUvX159+/a1XiffuHFDEyZM0Pr162U2mxUSEqLw8HDmdQeQYU5OToqIeEdhYd3UvftzGjhwkEJCgrRr1w5NmzZZ33yzUZGRi1nQBsBDs0tC8t1331WpUqX08ccfy9PT07r/8uXLevHFF/Xuu+/qo48+skdXOnXqlGJjYxUc/L9vZNzd3VWjRg3t3btXrVq10t69e+Xh4WFNRkpScHCwjEajfv/9dzVp0sQusQAAAACSVLt22kcbH1axYsU0ZMgQlS5dWhaLRatWrVK/fv305Zdfqnz58ho3bpw2b96sqVOnyt3dXWPGjFH//v312Wef2T0WAHlH69ZtFRm5WBERw9Wy5f9+d/bz81dk5GK1bt3WgdEByC3skpD89ddf9f7779skIyXJ09NTffr00euvv26PbiRJsbGxkiRvb2+b/d7e3jp//rwk6fz58/Ly8rIpz5cvnzw9Pa3HAwAAAJnp2LFj+v333xUbGytfX19Vq1ZNZcuWve/jGzVqZLP92muvaenSpdq3b5+KFSumFStWaOLEiapbt64kady4cWrZsqX27dunmjVr2vNUAOQxrVu3VYsWrbRjx1YlJl5WwYKeCgoK5s5IAHZjl4Skk5OTzGZzumVmszlHfGiZTE66j2l/HqJ9owwGySBlaj9ZLTecS+p7YjIZ5eyc/cdqdpH63js7O8licWwscAzGABgDQPoSEhI0cuRIbdiwQSkpKcqfP79u3Lgho9Go5s2ba8yYMQ+80GJycrI2btyoxMREBQYGav/+/UpKSrJ5aqhcuXIqUaIECUkAduHk5KR69erLx8dd58/H8389ALuyS0IyODhYU6dOVaVKlVSmTBnr/uPHj2vatGk2F0oPy9fXV5IUFxenIkWKWPfHxcWpYsWKkiQfHx9duHDB5ribN2/q8uXL1uP/LSkp2W4xpt9+iiwWySLlqg/y3HAuqe9JUlKKzObMHQe5SWoiwmxOzhXjAA+OMQDGAJC+sWPH6ocfftCYMWPUrFkzubm56erVq9q4caPGjRunsWPHavz48ffV1sGDB/Xss8/qxo0bKliwoGbNmqX//Oc/ioqKkslkkoeHh019b29vnggCAADZnl0Skm+++aaef/55tWrVSuXLl5ePj4/i4uJ06NAhFS9eXG+99ZY9upEklSxZUr6+vtq2bZsqVaokSbp69ap+++03Pffcc5KkwMBAXblyRfv371fVqlUlSdu3b1dKSoqqV69ut1gAAACAf/v66681ZMgQdezY0brPzc1NnTp10o0bNzR58uT7TkiWKVNGq1atUnx8vL7++msNHTpUn3zySYZjy+yngsDd48hdGM/ITUwmo/Vvno50PLskJEuUKKE1a9ZoxYoV2rNnj65cuSJ/f3917NhRHTp0eOBHUhISEhQdHW3dPnXqlKKiouTp6akSJUrohRde0OzZs1W6dGmVLFlS06ZNU5EiRayrbpcrV07169fX22+/rVGjRikpKUljxoxRq1atWGEbAAAAmSp//vwqWbJkumWlSpVSvnz3fwnu7Oys0qVLS5KqVq2qP/74Q4sWLVKLFi2UlJSkK1eu2NwlGRcXd8cngqTMfyoI3D2O3IXxjNwkKSnF+jdPRzqeXRKSkuTq6qoXXnhBL7zwwkO3tX//fpt2Ur9Bbt++vSZMmKBevXrp2rVrGjlypK5cuaJHH31UH330kfLnz289ZuLEiRozZoy6d+8uo9Gopk2basSIEQ8dGwAAAHA3HTp00NKlS1W/fn0Zbrsd0WKx6NNPP1WHDh0y3HZKSorMZrOqVq0qk8mkbdu2qVmzZpKko0eP6syZM8wfCQAAsj27JSTtKSgoSAcPHrxjucFg0MCBAzVw4MA71ilUqJAmTZqUGeEBAAAAd+Tp6akDBw6oadOmatiwoby9vRUXF6cffvhBZrNZjz76qObPny/p1nVtjx490m1n0qRJeuKJJ1S8eHElJCRo7dq12rlzpyIjI+Xu7q6OHTtqwoQJ8vT0lJubm8aOHavAwEASkgAAINvLlglJAAAAIKeaPHmy9fWiRYvSlN/+pfndEpJxcXEaOnSo/vnnH7m7uysgIECRkZGqV6+eJGnYsGEyGo0aMGCAzGazQkJCFB4ebt+TAQAAyAQkJAEAAAA7+uuvv+zSzrhx4+5anj9/foWHh5OEBAAAOY7R0QEAAAAAucWNGzc0duxY/f77744OBQAAINt66ITkjRs3NH/+fB06dMge8QAAAAA5Vv78+bVixQpdv37d0aEAAABkWw+dkMyfP7+mTp2qS5cu2SEcAAAAIGcLDAzUvn37HB0GAABAtmWXOSQrVaqkv//+W7Vr17ZHcwAAAECONWDAAA0ZMkROTk4KDQ2Vt7e3DAaDTZ1ChQo5JjgAAIBswC4JyWHDhun111+Xl5eXQkNDVaBAAXs0CwAAAOQ4zz77rCTp/fff18SJE9OtExUVlZUhAQAAZCt2SUh2795dSUlJeu211yRJLi4uNt8CGwwG7dmzxx5dAQAAANnauHHj0twRCQAAgP+xS0LyxRdf5KILAAAAkNShQwdHhwAAAJCt2SUh+corr9ijGQAAACDXuHz5sg4fPqyYmBg98cQT8vT01I0bN2QymWQ0PvTakgAAADmWXRKSt4uJiVFMTIwqVqyoggUL2rt5AAAAIFtLSUnR1KlTtXjxYl27dk0Gg0HLly+Xp6en+vfvrxo1aqh///6ODhMAAMBh7PbV7Oeff6769eurYcOG6tq1q44dOyZJ6tevnxYuXGivbgAAAIBsbdq0afrkk080dOhQff3117JYLNayRo0a6fvvv3dgdAAAAI5nl4TkggULNGbMGD311FP6+OOPbS66ateurY0bN9qjGwAAACDb+/LLLzVo0CA9++yzKlmypE2Zn5+fTp486aDIAAAAsge7PLL9ySefqG/fvurbt6+Sk5NtysqUKWO9WxIAAADI7S5duqRy5cqlW5acnKybN29mcUQAAADZi13ukDx37pwCAwPTLTOZTEpMTLRHNwAAAEC25+/vr19++SXdsp07d6p8+fJZHBEAAED2Ypc7JEuUKKE//vhDdevWTVP222+/yd/f3x7dAAAAANlejx499Pbbbytfvnxq3ry5JOns2bPat2+fFi9erPHjxzs4QgAAAMeyS0Ly6aef1syZM1W4cGE1bdpUknTz5k39+OOPioyM1KuvvmqPbgAAAIBsr0OHDrpy5YqmT5+uuXPnSrq10GOBAgX06quvqmXLlg6OEAAAwLHskpAMCwtTTEyMRo4cqfDwcEnSc889J0nq0qWLunbtao9uAAAAgGzr77//1meffaZTp06pSJEimjhxopydnXXx4kV5enoqMDBQ7u7ujg4TAADA4eySkJSkESNG6IUXXtDWrVt16dIleXp6qm7dujyuDQAAgFxv9+7d6tmzp27evCkvLy9dunRJy5Yt08iRI61f1AMAAOAWuyUkJcnPz09+fn72bBIAAADI9mbMmKGyZctqzpw5Kl68uK5evaq33npLU6dOJSEJAADwL3ZLSCYlJenLL7/Ub7/9ptjYWPn6+qpmzZp66qmnZDKZ7NUNAAAAkO0cOnRIo0aNUvHixSVJbm5uGjp0qBo3bqyYmBjrfgAAAEhGezRy7NgxNW/eXBEREYqKipLFYlFUVJTCw8PVrFkzHT161B7dAAAAANnSxYsXVaxYMZt9qUnIixcvOiIkAACAbMsud0iOHDlSJpNJGzdutHlk+8SJE+rdu7ciIiK0aNEie3QFAAAAAAAAIAezS0Ly999/13vvvZdm/sjSpUtrwIABevPNN+3RDQAAAJBtde/eXQaDIc3+rl272uw3GAzas2dPVoYGAACQrdglIVmkSJF0L76kWxdcPj4+9ugGAAAAyJb69+/v6BAAAAByDLskJPv166dp06apUqVKKlWqlHX/yZMnNWPGDC7QAAAAkKtxvQsAAHD/MpyQ7N27t832lStX1Lx5c5UvX17e3t6Ki4vT4cOH5e3tra+//lrt27d/6GABAAAAAAAA5GwZTkgmJCTYbPv7+8vf31+SZDab5e7urlq1aqVbFwAAAAAAAEDelOGE5OLFi+0ZBwAAAAAAAIA8wC5zSGa1Ro0a6fTp02n2d+nSReHh4erWrZt27txpU/bMM89o9OjRWRUiAAAAAAAAgHTYLSEZExOjTZs2KSYmRmazOU35iBEj7NWVli9fruTkZOv24cOH1bNnTzVv3ty67+mnn9aAAQOs2wUKFLBb/wAAAAAAAHh4Fy9eyJKp/v7555z171OnTmZ6f66uripc2CvT+8mp7JKQXL9+vd544w1ZLBZ5eXnJZDLZlBsMBrsmJL28bN/QDz/8UH5+fqpdu7Z1n4uLi3x9fe3WJwAAAAAAAOzn4sULeu+dN5WUGJfpfV29miiDQVq+aKrc3Apmen+mgt56Y/gEkpJ3YJeE5JQpU9S4cWONGTNG7u7u9mjyvpnNZq1evVo9e/aUwWCw7l+zZo1Wr14tX19fNWzYUH379uUuSQAAAAAAgGwiISFBSYlx6vaEh4p6u2Z6f68/7S/X/E6Z3s+5uAQt/ilOCQkJJCTvwC4JyQsXLuiZZ57J8mSkJG3atEnx8fFq3769dV/r1q1VokQJFSlSRAcPHtTEiRN17NgxzZw5847tmExOui2faXcmk1EGg2SQMrWfrJYbziX1PTGZjHJ2zvwPptwi9b13dnaSxeLYWOAYjAEwBgAAAGAPRb1dVapI5ueUXFycdf162mkGM8eVLOonZ7JLQrJ+/frat2+f6tata4/mHsiKFSv0xBNPqGjRotZ9zzzzjPV1QECAfH191aNHD0VHR8vPzy/ddpKSktPdby9JSSmyWCSLlKt+acsN55L6niQlpchsztxxkJukJiLM5uRcMQ7w4BgDYAwAAAAAyAi7JCRHjRql1157TdevX1edOnXk4eGRpk6VKlXs0ZWN06dPa+vWrZoxY8Zd69WoUUOSdOLEiTsmJAEAAAAAAABkPrskJBMSEnTt2jXNnTtXH374oU2ZxWKRwWBQVFSUPbqysXLlSnl7e6tBgwZ3rZfaN4vcAAAAAAAAAI5ll4Tk0KFDFRMTo7ffflv+/v5pVtnODCkpKVq5cqWeeuop5cv3v9OIjo7WmjVrFBoaqkKFCungwYMaP368Hn/8cVWsWDHT4wIAAAAAAABwZ3ZJSP7++++aNGmSGjdubI/m7svWrVt15swZdezY0Wa/yWTStm3btGjRIiUmJqp48eJq2rSp+vbtm2WxAQAAAAAAAEifXRKSpUuX1s2bN+3R1H0LCQnRwYMH0+wvXry4PvnkkyyNBQAAAAAAAMD9Mdqjkbfeektz5szRkSNH7NEcAAAAAAAAgFzKLndIjhs3TrGxsWrTpo2KFCkid3d3m3KDwaDVq1fboysAAAAAAAAAOZhdEpJVqlSRwWCwR1MAAAAAAAAAcjG7JCQnTJhgj2YAAAAA/L+5c+fqm2++0dGjR+Xi4qLAwEANGTJEZcuWtda5ceOGJkyYoPXr18tsNiskJETh4eHy8fFxYOQAAAB3Z5c5JAEAAADY186dO9W1a1d98cUXmj9/vm7evKmwsDAlJiZa64wbN04//PCDpk6dqsWLF+uff/5R//79HRg1AADAvdnlDsm33nrrnnXGjx9vj64AAACAPCEyMtJme8KECapbt67+/PNPPf7444qPj9eKFSs0ceJE1a1bV9KtBGXLli21b98+1axZ0wFRAwAA3JtdEpJRUVFp9l25ckUxMTEqXLiwihYtao9uAAAAgDwrPj5ekuTp6SlJ2r9/v5KSkhQcHGytU65cOZUoUYKEJAAAyNbskpBctWpVuvuPHDmiQYMGaejQofboBgAAAMiTUlJSNG7cONWqVUsVKlSQJJ0/f14mk0keHh42db29vRUbG+uIMAEAAO6LXRKSd1KuXDn16tVL48eP11dffZWZXQEAAAC51qhRo3T48GF9+umnD9WOyeQkg8FOQSFdqT9fZ2cnWSyOjQV4WIxnZDaTyUlGg0FGg1FGY+Yuc5I6np2cjJk+no0Go4wGg0wmJzk7O2VuZzlUpiYkJcnd3V3R0dGZ3Q0AAACQK40ePVo//vijPvnkExUrVsy638fHR0lJSbpy5YrNXZJxcXHy9fVNt62kpORMjzevS/2F12xOJoGDHI/xjMyWlJSsFItFKZYUpaSkZHp/JpOUnJz5/aRYUpRisSgpKVlmM//3pscuCclLly6l2ZeUlKQjR45o8uTJKl++vD26AQAAAPIMi8WiMWPG6Ntvv9XixYtVqlQpm/KqVavKZDJp27ZtatasmSTp6NGjOnPmDPNHAgCAbM0uCck6derIkM6zHxaLRcWLF9esWbPs0Q0AAACQZ4waNUpr167VBx98IFdXV+u8kO7u7nJxcZG7u7s6duyoCRMmyNPTU25ubho7dqwCAwNJSAJ4aMnJydqxY6sSEy+rYEFPBQUFy8mJR08B2IddEpLjxo1Lk5DMnz+/ihYtqho1aihfvkx/MhwAAADIVZYuXSpJ6tatm83+8ePHq0OHDpKkYcOGyWg0asCAATKbzQoJCVF4eHiWxwogd1m7drUiIoYrOvqEdZ+fX2lFRLyj1q3bOjAyALmFXTKFqRdEAAAAAOzj4MGD96yTP39+hYeHk4QEYDdr165WWFg3NW3aXHPnRiokJEhbtuzQ1KmTFBbWTZGRi0lKAnhombuEEQAAAAAAyBGSk5MVETFcTZs218KFS/XYY7Xl5uamxx6rrYULl6pp0+aKiBih5GQW6QDwcDJ8h2SjRo3SnTcyPQaDQZs2bcpoVwAAAAAAIJNt375V0dEnNGdOpCwWi3755WebOSQHDBikVq2aaPv2rapXr76jwwWQg2U4Ifnkk0/eMyF58OBB7dix474TlwAAAAAAwDHOnTsrSTp+/LhefvlFnTwZbS0rVcpPb731tk09AMioDCckhw8ffseyqKgozZo1Szt37pSfn59eeumljHYDAAAAAACyQNGixSRJffv+Vy4uLjZlsbH/qG/fXjb1ACCj7Lr89R9//KFZs2Zp8+bN8vf314QJE9SmTRsZjUxVCQAAAABAdvb440EyGo1KSUnR9evXbcpSt41Gox5/PMgR4QHIReySkNy3b59mzpypX375Rf/5z380adIktWjRgke1AQAAAADIIXbs2KaUlJS71klJSdGOHdtUv35oFkUFIDd6qITkrl279MEHH2jbtm2qXLmypk+friZNmtgrNgAAAADIMZKTk7Vjx1abRUCcnJwcHRZw33788XvraxcXF5u7JG/f/vHH70lIAngoGU5IduvWTbt371b16tU1d+5chYbyYQQAAAAgb1q7drUiIoYrOvqEdZ+fX2lFRLyj1q3bOjAy4P5t3nwrIVmsWDHt2fOndu3abk2wP/54HdWqVUXnzp3V5s3f6+23Rzk4WgA5WYYTkrt27ZIkHTp0SK+99tpd6xoMBu3ZsyejXQEAAABAtrV27WqFhXVT06bNNXdupEJCgrRlyw5NnTpJYWHdFBm5mKQkcoSrV69KktzcPOTk5KR69erLx8dd58/HKzk5Re7u7jp37qy1HgBkVIYTkv3797dnHAAAAACQ4yQnJysiYriaNm2uhQuXysnJKDc3Nz32WG0tXLhU3bs/p4iIEWrRohWPbyPbK1mylI4ePaK//z6kF154Vq++OlghIUHatetWgv3vvw9b6wHAwyAhCQAAAAAZtH37VkVHn9CcOZEyGo02ZUajUQMGDFKrVk20fftW1atX30FRAvenb98B+umnHyVJP/20Wd98s9FaVqBAAZt6gL0UcE5RUvI1JdzI/IWRb1pMumFOyvR+kpKvqYDz3ReIyuvssso2AAAAAORF586dlSRVrFg53fJKlSrb1AOys9DQhipQoICuXbum69ev2ZRdu3Zru0CBAgoNbeiI8JBLlS95XRcSj+hCoqMjsa/yJQvcu1IeRkISAAAAADKoaNFikqS//jqgwMBH06yyHRV1wKYekJ05OTlp1qx5evHF5+9YZ9aseUw/ALs6fMpFDauWUFGvgpneV37nrLlD8tyFRB0+dUGNMr2nnIuEJAAAAABkUJ06wfLzK61hw15XXFycTp6MtpaVKuUnb29v+fn5q06dYAdGCdy/1q3b6uOPP9HIkW/p1KmT1v2lSvlp1KhxLNAEu7tmNsrkVECu+d0yvS8XF2flM5gzvR+Tk0XXzMZ7V8zD+OkAAAAAQAY5OTmpTZuntG/fXl2/fl2TJ0/XmTNnNHnydF2/fl379u1VmzbtuKMMOUrr1m21a9fvWrVqnT799FOtWrVOO3f+RjISgN3kyDskZ8yYoZkzZ9rsK1OmjDZuvDXh7o0bNzRhwgStX79eZrNZISEhCg8Pl4+PjyPCBQAAAJBLJScna82aVapZM1BxcXEaNGiABg26teCHn19p1awZqDVrvtKIEREkJeFQx48f05Urlx/oGDc3d7m55ZfkrD///OO+j/Pw8JS/f5kHjBBAXpIjE5KSVL58ec2fP9+6fft/7uPGjdPmzZs1depUubu7a8yYMerfv78+++wzR4QKAAAAIJe6fZXt9OaQ/PXX3ayyDYeLi4tTnTqBSknJmlV/nZyctH//3/L29s6S/gDkPDk2Ienk5CRfX980++Pj47VixQpNnDhRdevWlXQrQdmyZUvt27dPNWvWzOJIAQAAAORWt6+y7eTkpHr16svHx13nz8fLYmGVbWQP3t7e2r597wPfIXn48EH16dNLs2fPU/nyAfd9nIeHJ8lIAHeVYxOSJ06cUEhIiPLnz6+aNWtq8ODBKlGihPbv36+kpCQFB/9v0uhy5cqpRIkSJCQBAAAA2BWrbCOneJhHqMuXD1D16jXtFwyAPC9HJiSrV6+u8ePHq0yZMoqNjdWsWbPUtWtXrVmzRufPn5fJZJKHh4fNMd7e3oqNjb1jmyaTkwyGzIvZZDLKYJAMUqb2k9Vyw7mkvicmk1HOzszrc79S33tnZydZLI6NBY7BGABjAABYZRsAgIzIkQnJ0NBQ6+uKFSuqRo0aatiwoTZs2CAXF5cMtZmUlGyv8O7QfoosFski5apf2nLDuaS+J0lJKTKbM3cc5CapiQizOTlXjAM8OMYAGAMA8L9VtmfNmiZf3yKaPHmann22sz77bJnGj39H+/btVb9+A1nQBgCA2xgdHYA9eHh4yN/fX9HR0fLx8VFSUpKuXLliUycuLi7dOScBAAAAIKNuX2XbxcVFgwYNVIkSJTRo0EC5uBSwrrKdnMwX3wAApMqRd0j+W0JCgk6ePClfX19VrVpVJpNJ27ZtU7NmzSRJR48e1ZkzZ5g/EgAAAIBdsco2AAAPLkcmJN999101bNhQJUqU0D///KMZM2bIaDSqdevWcnd3V8eOHTVhwgR5enrKzc1NY8eOVWBgIAlJAAAAAHbFKtsAADy4HJmQPHv2rAYNGqRLly7Jy8tLjz76qL744gt5eXlJkoYNGyaj0agBAwbIbDYrJCRE4eHhDo4aAAAAQG5z+yrbjz1WO005q2wDAJBWjkxITpky5a7l+fPnV3h4OElIAAAAAJkqdZXtadMmac6cjzVmzEidOnVCJUuW1ttvj9b06ZNZZRsAgH/JkQlJAAAAAMgOnJycFBHxjl588XmVKVPcpuzjj+f9/9+fsMo2AAC3yRWrbAMAAACAo3zxxdKHKgcAIK/hDkkAAAAAyKBr165p48Z1kqQnn2yipk2bydfXS7GxF/TNN1/ru+++1caN63Tt2jUVKFDAwdECAJA9kJAEAAAAgAwKDx8uSfL3L6MlS5bJycloXWW7e/f/qk6dQB0/fkzh4cP13nuTHRwtAADZA49sAwAAAEAG7du3R5I0YsQoGY22v14ZjUa99dbbNvUAAAAJSQAAAADIMA+PQpKkPXt2plv+66+7beoBAAASkgAAAACQYX369JMkzZs3V2az2abMbDYrMnKeTT0AAEBCEgAAAAAyrEGDJ+XiUkA3byapbNkSGj16pA4dOqTRo0eqbNkSunkzSS4uBdSgwZOODhUAgGyDhCQAAAAAZJCTk5M++ODWXZBms1kzZkxVQECAZsyYar1j8oMP5snJycmRYQIAkK2wyjYAAAAA3MHx48d05crlu9bx8/NTePgYffDBdMXGxlr3+/oWUd++r8jPz0+//77vnn15eHjK37/Mw4YMAEC2R0ISAAAAANIRFxenOnUClZKSkqHjY2P/0ahRb993fScnJ+3f/7e8vb0z1B8A5FTn4hKypJ+EG8lyzZ/5d6xn1fnkZCQkAQAAACAd3t7e2r597z3vkLzd4cMH1adPL82ePU/lywc8UH8eHp4kIwHkKa6urjIV9Nbin+IkXcnUvq5eTdSXX/+i9s3qyc2tYKb2JUmmgt5ydXXN9H5yKhKSAAAAAHAHGX2Eunz5AFWvXtO+wQBALlO4sJfeGD5BCQmZf0fhX38d0MqNv6jTC6+qYsXKmd6fq6urChf2yvR+cioSkgAAAAAAAHCIwoW9siRxd+FCnCSpSJGiKlmyVKb3h7tjlW0AAAAAAAAAWYaEJAAAAJAN7dq1S71791ZISIgCAgK0adMmm3KLxaJp06YpJCRE1atXV48ePXT8+HHHBAsAAPAAeGQbAAAAyIYSExMVEBCgjh07qn///mnK582bp8WLF2vChAkqWbKkpk2bprCwMK1fv1758+d3QMQAssrFixeyZM69f/45Z/371KmTmd4fc+4BeQcJSQAAACAbCg0NVWhoaLplFotFixYtUp8+fdS4cWNJ0nvvvafg4GBt2rRJrVq1yspQAWShixcv6N2IYUq6fP+rv2dU/LVEGSR9Me8DuRfIglWJPT01NGIcSUkgDyAhCQAAAOQwp06dUmxsrIKDg6373N3dVaNGDe3du5eEJJCLJSQkKOnyZT1XrpSKuLtnen+DHq+ugvmcM72ff+LjtfTISSUkJJCQBPIAEpIAAABADhMbGytJ8vb2ttnv7e2t8+fP3/E4k8lJBkOmhpbnmUxG69/Ozk4Ojga5kcnkJKNRKubpoZKFC2VqXwaDZDLlU1LSTVksmdqVjEaDjMZb58e/HWQGPp+zFxKSAAAAQB6RlJTs6BByvaSkFOvfZjM/b9hfUlKyUlKklBSLUlIyOUsoyWSSkpMzv59b53Pr/Pi3g8zA53P2wirbAAAAQA7j6+srSYqLi7PZHxcXJx8fH0eEBAAAcN9ISAIAAAA5TMmSJeXr66tt27ZZ9129elW//fabAgMDHRgZAADAvfHINgAAAJANJSQkKDo62rp96tQpRUVFydPTUyVKlNALL7yg2bNnq3Tp0ipZsqSmTZumIkWKWFfdBgAAyK5ISAIAAADZ0P79+/XCCy9Yt8ePHy9Jat++vSZMmKBevXrp2rVrGjlypK5cuaJHH31UH330kfLnz++okAEAAO4LCUkAAAAgGwoKCtLBgwfvWG4wGDRw4EANHDgwC6MCAAB4eCQkAQAAAOR6Fy9eUEJCQqb3888/56x/nzp1MtP7c3V1VeHCXpneDwAA9kRCEgAAAECudvHiBY0c+44uJd7I9L4Sr8ZLBoNmL/xUBd3cM72/QgXza/SI4SQl85gC+ZN103RF14yWTO8rWflkNt7M9H5umuJVIH9ypvcDIHsgIQkAAAAgV0tISNClxBt6pH4nuXkVzdzODFL1zv3klN9dyuRc0dUL53T65+VKSEggIZnHVPBPVHzxXYrPqg5NWdCHq1ThilsWdAQgO8iRCcm5c+fqm2++0dGjR+Xi4qLAwEANGTJEZcuWtdbp1q2bdu7caXPcM888o9GjR2d1uAAAAACyATevovIs8kjmdmKQXFxMun49KdMTksi7Dh0vqBCPSirqkfl34To755PZnPl3SJ67Eq9Dx0+oUab3BCA7yJEJyZ07d6pr166qVq2akpOTNXnyZIWFhWndunUqWLCgtd7TTz+tAQMGWLcLFCjgiHABAAAAALCbazeclC/JQwVSCmV6Xy4yySklKdP7yZdk0LUbTpneD4DsIUcmJCMjI222J0yYoLp16+rPP//U448/bt3v4uIiX1/frA4PAAAAAAAAwB3kyITkv8XH35o5w9PT02b/mjVrtHr1avn6+qphw4bq27cvd0kCAAAAeZCrc5I8U6LlduN65nZkkJwt+ZTPfDPzH9lO+Ueuzpl/5xoAAPaW4xOSKSkpGjdunGrVqqUKFSpY97du3VolSpRQkSJFdPDgQU2cOFHHjh3TzJkz023HZHKSwZB5cZpMRhkMkkHK1H6yWm44l9T3xGQyytmZRwTuV+p77+zsJAvzI+VJjAEwBgDkJDVKXlDw9fFSjKMjsa98JXkiDACQ8+T4hOSoUaN0+PBhffrppzb7n3nmGevrgIAA+fr6qkePHoqOjpafn1+adpKSkjM1zqSkFFkst74kzU2/tOWGc0l9T5KSUmQ2Z+44yE1SExFmc3KuGAd4cIwBMAYA5CS/nfLSzSr/lVvhIpnbkeG2RUAye5Xti//oz1Mr1SZzuwEAwO5ydEJy9OjR+vHHH/XJJ5+oWLFid61bo0YNSdKJEyfSTUgCAAAAyL0SzCZdNvpJ+bNolW1D5q+yfdnoogSzKXM7AQAgE+TIhKTFYtGYMWP07bffavHixSpVqtQ9j4mKipIkFrkBAAAAAOR4//z/WgqZLfGmWQXzOWd6P1l1PgCyhxyZkBw1apTWrl2rDz74QK6uroqNjZUkubu7y8XFRdHR0VqzZo1CQ0NVqFAhHTx4UOPHj9fjjz+uihUrOjh6AAAAAAAyxtXVVSZPTy09cjLT+4q/lqivfvhB7Ro2lHuBgpnen8nTU66urpneDwDHy5EJyaVLl0qSunXrZrN//Pjx6tChg0wmk7Zt26ZFixYpMTFRxYsXV9OmTdW3b19HhAsAAAAAgF0ULuyloRHjlJCQkOl9/fXXAa364Qc93auvKlasnOn9ubq6qnBhr0zvB4Dj5ciE5MGDB+9aXrx4cX3yySdZFA0AAACAnODqhXOZ34lBunAjXk753TN/UZusOB9kS4ULe2VJ4u7ChThJUpEiRVWy5L2nSgOA+5UjE5IAAAAAcL9cXV1VqGB+nf55eab3lXg1Xj9/s0r1mz6lgm7umd5foYL5ecQVAJDjkJAEAAAAkKsVLuyl0SOGZ9kjrj9//aX6dO/CI64AANwBCUkAAAAAuR6PuAIAkH0YHR0AAAAAAAAAgLyDhCQAAAAAAACALENCEgAAAAAAAECWISEJAAAAAAAAIMuQkAQAAAAAAACQZVhlGwAAAAAAADnG8ePHdOXK5Qc65vDhgzZ/3y8PD0/5+5d5oGNwbyQkAQAAAAAAkCPExcWpTp1ApaSkZOj4Pn16PVB9Jycn7d//t7y9vTPUH9JHQhIAAAAAAAA5gre3t7Zv3/vAd0jeYpbk/EBHeHh4kozMBCQkAQAAAAAAkGNk5BFqg0Hy8XHX+fPxslgyISg8EBa1AQAAAAAAAJBluEMSAAAAAO7gQRdOyOiiCRILJwAA8g4SkgAAAACQjodZOOFBF02QWDgBAJB3kJAEAAAAgHRkfOGEB180QWLhBABA3kFCEgAAAADu4EEfoWbRBAAA7o2EJAAAAAAAudyDzocqZXxOVOZDBXAvJCQBAAAAAMjFHmY+VOnB50RlPlQA90JCEgAAAACAXCzj86FKGZkTlflQAdwLCUkAD2TTpq/16aeLdPz4cRUo4KLAwEfVp88APfJISUeHhizCGABjAACAnCcjj1AzJyqAzGJ0dAAAco61a1cpImK4Dh06KB8fHyUnJ+vHH79X794vKi7uvKPDQxZgDIAxAAAAAOBhkZAEcF+SkpI0Z85MSVKDBo20bNlXWr9+vQoWdNXFixe0ePF8B0eIzMYYAGMAAAAAgD2QkARwX6Ki/tSlS5ckSaGhjSRJRYsWVZUqVSVJ27dvc1RoyCKMATAGAAAAANgDCUkA9+Wff85ZXxcu7GV97eXl9f/lZ7M8JmQtxgAYAwAAAADsgYQkgIfC5NZgDIAxAAAAAOBBkJAEcF+KFClqfX3x4oU0r4sUKZblMSFrMQbAGAAAAABgDyQkAdyXSpWqyNPTU5K0efP3kqRz587pzz/3S5Lq1KnrsNiQNRgDYAwA2deSJUvUqFEjVatWTZ07d9bvv//u6JAAAADuiIQkgPtiMpn00kv9JEk//vi9Ondup5YtWyoxMUGFChXS88/3cGyAyHSMATAGgOxp/fr1Gj9+vPr166cvv/xSFStWVFhYmOLi4hwdGgAAQLpyfUKSb4sB+2nXroNGjhyj8uUr6Pz5WBkMBoWGNtTs2R/Lx8fX0eEhCzAGwBgAsp/58+fr6aefVseOHfWf//xHo0aNkouLi1asWOHo0AAAANKVz9EBZKbUb4tHjRqlGjVqaOHChQoLC9PGjRvl7e3t6PCAHKlp0xZq2rSFDAbJx8dd58/Hs6BFHsMYAGMAyD7MZrP+/PNPvfzyy9Z9RqNRwcHB2rt3rwMjAwAAuLNcnZC8/dtiSRo1apR+/PFHrVixQi+99JKDowMAAAAezsWLF5WcnJzmy3Zvb28dPXo0TX2TyUkGQ1ZFlzel/nydnZ34sgY5HuMZuQnjOXvJtQnJ7PptccKpC/eulEPkczLoZnLO/1ecle9JXFycLlzIHfM5GQzS+fOuungxIVd8mHt5eWfJndOMgeyLMfDgGANAzpOUlOzoEHK91F94zebkXPHZiLyN8YzchPGcveTahOSDflvs6+ueqfH4+j6q438czNQ+8BD6Zk03t8aZf9Z0hmyJMQDGAAB7Kly4sJycnNIsYBMXFycfH5809TP7mhf/4+PDzxq5B+MZuQnjOXvI9YvaAAAAALmVs7OzqlSpom3btln3paSkaNu2bQoMDHRgZAAAAHeWa++QfNBviwEAAICcqGfPnho6dKiqVq2q6tWra+HChbp27Zo6dOjg6NAAAADSlWsTkrd/W9y4cWNJ//u2+Pnnn3dwdAAAAIB9tGzZUhcuXND06dMVGxurSpUq6aOPPuJLeAAAkG0ZLJbcO5Xn+vXrNXToUI0ePdr6bfGGDRu0YcMGLtAAAAAAAAAAB8jVc0i2bNlSQ4cO1fTp09WuXTtFRUXxbXEWOXXqlAICAhQVFeXoUJBFeM/BGMi9GjVqpAULFty1zowZM9SuXbusCQgAAACwk/u51oX95eqEpCQ9//zz+uGHH7R//34tW7ZMNWrUcHRI2cqbb76pgIAA65+goCCFhYXpr7/+eqA2+vbNomWqkSliYmL01ltvKSQkRFWrVlXDhg01duxYXbx40dGhIYswBnKn1M/4Dz/80Gb/pk2bFBAQcN/tLF++XM8884x1OyAgQJs2bbJbnACQHdnjOhnIDm4fy1WqVFGjRo303nvv6caNG9Y66f3f3qZNG40cOTLdNletWqWqVavqwoUL2rFjh82/lTp16qhXr146ePBgpp4Xco/bx096f2bMmOHoEJEJcn1CEvdWv359bdmyRVu2bNGCBQuUL18+9e7d29FhIYucPHlSHTt21IkTJzR58mR98803ioiI0Pbt2/Xss8/q0qVLjg4RmYwxkLvlz59f8+bN0+XLlzPchpeXlwoUKGDHqO6PxWLRzZs3s7xfAEjFdTJyi9SxvGnTJg0bNkyff/65pk+fftdjOnbsqPXr1+v69etpylauXKlGjRrJy8vLum/jxo3asmWLIiMjZTab9fLLL8tsNtv9XJD7pH7ObtmyRcOGDZObm5vNvhdffNHRIT4wxv69kZCEnJ2d5evrK19fX1WqVEm9evVSTEyMLly4IEk6ePCgXnjhBVWvXl1BQUF6++23lZCQIOnWI3pffvmlvvvuO+u3Fzt27LC2ffLkSXXr1k01atRQ27ZttXfvXoecI+5s1KhRMplM+vjjj1W7dm2VKFFCoaGhmj9/vs6dO6cpU6ZIunUb+5w5c/TWW28pMDBQDRo00Oeff55umxaLRU2aNFFkZKTN/qioKAUEBOjEiROZfl64f4yB3C04OFg+Pj6aO3fuHevs3r1bXbp0UfXq1RUaGqqxY8cqMTHRWn77YyyNGjWSJPXr108BAQHW7VSrVq1So0aN9Oijj+q1117T1atXrWUpKSmaO3euGjVqpOrVq6tt27bauHGjtTz1DovNmzerQ4cOqlatmvbs2WOPHwMAZMi9rpPff/99NWvWTDVq1NCTTz6pqVOnKikpyXr8X3/9pW7duikwMFC1atVShw4d9Mcff1jL7/X5C9hL6lguXry4GjdurODgYG3duvWux7Rt21bXr1/X119/bbP/5MmT2rlzpzp16mSz39vbW76+vqpSpYq6d++umJgYHT161O7ngtwn9XPW19dX7u7uMhgMNvvWr1+vFi1aqFq1amrevLmWLFlic/y9Posl6fvvv1fHjh1VrVo1BQUFqV+/fjbl169fv+vvOTExMRo4cKAee+wx1a5dW3369NGpU6es5alPjs6ePVshISFq3ry5nX9KuQ8JSdhISEjQ6tWrVbp0aRUqVEiJiYkKCwuTp6enli9frqlTp2rr1q0aM2aMJOnFF19UixYtbL49DgwMtLY3ZcoUhYWFadWqVfL399fgwYO52yUbuXTpkrZs2aIuXbrIxcXFpszX11dt2rTRhg0blLr21fz581W1alWtWrVKXbp0UURERLoXGQaDQR07dtTKlStt9q9YsUKPP/64SpcunXknhQfCGMj9jEajBg0apE8++URnz55NUx4dHa1evXqpadOmWr16taZMmaI9e/ZYP+f/bfny5ZKk8ePHa8uWLdbt1La+++47zZkzR3PnztWuXbs0b948a/ncuXO1atUqjRo1SuvWrVOPHj30+uuva+fOnTZ9TJo0SYMHD9b69esf6NFyAMhM/75OliRXV1eNHz9e69at0/Dhw7Vs2TKbeciGDBmiYsWKafny5Vq5cqV69eolk8kk6cE/fwF7OXTokPbu3Wsdi3fi5eWlJ598UitWrLDZ/+WXX6pYsWIKCQlJ97j4+HitW7dOku7ZB3Avq1ev1rRp0/Taa69p/fr1GjRokKZPn64vv/zSWuden8U//vij+vfvr9DQUK1atUoLFy5U9erVbfq52+85SUlJCgsLk6urq5YsWaKlS5eqYMGC+u9//2tzJ+S2bdt07NgxzZ8//643A+CWfI4OAI73448/WpOIiYmJ8vX11dy5c2U0GrV27VqZzWa9++67KliwoCRp5MiR6t27t4YMGSIfHx+5uLjIbDbL19c3TdsvvviiGjRoIEkaMGCAWrVqpRMnTqhcuXJZdn64sxMnTshisdzx/ShXrpwuX75svQvgiSeeUNeuXSVJvXr10oIFC7Rjxw6VLVs2zbHt27fX9OnT9fvvv6t69epKSkrS2rVrNXTo0Mw7ITwwxkDe0KRJE1WqVEnTp0/XuHHjbMrmzp2rNm3aqEePHpIkf39/DR8+XN26dVNERITy589vUz/10SwPD480n/sWi0Xjx4+Xm5ubpFt3Vmzbtk2vvfaazGaz5s6dq/nz51v/zylVqpT27Nmjzz//XLVr17a2M2DAANWrV8+uPwMAyIi7XSdLsplHvWTJkjp27JjWrVunXr16SZLOnDmjsLAw6/+z/v7+1voP+vkLPIzUsXzz5k2ZzWYZjUa9/fbb9zyuU6dO6tWrl06ePKlSpUrJYrFo1apVeuqpp6z/DlKFhoZKkvUu30aNGvF7Hx7ajBkz9Oabb6pp06aSbl0//v333/r888/Vvn17Sff+LJ4zZ45atmypAQMGWOtVrFjRpp+7/Z6zfv16paSk6J133pHBYJB068v5xx9/XDt37rQm5wsWLKixY8fK2dk5k34auQsJSSgoKEgRERGSpMuXL2vp0qXq1auXli1bpiNHjiggIMCajJSkWrVqKSUlRceOHbvniuW339mS+ovrhQsX+I8pm0m9++1ebn8/DQaDfHx8FBcXl27dokWLKjQ0VMuXL1f16tX1ww8/yGw2c+t6NsUYyP2GDBmi7t27KywszGb/X3/9pYMHD2rNmjXWfRaLRSkpKTp16tQDfV4/8sgj1mSkJBUpUsQ6Pk6cOKFr166lmQMoKSlJlSpVstlXrVq1++4TADLT3a6TH3nkEa1fv16LFi3SyZMnlZiYqJs3b9p8Dvbs2VMjRozQV199peDgYDVv3lx+fn6S7Pv5C9xL6li+du2aFixYICcnJzVr1uyex9WrV0/FihXTypUrNXDgQG3btk1nzpxRx44d09RdsmSJXFxc9Ntvv2nOnDkaNWpUZpwK8pDExERFR0dr+PDhNgn0mzdvyt3d3bp9r8/iqKgode7c+a593e33nL/++kvR0dGqVauWzTE3btxQdHS0dbtChQokIx8ACUmoQIECNo9PVqlSRY899pi++OKLh2779lv0U79JSElJeeh2YR9+fn4yGAw6cuSImjRpkqb8yJEj8vT0tN4RlS+f7UeGwWC4ayKrc+fOeuONNzRs2DCtXLlSLVu2dMjCGLgzxkDe8fjjjyskJESTJk1Shw4drPsTExP17LPPqlu3bmmOKV68+AP18e/xIf0v2Z16t8TcuXNVtGhRmzr/vnBjjADILu52ndygQQMNGTJEr7zyikJCQuTu7q5169Zp/vz51vqvvPKKWrdurc2bN+unn37S9OnTNWXKFDVp0sSun7/Avdw+lseNG6d27dpp2bJl90zSGI1GtW/fXqtWrdIrr7yiFStWKCgoSKVKlUpTt2TJkvLw8FDZsmUVFxen1157Lc1cf8CDSL1+HDNmjGrUqGFTlnqH7t69e+/5WfzvqanSc7ffcxITE1WlShVNnDgxzXG3L+zENeyDYQ5JpGEwGGQwGHTjxg2VK1dOBw8etJlc+9dff5XRaFSZMmUk3Uo6kmTMmQoXLqx69erp008/TbN6XmxsrNasWaMWLVpYk8kPKjQ0VAUKFNDSpUv1888/p/tNKhyLMZC3DB48WD/88IPNAmOVK1fW33//rdKlS6f5c6dveE0mk5KTkx+o73LlysnZ2VlnzpxJ0w+/eAPIKW6/Tt67d69KlCihPn36qFq1avL399eZM2fSHFOmTBn16NFDH3/8sZo2bWqdjy8jn7+APRiNRr388suaNm1auito/1uHDh0UExOjb775Rps2bUqzmE16unbtqsOHD+vbb7+1R8jIo3x8fFSkSBGdPHkyzedkalL8fj6LK1SooG3btmU4jipVqujEiRPy9vZOE8ftd2riwZCQhMxms2JjYxUbG6sjR45ozJgxSkxMVMOGDdWmTRs5OzvrzTff1KFDh7R9+3aNGTNG7dq1sz6u/cgjj+jgwYM6evSoLly4kGY1K2Rvb7/9tsxms8LCwrRr1y7FxMTop59+0osvvqiiRYvqtddey3DbTk5O6tChgyZNmqTSpUvbLHiE7IMxkHcEBASoTZs2Wrx4sXVfr169tHfvXo0ePVpRUVE6fvy4Nm3apNGjR9+xnUceeUTbtm1TbGysLl++fF99u7m56cUXX9T48eP15ZdfKjo6Wn/++acWL15sMyk5AGQnd7tOLl26tGJiYrRu3TpFR0dr0aJF2rRpk/XY69eva/To0dqxY4dOnz6tPXv26I8//rA+ip2Rz1/AXpo3by6j0WhzB+OpU6cUFRVl8ycxMVGlSpVSnTp1NHLkSDk7O1vn8rubAgUKqHPnzpo+ffp9Tw0EpGfAgAH68MMPtWjRIh07dkwHDx7UihUrrHdA3uuzWJL69++vdevWafr06Tpy5IgOHjyoDz/88L5jaNOmjQoXLqw+ffpo9+7dOnnypHbs2KGxY8emu2gk7g+PbEM///yzdRJWV1dXlS1bVtOmTVNQUJAkKTIyUu+88446deqkAgUKqGnTpnrzzTetxz/99NPauXOnOnbsqMTERC1atEiPPPKIQ84FD87f318rVqzQjBkz9Oqrr+ry5cvy8fFR48aN1a9fP+sqkhnVqVMnzZkzx+YRUWQvjIG8ZcCAAVq/fr11u2LFilq8eLGmTp2qLl26SLo1WXjLli3v2MbQoUM1YcIELVu2TEWLFtX3339/X32/+uqr8vLy0ty5c3Xq1Cm5u7urcuXK6t2798OdFABkkntdJ3fv3l2jR4+W2WxWgwYN1KdPH82cOVPSrbvQLl26pKFDh+r8+fMqXLiwmjZtal1UISOfv4C95MuXT88//7w++ugjPffcc5JuLdLxb0uWLNFjjz2mTp06afDgwerSpct9L7j0/PPPa8GCBdqwYQPjGhnWuXNnubi4KDIyUu+9954KFiyoChUqqHv37pKkJ5988q6fxdKtOVSnTZumDz74QB9++KHc3Nz0+OOP33cMBQoU0CeffKKJEyeqf//+SkhIUNGiRVW3bl2buSrxYAwWvq4AkIl2796tHj166Mcff7znIkjInRgDAAAAAIDbcYckgExhNpt14cIFzZgxQ82aNSMRlQcxBgAAAAAA6WEOSQCZYu3atWrYsKHi4+P1xhtvODocOABjAAAAAACQHh7ZBgAAAAAAAJBluEMSAAAAAAAAQJYhIYkMmTFjhtq1a+foMAAAAAC727FjhwICAnTlyhVHhwI8FMYychPGc+5CQjKPunDhgsLDw9WgQQNVrVpV9erVU1hYmPbs2ePo0JCF3nzzTQUEBFj/BAUFKSwsTH/99ZejQ0MWuP39r1Kliho1aqT33ntPN27csNYJCAjQpk2bbI5r06aNRo4cmW6bq1atUtWqVXXhwgXrBUPqnzp16qhXr146ePBgpp4XAADZGddfyC0Yy8hNGM9Zj4RkHvXKK68oKipKEyZM0Ndff63Zs2erdu3aunTpkqNDQxarX7++tmzZoi1btmjBggXKly+fevfu7eiwkEVS3/9NmzZp2LBh+vzzzzV9+vS7HtOxY0etX79e169fT1O2cuVKNWrUSF5eXtZ9Gzdu1JYtWxQZGSmz2ayXX35ZZrPZ7ucCAEB2crf/67j+Qk7CWEZuwnjOPkhI5kFXrlzR7t27NWTIENWpU0ePPPKIqlevrpdffllPPvmkJOnMmTPq06ePAgMDVatWLQ0cOFDnz59Pt70tW7aoWrVqaW6bHjt2rF544QXr9u7du9WlSxdVr15doaGhGjt2rBITEzPvRHFfnJ2d5evrK19fX1WqVEm9evVSTEyMLly4IEl6//331axZM9WoUUNPPvmkpk6dqqSkJOvxf/31l7p162YdKx06dNAff/xhLed9z95S3//ixYurcePGCg4O1tatW+96TNu2bXX9+nV9/fXXNvtPnjypnTt3qlOnTjb7vb295evrqypVqqh79+6KiYnR0aNH7X4uAIC8p1GjRlqwYIHNvnbt2mnGjBnW7YCAAC1btkz9+vVTjRo11LRpU3333Xc2x2zevFnNmjVT9erV1a1bN50+fTpNX/e6pmnUqJFmzZqlN954Q7Vq1brj0wTSva+/JK7B8hrGMmM5N2E8M57vBwnJPKhgwYIqWLCgNm3alO63AykpKerbt68uX76sxYsXa/78+Tp58qRee+21dNurW7euPDw8bJITycnJ2rBhg9q0aSNJio6OVq9evdS0aVOtXr1aU6ZM0Z49ezRmzJjMOUlkSEJCglavXq3SpUurUKFCkiRXV1eNHz9e69at0/Dhw7Vs2TKb/1yGDBmiYsWKafny5Vq5cqV69eolk8kkifc9pzl06JD27t1rff/uxMvLS08++aRWrFhhs//LL79UsWLFFBISku5x8fHxWrdunSTdsw8AAOxp5syZatGihVavXq0nnnhCQ4YMsT4ZFBMTo/79+6thw4ZatWqVOnfurEmTJtkcf7/XNB9//LEqVqyoVatWqW/fvvcVW3rXXxLXYEgfY5mxnJswnvP4eLYgT9q4caPl8ccft1SrVs3yzDPPWCZNmmSJioqyWCwWy5YtWyyVKlWynDlzxlr/8OHDlgoVKlh+++03i8VisUyfPt3Stm1ba/nYsWMtL7zwgnX7559/tlStWtVy+fJli8VisQwbNszy9ttv28Swa9cuS8WKFS3Xr1/PtPPE3Q0dOtRSqVIlS82aNS01a9a0VKhQwVKvXj3L/v3773jMRx99ZGnfvr11OzAw0LJy5cp06/K+Z2+3v/9Vq1a1VKhQwVKxYkXLxo0brXUqVKhg+fbbb9Mc+9NPP1kCAgIs0dHRFovFYklJSbE0bNjQMmXKFGud7du3WypUqGAzvipUqGDp3bt3pp8bACBvaNiwoWX+/Pk2+9q2bWuZPn26dbtChQo2/z8lJCRYKlSoYNm8ebPFYrFYJk2aZGnZsqVNG++//76lQoUKD3Qt27BhQ0vfvn3vGXNGrr8sFq7BcjvGMmM5N2E8M57vRz5HJ0ThGM2aNVODBg20e/du7du3Tz///LM++ugjjR07VlevXlWxYsVUvHhxa/3//Oc/8vDw0NGjR1W9evU07bVp00bPPPOMzp07p6JFi2rNmjVq0KCBPDw8JN26bfngwYNas2aN9RiLxaKUlBSdOnVK5cqVy/yTRrqCgoIUEREhSbp8+bKWLl2qXr16admyZXrkkUe0fv16LVq0SCdPnlRiYqJu3rwpNzc36/E9e/bUiBEj9NVXXyk4OFjNmzeXn5+fJN73nCD1/b927ZoWLFggJycnNWvW7J7H1atXT8WKFdPKlSs1cOBAbdu2TWfOnFHHjh3T1F2yZIlcXFz022+/ac6cORo1alRmnAoAAHcUEBBgfV2wYEG5ublZH8E7cuRImuvbmjVr2mzf7zVN1apV7yuee11/SeIaDOliLDOWcxPGc94ezyQk87D8+fOrXr16qlevnvr166fhw4drxowZ6tmz5wO3Vb16dfn5+Wn9+vV67rnn9O2332rChAnW8sTERD377LPq1q1bmmNvT3wi6xUoUEClS5e2blepUkWPPfaYvvjiCzVo0EBDhgzRK6+8opCQELm7u2vdunWaP3++tf4rr7yi1q1ba/Pmzfrpp580ffp0TZkyRU2aNOF9zwFuf//HjRundu3aadmyZercufNdjzMajWrfvr1WrVqlV155RStWrFBQUJBKlSqVpm7JkiXl4eGhsmXLKi4uTq+99pqWLFmSKecDAMhbDAZDmn03b95Ms+/fU4UYDAalpKTcdz/3e01ToECB+2rvbtdfr732mvbu3cs1WB7DWGYs5yaMZ8bz/SAhCav//Oc/2rRpk8qVK6ezZ88qJibG+o/i77//1pUrV+6asW/Tpo3WrFmjokWLymg0qkGDBtayypUr6++//7b5x43syWAwyGAw6MaNG9q7d69KlCihPn36WMvPnDmT5pgyZcqoTJky6tGjhwYNGqQVK1aoSZMmvO85jNFo1Msvv6wJEyaoTZs2cnFxuWv9Dh06aPbs2frmm2+0adMmjR079p59dO3aVR9++KG+/fZbNWnSxF6hAwDyKC8vL/3zzz/W7atXr/5fe/cPkt4eh3H8UcIIaWiLQISCaMmWKAmCQrAI2hJKpKawliKKhKCG4yBt/SMaHPo7R0W4SEtTUESGWEMhZjQY1CQhQXe4EFcut19xfx345fsFDnqOXzmcZ/j48BWVzWa/tEZdXZ2Ojo6KXru4uCh6/t0zzT/nL0nMYCWILJPln4Q8k+fP4E9tStDT05MGBwe1t7enq6sr3d3dKRaLKRqNyuPxqK2tTfX19ZqamlIymVQikdD09LRaWlrU2Nj4n+v29vYqmUxqbW1NXV1dstls78eGh4d1fn4uwzCUSqWUTqcVj8dlGIYZl4wPFAoF5XI55XI53dzcKBwOK5/Pq7OzU06nUw8PDzo8PFQmk9Hm5qbi8fj7e19eXmQYhk5OTnR/f6+zszNdXl6+F9fc9z9Pd3e3rFZr0Q7GbDarVCpV9Mjn83I4HHK73Zqbm5PNZpPX6/3l+hUVFfL5fFpaWtLb29t3XgoAoAS43W7t7+/r9PRU19fXCoVCslq/9hWnv79f6XRa8/Pzur291cHBgXZ3d4vO+d0zzUfzlyRmsBJElsnyT0KeyfNnsEOyBNntdjU1NWljY0OZTEavr6+qrq6Wz+fTyMiILBaLVldXFQ6HFQgEZLFY1N7ertnZ2Q/XdTqdcrlcSiQSmpmZKTrW0NCgra0tLSwsyO/3S5IcDod6enq+7TrxOcfHx+//imy321VbW6vFxUW1trZKkoaGhmQYhgqFgjo6OjQ6OqqVlRVJf++oe35+VigU0uPjo6qqquT1ejU2NiaJ+/4nKisrUyAQUDQa1cDAgCQpEon867ydnR01Nzerr69Pk5OT8vv9Ki8v/9RnBAIBra+vKxaLkQUAwP8SDAaVzWYVDAZVWVmp8fHxL+/Cqamp0fLysiKRiLa3t+VyuTQxMVE0z/7umeZX85fH42EGKzFkmSz/JOSZPH+G5Y0tKgAAAAAAAABMwk+2AQAAAAAAAJiGQhIAAAAAAACAaSgkAQAAAAAAAJiGQhIAAAAAAACAaSgkAQAAAAAAAJiGQhIAAAAAAACAaSgkAQAAAAAAAJiGQhIAAAAAAACAaSgkAQAAAAAAAJiGQhIAAAAAAACAaSgkAQAAAAAAAJiGQhIAAAAAAACAaf4CAtNbbv7rBy8AAAAASUVORK5CYII=", | |
| "text/plain": [ | |
| "<Figure size 1600x1000 with 4 Axes>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\n", | |
| "================================================================================\n", | |
| "FINAL CONCLUSION\n", | |
| "================================================================================\n", | |
| "\n", | |
| "Reinforcement Learning with Verifiable Rewards (RLVR):\n", | |
| " ✓ DOES improve sampling efficiency (higher pass@1)\n", | |
| " ✓ DOES help models find correct solutions more reliably\n", | |
| " ✗ Does NOT expand reasoning boundaries (converges to base pass@k)\n", | |
| " ✗ Does NOT teach new problem-solving capabilities\n", | |
| "\n", | |
| "The correct reasoning paths already exist in the base model's output\n", | |
| "distribution. RLVR simply learns to sample them more efficiently.\n", | |
| "\n", | |
| "For true capability expansion, distillation from stronger models is needed.\n", | |
| "================================================================================\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# Create comprehensive summary visualization\n", | |
| "fig = plt.figure(figsize=(16, 10))\n", | |
| "gs = fig.add_gridspec(2, 2, hspace=0.3, wspace=0.3)\n", | |
| "\n", | |
| "# Panel 1: Pass@k curves comparison\n", | |
| "ax1 = fig.add_subplot(gs[0, 0])\n", | |
| "ax1.plot(k_values, base_pass_at_k, 'o-', linewidth=2.5, label='Base Model', markersize=8)\n", | |
| "ax1.plot(k_values, rlvr_pass_at_k, 's-', linewidth=2.5, label='RLVR Model', markersize=8)\n", | |
| "ax1.axhline(y=base_pass_at_k[-1], color='gray', linestyle='--', alpha=0.5)\n", | |
| "ax1.set_xlabel('k (samples)', fontsize=11)\n", | |
| "ax1.set_ylabel('pass@k', fontsize=11)\n", | |
| "ax1.set_title('(A) Pass@k Convergence', fontsize=12, fontweight='bold')\n", | |
| "ax1.set_xscale('log', base=2)\n", | |
| "ax1.legend(fontsize=10)\n", | |
| "ax1.grid(True, alpha=0.3)\n", | |
| "\n", | |
| "# Panel 2: Accuracy distributions\n", | |
| "ax2 = fig.add_subplot(gs[0, 1])\n", | |
| "ax2.hist(base_accuracies, bins=20, alpha=0.6, label='Base', density=True)\n", | |
| "ax2.hist(rlvr_accuracies, bins=20, alpha=0.6, label='RLVR', density=True)\n", | |
| "ax2.set_xlabel('Per-Problem Accuracy', fontsize=11)\n", | |
| "ax2.set_ylabel('Density', fontsize=11)\n", | |
| "ax2.set_title('(B) Accuracy Distributions', fontsize=12, fontweight='bold')\n", | |
| "ax2.legend(fontsize=10)\n", | |
| "ax2.grid(True, alpha=0.3)\n", | |
| "\n", | |
| "# Panel 3: Solvable problem coverage\n", | |
| "ax3 = fig.add_subplot(gs[1, 0])\n", | |
| "categories_names = ['Both\\nSolve', 'Only\\nBase', 'Only\\nRLVR', 'Neither']\n", | |
| "coverage_counts = [len(coverage['both']), len(coverage['only_base']), \n", | |
| " len(coverage['only_rlvr']), len(coverage['neither'])]\n", | |
| "colors_coverage = ['#2ecc71', '#3498db', '#e74c3c', '#95a5a6']\n", | |
| "bars = ax3.bar(categories_names, coverage_counts, color=colors_coverage, alpha=0.8, edgecolor='black')\n", | |
| "for bar, count in zip(bars, coverage_counts):\n", | |
| " height = bar.get_height()\n", | |
| " ax3.text(bar.get_x() + bar.get_width()/2., height,\n", | |
| " f'{count}', ha='center', va='bottom', fontsize=10, fontweight='bold')\n", | |
| "ax3.set_ylabel('Number of Problems', fontsize=11)\n", | |
| "ax3.set_title('(C) Problem Coverage', fontsize=12, fontweight='bold')\n", | |
| "ax3.grid(True, alpha=0.3, axis='y')\n", | |
| "\n", | |
| "# Panel 4: Perplexity comparison\n", | |
| "ax4 = fig.add_subplot(gs[1, 1])\n", | |
| "ppl_data = [\n", | |
| " perplexities['base_under_base'],\n", | |
| " perplexities['rlvr_under_base'],\n", | |
| " perplexities['teacher_under_base']\n", | |
| "]\n", | |
| "ppl_labels = ['Base\\nunder Base', 'RLVR\\nunder Base', 'Teacher\\nunder Base']\n", | |
| "bp = ax4.boxplot(ppl_data, labels=ppl_labels, patch_artist=True)\n", | |
| "ppl_colors = ['#3498db', '#e74c3c', '#f39c12']\n", | |
| "for patch, color in zip(bp['boxes'], ppl_colors):\n", | |
| " patch.set_facecolor(color)\n", | |
| " patch.set_alpha(0.6)\n", | |
| "ax4.set_ylabel('Perplexity', fontsize=11)\n", | |
| "ax4.set_title('(D) Perplexity Analysis', fontsize=12, fontweight='bold')\n", | |
| "ax4.grid(True, alpha=0.3, axis='y')\n", | |
| "\n", | |
| "fig.suptitle('Comprehensive Analysis: RLVR Improves Sampling Efficiency, Not Reasoning Capacity', \n", | |
| " fontsize=16, fontweight='bold', y=0.995)\n", | |
| "\n", | |
| "plt.show()\n", | |
| "\n", | |
| "print(\"\\n\" + \"=\"*80)\n", | |
| "print(\"FINAL CONCLUSION\")\n", | |
| "print(\"=\"*80)\n", | |
| "print(\"\\nReinforcement Learning with Verifiable Rewards (RLVR):\")\n", | |
| "print(\" ✓ DOES improve sampling efficiency (higher pass@1)\")\n", | |
| "print(\" ✓ DOES help models find correct solutions more reliably\")\n", | |
| "print(\" ✗ Does NOT expand reasoning boundaries (converges to base pass@k)\")\n", | |
| "print(\" ✗ Does NOT teach new problem-solving capabilities\")\n", | |
| "print(\"\\nThe correct reasoning paths already exist in the base model's output\")\n", | |
| "print(\"distribution. RLVR simply learns to sample them more efficiently.\")\n", | |
| "print(\"\\nFor true capability expansion, distillation from stronger models is needed.\")\n", | |
| "print(\"=\"*80)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## 12. Scaling to Production: Implementation Guide\n", | |
| "\n", | |
| "This notebook demonstrated core workflows with synthetic data. To implement at scale:\n", | |
| "\n", | |
| "### Data Requirements\n", | |
| "- **Math**: GSM8K (7.5K train), MATH (7.5K train), Omni-MATH-Rule (2K train)\n", | |
| "- **Code**: LeetCode (12K samples), TACO datasets\n", | |
| "- **Vision**: Geometry3K for training\n", | |
| "\n", | |
| "### Computational Requirements\n", | |
| "- **GPU**: 8x A100 (80GB) or equivalent for 7B models\n", | |
| "- **Training Time**: 6-24 hours for 150-450 steps\n", | |
| "- **Inference**: Generate k=256 samples per problem (parallelizable)\n", | |
| "\n", | |
| "### Key Hyperparameters\n", | |
| "```python\n", | |
| "# GRPO Training Configuration\n", | |
| "learning_rate = 1e-6\n", | |
| "rollouts_per_prompt = 8 # or 32 for better exploration\n", | |
| "kl_coefficient = 0.0 # Paper recommends removing KL term\n", | |
| "training_steps = 450\n", | |
| "batch_size = 64\n", | |
| "\n", | |
| "# Evaluation Configuration \n", | |
| "temperature = 0.6\n", | |
| "top_p = 0.95\n", | |
| "max_length = 16384\n", | |
| "k_values = [1, 2, 4, 8, 16, 32, 64, 128, 256]\n", | |
| "```\n", | |
| "\n", | |
| "### Frameworks and Libraries\n", | |
| "- **RL Training**: VeRL, TRL, or custom GRPO implementation\n", | |
| "- **Model Serving**: vLLM for efficient inference\n", | |
| "- **Verification**: Custom verifiers per domain (math solvers, code executors)\n", | |
| "\n", | |
| "### Recommended Reading\n", | |
| "- Paper sections 2-4 for detailed methodology\n", | |
| "- Appendix D for implementation details\n", | |
| "- VeRL documentation for RL framework setup" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Conclusion\n", | |
| "\n", | |
| "This notebook has demonstrated all major computational workflows from the paper:\n", | |
| "\n", | |
| "✅ **Workflow 1-2**: RLVR training and evaluation (math, code) \n", | |
| "✅ **Workflow 3**: Visual reasoning with RLVR \n", | |
| "✅ **Workflow 4**: Accuracy distribution analysis \n", | |
| "✅ **Workflow 5**: Base model evaluation \n", | |
| "✅ **Workflow 7**: Distillation comparison \n", | |
| "✅ **Workflow 8**: KL and rollout ablations \n", | |
| "✅ **Workflow 10**: Perplexity analysis \n", | |
| "✅ **Workflow 11**: RL algorithm comparison \n", | |
| "\n", | |
| "**Key Takeaway:** RLVR is a powerful technique for improving model performance on verifiable tasks, but it works by optimizing sampling efficiency rather than expanding fundamental reasoning capabilities. The base model's reasoning boundary remains the ultimate constraint.\n", | |
| "\n", | |
| "---\n", | |
| "\n", | |
| "**For questions or further exploration:**\n", | |
| "- Read the full paper for mathematical proofs and additional experiments\n", | |
| "- Examine appendices for implementation details and hyperparameters\n", | |
| "- Try these methods on your own tasks with verifiable rewards!" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.13.12" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 4 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment