Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Select an option

  • Save wojtyniak/45c68ca1f29e99c65946694ccb618c0a to your computer and use it in GitHub Desktop.

Select an option

Save wojtyniak/45c68ca1f29e99c65946694ccb618c0a to your computer and use it in GitHub Desktop.
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?\n",
"\n",
"**Authors:** Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, Gao Huang\n",
"\n",
"## Overview\n",
"\n",
"This notebook provides an educational walkthrough of the computational workflows described in the paper. The paper investigates whether Reinforcement Learning with Verifiable Rewards (RLVR) expands the reasoning capabilities of Large Language Models (LLMs) beyond their base model boundaries, or merely improves sampling efficiency.\n",
"\n",
"**Key Finding:** RLVR improves pass@1 (single-sample accuracy) but does not expand the set of problems solvable by the model (pass@k eventually plateaus at the base model's capability boundary).\n",
"\n",
"## Notebook Structure\n",
"\n",
"This notebook demonstrates:\n",
"1. **Core RLVR Training Workflow** - GRPO algorithm with verifiable rewards\n",
"2. **Pass@k Evaluation Metrics** - Computing pass@k to measure reasoning boundaries\n",
"3. **Accuracy Distribution Analysis** - Understanding how RLVR changes problem solvability\n",
"4. **Perplexity Analysis** - Verifying RLVR reasoning paths exist in base model distribution\n",
"5. **Comparison with Distillation** - Showing distillation can expand boundaries while RLVR cannot\n",
"\n",
"**Important Notes:**\n",
"- This is an **educational overview** using small-scale examples\n",
"- Full model training would require GPUs and hours of computation\n",
"- We use synthetic data and minimal examples to demonstrate the methodology\n",
"- All code is designed to run within 5-10 minutes on a CPU-only environment with 4GB RAM"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Setup and Dependencies\n",
"\n",
"Installing all required packages. This notebook is self-contained and will work in any fresh Python environment."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:09.463646Z",
"iopub.status.busy": "2026-02-10T22:26:09.463444Z",
"iopub.status.idle": "2026-02-10T22:26:09.629544Z",
"shell.execute_reply": "2026-02-10T22:26:09.628483Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2mAudited \u001b[1m9 packages\u001b[0m \u001b[2min 13ms\u001b[0m\u001b[0m\r\n"
]
}
],
"source": [
"# Install all dependencies\n",
"!uv pip install numpy scipy matplotlib seaborn torch transformers datasets tqdm scikit-learn"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:09.632263Z",
"iopub.status.busy": "2026-02-10T22:26:09.632040Z",
"iopub.status.idle": "2026-02-10T22:26:11.070782Z",
"shell.execute_reply": "2026-02-10T22:26:11.069871Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"✓ All dependencies loaded successfully\n"
]
}
],
"source": [
"# Import libraries\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from scipy.special import comb\n",
"from collections import defaultdict\n",
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"\n",
"# Set random seed for reproducibility\n",
"np.random.seed(42)\n",
"\n",
"# Configure matplotlib\n",
"plt.style.use('seaborn-v0_8-darkgrid')\n",
"sns.set_palette(\"husl\")\n",
"\n",
"print(\"✓ All dependencies loaded successfully\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Core Concepts and Definitions\n",
"\n",
"### 2.1 Reinforcement Learning with Verifiable Rewards (RLVR)\n",
"\n",
"RLVR trains LLMs using policy gradient methods with binary rewards from deterministic verifiers:\n",
"- **Input:** Problem $x$\n",
"- **Output:** Model response $y$\n",
"- **Verifier:** $V(x, y) \\in \\{0, 1\\}$ - returns 1 if answer is correct, 0 otherwise\n",
"- **Reward:** $r = V(x, y)$\n",
"\n",
"### 2.2 Pass@k Metric\n",
"\n",
"Pass@k measures the probability that at least one of k samples solves a problem:\n",
"\n",
"$$\\text{pass@k} = \\mathbb{E}_{x \\sim D} \\left[ \\mathbb{1}\\left(\\max_{i=1}^k V(x, y_i) = 1\\right) \\right]$$\n",
"\n",
"where $y_1, \\ldots, y_k \\sim p(\\cdot | x)$ are independent samples.\n",
"\n",
"### 2.3 GRPO Algorithm\n",
"\n",
"Group Relative Policy Optimization (GRPO) is used for training:\n",
"- Sample multiple responses per prompt\n",
"- Use relative advantages within each group\n",
"- Update policy to increase probability of correct responses"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Data Generation\n",
"\n",
"We generate synthetic mathematical reasoning problems to demonstrate the workflow. In the paper, GSM8K and MATH datasets are used."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:11.073508Z",
"iopub.status.busy": "2026-02-10T22:26:11.073196Z",
"iopub.status.idle": "2026-02-10T22:26:11.086751Z",
"shell.execute_reply": "2026-02-10T22:26:11.085894Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Generated 200 training problems\n",
"Generated 100 test problems\n",
"\n",
"Example problem:\n",
" Question: What is 46 + 3?\n",
" Answer: 49\n",
" Difficulty: 0.49\n"
]
}
],
"source": [
"# Generate synthetic mathematical reasoning problems\n",
"def generate_synthetic_math_problems(n_problems=100, seed=42):\n",
" \"\"\"\n",
" Generate synthetic math problems for demonstration.\n",
" Real implementation would use GSM8K, MATH, AIME24/25, etc.\n",
" \n",
" Each problem has:\n",
" - question: string description\n",
" - answer: ground truth answer\n",
" - difficulty: float in [0, 1]\n",
" \"\"\"\n",
" np.random.seed(seed)\n",
" problems = []\n",
" \n",
" for i in range(n_problems):\n",
" # Generate simple arithmetic problems as examples\n",
" a = np.random.randint(1, 50)\n",
" b = np.random.randint(1, 50)\n",
" op = np.random.choice(['+', '-', '*'])\n",
" \n",
" if op == '+':\n",
" answer = a + b\n",
" question = f\"What is {a} + {b}?\"\n",
" elif op == '-':\n",
" answer = a - b\n",
" question = f\"What is {a} - {b}?\"\n",
" else:\n",
" answer = a * b\n",
" question = f\"What is {a} × {b}?\"\n",
" \n",
" # Assign difficulty based on answer magnitude\n",
" difficulty = min(abs(answer) / 100.0, 1.0)\n",
" \n",
" problems.append({\n",
" 'id': i,\n",
" 'question': question,\n",
" 'answer': answer,\n",
" 'difficulty': difficulty\n",
" })\n",
" \n",
" return problems\n",
"\n",
"# Generate datasets\n",
"train_problems = generate_synthetic_math_problems(n_problems=200, seed=42)\n",
"test_problems = generate_synthetic_math_problems(n_problems=100, seed=123)\n",
"\n",
"print(f\"Generated {len(train_problems)} training problems\")\n",
"print(f\"Generated {len(test_problems)} test problems\")\n",
"print(f\"\\nExample problem:\")\n",
"print(f\" Question: {test_problems[0]['question']}\")\n",
"print(f\" Answer: {test_problems[0]['answer']}\")\n",
"print(f\" Difficulty: {test_problems[0]['difficulty']:.2f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Simulated Model Responses\n",
"\n",
"Since we cannot train full LLMs in this environment, we simulate model behavior:\n",
"- **Base Model:** Has inherent capability to solve problems with some probability\n",
"- **RLVR Model:** Higher probability on easy problems (better sampling efficiency) but same capability boundary\n",
"\n",
"This simulation matches the paper's key finding."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:11.088910Z",
"iopub.status.busy": "2026-02-10T22:26:11.088664Z",
"iopub.status.idle": "2026-02-10T22:26:11.096279Z",
"shell.execute_reply": "2026-02-10T22:26:11.095373Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"✓ Simulated models created\n",
" Base model type: base\n",
" RLVR model type: rlvr\n",
" Shared capability boundary: 0.6\n"
]
}
],
"source": [
"class SimulatedModel:\n",
" \"\"\"\n",
" Simulates a language model's behavior on mathematical reasoning.\n",
" \n",
" The simulation encodes the paper's key finding:\n",
" - Base model: lower single-sample accuracy but broad coverage\n",
" - RLVR model: higher single-sample accuracy but same coverage boundary\n",
" \"\"\"\n",
" \n",
" def __init__(self, model_type='base', base_capability=0.6):\n",
" \"\"\"\n",
" Args:\n",
" model_type: 'base' or 'rlvr'\n",
" base_capability: maximum capability threshold (pass@inf)\n",
" \"\"\"\n",
" self.model_type = model_type\n",
" self.base_capability = base_capability\n",
" \n",
" def get_correctness_probability(self, problem):\n",
" \"\"\"\n",
" Returns the probability of generating a correct response for a problem.\n",
" \n",
" Key insight from paper:\n",
" - Base model: uniform sampling over capability boundary\n",
" - RLVR model: concentrated sampling on easier problems, same boundary\n",
" \"\"\"\n",
" difficulty = problem['difficulty']\n",
" \n",
" # Problem is solvable if difficulty < base_capability\n",
" if difficulty > self.base_capability:\n",
" return 0.0 # Beyond capability boundary\n",
" \n",
" # Within capability boundary\n",
" if self.model_type == 'base':\n",
" # Base model: lower but more uniform probability\n",
" prob = 0.3 * (1 - difficulty / self.base_capability)\n",
" else: # RLVR model\n",
" # RLVR model: higher probability on easier problems (steeper curve)\n",
" # This represents \"narrowing\" of the reasoning boundary\n",
" prob = 0.8 * (1 - difficulty / self.base_capability) ** 2\n",
" \n",
" return np.clip(prob, 0.0, 1.0)\n",
" \n",
" def sample_responses(self, problem, k=1):\n",
" \"\"\"\n",
" Sample k responses for a problem.\n",
" Returns binary array indicating correctness of each sample.\n",
" \"\"\"\n",
" prob_correct = self.get_correctness_probability(problem)\n",
" return np.random.binomial(1, prob_correct, size=k)\n",
" \n",
" def evaluate_dataset(self, problems, k=1, n_trials=1):\n",
" \"\"\"\n",
" Evaluate model on a dataset using pass@k metric.\n",
" \n",
" Args:\n",
" problems: list of problem dictionaries\n",
" k: number of samples per problem\n",
" n_trials: number of independent trials to average over\n",
" \n",
" Returns:\n",
" Dictionary with evaluation results\n",
" \"\"\"\n",
" results = []\n",
" \n",
" for problem in problems:\n",
" # Run multiple trials and average\n",
" solved_trials = []\n",
" for _ in range(n_trials):\n",
" responses = self.sample_responses(problem, k=k)\n",
" solved = int(np.any(responses == 1))\n",
" solved_trials.append(solved)\n",
" \n",
" avg_solved = np.mean(solved_trials)\n",
" results.append({\n",
" 'problem_id': problem['id'],\n",
" 'solved': avg_solved,\n",
" 'difficulty': problem['difficulty']\n",
" })\n",
" \n",
" pass_at_k = np.mean([r['solved'] for r in results])\n",
" \n",
" return {\n",
" 'pass@k': pass_at_k,\n",
" 'k': k,\n",
" 'results': results\n",
" }\n",
"\n",
"# Create base and RLVR models\n",
"base_model = SimulatedModel(model_type='base', base_capability=0.6)\n",
"rlvr_model = SimulatedModel(model_type='rlvr', base_capability=0.6)\n",
"\n",
"print(\"✓ Simulated models created\")\n",
"print(f\" Base model type: {base_model.model_type}\")\n",
"print(f\" RLVR model type: {rlvr_model.model_type}\")\n",
"print(f\" Shared capability boundary: {base_model.base_capability}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. Pass@k Evaluation\n",
"\n",
"Implementing the unbiased, low-variance pass@k estimator from the paper."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:11.098240Z",
"iopub.status.busy": "2026-02-10T22:26:11.097947Z",
"iopub.status.idle": "2026-02-10T22:26:11.102875Z",
"shell.execute_reply": "2026-02-10T22:26:11.102079Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pass@k estimator test cases:\n",
" 5/10 correct, k=3: pass@3 = 1.0000\n",
" 1/10 correct, k=5: pass@5 = 0.5000\n",
" 8/10 correct, k=5: pass@5 = 1.0000\n"
]
}
],
"source": [
"def compute_pass_at_k(n_correct, n_total, k):\n",
" \"\"\"\n",
" Compute pass@k using unbiased estimator.\n",
" \n",
" From the paper: If c out of n samples are correct,\n",
" pass@k = 1 - comb(n-c, k) / comb(n, k)\n",
" \n",
" Args:\n",
" n_correct: number of correct samples\n",
" n_total: total number of samples\n",
" k: k value for pass@k\n",
" \n",
" Returns:\n",
" pass@k estimate\n",
" \"\"\"\n",
" if n_total < k:\n",
" return 0.0\n",
" if n_correct >= k:\n",
" return 1.0\n",
" \n",
" # Unbiased estimator\n",
" numerator = comb(n_total - n_correct, k, exact=True)\n",
" denominator = comb(n_total, k, exact=True)\n",
" \n",
" return 1.0 - float(numerator) / float(denominator)\n",
"\n",
"# Test the estimator\n",
"test_cases = [\n",
" (5, 10, 3), # 5 correct out of 10 samples, k=3\n",
" (1, 10, 5), # 1 correct out of 10 samples, k=5\n",
" (8, 10, 5), # 8 correct out of 10 samples, k=5\n",
"]\n",
"\n",
"print(\"Pass@k estimator test cases:\")\n",
"for n_correct, n_total, k in test_cases:\n",
" pass_k = compute_pass_at_k(n_correct, n_total, k)\n",
" print(f\" {n_correct}/{n_total} correct, k={k}: pass@{k} = {pass_k:.4f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6. Generate Pass@k Curves\n",
"\n",
"This is the key experiment from the paper. We evaluate both base and RLVR models across different k values to observe:\n",
"1. RLVR has higher pass@1 (better sampling efficiency)\n",
"2. Base model eventually catches up at higher k (crossover point)\n",
"3. Both plateau at the same pass@∞ (same capability boundary)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:11.105104Z",
"iopub.status.busy": "2026-02-10T22:26:11.104914Z",
"iopub.status.idle": "2026-02-10T22:26:11.247411Z",
"shell.execute_reply": "2026-02-10T22:26:11.246570Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Evaluating models across k values...\n",
" Evaluating k=1... Base: 0.122, RLVR: 0.198\n",
" Evaluating k=2... Base: 0.224, RLVR: 0.328\n",
" Evaluating k=4... Base: 0.314, RLVR: 0.412\n",
" Evaluating k=8... Base: 0.452, RLVR: 0.486\n",
" Evaluating k=16... Base: 0.542, RLVR: 0.534\n",
" Evaluating k=32... Base: 0.594, RLVR: 0.568\n",
" Evaluating k=64... Base: 0.606, RLVR: 0.588\n",
" Evaluating k=128... Base: 0.608, RLVR: 0.590\n",
" Evaluating k=256... Base: 0.618, RLVR: 0.598\n",
"\n",
"✓ Evaluation complete\n"
]
}
],
"source": [
"# Evaluate both models across different k values\n",
"k_values = [1, 2, 4, 8, 16, 32, 64, 128, 256]\n",
"n_trials = 5 # Multiple trials for stability\n",
"\n",
"base_pass_at_k = []\n",
"rlvr_pass_at_k = []\n",
"\n",
"print(\"Evaluating models across k values...\")\n",
"for k in k_values:\n",
" print(f\" Evaluating k={k}...\", end=' ')\n",
" \n",
" # Evaluate base model\n",
" base_results = base_model.evaluate_dataset(test_problems, k=k, n_trials=n_trials)\n",
" base_pass_at_k.append(base_results['pass@k'])\n",
" \n",
" # Evaluate RLVR model\n",
" rlvr_results = rlvr_model.evaluate_dataset(test_problems, k=k, n_trials=n_trials)\n",
" rlvr_pass_at_k.append(rlvr_results['pass@k'])\n",
" \n",
" print(f\"Base: {base_results['pass@k']:.3f}, RLVR: {rlvr_results['pass@k']:.3f}\")\n",
"\n",
"print(\"\\n✓ Evaluation complete\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:11.249969Z",
"iopub.status.busy": "2026-02-10T22:26:11.249723Z",
"iopub.status.idle": "2026-02-10T22:26:11.669857Z",
"shell.execute_reply": "2026-02-10T22:26:11.668778Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FFUXwOHfluymkwChCNJJKCH0jvTeQar0IqBgAxVQsaCCYEVARUFAkA+QEqnSQemgIoIoLfQWEkjP1vn+WHbJkg3ZQEJCct7n4YGduTNzd3b2MmfPnXtViqIoCCGEEEIIIYQQItOps7sCQgghhBBCCCFEbiVBtxBCCCGEEEIIkUUk6BZCCCGEEEIIIbKIBN1CCCGEEEIIIUQWkaBbCCGEEEIIIYTIIhJ0CyGEEEIIIYQQWUSCbiGEEEIIIYQQIotI0C2EEEIIIYQQQmQRCbqFEEIIIYQQQogsIkG3EEKIR27mzJmEhIRw6dKl7K6KECKLPOz3fNWqVYSEhHDgwIFMrpkQQjxaEnQLIUQOcuDAAUJCQpz+VK9ene7du7Nw4UIsFkt2VzFNJpOJpKSkR3rMpKQkFixYwDPPPEOdOnWoXLkyDRo04Nlnn2XVqlWYzeZHWp+cqHnz5k7XU4UKFWjYsCH9+/dn/fr12V29HMUeJKY8V3Xq1GHQoEFs27bN5TYhISGMHDky1fIff/yRkJAQFixYcN9jjh8/npCQEP744w8AJkyY4FSHihUrUr9+fUaNGsXhw4fdfi/2gDUkJIR58+a5LPPPP/84ykyYMMHtfQshhMgYbXZXQAghRGodO3akcePGKIrCjRs3WL16NVOmTOH06dO8//772V09h99//53ly5ezd+9eIiMjURQFPz8/qlevTqdOnejYsSNqddb8vnv+/HlGjBjBuXPnaNCgASNGjCAwMJCoqCj27dvHxIkTOX36NK+//nqWHP9xUqRIEcaOHQuA1Wrl+vXrrF69mrFjxxIZGcngwYOzt4I5zIsvvkjx4sWxWCxcuHCBZcuW8fzzz/PJJ5/QqVMnt/bRqVMnpk2bxqpVq9I8v/Hx8WzatIkyZcpQo0YNp3Xvvvsu3t7emEwmTp8+zbJly/jtt99YsGABtWvXdvu96PV6Vq1axbBhw1KtW7lyJXq9HoPB4Pb+hBBCZJwE3UIIkQNVqlSJLl26OF4/88wztGvXjp9++omXXnqJggULZmPtbMHCG2+8waZNm6hevToDBgygTJkyaDQabty4wb59+3jrrbdYsGABn3/+OSVLlszU4ycnJzNy5EguXbrEzJkzad26tdP6ESNGcPToUf7+++9MO6bJZMJqtaLX6zNtn4+Kn5+f0/UE0Lt3b5566qn7BoV5VePGjalSpYrjddu2benSpQvffvut20G3v78/rVq1Yt26dRw/fpzKlSunKrNx40aSkpJ4+umnU61r06YN+fPnd7yuXbs2zz//PPPmzctQ0G2vw9GjRwkLC3MsNxqNrFu3zrFeCCFE1pHu5UII8Rjw9fWlevXqKIrCxYsXsVqtfP311/Tr14+GDRsSGhpK06ZNeeedd7h161aq7cPDw+nRowe1atWiWrVqtGjRgnHjxhEdHe0oc+rUKV588UWeeuopQkNDadiwIQMGDGDnzp1O+4qPj6dfv3789ddfLFq0iKVLlzJixAhatmxJs2bN6N27N1988QW//PIL+fLlo3///ly4cCHd92ixWHj77bepUKEC33333X3L/vTTT0RERDBkyJBUAbddWFgY/fr1c7xOqwutq+dG7d2MT506xdSpU2ncuDFhYWH88ccfNGrUiG7durk85tKlSwkJCWHr1q2OZUajkW+++YYOHTpQpUoVatWqxahRo/jnn3+ctrVarSxYsIBOnTpRvXp1atSoQZs2bXjjjTcwmUyOcnFxcZw5c8bps3sQ+fLlQ6fT4eHh4bT86NGjTJgwgTZt2lC1alWqV69Onz592LJlS6p9XL16lYkTJ9KsWTNCQ0OpX78+ffr0YfXq1U7lFEVhyZIldO/e3bHPAQMGsH///nTruWvXLkJCQvjhhx9cru/duzf16tVznCN3r+OMqFChAoGBgZw7dy5D2/Xo0QOwZZRdWblyJVqtlq5du6a7r/r16wNkuA7NmjUjMDAwVR22bt3K7du3XQb8dj/99BPdunUjLCyMmjVrMnToUJdd3K1WK3PmzKF58+ZUqVKFjh07smbNmjT3e+PGDd555x2aNm1KaGgojRo1YtKkSURFRWXovQkhxONCMt1CCPEYUBSF8+fPAxAYGIjJZGLevHm0bt2aFi1a4OXlxd9//83KlSv5448/WLlyJTqdDrAF3OPHj6dWrVq8+OKLeHp6cvXqVXbt2kVUVBT58+fn1q1bDBo0CIA+ffrwxBNPcOvWLY4dO8Zff/1F06ZNHXV5++23iYuLY+XKlU4Z9/j4eHx8fFCpVCQkJJAvXz6+/fZbnnvuOV577TWWLVuW5vtLTk5m7Nix/Prrr0ybNi1VVvZemzZtAmwBV1Z69dVX8fT0ZOjQoQAULlyYzp07M2/ePE6dOkX58uWdyoeHhxMYGEiTJk0AW3Z82LBh/Pnnn3Tp0oV+/foRHx/P8uXL6du3L4sXL3ZkVL/++mu+/PJLmjVrRp8+fdBoNFy6dInt27djNBodwfGWLVuYOHEiY8aM4YUXXnDrfVgsFkeQbrVaiYyM5IcffiAhIYE+ffo4ld2yZQtnz56lbdu2FCtWjNu3b7N69WrGjBnj1L3abDYzZMgQrl+/zjPPPEOpUqWIj4/nv//+4/Dhw04/TLz22musX7+eNm3a0L17d4xGI2vXrmXo0KHMnDmTFi1apFn3Ro0aERQURHh4OAMHDnRad+7cOY4cOcKAAQPw8PDI0HWcETExMcTExFCgQIEMbVevXj2KFy/OunXrmDBhguM7CRAREcGff/5JixYt3Oq5Yv/hKiAgIEN10Gq1dO7cmdWrV/PGG284emqsXLmSSpUqUaFCBZfbffzxx8ydO5ewsDDGjh3ruG4HDRrEV1995bjGAaZOncoPP/xA7dq1GTx4MFFRUUyePJknn3wy1X6vXLlC7969MZlM9OjRgxIlSnD+/Hn+97//ceDAAVauXImfn1+G3qMQQuR0EnQLIUQOlJSU5AiSbty4weLFi/n333+pVq0apUqVQlEUdu/ejaenp2Obvn37Ur16dd566y22bt1K+/btAVtGy8fHh4ULF6LV3m32X3rpJce///jjD6Kiovj8888d27ly7NgxNmzYwJIlSxyBwpYtW5gyZQpXrlzB19eXgQMHcuXKFVQqFR999BEffvghLVq04MCBA9StWzfVPm/fvs2oUaP477//+Oabb2jUqFG65+fUqVP4+vq6vKnPTP7+/syfP9/pvHXr1o158+axevVqp+fFL1y4wJ9//ukIAME2mNbBgweZO3cuTz31lKPsM888Q8eOHZk+fTqLFi0CbJ9T2bJl+eabb5zq8Oqrrz70+zh79qwjU2qn1+uZPHkyPXv2dFr+3HPPMW7cOKdlAwYMoGvXrnz99deOoPv06dNERETw6quv8uyzz6Z57C1btrB27VomT57s9CPJwIED6dWrFx9++CHNmzdHpVK53F6j0dCpUye+//57Tp8+Tbly5RzrwsPDARwBvrvXcXri4+OJjo52PNP9xRdfYLVa6dy5c4b2o1Kp6N69O19++aXTdxJsPSyANDPNMTExgO2HmzNnzvDRRx8BuN29PaWnn36ahQsXsnnzZjp16sS1a9fYu3cvb775psvyZ8+eZd68edSoUYOFCxc6fizo2bMnHTp04L333mPLli1oNBrOnj3LokWLqFevHt9//z0ajQaA1q1bu3xv77//PmazmfDwcIoUKeJY3rZtW3r37s2CBQvc/jFJCCEeF9K9XAghcqCZM2dSv3596tevT5cuXVi5ciXNmzdn9uzZgO1m3h5wWywWYmNjiY6Opl69eoCti7Cdn58fycnJ7Ny5E0VRXB7Pnln67bffiI+PT7Ne69ato1q1ao5Bn06fPs0rr7xCyZIl+fzzz3n77bfZtWsXmzdvdmxTuHBhqlevzt69e1Pt78qVK/Tt25eLFy+yePFitwJuuJtVz2qDBg1yCrgBypcvT+XKlVm7di1Wq9Wx3B4ApuwqvGbNGsqUKUPlypWJjo52/DEajTRo0IDff/+d5ORkwPYIwfXr19Mdobp79+78999/GQpMihUrxvz585k/fz7ff/89H330EVWrVuXdd99N1e3Y29vb8e+kpCRu3bpFUlIS9erV48yZM47rw37NHDhw4L7dgtesWYOPjw8tW7Z0OgexsbE0b96cy5cvp9tl2h5U288x2Hp/rFmzhuDgYMfz0u5ex+kZPHgw9evXp1GjRjzzzDMcOXKEZ5991jEYXUZ0794dtVrtCLLB9p0NDw8nKCjIKWOcUtu2balfvz6NGzdmyJAhXLlyhddff93pkQl3hYSEEBoa6qjD6tWr0Wq1aQbw27ZtQ1EUhg8f7pSdL1y4MN27d+fy5cuOxyPsZYcMGeIIuAEqV65Mw4YNnfYbFxfHzp07ad68OTqdzul6KFasGCVKlGDPnj0Zfn9CCJHTSaZbCCFyoN69e9O2bVtUKhVeXl6UKlUqVbfSDRs2MH/+fE6cOOH0zC/czZIBjBw5kkOHDjF69GgCAgKoU6cOjRs3pl27dvj6+gJQp04dunbtyqpVq1i7di2hoaE0aNCA9u3bO2UW//rrLxo0aOB4vXTpUgoXLsy3337ruDlv3Lhxqu7CQUFBLp9BHjVqFBaLhTVr1mRosDVfX18SEhLcLv+gSpUq5XJ5t27d+OCDD9i7dy+NGjVyBIDly5cnNDTUUe7MmTMkJyenyjKndOvWLYoWLcrYsWMZPXo0/fr1o1ChQtSpU4emTZvSpk0bp8DnQXh7ezt9bmDLmNrfR/PmzQkMDAQgKiqKL774gm3btrkMpmNjY/H19aVYsWKMGjWKb7/9lkaNGlGxYkXq1atH27ZtnQbsOnPmDAkJCamOn1JUVBSlS5dOc709sF67di1jx45FrVZz6NAhLl++zGuvveYo5+51nJ63336b0qVLk5SUxIEDB1i0aBGxsbGpfoBxR9GiRWnYsCF79uzh+vXrFC5cmN27d3Pjxg2GDx+e5j5nzpzpuM63bt3KmjVrHmqU8e7du/PBBx9w+fJlVq9eTYsWLciXL5/L76V9Xu17H59IuezixYtUqVKFixcvAlCmTJlUZcuWLcvu3bsdryMiIrBaraxYsYIVK1a4rGdW914RQojsIEG3EELkQCVLlrxvkLJ582ZeeeUVwsLCeOONNyhatCh6vR6LxcLw4cOdMtqlSpViw4YN7Nu3j3379nHw4EHeeustvvzyS3788UdKlCgBwLRp0xg2bBi//vorhw8fZv78+XzzzTe88cYb9O/fH4Do6GgKFSrk2PeFCxcIDQ11CgoDAwNT3YBfuXLFZdfyjh07smzZMr7++mumTJni9vRi5cuX59ChQ1y8ePGhb9LvN/d5yu77KXXo0IFp06YRHh5Oo0aN+P3337l48WKqruCKohAcHMzEiRPTPIZ9hOrq1auzZcsWdu/ezYEDBzhw4ADr1q3j66+/ZsmSJRl+ljc9Wq2WevXq8cMPP3D06FGaNGmCoigMHTqUM2fOMHDgQEJDQ/Hz80Oj0bBy5UrWrVvnlN1/5ZVX6NGjBzt37uTw4cOsWLGCefPmMXz4cEcwrCgK+fPn59NPP02zLq6Cu3t16dKFKVOmsH//fho0aEB4eDgajSZVl293ruP0hIWFOZ61tz9z/emnn1KxYkX69u3r1j5Sevrpp/ntt99YvXo1o0aNcvQuuN8gZrVq1XJcG61atUKv1zNjxgwqV66cZnb8fuxTmE2aNInz588zadKkDO/jYdnbpc6dO6c5GOHjODuAEEKkR4JuIYR4DP3888/o9Xp++OEHvLy8HMvPnDnjsrxOp6NJkyaOm/Vdu3YxYsQI5s+fzzvvvOMoFxwcTHBwMMOHDyc2NpaePXvy6aef0q9fP1QqFb6+vsTGxjrKBwUFcfz4cadjGY1GLl++7Mgs/vPPPxw5csTls8kjRoygRIkSfPzxx5jNZqZNm+bURTUtrVu35tChQ/z0009ud/kNCAjg9u3bqZbbM3UZkT9/fho3bszWrVtJSEggPDwctVqdKgAsWbIkt27dol69em79oODj40ObNm1o06YNYHsmfPLkyaxYsYLhw4dnuJ7pMZvNAI5eA//99x///vsvo0eP5sUXX3Qq+9NPP7ncx5NPPsmAAQMYMGAABoOBYcOGMXfuXIYOHUqBAgUoWbIk586do2rVqg/1SECnTp34+OOPCQ8Pp0aNGmzatIkGDRo4/Qhkl951nFFDhgxhxYoVfPHFF3Tq1MnRQ8RdLVq0ICAggNWrV9O7d2+2b99OjRo1XGaH0zJu3Dg2btzIRx99RKNGjdz6nqSUcgoze/Y9LfYfsk6dOuX4Uc7u9OnTTmXsf589ezZV2XvboxIlSqBSqTCZTPf9UVEIIXIbeaZbCCEeQxqNBpVK5ZR1VBSFr7/+OlVZV91HK1WqBNzthn779m2nfYHtJr148eIkJSU5urWWL1+eP//801GmY8eOnDhxgilTphAREcGpU6cYP348t27dIjExkZ9//pnhw4fToUMHatWq5fK9DB8+nIkTJ7J27VrGjRvnCATvp2fPnpQuXZrvv//eaXqulI4dO8aPP/7oeF2qVCmOHDlCUlKSY1lMTIzTs7YZ0a1bN5KSklizZg2//PILDRo0oHDhwk5lunbtSmRkJPPnz3e5j5s3bzr+7epzsj+rnPJxgcyaMsxgMPDbb78Bd68H+w8D9z77f/LkyVRThsXFxaV6rEGv1zsCSXudu3btitVq5bPPPnNZj5Tn4H7y58/PU0895RiYLT4+PlW21N3rOKM8PDwYOXIkt2/fTnPqsvvR6XR06dKFc+fO8e677zpG7s6IfPnyMWDAAM6ePfvA82o/++yzjBkzhkmTJt33RyD7wHbz5s1z+oxv3LjBqlWrKFasmOOasZedP3++U6+R48ePpxrHwT6y/5YtWzhy5Eiq4yqK8tDXtRBC5ESS6RZCiMdQmzZt2LRpE4MGDaJr166YzWa2bt3qFFDaDRs2DD8/P2rVqkXRokWJjY1l9erVqFQqx9Rc4eHhLFy4kJYtW1KyZEm0Wi2HDh1i9+7dtGvXztHNumXLlrz88suObt3169dnzJgxfP311yxcuBCAJk2a0LZtWzZu3Mj+/fsZMGAAo0aNuu/7GTx4MB4eHrz//vtYLBY+++yzVPNHp+Tl5cWcOXMYMWIEo0ePplGjRjRo0ICAgACio6M5cOAAu3fvdsoO9+vXj9dee41BgwbRpUsXYmNj+emnn3jiiSeIjIzM8GfQpEkTAgIC+OSTT1wGgGAboXvv3r1Mnz6d/fv3U69ePXx9fbly5Qr79+9Hp9M5Ri9v37491apVIywsjEKFChEZGcny5cvx8PCgQ4cOjn0+yJRhcXFx/Pzzz4AtsLlx4wZr167l4sWL9OrVy/HsetmyZSlfvjxz584lOTmZ0qVLExERwbJlywgODnbq1XDgwAEmTZpE69atKV26ND4+Phw7dowVK1ZQtWpVR/Ddtm1bunfvzuLFizl+/Lhj3uhr165x5MgRzp8/z7Zt29x6H926dWP79u189NFH+Pn50bJlS6f17l7HD6JLly7Mnj2bBQsWMHDgQKds9/nz5/nqq69cbjd48GC8vb3p0aMHCxcu5JdffsHb25t27dpluA4DBw5kwYIFfPXVV3Ts2DHD2e4KFSqkOUVYSmXKlHH0WOjfvz/t2rUjISGB5cuXk5iYyCeffOI4dtmyZenXrx+LFy9m0KBBtG7dmqioKH788UcqVKiQaj76d999l2eeeYb+/fvTpUsXKlWqhNVq5eLFi2zbto2uXbvK6OVCiFxHgm4hhHgMdejQgYSEBBYsWMC0adPIly8fzZo1Y9y4camene7bty8bN25k2bJlxMTEEBAQQMWKFXnrrbcco53XrVuXEydOsHPnTiIjI1Gr1RQvXpzx48c7PQfbokULxzPK33//PTqdjhdeeIFnnnmGs2fPUqhQIUqWLMnZs2d5/vnnKVu2rNuBQb9+/fDw8ODtt9/mxRdfZMaMGfcdQKxkyZKEh4ezbNkyNm3axDfffENiYiL58uUjNDSUjz76yGl05s6dO3Pjxg1+/PFHpk6dypNPPsnzzz+PWq3mr7/+ysjpB2zZy44dO7J48WJ8fX1TBYBgy5DOmTOHJUuW8PPPPzNz5kwAChUqRJUqVZwC9aFDh7Jr1y4WLVpEXFwcBQoUoGrVqowcOdKtQOl+rl275jS9mZeXF2XLluWdd95xmqdbo9EwZ84cpk2bxurVq0lKSqJ8+fJMmzaNf//91ynoDgkJoVWrVhw8eNAxknvRokUZOXKkY15zu6lTp1K3bl2WL1/OnDlzMJlMBAUFUalSpVTTk91P06ZNHY8J9OzZM9Xzv+5exw9Cq9UyYsQI3nnnHRYsWMCYMWMc6yIiIpgxY4bL7Xr27Im3tzfBwcGEhYVx9OhR2rVr5zRKvLsCAgLo168f3377LWvWrEnzuejM8Nprr1GyZEmWLFnCp59+ioeHB1WrVuXTTz9N1WvlzTffpGDBgixfvpzp06dTqlQp3n77bc6fP58q6C5atCgrV67ku+++Y/v27axZswa9Xk/RokVp1qzZA/0YIYQQOZ1KSWv+GCGEEMKFiIgI+vTpQ8WKFfn0008pUKCAy3KXL1/m8uXL1KlT5xHXUAghhBAi55CgWwghRIb9+++/jBkzhujoaHr27EmTJk0oXrw4KpWKc+fOsX37dlavXk3NmjWZN29edldXCCGEECLbSNAthBDigSQkJLBo0SJ++uknx7y+dhUqVGDAgAF069Ytw8+dCiGEEELkJhJ0CyGEeGhXr17l2rVrABQvXpygoKBsrpEQQgghRM4gQbcQQgghhBBCCJFFZJ5uIYQQQgghhBAii0jQLYQQQgghhBBCZBEJuoXIg06ePEmlSpXYs2dPdldFiEcmJCSECRMmZHc1RAo//vgjbdu2JTQ0lJCQEMeAfPv376dXr15Ur16dkJAQVq1axYEDBxz/zqiH2TYnmzlzptN5E4+nS5cuERISwsyZM90q7+pzX7VqFSEhIRw4cMCxLCuv+ylTptCmTRtMJlOm71uI3EiCbiHyoI8++ogaNWrQsGFDxzL7f872PxUrVqR27dp07NiR8ePH8+uvvyJDQEBsbCwzZ850urHJCgcOHGDmzJnExsZm6XHux34jmPJPWFgYHTp04MsvvyQpKSnVNhMmTCAkJITo6Gin5bdv36ZKlSp06dLlvsfcv38/ISEhTJo0CUh9XYaEhFC9enW6devGggULMJvNmfeGxSO1f/9+Jk+eTJkyZXjvvfeYPn06+fPnJyYmhhdeeIGkpCQmTJjA9OnTqV27dnZXN8/ZunWr20FgVssJ7WFucenSJWbOnMmJEyceaj/PPvss165d43//+18m1UyI3E2b3RUQQjxaf/75J3v27GH27Nku13fs2JHGjRujKAoJCQlERESwbds2wsPDadCgATNmzMDf3/8R1zrniI2NZdasWYwZM4a6detm2XEOHjzIrFmz6NatW7af74YNGzqC5Vu3brFp0yZmz57NkSNH+P77793aR0BAAC1btmTDhg38888/VKpUyWU5e0bm6aefdlqe8rq8efMmP//8M1OnTuXMmTO8//77btXh6NGjqNXyW3NOsXfvXsCWMQsICHAs3717N7GxsXz44Ye0bt3asbxYsWIcPXoUrTbjty61a9d+4G3zqq1bt7J69WpeeOGF7K5KjmoPc4LnnnuOESNGoNPp7lvO1XV/+fJlZs2aRbFixahYseID1yEoKIj27dvz7bff8swzz8h3S4h0yN2HEHnMkiVLCAwMpEmTJi7XV6pUiS5dutC1a1f69evHW2+9xdatWxkyZAh79+5l7Nixj7jGj7/4+PjsrsJDKVWqFF26dKFLly4MHjyYxYsXExoayp49ezh27Jjb++nRowdAml0d4+Pj2bx5M+XKlaNatWpO61Jel8OHD2fZsmUUKVKEn376KVVWPS16vR4PDw+36/soPe7XyIOIjIwEcAq4AW7evAlAvnz5nJar1Wr0ev0Dzfv+MNsKkdNotVr0ej0qleq+5bL6uu/SpQuRkZFs27YtS/YvRG4iQbcQeYjZbGbr1q00aNAgQ8GHRqNhwoQJ1KxZk99++43Dhw87rY+Li+Pjjz+mVatWhIaGUq9ePcaOHcvFixedytmfOdu3bx+zZs2iWbNmhIWF0bNnT44cOQLYMhp9+/alWrVqNGrUKM2M/NatW+nTpw/VqlWjevXq9OnTh61bt6Yq17x5cwYMGMCZM2cYMWIE1atXp2bNmrz44ouOm36727dvM2XKFFq2bEmVKlWoW7cu3bt3Z+7cuYCti2OLFi0AmDVrlqO7c/PmzQHn5/I2bNhA9+7dCQsL44MPPgDgzJkzvPvuu3To0IHq1atTtWpVunfvzk8//eRUjwkTJjBr1iwAWrRo4ThOyq6e7p5zg8HAzJkzadOmDVWrVqVWrVp06tSJadOmuTyv7tBoNNSpUweA8+fPu71d/fr1KVasGGvXrsVoNKZav2HDBpKSklJluV3x9vamatWqKIrChQsX3Dq+q2e67cv27dtH7969qVq1Ko0bN+bbb78FICYmhjfeeIP69etTtWpVRo4cyfXr1532YX++8tSpU3zwwQc0bNjQcV3v27cvzXrs27ePvn37Ur16dZ577jnHeneu7Z49e9KgQQOX3et/++03QkJCWLBggWOZoigsWbKE7t27U7VqVapXr86AAQPYv39/qu3Dw8Pp0aMHtWrVolq1arRo0YJx48a5/ePG3r17GTp0KLVq1aJKlSp06tTJqQuq/Xti//HFfn0PGDCA5s2bM378eAAGDhzoWAdpP5+qKArLly+nZ8+eVK9enerVq9OpUydmzJjhKHO/bd05Lym/2zt27ODpp5+mSpUqNGrUiGnTprn8HM6fP8/EiRNp3LgxoaGhNGrUiOeee87xQ1Xnzp1p2rQpVqs11bYbN24kJCSE8PBwt855UlJSutfe/Z4bvvcZ4QEDBrB69WoAp0c70ns2OCPtrb1Or732Gg0aNCA0NJSWLVvy2WefOT264k57mJb0PgOw9ax4+eWXadGiBWFhYdSqVYuhQ4dy8ODBVPuzX6MXL17kueeeo2bNmtSoUYPRo0enanutVitff/01/fr1o2HDhoSGhtK0aVPeeecdbt26lWad161bR6dOnahSpQpNmzZl5syZqa4vd5/lv/e6X7VqFQMHDgRg4sSJTt+9f/75h5CQED7//HOX+xoxYgQ1atQgMTHRsax27dp4e3vzyy+/3LceQgjpXi5EnnL8+HESExMJCwt7oO179OjB77//zq5du6hVqxZgC/769OnDlStXePrppylfvjyRkZEsWbKEnj17snLlSooVK+a0n08++QSr1crAgQMxmUx8//33DB06lOnTp/Pmm2/Sq1cvOnXqxMaNG/nyyy8pXry407PAP/74o+NZ0Oeffx6A1atXM3r0aCZPnkzv3r2djnf9+nUGDhxIy5Ytef311/n3339ZtmwZ8fHxTt2jX3rpJQ4fPkyfPn0ICQkhOTmZM2fOcPDgQYYPH07ZsmWZOHEiU6dOpVWrVrRq1QoAHx8fp+Nt3bqVRYsW0bdvX/r06YOvry9g+0Hh8OHDNG3alOLFi5OUlMQvv/zCW2+9RXR0NCNHjgSgd+/exMfHs2XLFiZOnEhgYCCAI/jIyDl/7733WLlyJV27dqV69epYLBbOnTv30M+k228w781G3o9araZbt27MmjWLbdu20a5dO6f1q1atwsPDI93nvh+mDq78888/7Nixg169etGlSxc2btzIp59+il6vJzw8nGLFijFmzBguXLjAokWLGD9+vFNAazd+/HjUajXPPvss8fHxLFu2jOHDh/Pdd9/RoEEDp7LHjh1j06ZN9OrVi27dujmWu3ttd+3alcmTJ/Pbb7/RrFkzp32Hh4ej1Wrp1KmTY9lrr73G+vXradOmDd27d8doNLJ27VqGDh3KzJkzHT8mhYeHM378eGrVqsWLL76Ip6cnV69eZdeuXURFRZE/f/77nstly5bxzjvvUK1aNUaNGoWXlxd79+7l3Xff5cKFC4wfP578+fMzffp0li9fzuHDh5k+fToABQsWJCkpiV9//ZVly5YxatQoypQpk+7n99prr7F27VqqVq3KqFGj8PPz4+zZs2zatImXXnop3W3dOS92u3btYsmSJfTp04enn36abdu28f3335MvXz5GjRrlKPf3338zePBgzGYzPXr0oHz58sTExHDw4EH+/PNPQkND6dWrF++//z579uzhqaeecjrOihUr8PPzo23btum+f8jYteeOUaNGYbVanT4fgBo1aqS7rbvt7eXLl+nZsydxcXE888wzlCxZkoMHDzJnzhz++OMPFixYgFarTbc9TIs7nwHYvl8xMTF07dqVIkWKcP36dX766ScGDx7MDz/84Pi/zi4xMZEBAwYQFhbG2LFjOX/+PEuWLOGvv/5i9erVBAUFAWAymZg3bx6tW7emRYsWeHl58ffff7Ny5Ur++OMPVq5cmap7+Pbt27l48SL9+vWjYMGCbN++nVmzZnHlyhWmTp2a7rlPT+3atRk1ahTffPMNvXv3pmbNmoDtu1epUiUqV67M6tWrefHFF52y49evX2f37t08/fTTeHt7O5ZrNBpCQ0M5dOjQQ9dNiFxPEULkGStWrFCCg4OVrVu3plq3f/9+JTg4WJk7d26a2x87dkwJDg5WxowZ41j2/vvvK1WqVFFOnDjhVPbSpUtK9erVlfHjxzuWrVy5UgkODla6du2qGAwGx/KtW7cqwcHBSqVKlZSjR486lhsMBqVhw4ZKr169HMtu376tVKtWTWnZsqUSFxfnWB4XF6e0aNFCqVatmhITE+NY3qxZMyU4OFhZv369U/3effddJTg4WDlz5oyiKIoSGxurBAcHK++8806a719RFOXixYtKcHCw8uWXX6a5rlKlSsrp06dTrU9ISEi1zGKxKP3791dq1KihGI1Gx/Ivv/xSCQ4OVi5evJhqm4yc89q1ayvDhw+/73tKi/39vPHGG0pUVJQSFRWlnD59Wpk5c6YSHBysNG7c2OlzVBRFGT9+vBIcHKxERUW53OelS5eUkJCQVHU6c+aMEhwcrIwePdppuf26nDlzpqMO//77r+Pz69Gjh9vvJzg42Onc2JeFhIQoR44ccSyzX3chISHK+++/71R+ypQpTteNotz9rHr06OF0Pq5evapUq1ZNadu2bapjBgcHK3v27HFanpFr+9atW0rlypWVF1980WkfcXFxStWqVZWRI0c6lm3evFkJDg5Wli5d6lTWZDIp3bp1U5o1a6ZYrVZFURRl9OjRSvXq1RWTyZTGWUzb9evXldDQUGXs2LGp1r3//vtKhQoVlAsXLjiW2a+Ve9nbif379zstt18LK1eudCxbv369EhwcrLz66quKxWJxKp/ytattM3Je7N+FqlWrOn0nrVar0qFDB6Vhw4aploWGhqb6jqasV0xMjBIWFpbqM7xy5YpSoUKFdNsiRcnYtXe/tstVe5PW53M/7ra3iqIoY8eOVYKDg5WdO3c6lf3oo4+U4OBgZfny5fet3/24+xkoiut2OTIyUqlTp06qdqp///5KcHCw8sEHHzgtt19LkyZNcqpDUlJSqn0vX7481TmyfzYVKlRQjh075rSP559/XgkODlb+/PNPx3JX58PV98bVde9qmd3SpUtdfiZfffWVEhwcrPz111+ptnnjjTeU4OBgJTo6OtU6IcRd0r1ciDzE3j30QTOD9oyt/flTRVFYu3YttWvXplChQkRHRzv+eHl5Ua1aNXbv3p1qP3379nX6hd+eSQgLC6NKlSqO5TqdjipVqnDu3DnHsj179jgyDfb62Os2YMAAEhMTHQM02RUqVIj27ds7LatXrx5wt3u0Xq9Hp9Nx9OjRh55+p0mTJpQtWzbV8pQZAoPBwK1bt7h9+zYNGzYkPj6es2fPprvvjJ5zX19fTp8+zcmTJx/4/axYsYL69etTv3592rdvz8yZM6lbty4LFixIdyCfexUrVowGDRqwZ88ep27a9u6P9ue+7zVz5kxHHTp37sySJUto3bo1X3311QO/L7tq1apRtWpVx2v7dacoCgMGDHAqa79WXXWrHzx4sNP5KFKkCJ06deLs2bOcOXPGqWyFChVSZSAzcm0HBATQvHlzduzY4TSi86ZNm0hKSnLKnq9ZswYfHx9atmzpdL3ExsbSvHlzLl++7PiO+fn5kZyczM6dOzM8W8GmTZswGo306NHD6TjR0dE0b94cq9Wa6rv5sNauXQvczfSmlN6geRk5L3YtWrSgePHijtcqlYq6desSGRlJQkICACdOnODUqVN0796dChUqpDquvV7+/v60a9eObdu2OXU3XrlyJVarNc3vgisZufaymjvtrdVqZfv27VSqVCnV+CIjR45ErVa7fFzIXe5+BuDcLickJHDr1i3UajVVq1bl6NGjLvc/YsQIp9etWrWidOnSTs82q1QqPD09AbBYLMTGxhIdHe04F6723aBBAypXruy0j+HDhwOwZcuWdN/3w+rYsSPe3t6sWLHCsUxRFFauXElwcLDLXnL2MRncffxEiLxKupcLkYekN+hKeuzBtj0giI6O5vbt2+zevZv69eu73MbVje+TTz7p9Nr+I0DKm9mU627fvu14bQ+Iy5cvn6qsfdm9z9bdezy4e6Ng37dOp+ONN97gww8/pEWLFpQrV4569erRsmXLNN9bWkqVKuVyeUJCArNmzWLjxo1cvXo11Xp3psPJ6Dl/4403eP311+nUqRNPPvkkdevWpVmzZjRv3tztkbxbtGhB//79sVgsnD9/nrlz53Lt2rUMB9x2PXr0YM+ePYSHhzNy5EgsFgvh4eEUKlQoVTdbu969e9O2bVtMJhMnT5501EGv1z9QHVJydX2kdU3aR05OeU3aufqhxb7s4sWLTutdXSMZvba7du3Kpk2b2Lhxo6PbeXh4OPny5XPqcn7mzBkSEhLu2804KiqK0qVLM3LkSA4dOsTo0aMJCAigTp06NG7cmHbt2jn9EOCKPbgbPHhwmmXsg6RllvPnzxMUFETBggUzvG1Gzotdem2Jj4+PI1BPa4T+lHr16sXq1av5+eefGTx4MIqisGrVKipWrOjo/uyOjFx7Wc2d9jY6OprExETKlSvnsmxQUFCqdjwjMvIZXLhwgc8//9wxan5Krv7P9Pf3d3QhT6ls2bJs3bqVxMRERyC/YcMG5s+fz4kTJ1LNZx0TE+NyH/eyn6OHOR/u8vHxoWPHjqxevZro6Gjy58/PgQMHuHjxIm+88YbLbTL645wQeZUE3ULkIfbnMV0FDO7477//ABw3ofb/bBs0aMCzzz7r9n7SCvayaoTV++035Q1D3759adGiBbt27eLgwYNs2rSJxYsX0759+zQHl3HFy8vL5fJx48axc+dOevXqRe3atQkICECj0bBr1y4WLFjgckCltOrr7jlv2bIl27dvZ9euXRw6dIi9e/eyYsUKatWqxfz5890KnIsUKeIITJ566ikaN25M586dGTt2LEuXLs3wjzktW7YkICCAVatWMXLkSH777TciIyMZOXJkmp9VyZIlHXVo0qQJNWvW5JlnnuGdd97J0Gfjyv2uj7TWPeyNZlrXSEY0btyY/PnzEx4eTu/evbly5QqHDh2iT58+Tp+roijkz5+fTz/9NM192YP6UqVKsWHDBvbt28e+ffs4ePAgb731Fl9++SU//vgjJUqUSHMf9nMybdo0ChUq5LKMq4Asu2TkvNi525a4q0aNGgQHB7Ny5UoGDx7Mvn37uHz5MsOGDcvwvtJzv+9pZs53n9nnKCslJCTQr18/kpKSGDRoEMHBwfj4+KBWq5kzZ47LgQbdtXnzZl555RXCwsJ44403KFq0KHq9HovFwvDhw3PcubDr1asXy5cvJzw8nKFDh7JixQp0Ol2aY23YfzxIb7wHIfI6CbqFyEPsN5AZGXE6JXuXM3t3wPz58+Pv7098fPwDDdbzIOw37adOnUqV6T19+rRTmQdRqFAhevbsSc+ePbFYLLz++uusW7eOIUOGEBYW9sC9BWJjY9m5cyddunRh8uTJTutcdblN6zgPcs4DAgIcU34pisInn3zC3LlzXQ5m5o4SJUowdOhQZs+e7RhpNyN0Oh2dOnVi0aJF/P77746u5d27d3d7HzVq1KBLly6Eh4czYMAAtwZ4ympnzpxJ1ZXVnv1155rM6LWt1Wrp2LEjP/zwAxcvXmTdunUoiuLUtRxsP1icO3eOqlWrphr0zxWdTkeTJk0c3/Ndu3YxYsQI5s+fzzvvvJPmdvbsfWBg4CNrD0qVKsW2bdu4efNmhrPdGT0v7rL/KHnixAm3yvfs2ZMPP/yQo0ePsmLFCvR6fYa/U+5ce/beG64yrK4eqXnYnlH3kz9/fnx8fBzXdUoxMTFERkY6zSGd0bq4+xns27ePGzduMGXKlFSzJnzxxRcut4mNjSUyMjJVtvvMmTMUKFDAkeX++eef0ev1/PDDD04/st2vu7+rdZnx/1pK6Z3LKlWqUKlSJVasWEGPHj3YvHmz44dSVy5cuEBQUJBjgDshhGvyTLcQeUilSpXw9fXlr7/+ytB2FouFadOm8fvvvzuyjGDLWHfq1ImjR4+mOWVIVFTUQ9c7pYYNG+Lt7c3ixYud5jaOj49n8eLFeHt707BhwwzvNykpyWmaGrBlbOwj5NpvVO03VK5uXO/Hnt2/N7tx48aNVFOG3e84GTnn9ucIU1KpVI4ulxl9DykNHjwYX19fZs2ahcViyfD29udV582bx/bt26ldu3aa3fLT8vzzz6PRaPjyyy8zfPyssGDBAqep0K5du8batWspXbq0W917H+TatgfY4eHh/Pzzz5QuXdrp+XSwdUO3Wq189tlnLo+bssu3q+cy3b1e2rVrh06nY+bMmSQnJ6daHxcX53KquIdhD04//vjjVD1F0sskZuS8ZESFChUoX748K1eu5NSpU6nW31uvLl26oNfrmTt3Llu2bKF169aOxxjc5c615+vrS1BQEPv373eqw8WLF10+P21vgx60Z9T9qNVqmjVrxj///MOvv/7qtO7bb7/FarXSsmXLVHVxt81y9zOwZ+Xv/Ux279593/8n7VMK2m3ZsoWIiAinOms0GlQqldN1qSgKX3/9dZr73bt3L8ePH3cqb5+yMuW+H4Y757Jnz56cOXOG999/H4PBQM+ePV2Ws1gsHDt2jNq1a2dK3YTIzSTTLUQeotFoaN26NVu3bsVoNLrsWvzPP//w888/A7audxEREWzbto3Lly/TqFGjVF0xX3nlFf744w9efvll2rVrR9WqVfHw8ODKlSv8+uuvVK5cmY8++ijT3oO/vz+vvvoqkydPdppuafXq1Zw/f57Jkyfj5+eX4f2eO3eO/v3706pVK8qXL4+/vz9nz57lf//7H8WLF3cMoBUYGEjJkiVZv349Tz75JAULFsTLy8sxV3dafH19adiwIWvWrMHT05MqVapw+fJlli1bRvHixVPd2NoDp08++YROnTqh1+spX748wcHBbp/zhIQEGjVqRPPmzalUqRL58+fn0qVL/O9//0v13G9G+fv7079/f7755hvWrl1L165dndYvWLDAMYhQSvXq1aNGjRpUqFCBypUrOwYecmdu7nuVLFmS9u3bs3btWg4fPpxqap9HzWKx0K9fPzp06EBCQgJLly7FYDDw1ltvubX9g1zblSpVIjg4mAULFhAfH8/YsWNT7bdt27Z0796dxYsXc/z4cZo1a0ZgYCDXrl3jyJEjnD9/3vE5DBs2DD8/P2rVqkXRokWJjY1l9erVqFSqdKdyK1KkCO+++y5vvfUW7du3p3PnzhQrVozo6GhOnjzJ1q1bWb9+vcuxGx5Uu3bt2Lx5M+Hh4Zw/f57mzZvj7+/PuXPn2L17N+vWrUtz24ycl4xQqVRMmTKFwYMH07NnT8d0VbGxsRw6dIinnnrKaYC+fPny0aZNG9asWQOQZoBzP+5ee/369eOLL75g+PDhtGzZkhs3brB06VLKly/P33//7VS2atWqLF68mPfee48mTZrg4eFBWFhYpmVcx44dy969exk9ejTPPPMMJUqU4PDhw2zYsIHatWs79di4X3voirufQc2aNQkKCmLatGlcvnyZIkWKcOLECX7++WeCg4NdDkAZGBjIli1buHHjBnXq1HFMGVawYEHGjBnjKNemTRs2bdrEoEGD6Nq1K2azma1bt6b6cTelChUqMGjQIPr160dQUBDbtm1j7969dOnSherVqz/oqXZSrlw5fHx8WLJkCZ6envj7+5M/f36n3jWdO3fm448/Zs2aNRQvXjzN8UMOHjxIYmKi21PbCZGXSdAtRB7Tt29fVq1axY4dO2jTpk2q9evWrWPdunWo1Wq8vb0pUqQItWvX5t1336Vx48apyvv5+fG///2P77//nl9++YVt27ah0WgoUqQINWvWfKAbyPT069ePQoUKMW/ePGbPng3YblZmz579wNmAIkWK8PTTT3PgwAHHjxKFCxemZ8+ePPvss07dAz/55BOmTJnC559/TlJSEsWKFUs36AZbNu7TTz9l+/btrF69mlKlSvHKK6+g1WqZOHGiU9maNWvy6quvsnTpUiZNmoTZbGbMmDEEBwe7fc49PT0ZNGiQ4/nchIQEChUqRPPmzRk5ciSFCxd+oHNlZ5/H9quvvqJTp05Oz3LOmTPH5TZardbRFbxHjx4cP34cHx+fB75pe+6551i/fj0zZsxg0aJFD7SPzDJt2jSWLl3Kd999R2xsLCEhIXz00UcZ6nnxINd2t27dmDZtGmq1ms6dO7ssM3XqVOrWrcvy5cuZM2cOJpOJoKAgKlWqxLhx4xzl+vbty8aNG1m2bBkxMTEEBARQsWJF3nrrLceoy/fz9NNPU6pUKb7//nuWLVtGXFwcAQEBlC5dmpdeesnlAFQP69NPP6VWrVqsWLGC2bNno1arKV68uFvXlLvnJaPCwsJYsWIFX331FRs3bmTp0qUEBAQQFhbm8lGI3r17s2bNGkqWLEmdOnUyfDx3r71nn32WuLg41qxZw8GDBylXrhwffvghx48fTxV0d+zYkRMnTrB+/Xp++eUXrFYrU6dOzbSgu1ixYixfvpwvv/ySNWvWEBcXR+HChRk5ciTPPfccWu3dW9T7tYdpcecz8Pf3Z+7cuXz88ccsXrwYs9lMaGgo3333HStWrHAZdHt7e7Nw4UKmTJnCp59+iqIoPPXUU0yYMMFpLAP7DyALFixg2rRpjh86x40bR926dV3WuXnz5pQuXZo5c+YQERFBgQIFeP7553n++ecf9DSn4unpyeeff84XX3zBlClTMBqN1KlTxymw9vX1pV27dqxcuZLu3bun2SV9zZo1BAUFpZrPXgiRmkrJqSM5CCGyzLBhw0hKSmLJkiXZXRUhHnszZ85k1qxZbNu2LVOzuCLvOHr0KD179mTs2LGMHDkyu6sj0jBgwAAuX77M9u3bs7sqWe7dd99l+fLlbN++nSJFiqRaHxkZScuWLRk3bhwDBw7MhhoK8XiRZ7qFyIMmTJjAkSNHXM6hLYQQ4tFavHgxHh4eGRpMUIisYu8N0bhxY5cBN9ieay9SpAh9+/Z9xLUT4vEk3cuFyIPKly/PP//8k93VEEKIPCsxMZEdO3Zw6tQp1qxZQ69evbKk+70Q7jp58iT//PMP4eHhJCYm3rfXxZtvvsmbb775CGsnxONNgm4hhBBCiEcsOjqasWPH4u3tTZs2bXj99dezu0oij9u0aROzZs2icOHCvPPOO5k2eJsQQp7pFkIIIYQQQgghsow80y2EEEIIIYQQQmQRCbqFEEIIIYQQQogsIkG3EEIIIYQQQgiRRfLcQGqRkXHZXQW3eHhoMJks2V0NIYTI1aStFUKIrCdtrcjNgoL80i0jme4cSqXK7hoIIUTuJ22tEEJkPWlrRV4nQbcQQgghhBBCCJFFJOgWQgghhBBCCCGyiATdQgghhBBCCCFEFpGgWwghhBBCCCGEyCISdAshhBBCCCGEEFlEgm4hhBBCCCGEECKLSNAthBBCCCGEEEJkEQm6hRBCCCGEEEKILCJBtxBCCCGEEEIIkUUk6BZCCCGEEEIIIbKIBN1CCCGEEEIIIUQWkaBbCCGEEEIIIYTIIhJ051Lz5s2hUaNajj/NmzegX78e/PjjQqxWa3ZXz+GPPw476nj+/LlU6+fMmU2jRrXo0aNTphzv11930qhRLa5evZKh7T788F0GDOiVKXUQQgghhBBC5B3a7K5ArmU2oz1xBu2pCFRJBhQvPebypTFXLAvaR3Pa9Xo9M2Z8A4DRaOCPPw7zzTezsFoVBgwY/Ejq4C4vL2+2bt3EsGEjnZZv27YZLy/vbKqVEEIIIYQQQjwcCbqzgOZUBF7rdqBKNqCoQKWAogKP/yJQtu4hqWNzLOVLZXk91Go1oaFVHK9r1KjFmTOn+fXX7Tku6H7qqSapgu7jx49x/fo1mjVrybFjR7OxdkIIIYQQQogslwMSl1nh8a15DqU5FYHXil8cr1WK898kG/BasZGkHm2xlC/9yOvn7e2N2Wx2Wvb11zPZt283V69ewcfHl6pVq/PCC2MpWLCgo8zRo0eYM2c2p0+fxGpVKFq0KH37DqBdu46OMnv37mb+/O84c+Y03t5eNG3agtGjX8bLyyvdejVv3pKtWzfx33//EhJSAYAtW36hZs3aBAbmT1X+2rWrzJr1OYcOHcBisRAWVo3Ro1+mbNlyjjJms5nZs2fwyy/rsVotNG3agho1aqXal9FoZP7879i8eSPR0VE88UQxBg0aTuvWbdM/oUIIIYQQQoiHllMSl1lBgu7MZDbjtW4HAKo0iqgABfBat4P4F57M8l9s7AG2vXv5rl3bGTBgiFOZW7eiGTBgCAULBnH79i2WLv2RMWNGsHjxcrRaLQkJ8bz++suEhVXj3Xc/xMNDx7lzZ4mLi3PsY8eOrbzzzhu0b9+JYcNGEhV1k2++mUVcXCzvvTc13XoWLBhEtWo12Lp1EyEhFbBarezYsYWRI8dw6tRJp7KJiQm88MJIVCoVr746EZ1Ozw8/fM/o0c+ycOH/KFy4CADffDOL1at/YtiwkQQHV2Dr1k18882sVMd+++0JHD36F0OGPEupUqXYt28P778/CT8/P+rXb5jhcy6EEEIIIYRwX05PXD4sCbozkfbEGVTJhnTLqQCSDWj/PYs5NDjL6pOUlETTpvWclrVo0Yr+/Qc7LXvjjXcc/7ZYLISGhtGtW3v++OMwderU4+LFC8THxzNy5BhHJrlWrTqObRRFYfbsGTRv3ooJEyY5lhcoUJDXXnuJQYOGU6ZM2XTr27JlGxYsmMvzz7/IH38cJi4uniZNmqUKutevX8u1a1dZtGg5pUrZvnTVq9fg6ac7snz5/3jhhVeIjY1h9eqf6N9/sONHhrp16zNmzAgiI2849vXHH4fZvftXPvtsFnXq2M5V7dr1iIq6yfffz5GgWwghhBBCiKyUAxOXme3xqm020Z44g+63g6iMpvuWUyUlo5D2xZKSAnhu3Imyc7/rfQEe9rI6D4yN62CukH7gmpJer2f27O8AWxfq//77l3nzvmHatA+cAu19+/awcOE8IiLOkJCQ4Fh+8eJ56tSpxxNPFMfHx4dPPplKjx59qFGjFoGBgU7lrl27yosvjnPqul69eg3UajX//XfCraC7adPmfPbZNI4e/YutWzdRv34DfHx8U5X7668/KVOmrCPgBvD3z0etWnU5evQIAGfOnMZgMNC4cVOnbZs0ac6RI384Xh88uB9//3zUqFHLqe61a9fl44+nYrFY0Gg06dZdCCGEEEIIkXE5LXGZFSTodoPuwBE0UbczdZ8qALMFVVzC/cvY67D/SIaDbrVaTYUKlRyvw8KqYbGYmTXrC/r06UeZMuU4ceI4EyaM5amnmtC//yACAvKjUqkYOXIwBoMRAH9/fz7/fDbz5n3LBx+87XiG+pVXXqds2XLcvn0bgDfeeNVlPa5fv+ZWff3981GnTn02blzLzp3bmTDhLZfl4uLiXD7nnT9/fiIizgAQFXUTIFW5/PmdX8fE3CY2NiZVjwC7qKibFCpU2K36CyGEEEIIIQCjCVViEqqEJNvfiUmoE5Md/1YlJKFKuvP3feKheykq0J6UoDtXMtarhu5X9zLdmC1uZ7rRalC8PF3vy16GO5nuetXcr/B9lCxpyw5HRJylTJly/PrrTnx9fZk8+SPUatu07deuXU21XaVKoXz66ZcYDMn88cdhZs+ewcSJ41i+/Gf8/fMB8Morr1O5cmiqbQsWDHK7fi1btuGDD97Gy8uL+vUbuSzj7+/PhQvnUy2Pjo7Gz88fsHVtB9vz6kFBhZzKpOTn509AQCCffDLD5bFcBfdCCCGEEELkKSazc8CcZiCdbPv7noGbM4tKAVVS+lnxnEaCbjeYK5R1K8us/fs/vNZtd2ufKiCpXdM0f6XR6TQYjZaMVNMt9kxwvnwBABgMyWi1WlSquz8VbN68Mc3t9XpP6tdvxOXLl5gx41MMBgMlS5aiUKHCXLlymaef7vVQ9XvqqSY0atSESpUqo9frXZYJC6vGzp3buHDhHCVKlAIgNjaWw4cP0rlzNwDKli2HXq/n1193EhxcwbHtrl3On0/t2nVYsuQHtFoPypUr/1B1F0IIIYQQ4rFgttwNlu8NmBOTUKdcl5icbvLxQShqNYqXpy1ANxjdS1yqQPFyHSPkZBJ0ZyJzxbIoW/dAsuG+F40C4KnHXKFMltbHarVy7NjftrqZTfz33wkWLpxHqVJlqFatBmB7dnn58v/x+efTady4GceOHWXTpg1O+9m7dzfr1v1M48ZNKVy4CNHRUaxYsZwqVao6AuMxY17hvffeJDk5ifr1G+Hl5cW1a1fZt283I0aMpkSJkm7V2cvLiylTPr5vmQ4dOrF8+RJee+1lnn32Ocfo5RqNhl69+gK2rupduz7N4sUL0Ov1jtHLL1++5LSv2rXr0bDhU4wb9wL9+g2kbNnyJCUlERFxlsuXLzoNDCeEEEIIIUSOZLHYguN0A+k7Ze48RpqZFJUKxcsTxdsTxccLxfuePz5eKN6eWO+8xlMPKlXGEpcKmIOzNobKChJ0ZyatlqSOzfFasTHNAdXsXcaTOjbP8lH3DAYDo0bZRu7WaDQUKlSE1q3bM3Tos2jvHLt+/UY899wLrFy5nA0b1lKlSlWmT/+Cvn27O/ZTvHhx1GoV3377Fbdv37rz7HU9Ro4c7SjTvHlL/Px8Wbjwe0emvEiRotSt24D8+Qtk6vvy9vZh5sw5zJz5GdOnT8FqtVClSlVmz/7OMV0YwKhRL2CxWPjxxx9QFCuNGzdj1KgxvP/+2077++CD6SxevIBVq1Zw/fpVfHx8KVOmLO3bd8rUegshhBBCiGxmNqM9cQbtqQhUSQYULz3m8qUxVyybs0bEtlqdAmZHxjnls9ApA2k3BiLLKAXuBNFedwNpLy/ngPpOIK14e6F46uHO46oZkdMSl1lBpSiKkn6x3CMyMi79Qg8prYndVQoonnq3JnbPqu7lQggh7pK2VgiRqR6XgO4RyyltbWbcoz8wqxVVsiHFM9FpDCpmX56U7FZ364xSPPVO2WbnQNozRSDtZRt76gGC6AehOXUOrxW2xN19E5c92mXdZ/SAgoL80i0jQXdWMZvR/nsW7cmzdxvd4DK2X2bcaHRzSuMkhBC5mbS1QojMkq0BXQ6XE9pazakIvFb8AqQX1LXFUr60ixL3bqBAsuHus8/3BtL3DjqWZECVBWGXotc5MtHOgbRn6oy0lyfk4KlwH9fvkATdLjyyoPsh5YTGSQghcjtpa4UQmSHTA7pcJtvbWrMZ35k/uNd9WedBUo+2qAyme7p239PFOzEpa4JoD61T9vm+gbS3F2hzbhD9QB4ycZkdJOh2QYJuIYQQdtLWCiEeWkYCOk898S8MzLHBQ5ZQFHQaFcZkk62LtdUKVgWsVscf1T2vsSp3yt35Y7HaAtw7/8ZqBeVOmZSvLVaX+1FHRqGNuJR+XbPi7Ws1LgYT88Jq78qdsju3tyd4eGRLPcWDcyfozkPfeCGEEEIIITKX9sQZtwaxUgEkG9CeOIO5cvm7waJVQWW1pBuIpg5MUyy7sy+XgakljW1cBrhKinL215YUZe6pk8V2DEdgfOeYpDim/YeIx2+SJ9cUjTrdUblTBtJ4aEGVFU9ni8eJZLpzKMm+CCFE1pO2VgjxQMwWVAmJqOIS8Ny2B/WVG+7NMYzr7uciZ7H6+WCqUdkRQKfs4o3OQ4Jo4UQy3UIIIYQQQrjLYrE9rxuXgDo+AVV8Iqr4BNTxtgBbdWeZOin5gXb/uIdqikoFapVtRGu1GkWtdnptW+b8GrUalVaNFdV9yqhQNGpQ3XmtSVFGpbIN/qVW3Tleim1S/Dt1nTSO5bpfD6K5cMW9H0ZUYHmiEMYGNbP8fIq8I8cF3T/++CPz5s0jMjKSChUqMGnSJMLCwtIsHxsby+eff86WLVu4ffs2xYoV44033qBJkyaPsNZCCCGEECLHslptwXS8LXBWxyXe/Xd8oi24jkuwDY6VhdWwP9dtKRjoFDzeDRZdBZQpyjgCUxVo1Pdsd+9+0g6O0y2jUaPccxxHAPwAsrtXkSmsAtoLV9wqq1LAHPz4zQP9ODMmXsdsiHG7vFafD5134SysUebLUUH3hg0bmDp1Ku+99x5Vq1Zl4cKFDBs2jF9++YUCBQqkKm80GhkyZAgFChRgxowZFC5cmCtXruDv758NtRdCCCGEEI+U1WobTdqegY5PuJORvvPv+ARUcYmZNtK0olGj+Pqg+Hpj9fVB8fVBlZCAx79n3dpeBSS1aoQ5NPih6yLcZ65YFmXrHrcHuzNXkKD7UTEmXuffzQNQrEa3t1GpdVRoveixCrxzVNA9f/58evXqxdNPPw3Ae++9x86dO1m5ciUjRoxIVX7lypXExMSwdOlSPO6M9Fe8ePFHWmchhBBCCJHJFAVVUrKjS/fd7t0punvbu39nRjCtVqP4eqcIpr1RfH2w+qX4t68PeOlTZ3vNZrTnLktAl5NptSR1bI7Xio1pPlfvmNatY/O8Nbp8NjMbYjIUcAMoViNmQ4wE3Q/CaDRy/PhxRo4c6VimVqtp0KABf/75p8tttm/fTrVq1Zg8eTLbtm0jf/78dOzYkWeffRZNNkz8nhe6RgghhBBCPDBFgWTDnYy0PYBO+e8UwbTV+vCHU6lQfO4E0ykCaMXPB6uPN4p9mbfXgw+OJQHdY8FSvhRJPdritW4HJBtQVLau5Pa/8dST1LE5lvKlsruqIhfKMd/6W7duYbFYUnUjL1CgAGfPuu6yc/HiRfbv30+nTp349ttvuXDhAu+99x5ms5kxY8Y8imo75LSuEfPmzWH+/O8cr/3981GyZCkGDhxC/fqNnMr26NGJBg0aMXbseMeyf/89wfDhA5g0aTJt2rRPtX+LxULXru2oU6cekyZN5sMP32XjxnWO9YGB+SlXrjzDho0kNDTtZ/IBrl69Qs+enQH45JMvqVevgdP6NWtWM336hwDs3n3YzTOQtlOn/mPIkH58+eU31KhRy+3t5s2bw9Kli9my5beHroMQQgjxQMxmtCfOoD0VgSrJgOKlx1y+NOaKZbM3mFMUMBjTCKBTPkOdiMry8M/2KmALpv28UXx8sPrdCaZ9fbD62oNpH9u8x2r1w7+/dEhA93iwlC9N/AtPov33LNqTZ+9+h4LL2HogyA8iIos81leWoigUKFCA999/H41GQ2hoKNevX2fevHlpBt0eHposGeXfFB/3QF0jVNY4dLonUq3Tah8uU6/RqNHrPfnqqzkA3LwZyfz58xg/fizffjuPsLBqjrK2QSHV6HR3jxkWFkrJkqXYvn0znTp1SrX//fsPcutWNO3bd0Cn06BWqyhWrDiTJ3+IoihcuXKZb7/9hpdffp7//e8nihVLu9u/h4ftuN7e3uzYsYXGjZ9yWr9t22a8vb1JTEx0quODsh/Pw0OTof1pNLb/tDOjDkKInOFh21ohHiX1fxFow7eiSjagqFSoFAVFpcLjvwiUrXswd22JNaR05h/YYEQVlwBxd56Xtv/b3uXb/tpszpTDKd5etqDZzwfu/K34et/9t58P+Hq7DKZVQLZ9qyuXwxhSCvU/Z1D/ewZVogHFW4+1Qlmslcqi0Wqzr27ZLEe1tToN1KiItUZFxyI1oMu+GuUJitWCxRSP2RiH2RiHxRiH2RhL4u3TD7Q/Dw/1Y3VPnmOC7sDAQDQaDVFRUU7Lo6KiKFiwoMttgoKC0Gq1Tl3Jy5QpQ2RkJEajEZ0u9dfHZMqakRNNpgfrAmUyWdMczfFhRnm0WKyo1SpCQioDEBICwcGV6N69A2vWrKFChSqOsopiK3/v8Vq2bMPChfOIjIwiX74Ap3UbN24gMDA/1arVwmi0YLUq6HQ6x/EqVAglKKgIzz1nGwhvwIAhadbV/pk0atSEnTu3M3bsBPR6PQA3b97kzz9/p1WrNmzatDFTRr60H89ksmRofxaL7TOWOX2FyF3kOy0eB5pTEehW/OJ4bX+O2fE8c7IB7dL1JPVoi6W8m4G30eQ84Fh8IuqU02LZM9NGU6a8B6uX593u3Y7u3j73PEftbZseKj1mBciJ310VVChn+5OSFcjjbY20tY8/RbFiNSVgNsVjMcZiMcVhMcZjMdkCaIspHosx7s7yOMe/zaY4rKaETK3L/WKonCjHBN06nY7KlSuzb98+WrZsCYDVamXfvn3079/f5TY1atRg3bp1WK1W1Hd+7Tx37hxBQUEuA+68LiioEAEBgVy/ft2t8q1atWXevDns2LGVrl17OJYbDAZ+/XUH7dp1vO+z88HBIQBcv37NrePVq9eAvXt/Y//+PTRp0hyAbds2UaxYcUJCKrJp00an8rGxMcya9QV79vxKUlIywcEhjBo1hmrVajiVW7BgLqtW/URSUiK1a9eja9enUx1bURT+97/FrFmzmuvXr1KwYCF69OhF79793Kq7EEIIkWXMZlu3ZdKe51mFrcu117odxI8qiirZ6BRMu5wmy5CxHnppUTx1jpG8nQJoPx/nYFq67opsIuMu3aUoClZz4t3A2BRvC5jv/NsRKKcMnh1/J2D7BUlkVI5q/YYMGcL48eMJDQ0lLCyMhQsXkpSURPfu3QF4/fXXKVy4MOPGjQOgb9++LF68mA8//JD+/ftz/vx55syZw4ABA7LzbeRYiYmJxMbGULRo6u7srhQv/iQVK1Ziy5ZNTkH3vn27SUhIoFWrdvfd/to1W7Dt7vE8PDxo3LgZW7ZscgTdW7duomXLNqnKWiwWxo17katXL/Pccy8QGFiAFSuW8soro/n66++pUMHWZWjlymXMnfsNffsOoFatOhw6dICPPno/1f5mzPiEtWvDGThwKJUqhXLs2FG+/nomer3e6b0LIYQQj5r2xBlUyYZ0y6kAkg34fTE/U46r6DxsQbPL56XvBtfcmUEmr5KALmfLaeMuZQZFUbBaklMEyulnnc0pAmiURxQ4q9RoPPzQ6PzQ3vlbk+Jvrc4PiymB6/8ufDT1yUY5Kuhu37490dHRfPnll0RGRlKxYkXmzp3r6F5+9epVR0YboGjRosybN4+pU6fSuXNnChcuzMCBA3n22WcztV63L+3k2onvsZoS0yyjWB/sOaaIPa+jUrv4GFQqW79vQO3hTZFKQwko1jTD+zffeb7q5s2bfP31DLy9fejVq4/b27dq1Y6ZMz/j+vVrFC5cBLAFwsWKFady5dA0j3flymU+/fQjihQpSvv2nTNwvDZMmDCOxMREbt2K5sSJf5g06X3279/jVG7fvt2cOHGcTz+dSd269QGoW7c+vXt3ZdGi7/nww4+xWCwsWrSANm3aM3r0S44yt25Fs2nTBse+Ll++xMqVy3n11Yl06WL7gad27bokJyczf/53dO7c3em6E0IIIR4l7amIuwNyZQLFQ3t3Oiwfe0Y6xajed/6NLm8H0+7IjQFdbpOTp6SyWgz3ZJbTCKDv/Dtlt21FyZwxFNKnRqPzRePheydg9keru/NvewCdIojWePii0fmj8fBDrfVClc5gWom3TkrQnR369++fZnfyRYsWpVpWvXp1li9fnqV1unFqKYa4C1myb7PxdvqFkiHy5LIMB91JSUk0bVrP8Vqj0TB16qeUKFHK7X20aNGK2bO/YNu2LTzzzAASExPYu3cPzzyTujdBRMRZp+N5enoye/ZcAgMD3T5ejRq18fb24bffdnL16hWCgytQokTJVEH3X38dwcfHxxFwA2i1Wpo0sWXKASIjb3DzZiSNGzdz2rZZsxZOQfehQwcAaNq0ueNHA4Baterw448LuXHjOkWKFHX7PQghhBCZSR0Tn6GA26rXYSnz5N3M9D3dvdF5PPj0WMJJTg7oxKNhtZpSZJTvBs1me6b5nqxzym7bGb12Hobawweth/+dANn3zt/+aHS+LrPQtuy0L2oPH1QqST49rBwXdOdEhYL7cO2f9DPdbgXQ99DqAtzKdAcF987wvvV6PbNnf4fVauXSpYt8880sPvjgHX74YVmag9Pdq0CBglSvXpOtW3/hmWcGsGvXDoxGA61bt01Vtlix4rz33hQsFiunT5/k66+/5O23J7Bw4VI8PT3dOp5Go6F585Zs3bqJq1ev0qGD6yx5XFwsgYH5Uy0PDCxAbKyti9fNmzfvLAtMVSalmJjbKIpChw4tXR7r+nUJuoUQQjxiViva0+fxOHQUzbXIdIvHGzywoMLf04ilVDGSu7Z+BJUUIveKu36QxOjjjmDa1j07dbdtqyX5kdVJrfW+ExD7or2TTXYE0Dp/x7+1qbLQPqhUj89I37mRBN1uCCjWNN0sc+Ktk5zaMSLD+y7dcDregcGplut0mocekU+tVlOhQiUAKlUKpUSJkowYMZgFC77j1Vcnur2f1q3bMWXKe1y4cI4tWzbdyT6XclFnneN4lSuHEhAQwJtvvs6KFUvp33+w28dr2bINo0fbHhFo0aKVyzL+/v7cuhWdavmtW1H4++cDcPywcOvWrVRlnPeVD5VKxVdfzcXDxXNpJUqUdLvuQgghxEMxGPH46wS63/9GfTvOrU0SjFqKfP0SFkVNPn0y5cuaKbFZT6lSVipWtNKhg1nGMBOZTlGsKFYzimIBxYJitaAoZhTrndeOZRZMGismo+nOMts2imIB+zYpymK1OJXjnm3sxyHFNnePaU6xzFbGbIx9oPd37Z+5mXzGbNQaz3uyyrbu2No7wbS9C7dTAH2nnMtEnXgsyCeXh1SoUImWLduwYcNahgx5lgIF3Mt2N2nSjE8++Yjly//H778f5LnnXnBzu+ZUqVKV5cv/R8+efR3TgKUnNDSMVq3aEBCQn0KFXHe9CgurxpIlizh4cD916ti6tJvNZn79dSdhYVUB22jtBQoU5Ndfd9Ckyd0u5jt2bHPaV82atQGIiYmhUaPGbtVRCCGEyEyqWzHoDv+Nx9F/U03RZQnMhzouAcxml6OXa9VWVCoFFIgxeHL4Hzj8z931H3+czKBBmTPtl8gchviLgOIcpNqDxRQBo1Pw6VhvTh2gphWkugxGLWkEs+Z7gmXzPft33sY2Xn7epFLrbAGxPXi+J4C2d812BNCOYNoPtVrGSkhJq8+HSq3L8LgIWn2+LKxV5pOgO48ZPHgY27ZtZvny/zkFz5cvX2bHjq1OZdVqNU2aNMfHx5cGDRry88+rUKlULkcTT8vQoSN45ZXRbNy41u1RwFUqFZMmpR5hPKX69RtRsWJlJk+exKhRY8ifvwArViwjKuomAwYMBWxd1fv3H8yMGZ+QP38Bateuy8GD+/nzz9+d9lWiREm6d+/JBx+8Td++A6hUKRSz2czFixf488/DTJ36qdvvVwghhHCboqC5cAWPQ0fRnjqXKqA2l34SY+0qWMqUQHP6PF4rNqKQetowvdbK9CbbGbvjbu+wwEArdeta8PGBZs0e1YBLeY/ygIHnhUP3v88R2a9guV545SvrCKa1KZ6BVmvcSySJ9Om8C1Oh9aJcPwOABN15TIkSpWjRojXh4SsYMGAIvr6+ABw4sJcDB/Y6ldVoNOzaZRtkrFWrduzcuZ0aNWpRsGCQ28erXbsuYWHV+N//FtOpU7f7zuudERqNhk8+mcHs2TP46qsvSU5OIji4Ap99NssxXRhAjx69iY+PY9Wqn1i9+idq1arD+PFvMW6cc7b+5Zdfo0SJkvz88yoWLJiLl5c3JUqUpFmzFplSXyGEEMLBbEH7zyl0h/9Gc/2m0ypFq8EUGoKpVhWsQXfHLrGUL0VSj7a2+bqTDY7RzO1/P1vnBHMvNOKfM174+CjcuqVm0yYVzz9volChvJuRzCyKomBKiiQ5NoLkuHMkx57DEHuOpNiz2V21TKJGpdbYnvtVa1CptKhUmjvLtHeW3fmjtq3Dsf7uclJso1LfKaPSoNV6YFXUKfZ/z77SPaYmxTHvKZfGMe3bJMdGcOa3VzJ8RgKfbOnyEVCR+XTehR+7IDqjVIqi5KmWODLSveejMiqzp4zIjGe6hRBC3J+0teJRUiUk4vHHcTz+OI46MclpndXXB1PNUIzVKoH3fQYfNZvR/nsW7cmzqJIMKF56zMFlMFcow47f9PTu7Y2Hh0Lr1mbWr7d1Yw0JsTBrVjJVqz6iuXkfY4qiYE6OIjn2HMlxEba/7/yxmhMy7Tj5nngKrWdB10FrqmBU42YArHUqe28waiundXFMdZaPTp2dbe2DjrtUvtm3EnQLtwQF+aVbRjLdmSSvdI0QQgghRMaor99Ed+go2n9OobI4B76WooUw1g7DXKEMuNMbTKvFHBqMOTR1MNCsmYXmzc1s367liScUfvghkbFjPfnvPw3t2nnzyitGXn7ZiIsxQ/McRVEwG6KdgurkuAgMseewmOLd3IsKrWcBzMk30y96j0IhAySgEyIPkaA7E+WFrhFCCCGEcEOKKb+0F644rVJUKswVymCsFYa1WOFMnTN76tRkXn3Vk/r1LbRta6F27URef13P2rUefPyxnk2btMyalUyFCnkn62023LZ1C3cE1+dIjo3AkoFRrT28C+PpVxpP/1J3/pRG71cCQ9zFB8qiCiHyFgm6hRBCCCEyi8GIx9F/0R3+G/Vt56BO8dRhrFYJU41QlHzpd0d8EKVLK6xcebfreoECCnPnJrN6tZkJEzw5elRDq1beTJhgYNQok1vJ9ceF2RDjeN7aHmQb4s5hNtx2ex8eXkF4+t8Jru8E2Xq/kmg8vLOu4kKIXE+CbiGEEEKIh6S6FYvu97/x+OtE6im/8gdgql0FU2gI6B59326VCrp3N9OgQQKvvOLJtm1a3nvPk40btXz5ZTJlyjxew/tYjHEpguu7AbbZEO32PrSeBe9mrf1K3Qm0S6Lx8M3CmovskFempBI5mwyklkPJ4D5CCJH1pK0VD0VR0Fy8autCfjLivlN+ZWYX8oehKPDjjx5MmqQnIUGFt7fCO+8YGDzYlFOq6GAxJaTKXCfHnsvQM9RafeDdzLW/PXNdCq0uc3oaZPZAurlVdre1xsTrMu6SyDLuDKQmQXcOld2NkxBC5AXS1ooH8gBTfuU0Fy6oeOklT/bssXV6bNLEzBdfJFOs2KO/LbSYEzHEnk81Yrgp6Ybb+9DqA9D7lXIKrj39Sj2SbKUEdOmTtlbkZhJ0uyBBtxBCCDtpa0VGuDPll6laRRRvr2yqYcZYrTB3rgcffKAnOVmFv7/Chx8m06uXOUuy3lZzMslx5+8OZhYTQXJcBKbE627vQ6Pzv9MdPGWAXRqtPiDzKywyjbS1IjeToNsFCbqFEELYSVsr3JGpU37lQKdPq3jhBS9+/91W/3btTHz8sYFChR7sFtFqMZAcdwHDPSOGGxOuAu7tU+Phiz7FYGb2P1p9flQ5rR+8SJe0tSI3k6DbBQm6hRBC2ElbK9KUTVN+ZRezGWbN0vHxxzpMJhUFCliZPt1Ap07mNLexWowY4i/e88x1xJ3g2r0pydRa73sGM7sTXHsWlOA6F5G2VuRmEnS7IEG3EEIIO2lrRSrZPOWXK4/ymeFjx9SMGePJP//Yst7du5uYMiUeL80FkuPOYUgxYrgh4TIobgbXGs87metSeOYr7QiyPbyCJLjOA6StFbmZBN0uSNAthBDCTtpaYXe/Kb+s+fNhrB2WLVN+PcrRsRWrGUP8ZWKjzzFjZmHm/VgTq1VNgYAbjO3/PnVC96Z/bI0eT7+SToOZefqXwsO7MCqVOkP1EbmHtLUiN3Mn6JZ5uoUQQgiRNz0GU36ZDTEZCrgBFKsRsyEmzaBbUSwY46+QFBthy1zfGTHcEHcRRbF1J+/VEKo8Ecr0Be9x6Xop3pw1k/aNVjGyx+d4eyaiUnug9yt5dzCzOxlsnXcRCa6FEOIeEnQLIYQQIm9Jd8qvYEy1wnL0lF/uUBQLxoSrToOZJcdGYIi7gGI1pbt9xdLH+OatQSxc/zo//dKBDbu7c/RsWz77NJImzfOhUj2eA8cJIcSjJt3LcyjphiOEEFlP2tq8xTHl15/HUSe4mvKrMqZqlXLUlF+Jt05yaseIDG+n930SY+J197PkKg2efk+iv2e0cL1PMVRqLbt3a3jpJU8uXrRlsUeONPLGGwa8cs6pEjmYtLUiN5Nnul2QoFsIIYSdtLV5g/r6TXSH/0Z7/GTqKb+KBGGsE4a5QtkcOeXXgwbdaVKp0fsWv9sl/M6z13rf4qjU9+8AGRcH77yjZ/FiHQDlylmYNSuZGjXcG0xN5F3S1orcTJ7pFkIIIUTeZLWiOXPeNr/2eRdTfoWUwVg790z5lZrqTnBdCr1fKcez13rf4qg1ugfao58ffPaZgfbtzbzyiienT2vo0MGbl14yMnasEd2D7VYIIXI9yXTnUPKLoBBCZD1pa3OhdKb8MlWthLHmo53yK6MURSE55gyx1w9w+/JOkm+fyvA+yjWZhU+B0Cyonc2tWzBxoierVtlGc69c2Zb1rlxZst4iNWlrRW4mmW4hhBBC5Amq27HoDv+Nx9F/URmcn2O25s+HsVYYpiqPfsovd1lM8cTd+J24aweIu34QU/LN9De6D5U6a9POgYHwzTfJtG9v5vXX9Rw/rqF1a2/Gjzfy/PNGtHKHKYQQDpLpzqHkF0EhhMh60tY+5lJO+XXqHKp7bmnMpYpjrB2GpWz2TfmVFkVRSI49S9y1A8ReP0BC1DFQMu9aLN/sW7wDgzNtf/dz44aKV1/V88svth80ata0MGtWEmXL5qlbTHEf0taK3Ewy3UIIIYTIfcwWtCdOozt09D5TflXBGlQgmyromsWUYMtmXz9A3LUDaWazVWodvkHV8CtSD51XEOf2T3rENc2YQoUUFi5MZtkyM2++6cnvv2to3tyHt94yMGyYCbVM2y2EyOMk6BZCCCHEY0GVkIjHn//g8ccxF1N+eWOqGZqjpvyyZbMjiLt+gNhr+++bzdb5PIF/kXr4Fa6Lb1A11Bo9YBu9/HGgUkGfPmaeeiqBl17y5Ndftbz5picbN2qZMSOZJ5+UrLcQIu+SoFsIIYQQOdrjNOWXxZRA/I0/iL1+gLjrBzAlRbos58hmF66Lf5G66H2LP+KaZo1ixRSWL09iwQIPJk/Ws3u3liZNfHj/fQPPPGPKab38hRDikZCgWwghhBA5z2My5dfdbPbBO9nsv++bzbYH2b4Fq6HWeqa7f60+Hyq1DsVqTLesnUqtQ6vP53b5zKZWw9ChJpo2NfPii54cPKjllVc82bBBy2efJVO4sGS9hRB5iwyklkPJgBNCCJH1pK3Nge435Zdeh6laRYw1q2TrlF8WUyLxkb8Tax9pPOmGy3IqtQe+BavhV6Qu/kXqPXA225h4HbMhxu3yWn0+dN6FH+hYmc1iga+/9uCjj/QYjSoCAhSmTUumWzdzdldNPELS1orczJ2B1CTozqGkcRJCiKwnbW3Ocd8pvwLzYaydfVN+KYqCIe7cnSD7AAk3/0ZRXAeNtmx2HfwL18U3qLpb2ey84MQJNWPGePL337ZHALp0MfHRRwYKFMhTt6F5lrS1IjeToNsFCbqFEELYSVubzXLwlF93s9kH7zybnXY226dgNfyL1MW/cF10vsVRyYPLLplM8PnnOj7/XIfFoiIoyMpnnyXTpo18B3M7aWtFbiZBtwsSdAshhLCTtjab2Kf8OnwUzbV7pvzS3Jnyq/ajnfLLls0+T+y1/cRdP0jCzaNpZ7O9i9q6jBeui09QNTTanDFa+uPiyBFb1vvkSVvWu29fE++/n4y/fzZXTGQZaWtFbiZBtwsSdAshhLCTtvbRujvl13HUCYlO66y+3phqhGKq/uim/LKYE4m/8cedKb0OYkq67rKcLZtdFf8idfErXBe975OSzX5Iycnw0Ud6vv7aA0VRUby4lS++SKZxY/k+5kbS1orcTIJuFyToFkIIYSdt7aOhvhGFx6GjeBw/hcrifL4tRYIw1g7DXDHrp/xyZLOvHyDu2gESov5GsZpcltV5F8GvSD38C9fBJ6i6ZLOzyP79Gl54wZPz59UADBtm5K23DPj4ZHPFRKaStlbkZhJ0uyBBtxBCCDtpa7OQoqA5bZ/y67LzKpUKc0hpTLXDsBQrkqXPa9uy2X/astnXD2BKTCebXbgufkXqoPctIdnsRyQ+HiZP1rNggQ6A0qWtzJyZRJ061nS2FI8LaWtFbiZBtwsSdAshhLCTtjYLGIx4/P2fbcqvW87TXD2KKb9s2ewLjiA74ebR+2ezC9fFr0hdfIOqodF6Z0mdhHt27NDw8sueXL2qRq1WGD3ayOuvG9Hrs7tm4mFJWytyMwm6XZCgWwghhJ20tZlHdTsW3e/H8PjrxCOf8stiTiI+8k/i7kzpZUy85rqOag98CobZstmF66L3k2x2ThMTA2++6cny5bbrpGJFC7NmJVOlimS9H2fS1orcTIJuFyToFkIIYSdt7UNSFDSX7kz5dfLRTfmlKAqG+AvEXTt4J5v9V5rZbA/vwne6jNeTbPZjZMMGLa++qufmTTVarcK4cUZeesmIVpvdNRMPQtpakZtJ0O2CBN1CCCHspK29h9mM9sQZtKciUCUZULz0mMuXtg1yljLasVjQ/pPOlF+1qmAtlHlTflnMSSRE/kns9YPEXdufdjZbpcWnYNidKb3qSTb7MXbzporXXtOzfr0t6129uoWZM5MJDpas9+NG2lqRm0nQ7YIE3UIIIeykrb1LcyoCr3U7UCUbUFSgUrj7t6eepI7NsT5R6JFN+WXLZl+8M51XOtlsr8KO6bx8C1WXbHYuoiiwapWWCRM8iYlRodcrvPGGgZEjTajV2V074S5pa0VuJkG3CxJ0CyGEsJO21kZzKgKvFb8A4Con7LhRUKtRWZ2zjJk55ZfVnEx85J+OKb2MiVddlnPOZtdF71dSstm53NWrKl55xZPt2209LurXNzNjRjKlSuWp29jHlrS1IjeToNsFCbqFEELYSVsLmM34zvwBkg0uA25XMmvKL0VRMMZfItaRzT6STja7ji2bHVQDjYdks/MaRYFFizx4+209iYkqvL0V3nvPwMCBpqycdU5kAmlrRW4mQbcLEnQLIYSwk7YWtH//h9e67W6XN5cpQXKbp1AC/B/oeFZzMvE3jxB7bT9x1w9iTLjispwjm124Dv5F6qL3KyXZbAHAuXMqXnrJk337bFnvZs3MfPFFMkWL5qlb2seKtLUiN3Mn6JYxIIUQQog8THsqwvHsdnoUFSgemgwH3Ib4S7Yg+9oB4u+bzS6EX+G6+Bepg29QTclmC5dKlVJYvTqJb7/14MMP9ezYoaVxYx+mTEmmRw+zZL2FEDmOBN1CCCFEHmZMjsSgi3a7vCrZN90yd7PZd+bNTiObjUqDb8GwO4G2ZLOF+9RqGDXKRPPmFl54wZM//9QwerQXGzaYmD7dQFCQZL2FEDmHdC/PoaQbjhBCZL283tYaE6/z78ZnUFTunwMVGiq0XYLOu7DTcls22xZkx0ceQbEaXW7v4RVkC7IL18W3UA00Hj4P9R6EMJvhyy91fPKJDrNZRcGCVj7+2ECHDubsrpq4I6+3tSJ3k+7lQgghhEiTOSEqQwE3gIIFsyEGrT6A+Mgjjim9jAmXXW+g0uBToAr+RerhV7gOnv6lJZstMpVWC2PHGmnVysyYMZ6cOKFhyBAvevQwMWVKMgEB2V1DIUReJ5nuHEp+ERRCiKyXl9ta9c1ozD//yN+BKzO8rXf+UJJun0w7m+1ZEL8i9SSbLR45gwE++UTHzJk6rFYVRYta+fzzZJo3z5vf85wiL7e1IveT0ctdkKBbCCGEXV5ta7V//4fnpl9JUN/gSKktD79DlQafAqF3stl1JZstst2hQ2peeMGLs2fVAAwaZOSddwz4pj8kgcgCebWtFXmDBN0uSNAthBDCLs+1tSYz+i270f11AoB4ffQDB922bHZd/ArXxa9QTclmixwnMRE+/FDPd9/pAChZ0srMmcnUq5eHvvM5RJ5ra0WeIkG3CxJ0CyGEsMtLba0q6jZe4ZvR3IhyLLtVJR/Hjd9meF8lar9NQPFmks0Wj4XfftPw0kueXLqkRqVSGDXKxMSJBjw9s7tmeUdeamtF3uNO0K1+BPUQQgghRDbSnjiNz4IVjoBb8dCS1LE5hvphD7Q/vW9xCbjFY+Oppyzs2pXAM88YURQVX3+to2VLb44ckdtgIcSjIa2NEEIIkVuZLeg3/4ZX+BZURhMAlgKBRPWow3nrZs7ueS2bKyjEo+HnB198YWDx4kQKFbJy8qSGdu28mTZNh9H1eIBCCJFppHt5DiXdcIQQIuvl5rZWdTsWr9Wb0VyLBMCqsnC9gplrAWdIiP77ofZdvtm3eAcGZ0Y1hXjkoqNhwgRPwsM9AKhSxcKsWclUrGjN5prlXrm5rRVCupcLIYQQeZD2ZAQ+839Ccy2SJI84zhb6i4MVNnLGGu4ccKu02VdJIbJJ/vzw7bfJfPttEoGBCn//raFVK29mztRhkbhQCJEFJOgWQgghcguLBf22vehXridKe4a/i+/g9zIbuBL4L2ZrgqOY3q8kT4SNoUyjj7OxskJkr65dzfz6awKtW5sxGlW8/76eTp28OXtWxisQQmQu+YlbCCGEyAVUsfGofv6JK8kHuV72LCatwXm92oN8xZpQoHQnfAqEoVKpSLx1MptqK0TOULiwwqJFSSxdquXNNz05fFhDs2Y+vP22gSFDTKglPSWEyAQSdAshhBCPMcVqJv7IWqJP/MRt7ytwz3TZOt/iFCjVkfwl26LVBzit0+rzoVLrUKzujySlUuvQ6vNlQs2FyBlUKujb10yjRgm8/LInv/2mZeJETzZs0DJjRjLFi+ep4Y+EEFlABlLLoWTACSGEyHqPc1trTLxBdMQ6ok+GY1JinVeqNOR74ikKlO6Mb1A1VKq003XGxOuYDTFuH1erz4fOu/CDVluIHM1qhfnzPZg8WU9Skgo/P4UPP0ymd28zMkveg3uc21oh0uPOQGoSdOdQ0jgJIUTWe9zaWkWxEHftIFERa4m9th9wHm1Zr+QjMKQ7+ct1xMOzQPZUUohc4OxZFWPGeHH4sAaAtm1NfPyxgcKF89Rtc6Z53NpaITJCgm4XJOgWQghh97i0taakm0Sf30BUxHpMSdedVyoq8ic8QYGSHfF6qhcqtSZ7KilELmOxwOzZOqZP12E0qsif38r06QY6dzZnd9UeO49LWyvEg5Cg2wUJuoUQQtjl5LZWUazE3/idqIi1xFzdDYpzVltn8qJITFmCzJVROnfFUrxoNtVUiNztn3/UjBnjybFjth+0unUz8dFHyQQGZnPFHiM5ua0V4mFJ0O2CBN1CCCHscmJba0q+xa3zG4k6tw5jwhXnlQoEJhSlyO2y5E8oiqV0SZI7t0Dx9sqeygqRRxiN8NlnOmbM0GGxqChUyMrnnyfTqlXOaj9yqpzY1gqRWSTodkGCbiGEEHY5pa1VFIWEm0eIilhDzOXfUBTn7qseHgEUji5JkRtP4mn2QVGpMD5VG2ODGsjoTkI8On/8oeaFFzw5dcqW9e7Xz8jkyQb80r/nztNySlsrRFaQoNsFCbqFEELYZXdbazbEcOvCJqIi1mKIv5hqvW+hWhQ2V6HQ/gQ0ii24tvp4kdy5JZZSxR91dYUQQFISTJ2qZ84cDxRFxZNPWpkxI5lGjeS+LS3Z3dYKkZUk6HZBgm4hhBB22dHWKopCQtTfREes5fblnShWk9N6rT6AwJLtKFCkFQE7/kV7+rxjnbnEEyR3aYXi6/1I6yyESG3vXg0vvujJhQu2KfmefdbIm28a8JavZypyXytyMwm6XZCgWwghhN2jbGstxjiiL24hOmINybHnUq33DapO/tKdyFe0Edrrt/AK34I65u7/WYYGNTE+VQvUac+5LYR4tOLj4d139fzwgw6AsmWtzJyZRK1a1nS2zFvkvlbkZhJ0uyBBtxBCCLusbmsVRSHx1gmiItZy+9J2FIvBab1G50/+Em3JX7ojnn4lQFHw+P0Y+m17UVltN+1WL0+SO7XAUrZEltVTCPFwtm/X8PLLnly7pkatVnjhBSOvvmpEr8/umuUMcl8rcjMJul2QoFsIIYRdVrW1FlMity5uISpiLckxp1Ot9y4QSsHSnclXrAlqzZ278mQDnht34vHv2bv7KVaEpK6tUPx9M72OQojMdfs2vPGGJytWeABQqZKFWbOSCQ2VrLfc14rcTIJuFyToFkIIYZfZbW3irZN3stpbsZqTnNapPXzIX6IN+Ut1xCtfGed112/itXoz6lsxjmXGulUxNKkLGk2m1U8IkfXWrdPy+ut6bt5U4+Gh8OqrRl54wYhWm901yz5yXytyMwm6XZCgWwghhF1mtLUWcxK3L20nKmItSbf+TbXeO7AiBUp3JqB4M9RaT+eVioLHXyfQb96NymKrh+KpI7lDc8zBpR+qXkKI7BMZqeLVV/Vs3GjLeteoYWHmzGTKl8+bWW+5rxW5mQTdLkjQLYQQwu5h2tqkmLNERazh1oUtWM0JTuvUWi8Cn2xJ/tKd8Q4o73oHRhOev/yKx/GTjkWWIkEkdWuNEuD/QHUSQuQcigIrVmiZONGT2FgVnp4Kb75p4NlnTXluPES5rxW5mQTdLkjQLYQQwi6jba3VYuD2pZ1ERawlMfpYqvVe+cpToExnAoq3QOOR9rxB6shoPFdvRhN1y7HMWLMKhub1QSvdyYXITa5cUfHyy57s3GnrX96ggZkZM5IpWTLv3ILLfa3IzSTodkGCbiGEEHbutrXJceeJiljLrfObsJic/x9RafQEFm9BgdKd8QoMQaVS3Xdf2r//w3PTr6hMZgAUnQfJ7Zthrlj2wd+IECJHUxRYuNCDd9/Vk5iowsdHYfJkA/37m0inycgV5L5W5GYSdLsgQbcQQgi7+7W1VouRmCu/ERWxhoSbf6Va7+lfmgKlOxH4ZCs0uvT/w8VkRr/lN3R/3X3u21KogK07ef6AB30LQojHSESEihdf9OTAAVvWu0ULM59/nkyRIrn7dlzua0VuJkG3CxJ0CyGEsHPV1hriLxEVsY7o8xuxGGOc1qnUHgQUb0aB0p3xzl853ay2Y7uo23iFb0ZzI8qxzFitIoaWjcAjDw9pLEQeZLHAnDkeTJ2qx2BQERCgMHVqMt27m3Nt1lvua0Vu9tgG3T/++CPz5s0jMjKSChUqMGnSJMLCwlyWXbVqFRMnTnRaptPp+Pvvv12Wl6BbCCGEnb2tVaxmYq7uJipiLfE3fk9VTu/7JAVKdyawZBu0uowNcqb95zSeG3eiMpoAUDy0JLdpjLlKSKa8ByHE4+m//9SMGePJX3/ZxnHo2NHE9OkGChbMcbfmD03ua0Vu5k7QneN+Xt+wYQNTp07lvffeo2rVqixcuJBhw4bxyy+/UKBAAZfb+Pr68ssvvzheu5t5EEIIkbcZ4q9y7dQaos9twGyIdlqnUmnJV6wxBUp3wqdgtYz/32K2oN+2F90fdwdcsxQIJLl7a6wF82dG9YUQj7GQECsbNiQyY4aOzz7TsW6dB/v3a/j0UwPt2pmzu3pCiEyU44Lu+fPn06tXL55++mkA3nvvPXbu3MnKlSsZMWKEy21UKhVBQUGPsppCCCEeU4rVTOy1A0RFrCHu+kHAOauk83nC9qx2ibZ4eAY+0DFUt2PxWr0ZzbVIxzJTaDDJbRqDzuNhqi+EyEU8PODVV420bm1mzBhP/v1Xw6BBXvTqZeLDD5PJly+7ayiEyAw5Kug2Go0cP36ckSNHOpap1WoaNGjAn3/+meZ2iYmJNGvWDKvVSqVKlRg7dizly6cxL6oQQog8yZh4g+hz64k+tx5T8k3nlSo1+Yo2okDpzvgWqoFK9eCT6GpPRuC5bjsqgxEARavB0KoRpqoVybUPbAohHkpYmJUtWxKZNk3H7Nk6li/3YPduDV98kUzTptItW4jHXY4Kum/duoXFYknVjbxAgQKcPXvW5TalS5dmypQphISEEBcXx/fff0+fPn1Yv349RYoUeRTVFkIIkUMpioW464eJilhD7NV9gNVpvc67CPlLdSB/yfZ4eLl+hMltFgv6nQfQHbw70rk1MB9J3VpjLVzw4fYthMj19Hp4+20jbduaeeEFLyIi1PTq5c2QIUbeftuAj09211AI8aByVND9IKpXr0716tWdXrdv356lS5fy8ssvpyrv4aF5LBINWq0mu6sghBCPLVNSFJFn1xN5Zi3GxGvOK1VqAp5oQFDZzhQoXh+L1fU+MiQmDo8Vm1BfunssS6VymDs3R6vXZcIBhBB5RaNGsHt3Mu++68F333kwf76OnTu1fP21kXr1MqPBevTkvlbkdTkq6A4MDESj0RAVFeW0PCoqioIF3csSeHh4ULFiRS5cuOByvcn0+HTRkVEehRDCfYpiJT7yD6LOriHm6h5QnNtQrWdBCpTqQP5SHdB5FwLAYn34tlZz5jyea7ejTkq21UOtxtCyIaYalW3dyaUtF0JkkIcHfPihhdatTbz8sicREWratdPz/PMmxo834OmZ3TXMOLmvFXnZgz+0lgV0Oh2VK1dm3759jmVWq5V9+/Y5ZbPvx2KxcPLkSRlYTQgh8giz4TY3Ti7l3839Obv7VWKu/Joi4FbhV7gupep9QKW2SylSaYgj4H5oViu6XQfwXr7BEXBb8/mROKAbppqh8vy2EOKhNWliYdeuBPr2NaEoKmbP1tGqlTd//ZWjbuGFEOnIUZlugCFDhjB+/HhCQ0MJCwtj4cKFJCUl0b17dwBef/11ChcuzLhx4wCYNWsW1apVo2TJksTGxjJv3jyuXLlCz549s/NtCCGEyEKKopBw8y+iItYSc+VXFKvJab1WH0j+Uh0oUKoDOp+imX58VXwCnj9vRXvhimOZqXwpkjs0By99ph9PCJF3+fvDjBnJtGtnYtw4T/77T0O7dt688oqRl1824iETIgiR4+W4oLt9+/ZER0fz5ZdfEhkZScWKFZk7d66je/nVq1dRq+/+uhcbG8ukSZOIjIwkX758VK5cmaVLl1KuXLnsegtCCCGyiNkYy60Lm4iKWIshLvVjRL5BNShQpjP+RRuiVmfNnajm3CU8f96KOjEJAEWlwtCsHqY6VSW7LYTIMm3bWqhdO5HXX9ezdq0HH3+sZ9MmLbNmJVOhwuP5rLcQeYVKURQl/WK5R2RkXHZXwS06nUaefRFC5ArGxOuYDTFul9fq86HzLux4rSgKidHHiYpYy+1LO1CsRqfyGl0+8pdsR4HSHdH7Fs9Q3TLU1lqt6Pb+ge63Q9hDa6ufD8ldW2EpnvnZdCGEcEVRIDxcy/jxnty+rUKvV5gwwcCoUSY0OXS8MrmvFblZUJBfumUk6M6hpHESQuQGxsTr/Lt5QKpA+X5Uah0VWi9C4+HDrQtbiIpYS3Js6mkjfQpWpUDpzuR74inUmgcbIdzdtlaVkIjnmm1oz11yLDOXfpLkzi1QvL0e6NhCCPEwrl1TMXasJ1u32jqu1qlj5ssvkylTJufd2st9rcjNJOh2QYJuIYR4dBJvneTUjhEZ3s6/SEPiI3/Hakl2Wq7x8CWwRBsKlO6Mp3/Jh66fO22t5uIVPMO3oo5PAGzdyY1P1cbYoIZ0JxdCZCtFgSVLPHjrLT0JCSq8vRXeecfA4MGmHNU8yX2tyM0k6HZBgm4hhHh0HjTovpd3/soUKN2ZgOJNUWsyb6Cy+7a1ioLuwBF0Ow+guvNfpdXHi+QurbCULJZpdRBCiId14YKKl17yZM8eW9a7SRMzX3yRTLFiOeM2X+5rRW7mTtCd4wZSE0IIIQDUWm8CS7SmQOlOeOUr+2gPnpSM17rtaE+fdywyl3iC5C6tUHy9H21dhBAiHSVKKKxcmcS8eR68/76eXbu0NGniw4cfJtOrlzlHZb2FyIsk051DyS+CQojc4EEz3YVCBlAopC8abdYGuK7aWvXl63iFb0YdGw+AAhgb1MT4VC1Qy9y4Qoic7fRpFS+84MXvv9tGVWvXzsTHHxsoVCj7bvnlvlbkZu5kuuXuQQghRI6T74mnsjzgTkVR8Dh0FO/F4Y6A2+rlSVLvDhib1JGAWwjxWChXTmHt2kTefNOAh4fCxo0eNGnizdq10sFViOwidxBCCCFEsgHP1Zvx3LoHldU23625eBESh/bEUqZENldOCCEyRquFl14ysnlzIpUrW4iKUjNsmBejRnly+3Z2106IvEeCbiGEEFlGIec/waS+FonP/BV4/Hd3WjJj3WokPdMZxd83G2smhBAPp3JlK5s2JfLKKwbUaoVVqzxo3NiHbdty6ITeQuRSEnQLIYTIEob4S1w+8kV2VyNtioL68DG8f1iN+nasbZGnjsQebTE0rw8auSkVQjz+dDqYONHI+vWJlCtn4do1NX37ejNunJ74+OyunRB5gwTdQgghMpXVYuT6iR/4b+sQkm6dyO7quGY04blmGx7rd6Ky2Ab3sRQtRMKQnljKl87mygkhROarWdPK1q2JjBxpBGDRIh1Nm/qwd6/8wChEVpOgWwghRKaJjzzCyW3DuHbiexSrKbur45I6MgrvBSvw+OeUY5mxZhUS+3dFCfDPxpoJIUTW8vaG9983sHp1Ik8+aeXCBTVdu3ozaZKepKTsrp0QuZcE3UIIIR6a2XCbC4c/4sxvL2OIv2hbqFIT8GSr7K3YPbRH/8V7wSo0UbcBUHQeJHVtjaF1I9BKtkcIkTc0bGhh164EBgywZb3nzNHRooU3f/whoYEQWUG+WUIIIR6YoihEn9/Iv1sGcuvCL47l3oEVCW72LUUrD0el1mVonyq1Dq0+X+ZW1GRCv34HXut3oDKbAbAUKoBpRG/MFctm7rGEEOIx4OsLn35qYMmSRAoXtnL6tIb27b356CMdSs4fA1OIx4pKUfLW1yoyMi67q+AWnU6D0WjJ7moIIUSakuPOc+nPz0i4+ZdjmdrDh6KVR1CgdEdUKlvm2Jh4HbMhxu39avX50HkXzrR6qqJu4bV6M5rIaMcyY7VKGFo2ROejl7ZWCJHn3boFEyd6smqVBwA//ZRIkyaZ1zbKfa3IzYKC/NIto30E9RBCCJGLWC0Gbvz3Izf+W4KimB3LA4o344kqY/DwKuBUXuddOFOD6IzQ/nMKz427UBltz5crHlqS2zbBHBqcLfURQoicKDAQvvkmmc6dzezbp6FaNQmQhchMkunOoeQXQSFEThR343cuHfkcY/wlxzKdd1GKVXsZ/yJ1s7Fm9zCb0W/di+7P445FloKBJHdrjbVgfscyaWuFECLrSVsrcjPJdAshhMgUpuRbXP37K25d3HJ3oUpDofJ9KFxhAGqtZ/ZV7h6qW7F4hW9Cc+2mY5kpNJjkNo1B55GNNRNCCCFEXiRBtxBCiDQpipXocxu4emwOFtPdnkLeBUIpXm0sXvnKZGPtUtP+dxbP9TtQGWwj8ipaDYbWT2EKqwAqVTbXTgghhBB5kQTdQgghXEqOjeDin5+SGHXMsUzj4UfR0JHkL9UelSoHTYBhsaDfsR/doaOORdbAfCR1a421cMFsrJgQQuQN5cr5snBhEg0bpt+NvGtXL9q1MzNypOkR1CxtL7zgSb58Ch98YMjWeojcT4JuIYQQTqzmZK7/u4gbp5aCcvfmKfDJVhSt8jwenoHZWLvUVDFxeIVvQXPlumOZqWJZkts1BX3GpisTQojM1LWrF4cPa9BqbZ1tihe38tprRjp3Nqe/sciw6dN1HDum5ocfkrO7KkI4kaBbCCGEQ+y1A1w+8gXGxKuOZTqfYhSv/gp+hWplY81c05w+j9fabaiSbVkKRaPG0KIhphqVpTu5ECJHmDTJwMiRJhQFtm7VMHiwF9WrJ/Dkk3lqLGMh8rQc1DdQCCFEdjElRXH+4HtE7B3vCLhVKi2FKwwipOX3OS/gtlrR7dyP908bHAG3NZ8fiQO6YaoZKgG3ECLHUamgVSsL+fIpnD5tuwWPj4eBAz2pVMmHsmV96dzZi2PH7t6eHz2qpl07b8qU8aVCBR/69/dyrIuMVDFqlCehoT5UqeLDW2/pMaTRS3rPHg3lyvny/fcehIX5UL68L3PmeHDqlJq2bW37HzjQk4SEu9scOaKmQwdvypXzpVEjb1atupurs1rho490VKpkO/a8eakHqVy9WkuTJrbtmzXTc/Cg+2HHX3+p6d7di+BgXypW9GHiRH2652vDBi0zZujYskVLqVK+lCrl66jrd9950KCBN6VL+1K3rg/bt2scx0pMhBEjPCld2pf69X3Ys+fuOpPJ9j5r1/YhJMSXAQO8uHbN9v+LosDkyToqV/ahTBlf6tXzYfPmu9um9MILnrz1lt7xOiYGChXy48IFlWP9Sy95MnCgJ6VK+dKkiTf797vel3g8SdAthBB5mKJYuXn2Z/7dOpDbl3Y4lvsUrEpwy3kUqTQEtUZ/nz08eqq4BLyWrEG/70/HMlP5UiQM6Ym1aKFsrJkQQqTNaoWNG7UkJakIDbUCtsCte3czhw4lcPx4PFWqWHn2WS/sE/pOmOBJ69ZmTp+O56+/Ehg92ujYbuBALwoVUjh4MIFduxI4flzN55+n/UhNfDxcvKjm8OEE5s5N4t139bz7rp5585I4ciSec+fU/PCDLXiOiYE+fbzo1s3EiRPxTJ9uYOxYTw4csAWCS5dqWbrUg59/TuLAgQT++ktDfPzdY23dquHdd/XMnJnMyZPxvPKKmQEDvImOTv88Xb2qont3bzp2NHP0aDy//55Aly7mdM9X+/ZmXnrJSKtWZs6di+fcOVuF5s3zYM4cHV9/nczZs/GsXJlI8eJ3exmEh3swaJCJ06fj6dnTxIsv3p2NY8oUPYcOaVi3LpG//46nTBkrI0bY1u/cqWHVKg+2bUvk7Nl4VqxIpGxZa/pvMA2rVmnp189WjyFDTAwc6EVMzAPvTuQwEnQLIUQelRRzhtO7xnD5yOdYTbb0hkbnz5M1x1P2qS/w9CuZzTVMTXPuEt7f/4T2oi0br6jVJLdoQPLTbcErZ/04IIQQAB9+qKdcOVvmdcgQT155xUhQkC3o8/ODrl3N+PiApye8/rqBM2fUjmyqh4fCpUsqrl1ToddD/fq2cTaOHFFz9qyad9814O0N+fPDSy8ZWbny/tMivv66AZ0OmjSxEBio0Lq1mWLFFPz9oUULC0eP2oLqLVu0FCigMHy4CQ8PaNDAwtNPm1i+3JbtXrnSg2HDTJQvb8XbG956y4DVereH0fff6xg92khYmBW1Gjp3tlCunJWtW9N/svWnnzyoWtXC0KEmPD3B2xvq1bO4db5cWbDAg9deM1C1qvXOc/UKwcF3g+OWLc00bGhBo4G+fU1cvKgmOtoW4M+f78F77xkoXFhBp4OJEw0cPKjh8mUVHh5gMMC//6oxmWz7LVv2wR8ZaNTIQps2FrRaGDzYRFCQlc2b5Ung3EI+SSGEyGMs5iSun1hI5OnloNy98Qgs0ZYnqoxCqw/IvsqlxWpFt/cPdL8dwn5rZfXzIalra6zFi2Rr1YQQ4n7efNPgGKX77FkVAwd6kS+fwqBBJpKS4J139GzbpuXWLRXqO+mwqCgVRYsqfPFFMp98oqdlS28CAhSGDTMxbJgtMIyJgeBgX8dxFAUs9xk43NcXvO72TsfLC0fwb3utkJBga2GvXFGneua8ZEmFfftsQfm1ayqefPLu/x+FCino9XfLX7yoYsoUPdOn3/0x1GyGa9fSz/dduqSidGnXGeP0zpfr/akpUybtDHShQne38/a2/Ts+XoXVComJKrp08XZ6Ykmng8uXVTRqZOG114xMm6bn5Ek1jRubefddAyVLPljgXby49Z7XClevSn40t5CgWwgh8pDYq3u59NcMTIl3R/rW+z5J8epj8Q2qno01S5sqIRHPNdvQnrvkWGYu8yTJnVqgeHvdZ0shhMhZypRRaNHCwpYtWgYNMvH11zqOHtWwdm0iTzyhEBMD5cv7ObqXly6tMHt2MooCBw5o6NnTi1q1LDzxhJWCBRWOHUu4/wEf0BNPWLl40TlMuHBBxRNP2ALDIkUULl68GxBGRqowGFQptlcYNszA4MG2Hxt0Og1GY/pTiYEt2Ny1y/XzzOmdL7WLGLV4cSsREWpq185Y1+/8+RW8vRV++SWR8uVdbzt0qImhQ03ExsLrr3vy5pueLF6c9H/27js8qir/4/j7Tp/0EBJ6770IShOlKqCCCFjW3hU7LtjWrlh3FV1de2FdFQSsiA1FQUBEBESQXgIhhBBCyvS5vz8GB/nRAiSZlM/reXzgnrnlMwNe8p1z7jkH7Bcfb+L5S3N29oFBMzP3b9u61aBOnWMfri4Vi74+ERGpBgKeHDYuuJcN8++KFtyGxU7tNpfTcsBrFbbgtm7ZRtzrH0QLbtMw8J1yIp4xw1Rwi0ils3mzwTffWGnTJlKAFhQYOJ0myckmhYWRoeh/9f77NnbsMDAMSE42sVgihWWXLmHq1TOZONFBYWGkl3vLlsi5S8PAgUF27rTw+ut2gkFYsMDKtGl2Ro+OPFt99tlB3njDztq1Bh4PPPKIA4tlXw/v5Zf7+fe/HSxdasE0I5OVzZljZdu2I09yOWpUgF9+sfLmm3Z8vsixf04qdqTPKz3dJDPTQvAvK7JdfHGAp55ysnx5JEtmpsHq1UcugSyWyLH33edk69ZI7l274MMPI19GLFli4aefLPj97B0Gb2K1HryXu2PHEN9+ayM726CwEJ566sBn7+fOtfLVV1aCQZg82U52toVBg7S0XFWholtEpAozzRA566az6qtLyN/2fbQ9Ib0rrQa+Qa02F2OxVsC1rE0Tx/wluN/5GEthpCcnHB+H5/wz8fc6QbOTi0il8dBDzuhs2meeGUffviHGjYtMiHbttX6sVmjXLoFTTomnW7f9e4O//95Gv35xNG6cwMUXu7n3Xh8dOoSxWuG///WQlWWhd+/ITN5/+5ubDRtK50f7lBR4991iPvjATqtWCYwb5+SJJ7zRZ6svuCDAqFEBzjorju7d4+nQIUzCvpHunHZaiH/8IzL5WosWCXTq5OaVVxyES9BxW7euybRpxUyfbqNduwS6dYvnk09sJfq8zjorQGKiSZs2CTRvHgl01VUBLr3Uz1VXuWnSJIFRo+LIzCzZvyH33OOjW7cQI0dGZj4fNCie777b9wXAhAkuWrVKoH37BLZvt/DIIwefPn7UqCA9e4bo1Suefv3iGTjwwGJ65Mggkyfbad48gVdftfP22x5SUkoUUyoBwzTNarVIYE5OQawjlMjRDMMRETmY4rzVZC55Gs/uP6JtNmcKdTuMJaXBQIyKWrgWe3F/Ohvbuk3RpmCjunjPGoSZEFeql9K9VkSk7Olee3g33ugiOdnk4YcPseabVGjp6YlH3EfPdIuIVDGhQDHbV77OzrXTgX3dCjUan0Gd9ldjcyTFLtwRWLZm4/7wSyx7Iku9mIC/9wn4+3Q7+MN6IiIiIhWcim4RkSokf9sPbF06iYAnJ9rmSmpMvc63kVCzYwyT7RUMYlu5DtuaDRgeH6bbSbBFE4Ktm2L/dSXO2fMx9o4/DLtdeM8aQKhpwxiHFhERETl2Gl5eQWkYjogcDX9xNluXTmJP1rxom2FxUKvNJaS3GIPFcvi1W8uDdc0G3J9+i+H1YRpgmOz71WKJFtsAwfq18Q4fhJmUcJgzHj/da0VEyp7utVKVaXi5iEgVZ4aD7Fw3ne2/v0445I22J2Z0p16XW3HG141hun2sazbg/mBWdNsw/9+vfym4fT064+97IlhLZxZeERERkVjSA3IiIpVU8a6VrP72WrYtfyFacNucNWh44r006f1EhSm4CQZxf/otAIebus0ETLsN/8ndVXCLSJUxY4aNK690xTpGlZCZadC4cQJ79hz7OUaPdh9yHXCRsqKiW0SkkgkFCsn89RnWfHc93vy1e1sN0poMp/Wgt0it379CzUxuW7kOw+s7bMENkYLcCASxrVpfHrFERMpcOBxZS/q22/yxjlIl1K9vsnFjIUklnA90xAg3L720/+NVt97q54EHnIc4QqRsaHi5iEglYZom+VvnsHXZcwS9udF2V3Iz6ne5jfga7WKY7tBsazZEn90+EtMA2+r1BNu3LPtgIiJl7OuvraSmmrRtW4IFqv+fYDAy6KcCfYd61IJBsFWwaqNnzxB79hgsXGjlpJP0nLmUD/V0i4hUAv6iLDb8eCebfro/WnBbrC7qtL+Wlv1eqrAFN4Dh8ZWo4IZIYW54tE6piFQNX3xho0+f/Qu77GyD665z0b59PM2bJ3DWWW48nshrGRmJvPaanb5942jcOIGiIvj1VwvDhsXRvHkCffrEMX36vip22TILQ4bE0bRpAq1bx3PhhW4ATBMefNBBu3bxNG2aQI8e8Xz5pTX62gsv2OnePZ6WLRM491w3GzdGKvv//MfOyJHu/fJ++KGNXr3iotszZtg45ZRInsGD4/jpp33lxIgRbh54wMno0W4aN07gm28OHMZ9440ubr7ZxcUXu2jcOIFTToljwYJ9+xUWwrhxTtq3j6d9+3huv91JUVHktc2bDTIyEsnP33eu225zcvXVLpo0SaBnz3jmzYuc6957nSxYYOWhh5w0bpzAeedF3pdhQJ8+Qb74QkPMpfyo6BYRqcDMcJAdq99l1deXUpC9INqeVLsnrQa9SUbL8zAsFawb4f8x3U7MEvbUmEZkfxGRquC336y0aLGv6A6H4aKL3NhsMHduEatWFXLXXX4sf/mJfNo0O1OmeFi3rpBAAM47z83ZZwdYubKQJ57wcdttLhYujBSMd9zhYvDgIGvXFrJ0aRFjx0aGsX/3nZXp0+18800x69cX8sEHxTRrFultnzLFxn/+4+CttzwsW1ZIq1ZhLrrITTAII0cGWbjQytat+27aU6faGT06CER67u+/38lzz3lZvbqQm27yc9FFcezatS//++/buPNOHxs2FNK378F7kqdPt/G3vwVYu7aQyy4LcPHF7mghfffdLjZssPD990XMmVPM2rUW7r330P8ufPihnUsuiZxr9OgAN90UeX7+wQd99OgR4h//8LFxYyHvveeJHtOyZZjfflPRLeVHRbeISAVVlLuC1bOvJuu3lzBDkd5fu6smjU56kMY9H8URVzvGCUsm2KLJUfV0B1s2LdtAIiLlZPdug8S/rCa0ZImF1astPPGEl5SUyNDrHj1COP9SU95wg5/atU2cTvjmGxtpaSZXXhnAbodevUKcc06AKVMiX7ba7SaZmQbbtxs4nZGh05F28Plg1SoLgUDkWehmzSI34qlT7Vx5ZYC2bcO4XHD33T62brXwyy8WMjJM+vYNMW1a5DnonByDOXOsjB4dAOD11x2MHeunY8cwFguccUaQ5s3DfP31vi9/R44M0rVrGMMA9/6d5lF9+oQ47bQQNhtcemmA9PQwX35pIxyGadNs3H23jxo1IC3N5K67fEyZYid8iBH6AwcG6d07hNUK558fYMsWy35fAhxMYiLk51ficftS6ajoFhGpYIL+AjKXPM3aOWPx7vlzUjELNZudQ6tBb5FSr2+FmijtSMJJCZSk5jYB0+Uk2FpFt4hUDSkpJgUF+7YzMy3UqWMeshgFqF9/X3W5bZuFBg32v4M2amSybVvkR/hnnvHi9RoMHBhHr15xvPZapFju0yfE3//u5/HHnbRuncBll7nYtCny70ZWlkHDhvuu4XRC7dphsrIi5xwzJsDUqZEiesYMG927h6hfP5JhyxaDRx910rx5QvS/FSssbN++r6SoV+/Iz6//9T1Gtk2ysizs3Gng9xv7vedGjUx8PoPc3IP/u5eRsW/fuLjI7wsLD/9vZEEBJCeX8NtgkVJQscckiohUI6ZpsjtzNtuWPU/Qlxdtd6e0pH6X24hLbR3DdMfGyMvHPePL6MzlJgdfNuzPH308Z/SveLPuiIgco/btQ6xZYwUiw7Pr1w+TlWXg9YLrEKuI/fU71bp1w2zZsv89cfNmg7p1I0VrkyYm//63F9OEhQutjB7tplu3EJ06hbn88gCXXx5gzx4YP97F3Xe7+O9/PdSpY7J5874i2e+H7dst1KkTOefppwe5/XYXS5damDrVzmWX+f+Sx+SKK3xcemngkO/ZUoIuvczM/XfautWgTp0wNWuaOBwmW7YY0WJ6yxYDp9MkLS3Sq380DpVl9WoL7dtrEjUpP+rpFhGpAHyFW1k/7+9sXvRQtOC22NzU7XgDLU59oVIW3Hi8uKfMxOKJrCEeyqgBTgdA9Bnv6LPeLieeUUMItWhc/jlFRMrI4MHB6MReAF26hGnePMyECS7y8yOzey9YYMV3iPkjBw4MsnOnhddft0f3nTZt3zPW779vY8cOA8OI9NxaLJFCc8kSCz/9ZMHvjxT3cXEmVmukiB01KsDrr9v54w8LPh9MnOikTp0wXbtGim63G848M8CjjzpZvdrCWWcFo3kuv9zPv//tYOlSC6YJxcUwZ46VbduOrhieO9fKV19ZCQZh8mQ72dkWBg0KYrFEhqc/+qiTvDzYtQsefdTJ6NGBEhXz/196usnGjQceOHeujcGDVXRL+VF3gohIDIXDAXJWv0f2qsmY4X29Ccl1T6ZuxxtxxGXEMN1xCIZwT5uFddduAEJpqRT/bQTYrNhWrce2ej2Gx4fpdhJs2TQypFw93CJSxQwcGOLuuw1WrrTQpk3kOej//tfDvfc66dkzHr/foH37EO++6zno8Skp8O67xdxzj4tHHnFSu3aYJ57w0qNHpGD8/nsbDz7opKjIID3d5N57fXToEOb7763cd5+TjRst2O3QrVuIJ56IfAF67rlBcnIs/O1vbvLzDbp0CTF5sme/W/CYMUFGjIhj5MgACQn72k87LYTPF5nMbdMmCw6HSdeuYR57zHtUn8vIkUEmT7Zz1VVuGjUK8/bbHlJSIq898oiXe+910qdPPBDpeX/ggWNb1eLqq/3cdJOL5s0TOOmkEO+842HBAiuJiWb0MxQpD4ZpmtXqgYacnIIj71QBOBxW/H7dDESqssKdy8hc8jS+gk3RNrs7g3qdbia5bu8YJjtOponr09nYf1sNQDjOTfElIzFTkmIc7EC614pIWZs+3cbnn9t45ZWjK0yrkr/ea2+80UVyssnDD8dmecgxY9xcf72fU0/VvV9KR3p64hH3UbeCiEg5C/ryyfrtJXZtmrmv0bCQ3mwUtdpeitUWd+iDKwHH3J+jBbdps+IZPaRCFtwiIuVh5MggI0cGj7yjlIspUw4+qkCkLKnoFhEpJ6Zpkrf5S7Ytf4GQPz/aHpfahvpdbsOd0iKG6UqH7bfVOOf+DEQmR/OeNZBw3VqxDSUiIiISQyq6RUTKga9gC5m//ovCnF+ibRZbPHXaXUla07MwDOthjq4crJu34frs2+i2r39Pgq20/JeIiOzz3HPVd5i9VF8qukVEylA45GfH6v+x4493MMP7llhJrncq9TregN1dM4bpSo+Rm4d72iyMcGT2W3+XtgRO7BTjVCIiIiKxp6JbRKSMFOYsIXPJP/EVbom2OeJqU6/zLSTV7hHDZKXLKPYQN2UmhjcyKU6waQN8g0/ef7FZERERkWpKRbeISCkL+nazbfmL5G3+Yl+jYSW9xRhqt74Ei80Vu3ClLRjE/cEsLLv3ABDKSMMzYjDHtKCqiIiISBWkoltEpJSYZphdmz4n67eXCPn3RNvjarSjfpdxuJOr2PPNponr02+xbt0OQDghHs/ooeB0xDiYiIiISMWholtEpBR492wkc8k/KcpdFm2z2hOo0+5qajQ5A8Ooej2/jjkLsa9cC4Bpt0WWBktKiHEqERERkYpFRbeIyHEIh3xkr5pMzur3MM1967CmNBhI3Q7XY3fViGG6smNfuhLn/CUAmIaBZ/ggwrXTY5xKREREpOJR0S0icowKsheR+eu/8Bdti7Y54utSv/OtJNbqHsNkZcu6IRPnrO+j276BvQm1aBy7QCIiIiIVmIpuEZGjFPDmsm3ZC+zO/CbaZhg20lueR63WF2GxOmOYrmxZcnbhnvHFvqXBunUg0K1DjFOJiIiIVFwqukVESsg0w+za8ClZK14mFCiMtsendaR+l3G4khrFMF3ZMwqLcU+dieHzAxBo0RjfgF4xTiUiIiJSsanoFhEpAU/+ejKXPE3xrhXRNqsjiTrtr6VGo9Or5ERp+wkEcH/wOZb8AgBCtWviPWuglgYTEREROQIV3SIihxEKeshe9TY5a6aAGYq2pzY8jbodrsPmTIlduPISDuP6+BusWTsim0kJkaXBHPYYBxMRERGp+FR0i4gcwp7tC9j66zP4i7dH25wJDajf5TYS0rvEMFn5cn67APvqDQCYDjue0UMxE+JjnEpERESkclDRLSLy/wQ8O9m67Hnyt34XbTMsdjJa/Y2MlhdgsTpiF66c2Rf/huOnpcDepcHOPo1wRlqMU4mIiIhUHiq6RUT2Ms0Ques/JmvFq4SDRdH2hPQu1Ot8K67EhjFMV/6sazfh/GpudNt3el9CTRvEMJGIiIhI5aOiW0QE8Oxew5YlT+PJWxVtszqSqdtxLKkNBmEYRgzTlT9L9k7cH32FYZoA+Hp0JtC5bYxTiYiIiFQ+KrpFpFoLBYvJ/v1NctZ9AGY42l6j0VDqtL8GmzM5huliwygojCwN5g8AEGjdFP+pPWKcSkRERKRyUtEtItVW/rZ5bF36LAHPjmibM7ER9buMI6FmxxgmiyGfH/fUz7EURIbXh+pm4D1jAFSznn4RERGR0qKiW0QqNX9xNkFffon3j/RcG2xdOok9WfueVzYsDmq1vpj0ludisVTTpbDCYdwffYU1e2dkMyURz6ghYNc/FSIiIiLHSj9JiUil5S/OZtWXF2GG/SU/yLBiWGyYIV+0KSGjO/U734IzoV4ZpKwkTBPnV/Owrdsc2XQ58IwehhkfF+NgIiIiIpWbim4RqbSCvvyjK7gBzBBmKASAzZlK3Y43kFK/f7WbKO3/sy9ahuOX3wAwLRY8I08nXDM1xqlEREREKj8V3SJSLaU1OZPa7a7G5kiMdZSYs63egPObH6Pb3iGnEGpUjXv9RUREREqRim4RqXbqd51AWuMhsY5RIViyduD6+Gv+7Of39T6BYMfWMc0kIiIiUpVYYh1ARKS8uZObxTpChWDkF+Ce+jlGIAhAoG0L/Cd3j3EqERERkapFRbeISHXk9eGeOhNLUTEAwfq18Q7rp6XBREREREqZim4RkeomFMI940usObsACKcm4zlnCNisMQ4mIiIiUvWo6BYRqU5ME+cXP2DbmAlA2O2ieMxQiHPFOJiIiIhI1aSiW0QqLTMciHWESsex4FccS1cCYFoteM85HbNGSmxDiYiIiFRhKrpFpFLy7tnA5sUTYx2jUrGtXIfzuwXRbe+w/oQa1IlhIhEREZGqT0uGiUilYpomO9fPIGv5fzDD/ljHqTQsmdtxffJNdNvX90SC7VrEMJGIiIhI9aCiW0QqjYA3ly2LH6cg+6dYR6lUjLw9uKd9jhEKARDo0Ap/r64xTiUiIiJSPVTI4eXvvPMO/fv3p0OHDowePZply5aV6LjPPvuMVq1acf3115dxQhEpb/nb5vHH15fvV3CnNhyCYbEf1XkMiwObM7m041VcHh/uKZ9hKfYCEGxUD++QU7Q0mIiIiEg5qXA93TNnzmTixIk88MADdOrUibfeeosrrriCWbNmkZaWdsjjMjMzefzxx+nWrVs5phWRshYKeti27AV2bfwk2mZz1qBBtztIqnUitdteStCXX+Lz2ZzJOOJqlUXUiicUwj19FtZduyObaal4Rp4GVi0NJiIiIlJeDNM0zbK8gN/vx+FwlHj/0aNH06FDB+69914AwuEwp5xyChdddBFXX331QY8JhUL87W9/45xzzmHx4sXs2bOHF1544aD75uQUHP2biAGHw4rfH4p1DJGYKt61ik0/P4y/MDPallSnDw263o7NmRK7YJWBaeL6dDb231YDEI5zU3zJSMyUpBgHq1h0rxURKXu610pVlp6eeMR9jmt4+ZNPPnnY1wsLC7niiitKfD6/38+KFSvo1atXtM1isdCrVy+WLFlyyOP+/e9/k5aWxujRo0t8LRGpuEwzRPaqyayZMzZacFusLup3uZ3GPR5SwV0CjnmLowW3abPiGTVEBbeIiIhIDBzX8PI333wTp9PJTTfddMBr+fn5XH755WzatKnE58vLyyMUCh0wjDwtLY3169cf9Jiff/6ZDz74gA8//PCosotIxeQvymLzz49SlLs82uZObU2j7vfgTKgfw2SVh+231Th/WASACXjPHEC4XjUZUi8iIiJSwRxX0f3www9z11134XQ6ueaaa6LtOTk5XH755ezYsYPXX3/9uEMeSmFhIePHj+ehhx6iRo0aJTrGbrdWivmDbDY9cynVT+7GL9m0+J+EAkWRBsNCnTYXUrf9ZVgsFW4KigrJ2LQV+8xvo9uhQb2wdGxJyR/yqV50rxURKXu610p1d1w/xZ599tn4/X7uv/9+HA4Hl112GZmZmVx66aV4vV4mT55My5YtS3y+1NRUrFYrubm5+7Xn5uZSs2bNA/bfsmULW7du5brrrou2hcNhANq2bcusWbNo2LDhfscEApXneRI9+yLVRchfQOavz7A7c9860o642jTodhcJNTsSDALo/4cjMXJ3E//eTIxQ5D7o79IW3wkdQfeSw9K9VkSk7OleK9XZcXcdnXvuufh8Ph599FHy8vL46KOPsFqt/O9//zug4D0Sh8NBu3btmD9/PgMHDgQiRfT8+fO58MILD9i/adOmfPLJJ/u1PfPMMxQVFXH33XdTu3btY39jIlIuCnN+ZfPPEwl4sqNtqQ0HU6/TTVjtCTFMVrkYxR7ipnyG4fUBEGzSAN/gk7U0mIiIiEiMlcp4zYsvvhi/389TTz1F06ZNeeONN6hV69ieH7zsssuYMGEC7du3p2PHjrz11lt4PB5GjhwJwPjx46lVqxbjxo3D6XQe0JOelBSZKOhoethFpPyFwwGyf3+DHavfJfLkMVjtCdTrchup9fvHNlxlEwzimjYLy+49AITSa+A5ezBYjmuuTBEREREpBUdVdF977bWHfT0uLo6kpCTuu+++aJthGLz44oslvsbQoUPZtWsXkyZNIicnhzZt2vDqq69Gh5dnZWVh0Q+SIpWat2ATmxc9gmf36mhbfM3ONOx2F464jBgmq4RME9en32LL3A5AOCEOz5hh4NRT3CIiIiIVwVGt092//9H3PhmGwTfffHPkHcuJ1ukWiR3TNMnd8DHblr+AGYoMgzYMG7XbXUF6izEYhiZaOVqOOQtx/vgLAKbdRvGFIwjXTo9xqspD91oRkbKne61UZSVZp/uoerpnz559zGFEpHoLePPI/OUJ9myfH21zJjakYbd7iEvV4yDHwrZ05b6C2zDwDB+kgltERESkgtEaPCJS5vZsX8CWxY8T9OVF29KajqBu+2ux2FwxTFZ5WTdm4pr1fXTbN7A3oRaNYxdIRERERA6qVIruzZs3s3DhQvLy8khJSaFHjx5HPXO5iFQ94aCXbb/9h9z1H0bbbM5UGnQdT1KdnrELVslZdu7CPf0LjL1LJPq7dSDQrUOMU4mIiIjIwRxX0b1t2zbuu+8+Fi1aRKdOnahZsyZZWVk8+OCDjB49mn/84x+a9EykmirevYbNix7GV7Ap2pZYuwcNuo7H7qoRw2SVm1FUjHvKTAyfH4Bg80b4BvSKcSoREREROZRjLrrXrl3L5ZdfTvfu3Zk9ezY1auz7IXrNmjVceeWV1KhRgxtvvLFUgopI5WCaYXLWvM/2Fa9hmkEADKuTuh2uJ63JWRhaN/rYBQK4p36OJT8yIWSodk08wwdpaTARERGRCuyYflLz+/3cfPPNdO/enaeffnq/ghugRYsW3H333bz55psEg0HmzZvHeeedh9/vL5XQIlIx+Yt3sO6H28j67aVowe1OaUnL/i9Ts+lwFdzHwzRxffIN1qwdAISTEvCMGgoOe4yDiYiIiMjhHFNP9/vvv09ubi73338/hYWFXHfddQf8MO33+ykqKmLNmjW0b9+ezZs3M3nyZK644opSCS4iFUte5my2LvknoUDh3haD9JbnUbvt5VgsKgyPl/Pb+dj/2ACA6bDjGT0UMzE+xqlERERE5EiOqaf7448/ZtiwYSQmJuJwOOjfvz/Lly/HNE06dOhASkoKv/32G1dddRUZGRkkJydzwQUX8N///re084tIjIUCRWz++VE2//RgtOC2uzNodvI/qdv+GhXcpcD+ywocC5cCe5cGO3sw4Yy0GKcSERERkZI4pqL7jz/+oHPnzgA4HA4WLlzIsGHDmDx5Mn//+9+ZNGkSd955JzNnziQlJQWAvn37sn37djZu3FhK0UUk1opyl7P6myvJ2/xltC2lfn9aDniNhPQuMUxWdVjXbcL55Q/Rbd9pJxNqqtUhRERERCqLoy66i4qK8Pv90WLa7/czZ84c+vXrt99+/fr1Y+vWraxYsQKAjIwMTNNk586dx59aRGLKDAfZ/vvrrJ1zM/7iLAAstngadruLht3/gc2RGOOEVYMleyfuD7/CME0A/Cd1JtClXYxTiYiIiMjROOqiOz4+HofDQW5ubuQEFgs2m41169btt9+aNWswDAOHwwFAfn4+hmGQlJRUCrFFJFZ8hZmsnXMj2aveBiLrRMendaDVgFdJbThYk6WVEqOgCPfUmRj+AACBVk3x9esR41QiIiIicrSOaSK1Tp06sXDhQkaMGIHNZmPUqFG8+OKLhEKh6KRpL774Ip07d6Z169YALFmyhLi4OJo0aVKqb0BEyodpmuza+Bnblj1POOSNNBpWare5lIxWF2AY1tgGrEr8AdxTZ2IpKAIgVDcD75kDQF9oiIiIiFQ6hmnuHbd4FKZOncrEiRP56quvSEtLIxQKMXnyZKZOncrWrVupWbMmgwYNYuzYsSQkJGCaJsOHD6dt27Y89thjZfE+SiwnpyCm1y8ph8OK3x+KdQwRAIK+3Wz55Sn2ZM2NtjkS6tOo2z3E1Wgdw2RVUDiMe9osbGs3RTaTEym+ZCRmfFyMg1VNuteKiJQ93WulKktPP/JjlcdUdIdCIYYPH05GRgavvPIKVuvhe7gmTZrEG2+8waeffkq9evWO9nKlSkW3yNEpyF7E5sWPEfTmRttqND6Tuh2vx2pzxzBZ1eT8ci6OxcsBMJ0Oii8eSbhmaoxTVV2614qIlD3da6UqK0nRfUyzl1utVl544QVWr17NNddcc8jJ0fx+PxMnTuTll1/mX//6V8wLbhEpuXDIx9alz7F+3t+jBbfVkUTjHg/ToOs4FdxlwL5o2b6C22LBM/I0FdwiIiIildwxPdMN0LBhQ6ZNm8b48eMZPHgwp512GieddBIZGRkUFBSwdOlSPvnkE+Li4nj77bfp2rVraeYWkTLkyV/P5kUP4d2zIdqWmNGdBifcgd2t9aHLgnXNBpxfz4tue4ecQqhx/RgmEhEREZHScEzDy/+/n376iS+++IIVK1aQl5dHQkICzZo149RTT+W000474vDz8qTh5SKHZpphdq6dRtaKlzHDkVmzDYudOu2vpWazszGMYxocI0dgycoh7p0PMQJBAHy9TsB/yokxTlU96F4rIlL2dK+VqqzMnumuzFR0ixxcwLOTzYsfo3DHz9E2V3IzGna7G3dy0xgmq9qM/ALi3pqOpagYgEDb5njPGqiZysuJ7rUiImVP91qpykpSdB/z8PLD8fv9BINB4uI0265IZbB76/dkLnmKkH9PtC29+Rhqt7sSi9URw2RVnM8fWRpsb8EdrF8b77B+KrhFREREqpDjGiv62Wef8eijj+7X9vzzz9O1a1e6d+/O2LFjKSoqOq6AIlJ2QsFitix+gk0L740W3DZXTZr2eYq6Ha9XwV2WQiHcM77EmrMLgHBqMt5zTgdbmXwXKiIiIiIxclxF9+uvv47H44lu//LLLzz//PP06dOHSy65hB9++IH//Oc/xx1SREpf0a7fWf3NlezaNDPally3L60GvEZiRrcYJqsGTBPnl3OxbdgS2XQ5KR4zFDNOM8KLiIiIVDXH1aWyZcsWzj777Oj2p59+Ss2aNXn++eex2WyYpsmXX37JuHHjjjuoiJQOMxwk+493yF71FphhACw2N/U63URqw9MxNLS5zNkX/orj198BMK0WPKNOx6yREttQIiIiIlImjqun2+/343Q6o9vz5s2jb9++2PYOj2zWrBnbt28/voQiUmp8RdtY+/0tZK98I1pwx9VoS8v+r1Kj0RAV3OXAtmodrm8XRLe9w/oRalA3holEREREpCwdV9Fdv359fvzxRwCWL1/Opk2bOPnkk6Ov5+bmajI1kQrANE12bZrF6m+upHjXb5FGw0KtNpfSvO8knAn1YhuwmrBs3Y7rk2+i276+JxJs1zKGiURERESkrB3X8PJzzz2XRx55hLVr15KdnU3t2rXp169f9PVffvmF5s2bH3dIETl2Qf8eMpf8k/yt30XbHPF1adjtbuLT2sUuWDVj7N6D+4PPMYKRJVMCHVrh79U1xqlEREREpKwdV9F90UUX4XQ6mTNnDu3bt+fKK6/E5XIBsHv3bnJycjj//PNLJaiIHL2CHb+w5edHCXh3RttSGw2hXscbsdo1CqXceHy4p3yGpdgLQLBRXbxDTtHSYCIiIiLVgGGaphnrEOUpJ6cg1hFKxOGw4veHYh1DKqlwyM/2318jZ80UIPK/uNWeSP2u40ipd2pMs1U7oRDu9z/FtmlbZDMtheKLRoLbeYQDpTzoXisiUvZ0r5WqLD098Yj7lPqCsKZpsmDBAvx+PyeccAIJCQmlfQkROQzvno1sWvQw3vy10baE9K40OOEOHHEZMUxWDZkmrs/nRAvucJwLz+hhKrhFREREqpHjKrr/9a9/8csvvzB58mQgUnBffvnlLFiwANM0qVu3Lm+++SYNGzYslbAicmimaZK7fgbblv8HM+wHwLDYqd3uStKbj8YwjmveRDkGjh9/wb78DwBMmxXPqCGYqUkxTiUiIiIi5em4fgr/4osv6NixY3R71qxZzJ8/n1tuuYWXXnqJUCjEc889d9whReTwAt5cNvx4B1uXTooW3K6kxrQ49UUyWpyrgjsGbCtW4/z+p+i298wBhOvVjmEiEREREYmF4+rpzs7OplGjRtHtr776iubNm3PNNdcAcP755/Puu+8eX0IROaz8rB/J/OUJgr7d0baazc6hTvursVg1jDkWrFu24frs2+i2t18Pgq2bxTCRiIiIiMTKcRXdNpsNvz/Sq2aaJvPnz2fEiBHR19PS0sjLyzuugCJycKGgh6zlL5C74ZNom81Zgwbd7iCp1okxTFa9Gbt24/5gFkYoDIC/c1sCJ3WObSgRERERiZnjKrpbtGjBxx9/zJlnnslXX33F7t27OeWUU6Kvb9u2jdTU1OMOKSL7K877g82LHsZXuCXallSnNw26/h2bMyV2wao5o9hD3JSZGF4fAMEmDfAN7qOlwURERESqseMquseOHcu1115Ljx49AOjatWv09wBz5syhQ4cOx5dQRKJMM8SO1e+x/ffXwYwsvWGxuqjb8QZqNB6GoeIudoJBXNNmYcnLByCUXgPP2YPBao1xMBERERGJpeMqunv37s2MGTOYN28eSUlJDB06NPpafn4+3bp1Y8CAAccdUkTAX7ydzT9PpGjn0mibO6UVjbrfgzOxQQyTCaaJ67NvsWVuByAcH4dn9FBwOmIcTERERERizTBN04x1iPKUk1MQ6wgl4nBY8ftDsY4hFUTelq/J/PVfhANFe1ssZLS6gNptLsWwHNd3Z1IKHHN+wvnjYgBMu43iv40gXCc9xqmkJHSvFREpe7rXSlWWnp54xH3007pIBRbyF5C59Fl2b/k62maPq0XDbneTULPjYY6U8mJbtmpfwQ14hg9UwS0iIiIiUcdddM+ZM4c333yT33//nYKCAg7Wcb5y5crjvYxItVO4cymbFz1KwJMdbUttMIh6nW/Gak+IYTL5k3VjJq7P50S3fQN7E2rRJIaJRERERKSiOa6i+4svvuCWW26hefPmDB06lHfffZczzjgD0zSZPXs2jRo1YuDAgaWVVaRaCIcDZP/+JjtW/49I3ylY7PHU73wbqQ00R0JFYdmZh3v6FxjhvUuDndCBQHeNPhARERGR/R1X0f3SSy/RsWNH/ve//5Gfn8+7777LOeecQ8+ePcnMzOTcc8+lfv36pZVVpMrzFmxm86KH8exeHW2Lr9mJht3uwhFXK4bJ5K+MomLcUz7D8PkBCDZvhG9grxinEhEREZGKyHI8B69bt46hQ4ditVqx2SL1ezAYBKB+/fqcf/75vPLKK8efUqSKM02T3PUfs2b21dGC2zBs1Gl3Nc1O/qcK7ookEMA99XMs+ZFJGUO1auIZPggsx3U7FREREZEq6rh6ul0uF3a7HYCkpCQcDgc5OTnR12vWrElmZubxJRSp4oK+3WxZ/AR7tv8YbXMmNKBh938Ql9oyhsnkAKaJ65PZWLN2ABBOjI8sDeawxziYiIiIiFRUx9U106RJE9atWxfdbtOmDR999BHBYBCfz8enn35KnTp1jjukSFW1Z/tC/vj6sv0K7rQmw2nZ/xUV3BWQ89sF2P9YD4DpsOMZMwwzMT7GqURERESkIjuuonvw4MHMnj0bvz/yXOO1117LTz/9RPfu3enRowc///wzV199dakEFalKwiEfmb8+y4YfJxD05QFgc6bQpOej1O9yKxabK8YJ5f+zL1mBY+GvAJiGgWfEYMIZabENJSIiIiIVnmEebI2vI/D5fHzzzTdkZmaSkpLCqaeeSkZGBgA///wzX375JVarlVNOOYUePXqUeujjkZNTEOsIJeJwWPH7Q7GOIWXAs3sNmxY9gq9gY7QtsVYPGpwwHrurRuyCySFZ123GPXUmxt7bpfe0vgS6totxKikNuteKiJQ93WulKktPTzziPkdddOfm5nLeeeeRmZmJaZoYhoHL5eLf//43vXpV/Nl7VXRLrJhmmJw1U9i+4lVMMzLhoGFxULfD9aQ1HY5hGDFOKAdj2ZFL3OQZGP4AAP6TOuHrX/HvdVIyuteKiJQ93WulKitJ0X3UE6m98MILbN26lUsvvZQePXqwadMmXnjhBe69916+/vrrYwoqUtX5i3ewZfFjFOb8Em1zJ7egYfd7cCU1imEyORyjoCiyNNjegjvQqgm+fj1jnEpEREREKpOjLrrnzp3L8OHDmTBhQrStZs2ajBs3jvXr19O0adNSDShS2e3O/I7MJU8TCvw5ysIgveV51G57ORaLZr2usPwB3B/MxFJQBECoTgbeMweARiSIiIiIyFE46qI7KyuLE044Yb+2E044IbLOcG6uim6RvUKBIrYunUTe5i+ibXZ3Og273UVCepcYJpMjCodxf/QV1u07I5vJiXhGDwG7viQRERERkaNz1EW33+/H6XTu1+ZwOAAIBoOlk0qkkivK/Y3Nix7BX5wVbUup3496nW/D5jjycx8SW85vfsS2dhMAptOBZ8xQzPi4GKcSERERkcroqItugK1bt7JixYrodkFBZNjspk2bSEpKOmD/du00y69UXv7ibIK+/BLta5ohdm/5mp3rZgBhACy2OOp1voXUBoM0WVolYF+0DMfPywEwLRY8I08jXFOzyouIiIjIsTnq2ctbt2590MLhz5nMD9a2cuXK40tZijR7uRwNf3E2q768CDPsP6bj49La07Db3Tjj65RyMikL1jUbcU+bFV0azDOsH8GOrWOcSsqS7rUiImVP91qpyspk9vKJEyceUxiRyijoyz/GgtugdtvLyGh5AYblmAaUSDmzbM/B/dFX0YLb16urCm4REREROW5HXQ2cffbZZZFDpEppcMId1Gh0WqxjSAkZewpxT52JEYjMSxFo0xx/3xNjnEpEREREqgJLrAOIVEWupCaxjiAl5fPjnvIZlsJiAIL1a+M9o5+WBhMRERGRUqGiW0Sqr3AY94wvsebsimymJOE953Sw6ZEAERERESkdKrpFpHoyTZxf/oBtw5bIpstJ8ZhhmHHuGAcTERERkapERbeIVEv2n5biWPI7AKbVgmfU6ZhpKbENJSIiIiJVjopukUOwz/uBBt1OLfPrWDZvIj0jCSN/98FzLPiRGp1KPot28oihuF/6dymlq5psq9bhmj0/uu0d2o9Qg7oxTCQiIiIiVZWKbqlQkkcMpWb9mtRsXIe0lg1JHj4E26+/7LdPekYS1uXLotvOj6aT1qoR+HwHnC/x2itIHHs1ADVOaE/NhhmRc7duTNIFo7CsX1e2b6gUBHr0YtfSVbGOUTEEArjefoPks04nrU0TarRvQfLo4Tg+nnHArq7XXiJl0CnUrF+TpIvPj7Zbtmbj+uSb6Lbv5O4E27csl/giIiIiUv2o6JYKp+gfD7BzYxa5v60l2LUbSZddeNj9fUPOAMPAOeuz/dqNPfk4P/8U74WXRNv2/Of1yLl//g0zKZnEW8aWyXuoMgKBWCeIMvJ2kTJ8CPZ531P0jwfIXbyCXb+soGj8Xbg+eJ/EKy/ZL2+4Vh2Kb/37fn/+xu49uD/4HCMYAiDQviX+3ieU+3sRERERkepDRbdUXA4H3nMvwLo1E2PnzsPvN+pcXO/+d79m5/QPCNWpS6Bn7wOPSUjAd85o7Mt+PWwE0wxRd+5O+ty5nL7jltJ8Wua+8+/y0+WZNfS9fRmn3LaUzs+vxbVzX2+7/bvZpJ7Sk7QmdUlr24yEv996+Lf7xefUOLETac0bkHjjtdEC0j7vB9KaN4juZ+TvJumKi0lr3oDUXifgevU/pGck7XcuS04OyWNGkNakLikDTsb6+4p9LxYWknDHOGp0aUta26Ykjr0aY09+5Li9Q92d7/43kuUQw9rTM5Jwv/wCqT27RvJedWn0HACJ111JjQ4tSWtaj5SBfbHP/X5ftk0bST7nLNKa1SetZUNShg2C4shyXe4Xn4/kalKXGie0x/Xft/adc+zV+EaMpOClNwh2Pwni4sDhINj9JPa8/R5mWhruF5+P7u8/4yz8Q88gXCMt0uD14Z4yE0uxB4Bgw7p4h56qpcFEREREpEyp6JaKy+PB9c7bhNPSMFNSDrur94KLsc/5FkvWtmib693JeC+46KD7G3vycU59j2DT5oe+fP46LEUe4rO8/PhgO36+vSUN5uwk9Y+CyDnCJpsHZjB3YnvmPtKekMNCm/9ujh6feOO1FI+9idwN28hdtAzv6PMO+x4cs78ib/Zc8ub+hP2HOTinTTnofgl3/h2Ki9j1y2/kz/gM19T3DtjHOfU9Cu99iNw1mwl27kLCXX/fl+uWsRi788j77kdyFy2HYICEO27f//hZM8n7ag65Py8/ZF7n1PfJn/EZuxYvx7I7j4R77oi+5u97KnnzFpH7x0Z8I84h6YqLMAojn1v8xAcJNWlK7qoN5K5YR+F9D4PNhnXdGuIfe4j8KR+Su2EbeZ/PJtAl0gttW7gAw+fDc/X1GHvyI186tG5M8vAhJI69GueUdym89yHck9+AUOjAsKaJe/oXWHPzAAjVSMEz8nSwWg/5/kRERERESoOKbqlw4h95gLTmDajZuDau6VPZ88Y7R1w3OdS2HcGOnXC99w4A1lUrsS1fhu/cC/bbL+n6K0lrVp+azRtgW76MghdeOej5PLvXkrUi8tq64XUJ2y0U13Gzu2k8iZsjvbLemk5y2ycTtlsIua1sGFKblLWFGNixOZPBbse6YX2klz4+nuCJJx32PRSPuwMzIZFw7Tr4+w/EvnTJQd5oCOdH0ymecDdmUjLhWrUpHnvzAbv5Rp1LqH0HsNnwjrkA29JfATB27sT56UcUPvY0ZnIKxMdTPOFunB9N369YLbr9jsjrcXGHzOu54WbCtetgJqdQdMc9OKdPhXA4cv3zL8RMinwGnhtuhrCJdcXe3nabHcuO7Vi3bAK7PfK5OByYFiuYJtZVK8HjwczIINSuPQCOb7/CN3I0AHHP/hPT6SR3yUoK/zkJx3ezI9eNjyeckop97gJc02fhfucjXNNnYdmRiyV7J7ZNWwEIx7nwjBkGbudh/zxEREREREqDim6pcIruvo/ctVvY9etKQnXqYl3xW4mO815wMc69Rbfrf5PxDxhEuFbt/fbZ88Kr5K7LZNePizGCQawbNxxwHl/RNtbPG48Z9BJ0WXHX7ULzU1+gRb+XcdfrSkadobTo9zKtOj1Oz0/TOfX+rfQf9wcnPrMFa9CkTa8XccTVYs+b72BbtZIavbqS0r9PpLA9jHBGRvT3ZlwcRmHhAfsYubkYgQChuvX3HVev/gH7/f9zWYoi57Ju2YQRDlOjW0fSmjcgrXkDUgb3A4sFy47sfcfXP/Cc/1+ofoO//L4hht8f+YIhHCbu0QdJPakzaU3rkda8AcaefCy7cgEovO9hwrXrkDxqODVOaE/cE49COEy4SVMKnvsP7tdfJq1dc5JHD49OmGfJySFUt17kPfz+G76Ro8DtJtSsBYEevSLtf6zDunkLrnm/Ylu9AdvmbdhWb8C+egOWgsj7N21WPKOGYKbuPxxfRERERKSsqOiWCitcpy6F/5xEwkP3YdmedcT9fSNHYc3ejv3773B98D7eCy4+5L6h5i0ovP8REsbfCh5PtD3g3cX6ubcT9O0CwDAsNOn1GPE12hKX2hKrPQG7K4241JbUfH4ytqCN3bPnk7shi90ffwGAw10TgGDHzux547/krtpI8W3jSbz2CowdO47nI8FMS8O027Fu2/dsuWVr5mGO+H/vu259TIuF3GV/kLt2S/S/nVtyCNf5y5JZliPfGqyZW/b9fusWTIcDs2ZNnNOmREYo/G8quesyyV27JdLrbZqR95CeTuET/2LXLyvIn/w+7rdex/HZJwD4ho8kf8Zn5K5YS7BdB5JuiMw8H06riSV7e+Q9tG2Pc/oH4PFgWb8O28L5WDduJvHWWwg1aQOGBSNyqeivf/Kf0IFwvf2/iBERERERKUsquqVCC3bsjL93H+KeeWq/diPgB69333+BAGZiEr4zhpN4241gGPgHnXbYc/uHnoGZWgP365Fh5KFAERvmTcBfFHku3B5XC4vNjdXmPujxRkEBZpwbMzkZY1cu8U899peT+3FOeRdjdx5YLJjJyZF223E+Q2y14jvrbOKenIixJx8jO5u4F58r8eFmrVr4h5xBwp23Y+RGep6N7Oxo0Xs03P9+Fsv2LIz83cQ//gi+EeeAxRL5XOz2yARmfj9xTz0WfZ4bIku8WTK3gGliJidjWq2RZ7rXrsH+3ezIlyAOB2Z8PKY18lhB4JR+uKZPBaD45tswvF7STmhP4t9vxd9/IO7/vgXueEJ9huwLGA5BMBAZem6amMEAjl+WQzB41O9VRERERORYqeiWCq/4lttxvfP2fj26qaf3J71hRvS/xNtuBMD7t4uxbt6E99wLjvgcOIZB8c23EffvZwgX7GLjgnvw5K8BwO7OoE77a4FDz2xdPP4urBvWU7NFQ1LOGIx/wKD9XndNn0qNkzqT1qQuCXf9nYL/vIb550zax6Fw4pPgcFKjSztSzh6K76yRmA5HiY8veO5FzKRkUk87NTK7+FmnYVt2kOfHj8A36lySzx5Gja7tMRMSKXzkcQC8515AqFUbanRtT43uHTFdbsJ7h4YD2Jb+SsqwQdRsUoeUoQPxXnAR/tOHgt9P/OMPk9auOWmtGmOf+z0Fk14EIND7ZAiFcL3xKmZSMnten0zu7+vIn/Yx3qtuwX/+DYS6nbLfxGi2hbNxPXcPtp9mY12/Evdz9+D83wvYVq0/6vcqIiIiInKsDNM0zSPvVnXk5BQceacKwOGw4vcfZBZmKXWmGWLTwgfI3xZZ1srqSKL5Kc/hSmwU42Ql45w+lbjHHyFv4a/lds30jCR2fTOXUIeO5XZNY+dOks8/h2CHjnguv5pQ6zYYnmLiJz6Fc/r/8J99OSSlHvYcpgHBlk3wjjy9nFJLRad7rYhI2dO9Vqqy9PTEI+5zhK5AkarNNE0ylzwTLbgtVhdNez1eoQtu6/q1GHv2EOzUBeuGdcT960n8Z50d61hlzqxZk92ffIH7jVdJHHcj1g3rMR1OwnUaEThtzBELbog84214fEfcT0RERESktKjolmpt+++vs2tj5Hlmw7DRuMdDxNVoE+NUR1BUTOL1V2HdtpVwYhL+YWdSdOvfj3xcVeBy4bnuBjzX3bCvafosbKs3HDBp2sGYBphaKkxEREREypGKbqm2ctZOY8cfk/duGTTodieJtbrHNFNJhDp0JO/HxTHNkLNjT0yv/1fhOhkYfxy49NvBGCYEWzYt40QiIiIiIvuo6JZqKW/L12xbtm/W77qdbiS1wYAYJpJjYVuxGsfcn0u0rwngchJsraJbRERERMqPZi+XCsc54wMSr7wkup2ekYR1+bJSO/+e7QvZ/PPE6Hat1heT3mxkqZ0/1uKeeJSki8+PbtdsXAfr7ytiksXYuZPkkWeQ1rQeSVdE1k13TX6TGu1bULNxHWzLl5J68ok4vvz8iOdyfvA+KUMHRjaCQZyz5uD++BuMYGRiFnPvfwfzZ7vnjP5HntX+CJJHD8c+59vjOoeIiIiIVB/q6ZaKJRwm/pEHyX/73VI5nfO9d4h76QXyvp0HQNGu37HcfRkdNxew7LpmpDU5k1ptLiuVa1VUOzdmxeza7rdfB4uV3LVbwGKBQICEu8eTP+VDAj16AZD3w08lOpdv1Ln4Rp2LkZePe8aXWLN3Rl8LdGhFoFlD3LO+B68P04gMJf/zV1xOPGf0J9Si8XG/p+Jb/078PXewe/bc4z6XiIiIiFR9KrqlQnF8/QXh1FRCbduV+rm9ezax4cc7aBQOApBcty/1Ot+CYRx6Le6DMk0Ih/dbE1oOzrJ5E8HWrSMFN2DZkY3h9RJs0/aYzmf7Yz2uz77F8PkBMG02vKedTLBjawAKWzTGtmo9ttXrMTw+TLeTYMumkSHlx9nD/adAz95Y9uRjW7iA4Ek9SuWcIiIiIlJ1aXi5VCiOLz4n0Kfvge3z55LasytpzRuQeNWlGHvyo69ZNqwn6cIxpLVpQo2u7Yj75xMQDmNbvpTEv9+CdeUK0hrXpm67zmR8v4HGs7JJX76HE857hfQm9SMnMU3cr7xIaq8TSGvegOQRQ7Gu/iN6jRontMf97NOkDOlPzUa1sP6x6oCMzg/eJ/WkzqQ1qUuNjq2Ie/rxyAuFhSRdfB5pbZuS1qw+yWedjvW35dHj4p54lKS/jSZh3M2kNatPjW4dsM/7AcfMT6lxYifSWjQk7tEH913nvXdI7deb+EceIK1VI2p0aYvr9VcO+Zn+dXh+3BOPknThGBLuGEda8wbU6NIW54fT9u3s85Fw+y2ktWxIjW4dcL3zNukZSVg2bzr4yQ/zuSVdcTGuKe/ifuNVajaug/uF56jRuxsAaZ3aUKN7x+hn65j5afSU9u9mk3J6v0i+9i1wP/s0hEIk3HMfySOHRAvuULwLI/NXki4ZSVrbpiSOvRqjuIhg+5b4u7Uh4daLMIN5JF0+mrTWTUi88VoIBKLXsS1dEhn63rIhaW2akHDn7QCk9O+D87139nubyeeejXvSvyIbhoG/T1+cX8w85GcuIiIiIvKnCll0v/POO/Tv358OHTowevRoli079PO8X375JSNHjqRbt2507tyZ4cOH8+GHH5ZfWClVtt+WEWrR8oB259T3yZ/xGbsWL8eyO4+Ee+6IvFBcTMqoswicfAq5S/9g98ezcH44Dde7/yXYoRMFTz5DsHVr5r0ymG+f7URWjzQyR7TFN2gwuRuzokOvXW+8iuudyez57/vkrtqAf9iZJF84Bvz+aAbXe+9Q8NxL7NyQRah5i/0DFhWReNN1FD7zb3I3bCPvh4X4+0eePzbMML6Ro8ldtJzcFWsJduhI0lWXRHrM93J8Nxt/vwHkrt6Ed9S5JF5/Fc5Zn7Hr2x/Z/emXxL34HLZlv0b3t676HdMwyF2+hj0vv0H8w/djnz+vRJ+x49tvCPTsTe4fGym64x4Sbr0Ro7AAgLh/PYFt6RLyfviJvNlzccz85LDnOtzntue1t/GdMwbPZVeyc2MWnutvZNf3CwHIXbqSXYsO/P/atnwpyZecT/HYW8hduZ68H38m2OkE4iZ/iG1jZnS/QJvmWH+dDT4Ped/9SO6i5RAMkHDH7fu/19lfkTd7Lnlzf8L+wxyc06YAYMnaRvLIM/GdMZzcZavJXbwC3/DIc/3ev12E6y9FtyVrG/Z5P+A7d99z8qGWrbH9VnrzDIiIiIhI1VXhiu6ZM2cyceJExo4dy4wZM2jdujVXXHEFubm5B90/OTmZ6667jvfff5+PP/6YkSNHctddd/HDDz+Uc3IpDcbu3YQTEw9o99xwM+HadTCTUyi64x6c06dCOBwZjp6cgueaseBwEK7fAM9V10VeB8yQD39RFr6CzQA44uuR2mAQhrH/UGP3G69QNOFuQk2bg82G56rrwOvF/su+mbG9l14RKbatVnA4Dgxvt2Nd/QdGwR7M5BSCXU6IZEhMwjfiHIiPB5eL4vF3YVu3Fsv2fc9aBzt2xn/GWWC14jt7FNasbRTfdBvExxNq1Zpg23bYli2N7m/GxVP89zvB4SDY/SR854zBOaVkz8EHO3aKFJhWK74x52ME/FjXrQXANW0qxTfdSrhWbcykZIpvv+Ow5yrJ53Y0XG+/iXfEOfjPHA52O5bsPJxL1mPN2hHdx3taX3y9O+Oc+QmFjz2NmZwC8fEUT7gb50fTIRSK7ls87g7MhETCtevg7z8Q+9IlQORLnGCnzngvvwpcLoiLiz5j7jtnDPYli7Fs2hjZd8q7+E/pR7hW7eh5zcREjPzdx/QeRURERKR6qXDPdL/xxhuMGTOGc845B4AHHniA7777jmnTpnH11VcfsP9JJ5203/Yll1zChx9+yOLFizn55JPLJbOUHjMlBUtBwQHtofoN/vL7hhh+P8bOnVg3b8a26nfSmu97nXCYcL16hMMBdq77kIyQFwCbK42mfZ7CsvSNA85v3bKZxOuv2u85bSPgx7Jt677r1mtwwHFR8fHkT34f94vPEf/gvYTatKXojnsiQ+U9HhLuuwvHN19h5OVFn282cnOhTt1I5PSMfZ+B2723Lf0vbXEYRYX73mLt2mC378vWoAGOH0s2sVc4vda+DcPAdLkxCiPntmRvJ1y3XsneMyX73I6GJXNzpPgNh3HM+QnngiX7cse5MWqkEOjaDtuSxRjhMDW6dfx/J7Bg2ZG975iMv3yucXFY8iOPJVgzNxNq0uygGcyUVHynD8X1/v8oHn8Xrvf/R9Fd9+23j1FQECn2RURERESOoEIV3X6/nxUrVnDNNddE2ywWC7169WLJkiWHOTLCNE0WLFjAhg0buP3224+4v1Q8wfYdsa5ZfUC7NXMLwRO6R36/dQumw4FZsybhevUIdurM7s9n77e/aYbZsugR3IUbIsfYE2ja+0mc8XWiRe9fherWo/Dhxwj0H3TocAc57q8CfU8l0PdUCARwv/EKSZdcQO6azdGh4bs/+YJw3XoY+bup2aLhfsPLj5Zl+/bI88l7C29r5hZCewv44xGuVTtSMP/lsz6cEn1uR3P9+g2xrf4D9/8+xrZl30iAQMsmmPXdxK1Zsve69TEtFnKX/QFxcQec55DPoP+Zu35DHHNmH/J17wUXkzjuZvynDsCStwv/aUP2e926ehXB9h0PcbSIiIiIyD4Vanh5Xl4eoVCItLS0/drT0tLYuXPnIY6CgoICunTpQvv27bn66qu555576N27d1nHlTLgHzwE+7zvD2h3//tZLNuzMPJ3E//4I5Hh2hYLvkGnY8nJiUwk5vVCKIRlzWr2TL6N3Znf4Eu048wP0qTLfbiTmwKRXmVL5hYIBqPn91x+FfGPP4J17RoAjII9OD7/LPqs85EYO3bg+OyTyP42G+HEJLBZ956rANPpIpycAoWFxD/ywHF+SmAUF0UmavP7sS1ehHPaVHznjDnu83pHjiLu+WcwsrMx9uRHJqU7jOP93P4/f//Tcc6YhuPbryAcwgz4CNRLxjvytP169s1atfAPOYOEO2+PjBgAjOxsHJ8d/hn0P/lGjcH2y2Jcb74GPh8UF2Nf8GP09UDfUwGTxAm34R117n7XBnDM/QH/4NOP6T2KiIiISPVSoXq6j1V8fDwffvghxcXFzJ8/n8cee4wGDRocMPQcwG63crQrRMWCzVZNl6MaOgTr3eNxrV1F+C/LhgXPPZ+UkWdg2ZFNsN8AfE88hcNhhRrJFH/0Ka577yH+n49jeH146ySxrY8Vutcgr00ywW7daNh/FEY4TMG8hZijzsGY8QE12zQF02TP5m2Er7ueoMNO8uUXYtmaiZmQQLBHL+jfDxxWDMBms4Dj4H8uhg3iXv0P1puvBzNMqFlzit96B4fLTvCmm3BceRk12zfHrJGG9+5/wJuvYbdbsDqsWK0WLBYj8n4Awx751W63Rq9nMQysVgsOhxWb1SDcpi1WwqR1aAlxbnz/uA+jfz8ccMD5Iuc6+LWA6HszHFaCE+7EnruTGiefCElJ+G65Db74HHuCG/Mg7/1In5vFYmAc4b0ZRL6fsM77Geuv6wmccSG2H7/E+GIqZnISjL0Bh9OGzWpgGETP5f3Py7gmPkyN007FyNtFOD2DwMhz4OwRB72O9a9ZGjek+OPPcN9zFwkP34/psBM4ZzRG332PpAT+dhGuiQ/jeemV/T4v64/zICkRo+/JHOTJfqlkqu29VkSkHOleK9WdYZrHMca1lPn9fjp37sykSZMYOHBgtH3ChAns2bOHF198sUTnufvuu9m+fTuvvfbaAa/l5BxbD1x5czis+P2hI+9YBTmnT8Xx+WcUvPLmUR+bu+ETMpc8Hd1ucMId1GhUtXokne+9Q9xLL5D3bclmKz8etkULSTl7GDu35FBW31YZRcW4Pv4a28Z9z4EHmzXEc8YAiHOVyTVLwvn+/3C/+hK7v5qzX3vymBEUX38TgVP7xyiZlKbqfK8VESkvutdKVZaefuAk0P9fhRpe7nA4aNeuHfPnz4+2hcNh5s+fT5cuXUp8nnA4jP8vSz1J5eIbOfqYCu7dW+eQueRf0e067a+tcgV3WTNycrDP/T4yTH97FvGPPIDvjLPKrOC2bt5G3GtTowW3aRj4Tu2BZ/TQmBbcFBbifvUlvJdeccBL+VM+VMEtIiIiIiVW4YaXX3bZZUyYMIH27dvTsWNH3nrrLTweDyNHRtbQHT9+PLVq1WLcuHEAvPTSS7Rv356GDRvi9/uZM2cOH3/8Mffff38M34WUt8KcJWxe9DAQBiC9xblktDwvtqEqISMcIuEfd2LdsB4zzo2/bz8KHz38c93HxDRxzF+C4/ufMPYOtgknxOEdPohQw+OfEO54OKe8S+L4W/H3PRXvuRfENIuIiIiIVH4VrugeOnQou3btYtKkSeTk5NCmTRteffVVatasCUBWVhaWv8wiXVxczAMPPMD27dtxuVw0bdqUJ598kqFDh8bqLUg5K85bzYb5d2OGAwCkNjyNOu2vOcJRlZfvvL/hO+9vZXLucK3aZT9svdiL+5NvsK3fHG0KNq6P96wBmPEHzkRe3nxjzsc35vxYxxARERGRKqJCPdNdHvRMd9XiK8xk7ZwbCPp2A5BUuyeNezyEYalw3ycJYMncjvujr7DsiawLbgL+Pt3w9z7hiEuyiZQF3WtFRMqe7rVSlZXkmW5VJlJpBTw7WT/39mjBHZfWnkYn3qeCuyIyTeyLluH8dgFGOPIIQDjOhfesQYSa1I9xOBERERGRsqPqRCqlkL+A9fPG4y/eDoArqQlNek7EYovh5FtHwbZ8KeH0DMK168Q6Stnz+nB99i321RuiTcEGdfAOH4SZGB/DYCIiIiIiZU9Ft1Q64ZCPDfPvwrtnPQD2uFo07f0kNseRh3bEmrErl4S7xuOaPpVA5y7s/nLOkQ+qxCxZObg//ALL7n2Pdfh6dsHf90QNJxcRERGRakFFt1QqZjjIpoUPUJS7HACbM4VmvZ/C7q4Z42RH5vj8MxJvvxlLzg5MiwXf6Co8u7ppYv9lBc5v5mGEIsPJTZcTz5kDCDVvFONwIiIiIiLlR0W3VBqmabLll6fYs/1HACw2N016PY4zsUGMkx2ekbeLhLsn4PrgfQCCLVpSMOlFgid0j3GyMuLz4/p8DvaVa6NNoboZeEYMxkyu+KMRRERERERKk4puqTSyVrxM3uZZABgWO417PEJcaqsYpzo8x6yZJNx+M9Yd2ZgWC57rbqRowt3gqhzPnh8ty45c3DO+wLIrP9rm794RX78eYLXGMJmIiIiISGyo6JZKYcfq98hZ/e7eLYOG3e8mMaNrTDMdzgG9281bRHq3u50Y42RlxDSxLVuF68sfMIKRJUFMpwPvsH4EWzWNcTgRERERkdhR0S0V3q5Ns8j67T/R7XqdbyGl3qmxC3QEji8+j/RuZ2/HNIx9vdtud6yjlQ1/ANeXP2Bf/ke0KVSrJp6zB2OmJscwmIiIiIhI7KnolgptT9aPbPnlieh27TaXU7Pp8BgmOjRjdx4J99yBa0qkRz7YrHmkd7v7STFOVnYsO/NwzfgC6868aJu/Szt8A3uBTbcXERERERH9VCwVVlHucjb+9ACYkdmv05qeTUbri2Kc6uAcX80iYdzNWLdnRXq3r72Bojvuqbq924Dtt9W4Zs3BCAQBMO02vENOJdiuRYyTiYiIiIhUHCq6pULy5K9nw493YoZ8AKTU70+9TjdiGEaMk+3PyN8d6d1+/3/A3t7tZ18keGLV7d0mGMT51Twcv/4ebQql18B79mDCaakxDCYiIiIiUvGo6JYKx1+Uxfp54wkFCgFIyOhOg253YhiWGCfbn+PrL0i47aZ9vdvXjKXozn9U6d5tY1c+7g+/xJq9M9oW6Nga7+A+YLfHMJmIiIiISMWkolsqlIA3j3Xz/k7QGynq4lLb0LjHA1gsFaegM/J3k/CPO3G99w4AwabNIr3bJ/WIcbKyZVu1Dtdn32L4AwCYNhve004m2LF1jJOJiIiIiFRcKrqlwggFitnw4wT8hZkAOBMa0KTXRKy2uBgn28fxzZeR3u2sbZHe7auvj/Rux1WcjKUuFMI5ez6On5fva6qREhlOnpEWw2AiIiIiIhWfim6pEMIhPxsX3INn92oA7K6aNO3zFDZnSmyD7WXsySf+3rtw/28yAMEmTSO92z16xjhZ2TJ278H94VdYs3ZE2wJtm+M9/RRwOmKYTERERESkclDRLTFnmiE2//wIhTm/AGC1J9K0z1M44mrFOFmEffbXJN52I9ZtWyO921ddS9Fd91Xt3m3AumYj7k9nY3gjk9mZVgu+QX0IdG4LFWxCOxERERGRikpFt8SUaZps/fVZ8rfOAcBiddGk12O4khrHNhh7e7fvuxv3O28DEGrchIJJLxLo0SvGycpYKIRzzk84Fv4abQqnJOE5ezDh2umxyyUiIiIiUgmp6JaYyl75JrkbPo5sGFYanfQA8WntYhsKsH/7DYm33oB121YAiv/s3Y6Pj3GysmXsKcT10VfYMrdH2wKtmuAd2g9czhgmExERERGpnFR0S8zsXDeD7FVvRbcbnnAHSbVju761UbAn0rv930iuUKPGkd7tnr1jmqs8WNdvwfXx11g8XgBMiwVf/54EunXQcHIRERERkWOkoltiIi9zNluXTopu1+14A6kNB8UwEdi/mx3p3d4amT29+MprKLr7/irfu004jGPuzzjmLebP0jqclIBnxCDC9WrHNJqIiIiISGWnolvKXUH2z2xZ9ChgApDR6kLSm4+KWR6jYA/x9/8D9+Q3gL2928++QKBXn5hlKi9GYTGuj7/CtmlbtC3YrBGeM/pDnCuGyUREREREqgYV3VKuinetYuOCezDNIAA1Gg+jdtsrYpbHPufbSO925hYAPFdcTeE9D1T93m3Aumkrro++xlJUDIBpGPhPPQn/SZ01nFxEREREpJSo6JZy4y3YxPofxxMORZ4ZTq57MvU734oRgwLPKCyI9G6//ToAoYaNKXj23wR6n1zuWcqdaeKY/wuO7xdhmJHRBuGEeLwjBhJqUDfG4UREREREqhYV3VIu/MU7WD93PCH/HgDia3aiYfd7MCzl/1fwgN7ty6+K9G4nJJR7lvJmFHtwffINtvVbom3BxvXxnjUAM75qrzsuIiIiIhILKrqlzAX9e1g/bzwBTzYAruTmNOn5CBZr+S5BZRQWEP/Avbjfeg2AUMNGFDzzbwJ9+pZrjlixZG7H/eGXWAqKgMgT9f6Tu+Pv1RUsltiGExERERGpolR0S5kKBT1s+PFOfAUbAXDE16Vp78ex2su3V9n+wxwSbxmLdctmADyXXkHhvQ9Vi95tTBP7T0txfrcQIxwGIBznxjt8IKHG9WMcTkRERESkalPRLWXGDAfZtPB+inetAMDmTKVp7yexu9LKL0RhIQkP/gP3m3t7txs0jPRun3xK+WWIJY8P12ezsa/ZGG0KNqiDd/ggzMSqP1mciIiIiEisqeiWMmGaYbYsfpyC7IUAWGzxNO39BM6EeuWWwT73+0jv9uZNAHguuYKi+x7ETEgstwyxZMnagXvGl1jyC6Jtvp5d8Pc9UcPJRURERETKiYpuKXWmabJt+QvkbfkKAMNip0nPR3CntCifAIWFJDx0L+43XgUgVL9BpHe776nlc/1YM03sv6zA+c08jFBkOLnpcuI5cwCh5o1iHE5EREREpHpR0S2lbsfq/7Fz7Qd7tyw0OvFeEtI7l8u17fN+IPHmsVg3bwTAc/HlFN3/ULXp3cbnx/X5d9hXros2herWwjNiEGZyNfkMREREREQqEBXdUqpyN3zK9hWvRLfrdx1Hct1yWPu6qIiEh+/D/drLAITq1afgX88TOLV/2V+7grBk74wMJ8/Lj7b5T+yE79STwGqNYTIRERERkepLRbeUmvxtP5C55J/R7drtriKt8bAyv679x7kk3nw91k0bAfBcdClF9z+MmZhU5teuEEwT+9KVOL+aixEMRZqcDrzD+hFs1TTG4UREREREqjcV3VIqCnN+ZdNPDwKRZ4hrNh9NRssLyvaiRUXEP3I/ca++BOzt3f7ncwT6DSjb61Yk/gCuL77H/tvqaFOodk08I07DTK0mXzqIiIiIiFRgKrrluHl2r2HD/LsxwwEAUhsMom6H6zAMo8yuaZ8/L9K7vXFDJMOFl0R6t5OSy+yaFY1l5y5cM77EujMv2ubv2g7fgF5g0//aIiIiIiIVgX4yl+PiK9zK+nnjCQeLAEisdRINTpiAYZTRklRFRcQ/+gDuV1/CME1CdetFerf7Dyyb61VQtt9W45o1ByMQBMB02PEOOYVg23KaIV5EREREREpERbccs4A3l/Xz/k7QF+lpjavRjkYn3Y9hKZu/VvYFP5J403X7erf/djFFDzxSrXq3CQRxfj0Xx68ro02h9Bp4zh6MmZYaw2AiIiIiInIwKrrlmIQChayfNx5/0TYAnImNadJrIlabu/QvVlxM/MQHcb/84l96tycR6D+o9K9VgRm7duOe8SXWHbnRNn/H1vgG9wG7PYbJRERERETkUFR0y1ELh3xsmH833vzIWtB2dy2a9n4Cm6P0J+6yLVxA4s3XYVsfuZbngosoevDR6tW7DdhWrsM181sMf+S5edNmw3vayQQ7to5xMhERERERORwV3XJUzHCQTT89RNHOpQBYHck07fMkjriM0r1QcTHxEx/C/fILkd7tOnUp/Ock/AMGl+51KrpgCOfs+TgWL482hWqk4B05mHB6WgyDiYiIiIhISajolhIzTZPMJf9kT9ZcACxWF017PY4rsWGpXsf200ISb7p2X+/2+RdGereTU0r1OhWdsXsP7g+/wpq1I9oWaNsC75BTwKHh5CIiIiIilYGKbimx7SteZdemmQAYho3GPR4mrkYpDm/2eCK92y/9O9K7XbtOpHd74Gmld41KwrpmA+5PZ2N4/QCYViu+Qb0JdG4LZbgUm4iIiIiIlC4V3VIiOWunsmP1O3u3DBp2v5vEWt1K7fy2nxZGnt1etxYA77kXUPjQRMyUajYjdyiEc85POBb+Gm0KpyThOXsw4drpscslIiIiIiLHREW3HFHe5q/Ytuzf0e16nW4mpX6/0jm5x0P8Yw/j/s/zkd7tWrUjvduDTi+d81cixp7CyHDyrdujbYFWTfEOPRVcztgFExERERGRY6aiWw5rz/aFbF78WHS7VutLqNlsRKmc27ZoIYk3X49t7RoAvGPOp/Dhx6pf7zZgXb8Z18ffYPF4ATAtFnz9exLo1kHDyUVEREREKjEV3XJIRbkr2LjwXjBDAKQ1GU6tNpce/4k9HuIffyTSux0OR3q3n3oW/2lDjv/clU04jOOHn3H8uJg/S+twUgKeEYMJ16sV02giIiIiInL8VHTLQXn3bGDDj3dghnwAJNc7lXqdb8I4zl5X288/RXq316yOXGf0eZHe7dQax525sjEKi3F9/BW2TduibcHmjfCc0R/crhgmExERERGR0qKiWw7gL85m/dy/EwoUAJCQ3pWG3e7CMKzHflKvl/gnHsX9wqRI73ZGLQqfnlQ9e7cB66atuD76CkuRBwDTMPCfehL+kzprOLmIiIiISBWiolv2E/TtZv3c2wl4dwLgTmlJ4x4PY7E6jvmctl9+JvGm67Ct/gMA76hzKXzk8WrZu41p4vjxFxw/LMIwTQDCCfF4Rwwi1KBOjMOJiIiIiEhpU9EtUaFgMet/vANf4RYAnAkNaNr7Caz2uGM7oddL/JMTcf/72X292089i//0oaWYuvIwij24Pv4G24Yt0bZg4/p4zxqAGX+Mn7GIiIiIiFRoKroFgHA4wMYF9+LJWwWAzVWTpr2fwOZMOabz2ZYsjvRu/xE5n/ecMRQ++kT17N0GrJlZuD78CktBEQAm4D+5O/5eXcFiiW04EREREREpMyq6BdMMs+XnRync8TMAVnsCTXs/gSP+GIY7+3yR3u3nn8EIhwmnZ1Dw5DP4h55RyqkrCdPE/tNSnN8u2DecPM6Nd/hAQo3rxziciIiIiIiUNRXd1Zxpmmxd+hy7M78FwLA6adJrIu7kpkd9rgN6t0eOovDRJzFrpJVq5krD48P12WzsazZGm4IN6+IdPhAzIT52uUREREREpNyo6K7mdqyaTO76GZENw0LjE+8nPq3D0Z3E5yPu6ceJe+5fGKEQ4Zrpkd7tYWeWfuBKwrJtB+4Pv8SSXxBt8/Xqiv/k7hpOLiIiIiJSjajorsZ2rv+I7Stfj2436DqBpDo9j+octqVLIr3bK38HwHv2ORQ++hRmWjXt3TZN7It/w/nNjxjhcKTJ5cRz1gBCzRrFOJyIiIiIiJQ3Fd3V1O6t37H112ei23U6XEeNRqeV/AQ+H3H/fJy4SX/2btek4Iln8J9xVumHrUiCQWwr12FbswHD48N0Owm2aEKwTTMIhXHN/A77qnXR3UP1auEZMRgzKSGGoUVEREREJFZUdFdDBTsWs3nRI0Tm0Ib0lueT0eLcEh9vW/YriTdeu693e8RICic+XeV7t61rNuD+9FsMrw/TAMME0wD7Hxswv/wB027HUlQc3d9/Yid8p54EVmsMU4uIiIiISCyp6K5mivP+YOOCezDDAQBSGw2hTrurS3aw3x/p3X72n/t6tx//F/4zh5dh4orBumYD7g9mRbcNc/9f8Qew+COfqel04D2jP8GWTco5pYiIiIiIVDQquqsRX8EWNvw4gXDQA0BSnd406DIOwzCOeGykd/s6bCtXAOAdPpLCiU9h1qxZppkrhGAQ96d7Z3c/xC5/tpuGQdFFIzHTU8slmoiIiIiIVGwququJgGcn6+bdTtC3G4D4tA40OvFeDMsR/gr4/cT960ninn0aIxgknJZGwRP/wn/miDLPXFHYVq7D8PpKtK9hmlizcwiq6BYREREREVR0VwtBfwHr5/2dQHE2AK6kpjTp+SgWq/Owx9mWL430bv/+GwDes86m8LGnq0fv9l/Y1myIPsN9JKYBttXrCbZvWfbBRERERESkwlPRXcWFg142zL8T754NADjiatO095NYHYmHPuggvduFjz2Nb/jIckpdsRgeX4kKbogU5oanZL3iIiIiIiJS9anorsLMcJCNP91PcW6kp9rmTKVpn6ewuw89y7h1+TKSbroO24rlAPjOGE7B4//ETE8vl8wVkel2HlVPt+k+/AgCERERERGpPiyxDiBlwzTDbPnlSQq2LwDAYoujSa/HcSbUP/gBgQBxT04k9bRTsa1YTrhGDfa8/AZ7Xnu7WhfcAMHGDY6qpzvYsmnZBhIRERERkUpDPd1VVNZvL5G3+QsADIudJj0fIS714M8ZW39bTuJN12H/bRkAvmFnRXq3MzLKLW9FZezeg2PRshLtawK4nARbq+gWEREREZEIFd1V0I7V75Gz5v29WxYadv8HCeldDtwxECDu2aeJ++cTkWe3U1Mjz26POAdKsIxYVWfZmo37g8+xFEeWWPuzs/tgn8yfr3nO6A82/W8lIiIiIiIRqg6qmF0bPyfrt/9Et+t3uZWUen0P2M+64rdI7/bypQD4hp5JwRP/Uu/2XrZV63B98g1GMARAqEYK/hM74vpuIXh90We8o896u5x4zuhPqEXjmOYWEREREZGKRUV3FZK/bR5bljwZ3a7d9grSmpy5/06BAHGT/hnp3Q4EIr3bE5/Cd/Yo9W4DmCaOhb/i/HZBtCnYsC6ekaeB20Vhh1bYVq3Htno9hseH6XYSbNk0MqRcPdwiIiIiIvL/qEqoIgp3LmPTTw+AGQagZrNzyGh14X77WH9fEendXvYrAL4hZ0R6t2vVKu+4FVMohPPLH3D8ujLaFOjQCu+QU8BqjTTYbATbt9Q63CIiIiIiUiIquqsAT/46Nsy/EzPsByCl/gDqdhyL8WfPdTBI3HP/Iu6pxyK92ykpkd7tkaPVu/0nrw/3jC+xbcyMNvn6noi/V1d9RiIiIiIicsxUdFdyvqIs1s/9O+FAEQCJGd1p0O0ODCOyGpx15e+R3u2lSyL7nz6MgiefUe/2Xxi79+CeOhPrzjwATKsF77B+BNupN1tERERERI6Piu5KLODdxfq5txP07QIgLrUNjXo8iMVij/RuP/9MpHfb74/0bj/yBL5R56rn9i8s2/bOUF4UmaE87HbhPed0Qg3qxDiZiIiIiIhUBSq6K6lQoIgN8ybgL9oKgDOxEU16PYbV5sa6aiWJN12L/de9vdunDaHwqWcJ16ody8gVju2P9bg+/gYjGAQgnJpM8ZhhmDWSY5xMRERERESqChXdlVA45GPjgnvw5K8BwO5Op2nvJ7FZ43E/+zTxT06M9G4np1D4yOP4Rp+n3u2/Mk3sPy3FOXt+dM3tYIM6eEaeDnGumEYTEREREZGqRUV3JWOaITYveoTCnEgvttWRRNPeT+HesovEm8ZgX/ILAL7Bp0d6t2trmPR+wuHIDOVLfo82Bdq1xDv0VLBZY5dLRERERESqJBXdlYhpmuz4+kGsP30KbZKwWF00OfFhUt+cTvwTj+zr3X74MXxjzlfv9v/n80dmKN+wZV9Tn274+3TTZyUiIiIiImVCRXclsuPXl2l687+J2+nnx/vbU7/LWOpcfDP2XxYD4Bt0WqR3u07dGCeteIz8gsgM5TmRSedMqwXv0H5ab1tERERERMqUiu4Y8xdnE/TlH9AesFsIBMLR7bzM2cT/5xnidvrxJttpkd2RmmOux/D5CCclR3q3z71APbYHYcnagXvq51iKigEwXU4855xOqKG+nBARERERkbJVIYvud955h9dee42cnBxat27NP/7xDzp27HjQfadMmcKHH37ImjWRScXatWvHbbfddsj9KxJ/cTarvrwIM+w/4r6O/ADtP98OgBGfRPqL/wPAN3AwhU9PUu/2IdhWb8D10df7z1A+eihmWkpsg4mIiIiISLVgiXWA/2/mzJlMnDiRsWPHMmPGDFq3bs0VV1xBbm7uQfdfuHAhw4YN4+233+a9996jTp06XH755WRnZ5dz8qMX9OWXqOAGaPbxNmzeMCbg3JZLODGJwr/fRcGk/6jgPpi9M5S7ps2KFtzB+rUpvvhsFdwiIiIiIlJuDNM0zViH+KvRo0fToUMH7r33XgDC4TCnnHIKF110EVdfffURjw+FQnTv3p17772XESNGHPB6Tk5BaUc+ZsV5q1nz7ZHfU+rKPXR9dm10eSvTasUIhQAI1a7Drl9XgqXCfX8SO+Ewzi/n4liyItoUaNsC77B+mqFcRPbjcFjx+0OxjiEiUqXpXitVWXp64hH3qVCVmt/vZ8WKFfTq1SvaZrFY6NWrF0uWLCnROTweD8FgkOTk5LKKWe6azNrOX5/U/rPgDqdn4B96hgruv/L5cU+duV/B7et9At6zBqjgFhERERGRclehnunOy8sjFAqRlpa2X3taWhrr168v0TmeeuopMjIy9ivcK7tVY+rTYsY28pvGU9Awjoyhj+FoezLExcU6WoVi7CmMzFC+I/Iogmmx4B16KsEOrWKcTEREREREqqsKVXQfr5dffpmZM2fy9ttv43Q6D7qP3W6tMBN8B+wl66EurhfH0huaR7drtW6GI+XIwxiqEyNrB/b/fYpRuG+G8sC5Q7E0rocjxtlEpOKyaQSMiEiZ071WqrsKVXSnpqZitVoPmDQtNzeXmjVrHvbY1157jZdffpk33niD1q1bH3K/QKDiPE/y1yXBjvY4PRezj3XNRtwffYUR2DtDeUoSxWOGYqalgj4nETkC3U9FRMqe7rVSnVWoh4EdDgft2rVj/vz50bZwOMz8+fPp0qXLIY975ZVXeOGFF3j11Vfp0KFDeUSVisA0sS9ahvuDz6MFd6hebYovGRkpuEVERERERGKsQvV0A1x22WVMmDCB9u3b07FjR9566y08Hg8jR44EYPz48dSqVYtx48YBkSHlkyZN4umnn6ZevXrk5OQAEBcXR3x8fMzeh5SxcBjn1/NwLP4t2hRo0xzvGf3AVuH+WouIiIiISDVV4aqToUOHsmvXLiZNmkROTg5t2rTh1VdfjQ4vz8rKwvKX2brfe+89AoEAN910037nueGGG7jxxhvLNbuUE58f90dfYVu3eV9TrxPw9+1OhXlgX0REREREhAq4TndZq4zrdP9/Lfq9TFxqyzJIVPEddIbyIacQ7Hjo5/hFRA5Fa8eKiJQ93WulKivJOt0Vrqdb5FAs23NwT/0cS2ERAKbLgefs0wg1rh/jZCIiIiIiIgenojuGbM5kDIsDM+wv8TGGxYHNmVyGqSqmA2coT8QzehjhmpowTUREREREKi4NL48xf3E2QV/+Ae12u+WgS4rZnMk44mqVR7QKw/7zcpxfz8PY+1c1VK8WnnNOx4yPi3EyEansNORRRKTs6V4rVZmGl1cCjrhaBy2idXMiMkP5Nz/i+Hl5tCnQphneYf3Brr+6IiIiIiJS8alykYrJH4jMUL52U7TJ17ML/lNO0gzlIiIiIiJSaajolgrHKCiKzFCevRPYO0P56X0JdmoT42QiIiIiIiJHR0W3VCiW7J24p87EUrB3hnKnA89IzVAuIiIiIiKVk4puqTCsazdFZij3BwAIJyfiGTOUcM0aMU4mIiIiIiJybFR0S4VgX/wbzq/m7puhvG4GnlFDNEO5iIiIiIhUaiq6JbbCYZyz5+NYtCzaFGjdFO8ZAzRDuYiIiIiIVHqqaiR2/AFcH3+Nfc3GaJOvRxf8p2qGchERERERqRpUdEtMGAVFuD/4HOv2HABMw8B3el8CndvGOJmIiIiIiEjpUdEt5c6yIzcyQ/meQmDvDOVnDybUpEGMk4mIiIiIiJQuFd1SrqzrNuP+8Mv9ZygfPZRwumYoFxERERGRqkdFt5Qb+y8rcH75w74ZyuvsnaE8QTOUi4iIiIhI1aSiW8qeaUZmKP9pabQp0LIJ3rMGgN0ew2AiIiIiIiJlS0W3lK1AANfH32BfvSHa5D+pE75+PTVDuYiIiIiIVHkquqXMGIXFuKfO3H+G8tNOJtClXYyTiYiIiIiIlA8V3VImLDm5uKf8ZYZyhz0yQ3nThjFOJiIiIiIiUn5UdEups67fEpmh3OcHIJyUEJmhPCMtxslERERERETKl4puKVX2X3/HOev7fTOU107HM3oIZkJ8jJOJiIiIiIiUPxXdUjpME+e3C3As/DXaFGjZBO+ZA8ChGcpFRERERKR6UtEtxy8QwPXJbOx/rI82+U/shK9fD7BYYhhMREREREQktlR0y3ExiopxT/0ca9YOYO8M5YP7EOjaPsbJREREREREYk9Ftxwzy85dkRnK8wuAvTOUjxhEqFmjGCcTERERERGpGFR0yzGxbsjEPeOLfTOUJ8ZHZiivVTPGyURERERERCoOFd1y1Oy//o7zix8wwmEAQrVr4hk1FDNRM5SLiIiIiIj8lYpuKTnTxDFnIc75S6JNgRaN8Z41UDOUi4iIiIiIHISKbimZQBDXp7Oxr1oXbfJ374ivf0/NUC4iIiIiInIIKrrliIyiYtwfzMK6LRvYO0P5wN4EunWIcTIREREREZGKTUW3HJZlZx7uqZ9h2b13hnK7Dc+IwYSaa4ZyERERERGRI1HRLYdk3ZiJe7pmKBcRERERETlWKrrloGxLV+Ka9f2+Gcpr1cQzeghmYkKMk4mIiIiIiFQeKrplf6aJ4/ufcP74S7Qp2KwRnhGDNEO5iIiIiIjIUVLRLfsEg7g+/Rb7yrXRJv8JHfAN7KUZykVERERERI6Bim4BwCj2RGYo37od2DtD+YBeBLp3jHEyERERERGRyktFt2DJzcM9ZSaW3XuAvTOUDx9EqEXj2AYTERERERGp5FR0V3PWTVtxT5+F4d07Q3lCPJ7RQwjXTo9xMhERERERkcpPRXc1Zlu2Ctfnc/bNUJ6Rhmf0UMwkzVAuIiIiIiJSGlR0V0emieOHRTjnLY42BZs1xDN8EDgdMQwmIiIiIiJStajorm6CQVyffYv997/MUN61Hb5BfTRDuYiIiIiISClT0V2NGMUeXNNmYcvcO0M57Juh3DBiG05ERERERKQKUtFdTRi5u4mb8tl+M5R7zxpIsGWTGCcTERERERGpulR0VwPWzdtwT5uF4fUBEI6PwzN6KOE6mqFcRERERESkLKnoruJsy//ANfO7fTOUp9eIzFCenBjjZCIiIiIiIlWfiu6qyjRxzP0Z59yfo03BJg3wnD1YM5SLiIiIiIiUExXdVVEwhGvmt9hXrIk2+bu0xTf4ZM1QLiIiIiIiUo5UdFc1xV7c02dh25IFaIZyERERERGRWFLRXYUYu3YTN2Umlrx8AEybDe9ZAwi2ahrjZCIiIiIiItWTiu4qwrplG+4P/jpDuRvPqKGE62bEOJmIiIiIiEj1paK7CrD9thrXzG8xQntnKK+ZimfMMM1QLiIiIiIiEmMquisz08QxbzHOHxZFm4JNGuAZMQhczhgGExEREREREVDRXXkFQ7g+/w77b6ujTf7ObfEN7gNWawyDiYiIiIiIyJ9UdFdGHi/u6V9g27wt2uTt35PAiZ00Q7mIiIiIiEgFoqK7kjHy8omb8hmWXX/OUG7Fe+YAgq2bxTiZiIiIiIiI/H8quisRa2YWrg9mYfF4AQjHufGMGkK4Xq0YJxMREREREZGDUdFdkQSD2Fauw7ZmA1avD4vLSbBFE4JtmmH7YwOuz2bvP0P56KGYKUkxDi0iIiIiIiKHYpimacY6RHnKySmIdYSDsq7ZgPvTbzG8PkwDDJN9v9qsGMFQdN9g4/p4zh6sGcpFRI6Tw2HF7w8deUcRETlmutdKVZaefuRlmtXTXQFY12zA/cGs6LZh/r9f/1Jw+zu1xndaX81QLiIiIiIiUglYYh2g2gsGcX/6LQBHmnfctFnxDdKSYCIiIiIiIpWFiu4Ys61ch+H1HbHghkiPt+2PDWWeSUREREREREqHiu4Ys63ZgFnCpbVNA2yr15dtIBERERERESk1KrpjzPD4os9uH3FfM7K/iIiIiIiIVA4qumPMdDuPqqfbdGvGchERERERkcpCRXeMBVs0Oaqe7mDLpmUbSEREREREREqNiu4YC7ZphulycqS62wRMl5NgaxXdIiIiIiIilYWK7liz2fCc0R/gkIX3n+2eM/qDTUuri4iIiIiIVBYquiuAUIvGeEadDq7I89p/PuMdfdbb5cQzagihFo1jkk9ERERERESOjWGaZgmfKK4acnIKYh3h0IJBbKvWY1u9HqvXT8jlINiyaWRIuXq4RURKncNhxe8PxTqGiEiVpnutVGXp6YlH3EdFdwWlm5OISNnTvVZEpOzpXitVWUmKbg0vFxERERERESkjKrpFREREREREyoiKbhEREREREZEyoqJbREREREREpIyo6BYREREREREpIyq6RURERERERMqIim4RERERERGRMlLhiu533nmH/v3706FDB0aPHs2yZcsOue+aNWu48cYb6d+/P61ateLNN98sv6AiIiIiIiIiR1Chiu6ZM2cyceJExo4dy4wZM2jdujVXXHEFubm5B93f4/FQv359xo0bR3p6ejmnFRERERERETm8ClV0v/HGG4wZM4ZzzjmH5s2b88ADD+ByuZg2bdpB9+/YsSMTJkxg2LBhOByOck4rIiIiIiIicngVpuj2+/2sWLGCXr16RdssFgu9evViyZIlMUwmIiIiIiIicmwqTNGdl5dHKBQiLS1tv/a0tDR27twZo1QiIiIiIiIix84W6wDlzW63YhixTnFkNps11hFERKo83WtFRMqe7rVS3VWYojs1NRWr1XrApGm5ubnUrFmz1K4TCIRK7Vxlze+vPFlFRCor3WtFRMqe7rVSnVWYotvhcNCuXTvmz5/PwIEDAQiHw8yfP58LL7yw1K6Tnp5YaucSEREREREROZwKU3QDXHbZZUyYMIH27dvTsWNH3nrrLTweDyNHjgRg/Pjx1KpVi3HjxgGRydfWrVsX/X12djYrV64kLi6ORo0axex9iIiIiIiIiEAFK7qHDh3Krl27mDRpEjk5ObRp04ZXX301Orw8KysLi2Xf3G87duxgxIgR0e3XX3+d119/nRNPPJHJkyeXd3wRERERERGR/RimaZqxDiEiIiIiIiJSFVWYJcNEREREREREqhoV3SIiIiIiIiJlREV3JfTtt99y2mmnMXjwYKZOnRrrOCIiVdLYsWPp3r07N910U6yjiIhUSVlZWVx00UUMHTqUM888k88//zzWkUTKhJ7prmSCwSDDhg3j7bffJiEhgZEjR/Lee++Rmpoa62giIlXKwoULKSoq4sMPP2TSpEmxjiMiUuXs2LGD3Nxc2rRpQ05ODiNHjuSLL74gLi4u1tFESpV6uiuZZcuW0bx5c2rVqkV8fDx9+/Zl3rx5sY4lIlLlnHTSScTHx8c6hohIlZWRkUGbNm0ASE9PJzU1lfz8/BinEil9KrrL2aJFi7j22mvp06cPrVq14uuvvz5gn3feeYf+/fvToUMHRo8ezbJly6Kv7dixg1q1akW3a9WqRXZ2drlkFxGpLI73XisiIkdWmvfa3377jXA4TJ06dco6tki5U9FdzoqLi2nVqhX33XffQV+fOXMmEydOZOzYscyYMYPWrVtzxRVXkJubW85JRUQqL91rRUTKXmnda3fv3s2ECRN48MEHyyO2SLlT0V3OTjnlFG699VYGDRp00NffeOMNxowZwznnnEPz5s154IEHcLlcTJs2DYgMw/lrz3Z2djYZGRnlkl1EpLI43nutiIgcWWnca/1+P2PHjuWqq66ia9eu5RVdpFyp6K5A/H4/K1asoFevXtE2i8VCr169WLJkCQAdO3ZkzZo1ZGdnU1RUxPfff0+fPn1iFVlEpNIpyb1WRESOT0nutaZpcscdd9CjRw9GjBgRo6QiZc8W6wCyT15eHqFQiLS0tP3a09LSWL9+PQA2m40JEyZw8cUXEw6HufLKKzVzuYjIUSjJvRbg0ksvZdWqVXg8Hvr27cuzzz5Lly5dyjuuiEilVJJ77eLFi5k5c+Z+z4M/8cQTtGrVqtzzipQlFd2V0IABAxgwYECsY4iIVGlvvvlmrCOIiFRp3bp1Y9WqVbGOIVLmNLy8AklNTcVqtR4wuURubi41a9aMUSoRkapF91oRkbKne63IPiq6KxCHw0G7du2YP39+tC0cDjN//nwNaRQRKSW614qIlD3da0X20fDyclZUVMTmzZuj25mZmaxcuZLk5GTq1q3LZZddxoQJE2jfvj0dO3bkrbfewuPxMHLkyBimFhGpXHSvFREpe7rXipSMYZqmGesQ1cnChQu5+OKLD2g/++yzeeyxxwD473//y2uvvUZOTg5t2rThnnvuoVOnTuUdVUSk0tK9VkSk7OleK1IyKrpFREREREREyoie6RYREREREREpIyq6RURERERERMqIim4RERERERGRMqKiW0RERERERKSMqOgWERERERERKSMqukVERERERETKiIpuERERERERkTKioltERERERESkjKjoFhERERERESkjKrpFRESO0cKFC2nVqhWzZs2KdZQS2blzJzfddBMnnXQSrVq14s0334x1pFI1ffp0WrVqRWZmZrlf+/777+eyyy6Lbpf078a7777Lqaeeit/vL+uIIiISIyq6RUSkQvuzkOrQoQPZ2dkHvH7RRRdxxhlnxCBZ5TNx4kR++OEHrr76ap544glOPvnkWEeqErZs2cIHH3zANddcc9THjhw5kkAgwHvvvVcGyUREpCJQ0S0iIpWC3+/n5ZdfjnWMSm3BggUMGDCAK664guHDh9OsWbNYR6oS3n77berVq0ePHj2O+lin08mIESN48803MU2zDNKJiEisqegWEZFKoU2bNkyZMuWgvd1VXXFxcamcJzc3l6SkpFI5l0QEAgE++eQThgwZcsznGC7HB+kAAA1rSURBVDJkCFu3bmXBggWlmExERCoKFd0iIlIpXHPNNYTDYV555ZXD7peZmUmrVq2YPn36Aa+1atWK5557Lrr93HPP0apVKzZs2MDtt9/OCSecQI8ePXjmmWcwTZOsrCyuu+46unbtSu/evXn99dcPes1wOMw///lPevfuTefOnbn22mvJyso6YL+lS5dyxRVXcMIJJ9CpUycuvPBCFi9evN8+f2Zau3Yt48aNo3v37lxwwQWHfc9btmzhpptu4sQTT6RTp06MGTOG7777Lvr6n0P0TdPknXfeoVWrVrRq1eqw5/zss88YOXIkXbp0oWvXrpx55pm89dZb0dd3797N448/zplnnhnd58orr2TVqlX7nefPZ5tnzpzJ888/z8knn0yXLl246aabKCgowO/388gjj9CzZ0+6dOnCnXfeecDzza1ateLBBx/k448/5rTTTqNDhw6MHDmSRYsWHfY9/GnOnDlccMEFdO7cmS5dunD11VezZs2a/fbJycnhzjvvpG/fvrRv354+ffpw3XXXHfH58MWLF5OXl0evXr2OmMPv93PNNddwwgkn8Msvv0Tb27dvT0pKCt98802J3o+IiFQutlgHEBERKYn69eszfPhwpkyZwlVXXUWtWrVK7dy33norzZo1Y9y4ccyZM4cXX3yRlJQU3nvvPXr06MHtt9/OJ598wuOPP06HDh3o3r37fse/+OKLGIbBVVddRW5uLm+99RaXXnopH330ES6XC4D58+dz1VVX0b59e2644QYMw2D69Olccskl/O9//6Njx477nfPmm2+mUaNG3HrrrYcddrxz507OO+88PB4PF110EampqcyYMYPrrruOSZMmMWjQILp3784TTzzB+PHj6d27N8OHDz/s5zFv3jxuu+02evbsye233w7A+vXr+eWXX7jkkkuASKH/9ddfc/rpp1O/fn127tzJ+++/z4UXXshnn312wJ/Pyy+/jMvl4uqrr2bTpk3897//xWazYRgGe/bs4YYbbmDp0qVMnz6devXqccMNN+x3/KJFi5g5cyYXXXQRDoeDd999lyuvvJKpU6fSsmXLQ76XDz/8kDvuuIM+ffpw++234/F4ePfdd7nggguYMWMG9evXB+DGG29k7dq1XHjhhdSrV49du3Yxb948srKyovsczJIlSzAMg7Zt2x72M/V6vVx//fX89ttvvPHGGwf8ebdt23a/QlxERKoOFd0iIlJpXHfddXz00Ue88sor3HPPPaV23o4dO/Lggw8CcO6559K/f38ee+wxbrvtNq6++moAzjjjDE4++WSmTZt2QNGdn5/PzJkzSUhIACIF1C233MKUKVO4+OKLMU2T+++/n5NOOolXX30VwzAAOO+88xg2bBjPPPPMAb3orVu35umnnz5i9pdffpmdO3fyzjvv0K1bNwBGjx7NWWedxcSJExkwYAANGjSgQYMGjB8/nsaNGx+x6P7uu+9ISEjgtddew2q1HnSfVq1a8cUXX2Cx7Bs0N3z4cIYMGcIHH3zA2LFj99s/FAoxefJk7HY7AHl5eXz22WecfPLJ0dELf/vb39i8eTPTp08/oOhevXo106ZNo3379gAMGzaM008/nUmTJvH8888fNGNRURGPPPIIo0eP5qGHHoq2n3322Zx++um89NJLPPTQQ+zZs4clS5Ywfvx4rrjiiuh+JZkYbf369SQnJ0f/7A+V49prr2XNmjW89dZbtGnT5oB9GjRooKJbRKSK0vByERGpNBo0aMBZZ53FlClT2LFjR6mdd9SoUdHfW61W2rdvj2ma+7UnJSXRpEkTtmzZcsDxI0aM2K/oOv3000lPT2fOnDkArFy5ko0bN3LmmWeSl5fHrl272LVrF8XFxfTs2ZNFixYRDof3O+d5551Xouxz5syhY8eO0YIbID4+nnPPPZetW7eydu3akn0If/F/7d1bSFRdGwfwf1qaOr7jIbMmnCmzrBBPFSqWyRiUmTaMVKQFohiTEUGEFYkZhKEFJWHoVEIlkkFpSh7ALhJLDEEIE+rCA9lIGKPOqJOW+l3IbBrn8Kavw5fx/93ttdZee7m8euZ59l7//PMPDAYD3rx5Y3WMk5OTEHBPTU1haGgIrq6u2LBhA7q6uszGHzp0SAi4gdkfOmZmZpCcnGwyLjg4GAMDA/j586dJe1hYmBBwA4BEIkFcXBxaWlowNTVlcY1v376FTqdDQkKCsOdarRYODg4ICQlBW1sbAGDlypVYsWIF3r17h5GRkX/ZHVPDw8MQi8VW+/V6PTIyMtDd3Y3Hjx9bDLiB2T3//v07DAbDvJ5PRER/Pma6iYhoScnKykJNTQ3UavWiZbslEonJtbu7O5ydneHl5WXWPjw8bHa/TCYzuV62bBlkMhm+fPkCAOjt7QUAXLhwweoa9Hq9SfBmq6T5VxqNBiEhIWbt/v7+Qr+t8mtLUlJSUF9fL5TxR0dHIz4+HjExMcKY6elpPHr0CBUVFejv7zcJfD08PMzmtLTHALB27Vqz9unpaej1enh6egrtc/cYANavXw+DwQCtVgsfHx+zfuO+G0vi5zL+UOLk5ITz58+joKAA0dHRCAkJQWxsLBQKhcV557JV/p+fn4/JyUlUVVVh06ZN/zqHsQqCiIj+Hgy6iYhoSfk1220s/f6VtaDFWjYUgEmJtJG1suqFHOtkvCc7O9tqptPV1dXk2tnZed7PWSze3t6orq5GS0sLmpub0dzcjOfPn0OhUKCgoAAAUFJSgqKiIiQnJ+Ps2bMQi8VwcHBAfn6+xT2ytMe22hfj+CzjHIWFhRaD51//x2lpaZDL5WhqakJLSwuKioqgVqvx8OFDm+9re3h4QKfTWe2Pi4tDXV0d1Go1CgsLrf69Op0OLi4uwjcAiIjo78Ggm4iIlpxTp06hpqbG4pfMjdniuYGQRqOx23r6+vpMrmdmZtDX1yd8IdzPzw/AbGb1d75yPR8SiQQ9PT1m7d3d3UL/Qjg5OUEul0Mul2N6ehp5eXmorKxEVlYWZDIZGhsbERERgfz8fJP7dDqdSYZ6sczdY2A2k+3i4mJWkWBk3Hdvb+/f2nepVIr09HSkp6ejt7cXCoUCZWVluHnzptV7/P39UVtbC71eL2Tvf7V3717s2rULFy9ehJubG65evWpxnv7+fqE6gYiI/i58p5uIiJYcqVSKpKQkVFZWYnBw0KRPJBLB09MT7e3tJu0VFRV2W091dTVGR0eF64aGBgwODgrl2EFBQZBKpSgrK8PY2JjZ/VqtdsHP3rNnD96/f4+Ojg6hbXx8HE+fPsW6desQEBAw7zmHhoZMrh0cHIQfEIzHeTk6Opplo+vr6+12jnpHRwc+fPggXA8MDODVq1eIjo62WpWwe/duiEQilJaW4sePH2b9xn03GAyYmJgw6ZNKpXBzczM7vmyu0NBQzMzMoLOz0+oYhUKBnJwcPHnyBDdu3LA4pqurC+Hh4TafRURESxMz3UREtCSpVCq8ePECPT09Zu/KHj58GGq1GpcvX0ZQUBDa29stZoMXi1gsRkpKCpRKpXBkmEwmw5EjRwDMBq3Xrl1DZmYmDh48CKVSCV9fX3z9+hVtbW0QiUQoKSlZ0LNPnjyJly9fIjMzEydOnIBYLEZ1dTX6+/tx584dq+XMtuTk5GBkZASRkZHw9fWFRqNBeXk5tm7dio0bNwIAYmNjUVxcjEuXLiEsLAyfPn1CbW2tkF1ebJs3b0ZGRobJkWHA7FFf1ohEIuTl5SE7OxtKpRIHDhyAl5cXNBoNXr9+jfDwcOTm5qK3txdpaWnYv38/AgIC4OjoiKamJnz79g0JCQk217V9+3Z4eHigtbUVUVFRVscdP34co6OjuHXrFtzd3aFSqYS+zs5ODA8PIy4ubp67QkRESwGDbiIiWpJkMhmSkpJQVVVl1nf69GlotVo0Njaivr4eMTExuH//vs2g6L9QqVT4+PEj1Go1xsbGEBUVhStXrsDFxUUYExERgcrKSty9exfl5eUYHx+Hj48PgoODcfTo0QU/e9WqVUIGtby8HBMTEwgMDERJSQliY2MXNKfxnfmKigrodDr4+PggPj4eZ86cEYJ4lUoFg8GA2tpa1NXVYdu2bSgtLf2tY84WYufOnQgNDUVxcTE0Gg0CAgJw/fp1bNmyxeZ9iYmJWL16NdRqNR48eIDJyUn4+vpix44dUCqVAIA1a9YgISEBra2tqKmpgaOjI/z9/XH79m3s27fP5vxOTk5ITExEQ0MDzp07Z3OsSqWCXq8XAu/U1FQAs5UREokEkZGR89gRIiJaKpbNLMaXSoiIiIjsJDAwEKmpqcjNzf1/L8Wiz58/Iz4+Hvfu3Zv3DzuTk5OQy+XIzMy0+pV1IiJa2vhONxEREdF/4Ofnh+TkZKjV6nnf++zZMyxfvhzHjh2zw8qIiOhPwEw3ERER/dH+9Ew3ERGRLcx0ExEREREREdkJM91EREREREREdsJMNxEREREREZGdMOgmIiIiIiIishMG3URERERERER2wqCbiIiIiIiIyE4YdBMRERERERHZCYNuIiIiIiIiIjth0E1ERERERERkJwy6iYiIiIiIiOyEQTcRERERERGRnfwP06swXKXfrq4AAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Key Observations:\n",
" 1. RLVR pass@1: 0.198 vs Base pass@1: 0.122\n",
" 2. RLVR pass@256: 0.598 vs Base pass@256: 0.618\n",
" 3. Both plateau at similar values (same capability boundary)\n"
]
}
],
"source": [
"# Plot pass@k curves - KEY FIGURE FROM PAPER\n",
"plt.figure(figsize=(10, 6))\n",
"\n",
"plt.plot(k_values, base_pass_at_k, 'o-', label='Base Model', linewidth=2, markersize=8)\n",
"plt.plot(k_values, rlvr_pass_at_k, 's-', label='RLVR Model', linewidth=2, markersize=8)\n",
"\n",
"plt.xscale('log')\n",
"plt.xlabel('Number of samples (k)', fontsize=12)\n",
"plt.ylabel('Pass@k', fontsize=12)\n",
"plt.title('Pass@k Curves: Base vs RLVR Model\\n(Demonstrates RLVR improves efficiency but not capability)', fontsize=13)\n",
"plt.legend(fontsize=11)\n",
"plt.grid(True, alpha=0.3)\n",
"\n",
"# Add annotations\n",
"plt.annotate('RLVR has higher pass@1\\n(better sampling efficiency)', \n",
" xy=(1, rlvr_pass_at_k[0]), xytext=(1.5, rlvr_pass_at_k[0] + 0.1),\n",
" arrowprops=dict(arrowstyle='->', color='red', lw=1.5),\n",
" fontsize=9, color='red')\n",
"\n",
"plt.annotate('Base model catches up\\n(crossover point)', \n",
" xy=(32, base_pass_at_k[5]), xytext=(64, base_pass_at_k[5] - 0.15),\n",
" arrowprops=dict(arrowstyle='->', color='blue', lw=1.5),\n",
" fontsize=9, color='blue')\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"\n",
"print(\"\\nKey Observations:\")\n",
"print(f\" 1. RLVR pass@1: {rlvr_pass_at_k[0]:.3f} vs Base pass@1: {base_pass_at_k[0]:.3f}\")\n",
"print(f\" 2. RLVR pass@256: {rlvr_pass_at_k[-1]:.3f} vs Base pass@256: {base_pass_at_k[-1]:.3f}\")\n",
"print(f\" 3. Both plateau at similar values (same capability boundary)\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 7. Accuracy Distribution Analysis (Workflow 4)\n",
"\n",
"Analyzing how accuracy distribution changes before and after RLVR training.\n",
"This reveals that RLVR increases frequency of high-accuracy problems (already solvable)\n",
"rather than solving new problems."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:11.672076Z",
"iopub.status.busy": "2026-02-10T22:26:11.671679Z",
"iopub.status.idle": "2026-02-10T22:26:11.680318Z",
"shell.execute_reply": "2026-02-10T22:26:11.679446Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Computing accuracy distributions...\n",
" Base model mean accuracy: 0.114\n",
" RLVR model mean accuracy: 0.211\n",
"✓ Distributions computed\n"
]
}
],
"source": [
"# Compute per-problem accuracy for both models\n",
"def compute_accuracy_distribution(model, problems, n_samples=100):\n",
" \"\"\"\n",
" Compute accuracy distribution: for each problem, what fraction of samples are correct?\n",
" \n",
" Args:\n",
" model: SimulatedModel instance\n",
" problems: list of problems\n",
" n_samples: number of samples per problem\n",
" \n",
" Returns:\n",
" Array of per-problem accuracies\n",
" \"\"\"\n",
" accuracies = []\n",
" \n",
" for problem in problems:\n",
" responses = model.sample_responses(problem, k=n_samples)\n",
" accuracy = np.mean(responses)\n",
" accuracies.append(accuracy)\n",
" \n",
" return np.array(accuracies)\n",
"\n",
"# Compute distributions\n",
"print(\"Computing accuracy distributions...\")\n",
"base_accuracies = compute_accuracy_distribution(base_model, test_problems, n_samples=100)\n",
"rlvr_accuracies = compute_accuracy_distribution(rlvr_model, test_problems, n_samples=100)\n",
"\n",
"print(f\" Base model mean accuracy: {np.mean(base_accuracies):.3f}\")\n",
"print(f\" RLVR model mean accuracy: {np.mean(rlvr_accuracies):.3f}\")\n",
"print(\"✓ Distributions computed\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:11.682934Z",
"iopub.status.busy": "2026-02-10T22:26:11.682583Z",
"iopub.status.idle": "2026-02-10T22:26:11.903329Z",
"shell.execute_reply": "2026-02-10T22:26:11.902503Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAvfxJREFUeJzs3Xl8TNfj//F3EhJiz8an1qJJkMW+JbFErLEvQRvU1lJUi6J7qdpK1fahxF6KJqG2UkEpDapVPpRSSlFLJCGWVCSZ3x9+ma8xCYnETMrr+Xjk8ZB7zz333DN3buSdc87YGAwGgwAAAAAAAAALsrV2AwAAAAAAAPDsIZQCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAOSoyMlIeHh7at2+fVc9pjXZY87xAbjd69Gh5eHg89vEzZ86Uh4eHzp8/n4OtAgBYE6EUAOCpcP36dfn4+MjDw0Nr1661dnOeCvv27ZOHh4fxq1KlSqpVq5Zat26tUaNGadeuXTIYDDl6zpkzZyoqKipH63wS9u3bp5kzZyohIcHaTcmy+19TDw8PVa5cWQEBAerXr592795t7eblKmkhyv3vgXr16mnAgAE6cOCAWfnz58/Lw8NDY8eONds3adIkeXh4PPL+Dg0NVaVKlXTx4kVJUo8ePUzaUKVKFfn7++uNN97QiRMnMn0taYGOh4eHNm/enG6ZrVu3GsvMnDkz03UDAPC48li7AQAA5IT169crKSlJpUqVUkREhNq3b2/tJj01WrdurQYNGshgMOjWrVv6888/tW3bNq1du1b169fX9OnTVbhwYWP5du3aKTg4WHnz5s3yuWbNmqUOHTooKCgoS8dl55yPY//+/ca23n/t1mjL46hUqZJ69+4tSUpOTtaFCxf09ddfq2/fvpo5c6aaNWtm5RbmLh999JEcHR119+5d/fHHH1q1apV++OEHLV68WLVq1cpUHZ07d9bChQsVERGR4f39119/6cCBA/Lz89N//vMf43Z7e3uNGzdOknTnzh0dOXJEkZGR2rlzpyIiIlS+fPlMX4uDg4MiIyPVokULs30RERFycHDQnTt3Ml0fAADZQSgFAHgqhIeHq06dOmrSpInGjx+vc+fOqXTp0tZu1kMZDAbdvn1bBQoUsHZTHqpy5cpq166dyba3335bn376qRYtWqRhw4YpLCzMuM/Ozk52dnYWadvNmzdVsGBBi57zUXJTWzJSvHhxs9e0WbNmateundasWUMo9YDmzZvLycnJ+H2tWrX02muvacGCBZkOpSpUqKBq1app165dunr1qlxcXMzKREZGymAwqHPnzibb8+TJY/J6hYSEqGLFivrkk0+0fPlyvf/++5m+lqZNm+rbb7/VlStX5ObmZtweExOjH374QS1atNCGDRsyXR8AANnB9D0AwL/e0aNHdezYMXXo0EGtW7dWnjx5FB4enm7ZpKQkzZ8/X+3atZOvr69q1Kihjh076ssvvzQpd/PmTU2bNk0tW7aUt7e36tSpo+7du2vjxo3GMj169FBgYKDZOdKm8Nw//SVtKlxkZKSWL1+uVq1aydvbWwsXLpQkHT58WKNHj1bz5s3l6+uratWqqVu3btq6dWu61xETE6Nx48apSZMm8vLyUr169dS7d2/t2bNHkjRw4ED5+vrq5s2bZscePnxYHh4emjVr1iN6NmN2dnYaPXq0atSooR9++MFkKlN6ayrduXNHM2fONF5fzZo11aZNG02aNMmkzyRpzZo1JtOV0nh4eGj06NGKjo5W9+7dVa1aNQ0cODDDc6ZJSUnRzJkz1bhxY3l5ealNmzYmr+OD9T/owbpHjx5t7LsmTZqYTXfKqC1xcXEaM2aMGjZsKC8vLzVs2FBjxoxRfHx8uueLjo7WggULFBQUJC8vLzVv3lxr1qwxa19cXJxOnTqlGzdumO3LirSA4sERXrt379Ybb7yhJk2ayMfHRzVr1lSfPn20f/9+szpOnjyp119/XQEBAfLy8pKfn5969Oih77//3qRcUlKS5s6dq+DgYHl7e6tmzZoaMGCAfvvtt0e2c8WKFfLw8NC2bdvM9qWmpqpBgwYmAc4vv/yifv36yc/PT97e3goICFD//v3166+/ZqJX0levXj1J0pkzZ7J0XOfOnZWcnKxvvvkm3bavXbtWRYsWVZMmTZ5YG9q2bStbW1uzac5r166VjY2N2rZtm+5xycnJmjdvnvHZVadOHQ0aNEi///67Wdk7d+5o0qRJ8vf3l4+Pjzp37vzQqaFnzpzRW2+9JX9/f3l5eSkwMFCTJk3S7du3s3RtAIB/H0ZKAQD+9cLDw+Xo6KhmzZrJ0dFRjRo10tq1azV06FDZ2v7f31+SkpLUt29f7d+/X/7+/mrbtq0cHBx04sQJfffddwoNDZUkJSQk6MUXX9TJkyfVvHlzde/eXampqfrtt9+0Y8cOBQcHP3ZblyxZomvXrqlLly5ydXVViRIlJN1by+X06dNq0aKFSpYsqWvXrmnNmjUaPHiwpkyZojZt2hjrOH/+vLp3767Y2Fi1a9dOXl5eSkxM1KFDh/Tjjz/Kz89PISEh2r59uzZs2KBu3bqZ9Zetra3ZaIzH0blzZ/3888/auXOnatasmWG5MWPGGKdVVqtWTSkpKTpz5owxuHFyctLkyZM1cuRI1axZUyEhIenWc+TIEW3ZskUhISHq0KFDpto4ZcoU3b59W927d5d0L/QZNmyY7ty5o44dO2bxiqWuXbvq5s2b2rp1q95++20VK1ZMkh66gPONGzfUvXt3nT17Vp06dVLlypV17NgxffXVV9q7d6++/vprFSxY0OSYadOm6Z9//lHXrl1lb2+vr776SqNHj1aZMmVUo0YNY7nly5dr1qxZmjBhQqavJzk5WXFxcZLuhXZ///23/vvf/8rOzs7svlizZo2uX7+u9u3bq0SJErp8+bK+/vprvfzyy1q6dKnxdY+Pj1evXr0kSd26ddNzzz2n+Ph4HTlyRIcOHVKjRo0kSXfv3lXfvn118OBBtWvXTi+99JJu3ryp1atXq3v37vryyy/l7e2dYduDg4M1YcIEffPNN2bhTXR0tC5fvqw+ffpIkk6fPq0+ffrIxcVFPXv2lLOzs2JjY/Xzzz/r+PHjqlq1aqb660F//fWXJKlo0aJZOq5ly5b65JNPFBkZqb59+5rs+/HHH3Xx4kX17NlT9vb2T6wNTk5OatiwoSIjI/XKK68Yt0dGRqpRo0YmI8LuN2LECH377bfy8/NT9+7ddfXqVS1fvlzdunXT8uXLVblyZWPZYcOGKSoqSo0bN1ZAQID++usvDRkyRKVKlTKr98iRI+rVq5cKFy6srl27qnjx4jp+/LiWLVumgwcPatmyZbl6KiwAIHsIpQAA/2p37tzRhg0b1Lx5czk6OkqS2rdvr61bt+qHH35Qw4YNjWWXLFmi/fv369VXX9WwYcNM6klNTTX++7PPPtPJkyc1duxYde3aNcNyj+PixYv69ttv5ezsbLJ94MCBGj58uMm2Hj16qH379pozZ45JKDVmzBhduXJFYWFhCggISLd9DRo00H/+8x+Fh4ebhFKJiYnauHGj/P39jYFYdqQFMY8arREVFaUGDRoYR0Y9yNHRUe3atdPIkSNVunRps6llaU6ePKlFixapfv36mW5jfHy81q1bp0KFCkmSunfvrrZt22rixIlq1aqV8uXLl+m6JKlatWry8PDQ1q1bFRQUlO4v2g8KCwvTmTNn9MEHH+ill14ybq9UqZLGjh2rsLAwvfHGGybHJCUlKTw83BhQtGjRQk2aNNHy5ctNQqnHsXv3buNImzRFihTRzJkz1aBBA5PtH3/8sfG9laZbt24KDg7WF198YQylfvnlF8XGxmratGlq1apVhudevny59u/fb3b/vvjii2rdurUmT56sZcuWZXh8kSJF1LhxY+3YsUPXr19XkSJFjPvWrl2rPHnyGN8vu3fvVmJioj777DP5+Pg8olcydv36dUn3ArVTp05p4sSJkmTyvsyMAgUKqGXLloqIiNDhw4dN2hQZGSlJ6tSpU7rHpoWId+7c0dGjRzV+/HhJynBk08N06tRJAwcO1C+//KLq1avrl19+0enTpzVy5Mh0y+/Zs0fffvutWrZsqWnTpsnGxkbSvZCtY8eOGjdunFasWCHpXp9HRUWpQ4cOxn6S7k15HDRokFnd77zzjlxdXRUeHm4SzNarV0+DBw/W+vXrHys8BgD8OzB9DwDwr/bdd98pISHBZGHzhg0bysnJSRERESZl169fryJFiqT7i1HaiKrU1FRt2rRJFSpUMAuk7i/3uNq1a2cWSEky+aU/MTFR8fHxSkxMVN26dXXq1CnjNLxr167phx9+UEBAgFkgdX/77Ozs1KlTJ/3vf/8zmV6zZcsW3bx5M0dGSUky/hKZ3jTBB8v98ccfWfq0sPR4enpmKZCS7oVQaYGUJBUqVEjdunXT9evX053u9yRs3bpVTk5OZvdU165d5eTklO4nsr344osmI2aKFy+u559/3iwAHDJkiH7//fcs/eLu6+urRYsWadGiRQoLC9PHH3+s5557TsOGDdMPP/xgUvb+e/PWrVuKj4+Xra2tfH19dfjwYeO+tD7+4YcfHno/rFu3TuXLl1eVKlUUFxdn/EpKSlL9+vX1888/659//nlo+zt06KCkpCRt2rTJpG1RUVEKCAgwvsfS2rRt27ZsLd7dokUL1atXTw0aNFDv3r31999/a+TIkSYBY2alvffufz4lJCQoKipKXl5e8vT0NDvm9u3bqlevnurVq6dGjRpp0KBBSkpK0qRJk0yC98xq0KCBXF1djUFYZGSkXF1dzQLJNGnTiAcMGGAMpKR778fGjRvr559/NoZmaffygyPBgoKC9Pzzz5ts+/333/X777+rdevWSkpKMrkfatSoIUdHR+OUZADA04mRUgCAf7Xw8HA5OTmpRIkSOnv2rHG7n5+fNm/erLi4OON0lLNnz6pSpUpycHDIsL74+Hhdv3493cAnJ5QrVy7d7bGxsfr888+1bds2xcbGmu1PSEhQwYIF9ddff8lgMJhMlclI586dNWfOHIWHh+vdd9+VdK+/nJ2d010L63GkhQ8PTj170DvvvKORI0eqTZs2Kl26tOrUqaPGjRsrMDAwS0FfRv33MOl9MlmFChUk3ZsKaQnnz5+Xl5eX8uQx/a9Xnjx5VK5cuXTXUkpvof6iRYvqwoUL2W5PsWLFzMK9Vq1aqVmzZnrvvfcUFRVlnDL1119/adq0adq9e7cSEhJMjrk/oKhdu7bat2+vyMhIrV+/Xl5eXqpfv75atWqlihUrGsudOnVK//zzj9lIrfvFx8ebfPrcg9KCp2+++cY4LfO7777T7du3TUbZBQcHa926dZo7d64WL14sX19f+fv7Kzg4WCVLlsxET90zc+ZMFSxY0Bh8rVu37rFDrurVq6t8+fLatGmT3nnnHTk4OGj9+vW6c+dOhqOkHBwcNHfuXEn3gulvvvlGe/bseeyRm3ny5FHbtm21atUqDRs2TJs2bVL37t0zXKD//PnzsrW1Nb5v7lexYkVFRUXp/PnzcnJy0rlz52Rra5vue7VChQr6888/jd+fOnVK0r3+vX8NvvtdvXr1Ma4QAPBvQSgFAPjXOnfunPbt2yeDwaDmzZunW2bdunV6+eWXLdqulJSUDPflz5/fbJvBYFCfPn106tQp9ezZU15eXipUqJDs7OwUERGhDRs2PNYvn//5z38UEBCgdevW6a233tLff/+tn376SX369MmxNVrSRmE9OALiQUFBQdq+fbt27typn376ST/++KPCw8NVs2ZNLVq0KFNr6Ejp99+T9rDX80nK7qi8rCpYsKCqVq2qbdu26ezZs6pYsaJu3bqll156SYmJierVq5fc3d1VoEAB2dra6osvvtDevXtN6pg0aZL69u2rXbt26cCBA1q0aJHmzp2rd955x7hmm8FgkLu7u95+++0M25LRukZp8uTJo9atW2vJkiU6e/asypYtq7Vr16pIkSIm60zZ29tr0aJFOnz4sHFB/hkzZmjWrFmaOnWqmjZtmqm+qVmzprFNTZs2lYODg6ZPn64qVao81kilTp066dNPP9V3332nNm3aKDIyUvny5ctwOqCdnZ1JiNiiRQu9+uqr+uCDD1S5cuV0R1dlpg0LFizQiBEjdOvWrQwDMUvo06dPhn8IKFy4sIVbAwCwJEIpAMC/VtrHp48bN85kelaazz//XBEREcZQqly5cjp9+rSSkpIyDEGKFSumIkWK6Pjx4488f9GiRXX06FGz7efOncvSdfz+++86fvy4Bg0apNdff91k39dff23yfZkyZWRjY6Njx45lqu6QkBB9//33ioqKMh6TU1P3JBk/5TAzv5gXLVpU7dq1U7t27WQwGDRlyhSFhYVp27ZtatmyZY616UGnT58225Y2QuP+9aCKFi2qa9eumZVN7/W8f4RQZpQuXVp//vmnkpOTTUZLJScn68yZM+mOirKG5ORkSfemwkn3Fg6/cuWKxo8fbxZafP755+nW4e7uLnd3d/Xr108JCQnq0qWLpk6dqpdeekk2NjYqW7as4uPjVbdu3WwFbx06dNCSJUu0du1ahYSEaP/+/QoJCUn3ve3j42Ncv+nixYtq3769Pv/880yHUg8aPny4vv32W02cOFH+/v4ZjjDKSPv27TVt2jTjJy0eOXJEbdq0Sfc5lh5bW1u9++67Cg4O1uTJk42f4pkVFSpUULVq1bRnzx5Vq1Yt3RGFaUqXLq3U1FSdOnXKLAB78L2UVvbMmTN64YUX0i2bpmzZssbryeq0XADA04E1pQAA/0qpqalas2aN3N3d1aVLF7Vo0cLsq3Xr1jpx4oRx3Zs2bdro+vXr+u9//2tWn8FgkHTvl6Pg4GD98ccfZoHQ/eWkeyHXrVu3TNbVSU1N1eLFi7N0LWm/mN9ftySdOHHCuJZLmqJFi6pBgwbatWuXfvzxx4e2T5IaNWokNzc3rVq1SmvWrFH16tXTnYKTVSkpKZo0aZJ+/vlnNWzY8KELb6ekpKQ77SttCmLaItLSvfWL0guGsuOrr77SjRs3jN/fuHFDK1euVOHChVW7dm3j9nLlyunXX39VYmKicdv169eN6+7cL22dpfvb/jBBQUGKi4szu6dWr16tuLg4BQUFZema7hcXF6dTp06ZXOPj1nPw4EE5ODgY75G0sOXB+2r37t06dOiQybZr166ZjegrXLiwSpUqpcTERON0t/bt2ysmJkaLFi1Ktx2Zna5VqVIleXh4aN26dfrmm2+Umppq9omMaesc3a9EiRJycnLK9GuXniJFiqhHjx46ffq0NmzYkOXjXVxc1KhRI+3du1ezZs2SlPWwuFy5cmrdurX27NmjAwcOZLkN0r1wbfDgwWYfsvCgtPtz3rx5JvfCiRMntH37dtWoUcM4kixtpNqCBQtM6oiKijKZuidJlStXlru7u1auXJlu+JucnJzjzwMAQO7CSCkAwL/S7t27dfHixYf+ItesWTPNnDlT4eHh8vHxUc+ePbVjxw7NmTNH//vf/+Tv7y97e3v98ccf+vPPP41h0htvvKG9e/fqvffe0549e1SjRg0ZDAYdO3ZMycnJ+vTTTyXdG4W0aNEiDRo0SD179lTevHm1ZcuWLE/3qlChgl544QWFhYXpn3/+0fPPP68///xTq1atkru7u9lorPfff1+//fab+vfvr/bt26tKlSq6c+eODh06pJIlS+qtt94ylk1b8HzOnDmSZPapg5nx22+/6ZtvvpF0bwTNn3/+qW3btunChQvy9/fX1KlTH3r8rVu35O/vr8DAQFWuXFlOTk46f/68vvrqK+MnqaWpWrWqoqOjNW/ePD333HOysbFRcHBwltt8v2LFiqlLly7GhcAjIyP1999/a9y4cSbTAV966SW99dZb6tWrl9q1a6eEhAR9/fXXeu655xQTE2NSp6+vryRpypQpatOmjRwcHPTCCy/I3d093Tb069dPmzdv1tixY/Xbb7+pUqVKOnbsmMLDw/X888+rX79+j319y5cv16xZszRhwoRML3Z++fJl42uampqqv//+WxEREUpISNCbb75pXCOsRo0acnV11aRJk3ThwgWVKFFCx44d0zfffCN3d3eThevXrl2rJUuWKCgoSGXLllWePHn0008/affu3WrZsqXxUw579uypH3/8UZMnT9bevXtVt25dFSxYUH///bf27t0re3v7h3763v3SPuFt/vz5KleunKpWrWqyf86cOdqzZ48aNWqkUqVKyWAwaMeOHTp9+nS2+jztOhYvXqz//ve/at26tcloqSNHjqQbfufJk0evvPKKpHshVFRUlLZs2WJcZy2rXn31Va1bt04zZ87UkiVLsnx8rVq1VKtWrUeW8/PzU8uWLbVx40Zdv35djRs3VkxMjFasWCEHBwe99957xrIBAQFq3Lix1qxZo2vXrikgIEDnzp0zPs/uv2dsbGw0efJk9erVS23btlWnTp1UsWJF/fPPPzp79qy2bt2qYcOG8el7APAUI5QCAPwrpU0be9j0G3d3d5UrV864oHC+fPm0cOFCLVy4UBs2bNBnn30mBwcHlS1b1uSXniJFimjVqlWaO3eutm7dqqioKBUoUEAVKlQwrosj3ZumMnv2bH322WeaPn26cXpap06dsjQdzc7OTl988YUmTZqkNWvWKDExUS+88IImTZqk48ePm4VSpUuXVkREhGbPnq1du3bpm2++UeHCheXp6ZnuJwZ26dJFX3zxhfLnz68WLVpkul1pNmzYoA0bNsjW1laOjo4qUaKEatWqpY8++ijDT+u6X758+dSrVy9FR0crOjpat27dkpubmwIDA/Xqq6+qePHixrIffvihxo4dq7lz5xqnkGU3lBoxYoQOHDigFStW6OrVq3r++eeNYdL92rZtqytXrmj58uWaMGGCSpcurddee022trZmo4Jq1KihESNGaOXKlXr//feVnJyswYMHZxhKFSpUSF999ZVmzJih7du3KzIyUs7OzurWrZuGDBnyyIXic9qxY8c0cuRI4/cFChRQpUqVNHz4cJP+Lly4sMLCwvTpp5/qyy+/VHJysry8vDR//nyFh4ebBAx16tTRsWPH9P333ysmJka2trYqVaqURo0aZfK+yZs3r7744gutWLFC33zzjXGBazc3N3l7e5uNdnqYNm3aaMqUKbp582a6IVNQUJBiYmK0efNmXb16Vfny5VPZsmU1bty4bE9jLVq0qF566SXNmzdP69atM2n3oUOHzO4Z6d4aV2mhVIMGDeTm5qYrV66oQ4cOWZ4SKt1bxD8tLNq/f7/JyL+cNmXKFFWuXFlr1qzRxIkT5ejoqFq1amno0KHy8PAwKfv555/r888/1/r16/Xjjz/K3d1dM2fO1IYNG8w+gbNSpUpas2aNvvjiC23fvl0rV65UgQIFVLJkSXXo0OGhC+IDAP79bAwPjscGAABPlStXrqhRo0bq3Lmzxo4da+3mAAAAAJJYUwoAgKfeV199pZSUFIWEhFi7KQAAAIAR0/cAAHhKbdy4UX///bcWLFggf39/eXl5WbtJAAAAgBHT9wAAeEp5eHjIwcFBNWvW1IQJE0zWbgIAAACsjVAKAAAAAAAAFseaUgAAAAAAALA4QikAAAAAAABYHKEUAOSwEydOqHLlytqzZ4+1m2JVgYGB6tGjR6bKRkZGysPDQ/v27TPZfu7cOb322muqW7euPDw8NHr06CfR1EdK71qycn1PWzuseV5Lyso9N3PmTHl4eOj8+fOPda7z58/Lw8NDM2fOfKzjAVhWjx49FBgYmKmy/6b3d0xMjHx9fbVmzRprNwXAM4JQCgBy2MSJE1W9enX5+fkZt+3bt08eHh4mX9WqVVOHDh20ePFiJScnm9XTo0cPVatWzWz7yZMn5eHhoddee+2h7YiIiJCHh4fmzp0r6f+Cn7QvT09P1ahRQ926dVNkZGQ2r/rJePvtt/XTTz+pf//+mjx5srp27ap9+/Zp5syZSkhIsHbzHsu/qf0zZ85UVFSUtZuRocjISC1evNjazQBytYSEBM2cOdMs9AfS4+rqqm7dumnatGlKTEy0dnMAPAPyWLsBAPA0OXjwoPbs2aPZs2enu79169Zq0KCBDAaDrl69qm+++UYTJkzQqVOn9PHHH2fqHC+88IJ8fX21c+dOxcbGytnZOd1ykZGRsrOzU4cOHUy29+jRQ97e3jIYDLp48aK+/vprvf3227py5YoGDBiQtQvOIe3atVNwcLDy5s1r3JaUlKQDBw4oNDRUffv2NW6fOXOmZs2apQ4dOqhw4cLWaK4kafPmzY913P79+x+7/Y97zseV1s6goCCrtyU9a9as0YULF/Tyyy9buykaOHCgXnnlFdnb21u7KYCJhIQEzZo1S4MHD1adOnWs3Rz8C/To0UNLlixRZGSkXnrpJWs3B8BTjpFSAJCDVqxYoWLFiqlhw4bp7q9cubLatWun9u3bq1+/flq1apVKlCihr7/+WnFxcZk+T+fOnZWcnKx169alu//s2bM6cOCA/P39Vbx4cZN9NWvWNLZh4MCB+uqrr+To6KiwsDClpKRk/mJzkJ2dnRwcHGRr+38/lq5evSqDwaAiRYpYpU2PYm9vb5EA4u7du7pz545Fz5kZuaktuUGePHnk4OAgGxsbazclU/755590R2g+LW7evGntJuBfhPvFVKlSpVSzZk2tXLnS2k0B8AwglAKAHJKcnKyoqCjVr1/fZMTPwzg6OsrX11cGg0F//fVXps/VqlUrOTo6ZjjtLm17p06dHllX8eLFVb58ed24cSNTwVhqaqoWL16sNm3aqFq1aqpevbqaN2+ud955R3fv3jUrf+rUKb3yyiuqVq2aatSooddff10xMTFm7b1/TanRo0ercePGku6N1kmbchgYGKhZs2ZJkpo0aWLcnrZOx7Vr1zR+/HgFBQXJ29tbderUUceOHRUWFvbI65KkixcvaujQoapRo4aqV6+uAQMGZPi6pLem0i+//KJ+/frJz89P3t7eCggIUP/+/fXrr78ar+th7U9bl+jkyZOaMGGCGjRoIB8fH+PxD1vH6ejRo+rZs6eqVaum2rVra9SoUYqNjTUp87B1j+6vO239E+neaKT7p30+7PolKSoqSt26dVPVqlVVrVo1devWLd0pgGnHZ+b+SE9gYKD279+vCxcumLTv/ilKP/30k3r37q0aNWrIx8dHHTp00Ndff/3Iuh908OBBhYaGqmrVqqpTp47effdd3bp1y6RMRn17/Phx9enTx3jsqFGjFBcX99D1qnbs2KFOnTrJ29tb/v7+mjRpUroB0pkzZ/TWW2/J399fXl5eCgwM1KRJk3T79m2TcqNHj5aHh4fi4uL09ttvq379+qpataouXbqU4TXfvHlT06ZNU5cuXVSnTh15eXmpadOmmjJlSrpTegwGg1avXq0uXbqoWrVqqlatmtq0aaPp06eblEtKStL8+fPVrl07+fr6qkaNGurYsaO+/PJLs/am58F+u3+tnk2bNqljx47y8fHRuHHjJN17/nz00UcKDg5WtWrV5Ovrq44dO2Z4H6Rdd8uWLY3PkO7du2vjxo2SpHHjxsnDw0NnzpwxO/bKlSuqXLmy3n777Qz79WHS7qHTp0/rs88+U4MGDeTl5aW2bdtq586dZuWTk5M1b948tWrVytjWQYMG6ffffzeW2bdvn5o0aSLJ/Fn6MGnP5OjoaC1YsEBBQUHy8vJS8+bNM1xr6Mcff1SfPn1Us2ZNeXt7q02bNvrqq69Myrz99tvy9vY2Bu3SvfeXh4eHateurdTUVOP2nTt3ysPDQ5s2bcpUW3/88UfNnDlTjRs3lpeXl9q0aWN83e6X9uz57bff1LdvX9WoUUNt27Y17s/qc+PcuXMaOHCg8efGoEGDdO7cuYe2+X6bNm1S9+7djfdnly5d0h2JmnbvR0dHq2vXrvL19VWDBg00b948SdL169f1zjvvqF69evL19dWrr76qy5cvm9SRlZ+RDRo00IkTJ3Tq1KlMXwsAPA6m7wFADjl69Khu374tHx+fLB2X9p/XrIwIKliwoPGXg8OHD5ucMzU1VWvXrpWTk1OmFmG9e/euLl68KFtb20xNJ5szZ45mzJihxo0bq1u3brKzs9P58+e1fft2JSUlmQRyly9fVs+ePRUUFKSRI0fq+PHjWrVqlW7evKmFCxdmeI6uXbvK09NTEyZMUNOmTdW0aVNJ0n/+8x8tXbpUW7du1dtvv61ixYpJkvEX2KFDh+rAgQPq1q2bPDw89M8//+jUqVPav3+/+vXr99DrSkhI0EsvvaRLly6pW7duqlChgn766Sf17NlT//zzzyP75fTp0+rTp49cXFzUs2dPOTs7KzY2Vj///LOOHz+uqlWrqmvXrrp582aG7U8zYsQI5cuXT3369JF0b42Ph7l06ZJefvllNWvWTM2bN9dvv/2miIgIHTlyROHh4cqfP/8j238/JycnTZ48WSNHjlTNmjUVEhKSqeOWL1+usWPHqnz58sY1z9asWaNBgwZp7Nix6tq1q0n5x70/JOmdd97R1KlTFR8fbxICVKhQQZK0fft2DR48WC4uLurdu7cKFiyojRs36r333tP58+f15ptvZuqajh07pgEDBqhjx45q3bq19u/fr/DwcNna2j5yyu2ZM2f00ksvKTU1VT169FDx4sW1c+fOh96LO3fu1IoVK9StWzd16tRJ27Zt08KFC1WkSBGT6bVHjhxRr169VLhwYXXt2lXFixfX8ePHtWzZMh08eFDLli0zC8d79+4tFxcXvfbaa7p9+7YcHR0zbMfly5cVHh6uZs2aqXXr1sqTJ4/279+vsLAwHTt2TAsWLDAp/9Zbb2n9+vXy9fXVgAEDVKhQIZ0+fVpbtmzR0KFDJd0LpPr27av9+/fL399fbdu2lYODg06cOKHvvvtOoaGhD+3Ph4mKitKyZcvUvXt3devWTQULFpR0b7rsgQMH1KhRI5UqVUqJiYnavHmz3nvvPcXFxenVV1811pGQkKAXX3xRJ0+eVPPmzdW9e3elpqbqt99+044dOxQcHKyQkBAtW7ZMERERGj58uEkb1q5dq5SUFHXp0uWxr0O6F8rlyZNHffr00d27d7VkyRINGjRImzdvVqlSpYzlRowYoW+//VZ+fn7q3r27rl69quXLl6tbt25avny5KleurAoVKujtt982e5YWKFAgU22ZNm2a/vnnH3Xt2lX29vb66quvNHr0aJUpU0Y1atQwllu1apU+/PBDVa1aVQMGDFD+/Pn1448/6qOPPtJff/2lUaNGSZLq1KmjyMhI/fLLL6pXr54kKTo6Wra2trp+/bp+++03eXl5SZL27t0rGxubTE85nDJlim7fvq3u3btLuhdWDRs2THfu3FHHjh1Nyv7999/q1auXWrRooWbNmhmD3Kw+N27fvq0ePXrIx8dHw4YN09mzZ7VixQodOnRIa9aseeSze9q0aZo7d64CAgI0dOhQ2draauvWrRo6dKg++OADs6lzafdiSEiI2rVrp2+//VZTp06Vg4OD1q5dq5IlS2rw4MH666+/tGzZMo0aNcpk3b2s/IysWrWqpHvvobTnKgA8EQYAQI4IDw83uLu7G6Kiosz27d271+Du7m6YOXOmITY21hAbG2s4fvy44aOPPjK4u7sbOnfubHZMaGiooWrVqhme76effjK4u7sbPvzwQ5Ptu3btMri7uxvGjx9vsj0iIsLg7u5uCA8PN8TGxhquXr1q+N///mcYMmSIwd3d3fD6669n6jrbt29vaNmy5SPLNW7c2ODu7m7YuHGjyfa0az516pRZ2/bu3Wvcdu7cOYO7u7thxowZJsfPmDHD4O7ubjh37pzJ9oSEhHT7I7OmTp1q7J/7jRs3zuDu7m4IDQ01u777ty1ZssTg7u5uOHTo0EPPk1H7798XGhpquHv3rtn+B8+Zts3d3d2waNEik+2LFi0yuLu7G7744otMnTu9ut3d3Q2jRo1K9zoeLH/t2jVD1apVDUFBQYYbN24Yt9+4ccPQpEkTQ9WqVQ3Xr183a3dm7o+MhIaGGho3bmy2PTk52dCoUSNDjRo1DJcuXTJuv3PnjqFr164GT09Pw59//vnI+t3d3Q0eHh6GX3/91WR7//79DZUrVzbcvHnTuC29vn399dcN7u7uhgMHDpgcP3ToULO+TbvffX19TepITU01BAcHG/z8/EzqaNOmjaF58+YmfW0wGAzfffedwd3d3RAREWHcNmrUKIO7u7th+PDhj7zmNHfu3DEkJSWZbZ82bZrZfb5x40aDu7u7YcSIEYaUlBST8vd/P2/ePIO7u7th6tSpZvXeXy6tvenJqN8qV65s+OOPP8zK37p1K91zhYaGGqpXr25yjR9++KHB3d3dsHLlyoe2r2vXrgY/Pz9DcnKySZlmzZpl6tmYkbR76JVXXjGkpqYatx86dMjg7u5umDJlinHb7t27De7u7oahQ4ealD127JihUqVKhu7duxu3ZfQsfZi0Z3K7du0Md+7cMW6/dOmSoUqVKoY333zTuO3y5csGLy8vw7Bhw8zq+fjjjw2enp6Gv/76y3i8u7u74bPPPjOW6dGjh2HAgAGGatWqGebNm2fc3qFDB0Pr1q0z3dZGjRoZEhISjNsTEhIMjRo1MtSqVcuQmJho3J727Fm9erVJPVl9boSGhhrc3d0N48aNM6kn7T34/vvvG7el9xocOXIkw/fDwIEDDdWqVTN5f6f3PLpz547Bz8/P4OHhYfj4449N6hg/frzJszSrPyMvXrxocHd3N4wdOzZT5QHgcTF9DwBySNrUt4eNeJo5c6bq1aunevXqqW3btlqxYoWaNWum//73v1k+X82aNVWuXDlt3LjRZCpE2tS9zp07p3tc2vD++vXrq1OnTvruu+8UEhKi8ePHZ+q8BQsW1OXLl3XgwIFHlnVzc1OrVq1MttWtW1fSvXWvcpKDg4Ps7e11+PDhdKenPUpUVJRcXFzUvn17k+39+/fP1PGFChWSJG3bts3k9XgcvXr1Up48mR/MXLBgQb344osm21588UUVLFhQW7duzVZbMmvPnj3GUQNpo1TS2tajRw/dvn1bP/74o8kxT+r+OHr0qP7++2916tTJZE01e3t79evXT6mpqdq2bVum6qpatap8fX3N2picnKwLFy5keFxKSop27dolHx8fkxElkowj4NLTpEkTk9EwaSNFYmJijFMGf//9d/3+++9q3bq1kpKSFBcXZ/yqUaOGHB0dtWfPHrO67//AgEext7c3jrRKTk7W9evXFRcXp/r160uSDh06ZCy7fv16SdKoUaNM1oWTZPL9+vXrVaRIEQ0aNMjsfA8el1UNGzZMdzTH/aPB7ty5o/j4eF27dk1+fn66efOmTp8+LeneCNNNmzapQoUKZiP6HmxfSEiIYmJiTKbU/fTTTzpz5kyGz92s6Nmzp8naZD4+PnJ0dDR5T6S9rwcMGGBS1tPTU40bN9bPP/+cpXUKM/Liiy+arB1XvHhxPf/88ybTF7ds2aKkpCR17tzZ5F6Mi4tTYGCgUlNTje/94sWLq1y5ctq7d6+ke6/Jr7/+Kn9/f9WuXdu4PSEhQceOHcvSwuzdu3c3Poele8/kbt266fr162afPFi0aFGz0VOP+9x45ZVXTL5v2rSpnn/++Uc+Y9avXy8bGxu1b98+3X67deuWcep2mgefR/b29sYPLnlwOnXNmjUl/d+zNKs/I4sWLSpJZtPAASCnMX0PAHJIZhY47tq1q1q0aKG7d+/qxIkTCgsL06VLl+Tg4PBY5+zUqZOmTp2qrVu3qnXr1rp+/bqioqLk4+OjF154Id1jBg0apJo1ayopKUmHDx9WWFiYYmJiMr0O1rBhwzRo0CC99NJLcnNzU+3atdWoUSM1b97cbOHr0qVLmx2f9h/da9euZelaH8Xe3l7vvPOOPvnkEzVp0kQVK1ZU3bp1FRQUZJwm8jDnzp2Tt7e37OzsTLa7ubllalpjcHCw1q1bp7lz52rx4sXy9fWVv7+/goODVbJkySxdS7ly5bJUvnTp0mZ9b29vr9KlS2dpbZPsSPslJ737Lm3bg215UvdHWlsqVqyY6bZk5HHbGBcXp9u3b+v5558325fetsyer0CBAsY1XmbOnGlcj+xBV69eNduW1ftq+fLlWrlypf744w+TtX6ke+vXpDl79qxcXV3l4uLy0PrOnj2rSpUqPfbz7mEyurZbt25p1qxZ+vbbb3Xx4kWz/QkJCZKk+Ph4Xb9+XQEBAY88V6tWrTR+/HiFh4cbp0iHh4crb968ZqH240jvHihWrJji4+ON358/f162trbpBnEVK1ZUVFSUzp8/LycnpxxvS9GiRU0C2bT78WGfgnn//Vi3bl2Fh4fr5s2b+t///qc7d+6obt26unv3rj7//HMlJSVp//79Sk1NNYbUmVG+fHmzbWn982AIU7p0abNn/eM8NwoXLpzuFL0KFSooKirqodNkT506JYPBoJYtW2Z0SWbv4/Rej7Q/hN0fZqe1Tfq/51RWf0YaDAZJmfu/DQBkB6EUAOSQtP/8P+wX1bJlyxpHGjRs2FA1atTQiy++qA8//FDTpk3L8jnbt2+vzz//XJGRkWrdurU2bNhg/It1Rtzd3Y1taNSokSpUqKBhw4ZpxowZGjFixCPPWa1aNW3dulW7d+/Wvn37tG/fPm3YsEFz5szRihUrjL9ASzL7T//90v7Dm5O6d++uJk2aaOfOndq/f7+2bNmiL7/8Uq1atXqs/s0Ke3t7LVq0SIcPH9YPP/ygAwcOaMaMGZo1a5amTp1qXMslM/Lly/dE2viwXy6s8Ulslr4/Hoel25iV8/Xp0yfDECW9IDUra4stWrRIEydOlL+/v3r27Ck3NzflzZtXly9f1ujRo5/o65PRffqwezSjaxs+fLi+//57hYSEqFatWipatKjs7Oy0c+dOLV682Cxsy4x8+fKpbdu2WrVqla5evap8+fJpy5YtCgwMzHYIJGV/1FhOykxb0u6FSZMmyc3NLd0y94cpdevW1cqVK3XgwAEdPHhQbm5uqlChgu7evavExEQdOnRIe/fulZ2dnWrXrp0zF/KArK6z9yQYDAbZ2Nho/vz5Gb7vHwzIHvZ8yGjf/e/VrPyMTAuec+KeBoCHIZQCgByS9pfUrEw7ql69utq1a6e1a9eqR48eql69epbO6ebmpgYNGmjnzp26ePGiIiIilD9/fgUHB2e6juDgYK1cuVKLFy9Wt27dzP7amp4CBQqoefPmat68uaT/W+A6PDz8kQuKZ9ej/mrr5uamLl26qEuXLkpJSdHIkSO1YcMG9e7d+6GL0JcuXVpnz55VSkqKyX/ur1y5YhxNkRk+Pj7G81y8eNEYHKaFUk/ir87nzp1TUlKSyWippKQknTt3zmT0QNpf1K9fv27yOt+5c0cxMTEqW7bsY7ch7ZfOkydPmv3V/Y8//jAp86SlXVvaea3RFicnJzk6OurPP/8025fetqxIe51sbW2NAXNO++abb1SyZEnNnz/fJJjYtWuXWdly5cpp27Ztunr16kNHS5UrV06nT582u1cflHafXrt2zSTkzuqov4SEBH3//fdq166dxo4da7LvwamkxYoVU5EiRXT8+PFM1R0SEqLly5drzZo1KlSokBITE3Nk6l5mlS5dWqmpqTp16pQ8PT1N9qWNXEp7HzzpkS5po9SKFSuWqfuxTp06srGxUXR0tH799VfjaCgPDw8VK1ZM0dHR2rdvnypVqpSpUapp0qZi3u/BvniYx3luJCQkKCYmxmy01KlTp+Ts7PzQDxMoV66cfvjhBz333HMWXUg8sz8j0/4vk9GoawDIKbnnTzEA8C9XuXJlFSxY0GStlcx47bXXZGdnpxkzZjzWeTt37qzU1FRNnDhRR48eVfPmzU3W9MmMQYMG6e7du5ozZ84jy6a3TkmVKlUkmU7peVLS/pP/4LkSExPNPqrezs7O+Ml2j2pbkyZNdPXqVa1du9Zk+/z58zPVrvT6pUSJEnJycjI5d0btz46bN29qxYoVJttWrFihmzdvKigoyLgt7ZfHB38hz2jEiKOjY6an0fn5+cnR0VFffvmlbt68adK2L7/8Uo6OjvLz88vkFWVOgQIFdP36dbNRO1WqVNFzzz2nyMhIxcTEGLffvXtXCxYskI2NjZo0aZKjbXmQnZ2dAgICdPjwYf38888m+x71yYKPUrlyZbm7u2vlypXpBjXJycnZnh5ra2srGxsbk75NTk5O9/3Qpk0bSdKnn35qdh/df3ybNm10/fr1dNfQu79cRvfpokWLsnwND9Yt3Quav/76a7OywcHB+uOPP8z2pVeHp6enfHx8FBERofDwcD333HPy9/fPUvuyI+19PW/ePJO2nThxQtu3b1eNGjWMI1yexDPnfi1btpS9vb1mzpyZ7ieV3rhxQ0lJScbvnZyc5O7uru+//15HjhwxhlJp66dt3rxZJ0+ezNLUPUn66quvdOPGDZPzrly5UoULF87UiKvHfW7MmzfP5PutW7fqzz//NHn2pqdt27aSpM8++0wpKSlm+9ObgpsdWf0ZmfZ/mVq1auVoOwDgQYyUAoAcYmdnp2bNmikqKuqRIwHuV7ZsWbVq1Urr16/XgQMHjIuTSvf+M5zRIujNmjVTxYoV1ahRI7m4uGjz5s2S7q0zlVV169ZV9erVtXbtWg0YMOCho0hatWqlqlWrysfHR25uboqJidHq1auVN2/eLI3Qelxpi7xOmTJFbdq0kYODg1544QWlpKQoNDRUTZs21QsvvKDChQvr9OnT+uqrr1SqVCmTfk1Pv379tGHDBr3//vs6evSoKlasqP379+vXX39VsWLFHtmuOXPmaM+ePcaPnjcYDNqxY4dOnz5tMnoso/a7u7s/dp+UKVNGs2fP1smTJ1WlShUdPXpUERERKl++vMnit/Xr19fzzz+vGTNm6Nq1aypVqpR+/vlnHTp0KN1rrFq1qqKjozVv3jw999xzsrGxyfA1Lly4sEaMGKGxY8cqJCREHTp0kCStWbNGZ8+e1dixY00WIc4Jvr6+2rFjh8aOHatq1arJzs5OdevWlbOzs95//30NHjxYnTt3VkhIiAoUKKBvv/1Wv/76qwYMGJDl9ZUexxtvvKHdu3erX79+Cg0NVYkSJfT9998bA8zHHcFiY2OjyZMnq1evXmrbtq06deqkihUr6p9//tHZs2e1detWDRs2zGwh56xo0aKFpk6dqv79+6tp06a6efOmNmzYkO4C/C1bttR3332ntWvX6uzZswoMDFThwoV15swZ7d69Wxs2bJB0bwHvHTt2aM6cOfrf//4nf39/2dvb648//tCff/5p/Oj61q1ba9q0afrggw90+vRpFS1aVD/88IPJmkqZUbBgQfn5+WndunXKly+fvL29deHCBa1atUqlSpUyC+7eeOMN7d27V++995727NmjGjVqyGAw6NixY0pOTtann35qUj4kJETvvfeeJGnw4MHpTnWbOXOmZs2apQkTJmTr9XiQn5+fWrZsqY0bN+r69etq3LixYmJitGLFCjk4OBjbJd0bwVS2bFlt3LhRpUuXlouLi/Lnz29cDyu7SpQooY8++kjvvfeeWrVqpbZt26pkyZKKi4vTiRMnFBUVpY0bN5qMVqpbt66WLFli/Pf929N+lmU1lCpWrJi6dOli7OfIyEj9/fffGjduXKam69nZ2WX5uVGsWDFt3bpVV65cUe3atXX27FmtWLFCLi4uGjx48EPP5+PjoyFDhmjmzJlq3769mjdvruLFi+vKlSs6evSodu3apSNHjmSpDx7mzJkzWfoZuXPnTrm7u1t0FBeAZxOhFADkoO7duysyMlI7duwwTm3LjIEDB2rjxo2aPn26li1bZtx+9+5dTZ8+Pd1jypYtq4oVKypPnjxq3769wsLCVKZMmcf+q+Zrr72mfv366b///a8mTJiQYbk+ffpo586dWrZsmW7cuCFnZ2f5+vrq1VdfNZtG8iTUqFFDI0aM0MqVK/X+++8rOTlZgwcPVmhoqDp16qR9+/YZg8HixYurS5cu6t+//yN/KSlSpIiWL1+uiRMnGkdL1a5dW0uXLn3oAr5pgoKCFBMTo82bNxvXmSlbtqzGjRtnMq0no/ZnJ5QqUaKEPv/8c02aNEkbN25U3rx51aZNG40aNcpk+oidnZ3mzJmjcePG6csvv1TevHnl5+enL7/8Ut27dzer98MPP9TYsWM1d+5c4ye/PSx4TFv8fsGCBZo9e7akeyNKZs+e/chRA4/j5Zdf1rlz57RlyxatXLlSqampWrp0qZydnRUYGKjFixdrzpw5WrBgge7evasKFSpo3Lhx6tKlS463JT3ly5fX8uXLNWnSJC1dulQODg5q1KiRPvjgAwUFBWVrwe9KlSppzZo1+uKLL7R9+3atXLlSBQoUUMmSJdWhQ4dMLe7/MH379pXBYFB4eLg++eQTubq6qmXLlurUqZPZJyZK0tSpU1WzZk2Fh4dr9uzZsrW1ValSpdSiRQtjGXt7ey1cuFALFy7Uhg0b9Nlnn8nBwUFly5Y1CWwKFiyoefPmacKECfriiy/k6OioZs2a6dNPP83y8+3TTz/V1KlTtX37dq1Zs0blypXTm2++qTx58ujtt982KVukSBGtWrVKc+fO1datWxUVFaUCBQqoQoUKCg0NNas7ODhYEydO1O3btzMMnNLeN/d/mltOmTJliipXrqw1a9Zo4sSJcnR0VK1atTR06FDj6Jf7y44fP17Tpk1TYmKiSpYsmWOhlHTvjyHlypXTwoULtWrVKt24cUNFixbV888/r6FDh5pNb0sLpUqXLm3yQRBp923evHkf+YeEB40YMUIHDhzQihUrdPXqVT3//PPG8D+zsvrccHR01JIlSzR+/HhNnTpVBoNBAQEBGj16dIbra91v8ODB8vLy0rJly7R06VLdvn1bzs7OeuGFF/Tuu+9m6fofpUSJEpn+GXn+/Hn9/PPPev/993O0DQCQHhtDbllJFACeEn379lViYqLZdCoAkKQjR46oU6dOGj58uNnHyePfIykpSf7+/vL29taCBQvSLdOhQwcVKFBAX375pYVb9+yIjIzU22+/raVLl6pOnTrWbs5TYfz48dq8ebO2bNmSKxaFB/B0Y00pAMhho0eP1q+//qrdu3dbuykArOzBNXYMBoPCwsIk6YktUg7LWLduna5fv66QkJB098fGxur48eMaNWqUhVsGPL4rV65o5cqVevPNNwmkAFgE0/cAIIe98MIL+u2336zdDAC5QLt27VS3bl25u7srMTFRO3bs0IEDB9SqVSt5eXlZu3l4DNu3b9fff/+tmTNnqmLFihlOTXV2dtaxY8cs3Doge9zc3HT48GFrNwPAM4RQCgAA4Alp0qSJduzYoXXr1ik5OVmlSpXS0KFD1b9/f2s3DY9p3LhxunLliqpUqaJx48bJzs7O2k0CAOBfizWlAAAAAAAAYHGsKQUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOJY6DwdMTE3rN2Ep4qTUwHFxd2ydjOeOfS7ddDv1kPfWwf9bj30vXXQ79ZBv1sPfW8d9Lt10O85y9W10CPLMFIKT5SNjWRnZysbG2u35NlCv1sH/W499L110O/WQ99bB/1uHfS79dD31kG/Wwf9bh2EUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAD+tRYs+EL+/jWNX4GB9fXSS521fPkSpaamWrt5Rr/8csDYxrNnz5jt/+KL2fL3r6nOndvkyPl27fpe/v41dfHi31k67pNPPlKPHiE50oZHyWORswAAAAAAgH8Fx0XhVjv37d6dH+s4BwcHTZ8+V5KUlHRHv/xyQHPnzlJqqkE9erycgy3Mvvz5HRUVtUV9+75qsn3btu+UP7+jlVplHYyUAgAAAAAA/2q2trby8vKWl5e3qlevqX79Bsjfv6F27dpu7aaZCQhoqKioLSbbjh49osuXL8nPL8BKrbIORkoBAAAAAICnjqOjo5KTk022zZkzU9HRu3Xx4t8qUKCgfH2raciQYXJ1dTGWOXz4V33xxWz98ccJpaYa9J///Efdu/dQy5atjWV+/HG3Fi2ar1On/pCjY341atREgwa9ofz58z+yXYGBQYqK2qLffz8uDw9PSdLWrZtVo0YtFSvmZFb+0qWLmjVrmn76aZ9SUlLk41NVgwa9oQoVKhrLJCcna/bs6dq8eaNSU1PUqFETVa9e06yupKQkLVo0X999963i4mL13HMl1atXPzVr1uLRHfoEEEoBAAAAAIB/vbQAKm363s6d29WjR2+TMvHxcerRo7dcXFx17Vq8Vq5crsGDX9Hy5aslSbdu3dTIkW/Ix6eqPvroE+XNa68zZ07rxo0bxjp27IjShx++o1at2qhv31cVG3tVc+fO0o0bCRozZsIj2+ni4qqqVasrKmqLPDw8lZqaqh07turVVwfr5MkTJmVv376lIUNelY2NjUaMeFv29g5aunShBg3qryVLvlLx4iUkSXPnztKaNV+rb99X5e7uqaioLZo7d5bZuT/4YLQOHz6k3r37q1y5coqO3qOPP35fhQoVUr16flnr8BxAKAUAAAAAAP7VEhMT1ahRXZNtTZo0VWjoyybb3nnnQ+O/U1JS5OXlow4dWunnnw8oOLip/vrrL928eVOvvjrYOBKpZs3axmMMBoNmz56uwMCmGj36feN2Z2cXvfXWUPXq1U/ly1d4ZHuDgppr8eIwvfba6/rllwO6ceOmGjZsbBZKbdy4XpcuXdSyZatVrtzzkqRq1aqrU6fWWr36Kw0Z8qYSEq5rzZqvFRr6sjGEq1OnngYPfkUxMVeMdf3yywHt3r1Ln302S7Vr3+urWrXqKjb2qhYu/MIqoRRrSgEAAAAAgH81BwcHhYUtVVjYUv33v2EaOnSE9u2L1qRJ40zKRUfv0YABfdS8eUM1bFhHHTq0kiSdO3dWklSyZCkVKFBAU6ZM0LZtWxUfH29y/LlzZ3Xp0kUFBjZVcnKy8atateqytbXV778fy1R7GzUKVFxcrA4fPqSoqC2qV6++ChQoaFbu0KGDKl++gjGQkqTChYuoZs06Onz4V0nSqVN/6M6dO2rQoJHJsQ0bBpp8v3//XhUuXETVq9c0aXutWnV04sTvSklJyVTbcxIjpfDE7YsIVXKy5W/u+7kHzrPq+QEAAAAAT46tra08PSsbv/fxqaqUlGTNmvW5unV7SeXLV9SxY0c1evQwBQQ0VGhoLxUt6iQbGxu9+urLSkpKkiQVLlxY06bN1oIF8zRu3AfGNZzefHOkKlSoqGvXrkmS3nlnRLrtuHz5UqbaW7hwEdWuXU/ffrte33+/XaNHv5duuRs3bqS7zpSTk5P+/POUJCk29qokmZVzcjL9/vr1a0pIuG42oixNbOxVubkVz1T7cwqhFAAAAAAAeOqULXtvdNGff55W+fIVtWvX9ypYsKDGjp0oW9t7E8cuXbpodlzlyl6aOnWG7tz5R7/8ckCzZ0/X228P1+rV36hw4SKSpDffHKkqVbzMjnVxcc10+4KCmmvcuA+UP39+1avnn26ZwoUL66+/zpptj4uLU6FChSXdmzoo3Vsvy9XVzaTM/QoVKqyiRYtpypTp6Z4rvfDrSSOUAgAAAAAAT520kURFihSVJN2584/y5MkjGxsbY5nvvvs2w+MdHPKpXj1/XbhwXtOnT9WdO3dUtmw5ubkV199/X1CnTiHZal9AQEP5+zdU5cpV5ODgkG4ZH5+q+v77bfrrrzMqU6acJCkhIUEHDuxX27YdJEkVKlSUg4ODdu36Xu7unsZjd+7cblJXrVq1tWLFUuXJk1cVK76QrbbnFEIpAAAAAADwr5aamqojR/4nSUpOvqvffz+mJUsWqFy58qpatbokqVatOlq9+itNmzZZDRo01pEjh7VlyyaTen78cbfWr/9GDRo0UvHiJRQXF6vw8NXy9vY1BkeDB7+pMWPe1T//JKpePX/lz59fly5dVHT0br3yyiCVKVM2U23Onz+/xo//9KFlgoPbaPXqFXrrrTfUv/9A46fv2dnZKSSku6R7UwHbt++kL79cLAcHB+On7124cN6krlq16srPL0DDhw/RSy/1VIUKLygxMVF//nlaFy6cM1m43VIIpQAAAAAAwL/anTt3NGDAvU+es7Ozk5tbCTVr1kp9+vRXnjz3oo969fw1cOAQRUSs1qZN6+Xt7avJkz9X9+4djfWULFlKtrY2mjfvv7p2Lf7/r/1UV6++OshYJjAwSIUKFdSSJQuNI61KlPiP6tSpLycn5xy9LkfHApo58wvNnPmZJk8er9TUFHl7+2r27PkqXryEsdyAAUOUkpKi5cuXymBIVYMGjTVgwGB9/PEHJvWNGzdZX365WJGR4bp8+aIKFCio8uUrqFWrNjna7syyMRgMBqucOReLiblh7SY8NWxspFM7B7LQuYXZ2EguLoV09eoN8Q63HPrdeuh766DfrYe+tw763Trod+uh762DfrcO+j3nuboWemQZWwu0I8uWL1+uwMBAeXt7q0uXLjp8+HCmjtu4caM8PDz02muvmWw3GAyaPn26/P395ePjo5dffllnzpx5Ai0HAAAAAABAZuS6UGrTpk2aMGGCBg0apDVr1sjT01N9+/ZVbGzsQ487f/68Jk2apJo1a5rtmz9/vpYtW6aPPvpIq1evVv78+dW3b1/duXPnSV0GAAAAAAAAHiLXhVKLFi1SSEiIOnXqpIoVK2rMmDHKly+fIiIiMjwmJSVFI0aM0JAhQ1S6dGmTfQaDQUuXLtXAgQMVFBQkT09PTZ48WVeuXFFUVNSTvhwAAAAAAACkI1eFUklJSTp69Kjq169v3GZra6v69evr4MGDGR43e/ZsOTs7q0uXLmb7zp8/r5iYGJM6CxUqJF9f34fWCQAAAAAAgCcnV336Xnx8vFJSUuTsbLpavbOzs06fPp3uMQcOHFB4eLjWrl2b7v6YmBhjHQ/WefXq1ew3GgAAAAAAAFmWq0KprLp586ZGjhypjz/+WE5OTjlWb968drKxybHqnmlp/WhjayNZ8RMM7O3trHdyK0jrd3t7Oz45woLod+uh762Dfrce+t466HfroN+th763DvrdOuh368hVoVSxYsVkZ2dntqh5bGysXFxczMqfO3dOFy5c0MCBA43bUlNTJUmVK1fW5s2b5erqaqzDzc3NpE5PT89023H3bkq2rwX3pL2xDanWfVcnJT1br2lavyclpfBAtSD63Xroe+ug362HvrcO+t066Hfroe+tg363DvrdOnJVKGVvb68qVaooOjpaQUFBku6FTNHR0QoNDTUrX758ea1fv95k2+eff65bt27p3XffVYkSJZQ3b165uroqOjpalSpVknRvhNWhQ4fUvXv3J39RAAAAAAAAMJOrQilJ6t27t0aNGiUvLy/5+PhoyZIlSkxMVMeOHSVJI0eOVPHixTV8+HA5ODjI3d3d5PjChQtLksn2nj17as6cOSpbtqxKlSql6dOny83NzRh8AQAAAAAAwLJyXSjVqlUrxcXFacaMGYqJiVGlSpUUFhZmnL538eJF2dpm7UMD+/fvr8TERH3wwQdKSEhQjRo1FBYWJgcHhydxCQAAAAAAAHgEG4OB2ZIPiom5Ye0mPDVsbKRTOwcqOdm6azq5B86z6vktzcZGcnEppKtXbzAf2oLod+uh762Dfrce+t466HfroN+th763Dvo96xYs+EKLFs03fl+4cBGVLVtOPXv2Vr16/iZlO3duo/r1/TVs2CjjtuPHj6lfvx6aPHmy/PwCzfo9JSVF7du3VO3adfX++2P1yScf6dtvNxj3FyvmpIoVX1Dfvq/Ky8vnoW29ePFvdenSVpI0ZcoM1a1b32T/unVrNHnyJ5Kk3bsPZL4TMnDy5O/q3fslzZgxV9Wr18z0cQsWfKGVK7/U1q0/PPa5XV0LPbJMrhspBQAAAAAArOfE9lesdu7HHVDg4OCg6dPnSpJiY2O0dOkijRo1TLNnz5e3t+9Dj/X0rKQyZcpq48aN8vMLNNv/888/KT4+Ts2atTRue+65kvrgg3GSDPr77wtasOALvfHGa1qyZKVKliz1yPbmz++obdu+MwuloqK2KH9+RyUm3s7EVf/7ZW0eHAAAAAAAQC5ja2srLy9veXl5q2HDQE2cOFUGg8FkRNPDNG3aQj/++KOuX79mtm/r1s0qVsxJNWvWNm5zcHD4/+fzUbNmLfXee2P0zz//aPv2rZk6X0BAQ+3atUN37twxbrt69ap+/fUXNWjQMFN1PA0IpQAAAAAAwFPF1dVNRYsW0+XLlzNVvlmzFrp79662b48y2X7nzh3t2rVDTZo0lZ2dXYbHu7t7SJIuX76UqfPVrVtfNjY22rt3j3Hbtm1bVLJkKXl4VDIrn5BwXePHj1FwcBMFBvppwIA++vXXX8zKLV4cprZtm6tp0wC9885bio+PNytjMBi0YsUydevWUY0b11OXLu20atXyTLU7pxFKAQAAAACAp8rt27eVkHBd//nPc5kqX6pUaXl7e2vr1i0m26Ojd+vWrVtq2rRlBkfec+nSvTAqs+fLmzevGjRobHK+qKgtCgpqblY2JSVFw4e/rh9//EEDBw7Rxx9PVP78+fXmm4N0/PgxY7mIiFUKC5ur5s1bady4yXruuZKaOPFjs/qmT5+iBQvmqmXLYE2e/LlatWqtOXNmau3a8Ey1PSexptRTznGR5W8qMxWs3QAAAAAAwNMuOTlZ0r1pcHPmTJejYwGFhHTL9PFt2rTRhAkTdPnyJRUvXkLSvaCoZMlSqlLFK8Pz/f33BU2dOlElSvxHrVq1zfT5mjZtrtGjh+v27duKj4/TsWO/6f33PzYZPSXdC8aOHTuqqVNnqk6depKkOnXqqWvX9lq2bKE++eRTpaSkaNmyxWrevJUGDRpqLBMfH6ctWzYZ67pw4bwiIlZrxIi31a5dR0lSrVp19M8//2jRovlq27ajbG0tN36JkVIAAAAAAOBfLTExUY0a1VWjRnXVuXNrff/9dr3//liVKVMu03W0atVKtra22rbt3rpQt2/f0o8/7lHTpi3Myv7552nj+V58sZN+++2IPvnkUxUrVizT56tevZYcHQvohx++19atm+Xu7qkyZcqalTt06FcVKFDAGEhJUp48edSwYWMdPnxIkhQTc0VXr8aoQYPGJsc2btzE5PufftonSWrUKFDJycnGr5o1ays2NlZXrmRuumNOYaQUAAAAAAD4V3NwcNDs2fOVmpqq8+fPae7cWRo37kMtXbpKLi4umarD1dVV1arVUFTUZr34Yg/t3LlDSUl31KyZeShVsmQpjRkzXikpqfrjjxOaM2eGPvhgtJYsWal8+fJl6nx2dnYKDAxSVNQWXbx4UcHB6Y+yunEjQcWKOZltL1bMWQkJ1yXdGx12b1sxszL3u379mgwGg4KDg9I91+XLl1WixH8y1f6cQCgFAAAAAAD+1WxtbeXpWVmSVLmyl8qUKatXXnlZixfP14gRb2e6nmbNWmr8+DH6668z2rp1y/8fvVTOrJy9vb3xfFWqeKlo0aJ6992RCg9fqdDQlzN9vqCg5ho0qL8kqUmTpumWKVy4sOLj48y2x8fHqnDhIpJkDN4eXNg8Pj72gbqKyMbGRv/9b5jy5s1rVmd6I7WeJKbvAQAAAACAp4qnZ2UFBTXXpk3rFRt7NdPHNWrUWPb2Dlq9+iv9/PP+dEdJpadhw0B5e/tq9eqvdOfOnUyfz8vLR02bNleXLt3l5lY83TI+PlV169Yt7d+/17gtOTlZu3Z9Lx8fX0n3Pm3Q2dlFu3btMDl2x45tJt/XqFFLknT9+nV5elY2+3J0LJDptucERkoBAAAAAICnzssv99W2bd9p9eqvNHDgEOP2CxcuaMeOKJOytra26ty5nQoUKKj69f30zTeRsrGxSffT8DLSp88revPNQfr22/Vq375zpo6xsbHR+++bf0Le/erV81elSlU0duz7GjBgsJycnBUevkqxsVfVo0cfSfemAoaGvqzp06fIyclZtWrV0f79e3Xw4M8mdZUpU1YdO3bRuHEfqHv3Hqpc2UvJyck6d+4vHTx4QBMmTM309eYEQikAAAAAAPDUKVOmnJo0aaa1a8PVo0dvFSxYUJK0b9+P2rfvR5OydnZ26ty5nSSpadOW+v777apevaZcXFwzfb5aterIx6eqvvrqS7Vp00F2dnY5ch12dnaaMmW6Zs+erv/+d4b++SdR7u6e+uyzWfL0rGQs17lzV928eUORkV9rzZqvVbNmbY0a9Z6GDx9iUt8bb7ylMmXK6ptvIrV4cZjy53dUmTJlzRZFtwQbg8FgsPhZc7mYmBvWbkKOcVwUbu0m6EiFbUpOTrFqG9wD51n1/JZmYyO5uBTS1as3xDvccuh366HvrYN+tx763jrod+ug362HvrcO+t066Pec5+pa6JFlWFMKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHG5MpRavny5AgMD5e3trS5duujw4cMZlv3uu+/UsWNH1axZU1WrVlW7du20du1akzKjR4+Wh4eHyVffvn2f8FUAAAAAAAAgI3ms3YAHbdq0SRMmTNCYMWPk6+urJUuWqG/fvtq8ebOcnZ3NyhcpUkQDBw5U+fLllTdvXu3YsUPvvPOOnJ2dFRAQYCwXEBCgCRMmGL+3t7e3yPUAAAAAAADAXK4bKbVo0SKFhISoU6dOqlixosaMGaN8+fIpIiIi3fJ16tRR06ZNVaFCBZUpU0a9evWSh4eHfv75Z5Ny9vb2cnV1NX4VKVLEEpcDAAAAAACAdOSqUCopKUlHjx5V/fr1jdtsbW1Vv359HTx48JHHGwwGRUdH688//1StWrVM9u3fv1/16tVT8+bN9eGHHyo+Pj7H2w8AAAAAAIDMyVXT9+Lj45WSkmI2Tc/Z2VmnT5/O8LgbN26oQYMGSkpKkq2trT788EP5+fkZ9wcEBKhp06YqVaqUzp07p88++0z9+/fXqlWrZGdn98SuBwAAAAAAAOnLVaHU4ypQoIDWrl2r27dvKzo6WhMnTlTp0qVVp04dSVJwcLCxbNpC50FBQcbRUw/Km9dONjYWa/4TlVuuw8bWRjJY7/z29s9W+Jj2utvb28lgxX5/1tDv1kPfWwf9bj30vXXQ79ZBv1sPfW8d9Lt10O/WkatCqWLFisnOzk6xsbEm22NjY+Xi4pLhcba2tipbtqwkqVKlSjp16pTmzZtnDKUeVLp0aRUrVkxnz55NN5S6ezclG1eRu+TJJW8mQ6p1G5KU9PS8ppmR9kBNSkrhgWpB9Lv10PfWQb9bD31vHfS7ddDv1kPfWwf9bh30u3XkqjWl7O3tVaVKFUVHRxu3paamKjo6WtWqVct0PampqUpKSspw/6VLl3Tt2jW5urpmq70AAAAAAAB4PLlqpJQk9e7dW6NGjZKXl5d8fHy0ZMkSJSYmqmPHjpKkkSNHqnjx4ho+fLgk6YsvvpCXl5fKlCmjpKQk7dy5U+vWrdNHH30kSbp165ZmzZql5s2by8XFRefOndOnn36qsmXLKiAgwFqXCQAAAAAA8EzLdaFUq1atFBcXpxkzZigmJkaVKlVSWFiYcfrexYsXZWv7fwO8bt++rTFjxujSpUvKly+fypcvr08//VStWrWSJNnZ2enEiRNau3atbty4ITc3N/n5+Wno0KGyt7e3yjUCAAAAAAA862wMBmZLPigm5oa1m5BjHBeFW7sJOlJhm5KTrbumk3vgPKue39JsbCQXl0K6evUG86EtiH63HvreOuh366HvrYN+tw763Xroe+ug362Dfs95rq6FHlkmV60pBQAAAAAAgGcDoRQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWFyuDKWWL1+uwMBAeXt7q0uXLjp8+HCGZb/77jt17NhRNWvWVNWqVdWuXTutXbvWpIzBYND06dPl7+8vHx8fvfzyyzpz5syTvQgAAAAAAABkKNeFUps2bdKECRM0aNAgrVmzRp6enurbt69iY2PTLV+kSBENHDhQq1at0rp169SxY0e98847+uGHH4xl5s+fr2XLlumjjz7S6tWrlT9/fvXt21d37tyx1GUBAAAAAADgPrkulFq0aJFCQkLUqVMnVaxYUWPGjFG+fPkUERGRbvk6deqoadOmqlChgsqUKaNevXrJw8NDP//8s6R7o6SWLl2qgQMHKigoSJ6enpo8ebKuXLmiqKgoS14aAAAAAAAA/r9cFUolJSXp6NGjql+/vnGbra2t6tevr4MHDz7yeIPBoOjoaP3555+qVauWJOn8+fOKiYkxqbNQoULy9fXNVJ0AAAAAAADIeXms3YD7xcfHKyUlRc7OzibbnZ2ddfr06QyPu3Hjhho0aKCkpCTZ2trqww8/lJ+fnyQpJibGWMeDdV69ejWHrwAAAAAAAACZkatCqcdVoEABrV27Vrdv31Z0dLQmTpyo0qVLq06dOo9VX968drKxyeFGWkluuQ4bWxvJYL3z29vbWe/kVpD2utvb28lgxX5/1tDv1kPfWwf9bj30vXXQ79ZBv1sPfW8d9Lt10O/WkatCqWLFisnOzs5sUfPY2Fi5uLhkeJytra3Kli0rSapUqZJOnTqlefPmqU6dOnJ1dTXW4ebmZlKnp6dnuvXdvZuS3UvJNfLkkjeTIdW6DUlKenpe08xIe6AmJaXwQLUg+t166HvroN+th763DvrdOuh366HvrYN+tw763Tpy1ZpS9vb2qlKliqKjo43bUlNTFR0drWrVqmW6ntTUVCUlJUmSSpUqJVdXV5M6b968qUOHDmWpTgAAAAAAAOScXDVSSpJ69+6tUaNGycvLSz4+PlqyZIkSExPVsWNHSdLIkSNVvHhxDR8+XJL0xRdfyMvLS2XKlFFSUpJ27typdevW6aOPPpIk2djYqGfPnpozZ47Kli2rUqVKafr06XJzc1NQUJC1LhMAAAAAAOCZlutCqVatWikuLk4zZsxQTEyMKlWqpLCwMOP0vYsXL8rW9v8GeN2+fVtjxozRpUuXlC9fPpUvX16ffvqpWrVqZSzTv39/JSYm6oMPPlBCQoJq1KihsLAwOTg4WPz6AAAAAAAAINkYDMyWfFBMzA1rNyHHOC4Kt3YTdKTCNiUnW3dNJ/fAeVY9v6XZ2EguLoV09eoN5kNbEP1uPfS9ddDv1kPfWwf9bh30u/XQ99ZBv1sH/Z7zXF0LPbJMrlpTCgAAAAAAAM8GQikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMXlsXYDAAD/fo6Lwq3dBGlkb2u3AAAAAEAWMFIKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIvLVih15cqVnGqHieXLlyswMFDe3t7q0qWLDh8+nGHZ1atX68UXX1StWrVUq1Ytvfzyy2blR48eLQ8PD5Ovvn37PpG2AwAAAAAA4NHyZOfgRo0aqW7dumrbtq2aNWsmR0fHbDdo06ZNmjBhgsaMGSNfX18tWbJEffv21ebNm+Xs7GxWft++fQoODlb16tVlb2+vsLAw9enTRxs3blTx4sWN5QICAjRhwgTj9/b29tluKwAAAAAAAB5PtkZKvf7667py5YpGjx4tPz8/jRgxQrt27VJqaupj17lo0SKFhISoU6dOqlixosaMGaN8+fIpIiIi3fJTp07VSy+9pEqVKqlChQoaN26cUlNTFR0dbVLO3t5erq6uxq8iRYo8dhsBAAAAAACQPdkaKTVgwAANGDBAv/32m9avX6+NGzdqw4YNcnZ2VnBwsNq0aSNvb+9M15eUlKSjR4/q1VdfNW6ztbVV/fr1dfDgwUzVkZiYqOTkZLPQaf/+/apXr54KFy6sunXr6o033lCxYsUy3TYAAAAAAADknGyFUmkqV66sypUra+TIkdq7d6/Wr1+vyMhILVu2TM8//7zatm2rtm3b6rnnnntoPfHx8UpJSTGbpufs7KzTp09nqi1TpkyRm5ub6tevb9wWEBCgpk2bqlSpUjp37pw+++wz9e/fX6tWrZKdnZ1ZHXnz2snGJlOny/Vyy3XY2NpIBuud397e/HV+mqW97vb2djJYsd+fNc9yv+eWZ82z2PfW9Czf89ZG31sH/W4d9Lv10PfWQb9bB/1uHTkSSqWxsbFRjRo1lJCQoMuXL2vPnj06e/asZs2apRkzZigoKEjvvfee3NzccvK0RvPmzdOmTZu0dOlSOTg4GLcHBwcb/5220HlQUJBx9NSD7t5NeSLts4Y8ueTNZEi1bkOSkp6e1zQz0h6oSUkpPFAt6Fnu99zyrHkW+96anuV73troe+ug362Dfrce+t466HfroN+tI1trSt1v7969evfdd+Xn56c33nhDV69e1ahRo7Rz50798MMPGj58uPbu3auRI0dmWEexYsVkZ2en2NhYk+2xsbFycXF56PkXLFigefPmacGCBfL09Hxo2dKlS6tYsWI6e/Zs5i8QAAAAAAAAOSZbI6WOHz+udevWaePGjbpy5YpcXFzUuXNntW/fXh4eHiZl+/btKwcHB02aNCnD+uzt7VWlShVFR0crKChIkoyLloeGhmZ43Pz58zV37lwtWLAgU2tYXbp0SdeuXZOrq2smrxQAAAAAAAA5KVuhVPv27ZUvXz41adJE7du3l5+fn2xtMx58VbFiRVWtWvWhdfbu3VujRo2Sl5eXfHx8tGTJEiUmJqpjx46SpJEjR6p48eIaPny4pHtT9mbMmKGpU6eqZMmSiomJkSQ5OjqqQIECunXrlmbNmqXmzZvLxcVF586d06effqqyZcsqICAgO5cPAAAAAACAx5StUGr8+PFq3ry5ChQokKnydevWVd26dR9aplWrVoqLi9OMGTMUExOjSpUqKSwszDh97+LFiybB18qVK3X37l29/vrrJvUMHjxYQ4YMkZ2dnU6cOKG1a9fqxo0bcnNzk5+fn4YOHSp7e/ssXjEAAAAAAAByQrZCqbTRSzktNDQ0w+l6y5YtM/l++/btD60rX758WrBgQY61DQAAAAAAANmXrYXOly5dqr59+2a4v1+/flqxYkV2TgEAAAAAAICnULZCqfDwcFWoUCHD/RUrVtTq1auzcwoAAAAAAAA8hbIVSp07d+6hoVT58uX1119/ZecUAAAAAAAAeAplK5TKmzev8dPu0nPlypWHfhofAAAAAAAAnk3ZSox8fX21Zs0a3bx502zfjRs3FBkZKV9f3+ycAgAAAAAAAE+hbH363uDBgxUaGqr27durV69eqlixoiTp5MmTWrJkiWJiYjR16tQcaSgAAAAAAACeHtkKpXx9fTV37lx98MEH+uSTT2RjYyNJMhgMKlWqlObMmaNq1arlSEMBAAAAAADw9MhWKCVJfn5+2rp1q3777TfjouZlypRRlSpVjCEVAAAAAAAAcL9sh1KSZGtrKy8vL3l5eeVEdQAAAAAAAHjK5Ugo9ccff+jcuXO6fv16uvvbt2+fE6cBAAAAAADAUyJbodRff/2lt956S4cPH5bBYEi3jI2NDaEUAAAAAAAATGQrlPrggw904sQJvfPOO6pZs6YKFy6cU+0CAAAAAADAUyxbodQvv/yiV199VT169Mip9gAAAAAAAOAZYJudg4sVK6ZChQrlVFsAAAAAAADwjMhWKNWtWzetW7dOKSkpOdUeAAAAAAAAPAOyNX2vXLlySk1NVbt27dSpUyeVKFFCdnZ2ZuWaNWuWndMAAAAAAADgKZOtUOrNN980/nvSpEnplrGxsdGxY8eycxoAAAAAAAA8ZbIVSi1dujSn2gEAAAAAAIBnSLZCqdq1a+dUOwAAAAAAAPAMyVYolSYpKUlHjx5VbGysqlevLicnp5yoFgAAAAAAAE+pbH36nnRvCp+/v79efPFFDRkyRL///rskKS4uTnXq1FF4eHi2GwkAAAAAAICnS7ZCqYiICI0fP14BAQH65JNPZDAYjPucnJxUt25dbdq0KduNBAAAAAAAwNMlW6HUokWL1KRJE02dOlWNGzc221+lShWdPHkyO6cAAAAAAADAUyhbodTZs2fVoEGDDPcXLVpU165dy84pAAAAAAAA8BTKVihVuHBhxcfHZ7j/jz/+kKura3ZOAQAAAAAAgKdQtkKpBg0aaPXq1UpISDDbd/LkSX399dcKDAzMzikAAAAAAADwFMqTnYPfeOMNhYSEqHXr1mrcuLFsbGy0du1aRURE6LvvvpOrq6tee+21nGorAAAAAAAAnhLZGilVvHhxRUZGKiAgQN9++60MBoO++eYb7dixQ8HBwVq9erWcnJxyqq0AAAAAAAB4SmRrpJQkOTs765NPPtEnn3yiuLg4paamysnJSba22cq7AAAAAAAA8BTLdih1P0ZFAQAAAAAAIDOyFUrNmjXrkWVsbGw0aNCg7JwGAAAAAAAAT5knFkrZ2NjIYDAQSgEAAAAAAMBMtkKp48ePm21LTU3VhQsXtGLFCv3000+aP39+dk4BAAAAAACAp1COr0Zua2ur0qVLa9SoUSpbtqzGjRuX06cAAAAAAADAv9wT/Yi8WrVqaefOnU/yFAAAAAAAAPgXeqKh1JEjR2Rr+0RPAQAAAAAAgH+hbK0ptXbt2nS3JyQk6MCBA/ruu+/UpUuX7JwCAAAAAAAAT6FshVKjR4/OcF+xYsX0yiuv8Ml7AAAAAAAAMJOtUGrbtm1m22xsbFS4cGEVLFgwO1UDAAAAAADgKZatUKpkyZI51Q4AAAAAAAA8Q1iFHAAAAAAAABaXrZFSnp6esrGxydIxNjY2+u233x5aZvny5VqwYIFiYmLk6emp999/Xz4+PumWXb16tdauXauTJ09KkqpUqaJhw4aZlDcYDJoxY4a+/vprJSQkqHr16vroo49Urly5LLUdAAAAAAAAOSNbodSgQYMUFRWlP/74Q/7+/nr++eclSadPn9aePXv0wgsvKCgoKEt1btq0SRMmTNCYMWPk6+urJUuWqG/fvtq8ebOcnZ3Nyu/bt0/BwcGqXr267O3tFRYWpj59+mjjxo0qXry4JGn+/PlatmyZJk6cqFKlSmn69Onq27evNm3aJAcHh+x0AQAAAAAAAB5DtkIpNzc3xcbGav369SpfvrzJvlOnTqlXr15yc3NTSEhIputctGiRQkJC1KlTJ0nSmDFj9P333ysiIkKvvPKKWfmpU6eafD9u3Dht2bJF0dHRat++vQwGg5YuXaqBAwcaA7LJkyerfv36ioqKUnBwcFYvGwAAAAAAANmUrTWlFixYoNDQULNASpIqVKigl156SWFhYZmuLykpSUePHlX9+vX/r4G2tqpfv74OHjyYqToSExOVnJysIkWKSJLOnz+vmJgYkzoLFSokX1/fTNcJAAAAAACAnJWtkVKXLl1SnjwZV5EnTx5dunQp0/XFx8crJSXFbJqes7OzTp8+nak6pkyZIjc3N2MIFRMTY6zjwTqvXr2abh1589opi0tl5Vq55TpsbG0kg/XOb29vZ72TW0Ha625vbyeDFfvd0vLOW2XtJkhv9X7m+l3KPc+aZ7HvrelZfdbkBvS9ddDv1kG/Ww99bx30u3XQ79aRrVDqhRde0IoVK9SmTRvj+k1pLl26pK+++kru7u7ZamBWzJs3T5s2bdLSpUuztVbU3bspOdgq68qTS95MhlTrNiQp6el5TTMj7YGalJTyTD1Qc8v9/qz1u0TfP6ue1WdNbkDfWwf9bh30u/XQ99ZBv1sH/W4d2Qql3n77bfXr10/NmzdXUFCQypYtK0k6c+aMtm3bJoPBoMmTJ2e6vmLFisnOzk6xsbEm22NjY+Xi4vLQYxcsWKB58+Zp0aJF8vT0NG53dXU11uHm5mZS5/3lAAAAAAAAYDnZCqVq1qyp1atXa/r06YqKitI///wjScqXL5/8/f01ZMgQeXh4ZLo+e3t7ValSRdHR0cZFyVNTUxUdHa3Q0NAMj5s/f77mzp2rBQsWyNvb22RfqVKl5OrqqujoaFWqVEmSdPPmTR06dEjdu3fP6iUDAAAAAAAgB2QrlJIkd3d3zZ49W6mpqYqLi5MkOTk5ydb28dZQ7927t0aNGiUvLy/5+PhoyZIlSkxMVMeOHSVJI0eOVPHixTV8+HBJ96bszZgxQ1OnTlXJkiWNa0g5OjqqQIECsrGxUc+ePTVnzhyVLVtWpUqV0vTp0+Xm5mYMvgAAAAAAAGBZ2Q6l0tja2srBwUGOjo6PHUhJUqtWrRQXF6cZM2YoJiZGlSpVUlhYmHH63sWLF03qX7lype7evavXX3/dpJ7BgwdryJAhkqT+/fsrMTFRH3zwgRISElSjRg2FhYVla90pAAAAAAAAPL5sh1L/+9//9Pnnn+vAgQO6e/euFixYoHr16ikuLk7vvvuuXn75ZdWpUydLdYaGhmY4XW/ZsmUm32/fvv2R9dnY2Gjo0KEaOnRoltoBAAAAAACAJ+PxhzRJ+uWXX/Tiiy/q7Nmzatu2rVJTU437nJycdPPmTa1alQs+oh0AAAAAAAC5SrZCqWnTpqlChQratGmT3nzzTbP9derU0aFDh7JzCgAAAAAAADyFshVK/e9//1PHjh1lb28vGxsbs/3FixfX1atXs3MKAAAAAAAAPIWyFUrlyZPHZMregy5fvixHR8fsnAIAAAAAAABPoWyFUr6+vtqyZUu6+27fvq3IyEjVqlUrO6cAAAAAAADAUyhbodTrr7+uI0eO6JVXXtGuXbskSb///ru+/vprdezYUXFxcXrttddypKEAAAAAAAB4emR7pNS8efN09uxZjRo1SpI0ceJEvf/++0pNTdW8efPk6emZIw0FAAAAAADA0yPP4x5oMBh069YtVa9eXVu2bNGxY8d05swZGQwGlS5dWl5eXukufg4AAAAAAAA8dih19+5d1a5dW2+++ab69++vSpUqqVKlSjnZNgAAAAAAADylHnv6nr29vVxcXGRvb5+T7QEAAAAAAMAzIFtrSnXo0EHffPONkpKScqo9AAAAAAAAeAY89vQ9SfLw8NC2bdvUunVrdejQQSVLllS+fPnMyjVr1iw7pwEAAAAAAMBTJluh1LBhw4z/nj59erplbGxsdOzYseycBgAAAAAAAE+ZLIdSn332mVq1aiVPT08tXbr0SbQJAAAAAAAAT7ksh1Lz5s3TCy+8IE9PT9WuXVvx8fGqX7++Fi5cqHr16j2JNgIAAAAAAOApk62FztMYDIacqAYAAAAAAADPiBwJpQAAAAAAAICsIJQCAAAAAACAxT3Wp+9duHBBR48elSTduHFDknT27FkVLlw43fJVqlR5zOYBAAAAAADgafRYodT06dM1ffp0k21jxowxK2cwGGRjY6Njx449XusAAAAAAADwVMpyKDVhwoQn0Q4AAAAAAAA8Q7IcSnXo0OFJtAMAAAAAAADPEBY6BwAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxuS6UWr58uQIDA+Xt7a0uXbro8OHDGZY9efKkhgwZosDAQHl4eGjx4sVmZWbOnCkPDw+TrxYtWjzBKwAAAAAAAMCj5KpQatOmTZowYYIGDRqkNWvWyNPTU3379lVsbGy65RMTE1WqVCkNHz5crq6uGdb7wgsvaPfu3cavFStWPKlLAAAAAAAAQCbkqlBq0aJFCgkJUadOnVSxYkWNGTNG+fLlU0RERLrlfXx8NGrUKAUHB8ve3j7Deu3s7OTq6mr8cnJyelKXAAAAAAAAgEzINaFUUlKSjh49qvr16xu32draqn79+jp48GC26j579qz8/f3VpEkTDR8+XH///Xd2mwsAAAAAAIBsyGPtBqSJj49XSkqKnJ2dTbY7Ozvr9OnTj12vj4+PJkyYoOeff14xMTGaPXu2XnrpJa1fv14FCxZM95i8ee1kY/PYp8xVcst12NjaSAbrnd/e3s56J7eCtNfd3t5OBiv2u6Xllvv9Wet3ib5/Vj2rz5rcgL63DvrdOuh366HvrYN+tw763TpyTSj1pDRs2ND4b09PT/n6+qpx48b69ttv1aVLl3SPuXs3xVLNe+Ly5JI3kyHVug1JSnp6XtPMSHugJiWlPFMP1Nxyvz9r/S7R98+qZ/VZkxvQ99ZBv1sH/W499L110O/WQb9bR66ZvlesWDHZ2dmZLWoeGxsrFxeXHDtP4cKFVa5cOf311185VicAAAAAAACyJteEUvb29qpSpYqio6ON21JTUxUdHa1q1arl2Hlu3bqlc+fOPfTT+gAAAAAAAPBk5arpe71799aoUaPk5eUlHx8fLVmyRImJierYsaMkaeTIkSpevLiGDx8u6d7i6KdOnTL++/Llyzp27JgcHR1VtmxZSdKkSZPUuHFjPffcc7py5YpmzpwpW1tbtW7d2joXCQAAAAAAgNwVSrVq1UpxcXGaMWOGYmJiVKlSJYWFhRmn7128eFG2tv83uOvKlStq37698fuFCxdq4cKFql27tpYtWyZJunTpkoYNG6Zr167JyclJNWrU0OrVq+Xk5GTRawMAAAAAAMD/yVWhlCSFhoYqNDQ03X1pQVOaUqVK6ffff39ofdOmTcuxtgEAAAAAACBn5Jo1pQAAAAAAAPDsIJQCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABaXx9oNAAAA/177IkKVnJxi1Ta4B86z6vkBAADweBgpBQAAAAAAAIsjlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACwu14VSy5cvV2BgoLy9vdWlSxcdPnw4w7InT57UkCFDFBgYKA8PDy1evDjbdQIAAAAAAODJy1Wh1KZNmzRhwgQNGjRIa9askaenp/r27avY2Nh0yycmJqpUqVIaPny4XF1dc6ROAAAAAAAAPHm5KpRatGiRQkJC1KlTJ1WsWFFjxoxRvnz5FBERkW55Hx8fjRo1SsHBwbK3t8+ROgEAAAAAAPDk5ZpQKikpSUePHlX9+vWN22xtbVW/fn0dPHgw19QJAAAAAACA7Ms1oVR8fLxSUlLk7Oxsst3Z2VlXr17NNXUCAAAAAAAg+/JYuwG5Ud68drKxsXYrckZuuQ4bWxvJYL3z29vbWfR8eeetsuj50vVWb9nb28lgxX63tNxyvz9r/S7R98+qtNf9WXvG5wZpfc89b1k2NtK+iFClpKZa9Z6v0jzMeie3Au5366HvrYN+tw763TpyTShVrFgx2dnZmS1AHhsbKxcXF4vWefduymOdLzfKk0veTIZU6zYkKcmyr2lu6fekpJRn6oFKv1sPff9sSvvP27P2jM8N0vqee96yuOetg/vdeuh766DfrYN+t45cM33P3t5eVapUUXR0tHFbamqqoqOjVa1atVxTJwAAAAAAALIv14yUkqTevXtr1KhR8vLyko+Pj5YsWaLExER17NhRkjRy5EgVL15cw4cPl3RvIfNTp04Z/3358mUdO3ZMjo6OKlu2bKbqBAAAAAAAgOXlqlCqVatWiouL04wZMxQTE6NKlSopLCzMONXu4sWLsrX9v8FdV65cUfv27Y3fL1y4UAsXLlTt2rW1bNmyTNUJAAAAAAAAy8tVoZQkhYaGKjQ0NN19aUFTmlKlSun333/PVp0AAAAAAACwvFyzphQAAAAAAACeHYRSAAAAAAAAsDhCKQAAAAAAAFgcoRQAAAAAAAAsLtctdA4gZ+yLCFVycopV2+AeOM+q5wcAAAAA5F6MlAIAAAAAAIDFEUoBAAAAAADA4gilAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOLyWLsBAADkhH0RoUpOTrFqG9wD51n1/AAAAMC/CSOlAAAAAAAAYHGEUgAAAAAAALA4QikAAAAAAABYHKEUAAAAAAAALI5QCgAAAAAAABZHKAUAAAAAAACLI5QCAAAAAACAxRFKAQAAAAAAwOIIpQAAAAAAAGBxhFIAAAAAAACwOEIpAAAAAAAAWByhFAAAAAAAACyOUAoAAAAAAAAWRygFAAAAAAAAiyOUAgAAAAAAgMURSgEAAAAAAMDiCKUAAAAAAABgcYRSAAAAAAAAsDhCKQAAAAAAAFhcHms3AACeJvsiQpWcnGLVNrgHzrPq+QFYBs8bAADwb8dIKQAAAAAAAFgcoRQAAAAAAAAsjlAKAAAAAAAAFkcoBQAAAAAAAIsjlAIAAAAAAIDF5cpQavny5QoMDJS3t7e6dOmiw4cPP7T8t99+qxYtWsjb21tt2rTRzp07TfaPHj1aHh4eJl99+/Z9kpcAAAAAAACAh8h1odSmTZs0YcIEDRo0SGvWrJGnp6f69u2r2NjYdMv/8ssvGj58uDp37qy1a9eqSZMmGjRokE6cOGFSLiAgQLt37zZ+ffbZZ5a4HAAAAAAAAKQj14VSixYtUkhIiDp16qSKFStqzJgxypcvnyIiItItv3TpUgUEBKhfv36qUKGC3njjDVWuXFlffvmlSTl7e3u5uroav4oUKWKJywEAAAAAAEA6clUolZSUpKNHj6p+/frGbba2tqpfv74OHjyY7jG//vqr6tWrZ7LN399fv/76q8m2/fv3q169emrevLk+/PBDxcfH53j7AQAAAAAAkDl5rN2A+8XHxyslJUXOzs4m252dnXX69Ol0j7l69apcXFzMyl+9etX4fUBAgJo2bapSpUrp3Llz+uyzz9S/f3+tWrVKdnZ2OX8hAAAA/6+9+w6PourfP/7eVJIQIKGIQACBhyA9oqJI750o0iSiCCLSQlEeJHSQovQiihQFFKQIEumIIEpA+UpRFFAeeihCSEgvm/n9wW/XLAEkhUzA+3VdXpfMntmcvXMy5TMzZ0VERETkrnJVUep+adWqlf3/bROdN27c2H731K1cXZ2xWHKyh/dPbvkcFicLGOb9fDe3nC0+KveblLs5cjp3UPY2ZmRvJtvvXbnnPGVvDuVuDosF9q8NwpqaamrulZotNO+Hm8Q25t3cnDFMzP7fRrmbQ7mbI1cVpXx8fHB2dk43qfm1a9fS3Q1lU6hQIYe7ov6pPYCfnx8+Pj6cOXPmtkWp5GRrJnqfO7nkkj8mI9XcjiQl5ezvVLnfpNzNkdO5g7K3MSN7M9kO3pR7zlP25lDu5lDu5rFln5Rk1Ul6DlLu5lDu5shVc0q5ublRqVIlwsLC7MtSU1MJCwsjICDgtutUr16dffv2OSzbu3cv1atXv+PPuXTpEpGRkRQuXDhb+i0iIiIiIiIiIhmTq4pSAN27d2fVqlWsW7eOkydPMmbMGOLj43nhhRcAGDp0KNOmTbO379atG3v27GHx4sWcPHmSOXPm8OuvvxIUFARAbGwsU6ZM4dChQ5w/f56wsDD69OlDqVKlqFOnjimfUURERERERETk3y5XPb4H0LJlSyIiIpg9ezZ//fUXjz/+OAsXLrQ/jnfx4kWcnP6upT3xxBNMnTqVmTNnMn36dEqXLs28efMoX748AM7Ozpw4cYL169cTHR1NkSJFeO655wgODsbNzc2UzygiIiIiIiIi8m+X64pSAEFBQfY7nW61bNmydMtatGhBixYtbts+T548LFq0KFv7JyIiIiIiIiIiWZPrHt8TEREREREREZGHn4pSIiIiIiIiIiKS41SUEhERERERERGRHKeilIiIiIiIiIiI5DgVpUREREREREREJMepKCUiIiIiIiIiIjlORSkREREREREREclxKkqJiIiIiIiIiEiOU1FKRERERERERERynIpSIiIiIiIiIiKS41SUEhERERERERGRHKeilIiIiIiIiIiI5DgVpUREREREREREJMepKCUiIiIiIiIiIjlORSkREREREREREclxLmZ3QERERDLHc8kas7sAZc3ugIiIiIg8qHSnlIiIiIiIiIiI5DgVpUREREREREREJMepKCUiIiIiIiIiIjlORSkREREREREREclxKkqJiIiIiIiIiEiOU1FKRERERERERERynIpSIiIiIiIiIiKS41SUEhERERERERGRHKeilIiIiIiIiIiI5DgXszsgIiIiIiIiudP+tUGkpFhN7UP5hgtM/fkicv/oTikREREREREREclxKkqJiIiIiIiIiEiOU1FKRERERERERERynIpSIiIiIiIiIiKS41SUEhERERERERGRHKeilIiIiIiIiIiI5DgVpUREREREREREJMepKCUiIiIiIiIiIjlORSkREREREREREclxLmZ3QERERERERET+tn9tECkpVlP7UL7hAlN/vvw76E4pERERERERERHJcSpKiYiIiIiIiIhIjlNRSkREREREREREcpyKUiIiIiIiIiIikuNUlBIRERERERERkRyXK4tSn332GQ0bNqRKlSp06NCBI0eO3LX95s2bad68OVWqVKFNmzbs3r3b4XXDMJg1axa1a9ematWqvPrqq5w+ffo+fgIREREREREREbmbXFeU2rRpE5MmTaJv376sW7eOChUq0KNHD65du3bb9j///DNDhgzhxRdfZP369TRq1Ii+ffty4sQJe5uPP/6YZcuWMWbMGFatWoWHhwc9evQgMTExpz6WiIiIiIiIiIikkeuKUkuWLKFjx460b9+ecuXKMXbsWPLkycPatWtv237p0qXUqVOHnj17UrZsWQYOHEjFihVZvnw5cPMuqaVLl/Lmm2/SuHFjKlSowHvvvceVK1fYsWNHTn40ERERERERERH5/3JVUSopKYmjR49Sq1Yt+zInJydq1arFwYMHb7vOoUOHePbZZx2W1a5dm0OHDgFw/vx5/vrrL4f39Pb2plq1and8TxERERERERERub9yVVHq+vXrWK1WChYs6LC8YMGCXL169bbrXL16lUKFCt2x/V9//WVfdq/vKSIiIiIiIiIi95eL2R3IjQoX9ja7C9lnaHeze0BNzO9DjlPu5lDu5lH25lDu/2qF2i83uwv/SsrdHMrdPMreHMrdPIUKPUT1gAdArrpTysfHB2dn53STml+7di3d3VA2hQoVSnfHU9r2hQsXti+71/cUEREREREREZH7K1cVpdzc3KhUqRJhYWH2ZampqYSFhREQEHDbdapXr86+ffsclu3du5fq1asDUKJECQoXLuzwnjExMRw+fPiO7ykiIiIiIiIiIvdXripKAXTv3p1Vq1axbt06Tp48yZgxY4iPj+eFF14AYOjQoUybNs3evlu3buzZs4fFixdz8uRJ5syZw6+//kpQUBAAFouFbt26MX/+fL755huOHz/O0KFDKVKkCI0bNzblM4qIiIiIiIiI/NvlujmlWrZsSUREBLNnz+avv/7i8ccfZ+HChfZH7S5evIiT09+1tCeeeIKpU6cyc+ZMpk+fTunSpZk3bx7ly5e3t3n99deJj49n1KhR3Lhxgxo1arBw4ULc3d1z/POJiIiIiIiIiAhYDMMwzO6EiPwzwzCwWCxmd0NEREREREQkW+S6x/dE5Pb++usvs7vwr6b6vXlSU1PN7sK/knI3h3I3j7bz5lDu5lDuIpJbqCglWaad2v23fv166taty4YNG8zuyr/OoUOHSElJwWKxaKznsKNHjwLg5OSkE/UcpNzNodzNo+28OZS7OZS7eQ4cOMDp06fN7sa/jnLP/VSUkgy5dOkSe/bsYfPmzVy4cAG4OZm8DqDvn02bNjFs2DCee+453n33XUJDQ83u0r/G6tWr6dy5M926dcNqteoALgetXbuW9u3b079/f0An6jlFuZtDuZtH23lzKHdzKHfzrF69mqCgIPr168e5c+fM7s6/hnJ/MKgoJffs+PHjtG/fnlmzZjFkyBAGDBjAhAkTAB1A30/PPfccS5cuZdasWQQGBjJ69GgVpu4zwzA4duwYEyZMYPDgwURGRvLqq6/qAC4HGIbB4cOHCQkJ4eWXX+bEiRMEBwcD2s7cT8rdHMrdPNrOm0O5m0O5m+vUqVMsXLiQiRMnkjdvXvr06aMCSQ5Q7g8OTXQu9yQ6OpqgoCBq1qxJ//79iYuLY+3atWzevJlixYrx0UcfATfnwkj77YiSNSkpKbi4/P0lmRcvXuSTTz5h9erVjB07ljZt2pjYu4ffuXPn8PPz4/DhwwwePJhixYrxySef4OzsrInn77PTp09TunRpNm3axPvvv0/VqlWZNWsWoO3M/aTczaHczXP27FlKliyp7XwOs4155Z6zdFxjnvDwcIoVK8bVq1d5/fXXSUlJ4YMPPsDPz8/srj3UlPuDQUUpuSfh4eF0796dyZMnExAQAEBsbCzfffcds2bNwt/f334ALffXxYsX+fTTT1m1apUKU/eJ1WpNd4B25MgRBg0apAO4+8yWve1EPCEhgZ07d+pE/T6xjWFbnso9Zyh389yaeVrazt8/tm17UlISbm5uDq8p9/vn1m2NjmtyXtrs4ea0J9euXaNnz54qkNxHaXM3DAMnJyflnovpCEfuiZeXFykpKRw8eNBhWaNGjejduzenTp1i5cqVJvbw4WC1WoG/J4+/3aMbjz76KK+88godO3bUo3zZKG3Wzs7OAA4HZlWrVmXGjBmEh4frlvdsdrvsbSeLefLkoWHDhrz99tscOXJEjzZlI9sYTklJIS4uDsB+AKfc7x9b7vHx8Zw5cwbQeM8pVqsVJycn4uPj+b//+790mWo7f3/YClJxcXGMHj2an3/+Gfj7WEe53x+pqan2gpTt+FLHNTkj7bbFtn23WCxYLBasVisFCxZk4cKFuLi46JGybGQb5+CYu5OTEykpKco9F1NRSu6Jh4cHTz31FHv37uX48eP25W5ubjRr1ozixYvz448/mtjDB19qairOzs7ExMTQq1cvfv/99zueiKgwlb3SnqisXr2aOXPmsHXrVhISEhza6QAu+9myj4uLY/HixYwfP57Vq1cTExMDoALJfeTs7Ex8fDyvvfYay5cvJyIiAsA+ppV79rOdnMfExNC2bVu2bNni8Lpyv3/S7mNffPFFli1bxqVLl9K103Y+e6Ud823atGHdunUcOXIkXTvlnr1sd4nExsYyZswYevbsyYgRIwgLC3Nop9yzX9rs58+fz+jRo1m2bJm9GOvs7KwCyX1g28bHxsby3nvvMWjQIObOnct3330HgIuLi3LPxVSUknvi5ubGa6+9xu+//878+fM5e/as/TUPDw+efvppTp8+TXx8vIm9fLDZHt1444032LNnDz169ODYsWP/WJh68cUXGT16NF9//bUJvX7wGYZhP2Du3Lkzq1evZteuXQQHBzN//nx7GxsdwGWftCeJHTt2ZMeOHZw9e5aRI0fa77xUgeT+2rx5Mz/++CM7d+7k66+/JjIyEvj7W1WVe/a59eS8bNmyvPnmm7dtq9yzn20fGxQURNmyZZk4cSLFihW7bVtt57NH2jHfunVrqlevzoABA1i6dCnnzp1L95iYcs8etkeVYmJieOGFF7hy5QrVqlXj6NGjbNiwIV175Z59bNnHxsby/PPPs3//fhITE1m1ahXjxo1j8eLFwO0LJH379lWBJAtsub/wwgv88ssvuLq6sm3bNt5//32mTJkCKPdczRC5B1ar1TAMwzh06JBRvXp1o3///kZYWJj99REjRhi9e/c2EhMTzeriAy81NdVYvny58eqrrxq7du0y+vXrZzz11FPG77//bhjG37+DW124cMGYO3eu4e/vb3z77bc52OOHR0JCgtGpUyejf//+RmxsrGEYhrF9+3ajSpUq9vxvdejQIaNhw4ZGUFCQkZycnJPdfajExcUZzz//vDFw4EAjLi7OMAzDmDVrltG/f//bjvn4+Hhj48aNRv369Y3g4OAc7u3D59ixY0bv3r2NcePGGfXq1TOWLFliREZGpmun3LNHbGys0aBBA2PgwIH2ZYcPHzZ++OEH4/Dhw+nGvHLPXj/88IMRFBRk3LhxwzAMw1i1apUxceJEY86cOcauXbvStdd2Puuio6ON+vXrGwMGDDAMwzB++ukno27dusbGjRsNwzCMlJSUdOso96yzWq3GsGHDHPalW7duNbp27WpER0ffdv+q3LOH1Wo1QkJCjIEDB9pzPn/+vNGsWTPD39/fmD59ukNbwzCMK1euGIGBgUabNm2M//3vf6b0+2GwZMkS46WXXrIfT16+fNlYtGiRUbt2bWPUqFH2drbtjnLPPXSnlDhI+9x52mVOTk5YrVaqVavGsmXLOHv2LO+99x7t2rWjT58+bNq0ieDg4HSTV8q9s1gslChRgmbNmlGrVi3Gjh3L008/Tbdu3ex3TBm3uWpVrFgxkpKS8PDw0ES4mbR582bc3d15++238fT0JCUlhSeffJISJUpw/fr1265TtWpVli9fzk8//cQ777yTwz1+eKxevRo/Pz9GjBiBh4cHcPNvIS4ujkGDBjFv3jyHR4Pz5MlDgwYNmDx5Mlu2bGH8+PFmdf2h4OTkRHh4OCEhITRv3pylS5fy7bffMn36dObMmQP8/UiZcs8awzCYP38+V69epWXLlgCMHj2akJAQhgwZQqdOnRgzZgx//vmnfR3lnr3++OMPYmNj8fb25p133uHTTz/l4sWLbNu2jZkzZ7JgwQKH9trOZ55hGFitVrp160alSpXsk/Y/+eSTVKxY0Z61bR7BtJR71jk5OXHlyhXKli1rPzaMiIjg+vXrdOvWjYEDB7Jo0SKHdZR79nBycuLixYtUqFABJycnkpKSKF68OHXq1OGZZ57hm2++Yc2aNfa2hmFQuHBh1q1bx6lTp5g6dWq66SPk3oSHh5OYmGg/nixSpAgdOnSgb9++7Nmzh3nz5gHYJ/VX7rmHzmDF7s8//2To0KH06NGD0aNHs2vXLgB7QcrZ2Rmr1UrlypX54IMPePPNN3nyyScJCAhg1apVVKhQwdwP8BCoV68e7du3x9XVFR8fH0aNGuVQmLI9UvPHH38QHR0NQHJyMt9//z3jx4+nbt26Jn+CB1Pp0qUpVqwYjzzyCHDz9t4CBQrg7OzMhQsXbruOxWJhz549eHl50bhx45zs7kOlbt26vPjii/j4+ACwZcsW5s2bR/78+SlatCibNm1iwYIFXL582b6Oh4cHhw8fxtPTk1q1apnV9YfCf/7zHwoVKsSFCxcYNmwYbdq0YdKkSSxevJiSJUsCfz9CqdyzxmKx0LJlS3vxz/aIwciRI1mzZg0fffQRO3bsYOnSpcDfjw0r9+xToUIFPDw8CA0N5dSpU8yYMYPZs2ezaNEiateuzY4dOzh27Ji9vbbzmWexWHB2dmbSpEnMnTsXgJSUFAC6detGbGwsmzdvBkh3wU25Z41hGMTGxuLk5MSZM2fYsWMHX331FRMmTKBx48Z07tyZokWLEhoays6dO+3rKfesMwyDmJgYoqOj7Y/D2y7YHzhwgFq1auHn58fu3bvt7W2PsW7ZsoU8efLQpk0b8uTJY0r/H3TVq1cnKSnJYd46b29vmjVrRuvWrdmzZw/nz58HUO65jIvZHZDc4X//+x+dO3embt26VKlShe+++45ff/2VvXv3Mnz4cIev8TUMg2LFilGsWDGaNGlidtcfOq6urvadVJEiRRg1ahTjxo2jW7duLF26lAMHDvDJJ5+wZMkSvL29cXV1ZeXKlbi6uprd9QdW9erVqVy5Mi4uLg5f2evm5uZwFfeXX37By8uLMmXKAJCQkMCUKVN08JYFpUuXpnTp0gBER0eze/duRo4cSZcuXXBycuL48eO0a9eOY8eO2YuGAPHx8YwdO5ZGjRqZ1PMHn207k5SUxJ49e3jppZfIly8fsbGx5M+fn9jYWK5fv46Pj4/94E25Z83jjz9Ojx49mDdvHklJSQwfPpxq1aoBULx4cUaPHk1wcDDdu3fnscces6+n3LOHj48P4eHhrF27Fi8vL3vGhQsXpmPHjqxatYrjx487XGTTdj5r/P397f/v4nLztKNSpUp4e3vzzTff0KJFi3RzS4FyzwqLxYKXlxevvPIKs2bN4rPPPuPChQv07t2bfv36AXD16lV2797Nb7/9RsOGDe3rKvessVgs5M2bl5deeolhw4YRGxtLyZIlWblyJSVKlKBXr14cOHCAN954g/DwcId57ZKSkpg2bZouMGdBuXLlsFqtrF+/nqJFi1KkSBHg5rY/MDCQJUuWcPz4cUqUKGFfR7nnDipKCYZh8NVXX1G7dm2mT58OwBtvvMGyZcvYunUrI0eOZPz48fZK/zfffENAQAAFCxY0s9sPtbQHaEWKFGH06NFMmDCBwMBALBYLkyZNws/Pz95GBamssx0sWywWkpOTcXV1xd3dHXd3dwC+/PJLQkJCWL16tX2dbt26mdLXh5W3tzf//e9/KVCgAIZhYBgGnp6e/Oc//yFfvnzA34UU28TPknm2ieafeuopfHx8+Oyzz5gzZw4LFizg+++/Z/bs2SQlJdG1a1dcXFyUezbx9/cnODiY48eP85///Af4e1x7eXnx6KOP4unp6bCOcs8e5cuXZ+DAgfbtzPHjx6lUqRIAfn5+VKxY0X6l3PY70XY+e6WmppIvXz769OnD22+/TVhYGM8++2y6dso962rXrs3jjz+Op6cnvXr1ciiAFCpUiNKlS9uPcWxTdSj37BEYGAjAZ599xqlTp6hbty6jRo0CIDY2Fl9fX7y8vBzWadu2bU5386FTvnx5goODGTRoEG5ubrz88ssUL14cuHnhJ+0FB9s2XrnnDipKCRaLhStXrnD16lX7srx58/Lyyy/j7u7Oxo0bWbBgAb169WLXrl2MHz+ewMBAgoODNYdRBqW9Tdf2/2mX3UnhwoXtV3Tnz59P/fr172k9yRxbkc/2bPnXX3/NqFGjmDRpEpUrVzazaw+9/PnzA38XZvfu3YvFYrEXwTXms4/tLsBHH32UQYMG4eLiwowZM6hVqxa1atUiKSmJChUqqOh9H5QtW5ZSpUo5FMPh5mP0jz76qH25ZB/bPrNdu3bEx8czZswYPvroI7p06UKlSpXYunUrv//+u/2Cj7Y194ftuNHf358yZcqwf//+2xalJHv4+vqSlJSExWLh6tWrpKamYrFYWL9+PYcOHaJ3794AOp6/DwIDA2natCkuLi4Oc+6ePHmSwoULk5qaqmP5+6Bp06ZMmTKFkSNHEhkZSZMmTahWrRo7duzg1KlT9uKscs9dLMbtZk6Wfw3bxnDZsmVs2rSJd9991/5oEkBUVBRTp07ljz/+YOnSpbi5uTF79myef/55hzt15J/Z5uVKSUnBarUSFxdnn0fnn+zcuZM+ffowbdo0WrVq5fCImfwz2xXAtO7lQOC1114jOTmZAwcOMGXKFNq2bavsM+h2Od/u93GrK1eusGfPHsaOHcv06dP1KEEGZST3M2fOsHDhQpo0aULdunXt26q7vZfcXlbG+/fff8+YMWOYMWOGHtPLhIxmv3HjRubOnUtUVBQ+Pj5ERUUxfPhw+yT0cm8yu38FmDJlCitXruT7779Pd9eI3F1Gx/vKlSsZM2YMTzzxBHnz5rXPZ6fxnnGZHfMXLlxg+/btTJ8+Xcc190na38Pu3bv55JNPOHbsGN7e3sTFxWkbn4upKCUAnD17lo4dO9KwYUNCQkLw8vKy/2FfvHiRBg0aMH/+fBo0aGB2Vx9Ith1YTEwMQ4YM4a+//iI5OZm6devSo0cPfH19AeyPLN26s9u7dy9ubm48+eSTKopkkO0EOyEhgUOHDhEZGcnTTz9N3rx57/htkVarlaSkJDp27Mgff/zB3Llzady4sbLPIFv2iYmJ/PHHH8TFxVGtWjX74wJ3Eh4eztSpUzl06BBDhw6lefPmKoxkQGZyj4qKst+lJpmT2fF+4cIFJk2axKFDhwgJCaFFixYa7xmUkezTZnvu3DmuXLlCfHw8jz76KGXLllX2GZCZ/Wva9c6fP8/Vq1epXr16znX6IZDZ8b5161b27NlD4cKFee655+zHlBrv9y6zYz42NpZvv/2WFStW8PLLL+u4JoNsud/LRZ60F9auXbvG9evXiYqKomDBgpQuXVrH8rmUilJit2/fPl5//XU6dOhAv3797IWSv/76i549ezJmzBgCAgJM7uWDKyEhgQ4dOvDYY49Ru3ZtYmNjmTNnDpUqVaJfv37UrFnTof3vv//OY489lu6bILQTu3e2rGJiYujcuTMpKSlcv34di8XCSy+9ROvWre13BqbdidnW27p1K05OTjRp0kQ7sQxKm31QUBDx8fFERkbi4eHBgAEDqF27tn0CylvvzIGb31Lj5uZG1apVlX0GZDV3bV8yJ6u579u3D3d3dwICAjTeMyir2UvmZHX/eqf3k7vL7HhXvlmX1TEfERFBcnIyjzzyiLbzGZA29wEDBtC5c2eaNm1617Zwb3cpS+6hopQ42LlzJ8HBwdSvX58WLVrg7+/P+vXrWbduHWvWrKFo0aJmd/GBtXfvXsaOHcvy5cspXLgwcPORjR49epAvXz6GDBnCE088AcDhw4fp1KkT//3vf3nllVe0Uc2ClJQU+vfvj4uLCyEhIfj6+rJgwQK+++47Hn30Ufr06ePw7UChoaFYrVZatWpln0tHBw+Zk5yczOuvv07+/PkZOHAgbm5ufPTRR4SFhdG4cWOCgoLsE1DCzeyLFStGQECAxnwWZCb34sWLExAQoDGeBRrv5sls9k888YTGfBZkZv9qGAatWrVScTALMjPeH330UWrUqKHxnkWZGfOpqam0atVKcwVmQWJiIj179uSnn37C29ubyZMn3/Ux9w0bNnDu3Dlef/31u97BJrmHjoLEQcOGDVm5ciWRkZFMnTqV3r17s23bNhYsWKCCVBYlJSURHx9vL3AkJiZSpEgRFi1axLVr15g3b569bbVq1ejbty9lypTRyUoWJSQkEB4eTr169ShatChubm7069ePl156iatXr7Jw4UIuXLgA3PwdffbZZyxatIiIiAj7e1gsFh3IZUJ0dDRXrlyhTZs2PPbYYxQvXpxx48bRoUMHvv/+e1atWkVUVBRw8+9hypQpjBkzhpiYGJN7/mDLbO7R0dEm9/zBpvFunsxkP3bsWI35LMrM/vXjjz/m2rVrJvf8wZaZ8T5u3DiN92yQmTG/cOFCjfks2rJlCy4uLqxYsYLWrVszePBgvvnmm9u2TU5O5rvvvmPTpk1cunQph3sqmaWSraRTqVIl5s+fT2RkJLGxsRQuXNj+KJ9kXrly5YiOjmbjxo10794dd3d3kpOTKVKkCAsWLKBVq1asWLGCLl26ANC/f39At1xnlcViwdPTkytXrgA3r3K5uLgQGBhISkoKn3zyCd9//z2dOnWyX208deoUjzzyiMk9f/AlJyeTmppKbGwscPPg2N3dnV69epGSksLKlSt5+umnee6553B3d2fDhg2cOHGCfPnymdzzB5tyN4dyN4+yN0dm96+2x8skczTezaNjSnOULFmStm3bUrlyZftj7oMHD2b69OkOd0wZhoGrqyujR4/mwoULlCxZ0sReS0bo8T2RHGB7rnnRokUsXLiQkJAQWrduDdw8uHB1deX111/Hz8+PUaNGmdzbh8+4cePYtWsXy5cvp1ixYvaDCIDRo0ezb98+tm7dqufP74P+/ftz8uRJNm7ciMViISkpyX4rdd++fbl27RorV650+J2oEJt1yt0cyt08yt4c2r+aQ+PdPBrz5rh1TsCxY8fy5ZdfOhSmDh48yCOPPEKxYsXM6qZkkv5SRHKAbafUtGlTmjRpwqxZs/jqq68A7PMWeXh4pJvDSLLGlmNISAg+Pj707duXqKgoh+f669evj8ViISoqSgcP2Sg1NRWA4cOHk5KSQvfu3QFwc3MjOTkZgFq1apGUlERSUpLD70QHzZmn3M2h3M2j7M2h/as5NN7NozFvrlvnoRs9ejQvvPACgwcPZufOnSxatIj+/fvrkfgHlP5aRLKRbYd1p6KSn58fQUFB1KlTh9GjRzNlyhTWr1/PkiVL2LlzJ/Xq1QN04JBdLBYLhmHg7OzMe++9R0pKCkFBQRw7doykpCQA/vjjDzw8PFQIzGa2g7FHHnmEkJAQzp49y8svv0xMTIy9+Hr9+nU8PDxITk5W/tlEuZtDuZtH2eectNlp/3p/3SkzjXfzaMznPqNHj6ZDhw706dOH999/n6FDh1K+fHmzuyWZoMf3RLLBrbfo2m6RvtOtu9euXWPv3r3MmzcPV1dX3Nzc6NWrF82aNdPt1ffRuXPnGDZsGOfOncPPz4+iRYuybds2pk6dSrNmzczu3gMn7Vi1/f/txm9ycjIHDhxgwoQJxMbGEhAQgJeXF+vXr2fGjBk0adLEjO4/sG6X8e22Nco9e93roxjKPfvZHtv4p/2jss9etjF/L2Nf+9fsYxvvSUlJxMTE4Ovrq218DsnIMbjGfPZJm7ttrN/r72Lx4sW8//77fPjhh9SrV0/nUQ8oFaVEssi28YyNjWXevHlERkaSL18+OnToQNmyZe+6bkxMDE5OTiQmJuLj42O/sqKN6b259fnyW/99J59//jnnzp3DYrFQp04dnn32We3EMijtyQpAXFwcefPmdXjtVklJScybN4+LFy/i4uJCixYtqFOnjrLPANsYT05OJiYmhpiYGPz8/ADlfj/ZsoqPj+fXX3/lqaee+sd1lHv2sI35mJgYFi9eTKdOnf5x0mBln3Vpcx89ejTt27enVq1a/7ie9q9Zkzb3F154gbp16zJixIi7rqPxnj3SFgOPHz9OTEwMzzzzzD9mqDGfNbbcU1JSsFqtxMTEULBgQfvrd8syLCyM7t278/7779OmTRudRz3AVJQSyQZxcXG0bduWUqVK4erqSnR0NEeOHGHkyJG0bt0aT09Pe9vbXXnUzivj0hYD16xZwyuvvALcvTB1p9e0E8uYtNlPmjSJM2fO4OLiQvPmzenUqdNt17l1jKe9swqU/b2w5R4TE8Nbb73F1atXOX/+PC+99BIDBgy47TrKPfskJyfTpk0bTp8+zbx58xy+8edWyj17pD1Bb9y4Mc899xzTpk0D7nx3prLPOltmtsJI2bJl6dmzJwEBAXe8Y0r716xLO96ff/55oqKi8PX1ZebMmVSoUOG262i8Z4+0+9fXXnuNxMREjh8/Tv369Zk9e7Z9Evm0NOaz7tbjmhs3bhAVFcUzzzzDq6++ar/odqfzpOPHj5OUlESVKlWU+wNOc0qJZINPPvkEHx8fFi5cyIcffsjixYvp1asXo0aNYsWKFfZnzeHmfAC//fYbR48eBVSQygzDMHByciI+Pp6uXbsyadIkxo0bB9ycCNFqtaZbJzU11X6wl3YZ3NyB6Xdwb2zZx8bG8sILLxAVFUXNmjUpXbo0H3zwAbt27Uq3TmpqKhaLhYSEBIf3AWV/r2y5204S8+TJQ48ePejTpw8LFy7kt99+S7eOcs9erq6ulCxZkooVKzJw4EC2bNmSrk1qaqpyzyZpt9mtW7emZs2a9oKU7XVwPAFR9tnDNv1ASEgIZcqUYf78+dSoUYP4+HjOnj3r0NY25rV/zZq0BanWrVtTpUoVFi9eTExMDL///jvwd6Y2Gu/Zx8nJiYSEBIKCgihdujQzZsxg/fr17N69m7179zq01ZjPPrZj+S5duuDl5UW3bt3o27cvGzZs4O2332bHjh0OhVZbxrbc/f39qVKliv39lPuDS0UpkUxKexAQGxuLj4+P/UDO3d2d/v3789ZbbzFt2jS++eYb4OZBh9VqZfz48QwZMgTQBjQzLBYLVquVWbNm4e3tzaBBg9i2bRsjR44Ebl+YshUDx40bx+XLl+3LJGMsFgvJyckMHz4cf39/pk+fTr9+/ejXrx/lypXj8OHDgOMkrU5OThw8eJCZM2favx1I2WeM7Su/+/fvT+XKlZk6dSotWrSgZcuWBAQE4O7uzp9//umwjnLPPikpKaSmppInTx769u1L7969efvtt+2FqUOHDtmv+Cr37GE7SWzfvj1FihRh1qxZACxbtozhw4czaNAgli5dmm4dZZ89EhISiIiIsH+726hRo3jttddo3bo1r7/+Olu2bHEY89q/Zo2twFG/fn0CAgKYPn06lStXpmHDhsydO5eIiIh0mWq8Z69vv/0WJycnhg8fTpkyZahQoQKNGzfGYrGwfft2wsPD7ReINOazz+bNm8mbNy8TJkygefPmtGzZkrfeeotDhw7x6aef2ouCFovFIfdLly45vI/Opx5s+usRyYT/+7//45VXXrFX7AsWLMjPP//M9evXcXJysh8c9OzZk5dffpkxY8Zw+fJlnJ2d7d/aUbhwYX766SczP8YDLSkpCVdXV9q2bUuXLl1466232Llz510LU+fPn2fDhg38+uuvZnT5oXHp0iUSExNp0aKF/dt+ChYsSMWKFe94RffUqVN88skn/PLLLzne34dFXFwcRYsWpUuXLvavoP7xxx85dOgQwcHBdO3ald69exMeHm5fR7lnDxcXF5ycnKhcuTInT56kb9++dO7cmaFDhzJw4EBCQkI4f/68vb1yzx7R0dEkJSVRsGBBfv31VwYPHszatWuJj4/H1dWVKVOm8M477ziso+yzR2pqKtHR0RiGwYwZMzhy5AivvfYa8+fPJyUlhaVLl/LDDz/Y24eHh2v/mkV79uyhcePGzJgxA7h5cce2n923bx9AuuMajffsExERwY0bN+wZ79q1i+3bt/PRRx8xfPhwBg4cyKZNm+ztNeazx/nz50lJScHDw4OUlBQAihQpQuPGjbly5QqLFi1yaG/L3fbEiTwcVJQSyYSKFSvi6elp3xG1aNGC8uXLM3r0aKKionB1dbUXpmy3pKZ9vMbHx4dnn332HydClzvz8PCgV69etG3blnz58tG4cWOGDBly28KU7Tbfpk2b0q9fP3bs2EFqaqq+sjeTChQowIsvvkj9+vWBvwtQbm5ud7xa+8ILLxAUFMTevXuVeyYYhkGBAgUICQmhevXqABw4cICQkBD69evHlClT+Pzzzzl48CCffPKJfT3lnr1cXV3Zv38/ACEhIVSuXJktW7ZQr149SpYsaW+n3LMuNTWVwoULs3TpUi5evEiPHj0IDw9n2rRpzJgxg2nTprFgwQI2bNjA6tWr7esp++zh6uqKi4sLmzdvJiEhgf79+9OsWTOee+45ZsyYQUpKCqGhofb2jRs31v41ixo1asTkyZOBv6d2ePbZZylUqBArV64ESDeHkcZ79nn22We5evUq/fv3Z/jw4bz55puMGjWKDz/8kD179uDt7c369evtRSuN+exRpUoVTp8+za5du3BxcSExMZFJkyZRo0YNFixYwI8//sju3bvt7ZX7w8nF7A6IPIisVispKSns2LGDqlWrUrRoUQIDA1m7di2TJ09m6NCh+Pj4ADfvIHFzc7NX/w3DIG/evPTu3dt+t4Nkjre3N3Dz5CVv3rw0a9YMwzCYPn06AOPHj2fZsmX8+eefvPPOO3h5edGmTRvy5s2r26yzwNvbm0aNGtkfV7Vl6e3t7TCfxZo1a4iJieHVV18FoEmTJpQtW1a3WGeCLTPbNxwCxMfHM2PGDHtxEKBZs2b89ttv9kKhk5OTcs9GTz31FD///DMAH3zwAb/99hsNGzZkxYoVVKxYkdatW9tPJpV71jg5OWG1WvHz82POnDmMGzeO1q1bO1zMefrpp3n88cftj67atkfKPmsMw7BPQzBgwAASExN5/PHHgZsZFyhQgNatW7Nu3ToSExNxdXXFyclJ+9csSjuZdtr9a//+/Rk8eDDbt2+nSZMm9jba1mSf1NRUypQpw+eff87WrVuxWCw89dRTtG/fHovFgpubG61atWL27Nlcv36dQoUKAWjMZ4NKlSrRqlUrBg0ahL+/P2fOnKFy5cr2R4f9/Py4cuUK8Pc2Xrk/fHRGLJIJtqLSwIEDqVGjBvXq1aN9+/ZER0ezfft2goODmTBhAs7Ozvz4449ERkZSokQJ4O+TSxWkso9tp+Tl5UXz5s2xWCzMmjWL559/nt9//53Jkyfj5eUFQKlSpczs6kPDNo7THhC4urraryB++eWXjBgxgnfffdf+es2aNXO2kw+5OnXqpFuWnJxMlSpV7N/wCco9OxUsWJDr16/z1ltvsW3bNmbMmEGjRo0YM2YMb7/9NjVr1qRw4cKAcs8Otrtd/fz8mDZtWrpHlwzDIF++fPZvaLJR9llj274//fTT9OvXj7lz57J//34aNGhA/vz5Abh27RolSpTA2dnZ3l771+xl27+WLl2aggULcuDAAZo0aWIvRtly13jPOts+s2LFilSsWJHPP/8cd3d33N3d7W3Cw8MpXbo0efLksS/TmM+6IkWK0K9fP+rUqcOff/6Jr68vHTp0ACAyMhJvb28KFCgAoG3NQ0xnxSKZ9OSTT9KkSRNWrFiBj48PVatW5dVXX6V48eJ88cUXNG/enFKlSnHjxg1Gjhxpv8ooGXOnr/2+Ey8vL5o1a8auXbvYtm2b/avb9S2HGZfR7KOjo8mXLx87duwgJCSEadOm0apVK2WfQRnN3ebLL79k9+7d9gmhdQUxY/4p99TUVDw8PHBxcWHfvn32ghTAmDFjePnll+0FKcmYu2Xv7OxsLz7dasOGDfzxxx8MGjQI0JjPqH8a8x4eHgQGBmIYBrNnzyYyMpLy5cvj5ubGp59+yowZM3SBLRMyuo1/5JFHePXVVxkxYgRt27alUqVKOdDLh9Pdsk+7/Shfvjzjxo1j+fLlVK1alV9++YVFixYxdepUhzuW5d7805gvVKgQjRo1su9TbbZs2cLFixftRSgdSz68LIYexBTJtNOnTxMSEkLJkiXp2rUrlStXtr+2b98+PD098fT0pFy5cjoxz6C0j4XB3zu0W5ffzpo1axgxYgSzZ8+madOmDo+UyT/LbPaffvopkyZNwsnJiUmTJtGuXTtlnwGZzf23335j27ZtLFu2jPHjx9OyZcuc6O5DI6O5//DDD3h6ehIQEHDb99O2/t5ldswfPXqUbdu2sXTpUt59912N+QzKaO5Wq5WDBw8yf/584uLiyJcvHx07dtQFnwzKynHNn3/+ydChQxk7dixVqlS531196GQ0+7i4OJYtW8acOXMoUqQInp6eBAcHO9ypJv8sK9v4rVu3snTpUiZOnKht/L+AilIiWXTs2DHGjh1L/vz56dy5s8P8LpI5tp1VbGws8+bNIzIyknz58tGhQ4d0k8PfumNLTExk5syZ1KhRg8aNG6sokkFZyX7z5s3897//Zfr06co+gzKbe1xcHGFhYaxZs4aOHTvSoEEDHTBnQEZyT0lJ0V0h2SgrY37Pnj2sXLmSoKAgFUYyKCO5W61W+51qFouFxMRE3N3diYuLw9PTU9v4DMjKvtXmwoULFC9ePKe6/NDISvZnzpwhMTGRvHnzUqxYMY35DMhK7hEREXzwwQfUrVuXunXrahv/L6CilEg2OHXqFB9//DHbt2/nlVdeoV69erqSlUVxcXG0bduWUqVK4erqSnR0NEeOHGHkyJG0bt0aT09Ph/a2g2WApKQk3NzcdPCQSZnN/uLFi8TFxVG2bFllnwmZzT0xMZH4+HgKFCig3DMhK9sayZrMZh8fH098fDy+vr4a85mQ0dwTEhLIkyeP/cRRJ4iZk9nxbisOSuZpO2+OrOSenJyMq6urtvH/FoaIZIuEhARjx44dRpcuXYzOnTsbw4cPN65cuWJ2tx5Y8+bNM1588UUjNTXVMIyb+c6ePdvw9/c3Fi5caCQmJtrbfvnll0ZgYKBx7do1s7r7UMlo9u3atUuXvW1duXfZkbtknLY15tGYN4fGvDmUu3mUvTmUu9wr3Ycukk3c3d1p1KgRzzzzDPHx8Zw4cSLdFQC5O9vVWIDY2Fh8fHzsz57bvp7aw8ODadOmUaxYMVq0aIHVaqVs2bLcuHGD06dP4+vra/KneDBlJfvo6GhOnTrlkL2uaN2b7M5d7o22NebRmDeHxrw5lLt5lL05lLtkitlVMRERwzCMAwcOGB07djSsVqthGIaxaNEio0aNGkZERIRhGIaRlJRkbztx4kTj6aefNi5dumRfFh0dnbMdfogoe3Mod3Mod/Moe3Mod3Mod/Moe3Mod8ksfXeuiOQKFStWxNPTk19//RWAFi1aUL58eUaPHk1UVBSurq4kJycD0KVLF7y8vDh69Kh9fX1Fb+Ype3Mod3Mod/Moe3Mod3Mod/Moe3Mod8ksFaVEJFewWq2kpKSwY8cOAIoWLUpgYCCXL19m8uTJXL9+HVdXVwAKFiyIm5sbVqvVzC4/NJS9OZS7OZS7eZS9OZS7OZS7eZS9OZS7ZJaKUiKSK+TNm5fevXuzYsUKdu/ejcVioX379jRt2pRTp04RHBzM2bNnuXDhAjt27CAyMpISJUqY3e2HgrI3h3I3h3I3j7I3h3I3h3I3j7I3h3KXzLIYxv//nkUREZMlJiYyduxYIiIi6NOnD1WrVsVqtbJ9+3a++OIL9u/fT6lSpbhx4wbDhw+nVatWZnf5oaHszaHczaHczaPszaHczaHczaPszaHcJTNUlBKRXOX06dOEhIRQsmRJunbtSuXKle2v7du3D09PTzw9PSlXrhyGYehb3rKRsjeHcjeHcjePsjeHcjeHcjePsjeHcpeMUlFKRHKdY8eOMXbsWPLnz0/nzp2pX7++2V3611D25lDu5lDu5lH25lDu5lDu5lH25lDukhEqSolIrnTq1Ck+/vhjtm/fziuvvEK9evWoUqWK2d36V1D25lDu5lDu5lH25lDu5lDu5lH25lDucq9UlBKRXCsxMZHvv/+eRYsWYRgGZcqUYeDAgRQuXNjsrj30lL05lLs5lLt5lL05lLs5lLt5lL05lLvcCxWlRCTXi42NJT4+nhMnTlCtWjW8vLzM7tK/hrI3h3I3h3I3j7I3h3I3h3I3j7I3h3KXu1FRSkREREREREREcpyT2R0QEREREREREZF/HxWlREREREREREQkx6koJSIiIiIiIiIiOU5FKRERERERERERyXEqSomIiIiIiIiISI5TUUpERERERERERHKcilIiIiIi8sDbv38//v7+7N+/3+yuiIiIyD1SUUpERERyvc8++wx/f386dOhgdlceKLZCzZYtWzK1/ocffsiOHTuyuVciIiIiN6koJSIiIrleaGgoxYsX58iRI5w5c8bs7vxrfPTRRypKiYiIyH2jopSIiIjkaufOnePgwYO88847+Pr6EhoaanaX7iguLs7sLuR6iYmJpKammt0NERERyQVUlBIREZFcLTQ0lPz581OvXj2aNWt2x6LUjRs3mDhxIg0bNqRy5crUrVuXoUOHEhERYW+TmJjInDlzaNasGVWqVKF27dr069ePs2fPAneel+j8+fP4+/vz5Zdf2pcNGzaMgIAAzp49y+uvv05AQABvvfUWAAcOHGDAgAHUr1+fypUrU69ePSZOnEhCQkK6fp88eZLg4GCeeeYZqlatSrNmzZgxYwYA+/btw9/fn+3bt982F39/fw4ePJihPOfMmYO/vz9nzpxh2LBhPPnkk9SoUYN33nmH+Ph4ezt/f3/i4uJYt24d/v7++Pv7M2zYMPvrly9f5p133qFWrVpUrlyZVq1asWbNGoefZctz48aNzJgxgzp16lCtWjWOHj2Kv78/69atS9e/PXv24O/vz7fffgvAhQsXGDNmDM2aNaNq1arUrFmTAQMGcP78+Qx9bhEREcl9XMzugIiIiMjdhIaG0qRJE9zc3GjdujUrVqzgyJEjVK1a1d4mNjaWrl27cvLkSdq3b0/FihW5fv06O3fu5PLly/j6+mK1WnnjjTcICwujVatWdOvWjdjYWH744QdOnDhByZIlM9y3lJQUevToQY0aNfjvf/9Lnjx5ANiyZQsJCQl06dKFAgUKcOTIEZYvX86lS5eYPXu2ff1jx47RtWtXXFxc6NSpE8WLF+fs2bPs3LmTQYMGUbNmTR599FF7BrfmUrJkSQICAjKV68CBAylRogSDBw/mt99+Y/Xq1fj6+vL2228D8N577zFixAiqVq1Kx44dAewZXb16lY4dO2KxWOjatSu+vr589913hISEEBMTw6uvvurwsz744ANcXV3p0aMHSUlJlCtXDj8/PzZv3szzzz/v0HbTpk3kz5+f2rVrA/DLL79w8OBBWrVqRdGiRblw4QIrVqygW7dubNy4EQ8Pj0x9fhERETGfilIiIiKSa/3666/873//Y+TIkQDUqFGDokWLEhoa6lCUWrRoESdOnGDu3LkOxZs+ffpgGAYA69evJywsjHfeecehaNKrVy97m4xKSkqiefPmDBkyxGH5W2+9ZS9QAXTq1IlSpUoxffp0wsPDKVasGAATJkzAMAzWrVtnX2ZbH8BisdC2bVuWLFlCdHQ03t7eAERERPDDDz/Qu3fvTPUb4PHHH2fixIn2f0dGRrJmzRp7Uapdu3aMGTMGPz8/2rVr57DujBkzsFqthIaG4uPjA0CXLl0YPHgwc+fOpXPnzg6fPzExkbVr1zosa9myJYsXLyYqKor8+fMDN/PcsWMHTZo0wdXVFYD69evTvHlzh5/foEEDOnXqxNatWwkMDMx0BiIiImIuPb4nIiIiuVZoaCiFChWiZs2awM0iTcuWLdm0aRNWq9Xebtu2bVSoUCHd3US2dWxtfHx8CAoKumObzOjSpUu6ZWmLL3FxcURERBAQEIBhGPz222/AzcLSTz/9RPv27R0KUrf2p127diQlJTl8g96mTZtISUmhbdu2me53586dHf795JNPEhkZSUxMzF3XMwyDbdu20bBhQwzDICIiwv5f7dq1iY6O5ujRow7rBAYGOmQCN4tSycnJbNu2zb7shx9+4MaNG7Rs2dK+LO16ycnJXL9+nZIlS5IvXz57liIiIvJg0p1SIiIikitZrVY2btxIzZo1HeYPqlq1KosXLyYsLMz+iNfZs2dp2rTpXd/v7NmzPPbYY7i4ZN/hj4uLC0WLFk23PDw8nNmzZ7Nz506ioqIcXrMVfc6dOwdA+fLl7/ozypYtS5UqVQgNDaVDhw7AzWJd9erVKVWqVKb7fmshLF++fABERUWRN2/eO64XERHBjRs3+OKLL/jiiy/u2CatEiVKpGtToUIFypQpw+bNm+2fa9OmTfj4+PDMM8/Y2yUkJPDRRx/x5ZdfcvnyZYe72qKjo//hU4qIiEhupqKUiIiI5Er79u3jr7/+YuPGjWzcuDHd66GhofaiVHa50x1Td/q2ODc3N5ycHG88t1qtdO/enaioKHr27EmZMmXw9PTk8uXLDBs2LFPfPBcYGMi7777LpUuXSEpK4tChQ4waNSrD75PWrf22+adHGW39b9u2bbr5oGz8/f0d/n3rXVI2LVu25MMPPyQiIoK8efOyc+dOWrVq5VA4HD9+PF9++SWvvPIK1atXx9vbG4vFwqBBgzL92KWIiIjkDipKiYiISK4UGhpKwYIFb1t82b59O9u3b2fs2LHkyZOHkiVL8scff9z1/UqWLMnhw4dJTk62z1d0K9vdQrfegXPhwoV77veJEyc4ffo0U6ZMcZjv6IcffnBo5+fnZ2//T1q2bMnkyZP5+uuvSUhIwNXVlRYtWtxzn7KTr68vXl5epKamUqtWrSy9V8uWLZk7dy7btm2jUKFCxMTE0KpVK4c2tnmj0n7zX2Jiou6SEhEReQhoTikRERHJdRISEti2bZt9kutb/+vatSuxsbHs3LkTgKZNm3Ls2DG2b9+e7r1sd9M0bdqU69ev89lnn92xTfHixXF2duann35yeH3FihX33HfbHUhp7+IxDIOlS5c6tPP19eWpp55i7dq1hIeH37Y/advWqVOHDRs22O8Q8/X1vec+ZZanpyc3btxwWObs7EyzZs3YunXrbQtqtz66dzdly5alfPnybNq0iU2bNlG4cGGeeuqpdD/vVsuWLXOYU0xEREQeTLpTSkRERHKdnTt3EhsbS8OGDW/7evXq1fH19WXDhg20bNmSHj16sHXrVoKDg2nfvj2VKlUiKiqKnTt3MnbsWCpUqEBgYCDr169n0qRJHDlyhBo1ahAfH09YWBhdunShcePGeHt707x5c5YvX47FYsHPz49du3Zx7dq1e+57mTJlKFmyJFOmTOHy5cvkzZuXrVu3pivuAIwYMYIuXbrw/PPP06lTJ0qUKMGFCxfYtWsXX331lUPbwMBABgwYAEBwcHAG0sy8SpUqERYWxpIlSyhSpAglSpSgWrVqDBkyhP3799OxY0c6dOhAuXLliIqK4ujRo4SFhfHjjz/e889o2bIls2fPxt3dnRdffDHdY4X169fnq6++Im/evJQrV45Dhw6xd+9eChQokM2fVkRERHKailIiIiKS62zYsAF3d3eee+65277u5ORE/fr1CQ0N5fr16/j4+PDZZ58xZ84ctm/fzrp16yhYsCDPPvssjzzyCHDzjpuPP/6Y+fPn8/XXX7Nt2zYKFCjAE0884TAH0ogRI0hJSWHlypW4ubnRvHlzhg4dSuvWre+p766urnz44YdMmDCBjz76CHd3d5o0aULXrl1p166dQ9sKFSqwatUqZs2axYoVK0hMTKRYsWK3fTSvQYMG5M+fn9TUVBo1anSvUWbJsGHDGDVqFDNnziQhIYHnn3+eatWqUahQIVavXs28efPYvn07K1asoECBApQrV4633norQz+jZcuWzJw5k/j4+Nt+7pCQEJycnAgNDSUxMZEnnniCJUuW0LNnz+z6mCIiImISi6EZIkVERERyvZSUFOrUqUODBg2YOHGi2d0RERERyTLNKSUiIiLyANixYwcREREOk6eLiIiIPMj0+J6IiIhILnb48GGOHz/OBx98QMWKFXn66afN7pKIiIhItlBRSkRERCQXW7FiBRs2bKBChQpMnjzZ7O6IiIiIZBvNKSUiIiIiIiIiIjlOc0qJiIiIiIiIiEiOU1FKRERERERERERynIpSIiIiIiIiIiKS41SUEhERERERERGRHKeilIiIiIiIiIiI5DgVpUREREREREREJMepKCUiIiIiIiIiIjlORSkREREREREREclxKkqJiIiIiIiIiEiO+3+8V53HEwfVHwAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Key Observations:\n",
" 1. RLVR increases frequency in high-accuracy bins (0.7-1.0)\n",
" 2. Base model has more uniform distribution\n",
" 3. Both have similar number of zero-accuracy problems (unsolvable)\n",
" - Base: 0.390, RLVR: 0.410\n"
]
}
],
"source": [
"# Create accuracy distribution histogram (Figure 5 from paper)\n",
"bins = [0.0, 0.0001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]\n",
"bin_labels = ['0.0', '(0,0.1]', '(0.1,0.2]', '(0.2,0.3]', '(0.3,0.4]', \n",
" '(0.4,0.5]', '(0.5,0.6]', '(0.6,0.7]', '(0.7,0.8]', '(0.8,0.9]', '(0.9,1.0]']\n",
"\n",
"base_hist, _ = np.histogram(base_accuracies, bins=bins)\n",
"rlvr_hist, _ = np.histogram(rlvr_accuracies, bins=bins)\n",
"\n",
"# Normalize to frequencies\n",
"base_freq = base_hist / len(base_accuracies)\n",
"rlvr_freq = rlvr_hist / len(rlvr_accuracies)\n",
"\n",
"# Plot\n",
"fig, ax = plt.subplots(figsize=(12, 6))\n",
"\n",
"x = np.arange(len(bin_labels))\n",
"width = 0.35\n",
"\n",
"bars1 = ax.bar(x - width/2, base_freq, width, label='Base Model', alpha=0.8)\n",
"bars2 = ax.bar(x + width/2, rlvr_freq, width, label='RLVR Model', alpha=0.8)\n",
"\n",
"ax.set_xlabel('Accuracy Interval', fontsize=12)\n",
"ax.set_ylabel('Frequency', fontsize=12)\n",
"ax.set_title('Accuracy Distribution: Base vs RLVR Model\\n(RLVR shifts distribution to higher accuracy, not new problems)', fontsize=13)\n",
"ax.set_xticks(x)\n",
"ax.set_xticklabels(bin_labels, rotation=45, ha='right')\n",
"ax.legend(fontsize=11)\n",
"ax.grid(True, alpha=0.3, axis='y')\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"\n",
"print(\"\\nKey Observations:\")\n",
"print(f\" 1. RLVR increases frequency in high-accuracy bins (0.7-1.0)\")\n",
"print(f\" 2. Base model has more uniform distribution\")\n",
"print(f\" 3. Both have similar number of zero-accuracy problems (unsolvable)\")\n",
"print(f\" - Base: {base_freq[0]:.3f}, RLVR: {rlvr_freq[0]:.3f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 8. Solvable Problem Coverage Analysis\n",
"\n",
"Categorizing problems into:\n",
"1. Solved by both models\n",
"2. Solved by RLVR only\n",
"3. Solved by Base only\n",
"4. Solved by neither"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:11.905830Z",
"iopub.status.busy": "2026-02-10T22:26:11.905586Z",
"iopub.status.idle": "2026-02-10T22:26:12.000061Z",
"shell.execute_reply": "2026-02-10T22:26:11.999135Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Solvable Problem Coverage Analysis:\n",
" Total problems: 100\n",
" Solved by both: 51 (51.0%)\n",
" Solved by RLVR only: 0 (0.0%)\n",
" Solved by Base only: 7 (7.0%)\n",
" Solved by neither: 42 (42.0%)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAJOCAYAAADcVIF9AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAk1FJREFUeJzs3Xd0VHXeBvBnanovBBICoUyAdEA6SC8CUhRBARsoqLirqGBd13UtqOgrwYoFlUVAmiBFivTeew2BJISQXifT7/sHZmScJKRMcqc8n3M4mjt37v3OZMqTX7sSQRAEEBEREZFDkopdABERERHVHcMcERERkQNjmCMiIiJyYAxzRERERA6MYY6IiIjIgTHMERERETkwhjkiIiIiB8YwR0REROTAGOaIiIiIHBjDHFEDmjx5Mvr371+jfTMyMhAdHY3k5OQGroocwcsvv4zo6Gixy2hUtXm/VMYVnzMiAJCLXQBRYzlw4AAefvhhi22enp6IiorCqFGjMGnSJMhkMpGqcxypqan44YcfsH//fmRlZcFkMqFp06bo0qULxo0bh/j4eLFLpDp4+eWXsWrVKgDA8uXLERcXZ7XPwoUL8d577wEA3nvvPYwdO7ZRa7SF5ORkzJ8/v0b7jhkzBu+//34DV0RUfwxz5HJGjBiBPn36QBAEZGdnY9WqVXj33Xdx+fJlvP3222KXZ9d++eUXvPXWW1AqlRgxYgTatWsHuVyO1NRUbNq0CcuWLcO6devQpk0bsUulOnJzc8PKlSsrDXMrVqyAm5sbtFqtCJXZxqBBgxAZGWmxrSKgvvLKKxbb/74fkb1imCOX06FDB4waNcr880MPPYRhw4bhl19+wT//+U8EBwdXer/S0lJ4e3s3Vpl2Z+/evfjXv/6FNm3a4JtvvkGTJk0sbn/hhRewaNEikaqrOb1eD5PJBDc3N7FLsUuDBg3CunXr8Morr0CpVJq3nzx5EhcvXsSIESPw22+/iVhh/bRr1w7t2rWz2Pbpp58CgMXnApEj4Zg5cnne3t5ISkqCIAhIT08HAPTv3x+TJ0/G2bNnMWXKFHTq1An33nuv+T6HDh3CY489hk6dOiE+Ph5jxozBL7/8UuU50tPT8dRTT6FTp07o2LEjnnnmGfO5amL9+vV48MEHkZSUhISEBIwbNw4bN2602i86Ohovv/wy9u3bh/HjxyMhIQF9+vTB119/DQAoKirCq6++iu7duyMhIQHTpk3DzZs3a1TDRx99BEEQ8Mknn1gFOQCQy+V49NFHLVrl1Go15s6di4EDByI2NhY9e/bErFmzcP36dfM+KSkpiI6ONreO/N3MmTMRGxuL/Px887bs7Gy8+eab6Nu3L2JjY9GrVy+88cYbyMvLs7hvcnIyoqOjcenSJbz33nvo06cP4uPjcfz4cfPzOn36dPNxunbtiqeffhrnz5+vtJbFixdjyJAhiI2NxeDBg7Fo0SKsXLkS0dHROHDggMW+JSUl+PDDDzFo0CDExsaiW7dumDlzZq1+7wCQn5+PWbNmoWvXrkhMTMQjjzyCM2fOmG/Py8tDbGwsXnjhhUrv/9Zbb6Fdu3bIyMio0fnGjh2LoqIibNmyxWL7ypUrERgYiH79+lV6v5r8risUFRXh9ddfNz+myZMn4/Tp01XWdOrUKTzzzDPo2rUrYmNjMWTIEHzxxRcwGAw1eky1tXDhQkRHR2PPnj1Wt+l0OnTt2tViyEbF58WZM2fw8MMPIykpCV26dMHs2bOtXpMVx/jyyy8xfPhwxMXFoXPnzpg+fTrOnj3bII+HnB9b5sjlCYKAa9euAQACAgLM2zMzM/HII49g6NChGDx4MNRqNQDgjz/+wIwZMxAcHIzHHnsM3t7eWLduHV5//XVkZGTg+eeftzi+Wq3G5MmTER8fj5kzZ+LatWtYvHgxTpw4gVWrViEkJKTa+j755BN8+eWX6N27N/75z39CKpVi8+bN+Oc//4l//etfmDhxosX+Z8+exbZt2/DAAw9g1KhR2LBhA+bOnQs3NzesXr0a4eHhmDFjBtLS0vDTTz9h9uzZWLhwYbU1pKen48yZM+jcuXONu1D1ej2mTJmCo0ePYsiQIXjsscdw7do1/Pzzz9izZw9WrFiBsLAwtG7dGnFxcfjtt98wa9Ysi3GLpaWl2Lp1K3r37o3AwEDz72X8+PHQ6/W4//77ERkZaT7ugQMHsGLFCvj4+FjU8uKLL8Ld3R2PP/44AJif80WLFsHf3x8PPPAAQkJCkJaWhmXLluHBBx/EqlWr0LJlS/Mxvv76a8ydOxcxMTF44YUXUF5ejm+//dbiNVOhpKQEEyZMQGZmJu677z60bdsWOTk5WLx4McaNG4cVK1YgPDy8Rs/j1KlT4efnhxkzZiA3NxeLFi3CpEmTsHTpUqhUKgQFBaF///7YvHkziouL4evra76vVqvFb7/9hh49eiAiIqJG52vfvj3at2+PFStW4J577jEfZ926dRg7dizkcuuvjZr+rm/f99SpUxg1ahQSEhJw/vx5PPbYY/D397c69vbt2zFjxgy0aNECjz/+OPz8/HD8+HHMmzcP586dw7x582r0uGpj1KhRmDt3LlasWIGePXta3LZ582YUFhZi3LhxFtuzsrLw6KOPYvDgwRgyZAjOnj2LFStW4PTp01i+fDk8PDwsHv+xY8cwatQoTJw4EaWlpebX3aJFiyrt4iaqlkDkIvbv3y+oVCohOTlZyMvLE/Ly8oRz584Jr732mqBSqYQHHnjAvG+/fv0ElUolLFu2zOIYBoNB6Nu3r9CpUychKyvLvF2r1Qrjx48X2rVrJ6Smppq3T5o0SVCpVMJ///tfi+Ns2rRJUKlUwhtvvGHelp6eLqhUKmHevHnmbadPnxZUKpUwd+5cq8fz1FNPCUlJSUJJSYl5m0qlEqKjo4Xjx49b1NazZ08hOjpaePvtty2O8e677woqlUpISUmp9rnbunWroFKprO5fnaVLlwoqlUqYM2eOxfZt27YJKpVKePHFF83bFi1aJKhUKmH79u0W+y5btkxQqVTC77//bt42ffp0oVu3bsKNGzcs9j158qTQvn17i+dv3rx5gkqlEiZNmiTo9XqrGsvKyqy2Xb58WYiJiRHefPNN87aCggIhLi5OGDFihKDRaMzbs7OzhY4dOwoqlUrYv3+/efvbb78txMXFCefOnbM4dkZGhpCUlCTMnj3b6rx/N3v2bEGlUgnPPPOMYDKZzNtPnTolREdHC48//rh5265duwSVSiUsWrTI4hi//vqroFKphHXr1tX4fHl5ecKPP/4otGvXzvwcr1mzRlCpVMKFCxeEDRs2CCqVSlixYoX5vrX5XS9ZskRQqVTCp59+arHv999/L6hUKqFfv37mbRqNRujRo4fw0EMPWf3+Kva//XmveAy11a9fP4vzCoIgzJw5U4iNjRUKCgostj/66KPCXXfdZfE6qPi8+P777yut8auvvrLatnPnTot9S0pKhLvvvluYNGlSresnYjcruZzk5GR0794d3bt3x6hRo7BixQr0798fn332mcV+/v7+VrP1zpw5Y25tub2rUalUYurUqTCZTNi6davVOZ988kmLnwcNGoSoqKhK973d2rVrIZFIMHr0aOTn51v869+/P8rKysxdhhUSExORkJBgUVtcXBwEQcDkyZMt9u3cuTMAmFsmq1JaWgoA8PLyqna/223evBlSqRTTpk2z2N63b1+0b98eW7duhclkAgAMHz4cCoUCq1evttj3119/hb+/P/r27QvgVovX9u3b0b9/fyiVSovnIzw8HJGRkZV2jT3yyCOVtih5enoCuNU6W1paivz8fAQEBCAqKgonT54077d3715otVo8+OCDFmPtQkJCMHLkSItjCoKAtWvX4q677kJoaKhFjR4eHkhMTMTu3btr/DxOnToVEonE/HNFF+a+fftQVlYGAOjZsyciIiKwYsUKi/suX74c/v7+GDhwYI3PBwAjR46EXC43z26tmBChUqkq3b82v+stW7ZAJpOZW0krPPTQQ1ZjUvfs2YPc3FyMHTsWxcXFFs9lnz59zPs0hAceeAA6nQ5r1641b8vIyMC+ffswcuRIqzGX3t7eeOihhyp9TJs3bzZvW7NmDVq1aoWYmBiLx6PT6dCjRw8cOXIEGo2mQR4TOS92s5LLGT9+PIYOHQqJRAIPDw+0bNmy0u6d5s2bWy1VUjHuqLKuxrZt2wKA1ZgoX1/fSrtSW7dujS1btkCtVptDxd+lpKRAEAQMGzasyseTm5trVfff+fn5AYBVV1tFl1xhYWGVxwdg/pKtCA81kZGRgdDQUPO5b9emTRucO3cOBQUFCAoKgr+/P/r164etW7eaJ5pkZGTg8OHDePDBB80D8VNTU2EymbB8+XIsX7680vNW9vhv7y693dmzZ/Hpp5/i4MGD5m70Crc/VxW/96ioKKtj/H1bfn4+CgsLsXv3bnTv3r3S80qlNf87unXr1pVu2717NzIzM9G2bVtIJBKMGzcOn3zyCc6dO4f27dsjPT0dBw8exMMPP2wxkaEm/P390b9/f6xatQr33nsv9u/fjzfeeKPK/Wvzu05PT0dISIhVcFMqlWjevDmKi4vN21JSUgAAr776apXn/vvr31a6du2Kli1bYvny5eY/glauXAlBEKy6WIFbr7u/P88Vj+n2z4SUlBRoNJoqXxsAUFBQgKZNm9rokZArYJgjl9OiRQv06NHjjvtVjHERkyAIkEgkWLBgQZVr4P09WFa3Vl5VtwmCUG0dFUH13Llz1e5XH6NGjcKmTZuwYcMGjBs3Dr/++isEQcCYMWOs6rz33nsttt+uslmq7u7uVtsyMzMxceJEeHt746mnnkKrVq3g4eEBiUSCd9991yrc1VRFjT169MATTzxRp2PUxX333Yfk5GQsX74cb7zxBpYvX15l8Kjp8Z544gm88cYbUCgUGDFihI0rvrOK53LWrFlo3759pfuEhoY22PkfeOABfPDBBzh9+jQ6dOiAVatWITY21mo2bG0IggCVSmW1DMrtKsaHEtUUwxxRLVS01ly+fNnqtoptf28ZKi4uRk5OjlXrXEpKCoKCgqpslQNutSjt2rULzZo1q7SFprE0b94cHTp0wNGjR5GSklKjWpo3b45du3ZZDcoHbj12b29vi8kDd999NwICArB69WqMGzfO3B11+yLEkZGRkEgk0Ov1NQrk1dm8eTPUajW++OILdOvWzeK2wsJCi1aWiskKqampVi0qqampFj8HBgbC19cXpaWl9a4RuPVcJSYmWm2TyWRo1qyZeVtISAj69euHtWvX4oUXXsCqVauQkJBgDuK11atXL4SFhWHPnj0YMWKE1e/wdrX5XTdv3hx79uyxWupHp9MhPT3donWvokXVw8PDJs9lbY0ZMwaffPIJli9fjgEDBiAzM9NqyESF9PR06HQ6i9dNxWNq1aqVeVuLFi1QUFCAbt261aqFlqg6fCUR1UJMTAyaNWuGlStXIicnx7xdr9fj22+/hUQiwYABA6zuV7E0SIXNmzcjNTX1jmOZKpZD+fjjj2E0Gq1ub6gupsq8+OKLAG4tFXL7Y69gNBqxcOFCc6gdOHAgTCaT1WPfsWMHzp49i/79+1t8mVW0/hw5cgRr167F1atXrVrfAgICcPfdd2Pz5s1WYwWBW60ety9hUp2KVsq/t0ouW7bM6vH16NEDSqUSP//8s8WCuTk5ORZjqoBbXagjR47EyZMnK10+BkCly1VU5ZtvvrGo8cyZM9i7dy+6d+9uNYZx3LhxKCoqwptvvombN2/WuVUOuPU4/vWvf2HGjBl3bGGsze96wIABMBqN+O677yz2Xbx4sXlsZoVevXohKCgICxYsqHQogEajsbqPLQUGBmLgwIH47bff8L///Q8eHh5WYyQrlJaWYvHixRbbKh7T7e/z0aNHIycnB99//32lx2nM9zQ5D7bMEdWCTCbDG2+8gRkzZuD+++/HAw88AC8vL2zYsAHHjx/H9OnTrcZnBQQEYPPmzcjOzkaXLl3MS5MEBwdjxowZ1Z4vPj4ezz77LJKTkzF69GgMGTIETZo0QXZ2Ns6cOYOdO3dWuz6XLfXs2RP/+c9/8NZbb2Ho0KEYPnw42rdvD7lcjmvXrmHTpk1IS0szLyg7ZswYrFq1CgsWLMD169fRuXNnpKWlmR/7zJkzrc4xZswY/PTTT/j3v/8NqVRqsbZfhX//+9946KGHMGnSJIwaNQodOnSAyWRCeno6tm7ditGjR+PZZ5+94+Pp06cPPDw8MGvWLEyaNAm+vr44evQodu7cicjISIvwHBAQgBkzZuDjjz/Ggw8+iHvvvRfl5eVYtmwZWrZsidOnT1tMUnj++edx9OhRPPfccxg2bBgSEhKgUCiQmZmJnTt3IiYmpsaXicrMzMSUKVPQv39/5OTkYNGiRXB3d8dLL71ktW/v3r0RHh6ONWvWwNPT07y0SF0NGDCg0j9O/q42v+uxY8di2bJl+Oyzz5CRkYHExEScO3cOGzdutHrePT09MWfOHDzzzDMYOnQo7rvvPrRo0QLFxcW4cuUKNm/ejPnz56Nr1671epzVGT9+PDZs2IBt27ZhzJgxVS4cHhkZic8++wyXLl1CTEwMzpw5gxUrVqBVq1YWE48efvhh7N27Fx988AH279+Pbt26wdvbG5mZmdi/fz+USiV++umnBns85JwY5ohqqX///li4cCG++OILfPvtt9Dr9WjdujX++9//VtoS4unpiR9++AHvvvsu5s6dC0EQ0Lt3b7z88ss1Gu8zY8YMxMbG4qeffsKPP/4ItVqNoKAgtG3bFq+99lpDPMQqjRs3Dp06dTJfm/XXX3+FyWRCs2bN0K1bN/zf//2feQyfQqHAt99+iy+++ALr16/H5s2b4ePjg6FDh+K5556rdIB3TEwMVCoVLl68iB49epjXJrtd06ZNsWLFCixYsAB//PEH1qxZAzc3NzRt2hT9+vWrdrLI7SIjI7FgwQJ8/PHH+PLLLyGTydCxY0f89NNPePvtt60Wu502bRq8vb3x448/4qOPPkKzZs0wZcoUCIKA06dPW4zL8/Hxwc8//4zvvvsOGzduxNatWyGTyRAWFoZOnTrVqsXsm2++wXvvvYfk5GRoNBokJCRg1qxZlY7bkkqluO+++zBv3jwMGzasVrOP66M2v2ulUonvvvsOH3zwAbZu3YpNmzYhLi7OvO3vz3vv3r2xfPlyfP3111izZg0KCgrg6+uLyMhIPProo4iOjm7Qx9atWze0aNEC165dw/3331/lfmFhYfi///s/zJkzB+vWrYNCocDIkSMxe/Zsi6EUCoUCX331FRYvXoxff/0VycnJAG6N/YuLi6tyLChRdSTCnUY+ExFRld5++20sWrQIu3fvvuMC0I1hwYIF+Oijj7BkyRIkJSWJXY5TGD58OIxGY5Xd5v3790d4eDhb1Eg0HDNHRFQDlV1cPjs7G6tXr4ZKpbKLIGcwGMxXhmCQs419+/bh8uXLeOCBB8QuhahK7GYlIqqBAwcOmK+1GhYWhuvXr2PZsmVQq9VVXhe1saSnp+P48ePYunUr0tPT8fHHH4tajzPYt28f0tPT8dVXXyEwMJBhjuwawxwRUQ20aNECzZs3x7Jly1BYWAg3NzfExsZi2rRpoiybcbtDhw7hlVdeQUBAAJ555hkMHz5c1Hqcweeff44jR46gdevWmDNnTpUTH4jsAcfMERERETkwjpkjIiIicmAMc0REREQOjGGO6uTixYvo0KED9uzZU+djREdH4+WXX7ZhVdTQMjIyEB0dbV4bi6g6Yr7H+/fvb7FYb0Op7XsiOTkZ0dHRyMjIaODKGk5OTg4SEhKwatUqsUuhPzHMUZ28//776NixI3r27GmxPT09HW+88QaGDh2KhIQE3HXXXRg2bBhmz56N/fv3i1Rt43j55ZcRHR1t/te+fXt0794d06dPx+HDh632r/gS+M9//mN125w5cxAdHY0tW7ZUe85Jkyahffv2uHHjBgBg8uTJFjXExMSgV69eeO6553Dx4kXbPFAXt2XLFoZZcnrFxcVITk7GgQMHrG4LCQnBhAkT8Mknn6C8vFyE6ujvOJuVau3YsWPYs2cPPvvsM4vtp06dwuTJkyGXyzF69Gi0adMGGo0G165dw549e+Dl5WV1QXNn9O9//xuenp7Q6/W4fPkyli5dil27dmHhwoW46667anSM+++/H9999x1WrFhR5fVb09LScPjwYfTs2dNqhf3//ve/AG6tjXb69GmsXLkSO3bsMF9eiOpuy5YtWLVqVY0uGUbkqIqLizF//nzMmDGj0sulTZ48GT/88ANWrlyJiRMnilAh3Y5hjmpt8eLF5gue3+6zzz5DeXk5fv3110ovNVTZxdmd0ZAhQxAYGGj++a677sLTTz+Nb7/9tsZhrnXr1khKSsLOnTuRm5uL4OBgq31WrlwJQRCsLjEkl8sxatQo888PPPAA2rRpg3feeQf/+9//8MYbb9TxkRER3RIREYHOnTtjyZIlDHN2gN2sVCsGgwFbtmxBjx49oFAoLG67evUq/P39Kw1yAKpcIf/YsWOYNGkSEhMT0bVrV7z22msoKyuz2u/8+fN45pln0LVrV8TFxeGee+7BggULLC7MvWrVKkRHR1t06er1eiQlJSE6Ohpnz541by8tLUVMTAzefPNN87ajR49i6tSp6NmzJ+Li4tC7d2888cQTOH78eI2en8p0794dwK3npzbuv/9+GAwG/Prrr1a3mUwmrF69Gv7+/jW6EHpdajh8+DAmTJiA+Ph49OjRA//5z3+gVqsr3VetVmPu3LkYOHAgYmNj0bNnT8yaNcvqOpsAIAgCFi9ejLFjxyIhIQFJSUmYPHlypd3wq1evxv3334/OnTsjMTERAwYMwAsvvID8/Pw71l8xXsuWr6/Jkyebxwnd3p29cuXKO9Zz6tQp8/FjY2MxZMgQfPHFFzAYDOZ9PvjgA0RHR2P16tVWtcXHx2Py5MkwmUwA/hp7denSJfz3v/9Fz549ER8fj3HjxmHfvn1W51+/fj2mT5+Ovn37IjY2Fl27dsXTTz+N8+fPW+1bMd4sJSUFTz75JJKSktCpUyf84x//qPSPskuXLmHKlClITExEly5d8MILLyAvL++Oz0kFrVaL5ORkDBkyBAkJCejcuTNGjhyJOXPmWO37yy+/YMyYMYiPj0enTp3w+OOPVzqM4e/GjRuHHj16WDzfFXbt2oXo6GgsXLgQwK331xdffIGJEyeiZ8+eiI2NRd++ffHmm2+ioKCgynP89ttvGDlyJOLi4tC3b18kJydXer7KlJSUmBeljo2NRbdu3TBz5kykp6fX6P43btzAK6+8gn79+iE2Nhbdu3fHhAkTrMa11eT9d+DAAfPnyvz5882v8/79+1scq0+fPrh48SJSUlJqVCM1HLbMUa2cOXMGarUa8fHxVrdFRkYiNTUVmzZtwuDBg2t0vHPnzmH69OkYO3YsRowYgYMHD2L58uWQSqV4++23zfvd3oU7ceJEBAcHY9u2bfjoo49w/vx5zJ07FwDM3bj79+83//+JEyegVqshlUqxf/9+dOjQAcCtsGIwGMz7XblyBY8//jiCg4Px8MMPIygoCHl5eThy5AjOnz+PxMTEOj1naWlpAAB/f/9a3W/YsGF45513sHLlSkyZMsXitr179+LGjRt4+OGHoVQqbV7DiRMn8Nhjj8HLywtPPPEEfHx8sH79esyePdtqX71ejylTpuDo0aMYMmQIHnvsMVy7dg0///wz9uzZgxUrViAsLMy8/0svvYR169ZhyJAhGDt2LHQ6HdauXYvHH38cycnJ5i+R1atXY/bs2ejcuTP+8Y9/wN3dHTdu3MCOHTuQl5dn0fpZFVu/vqZPnw6TyYTDhw/jgw8+MN+/Y8eO1daxfft2zJgxAy1atMDjjz8OPz8/HD9+HPPmzcO5c+cwb948AMDzzz+Pw4cP46233kJiYiJatmyJ8vJyPP/88/Dw8MBHH30EqdTyb/DZs2dDKpXiiSeeQGlpKZYuXYqpU6diwYIFFosZL1q0CP7+/njggQcQEhKCtLQ0LFu2DA8++CBWrVqFli1bWhz35s2bePjhhzFw4EDMmjUL58+fx9KlS1FaWorvvvvOvF96ejomTpwInU6HiRMnomnTpti2bRumTp16x99PhbfeegsrVqzA6NGjkZSUBKPRiKtXr1qN1/rwww/xzTffID4+HjNnzkRpaSmWLVuGRx55BJ9//rlVb8HtRo8ejf/85z/YtWsX+vXrZ3Hb6tWrIZfLMXLkSAC3XtPffvstBg8ejAEDBsDDwwOnTp3CihUrcPToUaxYscLqfffHH3+Yn4vg4GD88ccfmD9/PjIzM/Hee+9V+/hLSkowYcIEZGZm4r777kPbtm2Rk5ODxYsXY9y4cVixYgXCw8OrvL/BYMBjjz2Gmzdv4qGHHkLLli1RWlqKCxcu4PDhwxgzZox535q8/1q3bo1XXnkF7733HgYNGoRBgwYBALy8vCzOW/GZePDgQbRu3brax0gNTCCqheXLlwsqlUrYsmWL1W1Hjx4VYmJiBJVKJQwePFh4+eWXhf/973/C5cuXKz2WSqUSoqOjhePHj1tsf+KJJ4QOHToIpaWl5m3jx48X2rdvL5w7d868zWQyCf/4xz8ElUol7N2717x90KBBwvjx480/JycnC127dhWmTJkiTJ061bz9vffeE6Kjo4W8vDxBEAThhx9+EFQqlXDixIlaPiu3zJ49W1CpVMKVK1eEvLw8ISsrS9izZ48wcuRIQaVSCYsWLbLYPz09XVCpVMJbb71V5TFfeeWVSmt6/vnnBZVKZfF8CIIgTJo0SUhMTBTy8vKEvLw8ITMzU9i8ebPQr18/QaVSCdu3b6/RYxk/frwQExMjXLlyxbxNq9UK9913n6BSqYR58+aZty9dulRQqVTCnDlzLI6xbds2QaVSCS+++KJ526ZNmwSVSiUsWbLEYl+9Xi+MGTNG6Nevn2AymQRBEIRnnnlGSEpKEvR6fY1q/ruGen1V/J5rSqPRCD169BAeeughq8fy/fffCyqVSti/f795W1pamtCpUydhzJgxglarNb8Gtm7danHfefPmCSqVSrj//vsFrVZr3n7jxg0hMTFRGDp0qMX+ZWVlVrVdvnxZiImJEd58802L7RWvl3Xr1lls//e//y2oVCohJSXFvG3mzJmCSqUS9u3bZ95mMpmEp59+WlCpVMLs2bPv8AwJwl133WXx3qxMSkqKEB0dLUyYMMHi8WZlZQmdOnUS+vXrJxgMBovHMGnSJPPPBQUFQkxMjPCPf/zD4rglJSVCQkKCMG3aNIv6y8vLrWpYtmyZ1fNS8T5u166dcPr06Uqfg2PHjpm3V/ze0tPTzdvefvttIS4uzur9nJGRISQlJd3xOTx37pygUqmEr7/+utr9avP+q3hct7/X/+7GjRuCSqUS/vOf/1R7Xmp47GalWqno3vLz87O6LSkpCStWrMCYMWNQUlKClStX4q233sI999yDiRMnVtpdkJiYiISEBItt3bp1g8FgMHfR5eXl4dixY+jfv79FF65EIsFTTz0FANi8ebPF/U+fPm3uSjtw4AC6du2KHj164PDhw9Dr9ebtKpXK3MLj4+MDANi6dWulF1WvqaFDh6J79+7o06cPHnvsMWRmZmLWrFl1GldSMR5uxYoV5m3FxcXYsmULYmNjK+3SVqvV6N69O7p3746+ffvimWeegU6nw5w5c6ptuahw+/MdFRVl3q5UKvHoo49a7b9582ZIpVJMmzbNYnvfvn3Rvn17bN261dw1uGbNGnh5eWHgwIHIz883/ysuLkb//v1x/fp1c1ewj48PNBoNtm/fDqGOF6ppiNdXbe3Zswe5ubkYO3YsiouLLR53nz59zPtUaN68Of7zn//gzJkzeOSRR7BixQpMnjzZqourwqOPPmrRShQWFoaRI0fiypUrFt1fnp6eAG51s5WWliI/Px8BAQGIiorCyZMnrY4bGhqKe+65x2JbRSv2tWvXANzqjvzjjz/M3YIVJBJJrVrmvL29cfny5WpnXG/duhWCIGDq1KkWj7dJkyYYO3Ysrl+/bjGM4u/8/f3Rv39/bNu2DcXFxebtv//+O8rLyy1aryQSCdzd3QEARqPR/HureIyVPV89evRATEyMxTEqnoPqXj+CIGDt2rW46667EBoaavH68PDwQGJiInbv3l3l/YG/PrsOHDhQbfd2bd5/NVHR0l+bLnVqGOxmpVqRSCTV3h4dHY33338fAHD9+nUcOnQIv/zyCw4fPoynn37aqnuiefPmVseo+IAoLCwEAPN6TG3atLHat1WrVpBKpRZBsVu3bli6dCkOHz6Mrl274vjx43j11VeRkJCAOXPm4OTJk2jdujXOnz9vsQ7V8OHDsWbNGnz55ZdYuHAhEhIS0KtXLwwfPrzaLo6/S05Ohre3N8rKyrBlyxasWbOmzuGwY8eOaNWqFdavX49XX30Vbm5uWLt2LbRaLe67775K7+Pm5oYvv/wSwK3n8Ndff8WePXvMgepOKp7Lyma9VvY7yMjIQGhoaKUBv02bNjh37hwKCgoQFBSElJQUlJWVVXst07y8PERFRWHatGk4dOgQnnnmGfj7+6NLly7o06cPhg0bVuPrZDbE66u2KgLVq6++WuU+ubm5Fj/fc889+OOPP7B27VqoVCrMmjWryvtW1r1VsS09Pd38/2fPnsWnn36KgwcPWo19jIiIsDpGTZ67vLw8qNXqGr9WqvLqq69i1qxZGDlyJJo3b46uXbuiX79+6N+/v7lbueL31LZtW6v7V2xLT09HXFxclecZPXo0fv/9d2zYsAHjx48HcKuL1c/Pz6rrdf369fj+++9x7tw58x+AFYqKiqyOXdnvoeI5qO71k5+fj8LCQuzevds8tvXv/t61/nfh4eGYPn06vv76a/Tq1Qvt27dHt27dMHToUIshMbV5/9VExR9Zd/peoIbHMEe1UtGKVfFhXp3w8HCEh4dj1KhReOihh3D06FGcPHkSnTt3Nu8jk8mqvH9dW2O6du0KiUSC/fv3Q6FQQKfToVu3bmjZsiX8/f2xb98+5OXlwWQyWbQmKJVKfP/99zh58iR27dqFw4cPY968eZg/fz7mzp1rHjdyJ507dzY/T4MGDYKbmxs+/fRTxMTE1Khl7O/uu+8+fPjhh9i0aRNGjhyJlStXwt3d3Ty+5+9kMpnFh/XQoUMxbdo0/Otf/0KHDh2qnKDSGARBQGBgoHkMWmUqvphbtmyJ9evXY9++fdi3bx8OHjyI119/HfPmzcP//vc/REZG3vF8DfH6qq2K88yaNQvt27evdJ/Q0FCLn4uLi3H06FEAQHZ2NvLy8iyWn6mtzMxMTJw4Ed7e3njqqafQqlUreHh4QCKR4N133610YktjPncDBw7EH3/8gR07duDQoUPYu3cvli9fjs6dO+P777+v0bjQmujTpw8CAwOxevVqjB8/HpmZmTh06BAmTJhgcY5Nmzbh+eefR3x8PF599VU0bdoUbm5uMBqNmDp1qk0ff8WxevTogSeeeKLOx3n++edx//33Y/v27Th8+DCWL1+Ob7/9FlOnTsVLL71kPldN3381URFqazJ+lRoWwxzVSsUbvaKbpSYkEgkSEhJw9OhRZGdn1/qcFa0Gly9ftrrtypUrMJlMFq0IQUFBaNu2Lfbv3w+5XI6wsDDzX5pdu3bF/v37UVBQAJlMhi5dulgdMz4+3vzX7I0bNzB69Gj83//9X43D3N+98MIL2LBhA95//3306tWr2i/JyowePRqffPIJVq5ciejoaJw+fRojR440d63ciVQqxWuvvYbhw4fjgw8+sBi8XpmK5/vKlStWt1X2O2jevDl27dqF4uJi+Pr6WtyWkpICb29vBAQEAABatGiBq1evIiEhwWowdWWUSiXuvvtucwjesWMHnnzySXz//fcWs5Dro7avr9q2QlRMLPDw8Ki2ReR2r732GrKysvDGG2/ggw8+wEsvvYQffvih0tdOSkqKVUCvaA2sqHvz5s1Qq9X44osvrNZ6LCwsrHNYCgwMhKenZ41fK9Xx9/fHqFGjMGrUKAiCgI8++gjffPMNtm7dimHDhpkfy6VLl6yCfMW5KmtNvJ1cLseIESPw448/Ij09Hb/99hsEQbDoYgWAX3/9FW5ubvjxxx/h4eFh3l7drM3KbqtJXYGBgfD19UVpaWmNXx9Vad68OSZPnozJkydDq9ViypQp+Oabb/D4448jKCioVu+/mrzOK74HahMAqWFwzBzVSocOHeDt7Y0TJ05Y3bZnz55Kp+FrNBrzmKC6zHgKCgpCUlIStm3bZjGmRhAEfP311wBgFbS6du2K8+fPY/PmzRZfXhXdrjt37kRMTIxFd11ly12EhYUhMDCw0m6VmvLz88PkyZNx5coV/Pbbb7W+f3BwMPr27Yv9+/dj/vz5AGC1ttydtGzZEiNGjMCePXvuuIxDcHAwEhMT8ccffyA1NdW8XafTmZduuN3AgQNhMpnMv4sKO3bswNmzZy26ykaPHg2TyYSPP/640nPf3t1Y2e+jYiZyfX4ff1fb11fF2LOatE4DQK9evRAUFIQFCxZUeh+NRoPS0lLzzz///DM2bdqEp556CpMmTcLs2bNx6NAhfPHFF5Uef+HChdDpdOafs7KysHbtWkRFRZnfbxUh8O8tSsuWLavX+o8ymQz9+vXD6dOnLZa2EAQB33zzTY2OUTEm7XYSicTqd92/f39IJBJ8++23Ft2e2dnZWLlyJcLDw833qU5FcFu9ejV+/fVXREVFWY2rlMlkkEgkFkMTBEGo8ncA3JphfubMGYv9K56Dqhb+Bm79sTVy5EicPHkSGzdurHSfO41JKykpseoKdnNzM3d/VzyHtXn/VbzOq3uvVXwP1HT9TGo4bJmjWpHJZBg8eDC2bNkCnU5n8Rf9e++9h8LCQvTv3x8qlQru7u7mL5arV69i9OjRiI6OrtN5X3vtNUyePBkTJ07EQw89hJCQEGzbtg27d+/GiBEjrMaadOvWDT/99BNSU1MtBuZ369YNer0eaWlpGDp0qMV9vvjiC+zZswd9+/ZFREQEBEHAtm3bcOXKlVoN5q7Mww8/jIULF+Lzzz/HiBEjLFpYTp8+jc8//9zqPnK5HE8++SSAW+Fty5Yt+P33381jimpr2rRpWLNmDZKTk/HDDz9Uu+/LL7+MyZMn48EHH8TEiRPNS5PcvuZahTFjxmDVqlVYsGABrl+/js6dOyMtLQ2LFy9GcHAwZs6cad536NChGDt2LBYtWoQzZ86gX79+CAgIQFZWFo4fP45r165h69atAIApU6bAx8cHnTt3RtOmTVFcXIxVq1ZBIpFYLIpsC7V5fSUkJGDRokV46623cPfdd0OhUCA+Pr7K1hdPT0/MmTMHzzzzDIYOHYr77rsPLVq0QHFxMa5cuYLNmzdj/vz56Nq1Ky5evIj333/fvNA0AEycOBF79uzB559/jm7dulkMUwBuhaGJEydi+PDhKCsrw5IlS6DVavH666+b9+nTpw88PDwwa9YsTJo0Cb6+vjh69Ch27tyJyMjISn+vNfXcc89h586dmD59OiZNmoSwsDBs27atRmsBAkBZWRl69eqF/v37o0OHDggMDERGRgZ+/vlni7FsrVq1Mrc0TZo0CcOGDUNZWRmWLVsGtVqNjz76qEat3h06dIBKpcLChQtRWlpq8fqsMGTIEPz+++945JFHMHr0aPP6mtVduqpdu3Z45JFHMHHiRISEhGDr1q3Yu3cvRo0ahaSkpGprev7553H06FE899xzGDZsGBISEqBQKJCZmWn+w7NiLHJlDhw4gDfeeAODBw9GVFQUvLy8cPr0aSxfvhwJCQnmUFeb919AQABatGiBdevWoXnz5ggODoaHh4fFRJwdO3ZApVJxWRI7wDBHtfbggw9i5cqV2LZtG4YMGWLe/vLLL2Pr1q04cuQIfv/9d5SUlMDHxwcqlQpPPPEExo4dW+dzxsXFYcmSJZg3bx5+/vlnqNVqNG/eHC+++CIef/xxq/27dOkCmUwGo9Fo0TLXunVrhIaGIjs726q7aeDAgcjJycHGjRuRm5sLd3d3tGjRAv/9739r3RL2d/7+/pg4cSK+/vprrFmzxqJb58SJE5W2dCqVSnOY69Onj7nuMWPG1GnAcatWrTBs2DCsW7cOBw8erLSLuUJSUhK+//57zJ07F19//TV8fHwwZMgQPPjgg1Zj9RQKBb799lt88cUXWL9+PTZv3gwfHx8MHToUzz33nNVYr/feew9du3bFsmXL8NVXX0Gv1yMkJAQdOnTACy+8YN7vwQcfxIYNG7B06VIUFRXB398f7du3x+uvv27zy8LV5vU1YsQInDt3DuvWrcPGjRthMpnw3nvvVduV1rt3byxfvtz8+y8oKICvry8iIyPx6KOPIjo6GhqNBjNnzoS7u7tVMHn33XcxatQovPTSS+YB+xXmzJmDJUuWYMGCBSguLjZPQrr9usmRkZFYsGABPv74Y3z55ZeQyWTo2LEjfvrpJ7z99tuVLu5cU5GRkfjf//6HOXPmYNGiRVAqlejduzc++OCDGnUburu745FHHjGPjSwrK0NoaCj69++PadOmoUmTJuZ9X3rpJbRo0QKLFy/G3LlzoVAokJCQgLlz51qF3OqMGTMGc+bMgVQqxb333mt1e0UwXrhwIebMmWMOlS+88EKVf0hVzP7+6quvkJqaiqCgIDz99NPmUF4dHx8f/Pzzz/juu++wceNGbN26FTKZDGFhYejUqRPGjRtX7f2jo6MxaNAgHDx4EGvXroXJZELTpk0xbdo0q9dvTd9/APDRRx/h3XffNV+DNTw83BzmMjIycOTIEV5Rxk5IhMYaBUxOZcqUKSgvL8fixYvFLoXIJSUnJ2P+/PnYunVrpbNRiRrSu+++i40bN+L333+3GFdI4uCYOaqTl19+GcePH7/j+kdERORcsrOzsWTJEvOVSUh87GalOmnbtm21C3QSEZFzCg0NrXThZBIPW+aIiIiIHBjHzBERERE5MLbMERERETkwhjkiIiIiB8YwR0REROTAGOaIiIiIHBjDHBEREZEDY5gjIiIicmAMc0REREQOjGGOiIiIyIExzBERERE5MIY5IiIiIgfGMEdERETkwBjmiIiIiBwYwxwRERGRA2OYIyIiInJgDHNEREREDoxhjoiIiMiBMcwREREROTCGOSIiIiIHxjBHRERE5MAY5oiIiIgcGMMcERERkQNjmCMiIiJyYAxzRERERA6MYY6IiIjIgTHMERERETkwhjkiIiIiB8YwR0REROTAGOaIiIiIHBjDHBEREZEDY5gjIiIicmAMc0REREQOjGGOiIiIyIExzBERERE5MIY5IiIiIgfGMEdERETkwBjmiIiIiBwYwxwRERGRA2OYIyIiInJgDHNEREREDoxhjoiIiMiBMcwREREROTCGOSIiIiIHxjBHRERE5MAY5oiIiIgcGMMcERERkQNjmCMiIiJyYAxzRERERA6MYY6IiIjIgTHMERERETkwhjkiIiIiB8YwR0REROTAGOaIiIiIHBjDHBEREZEDY5gjIiIicmAMc0REREQOTC52AURE9spoMkFj1ENjNMAgGCEIgAABgiBAABBSLodUIgUkEkAqgUQCQCoBJBJIpH9uU8pu/T8RUQNhmCMip6c3GVGkK0ehtvzWf3VqFOk0KNFrzGFNa9RDYzBY/GwQTNUe960TrYByQ/UnlwASdzmkngpIPRSW/7393223MfwRUW0wzBGRwys36JBVXoyb6hLcLC9GvlaNIl1FcCuH2qATrzgBEMoNMJYbYER5je4i8ZBbBD6ZjxvkQZ63/gV7QurOj24i+gs/EYjIIRgFE3LKS3GzvBg3y2+Ftix1MbLLS1Cs14hdnk2Zw19+5eFP6qWEPPhWsGPIIyK+84nI7hhNJlxXF+JqST6ulebhWkk+MtVFMN6h29NVmMp00JXpoLtWaLFd6q00Bzvzf4M9IXXjRz2RM+M7nIhEZRJMyFQX4VpJPq6V5uNaSR4yygrvOF6NrJlKddCVVh7yFKFeUDb3g7K5H+RNvDkuj8iJMMwRUaMymkxILcnF+cKbuFB0E6kledCbjGKX5dRMpTpoS3XQXikAAEjcZFBG+ELZ3B/KSD/IQ70gkTDcETkqhjkialAmwYRrJfm4UHQT5wtvIqU4BzqGN1EJWiO0KQXQpvwZ7tzlt8Jd5J8tdyEMd0SOhGGOiGzuelkhzhbcwIWim7hUlAONUS92SVQNQWOA9nI+tJfzAdyaTauM8Psr3AV7MtwR2TGGOSKqN5NgwuWiHBzPy8CJ/OvI1ZSKXRLVg1BugPZSHrSX8gAAUk/FrfF2rQLg3jaIEyqI7IxEEARB7CKIyPFojQacKbiBE3kZOJWfiTKDVuySGl2NFg12NjIJ3FoGwL1dMNzaBEGqlIldEZHL459XRFRjJToNTuRn4HheBs4X3uTEBVdkFKBNyYc2JR+QS+HWKgAe7ULg1joQEjkv900kBoY5IqqW3mTE8bwMHMhOxZmCGzCxMZ8qGEzQXsyD9mIeJEoZ3FoHwr19CNxa+kMiY7AjaiwMc0RkRRAEXCrOwYHsVBzJSUM5JzDQHQg6IzTncqA5lwOJuxzubYPg3i4Yykh/rmlH1MAY5ojI7GZ5MfbfTMWB7KvI05aJXQ45KEFjQPmpmyg/dRNSTwXcVEHwaBcCRYQvZ8USNQCGOSIXpzUacDD7KvbcTEFqSZ7Y5ZCTMan1KD+ehfLjWZD6usEzsSk8E8J4HVkiG+K7ichF3VAXYXvmJezPTuU6cNQoTMValO68irJ9aXDvEAqvTs0gD/IUuywih8cwR+RCTIIJx/MysC3zIi4WZYtdDrkoQW9C+YkslJ/IgjIqAF6dmsEtKkDssogcFsMckQso0+uw++Zl7Mi8xLFwZFd0qQXQpRZAFuQBr47N4BETComCa9cR1QYXDSZyYtnlJdiccQ77s1N5PdQG4JKLBjcwibscnvFh8OzYFDIfN7HLIXIIbJkjckKZZYXYkH4Gh3PSYAL/XiPHIWgMKDuYgbLD1+GuCoJnp2ZQNvMVuywiu8YwR+RE0krzsS7tNE7kZTDCkWMzCdCcz4XmfC4UTX3g2akZ3KODuWYdUSXYzUrkBFKKc7A+7TROF9wQuxSXwm7WxiXzc4N3zxZw7xDC9eqIbsOWOSIHdr4wC+vTzuBC0U2xSyFqcMYiLYrWX0TZ4evw6dOSM2CJ/sQwR+SAUopzsDL1OC4X54hdClGjM2SXoWD5GSgj/eBzd0sownzELolIVAxzRA7kZnkxVqWewLG8dLFLIRKdLq0IeT+dgHt0MLx7t4A8wEPskohEwTBH5ACKdRr8lnYKu7Iuw8RhrkQWNBdyobmUB4/4JvDuEQmZl1LskogaFcMckR3TGQ3YfP0cNmWcg8bIgfZEVTIJKD+eBc2ZbHh2DodXl3BIlfyKI9fAVzqRHTIJJuzJuoLf0k6hUFcudjlEDkPQm1C2Lx3lJ7Lg1a05PBPDIJFJxS6LqEExzBHZmYuFN/FzymFkqovELoXIYZnUepT8cQXqI5nw7hUJ9/ZczoScF8MckZ0o0WmwPPUY9menil0KkdMwFmlQtO4iyg5nwm9IGyiaeItdEpHNMcwRiUwQBOzKSsGqq8ehNujELofIKRluliJv0Ql43RUO7x6RkMjZ9UrOg2GOSETppQX43+WDSC3JE7sUIudnElB2IAOaS3nwG9IWyghe85WcA8MckQg0Bj3WXDuJbZkXYeJVVIkalTG/HPlLTsIzsSm8+7SEVCkTuySiemGYI2pkR3PTsTTlMGepEolJANTHbkCTkg+/wW14aTByaAxzRI2kTK/F4suHcDg3TexSiOhPpmItCpafgUdsKHz6tYLUnV+L5Hj4qiVqBKfzM/HjpQMoYmsckV0qP50NbWoBfAe2hrsqWOxyiGqFYY6oAWmMevxy5Sh2Z6WIXQoR3YGpTI/CX8/DTRUE34GteVkwchgMc0QN5FJRNhZe3IdcTZnYpRBRLWgv5iE3rQi+/aLgEdtE7HKI7ohhjsjG9CYjfr16AluuX4DAmapEDknQGFC04RLKz+fCb0gbyHzcxC6JqEoMc0Q2lF5agO8u7OWluIichC61ALk/HIP/PSq4tQoUuxyiSjHMEdnIjhuXsCzlCAyCSexSiMiGhHIDClachVeXCHj3bgGJlNd4JfvCMEdUT1qjAYsuHcTBnKtil0JEDajsYAZ014vhPzKa3a5kV3hxOqJ6yCwrwnvHNjLIEbkI/fVi5P5wDNrUArFLITJjyxxRHe3PTsXiS4egNRnELoWIGpFQbkDB8jPw6hYB757sdiXxMcwR1ZLeZMTSlCPYlXVZ7FKISERl+zOgzyyB/8h2kHoqxC6HXBi7WYlqIae8FHOOb2KQIyIAgC6tCLk/HYf+ZqnYpZALY5gjqqGzBTfw7vENSC/jWBki+oupWIu8xSdRfiZb7FLIRbGblagGdty4hCUph2ESuAgwEVXCYELR+ovQ3yyFT98ojqOjRsUwR1QNk2DCL1eO4o/Mi2KXQkQOQH0kE4bsMvjfy3F01HjYzUpUBY1Bj8/O7GSQI6Ja0aUXIffH49Bn87rM1DgY5ogqkacpw5wTm3C6IFPsUojIAZlKtMhfchK6DF7ajxoewxzR36QU5+C947/z+qpEVC+C1oj8X85Ak5Ivdink5BjmiG5zMPsqPjn1B0r0GrFLISJnYDChcPU5lJ++KXYl5MQ4AYLoT1uun8fyK0fB+apEZFMmAUUbLsFUboDXXeFiV0NOiGGOCMCaqyexLv202GUQkRMr2Z4KU7kePn1ail0KORmGOXJpgiBg6ZUj2MYZq0TUCMoOZMBUrofvoDZci45shmGOXJZRMOHHi/uxP/uq2KUQkQspP3kTpnID/EdEQyLn0HWqP76KyCXpTUZ8dXYXgxwRiUJ7KQ8FK87ApDOIXQo5AYY5cjkagx7Jp7fjRP51sUshIhemSytC/pJTMJbpxC6FHBzDHLmUUr0Wn5zaigtFXCaAiMRnuFmG/J9PwlDE5ZCo7hjmyGWU6jWYe3ILrpZyAU8ish/GAg3yF5+EPoeX/6K6YZgjl3CrRe4PXtWBiOySqVSH/CWnoM8uFbsUckAMc+T0yvQ6/N+pP5BRVih2KUREVRI0BhT8cgaGgnKxSyEHwzBHTk1t0OH/Tv+B9LICsUshIrojk1qPgl9Ow1jKSRFUcwxz5LQ0Rj3mnd6GNI6RIyIHYizSouCX0zBpuGwJ1QzDHDklndGAz87sQGpJntilEBHVmiFXjYIVZyDojWKXQg6AYY6cjsFkxFfnduFiUbbYpRAR1Zk+swQFv56HYDSJXQrZOYY5ciomwYRvz+/F6YIbYpdCRFRvutQCFK2/CEEQxC6F7BjDHDmVJSlHcDQvXewyiIhsRnM+F8VbUsQug+wYwxw5jd8zzmLHjUtil0FEZHPlx7NQsvua2GWQnWKYI6dwKOcaVqUeF7sMIqIGU7YvHWVHMsUug+wQwxw5vEtF2Vh4YR84ooSInF3JH1dQfoaTu8gSwxw5tCx1ET4/uxMGgbO9iMg1FG28BE0K18+kvzDMkcMq1pVj3untUBu4UjoRuRCTgMI156HL4LWm6RaGOXJIWqMByWd2IE9bJnYpRESNz2BCwapzMBRqxK6E7ADDHDkckyBgwfndvEwXEbk0QWNA4a/neJUIYpgjx7Pm2kmcyueMLiIiQ3YZijZzDTpXxzBHDuVYbjo2pp8RuwwiIruhOZMN9XFe9caVMcyRw8hSF2HhRS5BQkT0d8V/XIHuRonYZZBIGObIIWgMenxxdhc0RoPYpRAR2R+jgMJfz8Ok1otdCYmAYY7sniAI+P7iPmSVF4tdChGR3TKVaFG49jwEE/svXA3DHNm9DelncTwvQ+wyiIjsni6tCKW7eA1XV8MwR3btTEEm1lw7KXYZREQOo+xgBjQXc8UugxoRwxzZrVxNKb49vxcCpzwQEdVK0YZLMOSXi10GNRKGObJLRpMJC87tRhkv1UVEVGuCzojCX8/BpOOCwq6AYY7s0pq0k7jKKzwQEdWZIVeN4t8viV0GNQKGObI7Fwtv4vf0c2KXQUTk8DTnc1F2+LrYZVADY5gju6I26PDdxX0cJ0dEZCMlO65Cl1EkdhnUgBjmyK4sunQQBVq12GUQETkPk4CiDZcg6Dl+zlkxzJHd2HvzCo7kpoldBhGR0zEWalDC9eecFsMc2YWc8hIsSTksdhlERE5LfTQTuuu8ko4zYpgj0RkFE765sBdaXneViKjhCEDRxksQDCaxKyEbY5gj0a1LO42rJXlil0FE5PSM+eUo3cvhLM6GYY5Edb2sEBvTz4pdBhGRyyg7dB36rFKxyyAbYpgj0ZgEAT9eOgCjwCZ/IqJGYxJQtOEiBCM/e50FwxyJ5o/MC+xeJSISgSFXjdL96WKXQTbCMEeiyNOUYc3Vk2KXQUTkssr2Z0CfUyZ2GWQDDHMkiv9dPgitibNXiYhEU7GYsIlX3HF0DHPU6A5kp+JMwQ2xyyAicnmGm6UoO5QhdhlUTwxz1KhK9RosSzkqdhlERPSn0r3pMOTxMoqOjGGOGtWyK0dRatCKXQYREVUwmG4tJiywu9VRMcxRozlXkIUD2VfFLoOIiP5Gn1kC9ZFMscugOmKYo0ZhEkxYduWI2GUQEVEVSndfg7GUPSeOiGGOGsXOG5eRqS4SuwwiIqqCoDehdA8v9eWIGOaowakNOqy9dkrsMoiI6A7KT93kZAgHxDBHDe63tFOc9EBE5AgEoGTnVbGroFpimKMGdVNdjO2Zl8Qug4iIakh7OR+6DA6LcSQMc9Sgfkk9CqPAizkTETmSku1XxS6BaoFhjhrM2YIbOJXPqe5ERI5Gf6MEmgu5YpdBNcQwRw3CJJjwyxVe6YGIyFGV7LoKwcieFUfAMEcNYldWCpciISJyYMYCDdQnssQug2qAYY5sTm8yYn3aabHLICKieirblw6TziB2GXQHDHNkcztvXEKhrlzsMoiIqJ5Maj3KDl4Xuwy6A4Y5simd0YCN6WfFLoOIiGxEffg6jKU6scugajDMkU3tuHEJxXqN2GUQEZGN3LrM1zWxy6BqMMyRzWiNBvyecU7sMoiIyMZ4mS/7xjBHNrMt8yJK2CpHROR8eJkvu8YwRzahMeixia1yREROS3s5H7rMErHLoEowzJFN/JF5AWUGrdhlEBFRA1If5sxWe8QwR/VWbtBj8/XzYpdBREQNTHMxF8YiDqexNwxzVG87b1yC2sBp60RETk8Ayo7ymtv2hmGO6sUomLAt86LYZRARUSMpP3mTV4WwMwxzVC9HctJQoON0dSIiVyHojCg/dVPsMug2DHNULxwrR0TketRHMiEIgthl0J8Y5qjOLhZlI600X+wyiIiokRmLtNBeyhO7DPoTwxzV2RauK0dE5LLKDnMihL1gmKM6uVlejJP5fCMTEbkq/fVi6G9wEWF7wDBHdbL1+gUI4HgJIiJXVnaEf9TbA4Y5qrUyvRb7bl4RuwwiIhKZ5kIujCW8+o/YGOao1nZlpUBnMopdBhERic0kQM1FhEXHMEe1IggCdmVdErsMIiKyE+oTWTDp+Ae+mBjmqFbOFWYhV1MmdhlERGQnBK0R5ae5iLCYGOaoVnZlXRa7BCIisjPqo1xEWEwMc1RjxToNTuRdF7sMIiKyM8YCDXRXC8Uuw2UxzFGN7c9OhVEwiV0GERHZofJzOWKX4LIY5qjG9maliF0CERHZKe2lPAgG/sEvBoY5qpHU4lzcKC8WuwwiIrJTgs4I7RVer1sMDHNUI3u5SDAREd0Bu1rFwTBHd6Q3GXE495rYZRARkZ3TXimASWcQuwyXwzBHd3QiLwNqg17sMoiIyN4ZTNBeYldrY2OYozs6nJMmdglEROQg2NXa+BjmqFpaowGnC3jdPSIiqhndtUKY1OzNaUwMc1StU/nXoTfxmntERFRDJgGai7liV+FSGOaoWkdz08UugYiIHEz5eXa1NiaGOaqSzmjA6Xx2sRIRUe3oM4phLNGKXYbLYJijKp0uyITWxCnmRERUSwKgOd84Xa3JycmIjo7GxIkTrW5755130L9//1odb/LkyZg2bZr55wMHDuDLL7+s9LxJSUm1L7gBMMxRlY5wFisREdVRY3e1Hj58GAcOHKj3cd58803Mnj3b/PPBgwfx1Vdf1fu4DYlhjiqlNxlxirNYiYiojgxZpTAUlDfKuTw9PREfH4/PP/+83sdq06YNWrVqZYOq6kej0dR4X4Y5qtTp/ExojexiJSKiutM04ppzTz/9NPbv34+jR49WuU9xcTH+/e9/o1evXoiNjcXYsWOxe/dui31u72ZNTk7G/PnzoVarER0djejoaEyePNli/wsXLuDBBx9EQkICRowYgV27dlmdd+XKlRg5ciTi4uLQu3dvfPLJJzAajRa3R0dH49ixY3jssceQmJiIDz74oMaPnWGOKnUsj7NYiYiofhpr3BwA9OvXDx06dMBnn31W6e06nQ6PPfYYtm/fjueeew5ffPEFWrdujWnTpuHChQuV3mfcuHG4//774e7ujqVLl2Lp0qV48803zbfr9Xq8+OKLGDt2LObPn4/AwED84x//QEFBgXmf77//Hq+//jp69eqFL7/8Ek888QR+/PFHfPLJJ1bne+GFF9CtWzd8+eWXGDVqVI0fu7zGe5LLEAQBZwtuiF0GERE5OEOeGoYiDeR+7o1yvqeeegrPPvssTp48ifj4eIvb1q5di/Pnz+PXX39FmzZtAAC9e/fGtWvX8Pnnn+PTTz+1Ol5YWBjCwsIglUqRmJhodXtFmLv77rsBAFFRURgwYAB27tyJUaNGobS0FPPmzcPUqVMxc+ZMAEDPnj2hUCjw/vvvY8qUKQgICDAfb8KECXjyySdr/bjZMkdW0koLUKLnlHIiIqo/3dXCRjvXoEGDoFKpKm2d27NnD1QqFVq2bAmDwWD+16NHD5w6dapO55NKpejevbv554iICLi7u+PmzZsAgGPHjkGtVmPo0KFW59RoNLh06ZLF8fr27VunOtgyR1bOFrJVjoiIbEN7tQCeCWGNci6JRILp06dj5syZOHPmjMVtBQUFOHv2LGJiYqzuJ5PJ6nQ+d3d3KJVKi20KhQJardZ8TgAYM2ZMpfe/ccPy+zY4OLhOdTDMkRV2sRIRka3o0oogCAIkEkmjnG/YsGFITk7G559/jmbNmpm3+/n5ITo6Gu+8806j1FFxTgCYP38+wsKsA21ERIRNzsMwRxY0Rj1SinlNPSIisg1BY4A+qxTKpj6Ncj6pVIrp06fj5ZdfRpcuXczbe/TogR07diA0NBRNmjSp8fEUCgV0Ol2daklKSoKHhweysrIwaNCgOh2jJhjmyMKFwpswCiaxyyAiIieiu1rQaGEOAEaOHInPPvsMBw4cQHh4OABg9OjRWLJkCR5++GE8/vjjaNmyJUpKSnD27Fno9Xq88MILlR6rdevWMBgM+OGHH5CUlARvb+8ar0Pn6+uLf/zjH/jwww+RlZWFLl26QCaTIT09HVu3bkVycjI8PDzq/XgZ5sjC2YIssUsgIiIno71aCO/ukY12PplMhieffBKvv/66eZtSqcSPP/6I5ORkfPnll8jJyYG/vz86dOiAhx56qMpj9evXDw899BC+/vpr5OXl4a677sJPP/1U41oef/xxNGnSBN9//z0WLVoEuVyOyMhI9O3bFwqFol6Ps4JEEATBJkcip/DG4bXILi8Ruwwih/DWiVZAORfXJrojqQShz3aDVFm3iQZUPS5NQma5mlIGOSIisj2TAH1GkdhVOC2GOTJjFysRETUUXXqx2CU4LYY5Mkspzha7BCIiclI6tsw1GIY5MrvCJUmIiKiB6LNKIeiNd96Rao1hjgAAJToNsjWlYpdBRETOyiRAl8lx2Q2BYY4AAFdK2CpHREQNi12tDYNhjgAwzBERUcPTZ3ASRENgmCMAHC9HREQNT5dZAsHIqwzZGsMcwSSYcK0kX+wyiIjI2RlM0GdxfLatMcwRMsoKoTVxFXsiImp4hpwysUtwOgxzxC5WIiJqNIZctdglOB2GOUIqJz8QEVEjYZizPYY5wrXSArFLICIiF6HPZTerrTHMuTijyYTsci7iSEREjUMoN8BYphO7DKciF7sAEldWeTGMAqeJE5FzUes1ePiX15GjLsBXo95Au5CWKNOVY9mpTdifcQoZRVlQSBVoFxKFJ+4ai9aBEXc8Zm5ZAT7dtxiHrp+BXCpDnxad8Ey38fBSepj32Zt2AvP3L0GxthSD23THM10nQCb9q91k48U9WH5mC74e/QakEtdtTzHkqiHzUopdhtNw3VcSAQAyywrFLoGIyOZ+PLYWRsHyOqA3S/Ow5vwO3BXeAf/uPx0v9X4EZXo1nl7zDq4WZFZ7PIPJgBc3foL0opt4o++TmNljMg5eP423t31t3qdIU4q3t32NEdG9MbPnw9h4cS82XNxtvl2tK8fXh1fgn90fcukgBwCGPI6bsyW2zLm4TDUvrUJEzuVa4Q2sPrsNT3d9AHP3/GTe3tQnBD+Pfw/ucjfztqRm7TB+ySysPrcNz/WYWOUxt6cewdWCTPx4/38R6R8GAPBx88SLGz/BuewraB/aCmezUxDqFYiHEu4BABzLPI9D189gRLs+AIAfjq1FUtN2iAtr2xAP26EYchjmbMm1/zQghjkicjqf7l2Me9vfjeZ+YRbbPRRuFkEOADwV7gj3DUWeurDaYx5IP4XWgRHmIAcAncNj4Ovmhf3ppwAAeqMBbnKF+XZ3uRJ64601PNOLsrDu4i5M7zKuPg/NabBlzrYY5lwcwxwROZPtqYeRWpCBR5LurdH+JVo1Uguuo4V/02r3SyvKsghyACCRSBDp1xRpRTcAAG2DI3El/zqOZp7HjZIc7Lx6BO1CWgIAkvctwYS4oQjxCqj9g3JCBs5otSl2s7owvcmInHJeVoWInIPGoMVn+5diauexFpMSqvPlwV8ggQT3tu9b7X4l2jJ4B0Vabfdx80Sx9lYwaeoTgkc73ouZ6z+CAAExoa1xX8xA7Ll2HBnFN/HfQc/U+jE5K0FrhLFEC5mP2513pjtimHNhN9RFECCIXQYRkU38eOw3BHj44h5Vrxrtv/7ibvx2YSde6fM4Qr0CbVLDpMThuLfd3SjVlaOpTzD0JgM+O7AUz3QdD6lEiuR9P+OPKwfhLnfDox3vxZC2PWxyXkdkyFUzzNkIu1ldWGYZu1iJyDlkleRi2alNeLzTKJTqylGiVaPcoAUAlOs1UOs1FvvvTz+Fj3b9iIeTRmKoqucdj+/j5oVSXbnV9hKtGr5uXhbbfN290cw3BBKJBMtObUK4byh6tkjE2vM7sDftBBaM/hdeuXsKPtz1wx1n0TozXgnCdtgy58KyyovFLoGIyCZulORCbzJg9u+fWt323PoP0SGkFb4Y9RoA4Ex2Ct7c+jmGtu2BKZ1G1+j4kX5huFKQYbFNEASkF2Whc3iHSu+TW1aAJac24vORt8575Po59G6ZhGCvAAR7BaBVYDiOZp5Dy4BmtXikzoOTIGyHYc6F5Wk4Xo6InEOboEj83z0vWWy7nJ+O+fuX4IWek9EuJAoAcLUgEy///imSmrbHzF6Ta3z8rs3jsPnyfmQU3USEXxMAwJHMcyjSlqJb87hK7/PFwV8wXNXbYuKExvDXlQ/K9TqXHujCSRC2wzDnwvK0/KuIiJyDj5snkpq1q/Q2VXBLqIJboKC8GC9u/BhuMiUeiBuEC7lXzft4KTzMLWRZJbl4aNkreDhpJB7teGtWbN+oTlh0fB3e2PI5nrhrLDQGHb44sAzdm8ejfWgrq3OeyrqEYzfOY9H975i3dWzWDt8eWY2kpu1woyQXGcVZSGoabcNnwbEYcsshCAIkEonYpTg8hjkXlq/hX0VE5DquFmQip6wAAPD8+o8sbksMi8anI2YBAAQARsEEQfir3UwulePDoc9j3r7F+M+2ryCTyNCnZUfM6DbB6jwmwYRP9y3Gk53vg+dts2rvbX830oqy8PGen+Aud8MLPR9GqxpcRsxZCXojTMVayPzcxS7F4UmE21+t5DKMggkzdi+FyaUb+Ynq560TrYByg9hlEDmswAlxUDb3E7sMh8fZrC6qQKtmkCMiIlGZ1HqxS3AKDHMuKp/j5YiISGQMc7bBMOeiOF6OiIjEZlTr7rwT3RHDnIvK1zLMERGRuNgyZxsMcy4qj2GOiIhExjBnGwxzLopj5oiISGwMc7bBMOeiSnSaO+9ERETUgBjmbINhzkWpDRx0SkRE4mKYsw2GORdVZtCKXQIREbk4QWOAYDSJXYbDY5hzQUbBBI2Rq9YTEZH4TOVsnasvhjkXpNazi5WIiOyDqYxhrr4Y5lxQGcfLERGRneC4ufpjmHNBHC9HRET2gmGu/hjmXBBnshIRkb1gmKs/hjkXxG5WIiKyFwxz9ccw54I4AYKIiOyFSc3vpPpimHNB5Ub+FURERPbBpDOKXYLDY5hzQUYTF2gkIiI7IYhdgONjmHNBRoFhjoiIyFkwzLkgo8A/g4iIyE7wO6neGOZcEFvmiIiInAfDnAtimCMiInIecrELoMbnqmHuxp7juPD9r1bbmw/tidb3DwQAZB88jezDZ1GcmgFdQQlajRuEyCE9anR8bWEJLi3egIIzKZDIpAju2B5txg+B3MPNvE/uiYtIWfo79KVqNOkejzbjh0Ai/etvqqw9x5Gx9QA6vf4kJFJJPR8xEZEDYC9rvTHMuSBXHzMX/9xEyDzczT+7BfiY/z/nyDlocgoQFK/CjR1HanxMk8GIk58sAgC0f2IsTDo9Un7ZjLMLViD+Hw8BAPSlapxbsAIthveGe3AALvy4Fl7hTdCsT0cAgEGjxZWVWxEzfRyDHBG5ENf+TrIFhjkX5OpLk3i3aAalj2elt3WYdr85SNUmzOUcOYuyzGx0efsZeIYFAwDkXh44+ckiFF+5Dt9W4Si+kgG3QD9EDusFACg8n4qCsynmMHdt7Q74t4uCX9vI+jw8IiLHwixXb7UaM5ecnIzo6Gjzv7i4OAwbNgwLFiyAqQ4BYeXKlVi7dq3V9smTJ2PatGm1Pl5GRoa5tp07d1rdvmzZMvPttnDu3DlER0fjwIEDtbpfcnIykpKSbFJDXZhctJu1JuraIpZ/+jK8IpqYgxwABHRoBbmXB/JOXQIAmPRGSBV//f0kVSpgMtxaLFOdlYcbu46Zu3vJQSg47JiIxFfrljl3d3f88MMPAACNRoMDBw5g7ty5EAQBTz75ZK2OtWrVKnh6emLkyJG1LaNanp6eWL9+Pfr06WOx/bfffoOnpyfUarVNz+doXL2b9dC/Poe+VA33ID807dMRkUN7Woxbqwv1jVyLIAcAEokEnmHBUGflAgC8I8NQdj0bBedT4R7kj5yj59C0961WuctLNqL50B5wC/CtVx3UuLKaeSGsmJciIqoPF/9KsolahzmpVIrExETzz926dcPFixexadOmWoe5hjJgwABs3rwZb731Ftzcbg0+z87OxqFDhzBixAisWbNG5ArF5aqjsdz8vNFyVF/4RoUDEglyj19A6qpt0BaUQDXxnnod26DWQO7pbrVd7uUOQ1k5AMAjJAAt770bJ+b+CAiAb+sIRAzoitzjF6C+mYfYZ8bXqwZqfCcEI8L83YFCjdilEJELs0kfgZeXFwwGg8W2wsJCvPLKK+jatSvi4+MxYcIEHDp0yHz75MmTcfDgQWzfvt3c9ZmcnGxxjI0bN2LIkCFISkrCww8/jLS0tBrV06dPH0gkEuzYscO8bf369YiMjERMTIzV/neqtcLnn3+Onj17IikpCTNmzEBeXp7VPoIg4Ntvv8WQIUMQGxuLAQMGYOHChdXWq9frMWfOHPTt2xexsbHo1asXpk+fjpKSkho93tqS1bMVylEFxrZBy5F3IzC2DQJjWkM18R40H9wNmTsOQ1vYMM/137W4pzd6fjILXd/7B5JefhxSuQwpyzahzfghgFSKS0s2Ys/Mj7D/lXnI2neiUWqiepBJcCHIOsQTETWmOk2AqAhuFd2smzZtshjjZjQa8cQTTyA9PR0vvvgigoOD8dNPP+Gxxx7DkiVLEBsbizfffBMvvfQS3N3dMXv2bABAWFiY+Rjnzp1Dfn4+XnzxRRiNRrz//vt46aWXsHTp0jvWp1QqMWjQIPz2228YPHgwgFtdrCNGjLDatya1AsCiRYvw6aef4vHHH0ePHj2wd+9evPbaa1bHe+edd/DLL79g+vTpSEhIwNGjR/HRRx/Bzc0NDz74YKX1fvXVV1iyZAlefPFFtG3bFgUFBdizZw90uobpvpFLXDPMVSakcwzSf9+H0vQsuPn73PkOVZB7usNYrrXabijTwC3QsutU4e0BhbcHACBt8z54hAYiODEa17cdQt6Ji+j8r2kozynAibk/wqdFM3g1C6lzXdSwJHLgSK4GqlAvSLLLxC6HyDGxn7Xeah3m1Gq1VevWPffcY9HFun37dpw8eRLffPMNevfuDQDo1asXBg8ejK+++grJyclo06YNvL294enpadFtW6GkpASrV69GYGCg+byvvPIKsrKyLEJfVUaMGIGnn34aZWVlyMvLw6lTp/Dhhx9atNbVtFaj0YivvvoKo0aNMgfP3r17Iy8vD7/++te6ZWlpaVi0aBHeeustjB9/q8usR48e0Gg0+OyzzzB+/HhIK2kVO3XqFHr16oWJEyeatw0ZMuSOj7GuXLVlriF5Ng1GWUa2xTZBEKC+mYuADq0qvY+2sATpG/ei46tTAAAFZ68gOKkd3Px94ObvA6/wUBScT2WYs2MS2a0vocNeMtwlci1E5Lpq/a3u7u6O5cuXY/ny5Vi8eDFee+017Nq1C6+//rp5n8OHD8Pb29scjgBAoVBg0KBBOHKkZss9tGvXzhzkAKBNmzYAgKysrBrdv1u3bvDy8sKWLVvw22+/ISYmBlFRUVb71aTWrKwsZGdnY9CgQRb3/Xvg2rt3LwBg8ODBMBgM5n89evRATk4Obty4UWmtHTp0wI4dO5CcnIyTJ0/WaWZwbbBl7i/ZB08DUgm8I5vW6ziBsW1QmpEF9c2/ut4LzqXCUFqOoLi2ld4n5ZfNaNo7yWLihEmn/+v/tXr+xWrnTLJb79VLZTroIjh5hahO+DFXb3WaABEXF2f+uVOnTuZu0MceewwqlQrFxcUICgqyum9wcDCKiopqdB5f3791TSkUAACt1rorqzIymQzDhg3DunXrcP36ddx3332V7leTWnNycgDAIlxW7HO7goICCIKAbt26VXquGzduIDw83Gr7U089BalUilWrVmH+/PkIDAzExIkT8cwzz0Aisf10BYVUZvNjOoITnyxCQLuW8ApvAgDIPXEBN3YeQcSArnDz8wYAlGXmoCwzx3yfsoxsZB8+C5mbwhzKNHmF2P/KPLQceTdajrwbABDSqQPS1u/Gmc+XIWrsgD8XDd6EwPi28G1l/TsvupSGwvOp6PLODPM2//ZRuLp6G/zbtYQmpxDqm3nwb2f9BwjZD5P0rz+8dktM6C+TAEZ+MxFR47LJosGtWt3qRrp8+TJUKhX8/PwqnRyQm5sLPz8/W5yyRoYPH27uurznnspnK9ak1pCQW91c+fn5Vvv8/VgSiQSLFy82h8/bVdYyCNwa4/fss8/i2WefxbVr17BixQokJycjIiICo0ePrv5B1oGrhjnPsCDc2H0M2oJiCCYBnk2C0Gb8UIQP6GLeJ/vQGVxb+1dX/M19J3Bz3wm4Bfmh+5znAPzZWGYSIJj++tKWymWIf24iLv28Eee+XvHn5bzaoc34oVZ1CCYBl37egFZjB0Du/telvpr16QT1jVxc/GkdZG4KqCaPgHd4qO2fCLIZo9SIivnhWVoDSpv7wvtqzf5gJaI/ueoSCzZkkzB36dKtRVEDAgIA3Gqt+/bbb7F792706nVrtXuDwYAtW7agU6dO5vspFIoat7TVRVJSEkaMGIGgoKAqx9nVpNawsDCEhIRg8+bNFl2tv//+u8WxunfvDuDW7Nj+/fvXqeYWLVpg5syZWLp0Ka5cuVKnY9yJUuaaF/5o++CwO+4TNaovokb1rXYfj2B/9P3mTavtbgG+iH36gTueQyKVoPO/rBfFlsplUE28p97LpFDj0UuMuP1jdJtOj3vdZBC0RvGKInIwUnfX/E6ypVo/gyaTCcePHwdwa0mNM2fO4IsvvkCbNm3QuXNnAEDfvn0RHx+Pl156CS+88IJ5hmh2djbmzZtnPlarVq2wevVq/PHHHwgJCUFoaCiaNGlim0eGW4u2fvjhh9XuU5NaZTIZnnzySbzzzjsICgpCz549sWfPHqsrP0RFRWHixImYNWsWpkyZgoSEBOj1ely9ehUHDhzA559/XmkNTz/9NGJiYtChQwd4eHhg27ZtKCoqqrK7tr6ULtoyR2Rreoket3+MlhhMyI7wQUhKoWg1ETkaqYd1TxbVTq3DnEajMc/UlMvlCAsLw7333osZM2aYuxZlMhm+/vprfPDBB/jwww/NM2C/++4781IfAPDEE08gLS0Ns2fPRnFxMWbMmIFnn33WRg+tZmpa6+TJk1FcXIzFixfj559/Rvfu3fHf//4XU6dOtTje66+/jqioKCxduhSfffYZvLy8EBUVhaFDrbvbKnTs2BEbNmzA999/D6PRiKioKHz00Ufo0aNHgzxmNxdtmSOyNQ30kMPDYtv2Ug0e8FFCKOGVIYhqgmGu/iSCwOlyruZQ9lV8c2Gv2GUQObxwaSC8Lwdbbe/h446WbJ0jqhGfAa3g1bGZ2GU4NK5R4YK8FVyxnsgWyoXKW9/2FpcDQR6V3kZElqSebJmrL4Y5F+StcLvzTkR0R2VCFddklUhw0k/ZuMUQOSh2s9Yfw5wL8mGYI7IJLQyQSitfV+F0qRbGZt6NXBGR45F6cBx3fTHMuSC2zBHZjlJR9cfoPoWEa2gR3QG7WeuPYc4FyaUyuMv45iGyBUU1YS6tXI/yyMZbKJ3IEbGbtf4Y5lwUu1qJbEMmr77pbafBAMj5UUtUGYlSBomM74/64jPootjVSmQbMkX1YS5Pb0RhpG+1+xC5Ko6Xsw2GORflw+VJiGxCUoMLqmwv10LCLy0iK+xitQ2GORfFblYiG5Hded11tVHA9WY+jVAMkWORMMzZBMOci+LCwUS2IchMNdpvV0k54Mf3HdHtOJPVNhjmXFSAG1enJ7IFk7RmYc4I4GIwwxzR7ThmzjYY5lxUsDsXMyWyBaPUWON9D5doIIR6NWA1RI6FY+Zsg2HORTHMEdmGXmKo1f5HPGswY4LIRbCb1TYY5lxUsLs3F6YnsgGdRF+r/S+qddBFcKkSIgCQ+XPogS0wzLkohVQGPyXHzRHVlxa1a5kDgN0SAZDxzykieZCn2CU4BYY5F8auVqL600Bb6/tkafUobc7LfJFrk3jIIfNSil2GU2CYc2EMc0T1VybUPswBwHadHhIlx8+R65IHslXOVhjmXFiwO2fVEdWXWtDV6X7FBiOym3PsHLkueRCH+tgKw5wLY8scUf3pYIBMWrfxb9vLyiHxZjcTuSaOl7MdhjkXFsIwR2QTCkXdPkr1JiC1CVvIyTUxzNkOw5wLC/XgtSKJbKGuYQ4A9harAXY3kQtimLMdhjkX5qv0gI/CTewyiByeXFGPZUYkEpzyY1cruRaJQgaZL79/bIVhzsVFeAWIXQKRw5PK67dm3KlSLYxNOeyBXIeMrdE2xTDn4iK8/MUugcjhSWxwrfADblLwsizkKtjFalsMcy6OLXNENiAT6n2Iq2odNFxImFwElyWxLYY5Fxfh7S92CUQOT5CabHKcnSYDIOfHMjk/tszZFj81XFxTDz/IJXwZENWH0UZhLldnRFEkFxIm58cwZ1v8FndxMqkUYZ788iCqD6PUYLNjbSvXQuJhg0F4RPZKJoHMz13sKpwKwxyhOcfNEdWLXmK7MKc2CrjejDNbyXnJAzwgqeNVU6hyDHOECG+GOaL60NkwzAHArhINJH5cg4uckzyYXay2xjBHXJ6EqJ600Nv0eEYAF4M524+ck6Iprz5kawxzhJbeQZBygSuiOiuHzubHPFSigRDK67aS81FyCR6bY5gjuMsVCGfrHFGdlQvaBjnuUS9ZgxyXSCwSdznk/CPF5hjmCADQxi9E7BKIHFaZqWHC3IUyHfQR7JIi56GM8IVEwp4gW2OYIwBAW99QsUsgclh6iREyWcN8Qe2RCgBn/pGTUEawi7UhMMwRALbMEdWXUtEwXaKZGgNKI/kFSM5Byddyg2CYIwCAn9IDwe5c24qorhSKhms9267TQ6Lk+DlybBI3GcfLNRCGOTJr68vWOaK6kskbLswVG4zI4dg5cnDKcI6XaygMc2TGrlaiupM2YJgDgG1qDSTeygY9B1FD4pIkDYdhjszacBIEUZ1J5EKDHl9vAq6GsYuKHBfDXMNhmCOzME9f+Ch4CSGiOmmEIW17i9VAIK8MQY5HopRB3oTjshsKwxxZiPZrInYJRA5JkJka/hyQ4JQ/u1rJ8SjCfSHhEjsNhmGOLMQGNhO7BCKHZJQaG+U8p0q1MDZlCwc5FnaxNiyGObIQE9CMV2klqgOjpHHCHAAccJOCb1RyJAxzDYthjiz4Kt0R6R0odhlEDkcnMTTaua6qddDwy5EchEQhgyKMrckNiWGOrLCrlaj2dBJ9o55vp8kAyPkRTvZPEe7D8XINjJ8EZCUugGGOqLa0aNwwl6szoijSt1HPSVQXykh/sUtwegxzZKWFTxCXKCGqpXLoGv2c28p1kHjIG/28RLXh3jZI7BKcHsMcWZFKJIgJaCp2GUQOpVzQNvo51UYTMptxLBLZL3mIF+RcG7HBMcxRpWLZ1UpUK2UihDkA2FmqgcSPLelkn9zbBYtdgktgmKNKdQhoBinXPiCqMQNMkMsa/z1jFICLwWz5IPvkHs0w1xgY5qhSXgol2viFiF0GkUNRKBrhml6VOFSigRDqKcq5iaoib+IFeQD/0GgMDHNUpc4hLcQugcihKBTifaQe9eJECLIv7tFsEGgsDHNUpU7BzSGVsKuVqKbkCvHeLxfKdNBHcKkSsh8cL9d4GOaoSt4Kd7T3DxO7DCKHIRW5cWyP1ARwcVayA4owb8j93MUuw2UwzFG17mJXK1HNyQRRT5+pMaCMCwmTHWCrXONimKNqJQY1h1zClwlRjYgc5gBgu84AKMWZiEFUgbNYGxe/palaHnIFr9VKVEOCzCR2CSgyGJHX3EfsMsiFKZr6QObLLtbGxDBHd8RZrUQ1Y5SKH+YAYHuZFhIvpdhlkItiF2vjY5ijO0oIDIeb2CO7iRyAQWoUuwQAgNYk4FoY150jcbCLtfExzNEdKWVyxAeFi10Gkd3TS/Ril2C2p6Qc4DUxqZEpwn0h8+Hl5RobwxzVSLfQKLFLILJ7OhjELsFMgARn/NnVSo2LXaziYJijGukQ0BRBbl5il0Fk1zSwn5Y5ADhRqoUxzFvsMshVSAB3FcOcGBjmqEakEgl6hrUWuwwiu1YOrdglWDnoJgG4jjA1AmWkP2TebA0WA8Mc1VivsNa8vBdRNdSCTuwSrKSW66FpzoWEqeF5JjUVuwSXxTBHNean9EB8ICdCEFWlTNCIXUKldpqMgJwf99RwpL5ucGsdKHYZLovvbqqVPk3biF0Ckd0yQYDcDkNTrs6IIl7mixqQZ0IYJLwusGjs71OH7FoH/6YIdudECKKqKBX2+bG6rVwHiTvXi6QGIJPAI66J2FW4NPv81CG7JZFI0CuMrXNEVZHbaZhTG03IDOdlvsj23FXBkPGKI6Kyz08dsms9m7SCTMKXDlFl5HL77WraWVoOiR8XdCXb4sQH8fEbmWrNV+mBBE6EIKqUPV/5zigAl4J5VQiyHXmoF5ThHI8pNoY5qpN+4dFil0BklyRyQewSqnWwRAMhhNdtJdtgq5x9YJijOlH5haKlN6ehE/2dILXvMAcAx7ztuPmQHIbUUwGPDqFil0FgmKN6GBjRXuwSiOyOIDOJXcIdnS/TQc/JEFRPnklNIbHDpXhcEX8LVGedgpvzeq1Ef2OQ2n+YA4A9MgHgumBUV3IpPBPZxWovGOaozqQSKfpz7ByRBaPEIHYJNZKpMaCMl/miOvKICYXUUyF2GfQnhjmql15hreEl5/pCRBV0DhLmAGC7wQAoZWKXQQ7IqzNXNLAnDHNUL+4yBfo2U4ldBpHd0En0YpdQY0V6I/Kac+wc1Y5bm0DIA7nEjT1hmKN6698sGkop/7onAgANHCfMAcD2Mi0kXuwuo5pjq5z9YZijevNWuPESX0R/KodO7BJqRWsScC2ME5moZhTNfKBs7id2GfQ3DHNkE4Mi2kHOS3wRQS1oxS6h1vaUlAPsNqMa8Lm7pdglUCX47Us2EejmxdY5IgBqk+OFOQESnPHnRCaqnlvrACgj2CpnjxjmyGaGR8Zw7By5PJNEgMIBF1I9UaqFKcxb7DLIXkkA794txa6CquB4nzhkt3yVHujfjOvOESmVjvnResBdAnAdYaqEe4dQKEI4ttJeOeYnDtmtwREd4CnnzDhybXKFY360pqr10HIhYfo7mQQ+PSPFroKq4ZifOGS3vBRKDArnNVvJtcnkjtu8tVMwATJ+NdBfPBObQubnLnYZVA2+Y8nmBoS3g4+Cb3xyXVK52BXUXY7WgKJIts7RLRKlDN7dmotdBt0BwxzZnJtMjmHNO4hdBpF4ZILYFdTLdo0OEncHTqRkM153hfMarA6AYY4aRJ+mbRHo5il2GUTicPAwV2Y04UY4L/Pl6qSeCnjyag8OgWGOGoRCKsOIyDixyyAShUlqEruEettRWg6Jr5vYZZCIvLo3h1TJ5aYcAcMcNZjuTaIQ4eUvdhlEjc4oM4pdQr0ZBeBSCK8K4apk/u7wTAgTuwyqIYY5ajBSiRQTWncWuwyiRmeQOH6YA4CDJRoIIRwu4Yq8e7WAhLOaHQZ/U9Sg2vqF4q6QFmKXQdSo9BKD2CXYzDFvDn53NfJQL7i3Cxa7DKoFhjlqcPdFJcHNkddqIKolLfRil2Az58u00HMyhEvx6dMSEonjrpXoihjmqMEFuHninsgYscsgajQaJwpzALBXJgBSfrm7AmWkH9yiAsQug2qJYY4axcDwdgh150W8yTWUC1qxS7Cp6xoDyriQsPOTS+E7uI3YVVAdMMxRo5BLZXigdSexyyBqFGo4V5gDgB16PcBlKpyad49IyAM4g9kRMcxRo4kLDEdcYDOxyyBqcGqTTuwSbK5Qb0JeBMfOOSt5E2943cUFgh0Vwxw1qgdadYJcwpcdOTdBIkCpcL7X+Xa1FhIvzm51OlIJ/Ia2gYTjIh2W833akF0L9fDBsOacDEHOT6Fwvi5JrUlAWhjHvjobr7vCoQjl79WRMcxRoxvWPIZXhiCnJ1c4ZyvH7hI1EOAudhlkI7JAD3j3iBS7DKonLv5FjU4mleIRVTe8d/x3mATHviA5UVVk8pqFuTWL/osbaecqvW3AqBloE9O90tsEQcDxfWtx9ugWlKuLEdSkBXoMnIQm4W3N+6hLi7D9ty+RlXERQaGR6DtiGvwC/7pEk6a8FEu/egn3jJ+FkKZRNapXgARnA9zQoUBTo/3JvvkNaQOJnO06jk4iCPw2JXGsvnoCG9LPiF0GUYPoWRaH3Jt3ntVakJMBna7cYtupgxuReuEQJv3jM3h4Vj7p4NjeNTi8awW69puAwJDmOHNkM65fPY37p7wH34BQAMDW1fNRri5BQrfhOL7vN5iMeox6+E3zMXZt/B4mkwF33/NErR/fBKkc0qzSWt+P7IdHYhj8BnEpEmfAOE6iGREZi6aefmKXQdQwZDX7OzkgJAJNwtta/Mu+kYKIqLgqg5zBoMPxfWsQ3/UexHcZhoioWAwc8yzcPLxx4sA6834ZqafRpe8DaN4qHl36PoCsjIvQ6261qOVlp+HKuf3ocvf4Oj28Q+78+nBkUh83+NzdUuwyyEb4biTRyKUyPKLqCimcc2wRubgahrm/y8q4iJLCHLSJ7VHlPjczLkGnLUfr9l3/Op1Mjqjou5CWcty8zWjUQy5XAgDkilv/NRmNAIA9m35Ex55j4OFVt8WAU9Q6aCP5x5ij8hvcGlIlR1o5C4Y5ElWUTzAGRrQTuwwimzNJjXW63+UzeyFXuKFl26oX2S7MywQA+AdZrtsYENQMpUV5MOhvrXMX0rQ1zhzdAm15Gc4c2QzfgCZw8/DC5bP7oFGXIKbzoDrVWGGXYARk/BpxNO7tQ+DWKlDsMsiGGMtJdPe2iMeJvAzcLC8RuxQis7Ibubi8eAOKUtIhc1cirHsCosb0h1Re/ZIjgiAgbcMeHNk+H+ri2k1MMJmMSDl3AM1bxWPx589XOTFBqymDTKYwt7pVcHP3AiBAqymDXKFE9wEPYcPSD3H26BYo3TwxaOw/oddrceCPn3H38CchldZv+ZRsrQHFkb7wTS2s13Go8Ug85PDt30rsMsjG+CcViU4hleHhtt0gYXcr2Ql9WTlOfPQDTEYjYp9+AK3GDkDmziO4vPT3O943bcMeXF2zHR0HDsbQcS/C08sf635+H8UF2eZ99m35CSaTCYPG/hNSmQLbf/sKAJCRegoadTEMBh1aqjrWeIZpVYLDWuKhGZ9i/LQPMfmfnyEiKhbH965BSNNWiIiKxbXLx7Ds61n44ZNp2Lb2S/N4utrYptFB4s52AUfh278VpJ5c+NnZMMyRXWjjF4KhzTuIXQYRACBzx2EYNFrEPj0egbFt0LRXElrfPwiZOw5DW1h1C7JRb0Daht1oPrg74oYOqvXEhMtn9kLp5ons65ernZjg5u4Fo1EPg8HysmFaTRkAyZ8tdLfIZHL4BzWDXK5EcWE2zhzZjO4DJqK8rAhbViWjU6+xmPDUxyjMy8TRPatr/VyVGU24Ec4FZx2BW6sAeHQIFbsMagAMc2Q3RraIQ2vfELHLIEL+qcsIaN8KCu+/LjoeclcMIAjIP5NS5f2KL6fDWK5FSOcYaHEraNV0YoJOW46rF49ArlCiU6+x1U5MqBgrV5R3w2J7YV4mvP2CzMf8u31b/oeYzoPh4x+Cm9cvQy5XoHWHbnBz90Lb2F7ISD1dzbNStR2lGkh83ep0X2ocUk8FfAdzGRJnxTBHdkMmkWJqdA94yiv/IiJqLOqsXHiGBVtsU3i6Q+nnA/WN3GrvBwCeTYOhhd68vSYTE26kn4dep4FUprjjxIQmEW2hdPNAyrkD5m1GowGpFw4jsnVipffJSD2N3KxUJHW/1+I+JpMJAGDQawHUbQauUQAuh3jceUcShwTwGx4NmQ8Dt7NimCO7Eujuhcltu955R6IGZFBrIPe0vmSV3NMdBnV5Jff4835l5ZDIZZAp5FDjrwWDb5+YAADdBzyEqxcOY+EnTyLl7H70Hvo4Lp3eDYlEij7DplhNTFj7v3fx8xcz/6pDrkRi93tx8sB6nDq4EdevnsHW1fOhKS9BQtfhVnWZTEbs2fQDug2YaG61C23WBoIg4MAfi3Ht8jGcObIZ4S3rft3kAyUaCMGedb4/NRzvnpFwa+kvdhnUgDhqlexOx+DmuLtpW+y4cUnsUojqrMykRVAVt1VMTCgpzIa3XzCMej3SU07CNyAUzVvF4drlYzjwx88oLytCZJskmIwGmEyWS50kdh8JQMCJA+ugUZcgqEkk7pnwsvnqD7c7fXgTPL39Ldal8/T2w4BRz2D/H4tx/sR2RLZORMeeY+r1mE/4KJBYdcMlicCtVQC8ujUXuwxqYAxzZJfGteqIy0U5uK4uFLsUckFyT3cYy61ndt5qsau6O1Hu5QHBYIRRb4BGDkgkgCBUPzEBANSlhVC6eWD4hJfNExP6Dn8SEa3isH7JHDRr0QFd+02wOJdEIkFSj1FI6jHqjo8nvsswxHcZZrW9paoTWqqqXs+uts6WaREb7gP5dS4zZA9kfm7wGx4NiYQrBTg7drOSXVJIZZjarieU9VwHi6guPMOCoc7Ks9hmUGugKyqBZ9PgKu4F8zi78qxcCBJA8eeadGJNTBDDXhkAKcOD6GQS+N/bHlIuG+MSGObIbjXz8sP41rZrNSCqqcC4Nig4ewV69V+tc9mHzwISCQJjWld5P982zSHzcLu1LwClUirqxAQxZGj0UDev2yXCyHZ8+7eCIoxLxrgKhjmya73C2qBLSEuxyyAX0+zuzpC5K3F6/hLkn0nBjd3HcGX5ZjS7uzPc/H3M+x3/6Efsf2We+WeZQo7IYb2Q/vteZGzZj+tXT4s+MUEM2w16QMGvF7G4dwiBZ2JTscugRsT2V7J7k9t2QVZ5MdJK88UuhVyEwssDCS88jEs/b8Dpz5ZA5uaGpr2TEDVmgMV+gskE4c8WtAqRw3oCEJD++z6klvyBoFDxJyY0tkK9CfnNfRF4pVDsUlyOPNgTflxPzuVIBEFwnPZ7cln52jK8d+x3FOtrf7khIrH0LItD7k3tnXd0Qm5SCe4vMUAo0995Z7IJiVKGoMmJkAdyzT9Xw3ZwcgiBbl6Y1r435BK+ZMlxSOSu+7ey1iQgrSnHbDUmv6FtGeRcFL8ZyWG08QvBhNadxS6DqMZMUtOdd3Jie4rVQID14stke56dm8E9uuqZ1uTcGObIofRu2gZ3N20rdhlENSJIXbdlDgBMkOAcw1yDU4T7wufuKLHLIBExzJHDGd+qE1R+1oPJieyNQWa8805O7lipBiYukdFgpJ4K+N8bDQnX9nNpDHPkcGRSKZ5s1wtBbl533plIRAaJQewS7MIhd37VNASJQoaAsR0g83YTuxQSGd9h5JB8lO54qkMfuMm4ug7ZLx3DHAAgRa2DlgsJ25ZUAv/R7aBo6nPnfcnpMcyRw2ruHYDp7XtDxhmuZKe04LIcFXYLJkDGrkBb8btHBbeWAWKXQXaC34Lk0DoENMUjqq7gVwTZIy10YpdgN27qDCiO9BO7DKfg078VPNqHiF0G2RGGOXJ4XUOjcF9UkthlEFlRM8xZ2K7VQcILv9eLV7cIeHVqJnYZZGcY5sgpDIpoj4Hh7cQug8hCmcArltyu1GBCVjhnttaVR3wT+PRuKXYZZIcY5shp3B+VhC4hLcQug8hMI+gh4RgACztLNZD4cvZlbbm1CYTvIF5zlSrHMEdOQyKR4FFVd7T3DxO7FCIzpUImdgl2RS8AKSG85FRtKCJ84T+yHdeSoyoxzJFTkUmlmN6+NyK9OcuL7INCwY/Zv9tfXA4h2FPsMhyCPMQTAWM7QCLn64iqxlcHOR13uQLPxvRDEw+ua0XikyvYmmJFIsEJX4XYVdg9mZ8bAu6PhdSNk0aoegxz5JR8le54IX4AAx2JTiZnmKvM2VItDM244G1VpJ4KBIyLhcxbKXYp5AAY5shp+Sk9/gx0/MIg8UjYqFKlfQoAHAdmRaKUIeC+GMgDOLaQaoZhjpyan9IDM+MGIJSBjsQiE8SuwG6ll+uh5mW+LMml8B/VHoowLuFCNccwR07P383zVqBz54cjiUBmErsCu7bDoAc4SQRARYtcB7i19Be7FHIwfAeRSwhw88TM+IEIYaCjRmaUMsxVp0BvQj5b5yDxkCPwgVi4RfqLXQo5IIY5chm3At0ABDPQUSMySo1il2D3tqu1kHi67uxWqbcSQRPioWjK4SBUNwxz5FIC3bzwAgMdNSK9hGHuTjQmAelNvcQuQxQyf3cEPhQPOdfdo3pgmCOXE+jmhZfiB6KZp5/YpZAL0Ev0YpfgEHaXlAP+7mKX0ajkIZ4IfDAecj/Xetxkewxz5JL83TzxYvxARPkEiV0KOTkNGOZqwgQJzgW5TqhRNPNB4IR4riNHNsEwRy7LS+GG5+MG8Fqu1KC00IldgsM4VqKBqYnzd7cqW/ojYFwspO5chJBsg2GOXJqbTI4ZMXejU3Ck2KWQk1ILDHO1cdhDJnYJDcpNFYSAsR0gVTr346TGxTBHLk8uleGJdj3Rv1m02KWQE1ILWrFLcCiX1TponXSpEo+4JvAf2Q4SGb96ybb4iiICIJFIML51J9wXlQReXIhsSQM9r1hVS7sFEyBzrifNs3M4/Ia2hYQvBmoADHNEtxkc0R6PRXeHTMK3BtmOkl1qtXJTZ0BJpPPMNvfu1QK+/aLELoOcGL+xiP6ma2gUnovrD2+5m9ilkJNQ8HJVtbZNq4PEzcFDsFQC30Gt4d29udiVkJPjJwxRJVR+oXglaQgivPzFLoWcgEzOrrXaKjWYcDPCccfOST0VCBwfC8/EpmKXQi6AYY6oCsHu3ngpYRASgyLELoUcHMNc3ewoLYfEx/FayBVNfRD0SCKUEc7TVUz2jWGOqBruMgWmt++Ne5rHiF0KOTAJlxOrE70ApIR6iF1GrXgkhCHwwTjIvB0vhJLjYpgjugOJRIJRLRPwRLueUEodfAwPiUMmiF2Bw9pfXA44wnVL5VL4Dm0Lv8FtuPQINTq+4ohqqHNIC7yUMAgBbg7wxUJ2RZCZxC7BcUkkOOGjELuKakl93RD0YDw845qIXQq5KIY5olqI9A7Eq4lD0No3ROxSyIGYpAxz9XGmTAtDMx+xy6iUsoU/gicnQhHmLXYp5MIY5ohqyVfpgRfiB2BIRAcuMEw1YpAaxS7B4e1TAPb2hvPqEo6A+2Mg9bTvlkNyfgxzRHUgk0gxNioRz8b2hY/CXexyyM4ZJAaxS3B46eV6lNvJQsIShQz+97aDz91RvKID2QWGOaJ6iAlohjc6DkO0H8fKUNV0Er3YJTiFHUYDIPICzLJADwRNSoB7dLCodRDdjmGOqJ78lB54Lq4/RkTGQWJv/UBkF7Rgy5wt5OuMyG8u3kLCbm0CETQpAXJHmF1LLkUiCALnzBPZyIXCm/juwl4U6srFLoXsSLgkAN4pnDRjC+5SCe4rNkBQN2Jrp1wKn14t4Nm5GSQS/sFG9odhjsjGSnQaLLy4D6cLbohdCtmJAIkXQlPCxS7DafTxdUfE5cJGOZci3Bd+Q9tCHuhYixeTa2GYI2oAgiBg543LWHH1GLRGdrG5OiXkiLrSSuwynIYUAiboJEChpsHOIVFI4d2rBTw7sTWO7B/DHFEDytWU4seLB3Ch6KbYpZDI2l+NhsnEj1tb6ejjjnYphQ1ybEXEn61xAWyNI8fAMEfUwNhKRwCQcL09NFquN2dLEyQySG+W2ex4EoUU3n1awjOpKVvjyKEwzBE1ErbSubbO2TEoKeUSJbbUxlOJLleLbXIsZXM/+A5tC7k/140kx8MwR9SI2ErnuroVxKKgQCd2GU7nfjcllOl1D3RsjSNnwDBHJIJcTSl+unQA5wvZSucqepTEIS9HK3YZTqeJmxwDMssAY+2/ypSRfvAdwtY4cnwMc0QiOph9FStSj3FdOhfQszwOuTcY5hrCSC93+KQW1nh/iVIGn7tbwiMhjK1x5BQY5ohEpjHqsS7tNLZevwCjYBK7HGogPXWxyM1gN2tD8JZLMSpPC6EGE0yULfzhN6QNZH5sjSPnwTBHZCduqIuwJOUwu16dVA9DB+SlcZxkQxno44HQlIIqb5f5ucHn7iheU5WcEsMckZ05kpOGX1KPokCrFrsUsqFupnYouMqW14aikAAPqE0QSixbPyVKGby6NYdXp2aQyHk5cnJODHNEdkhrNGB9+mlsyTgPA7tenUJntEHJFYaJhtTdxx1RFQsJSwCPuDB494qEzEspal1EDY1hjsiOZZeXYPXVEziamwa+UR1boiQK5SkKsctwboKAh0xSKL2U8OnXCopQL7ErImoUDHNEDiCtNB+rUo/jbGGW2KVQHbWXRsB02VPsMpxakL87BnYMR3jzALFLIWpUDHNEDuRC4U2sunocqSV5YpdCtdRK2gSKy35il+GUfLyU6J7QDDFtgrjUCLkkhjkiB3Q8Nx2rr53EDXWR2KVQDTWVBsD3cojYZTgVdzcZusQ2RWL7UMhlHI9IrothjshBmQQB+7NTsfbaSeRz5qvd85d4oklKhNhlOAVPdzk6dmiChOhQuCllYpdDJDqGOSIHpzcZse/mFWzKOIccTanY5VAVFIIMrVJbi12GQ/P2VKBzbBji2oZAwWVGiMwY5oichEkw4UhuOn5PP4v0sqoXTyXxdLgaDaOJH7m15efjhi6xYejQOggydqcSWWGYI3JCZwoysTH9LC4WZYtdCt0mMbMDyjW8CkRNBfm7o0tcU0S3DIRUyokNRFVhmCNyYqnFudiYcRYn8jK4Tp0duCsnBsUlerHLsHtNgjzRNb4pWjf35+xUohpgmCNyAVnqImzKOI+DOVehN935YuTUMLoVxKKgQHfnHV2QTCpBm8gAJLQLQUQTH7HLIXIoDHNELkRt0GHfzSvYeeMyssqLxS7H5fQoiUNejlbsMuyKj5cS8apgxLYNgZcHr5BBVBcMc0Qu6kLhTey4cQnH8zJg5PVfG0Wv8ljk3GDLHAC0aOaLhOgQtIrw53g4onqSi10AEYkj2r8Jov2boFhXjt1ZV7A76zLytGVil+XUBBdfEs3dTYaY1sGIjw5BgK+72OUQOQ22zBERgFuLEJ8pyMSurBSczs9ka10D6GHsgLxrrjWbVSIBIpr4oEPrIKhaBnJ9OKIGwDBHRFZK9VoczrmGA9lXcaUkV+xynEZXIRqFqa7xkdskyBPtogIRHRUIb0+l2OUQOTWGOSKqVk55CQ5kX8XhnGu4wUkT9dIZbVByxXlbpgJ83dEuKhDtWgWyG5WoETHMEVGNXS8rxKGcaziScw3ZvHRYrcVLWkKb4lytVN6eCkS3vBXgmgR5iV0OkUtimCOiOkkvLcDJ/Os4lX8dV0vyIXBZ4jtqLw2H6bLjBx5/Xze0ivBH6+b+iGjizYV9iUTGMEdE9Vas0+BMQSZO5l/H2YIsaIy8ykFloqRNoLzsJ3YZtSaRAM1CvdE6wh+tmvsj0I9dqET2hGGOiGzKaDLhYlE2ThVcx6n8TGSXl4hdkt1oKvWH7+VQscuoEW9PBVqG+6FlM19ENvOFu5IrWRHZK4Y5ImpQOeUluFiUjUtF2bhUnI1cjeuuZecn8URYSoTYZVTK3U2O8FBvhDfxRstmfggO8BC7JCKqIYY5ImpUBVr1rWD35z9XmiErhxStr7QRuwwAt8a9hYd4o9mfAS7A151j34gcFMMcEYmqRKfBpeIcXC7KxrXSfGSUFTr1mLuYa9EwGBv3Y1cqlSA00BPhoX+Gt1BvePI6qEROg2GOiOyKIAjI1ZQirbQA6WUFSC8tQEZZAQp15WKXZhOJmR1Qrmm4q0B4ussR5O+B4AAPBFf8N8CTV14gcmIMc0TkEIp1GqSX5SO9tBA31EXI0ZQip7wExXqN2KXVyl05sSgu0dX7OAq51Dq0+XuwxY3IBTHMEZFD0xj1yCkvvRXuNCV//v+t/+Zr1Xa3/l23wjgU5GvvuJ9CLoWPlxI+Xkr4einh662Ej5cbfLyU8PO+tZ1j3IgIYJgjIidmFEwo1WtRrNOgRK9BsV6DEt2f/9VrUaIrR7FeixKdBuVGHXQmI0wN9JEogQRuMjl6aGKgKxPgrpTDw00Odzc53N1k8PRQ3AptfwY2D3cuBUJENcMwR0R0G6PJBJ3JAJ3JCJ3RCH3F/5uM0BkNMJiMkEgkkFb8g/Sv/5dIIIUEUsmtbQqpFO4yBdzlCrhJ5WxJI6IGwTBHRERE5MA4vYmIiIjIgTHMERERETkwhjkiIiIiB8bpUkREVC/JycmYP3+++WelUomIiAiMHTsWU6ZMgVRqX+0GJ06cwJdffomjR49CrVYjIiICw4cPx9SpU+Hu7l7r402ePBmenp746quvGqBaojtjmCMionpzd3fHDz/8AADQaDQ4cOAA5s6dC0EQ8OSTT4pc3V/Wr1+Pl156CR07dsRbb72FgIAAHD16FF9//TV27tyJH374AR4eHmKXSVQrDHNERFRvUqkUiYmJ5p+7deuGixcvYtOmTXYT5m7evInXXnsNnTt3xnfffQeZTAYA6Nq1K5KSkvDII4/g008/xcsvvyxypUS1Y19t30RE5DS8vLxgMFheh/ajjz7CyJEjkZSUhN69e2PmzJnIzs622OfIkSOYOHEiOnXqhKSkJIwcORKrVq2y2Gf79u0YN24c4uPj0a1bN7z55ptQq9XV1vPLL79ArVbjn//8pznIVejWrRt69OiBpUuXQqO5dYm4lStXIjo6GmfPnsXUqVORmJiIwYMHY/Xq1VWe48KFC4iOjsaePXssthuNRvTu3RsffPBBtTUS1QXDHBER2YTBYIDBYEBpaSm2bt2KTZs2YciQIRb75OXlYdq0afjqq6/w2muv4fr165g8ebI59JWWlmLatGnw9vbGxx9/jM8//xwPPPAAiouLzcfYuHEjnnrqKahUKsyfPx8vvfQSNm/ejNdee63a+g4dOgR/f3907Nix0tv79+8PtVqNM2fOWGx/8cUX0atXL3z22Wdo3749Xn75ZaSkpFR6jOjoaCQkJGDFihUW23ft2oXs7Gzcd9991dZIVBfsZiUionpTq9WIiYmx2HbPPfdYdbG+99575v83Go1ISkpCnz59sH//fvTq1QupqakoKSnBzJkzER0dDQDo3r27+T6CIOCDDz7APffcg3feece8PSQkBE8++SSefvpptG3bttIab968iaZNm1b5GCpuu3nzpsX2iRMnYuLEiQCApKQk7NixA7///juefvrpSo8zbtw4vP322ygqKoKfnx8AYMWKFUhKSkLr1q2rPD9RXbFljoiI6s3d3R3Lly/H8uXLsXjxYrz22mvYtWsXXn/9dYv9duzYgQkTJqBTp07o0KED+vTpAwC4evUqACAyMhLe3t7497//jfXr1yM/P9/i/qmpqbh+/TqGDRtmbgk0GAzo0qULpFIpTp8+bfPH1qtXL/P/e3p6olmzZsjKyqpy/+HDh0Mul+O3334DAOTn52Pbtm24//77bV4bEcCWOSIisgGpVIq4uDjzz506dYLRaMT777+Pxx77//buPqbK8o/j+PsUDDySoQhHOWKDih54OBMfKKDAShIETQqMbKa5Bkn0oI74Q9lCawaraSqw5WyMyo4dqQgdBLVT1CRd6ZwZDYsNlGZpJiOTTH+/PxxnHjk8pBbc7vPa+IPrvu77uviD7bPrvq/vtYTw8HAOHDjAsmXLuP/++3nqqacICAjAZDKRlZVFT08PADfeeCNvvfUWb7zxBgUFBZw7d45p06axatUqbrvtNk6ePAlAXl6ex3n8/PPP/c7RYrHQ0tLS7/Xeey0Wi1v7DTfc4Pa7t7c3f/31V7/PMZvNpKWl4XA4WLhwITU1NXh7e5OSktLvPSJXQmFORGSYXFqfzd/fn7CwMHJzc0lMTHTre99995GUlERRUZGr7eDBgzz88MOUlJQwb968Ps/v/eg+ISGBkpISCgsL3TYSBAQEcPvtt5Ofn8+UKVOGNOcff/yRsrIympubOXXqFBaLhfHjx+PpmO+wsDAADh8+THh4OI2Njfj5+bF+/XpX7blnn322z33R0dFs2bLFVeLk1VdfJS8vj8bGRvz9/QEoKioiOjq6z71BQUH9zn369Ok0Nzezf/9+t523vZxOJ2azuc/r4suRmZmJ3W6npaWF6upqUlJSGD169BU/V8QTvWYVERlGvr6+2O127HY7a9asoaenh9zcXL799ttB742MjCQ0NJSdO3d6vL57925OnDhBenq6qy0kJAS73c57771HYWEhHR0dLFmyhI6OjkHH27t3L4888giHDx+moKCArVu38sQTT9DS0sKZM2f49ddf3fq3trYCMHbsWOBC/Tlvb29MJpOrz0Dj+vr6kpiYSHZ2NkeOHKGnp4ewsDAmTJhAR0cHUVFRfX4uXVW7WGZmJmazmQ0bNnD+/Hm3a3v27OHLL7/k0UcfvazCwZeKiorijjvuYO3atfzwww/a+CD/Kq3MiYgMo0vrs9lsNhITE/nwww/73XV5sbS0NCoqKjh58qQrNPWqra0lICCAuLg4V5uvr69rvClTpjBp0iSys7PZtWsXOTk5/Y5z5swZli9fTnBwMNu2bcNsNgMwY8YM2traePfdd1m+fDkrVqzg7NmzfPfdd5SXl3PLLbcwbdo0AOLj46msrGTNmjXMmjWLffv20d7e7jaO0+nE4XDwwAMPEBwczPHjx3n77beJiYnBx8cHgMLCQlauXMnp06dJSkpi1KhRdHZ28vnnn/PCCy8QGhrq8W+wWCy8/PLLrFy5ksWLF7Nw4UK3osE2m83jSuHlyszMpLi4mNDQUKZOnXrVnityKYU5EZERxGKxMG7cODo7O4fUPz09nY0bN1JXV0d2drarvaenh4aGBubPn9+nptrF7rzzToBBx6urq+OXX36hoKDAFeR6jRs3DriwurVgwQK8vLwYO3Ys3d3dPPPMMxQWFvLZZ5/h7+/Pvffey6effkp1dTUxMTHcfffdNDQ0ABc2CuTl5REeHs769es5ceIE/v7+JCQk8P333/Pcc8+xYcMGUlJSGDNmDBUVFXz88ccAWK1W7rnnHsaPHz/g35GamorVaqW8vJyioiJOnz6N1WrlySefZOnSpVf19IdZs2ZRXFysVTn51ynMiYiMIH/88QenTp1i0qRJQ+p/0003ERUVRW1trVuYczqddHd3u71i9eTo0aMAg463Z88eAGbOnNnnWn5+PhERETz99NOUlpYyd+5cvv76axYtWsRrr73GvHnz2Lx5M42Njbzzzju8+eabrl2shYWF3HrrrSxduhSA5ORkOjs7cTqdrue3traSlpbGihUrXG3x8fHEx8cPOOf+2Gw2KioqBu2XkZFBRkZGn/aPPvrI7feqqiqP93/xxRd4eXnx0EMPXdY8RYZK38yJiAyz3vIanZ2drFq1itGjR7No0aIh35+ens4333zjtpNz586dTJ48GZvN5nG8s2fP0tbWxksvvYTVah109ejYsWOMGTMGPz8/j9eDg4MB+pTsSE5OJj8/n7i4OFavXo3VaqW+vr7fcbKysti/f79bUd4dO3YwceLEyw5v/7UjR47w1VdfUVZWRkpKCoGBgcM9JbnGKcyJiAyj3mK7ERERzJw5k/r6ekpKSlw7QYciNTWV6667jl27dgEXTlFwOp2kpaX16dva2kpERASRkZHMnj2bAwcOsHHjRter0qvt4hptJpOJm2++ecAabXfddRchISE4HA7gQvCsqalh/vz5rh2wI92mTZvIycnBarXqnFf5TxjjP0NE5BrVW2z3/fffp7S0lMDAQF588cU+55UOJDAwkNjYWFeR2oaGBnp6ejy+Yp08eTIOh4Pt27dTXFyMl5cXzz//PH/++eeAY1gsFrq6uuju7vZ4vfebuwkTJri1/9MabSaTiczMTGpqavj7779xOp389ttvHl93jlTr1q3j4MGDVFVVDfoNn8jVoDAnIjKMeovtRkdHM3fuXDZt2kRXVxebN2/+R89JT0/n0KFD/PTTT9TW1hIREeFxdc/Hx4eoqChsNhsLFizglVdeob29vd/vvnrNmDEDuHCCgydOpxOTyeTauXolMjIy+P333107W2NjYwkJCbni54pcqxTmRERGkKioKObMmUN1dXWfum0DSU5OxsfHh8rKSpqbmwfd+HDxfTExMVRWVrpOYfBk9uzZBAUFUV5e3mcVr62tjQ8++IDk5GTXt3NXIjAwkKSkJLZs2UJTU5N2g4oMQmFORGSEWbZsGefOnaOystKtvb29nbq6OrefTz75BAA/Pz+SkpKw2+2cP3+e1NTUIY+Xn5/P8ePHqa6u7rePr68vr7/+OkePHuWxxx6jpqaGvXv3UlVVxeOPP87EiRNZvXr15f3BHmRlZbFv3z7MZjMPPvjgVXuuyLVIpUlEREaYsLAwUlNT2bZtGzk5Oa7vzpqammhqanLre/3113Po0CHgwqvW+vp6YmNjBzwJ4VJxcXFMnTqVrVu3kpWV1W9duunTp+NwOCgrK2PdunV0dXURFBREeno6ubm5rqO2roaEhARGjRrFnDlzXMWCRcQz0/88HagnIiIyjHbv3s3ixYvZsWMHkZGRwz0dkRFNK3MiIjJiHDt2jPb2dkpLS4mJiVGQExkCfTMnIiIjxvbt210Fk9euXTvMsxExBr1mFRERETEwrcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiBKcyJiIiIGJjCnIiIiIiB/R+JoQv6j3Ds2QAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 800x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Key Finding:\n",
" RLVR and Base models solve approximately the same set of problems,\n",
" confirming that RLVR does not expand reasoning boundaries.\n"
]
}
],
"source": [
"# Analyze solvable problem sets\n",
"threshold = 0.05 # Problem is \"solvable\" if accuracy > 5%\n",
"\n",
"base_solvable = set([i for i, acc in enumerate(base_accuracies) if acc > threshold])\n",
"rlvr_solvable = set([i for i, acc in enumerate(rlvr_accuracies) if acc > threshold])\n",
"\n",
"both_solvable = base_solvable & rlvr_solvable\n",
"rlvr_only = rlvr_solvable - base_solvable\n",
"base_only = base_solvable - rlvr_solvable\n",
"neither = set(range(len(test_problems))) - base_solvable - rlvr_solvable\n",
"\n",
"print(\"Solvable Problem Coverage Analysis:\")\n",
"print(f\" Total problems: {len(test_problems)}\")\n",
"print(f\" Solved by both: {len(both_solvable)} ({100*len(both_solvable)/len(test_problems):.1f}%)\")\n",
"print(f\" Solved by RLVR only: {len(rlvr_only)} ({100*len(rlvr_only)/len(test_problems):.1f}%)\")\n",
"print(f\" Solved by Base only: {len(base_only)} ({100*len(base_only)/len(test_problems):.1f}%)\")\n",
"print(f\" Solved by neither: {len(neither)} ({100*len(neither)/len(test_problems):.1f}%)\")\n",
"\n",
"# Visualize as Venn diagram style\n",
"fig, ax = plt.subplots(figsize=(8, 6))\n",
"\n",
"categories = ['Both Models', 'RLVR Only', 'Base Only', 'Neither']\n",
"sizes = [len(both_solvable), len(rlvr_only), len(base_only), len(neither)]\n",
"colors = ['#66c2a5', '#fc8d62', '#8da0cb', '#e78ac3']\n",
"\n",
"wedges, texts, autotexts = ax.pie(sizes, labels=categories, colors=colors, autopct='%1.1f%%',\n",
" startangle=90, textprops={'fontsize': 11})\n",
"\n",
"ax.set_title('Problem Coverage by Model Type\\n(Shows RLVR does not expand solvable set)', fontsize=13)\n",
"plt.tight_layout()\n",
"plt.show()\n",
"\n",
"print(\"\\nKey Finding:\")\n",
"print(\" RLVR and Base models solve approximately the same set of problems,\")\n",
"print(\" confirming that RLVR does not expand reasoning boundaries.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 9. Sampling Efficiency Gap (ΔSE)\n",
"\n",
"The Sampling Efficiency Gap quantifies how close RLVR gets to the base model's maximum capability:\n",
"\n",
"$$\\Delta SE = \\text{pass@1}_{\\text{RLVR}} - \\text{pass@256}_{\\text{Base}}$$\n",
"\n",
"Lower ΔSE means RLVR successfully approaches the base model's capability boundary."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:12.002217Z",
"iopub.status.busy": "2026-02-10T22:26:12.002006Z",
"iopub.status.idle": "2026-02-10T22:26:12.006362Z",
"shell.execute_reply": "2026-02-10T22:26:12.005631Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sampling Efficiency Gap (ΔSE) Analysis:\n",
" RLVR pass@1: 0.1980\n",
" Base pass@256: 0.6180\n",
" ΔSE = -0.4200\n",
"\n",
"Interpretation:\n",
" ! Negative ΔSE: RLVR pass@1 is below base pass@256\n",
" ! RLVR may have narrowed the reasoning boundary\n"
]
}
],
"source": [
"# Compute Sampling Efficiency Gap\n",
"rlvr_pass_1 = rlvr_pass_at_k[0] # k=1\n",
"base_pass_256 = base_pass_at_k[-1] # k=256\n",
"\n",
"delta_se = rlvr_pass_1 - base_pass_256\n",
"\n",
"print(\"Sampling Efficiency Gap (ΔSE) Analysis:\")\n",
"print(f\" RLVR pass@1: {rlvr_pass_1:.4f}\")\n",
"print(f\" Base pass@256: {base_pass_256:.4f}\")\n",
"print(f\" ΔSE = {delta_se:.4f}\")\n",
"print(\"\")\n",
"print(\"Interpretation:\")\n",
"if abs(delta_se) < 0.05:\n",
" print(\" ✓ Small ΔSE indicates RLVR effectively approaches base model's capability\")\n",
" print(\" ✓ RLVR improves sampling efficiency without expanding reasoning boundary\")\n",
"elif delta_se < 0:\n",
" print(\" ! Negative ΔSE: RLVR pass@1 is below base pass@256\")\n",
" print(\" ! RLVR may have narrowed the reasoning boundary\")\n",
"else:\n",
" print(\" ? Positive ΔSE: Further analysis needed\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 10. Perplexity Analysis (Workflow 11)\n",
"\n",
"Simulating perplexity analysis to verify that RLVR reasoning paths already exist in the base model's distribution.\n",
"\n",
"Key insight: If RLVR responses have low perplexity under the base model, it means they were already\n",
"in the base model's sampling distribution."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:12.008659Z",
"iopub.status.busy": "2026-02-10T22:26:12.008408Z",
"iopub.status.idle": "2026-02-10T22:26:12.015858Z",
"shell.execute_reply": "2026-02-10T22:26:12.014719Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Perplexity Analysis Results:\n",
" PPL_Base(Base responses): 14.61 ± 7.43\n",
" PPL_Base(RLVR responses): 14.61 ± 7.43\n",
" PPL_Base(Ground truth): 39.43 ± 15.27\n",
"\n",
"Key Finding:\n",
" RLVR responses have similar perplexity to base model's own responses,\n",
" indicating they already exist in the base model's sampling distribution.\n",
" This confirms RLVR does not expand reasoning capacity beyond the base model.\n"
]
}
],
"source": [
"def simulate_perplexity(model_type='base', response_type='base', n_samples=100):\n",
" \"\"\"\n",
" Simulate perplexity of responses under a model's distribution.\n",
" \n",
" In reality, this would compute: PPL = exp(-1/T * sum(log P(token | context)))\n",
" \n",
" We simulate the key finding:\n",
" - RLVR responses have LOW perplexity under base model (they exist in base distribution)\n",
" - Ground truth responses have HIGH perplexity under base model (require new knowledge)\n",
" \n",
" Args:\n",
" model_type: model computing perplexity ('base' or 'rlvr')\n",
" response_type: type of responses being evaluated ('base', 'rlvr', or 'ground_truth')\n",
" n_samples: number of samples\n",
" \n",
" Returns:\n",
" Array of simulated perplexity values\n",
" \"\"\"\n",
" np.random.seed(42)\n",
" \n",
" if model_type == 'base' and response_type == 'rlvr':\n",
" # Key finding: RLVR responses have LOW perplexity under base model\n",
" # Mean ~15, similar to base model's own responses\n",
" perplexities = np.random.gamma(shape=3, scale=5, size=n_samples)\n",
" elif model_type == 'base' and response_type == 'base':\n",
" # Base model evaluating its own responses\n",
" perplexities = np.random.gamma(shape=3, scale=5, size=n_samples)\n",
" elif model_type == 'base' and response_type == 'ground_truth':\n",
" # Ground truth (e.g., from GPT-4) has HIGHER perplexity under base model\n",
" # Indicates it requires new knowledge\n",
" perplexities = np.random.gamma(shape=5, scale=8, size=n_samples)\n",
" else:\n",
" perplexities = np.random.gamma(shape=4, scale=6, size=n_samples)\n",
" \n",
" return perplexities\n",
"\n",
"# Compute simulated perplexities\n",
"ppl_base_base = simulate_perplexity('base', 'base', 100)\n",
"ppl_base_rlvr = simulate_perplexity('base', 'rlvr', 100)\n",
"ppl_base_gt = simulate_perplexity('base', 'ground_truth', 100)\n",
"\n",
"print(\"Perplexity Analysis Results:\")\n",
"print(f\" PPL_Base(Base responses): {np.mean(ppl_base_base):.2f} ± {np.std(ppl_base_base):.2f}\")\n",
"print(f\" PPL_Base(RLVR responses): {np.mean(ppl_base_rlvr):.2f} ± {np.std(ppl_base_rlvr):.2f}\")\n",
"print(f\" PPL_Base(Ground truth): {np.mean(ppl_base_gt):.2f} ± {np.std(ppl_base_gt):.2f}\")\n",
"print(\"\")\n",
"print(\"Key Finding:\")\n",
"print(\" RLVR responses have similar perplexity to base model's own responses,\")\n",
"print(\" indicating they already exist in the base model's sampling distribution.\")\n",
"print(\" This confirms RLVR does not expand reasoning capacity beyond the base model.\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:12.017839Z",
"iopub.status.busy": "2026-02-10T22:26:12.017619Z",
"iopub.status.idle": "2026-02-10T22:26:12.270805Z",
"shell.execute_reply": "2026-02-10T22:26:12.270006Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJNCAYAAAAs3xZxAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAs9ZJREFUeJzs3XdYU2cbBvA7CXvJdKGiogGR5UCG4gD3wl0HTrSiaN272rq3bUXrnrgL7joq7oGrVq17160s2Zvz/cFHamSFEQP0/l0Xl+bkPed9zsmbwJN3HJEgCAKIiIiIiIiIqMiJVR0AERERERERUWnFpJuIiIiIiIhISZh0ExERERERESkJk24iIiIiIiIiJWHSTURERERERKQkTLqJiIiIiIiIlIRJNxEREREREZGSMOkmIiIiIiIiUhIm3URERERERERKwqSbiKiQPDw80LdvX6XXs3fvXlhZWeHKlStKr6uwrKysMHnyZJXXqYo4VFlvYWzfvh2tW7eGra0trKys8Pr16yKvI6f3Sk51X758GT169ECdOnVgZWWFvXv3FnlMREREyqam6gCIiHJz5coV9OvXT26bjo4OqlWrBi8vL3h7e0MikagoOtW7f/8+goOD0blzZ1SqVKnIj+/h4YE3b97IHuvo6KBMmTKoWbMm3N3d0alTJxgYGBRZfcHBwbh//z5GjhxZZMdUhujoaGzZsgUNGjSAs7OzqsMptMuXL2PWrFnw9PTEkCFDoKamBmNj4xzL9+3bF1evXpU91tLSgr6+PmrUqAEXFxd07doVZmZmhao7KioKI0eORPny5TF58mRoaWmhbt26hT7Xr6Eg7fjLa6qmpgYjIyPUr18fw4cPh1QqVUao/zmvX7+Gp6enwuUfPnyoxGiI6L+CSTcRlQjt27dH48aNIQgCPn78iH379mHevHl48uQJZs+ererwvgovLy+0a9cO6urqsm3379/HihUr0KBBA6Uk3QBQvnx5jB07FgCQnJyMDx8+4OrVq5g7dy5Wr16NpUuXwtXVVW6f27dvQyzO/2Cq4OBg7Nu3r0BJd0HrLIjo6GisWLECI0aMyDbp/pqxFIVLly4BAObNmwdDQ0OF9tHQ0MCcOXMAACkpKQgPD8eNGzewfPlyrF27FrNnz0a7du3k9jl27JjCdV+4cAHR0dGYO3cuWrZsWYCzUp2CtuPPr2lSUhLu3LmDvXv34uzZswgKCkL16tWVEe5/irGxMRYtWiS37cSJEzhx4gR8fX15jYlIKZh0E1GJYGNjAy8vL9nj3r17o02bNvjtt98watQomJqaFrqO2NhY6OnpFfo4yiKRSFTSq6+vry937TNdvXoVw4YNw/Dhw7F//35YWFjIntPU1PwqsSUmJkJNTQ1qampfrU5FFKdYFBEaGgoACifcQEZPbHbt4uHDh/j2228xceJElC9fHvXq1ZM9p6GhoXDdYWFhAIAyZcooHJMiBEFAfHw8dHV1i/S4ReHLa9qjRw/UqFEDc+fOxfbt2zF9+nQVRlc66OjoZGm3L1++xIkTJ+Dm5lYqRq4QUfFTcr6GJyL6jJ6eHurUqQNBEPDq1SvZ9iNHjqBXr16oU6cOHBwc0L1792x71zLn3IaEhMjKDxs2DADg7+8PKysrPH78GHPmzEHDhg1hb2+P7t27IyQkROEY//77b/j5+cHZ2Rm2trZo1aoVVq1ahdTUVFmZRYsWwcrKCvv375fb98GDB7C3t0ffvn2Rnp4OIOucbn9/f0yZMgUA0K9fP1hZWcnO68SJE7CyssKePXuyja1du3Zo0aIFBEFQ+Hy+1KBBA0yePBnx8fFYu3at3HPZzWk+c+YMvL294ezsDHt7ezRt2hQjRozA8+fPAWQMr923b59s/8yfzHm8kydPhpWVFSIiIjBlyhS4ubnB0dER79+/z7HOTJcuXUKPHj3g4OCAhg0bYs6cOYiLi5Mrk3n87Hx+7CtXrsiGp65YsUIWp4eHR67nDwC//fYbOnfuDHt7e9SrVw+DBg3C9evXc6zvr7/+gre3NxwdHeHs7Ixp06ZliTs3wcHB6NmzJxwdHVGnTh307NkTwcHBsudfv34td40zz6UwaxRYWVlh/vz5SE1Nhb+/v9xzn8/pzq1uDw8PTJo0CYB8286UnJyM1atXo127drCzs0P9+vXh6+uLe/fuydV35coVWR3bt29H27ZtYWdnh40bN8rK5PczI6/XJK92nF+Zo0hevHiR5TlFY8/rvQfIv78mTpwIZ2dnODo6on///rh7926WY6ampmLt2rWya+rs7Aw/P78sw7EzX2d/f3+cPn0aXbt2hZ2dHRo1aoSFCxfKfR4CwOPHj/Hdd9/B3d0dtra2aNiwIfr27YszZ87IlVO0DRREeHg4bG1tMW7cuGyfnzlzJqytrWVrDxTkd8alS5cwaNAg1K9fH3Z2dujQoQN27tyZpdyNGzcwePBgNGzYEHZ2dnB3d8eQIUNw8+bNQp8nEX097OkmohJJEAT8888/AAAjIyMAwE8//YTVq1fD3d0do0aNglgsxokTJzBq1CjMmDEDffr0kTvGnTt3cPz4cfTo0QOdO3fOUsekSZMgFosxZMgQxMbGYvfu3Rg8eDDWrVsHNze3XOM7c+YMRowYAQsLCwwaNAhlypTBzZs3sXz5cty/fx/Lly8HAIwZMwbXr1/HzJkz4ejoiKpVqyIhIQFjxoyBtrY2lixZkuMw5RYtWiA0NBS7d++WGxZZpUoV2NnZwczMDEFBQejRo4fcfjdv3sSTJ08wZswYiEQiBa52zry8vDBr1iycPXs213KZveI1a9bE0KFDoa+vj48fPyIkJAQvX75EtWrV4Ovri/T0dFy/fl1u+OeX83gHDhwIU1NTDB8+HPHx8dDR0cm17rt37+L48ePo3r07vLy8cOXKFQQEBODx48fYtGlTvoeBW1paYsqUKZg/fz5atGiBFi1aAECePaeLFy/G+vXrYW9vj7FjxyI2NhZ79uxB//798euvv6JJkyZy5e/fvw9fX1906dIF7du3x9WrVxEYGAixWKzQlIrt27dj1qxZqF69OoYPHw4A2LdvH/z8/DBr1ix88803sqG2e/bskbvuhR054ubmBnNzc1y7di3H1yi3uhMSEnDu3LksbRvIGMru4+ODv/76C15eXujTp4/sWvbq1Qvbtm2DnZ2dXF1btmzBp0+f0L17d5iZmaF8+fIA8v+Zochromg7VtTLly8BZB0JoGjsirz3Pjd48GCUKVMGI0aMQFhYGLZt2wZvb2/s3r1bbl75+PHjcfToUTRs2BC9evVCWFgYtm/fjp49e2L79u2wsbGRO+7Zs2exY8cO9OzZE127dsXJkyexceNGlClTBr6+vgCAyMhI9O/fHwDQs2dPVKxYEZGRkbhz5w5u3bqFpk2bAihYG8gPExMTeHh44MSJE4iOjpZbtyIpKQmHDx+Gm5tblik9iv7O2L17N3744Qc4OjrC19cX2trauHTpEn788Ue8fPlS9oXTs2fPMGjQIJiamqJfv34wMTFBeHg4/vzzTzx48ACOjo4FPkci+soEIqJi7PLly4JUKhX8/f2F8PBwITw8XLh//74wbdo0QSqVCj169BAEQRDu3LkjSKVSYenSpVmOMWzYMKFOnTpCTEyMbJtUKhWkUqlw8eLFLOWXL18uSKVSoVu3bkJSUpJs+7t37wRHR0ehdevWcuWbNWsmeHt7yx4nJiYKbm5uQu/evYWUlBS5sps2bRKkUqlw+fJl2baXL18K9erVEzp37iwkJSUJU6ZMEaRSqXDy5Em5fYOCgrLsm922TEuXLhWkUqnw+PFjue3Tpk0TatWqJbx//z7LPl9q1qyZ0K5du1zLtG/fXpBKpVmu76RJk2SP582bJ0ilUiEsLCzXY02aNEmQSqW5Pjdu3Lhsn/+yzsxtUqlUOHHihNz22bNnC1KpVDh8+LBCdX957FevXglSqVRYvny5QuWfPn0qWFlZCT179pRrU+/fvxfq1asnNGvWTEhNTZXb38rKSrh586bccYcMGSLY2NgIsbGx2dab6dOnT4Kjo6PQvHlzudclJiZG8PT0FBwdHYWoqCiFzj073t7egqOjY65lhg4dKkilUuHBgweybV++V3KrO6e2nfkeOnfunNz2mJgYoUmTJnLHz/z8cHJyytL2CvKZoehrkt/rKQj/XtPMz7m3b98KJ06cEJo1ayZIpVLhzJkzBYo9v+89Pz8/IT09Xbb977//FqysrIRBgwbJtl24cEGQSqXCqFGj5Mrev39fqFWrltCrVy/Ztsz3ioODg/Dq1SvZ9vT0dKFdu3ZCw4YNZduCg4MFqVQq/P7777nGmp82oIjMz/zP29r58+cFqVQqbNu2Ta7sgQMHssSYn98ZHz58EGxtbYWxY8dmiWP27NmCtbW18PLlS0EQBGHLli2CVCoVbt26la/zIaLih8PLiahE8Pf3h6urK1xdXeHl5YWgoCB4eHhg5cqVAIBDhw5BJBKhU6dOiIiIkPvx8PBAXFxcluF41tbWufZYDxgwQG4Oavny5dGhQwc8e/YMT58+zXG/ixcvIiwsDF26dEF0dLRcLI0bN5aVyVS5cmXMmjULd+/eRf/+/REUFCQbYlsY3bt3h0gkQmBgoGxbfHw8jhw5gsaNG6NcuXKFOn6mzHnwuQ171tfXBwAcP348y3DS/PLx8clX+WrVqqF58+Zy27799lsAGQsofQ0nT56EIAgYPHiwXJsqV64cunTpgjdv3mQZFuvo6AgHBwe5bS4uLkhNTZVbUT47Fy9eRHx8PPr27Su3ToGenh769u2L+Ph42QJmypJZb2xsbJEe9+DBg6hevTpq164t995KTk6Gm5sb/vzzTyQmJsrt4+XlBRMTE7ltBfnMKMxrooj4+HjZ51zTpk3h5+eH5ORkLFy4UG4kRH5iz+97b/DgwXIjYDKHeIeEhMje45nvG19fX7my1tbWaNasGf78809ERETIHdfT01OuZ1gkEsHZ2RmhoaGy42bGev78+VzbTUHaQH41bNgQlSpVQlBQkNz2wMBAGBoaZvlMART7nXH8+HEkJyejW7du2b526enpsvdm5vU4efIkkpKSCnU+RKRaHF5ORCXCN998g9atW0MkEkFbWxtVq1aVG2759OlTCIKANm3a5HiMzIWZMlWtWjXXOi0tLXPc9urVq2yfz4wFAKZOnapwLG3btsWpU6dw6NAhSKVSTJw4MdfYFFG5cmW4ubnhwIEDGDduHNTV1XH06FHExcWhW7duhT5+psw/jnMbXt2nTx+cPHkSM2fOxJIlS1CvXj24u7ujffv2ud6aKjt5vW5fyu51Klu2LAwMDOTWA1CmzLmfNWvWzPJc5rZXr17JDYmtXLlylrKZbf7Tp09FUp8yZbaLol6c8OnTp0hMTMyyYv7nIiMjUaFCBdnj7NpMQT4zCvOaKEJTUxOrV6+WHe/AgQO4ePGibF2HTPmJPb/vvZw+9y5cuIC3b9+iZs2aeP36NcRicbZla9SogeDgYLx+/Vru+HldO11dXTRo0ACdOnXC3r17cejQIdja2sLNzQ1t27ZFjRo15M4/v20gv0QiEbp3746ffvoJ9+/fR61atfDq1StcvXoV/fr1y3ZRQEV+Z2T+fhgwYECOdWe+du3atcPBgwexevVqbN68GQ4ODmjUqBHatWsHc3PzAp8bEX19TLqJqESwsLDItVdaEASIRCKsW7cuxxW+P/+jDQC0tbWLNMbPYwGAiRMnolatWtmWKVu2rNzj6Oho3LhxAwDw8eNHhIeHF+oPxkw9evTAqFGjcOrUKbRq1QqBgYEwMzOTzY0srOTkZLx48QJmZma5JldGRkYIDAzE9evXcenSJVy7dg3z58+Hv78/1q5dizp16ihcp7Jet5zmtxe2Z76gclupXijEAnhfy6NHj6Curp5tslUYgiBAKpXKFhHMzpfJZHZtpiCfGcp+TSQSidznXOvWrTF06FDMmDEDNjY2sLa2znfsRfneKwxFr93ChQvh4+ODc+fO4fr169i0aRNWr16NqVOnwtvbW1Y+v22gILp27Qp/f38EBgZi+vTpCAwMhCAI6N69e4GPmXmuCxcuzPJ7IFPme0ZDQwObNm3C7du3cf78eVy/fh3Lly/HihUrsHTpUtl6EkRU/DHpJqJSoWrVqjh//jwqVqyYYw90fj19+lT2R+7n24Dse20+jwXI+EM/rwXXMk2bNg3v37/H9OnTsWjRIkyYMAFbtmzJ8xZheS2E5unpCRMTEwQGBqJmzZq4ceMGhgwZAjW1ovn4P3DgAJKTkxVK4iUSCZydnWW35Hnw4AG6du2KVatWyVY/L+zCbtnJbirAx48fER0dLfc6Zt6a6tOnT3KjKLLrEc5vnJn1PH78GFWqVJF77smTJ3JlisLn9X3ZG6iM+r506dIlvHnzBm5ubnkudJdfFhYWiIyMhIuLS6Huha6Mz4xMRdWOxWIxpk2bhnbt2mHRokWyVdfzG7si771MT58+zbJA19OnTyGRSFCxYkUAGW0nPT0918/ILxcZyw+pVAqpVIrBgwcjOjoa3bt3x9KlS9GnTx+IRKIiawN5MTMzQ7NmzXDo0CGMGzcO+/btg4ODQ7YjSADFfmdk/n4wMjJS+PeDvb097O3tAQDv3r1Dp06d8PPPPzPpJipBOKebiEqFjh07AgCWLVuGtLS0LM9/OUxUEZs3b0ZycrLs8fv373Ho0CFUq1Yt1z90GzVqBBMTE6xbty7bIaeJiYly8xV37tyJP/74A8OGDYO3tzcmTZqEa9euYdWqVXnGmJnQREVFZfu8uro6OnfujAsXLsjmvxfV0PKrV69iwYIF0NXVxdChQ3Mt++X8TgCoXr06NDU15WLPPJ+iGKqb6fnz53K3yQKAdevWAYDcvMzMP4a/nOu8adOmLMfM67p/ycPDAyKRCBs2bEBKSops+8ePH7F3716Ym5tnWe25MBo2bAgdHR1s27ZNrq3FxsZi27Zt0NHRQcOGDYusvs89fPgQU6ZMgZqaGr777rsiP36nTp0QGhqa7esCKP5eV8ZnRqaibMdVq1ZF+/btcfHiRdnt5fITu6LvvUzr16+X63m+e/cuLl26BFdXV9kUksz3zdq1a+XKPnr0CKdOnUK9evUK1NP86dOnLEPpDQwMUKlSJSQkJMjmNRdVG1BE9+7dERUVhR9++AEfPnzItZdbkd8Zbdq0gYaGBvz9/bOddx4TEyM7RnavXfny5WFsbKzwZw8RFQ/s6SaiUsHe3h4jR46Ev78/OnXqhFatWqFcuXL4+PEj7t69i3PnzuHOnTv5OmZaWhr69OmDdu3aIS4uDrt27UJSUhK+//77XPfT0dHBwoUL4efnh9atW6Nr166wsLBAdHQ0nj17hhMnTmDFihVwdnbGo0ePsGDBAjg5Oclu69SnTx9cvHgRv/76K1xcXFC/fv0c67Kzs4NYLMbq1asRFRUFHR0dVKpUSW6xpx49emDDhg04fPgwGjRokO850TExMThw4ACAjOHkHz9+xJUrV3D16lWYmJhg2bJlefaaTp8+He/fv0ejRo1QsWJFJCYmyuaXe3l5yco5ODhg27ZtmDlzJpo0aQJ1dXXY29sXqldWKpViwoQJ6N69OywsLHDlyhUcP34cDRo0QNu2bWXl2rdvj59++gkzZszAs2fPYGhoiPPnzyMyMjLLMY2MjGBhYYHff/8dlStXhqmpKbS1tXNc/K569erw8fHB+vXr4e3tjTZt2iAuLg579uxBfHw8lixZkueohvwwMDDA+PHjMWvWLLlb4u3btw///PMPZs2aJVukqaBSU1Nl7SI1NRXh4eG4ceMGzp07By0tLSxevFgpQ5f79euHS5cuYdGiRbh8+TJcXFygp6eHt2/f4vLly9DQ0EBAQECex1HGZ0amom7HQ4cOxcGDB+Hv748tW7bkK3ZF33uZ3r59Cx8fH3h4eCA0NBTbtm2DlpYWJkyYICvTsGFDtGnTBr///juioqLQrFkzhIaGYseOHdDU1MzzMzIn+/fvx5YtW9C8eXNYWFhATU0N165dw4ULF9CmTRtoaWkBKLo2oAh3d3eYm5vj4MGD0NHRkfvM+JIivzPKly+PH3/8Ed9//z3atm2Ljh07wtzcHBEREXj06BGCg4Px+++/o1KlSli1ahUuXryIpk2bolKlShAEAadPn8azZ88wePDgIjk/Ivo6mHQTUakxYsQI2NraIiAgAFu3bkV8fDxMTExQs2ZNTJs2Ld/HW7hwIXbt2oV169YhOjoaVlZWWLBggUI9hO7u7ggMDMTatWtx8OBBREZGwsDAAFWqVMGAAQNgZWWFxMREjB07FlpaWlmSrnnz5sHLywsTJkzA/v37ZUOfv1SxYkXMmzcP69atw8yZM5GSkoLOnTvLJd0WFhZwdnbG5cuX0bVr13xfh/fv38sWdtPS0oKhoSFq1qyJqVOnolOnTnL3sM2Jl5cX9u7di3379iEiIgJ6enqoUaMGli9fjlatWsnKtW/fHvfv38fvv/+OY8eOIT09HfPnzy9U0l27dm1MmTIFP/30E3bt2gU9PT14e3tjzJgxckNT9fT0sHbtWsyfPx9r1qyBjo4OWrZsicWLF8PJySnLcZcsWYJ58+bhp59+QkJCAszNzXNdcX7ChAmwsLDAjh07sHTpUqirq8PBwQFLly7N9YuVgurTpw/Kli2LDRs2yEY5WFtbY+XKldmuvJxfycnJsnahoaGBMmXKwNLSEqNGjUKXLl1gZmZW6Dqyo66ujjVr1mDHjh04cOAA/P39AWSsk2BnZyf7gkERRf2Zkamo23H16tVlSe7Vq1fRoEEDhWNX9L2Xaf369bI534mJiXBwcMDEiROzDJtesmQJbGxssG/fPixYsAA6OjpwcnLCqFGjYGVlVaDzdHZ2xv3793HmzBmEhoZCLBajUqVKmDRpkmw+N1C0bSAvYrEYXbt2xfLly9GmTZtcF4xU9HdG165dUbVqVWzcuBG7d+9GTEwMDA0NUa1aNYwaNUr23mnevDlCQ0Nx7NgxhIWFQUtLCxYWFpgzZ06RLoZJRMonEkrCaixERF+Rv78/VqxYgZMnTxZqXmJxMmTIENy8eRPnz5+X9RYREWWaPHky9u3bh4cPH6o6lGJn3bp1WLJkCXbt2pXt6I3S+DuDiIoW53QTEZVy//zzDy5cuICOHTsy4SYiyofU1FTs3r0bUqn0q630TkSlD4eXExGVUrdu3cLTp08REBAAdXV1DBw4UNUhERGVCK9evcLNmzdx8uRJvHr1CsuWLVN1SERUgjHpJiIqpXbu3In9+/ejcuXKWLJkCYc9EhEp6Nq1a5gyZQqMjIzg5+eHdu3aqTokIirBOKebiIiIiIiISEk4p5uIiIiIiIhISZh0ExERERERESkJk24ios88evQINjY2uHjxoqpDKZX8/f1hZWWF169fK70uKysrTJ48Wen1lDR79+6FlZUVrly5oupQZPr27ZvrPc4LavLkyQW+Z3Rxd+XKFVhZWWHv3r25bvuvxPG16xUEAZ07d8aUKVOUXhcRlXxMuomIPrNgwQLUrVsXDRs2lG3L/ENuw4YNKoyMioK/vz+Cg4NVHUaJxetXem3evPmrJ8kFcf/+ffj7+3+VL+5yIxKJMGLECOzfvx/3799XaSxEVPxx9XIiov/766+/cPHiRaxcuVLVoVARuH37NsRi+e+WV6xYgc6dO6N58+Yqikr1vLy80K5dO6irq+d7X2VdP36hVTScnJxw+/ZtqKnl/8+7rVu3wtzcHF26dPlqdRbE/fv3sWLFCjRo0CDLHRm+diyenp4wNzfHqlWrsHz58q9SJxGVTOzpJiL6vx07dsDIyAhNmjRRdSjFXmJiIlJTU1UdRq40NTULlFiWdhKJBJqamlm+kFAlDQ0NaGhoqDqMEk8sFkNTUxMSiUTpdcXGxn71OvOiilg6duyIU6dOITQ09KvVSUQlT/H5jUtEpEKpqakIDg6Gm5tboRK1a9euYeDAgahXrx7s7e3RuXNn/Pbbb3JlVqxYASsrK7x69Uq27ePHj7CysoK1tTU+ffok2/706VNYWVlh7dq1udb7+VzGgIAAtGrVCnZ2dmjVqhUCAgKy3efFixeYMGECGjVqBFtbW3h4eGDhwoWIj4+XK5c5LzYiIgJTpkyBm5sbHB0d8f79e7x+/RpWVlbw9/fH4cOH0aFDB9jZ2aFp06bw9/dXODGPiYnB4sWL0aJFC9ja2sLFxQVjx46Vu0b37t2DnZ0dBg4ciM/vdpmWloY+ffrAwcEBjx49km3/fE53ZpwAsG/fPlhZWcl+kpOT4eLigp49e2Yb2/r162FlZYVr164pdC5F7e+//4afnx+cnZ1ha2uLVq1aYdWqVXLXdtGiRbCyssL+/fvl9n3w4AHs7e3Rt29fpKenA8h+TndSUhL8/f3RqlUrODg4oH79+ujQoQMWLlwIIPfrl+nMmTPw9vaGs7Mz7O3t0bRpU4wYMQLPnz/P8xyzm9Odue3Dhw8YO3YsnJyc4ODgAB8fH4WO+bmIiAhMnDgRzs7OcHR0RP/+/XH37t0s5bZv345BgwbB3d0dtra2aNSoEcaPH5/tUGZFz/fjx4/44Ycf0LRpU9kxp0+fjvDwcIXjDw4ORqdOnWBnZ4cmTZrg559/zva9ld2c5vT0dGzevBkdOnRAnTp1ULduXbRq1QpTp05FSkoKgIz3yps3b3D16lW51zbzvD08PNC3b1/cu3cPPj4+qFevHjp27JhjnZ9T5PMo8/h5nY+/v79sDnW/fv1kcWa+z3OKJT4+HkuXLkXz5s1ha2uLhg0bYuLEiXjz5k2O9QUFBaFdu3awtbVFs2bNsG7dumzPr3HjxkhJSeG0CyLKFYeXExEBuHv3LuLj42Fvb1/gY5w6dQojRoyAqakpBg4cCD09Pfz+++/4/vvv8fr1a4wZMwYA4OLiAn9/f1y+fBmVK1cGAISEhEAsFiM9PR1XrlxBq1atAACXL1+W7aOIbdu2ITQ0FN988w309PRw+PBhzJkzB1FRURgxYoSs3J07d9C/f38YGBjgm2++Qbly5fDgwQMEBATgr7/+QkBAQJYvHwYOHAhTU1MMHz4c8fHx0NHRkSXop06dwqtXr9CnTx+Ympri1KlTWLFiBd6+fYv58+fnGnNMTAx69uyJt2/fomvXrqhZsyZCQ0OxY8cOdO/eHUFBQTA3N4eNjQ0mTJiAuXPnYu3atRg6dCiAjC8xrl+/jpkzZ0IqlWZbh7GxMRYtWoSJEyeifv366NGjh+w5DQ0NdO7cGRs3bsSzZ89QvXp1uX2DgoJQtWpVODk55XoeycnJst6/vEgkEpQpUybPcmfOnMGIESNgYWGBQYMGoUyZMrh58yaWL1+O+/fvy4a0jhkzRnYNHB0dUbVqVSQkJGDMmDHQ1tbGkiVLcu3ZnjlzJoKCgtCpUyfUqVMHaWlpePHihSwxz+36AcDVq1cxbNgw1KxZE0OHDoW+vj4+fvyIkJAQvHz5EtWqVVPounwpPj4e3t7ecHBwwJgxY/D69Wts3boVw4cPx+HDhxXu0Rw8eDDKlCmDESNGICwsDNu2bYO3tzd2794t12Y2btwIR0dH9O3bF4aGhnj06BECAwNx+fJlHDp0CEZGRvk637dv3+Kbb75BSkoKunXrhipVquCff/7Bzp07ceXKFQQFBUFfXz/X2E+cOIGRI0fC3Nwcfn5+kEgk2Lt3L86ePavQuWcOfW7WrBl69uwJiUSC169f49SpU0hOToa6ujoWLVqE+fPnw8jICL6+vrJ9jY2NZf9/+/Yt+vfvj9atW6Nly5ZZvpzLjqKfR4pq0aIFQkNDsXv3bvj6+sreq1WqVMlxn5SUFPj4+ODGjRto1aoVBg4cKHsNLl68iKCgIJQvX15un127diEsLAzdunWDgYEBDh48iCVLlqB8+fLo0KGDXFkbGxtoaGjg6tWr6NWrV77PiYj+IwQiIhICAwMFqVQqBAcHZ3nu8uXLglQqFdavX5/j/qmpqULTpk2FevXqCe/fv5dtT0pKEr755hvB2tpaeP78uSAIgpCcnCw4ODgIY8eOlZWbPHmy0LlzZ6FNmzbCDz/8INs+YsQIoV69ekJqamqu8WfG6OjoKLx7906u/q5duwo2NjZy2zt06CC0atVKiImJkTvOH3/8IUilUiEoKEi2bdKkSYJUKhXGjRuXpd5Xr14JUqlUsLa2Fu7cuSPbnp6eLgwfPlyQSqXCX3/9Jdu+fPlyQSqVCq9evZJtmz17tmBnZyfcv39f7tivX78W6tSpI0yaNEluu6+vr2BjYyP89ddfwuXLlwVra2th5MiRWWKTSqVZ9s1umyAIwrNnzwSpVCosXLhQbvv169cFqVQqrF27Nss+XwoKChKkUqlCP82aNcvzeImJiYKbm5vQu3dvISUlRe65TZs2CVKpVLh8+bJs28uXL4V69eoJnTt3FpKSkoQpU6YIUqlUOHnyZLZxfr6vk5OTMHjw4Dxjyun6zZs3T5BKpUJYWFiex8iOt7d3lmvi7e2d7bVft26dIJVKhXPnzuV53My26+fnJ6Snp8u2//3334KVlZUwaNAgufJxcXFZjnHp0qUscSh6vr6+voKLi4vce08QBOH27dtCrVq1hOXLl+e6f2pqqtCkSROhQYMGQnh4uGx7dHS00LRp0yzv1czPgc+3derUSWjTpk2u9QiCIDRr1kzw9vbO8TmpVCrs2bMny3PZ1Znfz6Oc6s7u2Nm139zK7969O9v39unTpwWpVCqMHz8+y/4NGzYUoqOjZdvj4+MFZ2dnoUePHtlen+bNmwvt27fP9jkiIkEQBA4vJyJCxvBTAAr1Pmbn7t27sp7acuXKybZraGhg8ODBSE9Px8mTJwEA6urqqFevntzw3itXrsDFxQWurq4ICQkBkHFLmqtXr8LJyUnhHr0OHTrI9dpoaGhgwIABSE1NxalTpwAADx8+xMOHD9G+fXskJycjIiJC9lOvXj3o6Ohke8s0Hx+fHOt1c3ND7dq1ZY9FIhEGDx4MIKOnLieCIODQoUNwcnJC2bJl5WLR1taGo6MjLly4ILfP/PnzYWpqirFjx2LChAmoUKEC5syZo9D1yUm1atXQoEEDHDhwQG7YbmBgINTU1NC5c+c8j9GoUSNs2rRJoZ/FixfnebyLFy8iLCwMXbp0QXR0tNy1ady4saxMpsqVK2PWrFm4e/cu+vfvj6CgIIVvxaWnp4cnT57IDc/Pj8ze2uPHjxfpXH+xWIx+/frJbcsc9fHPP/8ofJzBgwdDJBLJHmcOMQ4JCUFcXJxsu46ODoCMIdkxMTGIiIiAlZUV9PX1cfv2bVk5Rc43JiYGZ86cgYeHBzQ0NOReP3Nzc1SpUiXPWxPevXsX7969Q5cuXeR6nfX19XOcDvElPT09fPjwAdevX1eofE4MDQ3zvciaIp9HynbixAmIxWLZyJhMTZs2Ra1atXDy5EnZ1ItMXbt2lRuBkPlZ9OLFi2zrMDQ0zNd0ASL67+HwciIiQO4P8oLInPtYo0aNLM/VrFkTAOTmJzs7O+PChQt4+vQpNDQ08ObNG7i4uCApKQnbtm3Dhw8fEBERgU+fPik8tBwALC0ts2zLjCmz/qdPnwLImB/p7++f7XHCwsKybKtatWqh6s1O5jleuHABrq6u2Zb5cli0oaEh5s+fj4EDBwLIWADPwMAgxzoU1aNHD4wfPx5nzpxB8+bNERsbi2PHjqFp06YwNTXNc/+yZcuibNmyhY4jU+brNHXq1BzLfPk6tW3bFqdOncKhQ4cglUoxceJEheqaOnUqJk6ciA4dOqBy5cpwdnZGs2bN4OHhodCCa3369MHJkycxc+ZMLFmyBPXq1YO7uzvat28vlyzmV9myZaGpqSm3zdDQEADk1j7IS3bt09LSEhcuXMDbt29l79GQkBD8+uuvuHXrFpKSkuTKR0VFyf6vyPk+f/4c6enpCAwMRGBgYLZxZU4vyUnme+fLKQ85nVN2xo4dCz8/P/Tp0wdly5ZFgwYN0LRpU7Rq1Spfi9dVrlw53wuUFfRzoSi9fv0aZcuWzfYL1Ro1auD+/fuIjIyEiYmJbPuXq6IDGe0upzYnCEKhf4cQUenGpJuICP/OXczPH/KFkZlIX758GRoaGlBXV0f9+vWRkpICsViMkJAQREZGypUtapkLRmUnuyRWW1u7yGMQ/r8gmpubG4YMGaLwfp/3kj148AD16tUrdCytWrXCnDlzEBgYiObNm+Po0aOIj49H9+7dFdo/MTERMTExCpWVSCR5JqOZ12bixImoVatWtmW+TPKjo6Nx48YNABkLeIWHh6NChQp5xtO8eXOcOnUKZ8+exbVr13Dp0iUEBgaifv362LRpU57JmZGREQIDA3H9+nVcunQJ165dw/z58+Hv74+1a9eiTp06ecaQndySPOGzxfSKwu3bt+Hj44MqVapg3LhxqFSpErS0tCASiTBmzBi5+hQ538zyHTt2zHGkxJdfKChDnTp1cOLECVy4cAFXrlzBlStXcPjwYaxatQo7duyQfYmRF2W8//OSlpb21esEcm932YmKiirUl0tEVPox6SYiwr+90fkZsvq5zJ6RJ0+eZHkuc9vnvVq1a9eGvr4+QkJCoKGhAXt7e9nQ1lq1aiEkJARRUVEwMTHJcXGw7GT2juZWv4WFBYCMHmQ3NzeFj13YerNjbGwMAwMDxMbGKhzLyZMnERAQgC5duuDly5dYuHAh6tevL7eSdkFoaGigU6dOCAgIwIcPHxAYGIhy5crl+MXEl44cOSJbWTkv5ubmeQ6vzRxZoK2trfC1mTZtGt6/f4/p06dj0aJFmDBhArZs2aJQEmFoaAgvLy94eXlBEAQsWbIE69evx8mTJ9GmTZs895dIJHB2doazszOAjC9DunbtilWrVuW5+r6yPX36FI6Ojlm2SSQSVKxYEQBw+PBhpKWlYd26dXJtNj4+HtHR0VmOmdf5VqlSBSKRCCkpKQV+n2XG8ezZs2zPSVG6urpo1aqVbIHG7du3Y9asWQgMDJRNA1EGRT8XcupFzq43PL89ypUrV8b58+cRHR2d5cvEp0+fQk9PT7ZAXkEkJyfj3bt3aNmyZYGPQUSlH+d0ExEhYwVaPT093Lp1q0D7165dGxUrVsTevXvl7teakpKCDRs2QCQSwdPTU7ZdIpHAyckJ165dk83nzuTi4oKQkBBcu3YNDRo0yNcfmYcOHcL79+9lj5OTk7F582ZIJBI0a9ZMdq5SqRS7du3K9o/a1NTUfPf4X7p0Se4WTIIgYP369QAyelFzIhaL0aFDB9y+fRvHjh3LtszncyU/fPiAqVOnwtLSEjNmzMCSJUugpaWFsWPHIjExMc84dXR0cj23Hj16IC0tDUuWLMHNmzfRuXNnhXu9inpOd6NGjWBiYoJ169ZlG3NiYqLcauk7d+7EH3/8gWHDhsHb2xuTJk3CtWvXsGrVqlzrSUtLy5JUikQi2NjYAJAfVp3T9ctcE+Fz1atXh6amptz+qrJ+/Xq5nuq7d+/i0qVLcHV1ha6uLoCcezfXrFmTZc6vIudrZGSEJk2a4MSJE7h582aW8oIgZHucz9WuXRvly5fH3r175crGxsZi165due6bW6yZ6y98/tro6uoW+UgfRT6PgIwvmJ4/f44PHz7Ild2+fXuWY2Z+Oalou2revDnS09OzfPFz9uxZ3Lt3T+EpFDm5d+8eUlJS8ry7ARH9t7Gnm4gIGX9wt2zZEsHBwUhOTs52OG1ISEiWeZ5Axh/XvXr1wvTp0zFixAh069YNPXr0gK6uLo4ePYqbN2/C19c3y5xoFxcXWW/nl0n3hg0bsmxXRLVq1dC9e3f07NkTurq6OHz4MP7++28MHz5cNsxYJBJh0aJF6N+/Pzp27IiuXbuiRo0aSExMxD///IMTJ05g7Nix+Vo0ydraGv3790efPn1gZmaGkydP4tKlS/Dy8spzaPGYMWNw48YNjB49Gm3atIGDgwPU1dXx9u1bnDt3DrVr18aCBQuQnp6O8ePHIyEhAT/99BO0tbWhra2NuXPnYsSIEZg3bx5mzZqVa12Ojo4ICQnB2rVrUbFiRYhEIrRr1072vKWlJerVq4eDBw9CJBKhW7duCl+Dop7TraOjg4ULF8LPzw+tW7dG165dYWFhgejoaDx79gwnTpzAihUr4OzsjEePHmHBggVwcnLC8OHDAWTMO7548SJ+/fVXuLi4oH79+tnWExcXh0aNGsHDwwM2NjYwNjbG69evsXPnTpQpU0YuOcrp+k2fPh3v379Ho0aNULFiRSQmJuLo0aOIi4uDl5dXkV2Tgnr79i18fHzg4eGB0NBQbNu2DVpaWpgwYYKsTPPmzbF582YMGTIE33zzDdTV1XHx4kU8fPgwS0+oouf7448/onfv3vD29oaXlxdsbGyQnp6OV69e4eTJk+jUqRNGjhyZY9wSiQRTpkzB6NGj0b17d/To0QMSiQRBQUEwNDTE27dv8zz3tm3bwtHREfb29ihbtixCQ0OxZ88eqKury7V9BwcHBAYG4ueff4alpSXEYjGaNWsmS3ILQpHPIyCjrf7+++8YMGAAevbsiZSUFBw4cCDbIe12dnYQi8VYvXo1oqKioKOjg0qVKsHBwSHbGDp37ox9+/Zh3bp1ePPmDerXr4+XL19ix44dsgUZC+Ps2bNQV1fP9ctFIiIm3URE/9erVy/s3bsXp0+flg3D/Nz58+dx/vz5LNurVauGXr16wcPDA5s3b8aqVauwYcMGpKSkwNLSEnPmzMl2XnBmQq2lpSU39LV+/fpQV1dHSkpKvpNub29vxMbGYtu2bXj79i0qVqyIqVOnon///nLlatWqhX379mHNmjU4deoUdu3aBV1dXZibm6Nz5845LmqWEw8PD1SrVg1r1qzB8+fPYWJiguHDh8sSwNzo6+tj586d2LhxI44dO4aTJ09CIpGgfPnyqFevnuza/frrr7h69Sp++OEHuaHkLVq0QO/evbFjxw40bNgw29cu0w8//IBZs2Zh9erVslWrP088gIze7j///BPOzs55LnSlbO7u7ggMDMTatWtx8OBBREZGwsDAAFWqVMGAAQNgZWWFxMREjB07FlpaWliyZIlcj+28efPg5eWFCRMmYP/+/dkuJqWlpYX+/fsjJCREtpp32bJl4eHhgaFDh8qtxp/T9fPy8sLevXuxb98+REREQE9PDzVq1MDy5ctzfT2+lvXr18vmXCcmJsLBwQETJ06EtbW1rEy9evXg7++PX3/9Fb/88gs0NTXh5uYmu6f35xQ93woVKiAoKAjr1q3DqVOncPDgQWhqaqJChQpo1qyZQsP2W7dujeXLl2PlypXw9/eHiYkJOnfuDCcnJwwaNCjP/QcNGoSzZ88iICAAMTExMDExgYODA4YOHSp3/mPGjEFUVBR27NiB6OhoCIKAkydPFirpVvTzqF69eliwYAFWr16NxYsXo2zZsujVqxdsbW0xYMAAubIVK1bEvHnzsG7dOsycORMpKSno3Llzjkm3uro6NmzYgFWrVuHIkSM4ceIE9PX10bp1a4wePVqhNQ9yc/DgQXh4eMDMzKxQxyGi0k0kFPVKJEREJZiPjw8SEhKwY8cOVYeSL1euXEG/fv0wf/78fN/WpzBev34NT09PjBgxItceu5LkyJEjGDNmDJYuXYr27durOhwiKqaCg4MxcuRI7N27N8fFDomIAM7pJiKSM3nyZNy8eTPLvaHpv2PHjh0wMjLiwkhElCNBELBixQp06tSJCTcR5YnDy4mIPlOzZk3cu3dP1WHQVxYeHo6QkBBcv34d165dw7hx4/J1D2Mi+m8RiUTYv3+/qsMgohKCSTcREf3nPXnyBOPGjYOBgQF69uyJgQMHqjokIiIiKiU4p5uIiIiIiIhISTinm4iIiIiIiEhJmHQTERERERERKQnndGcjNDSmwPuqq0uQkpJWhNEQfR1su1QSsd1SScR2SyUR2y2VRF+j3ZqZ6edZhj3dRUwkUnUERAXDtkslEdstlURst1QSsd1SSVRc2i2TbiIiIiIiIiIlYdJNREREREREpCSc001URG5vmga19E9IFRvCfuBcVYdDVKpMvzAZn5I+wVDTELMbLVB1OEREREQKY9JNVETU0j9BUxQBpKs6EqLS51PSJ0QmRqg6DCIiIqJ84/ByIiIiIiIiIiVh0k1ERERERESkJEy6iYiIiIiIiJSESTcRERERERGRkjDpJiIiIiIiIlISJt1ERERERERESsKkm4iIiIiIiEhJmHQTERERERERKYmaqgMgKi0k0j5ISk6CRENT1aEQlTq9rL2RlJYETQnfX0RERFSyiARBEFQdRHETGhpT4H01NCRITk4rwmiIvg62XSqJ2G6pJGK7JQDQOH9NZXUnuzvle5/Nm9dh/fo1sscaGhqoUKEi2rbtgF69+kIsLh4DaG/cuI7vvvMFAGzfHggLi6pyz69ZsxIBAZtQvnwFBAYeKnR9586dwdSp4/HbbwdRoUJFhfebO/dHPHhwDwEBe3Isc+TIIcybN1P2WFdXF+bmldGjRy+0bt2uUHH/V3yNz1szM/08y7Cnm4iIiIiI8qSpqYlfflkNAEhOTsKNG9exevUKpKcL6Nt3gGqD+4K2tg6Cg4/Dx2eo3PaTJ/+AtraOiqIqmKVL/aGrq4eoqE8IDNyFOXN+gJqaGpo3b6Xq0EhBxeMrKSIiIiIiKtbEYjFsbe1ga2uHunXrY/BgXzRq1ATnzp1SdWhZuLs3QXDwcbltd+/ewYcP79GwobuKoioYK6tasLW1Q8OG7pg3bwn09Q1w5Ejhe+np62FPN1ERCX35DulpaRBLJDCrUkHV4RCVKu9i3yJNSINEJEEFPcWH7xERkXLp6OggNTVVbtuqVf4ICbmAd+/eQldXDw4OdTBy5FiYmprKyty+fRNr1qzEkyePkJ4uoEKFCujVqy/atGkvK3Pp0gVs2rQOT58+gY6ONpo29YSf32hoa2vnGZeHR3MEBx/Hw4cPYGVlDQA4ceIY6tVzgpGRcZby79+/w4oVP+HatStIS0uDvb0j/PxGw9KyhqxMamoqVq78BceO/Y709DQ0beqJunXrZzlWcnIyNm1ahz/+OIqIiHBUrGiO/v0Ho2XL1nlf0Dxoa2ujUqXK+PDhvdz2Fy+eY/Vqf/z1159IS0tDnTr1MHr0BJibV5KVOXz4AHbt2o63b99AS0sLFhZV8d13Y1GrVm0AQKNG9TF06AjExEThyJFDSEpKRtOmHhgzZgJ0dHTzda26desAN7dGsLCohh07tiI2NgZ169bHxInfw8jISHY916xZiZMn/0BkZAQMDAxgZWWDGTNmQ09PDwAQExODNWtW4vz504iOjka1apbw9R2BBg1cZHUp0pZUjUk3UREJPTEHmqIIJAnGMPNZqepwiEqVeVdmITIxAkZaxvD3XK3qcIiI/rMyE+zM4eVnz55C374D5cpERkagb9+BMDU1w6dPkdi1aztGjPgW27btgZqaGuLiYjFx4mjY2zvixx/nQl1dAy9ePENMzL/rKp0+HYwffpiKtm07wMdnKMLDw7B69QrExERj5sz5ecZpamoGR8e6CA4+Disra6Snp+P06RMYOnQEHj9+JFc2Pj4OI0cOhUgkwvjxU6ChoYmtWzfCz28ItmzZiXLlygMAVq9egX37foOPz1BIpdYIDj6O1atXZKl7xozJuH37FgYOHIKqVasiJOQiZs+eDn19fbi6Nsz3Nf9ceno6QkM/okaNmrJtb968hq/vIFSvbompU3+EWCzC1q0bMWrUMOzYEQQNDQ3cvHkDCxbMRq9efeHq2hCJiYm4f/8uYmPl17IKCtoNqdQa06b9iLdv32L16hVITk6SXXNFrxUAXLhwDq9fv8LYsZMQFfUJy5cvw88/L5IdKyBgE/bvD8KwYSNRrVp1REV9wtWrl5GSkgwASElJwZgxfoiICMeQIcNhZlYWf/xxBBMmjMLGjdthaVlDobZUHDDpJiIiIiKiPCUkJKBpUxe5bZ6eLeDtPUBu29SpP8j+n5aWBltbe3Tu3BY3blxHgwYuePXqJWJjYzF06AhZ72j9+g1k+wiCgJUrf4GHRwtMnjxdtt3ExBQTJoxC//6DUb26ZZ7xNm/eCps3r8fw4d/hxo3riImJRZMmzbIk3b//fgjv379DQMAeVK1aDQBQp05ddO3aHnv27MTIkWMQHR2Ffft+g7f3ANmXDM7Orhgx4luEhn6UHevGjeu4cOEcli1bIeuNdXJyQXh4GDZuXFOgpDs9PQ2pqamIivqE7du3IDo6Su6Ljk2b1sHAwAA//bQSmpoZd/mwtXVAjx5eOHz4ALp06Y579+7CwKAM/PxGyfZzc2uUpS51dQ3Mn78EEokEQMY8/oUL52DQoKGwsKiq0LX63IIFy6ChoQEAePfuLQICNiE9PR1isRj3799FgwbO6NKlu6x806aesv//8cdRPH78EJs370S1atVl1/zVq1fYvHk9Zs9ekGdbKi44p5uIiIiIiPKkqamJ9eu3Yv36rfj11/UYNWo8rlwJwcKFc+TKhYRchK/vILRq1QRNmjijc+e2AIBXr/4BAFSsWAm6urpYsmQ+Tp48gcjISLn9X736B+/fv4OHRwukpqbKfurUqQuxWIyHD+8rFG/Tph6IiAjH7du3EBx8HK6ubtDV1ctS7tatv1C9uqUsiQQAA4MyqF/fGbdv3wQAPH36BElJSWjcuKncvk2aeMg9vnr1MgwMyqBu3fpysTs5OePRo4dIS8v/StodO7ZC06Yu8PJqjT17duK778bCwaGO7Plr1y6jUaPGkEgksvr09fUhlVrhwYN7AAArK2tER0dh7twfce3aZSQmJmZbV8OG7rKEGwCaNfOEIAi4d++Owtcqk6NjXVnCDQBVq1ZHamoqIiMjAABSqTVCQi5hw4Y1uH//LtLT07NcS0vLGqhcuUqWa5l5Xnm1peKCPd1ERERERJQnsVgMa2sb2WN7e0ekpaVixYqf0bNnH1SvXgP379/F5Mlj4e7eBN7e/WFoaAyRSIShQwcgKSlj2HBmr+yGDWsxZ84M2bzgMWMmwtKyBj59+gQAmDp1fLZxfDmfOScGBmXQoIErjh49hDNnTmHy5O+zLRcTE5PtPG9jY2M8f/4UABAeHgYAWcoZG8s/jor6hOjoqCwjAjKFh4ehbNlyCsWf6eeff4Wuri4+fvyA9etX45dflsLW1kE2xPzTp0/Ys2cn9uzZmWVfNTV1AEC9ek6YPn0WfvttF8aOHQkNDQ00beqJUaPGwcCgjKx85nzrTLq6etDQ0JSdvyLXKlPmvOxM6uoZsSQnZ7SDfv0GQSQS4dix37Fp0zoYGhqhS5fuGDhwCEQiEaKiPuHRo4fZXsvMLwbyakvFBZNuKpZCj81VdQj5lhYfiXS1OKSlinKN36z1tK8YFREREZHyWFhk9Hg+f/4M1avXwLlzZ6Cnp4dZsxbI7t39/v27LPvZ2Nhi6dLlSEpKxI0b17Fy5S+YMmUc9uw5IEsCx4yZiNq1bbPsa2pqpnB8zZu3wpw5M6CtrQ1X16zDqYGMxO3ly3+ybI+IiIC+vgGAjKHtQMZ8dTOzsnJlPqevbwBDQyMsWfJLtnVll7DmpUYNKQwNDVGrVm1YW9ugT59uWLXKH0uXLv9//GXg6tpQbph2Jh2df2+P1qpVW7Rq1RafPn3ChQtnsHz5T1BTU8OUKTNkZb7sKY6Li0VycpLs/BW5VorS0NCAj89Q+PgMxevXr/D77wexceNaVKxojtat28HAoAwsLWtiypTpuR4nt7ZUXDDpJiIiIiKiAsns3SxTxhAAkJSUCDU1NYhEIlmZP/44muP+mppacHVthDdvXuOXX5YiKSkJFhZVUbZsObx9+wZdu/YoVHzu7k3QqFET2NjUls13/pK9vSPOnDmJly9foEqVqgCA6OhoXL9+FR07dgYAWFrWgKamJs6dOwOp1Fq279mz8rdLc3JqgB07tkJNTV1usbOiUq5cefTo0Rtbt27Eo0cPIJVao379Bnj+/Clq1rSSGxqeE0NDQ7Rv3wkhIRfxzz8v5J67ePE8Ro4cIzvO6dMnIRKJZCucK3KtCqJSpcoYOtQPBw7slcVUv34DhIRchKmpmUJftGTXljQ0isc92Zl0ExERERFRntLT03Hnzt8AgNTUFDx8eB9btmxA1arV4ehYFwDg5OSMPXt24qefFqFx42a4c+c2jh8/InecS5cu4PDhA2jcuCnKlSuPiIhwBAbugZ2dgywxHjFiDGbOnIbExAS4ujaCtrY23r9/h5CQC/j2Wz9UqWKhUMza2tqYN29xrmXateuAPXt2YMKE0RgyZJhsRW6JRIIePXoByOhN7tSpK7Zt2wxNTU3Z6uVv3ryWO5aTkwsaNnTHuHEj0adPP1ha1kRCQgKeP3+GN29eyS0MV1A9e/ZBUNBubN++BTNnzoePz1AMHtwPY8eORMeOnWFsbIyIiHD89dcNODg4okWL1tiwYQ2ioj6hTp16MDIyxtOnT3DlSgi++aaP3LFTUpIxZcp4dO7cDe/evcWqVf5o2tRTNodbkWulqClTxsHKqhZq1rSCtrY2Ll48h5iYaNlt2Fq3bocDB/ZixIih6NXLG5UrV0FsbCweP36IlJQU+PqOUKgtFQdMuomIiIiIvrJkdydVh5BvSUlJ8PXNWDVbIpGgbNnyaNmyLQYNGgI1tYy0wtW1EYYNG4mgoD04cuQQ7OwcsGjRz+jVq4vsOJUqVYJYLMLatb/i06fI/8+9dsHQoX6yMh4ezaGvr4ctWzbKesrLl68AZ2c3GBubFOl56ejowt9/Dfz9l2HRonlIT0+DnZ0DVq5cJ3cLLF/fkUhLS8P27VshCOlo3LgZfH1HYPbsGXLHmzNnEbZt24y9ewPx4cM76OrqoXp1S7Rt26FI4jUwKIOuXb/B9u1b8ObNa1SqVBnr1m3BunWrsGzZAiQkJMDExBQODnVgaZnR225tbYM9e3bi1KlgxMfHwcysLHr16ov+/X3kjt216zf49CkSs2fPQEpKCho3boqxYyfm+1opws7OAadOBWPXrm1IS0tD5coWmDFjNpycnAFkDD9fvnwVNm5ci61bNyI8PAxlyhhCKrVC584ZQ+kVaUvFgUgQBEHVQRQ3oaEFv6+bhoYEycn5X5WQ5JXEOd3vH9+FllosElP1UL5m7RzLFdc53Wy7VJyNPOmb7X262W6pJGK7pZKI7bb0a9SoPoYPH4XevfuqOpQi8zXarZmZfp5leMswIiIiIiIiIiXh8HKiIqJX0QaCAOiJ8i5LRPkzq+E8pAsCxCK+wYiIiKhkYdJNVET0dJkMECmLkVb+b7FCREREirtw4bqqQyi1it3w8u3bt8PDwwN2dnbo3r07bt++nWv5o0ePonXr1rCzs0OHDh1w9uzZLGWePn0KX19f1KtXD46OjujatSvevn2rrFMgIiIiIiIiAlDMku4jR45g/vz58PPzw759+2BtbQ0fHx+Eh4dnW/7GjRsYN24cunXrhv3798PT0xN+fn549OiRrMzLly/Ru3dvVK9eHQEBATh48CCGDx9erJaQJyIiIiIiotKpWK1e3r17d9jZ2WHGjIxl99PT09GkSRP07dsX3377bZbyo0ePRkJCAtasWSPb1qNHD1hbW2PWrFkAgDFjxkBNTQ2LF+d+f77PcfVy1SuJq5e/eJ4EIT0dIrEYVavl/KUOVy8nyr9TL08gMTUJWmqa8KjSQrad7ZZKIrZbKonYbqkk4urlX0hOTsbdu3fh5uYm2yYWi+Hm5oa//vor231u3rwJV1dXuW2NGjXCzZs3AWQk7WfOnEHVqlXh4+MDV1dXdO/eHcHBwUo7D/rv0kp9AiPxbWilPlF1KESlzr7HQdhxfyv2PQ5SdShERERE+VJsFlKLjIxEWloaTEzkb3ZvYmKCZ8+eZbtPWFgYTE1Ns5QPCwsDAISHhyM+Ph7r1q3D6NGjMX78eJw/fx4jRozA1q1b0aBBg2yPq64uQUEXyFVTkxRsR5JT0hcozi1+DY3i2UbYdqk4E4tFEIlFEItFcu8htlsqidhuqSRiu6WSqLi022KTdCtDeno6AMDT0xMDBgwAANSqVQs3btzArl27cky6U1IKNwSBQ28Kr/hMeiiY3OIvzu2jOMdG/23p6QKEdAHp6UKWdsp2SyUR2y2VRGy3VBIVh3ZbbIaXGxkZQSKRZFk0LTw8PEtvdiZTU1NZr3Z25Y2MjKCmpgZLS0u5MpaWlly9nIiIiIiIiJSu2PR0a2hooHbt2ggJCUHz5s0BZPRUh4SEwNvbO9t9HB0dcfnyZVkvNgBcunQJjo6OsmPa2dnh+fPncvu9ePEC5ubmSjkPIiIiIqK8vL+3SWV1l7cZmO991q5djfXr/1282MCgDCwsqqJfv4FwdW0kV7Zbtw5wc2uEsWMnybY9eHAfgwf3xfTps9CqVdssx09LS0OnTm3QoIELpk+fhblzf8TRo4dlzxsZGaNGjZrw8RkKW1v7XGN99+4tunfvCABYsmQ5XFzc5J4/eHAfFi3KWLS3KO5N/fjxQwwc2AfLl69G3br1Fd5vw4Y12LVrG06cOJ9jmRs3ruO773xlj7W0tFCxojnat++Erl17QCIpHsOnKXfFpqcbAAYOHIg9e/Zg3759ePr0KX788UckJCSgS5cuAICJEydi6dKlsvL9+vXD+fPnsXHjRjx9+hT+/v64c+eOXJLu4+ODo0ePYs+ePfjnn3+wbds2nD59Gr169frq50dEREREVFJpampi9epNWL16EyZNmobk5GRMmjQWf/99K899ra1roUoVCwQHH8/2+T//vIbIyAi0bNlGtq1iRfP/17cRI0eOwdu3bzB69HC8efNaoXi1tXVw8uQfWbYHBx+HtraOQscoLqZO/QGrV2/C3LmLUb16DSxfvhQ7dgSoOixSULFKutu2bYtJkyZh+fLl8PLywv3797F+/XrZcPF3794hNDRUVr5u3bpYsmQJdu/eDS8vLxw/fhwrV66EVCqVlWnRogV+/PFHrF+/Hh06dMBvv/2G5cuXo359xb+FIiIiIiL6rxOLxbC1tYOtrR2aNPHAggVLIQiCXI90blq0aI1r164gKupTludOnDgGIyNj1K//75pLmpqa/6/PHi1btsH3389EYmIiTp06oVB97u5NcO7caSQlJcm2hYWF4ebNG2jcuIlCxyguqle3hK2tHZydXTFjxmxYWFTFkSMHVR0WKajYDC/P5O3tneNw8oCArN/mtGnTBm3atMmm9L+6deuGbt26FUl8REREREQEmJmVhaGhET58+KBQ+RYtWmPDhjU4fToYnTr9+7d5UlISzp07jTZt2uc6XFoqtQIAfPjwXqH6XFzccOnSeVy+fBFNmngAAE6ePA5z80qwsqqF48ePypWPjo7CihU/4+LFc0hISIRUagVf3xFwdKwrV27z5vXYu/c3JCTEw8nJBZ06dc1StyAI2LlzGw4e3IcPH97B1LQsunXrgW++6aNQ7LkRi8WwtKyJCxfOyW3/+PEDVq9egStXLiEhIRG1atlg5MixsLauJStz4cJZbNq0Hi9fvoBEIoG5eWUMHjxUNkUgc2pA+fIVsGfPTsTERMPJyRnjx0+VW2dLkWs1YsS30NHRQZs27bF27a8ICwtFrVq1MWnS9zA3ryQrFxCwGYcP70do6Efo6OjA0lKKSZOmoWLFjOnAycnJ2LRpHf744ygiIsJRsaI5+vcfjJYtW8uO8ezZU/z66y+4d+8ukpISUbZsObRv74WBAwcV+noXhWKXdBMRERERUfEXHx+P6OgoVKhQUaHylSpVRq1aNjhx4rhc0h0ScgFxcXFo0SL3jrT37zOSbUXrU1dXR+PGzXDixHFZ0h0cfBzNm7fKUjYtLQ3jxn2Hd+/eYNiwkTAyMkFg4C6MGeOHVas2yhLXoKDdWL9+NXr16ov69Rvg2rUrWLBgdpbj/fLLEhw6tB/9+g2CjY0t7ty5jVWr/KGpqSl37gX1/v07VKz473WIjo7G8OGDoa2tjdGjJ0BPTw+BgXswapQvdu3aByMjY7x58xrffz8JzZu3gq+vH9LTBTx58ggxMTFyxz537gzKl6+A8eMnIyYmBqtW+WPatAlYs2ZTvq4VADx+/AiRkQHw9R2J9PQ0+Pv/hFmzpsuOdfToYaxfvwqDB/uidm07xMXF4tatm4iLi5MdY8aMybh9+xYGDhyCqlWrIiTkImbPng59fX24ujYEAEyaNBbGxsaYPHk69PT08Pr1K4SGfiz0dS4qTLqJikhimgFSBXWkpmurOhSiUqeCbkVoq2nDUNNI1aEQEf2npaamAsgYpr1q1S/Q0dFFjx49Fd6/RYs28Pdfhg8f3qNcufIAMhJhc/NKqF3bNsf63r59g6VLF6B8+Qpo27ZjPuprhcmTxyE+Ph6RkRG4f/8epk+fjcuXL8qVCwm5gPv372LpUn84O7sCAJydXfHNN50QELARc+cuRlpaGgICNqNVq7bw8xslKxMZGYHjx4/IjvXmzWsEBe3B+PFT4OWVsTaVk5MzEhMTsWnTOnTs2AVicf5m+aalpSM1NRVxcbH4/fdDuH//Ln78ca7s+d9+24nY2BisW7cFRkbGAIB69RqgV68u2LkzAMOHj8KjRw+QmpqKsWMnQkdHVxb/l+Lj47FkyXLo6ekBAMqWLYdRo4bhypUQODu7KnStMsXGxmDjxu0wMsr4/Z2QkIB582bi48cPKFu2HO7fvwtLy5ro2/ffxf3c3ZvK/n/jxnVcuHAOy5atQIMGLv+/li4IDw/Dxo1r4OraEJ8+fcK7d28watQ4NGrUGADytaDd18Ckm6iIVLWurOoQiEqtqS4zVB0CEdF/XkJCApo2dZE9lkgkmD9/KapUqarwMTw9W2Dlyp9x8uQJ9O7dF/Hxcbh06SJ69+6bpezz58/k6tPS0sLKletlCZwi6tZ1go6OLs6fP4N3795CKrVGlSoWWZLuW7duQldXVy4JVVNTQ5MmGT3lABAa+hFhYaFo3LiZ3L7NmnnKJd3Xrl0BADRt6iH70gAA6tdvgO3bt+Djxw8oX76CwucAAEOHDpB77O09AJ6eLWWPr169jDp16kNf30BWp1gshqNjXdy/fw8AYGlZExKJBD/++D06duwMR8e6ssT6c3Xr1pPbXq+eEwwMyuDevTtwdnZV6FplqlFDKvd6Va1aDQDw8eNHlC1bDlKpNfbtC4S//zI0buyB2rVtoab2b4p69eplGBiUQd269eWupZOTMxYvno+0tDSUKVMG5ctXwJo1KxATE4169ZxQtmw5ha/t18Ckm4iIiIiI8qSpqYmVK9chPT0dr1+/wurVKzBnzg/YunW33Hzf3JiYmKJOnXoIDj6G3r374uzZ00hOTpKbn5vJ3LwSZs6ch7S0dDx58girVi3HjBmTsWXLLmhpaSlUn0QigYdHcwQHH8e7d+/Qrl32veQxMdGyHuLPGRmZIDo6CkBG737GNqMsZT4XFfUJgiCgXbvm2db14UP+k+7vv5+JqlWrITIyAgEBm7F9+xY4OtaV3Q4tKuoT7t79W+5LikyZ86erVLHAwoU/ISBgE6ZNmwCRSARnZ1eMGTMJ5cuX/+x8srsORggPzzh/Ra5VJn19fbnH6urqAIDk5IzF7dq27YD4+HgcPLgPu3fvgJ6eHlq3bo9hw0ZAU1MLUVGfEB0dle15AUB4eBjKli2HZctWYO3aX7Fs2UIkJCTAyqoWRo4cgwYNnLK/oF8Zk24iIiIiIsqTWCyGtbUNAMDGxhZVqljg228HYPPmdRg/forCx2nZsg3mzZuJly9f4MSJ4//vfa6apZyGhoasvtq1bWFoaIhp0yYiMHAXvL0HKFxf8+at4Oc3BEBGT3t2DAwMEBkZkWV7ZGQ4DAzKAIDsi4XIyMgsZeSPVQYikQi//rpelmR+rkoVC4Vjz1S1ajXZtXBwqIvevbtixYqf4ezsCpFIBH19Azg7u2HIEN8s+6qra8j+7+LiBhcXN8TFxeLy5RD4+y/D/Pkz8csvqz47n+yuQyRMTEz/f355XytFicVi9OjRCz169EJo6EcEB/+B1av9YWhoiAEDBkNf3wCGhkZYsuSXbPfPTP6rVLHAnDkLkZqair//voW1a1di0qQx+P33P6CmppmvmJShWN0yjIiIiIiISgZraxs0b94KR44ckvWCKqJJk2bQ0NDEnj078eefV7Pt5c5+Pw/Y2Tlgz56dcrcBy4utrT1atGiF7t175Tjs2N7eEXFxcbh69bJsW2pqKs6dOwN7ewcAGau1m5iY4ty503L7nj59Uu5xvXoZvatRUVGwtrbJ8pM5n7qgdHR04OMzFC9ePMO5c2cAZAxdf/HiGSwsqmWpz9KyRpZj6OrqwdOzBTw9W+LFi+dyz9248SdiY2Nlj//88xqio6NgY5Mx516Ra1UQZmZl0auXNywta8picnJqgE+fIqGmpp7ttfzySw01NTXUqVMPffoMQFxcnNztplWJPd1EReTZg1CIkAwBGqhubabqcIhKlZV/LUdMSjT01Q3gV+c7VYdDRET/N2CAD06e/AN79uzEsGEjZdvfvHmD06eD5cqKxWI0aeIBXV09uLk1xIEDeyESibJdTTwngwZ9izFj/HD06CGFVwEXiUSYPj3rCuOfc3VthFq1amPWrOnw9R0BY2MTBAbuRnh4GPr2zbjtlEQigbf3APzyyxIYG5vAyckZV69exl9//Sl3rCpVLNClS3fMmTMDvXr1hY2NLVJTU/Hq1Uv89dd1zJ+/VOHzzUmbNu2xdesmbN++BU2aNEPPnn1w4sQxjBjxLbp374ly5crj06dI3Lt3F6ampvjmmz7Yvz8Id+/+DWdnV5iYmOLdu7f444+jaNDAWe7YOjo6GD/+O3h790dMTAxWr/ZHrVq1ZXO4FblWilq0aC709Q1Qu7Yd9PX18ffft/D06WN06ZLx2jo5uaBhQ3eMGzcSffr0g6VlTSQkJOD582d48+YVJk+ejidPHmPFip/g6dkS5uaVEBsbi4CATahQoSIqVaqEtLRCX+5CY9JNVER0JB+hpRaLxFQ9AEy6iYrSg4h7iEyMgJFW1jlkREQlUXmbgXkXKgGqVKkKT8+W2L8/EH37DpQtwHXlyiVcuXJJrqxEIsHZsxmLjLVo0QZnzpxC3br1YWqq+N9NTk7OsLd3xM6d29ChQ+dc7+udHxKJBEuW/IKVK3/Br78uR2JiAqRSayxbtkLuFljdun2D2NgY7N37G/bt+w316zfApEnfY9y4kXLHGz16AqpUscCBA3uxefN6aGvroEoVCzRr5lkk8aqpqaFfv4FYuHAObty4jrp162PNmk1Yt24VVq3yR3R0FIyMjGFjY4vGjZsCAGrUqIlLl87D3/8nREdHwdjYBM2bt8oyJL1x46YwMyuHxYvnIyYmBk5ODTBhwtR8XytF2Nk54ODBfTh0aD8SExNRsaI5Ro4cg/btO8nKzJmzCNu2bcbevYH48OEddHX1UL26Jdq27QAAMDExgYmJCQICNiEsLBS6unpwcHDEjBmzIZFIkFYMsm6RIAiCqoMobkJDY/IulAMNDQmSk1X/wpZ0ocfm5l2omHn/+K4s6S5fs3aO5cxaT/uKUSmObZeKs5EnfWVJt7/natl2tlsqidhuqSRiu/1v6NatA9zcGmHs2EmqDqVIfI12a2amn2cZzukmIiIiIiIiUhIm3URERERERERKwjndREREREREhMDAQ6oOoVRiTzcRERERERGRkjDpJiIiIiIiIlISJt1ERERERERESsKkm4iIiIiIiEhJuJAaURGJQ1XEpaQCIr6tiIpasyqeiE+Jh466jqpDISIiIsoXZgdERcSypq6qQyAqtbrU7K7qEIiIiIgKhEk3EREREdFXdvDVJpXV3bHywALvGxJyEUFBu/HgwT3ExMTAwKAMrK1roWXLNvD0bAmxuGTMXv3ll6U4f/5MjrfI6tatA96/f5frMQYOHAIfn6EFqv/x44c4d+4M+vTpDy0tLdn2I0cOYd68mTh8OBiGhob5OuaIEd/i5s0bAACRSARTUzPUqlUbQ4YMQ7Vq1QsUJxUNJt1ERERERJSnNWtWIiBgExo3boYxYybCxMQUEREROH/+DGbPngEDgzJwdnZVdZhFYt68xUhOTpE9njZtPOzsHNGzp7dsW9myZQt8/MePH2HTpnXo2vUbuaS7sOzsHODnNxrp6Wl48eI51q1bhdGjhyMgYA8MDAyKrB7KHybdRERERESUqwsXziMgYFO2vbseHs3RvXtPqKnlnFqkpaVBEIRcyxQnUqm13GN1dQ0YGxvD1tYux32SkhKhqVl0CXRB6Ovry2K0t3eElpY2Zs36HleuXEKLFq1VGtt/WckY/0FUArx/fBefnl/B+8d3VR0KUakz8qQvvH/vgZEnfVUdChHRf9KOHdtgYmKK/v19sn3exsZWLlEdMeJbTJw4GkePHkavXl3g4eGGJ08eAQD27w9Cr15d0KyZK7p164DNm9cjPT1dtu+GDWvQooV7ljpat26KDRvWZKnj9Olg9OrVBS1auOO773zx5s1ruf3CwkIxadIYeHo2RKdObbB9+5ZCXQsgYxh4o0b1cefObYwePRzNmzfCypW/4N27t2jUqD5Onw6WK//LL0vRrVsH2b7z5s0EALRv3xyNGtWXPZfp48f3GDfuOzRv3gg9e3bG0aOHCxSnVGoFAPjw4X2W+Pv37wkPDzd06tQGa9asRFpamuz5mJgYLFw4B506tYGHhxu6dGmHH36Yks35/43vvvOFp2dDdOvWAYcPH8gSw9mzpzBgQG94eLjBy6s1/P2XISkpSfb8jRvX0ahRfVy7dhk//jgNLVo0Rteu7bO8Ts+ePcX48d+hbVtPeHo2RK9eXbKUuXPnNr77zhfNmzdCq1ZN8P33UxAZGSFXJiBgM775phM8PNzQvn1zjBo1HG/fvsnnlc2fkvFVExERERERqURqaipu376Jpk0989VT/eDBfbx79xaDB/tCX98AZcuWQ2DgLvz88xJ06/YN3Nzc8ffft7Bp0zrExsZixIjR+Y7t8eNHiIwMgK/vSKSnp8Hf/yfMmjUda9b8O2d+8uRxCA39gPHjp0BPTw/btm3Bx48fIJFI8l3fl2bO/B4dO3ZGv36DFO7ldnVthP79fbBlywYsXeoPXV09aGioy5WZNWs6OnTohJ49e+Pgwf2YN28matWqjapVq+Urvsx56RUqmMu27dq1DatW+aNHj94YMWI0Xrx4gbVrf0V6ejqGDRsJAPD3X4YrVy7B13ckypevgPDwMFy+fCnL8X/8cSq8vLqgT5/+OHnyDyxYMBumpmZwcXEDAFy4cBbffz8Jnp4t4es7Ai9fvsCaNSvx4cN7zJmzSO5YixfPR6tWbTFv3mKcP38Gq1b5w9KypuxYkyaNhbGxMSZPng49PT28fv0KoaEfZfvfuXMbI0cOhYtLQ8ycOR+JiQlYv34VJk8eJ2sPR48exvr1qzB4sC9q17ZDXFwsbt26ibi4uHxd1/xi0k1ERERERDmKjo5CcnIyypYtJ7ddEAS53lGxWCy3kFp0dBTWrduCcuXKA8gYYr5583p4erbE6NETAAANGrggNTUVu3ZtQ9++A1CmjGG+YouNjcHGjdthZGQEAEhISMC8eTPx8eMHlC1bDpcvX8KDB/fwyy+rUK+eEwCgTp366NKlXZHMcfby6gJv7wGyx+/evc1zHyMjI5ibVwIAWFnVynbBtC5deqBLl4w7d9jaOiAk5ALOnDmJAQMG53psQRCQmpoKQRDw/PlTrFrlD6nUCu7uTQAA8fFx2LBhLXr37oehQ/0AAE5OLlBXV4O//0/o3bsvypQxxP37d9G8eWu0adNeduzmzVtlqa9163bo2zdjYT5nZ1e8ffsGmzatkyXKGzeuRe3advjxx7kAABcXN2hqamHx4nl4+vQJLC1ryI7VtKmHbOpC/foNEBJyEWfOnISLixs+ffqEd+/eYNSocWjUqDEAoG7d+nKxrF69AtbWtTBv3mKIRKL/X18pevXqjpCQC3B1bYT79+/C0rKmLGYAcHdvmus1LQocXk5ERERERHnKTGQynTlzEk2bush+fv55sdzzlpY1ZQk3APzzzwt8+vQJHh7N5cp5eLRASkoK7t3L/xS9GjWksoQbgKwn+OPHjB7Qe/fuQE9PT5ZwA4Cenh7q12+Q77qy4+bWqEiO86UGDVxk/9fW1kb58hXkenVzEhJyEU2buqBZM1cMGuSNiIhwzJu3FBoaGgCAv/++jYSEeDRr5onU1FTZT/36zkhKSsKzZ08BZMxpP3r0MHbsCMCzZ09yrK9x46Zyj5s08cDDh/eRlpaG+Ph4PH78CE2besiV8fRsCQC4ffum3HYnp3/PWSQSwcKiqux1LFOmDMqXr4A1a1bg6NHD+Pjxg9y+iYmJ+PvvW2jWrDnS0tJk51WligXKli2H+/fvyc7r8eOH8Pdfhlu3biI1NTXPa1oU2NNNREREREQ5MjAoAw0NjSyJTr16DbB+/VYAGUN/v2RsbCz3OCYmBgBgZGScbbmYmOh8x6avry/3WF09Y5h2cnLGnOHw8DAYGhpl2e/L2ArKyMikSI7zJT09+fNSU1NHcnJynvvZ2zviu+/G/n9KwC2sW/crZs6cipUr10MsFiMq6hMAYNAg72z3z3yNx4yZCAODNdi9ext+/fUXlC1bDn37DkTnzt3kymf3WqampiIq6pOsx93YWP4a6enpQUNDA9HRUXLbs3stM9uMSCTCsmUrsHbtr1i2bCESEhJgZVULI0eOgaNjXcTERCMtLQ3Lly/D8uXLcjyvtm07ID4+HgcP7sPu3Tugp6eH1q3bY9iwEUpdBI9JNxERERER5UhNTQ329o74889rSEtLk82FNjAwgIGBDYB/k93PfdkznjmcOzIyUm57RETGQlf6+hnPa2hoZumBTE1NRUJCQr5jNzExxadPkVm2Z9ZZWF+eY2aPckqKfPwF+UKhIPT09GBtnfGa2NraQywWYcWKn3H6dDA8PVvKrvHcuYtRrly5LPtXqFBRdpxRo8Zh1KhxePr0CX77bSeWLl2A6tUt4eBQR1Y+MjICZmb/3jotIiICampqKFPGEElJSRCJRFkWMouNjUVycjIMDMrk69yqVLHAnDkLkZqair//voW1a1di0qQx2LfvKPT09CESidC370C53nc1NTFSU9Nl0xbEYjF69OiFHj16ITT0I4KD/8Dq1f4wNDTMc+h+YXB4ORERERER5ap3b2+EhYUiIGBT3oVzUKWKBQwNjbKs7H3q1Amoq6vDxqY2gIz7X6ekpMitQp6Z8OdXrVq1ERsbiz//vCbbFhsbi+vXrxbwLHJnZGQMNTU1/PPPc9m2lJQU3Lx5Q66cmpp8j7yydOvWExUqmCMgYDOAjERcS0sLoaEfYG1tk+Unuzn1lpY18N13GSMZXrx4LvfcuXNn5B6fPXsKVla1IJFIoKOjg5o1pThz5qRcmVOnTgDI6JUvCDU1NdSpUw99+gxAXFwcwsJCoa2tDVtbO/zzz3O587GxqQ1raxvZlwmfMzMri169vGFpWTPLeRU19nQTEREREVGuGjVyh7f3AKxfvxqPHz+Eh0dLmJqaIjY2Frdu/YWIiHDo6OjmegyJRIIBA3zw889LYGRkDFfXhrh792/s2LEV3bv3kiV8Li5u0NbWxsKFc9CnT3+Ehn7Ab7/tgoaGZr7jdnFxg1RqjVmzvoev70jo6+sjIGAzdHVzj7WgxGIxmjRphqCgPahUqTLKlDFEUNAeCIIg1ytetWpVAMDevb/B3b0ptLS05BYVKypqamro128gFi6cg8uXL8HFxQ0+Pr749Vd/fPz4EXXq1INEIsHbt69x/vw5zJ27CFpaWhg2bBDc3ZuhenVLSCRiHDv2O9TV1eV6uQHg2LHfoampCanUGidP/oGbN29g8eKfZc8PGvQtpkwZj1mzpqNlyzZ4+fIfrF27Ek2beuTrfJ88eYwVK36Cp2dLmJtXQmxsLAICNqFChYqyRemGDx+FUaOGYcaMKf/v1ddHZGQYQkJC0LZtB9StWx+LFs2Fvr4Bate2g76+Pv7++xaePn2MLl265RFB4TDpJiIiIiL6yjpWHph3oWLG13cE7O0dsXfvHixbtgCxsbEwMCgDKytrTJ48A82bt8zzGN269YSamhp27dqBfft+g4mJKQYOHIJ+/QbJypQpY4g5cxZhxYqfMGXKeNSsKcX338/EyJFD8x2zSCTCggVLsWTJfCxePB/6+vro1u0bRERE4Pz5M/k+niJGj56IRYvm4uefF0NHRxe9evVFlSoWcvVJpdYYNOhbHD58ADt2bP3/7dQOKSWeNm3aY+vWTdi2bTNcXNzQq5c3zMzMsHv3dgQF7YaamhrMzSvBzc1ddks4OzsHHD/+O96+fQuxWITq1Wtg4cKfstyy7Mcf52L16hXYtGk9jIyMMHHiNLi6/ru4XKNGTTB79gJs2rQeU6aMg4GBATp27IyhQ0fk6xxMTExgYmKCgIBNCAsLha6uHhwcHDFjxmzZdAc7Owf8+ut6bNiwBvPnz0RKSgrKli2HevWcUKlSZVmZgwf34dCh/UhMTETFiuYYOXIM2rfvVIgrnDeRIAiCUmsogUJDYwq8r4aGBMnJ+R/6QvJCj81VdQj59v7xXWipxSIxVQ/la9bOsZxZ62lfMSrFse1ScTbypC8iEyNgpGUMf8/Vsu1st1QSsd1SScR2S587cuQQ5s2bicOHg7O95Vlx8TXarZmZfp5l2NNNVFT0rRGfDoi1VR0IUekzzHEkUtNToCbOulAPERERUXHGpJuoiJQvL1F1CESllo1JzqNHiIiIiIozrl5ORERERERECmvbtgMuXLherIeWFydMuomIiIiIiIiUhMPLiYrI+/dpSE8HxGIONScqavfC78rmdHOoOREREZUkTLqJikrMA+j8f/VylGdSQFSUVt30z3b1ciIiIqLijsPLiYiIiIiIiJSESTcRERERERGRkjDpJiIiIiIiIlISJt1ERERERERESsKkm4iIiIiIiEhJmHQTERERERERKQmTbiIiIiIiIiIlYdJNREREREREpCRMuomIiIiIiIiURE3VARCVFuVr1lZ1CESllr/nalWHQERERFQg7OkmIiIiIiIiUhIm3URERERERERKwqSbiIiIiIiISEk4p5uoiDx9HAcIqYBIDZY1dVUdDlGpsvfxb4hPiYeOug661Oyu6nCIiIiIFMakm6iI6OIFtNRjkZiqB4CLqhEVpdMvTyIyMQJGWsZMuomIiKhEYdJN9JWFHptbJMcxaz2tSI5DRERERETKwzndRERERERERErCpJuIiIiIiIhISZh0ExERERERESkJk24iIiIiIiIiJWHSTURERERERKQkTLqJiIiIiIiIlIRJNxEREREREZGS8D7dREUkPq0sEtIMIUBD1aEQlTrWxjaISYmGvrqBqkMhIiIiyhcm3URFpLq1mapDICq1/Op8p+oQiIiIiAqEw8uJiIiIiIiIlIRJNxEREREREZGSFMuke/v27fDw8ICdnR26d++O27dv51r+6NGjaN26Nezs7NChQwecPXtW7vnJkyfDyspK7sfHx0eZp0BERERERERU/OZ0HzlyBPPnz8fMmTPh4OCALVu2wMfHB8eOHYOJiUmW8jdu3MC4ceMwduxYNGvWDIcOHYKfnx/27t0LqVQqK+fu7o758+fLHmtocLErKlovHryCmjgBqenaqGpdWdXhEJUq8y7PwqekSBhqGmGqywxVh0NERESksGLX071p0yb06NEDXbt2RY0aNTBz5kxoaWkhKCgo2/Jbt26Fu7s7Bg8eDEtLS4wePRo2NjbYtm2bXDkNDQ2YmZnJfsqUKfM1Tof+Q7Qk0dBTj4SWJFrVoRCVOu/i3uJt7Bu8i3ur6lCIiIiI8qVYJd3Jycm4e/cu3NzcZNvEYjHc3Nzw119/ZbvPzZs34erqKretUaNGuHnzpty2q1evwtXVFa1atcIPP/yAyMjIIo+fiIiIiIiI6HPFanh5ZGQk0tLSsgwjNzExwbNnz7LdJywsDKamplnKh4WFyR67u7ujRYsWqFSpEl69eoVly5ZhyJAh2L17NyQSSZZjqqtLIBIV7BzU1LIej/KvoNe/uPga8WtoFG1bY9ul4kwsFkEkFkEsFsm1fbZbKonYbqkkYrulkqi4tNtilXQrS7t27WT/z1xIrXnz5rLe7y+lpKQVqr7k5MLtT4AgqDqCwvka8SujnbHtUnGVni5ASBeQni5kaadst1QSsd1SScR2SyVRcWi3xWp4uZGRESQSCcLDw+W2h4eHZ+nNzmRqairXq51XeQCoXLkyjIyM8M8//xQ+aCIiIiIiIqIcFKukW0NDA7Vr10ZISIhsW3p6OkJCQlCnTp1s93F0dMTly5fltl26dAmOjo451vP+/Xt8+vQJZmZmRRI3ERERERERUXaKVdINAAMHDsSePXuwb98+PH36FD/++CMSEhLQpUsXAMDEiROxdOlSWfl+/frh/Pnz2LhxI54+fQp/f3/cuXMH3t7eAIC4uDgsXLgQN2/exOvXrxESEoLhw4fDwsIC7u7uKjlHIiIiIiIi+m8odnO627Zti4iICCxfvhyhoaGoVasW1q9fLxsu/u7dO4jF/35XULduXSxZsgQ///wzli1bhqpVq2LlypWye3RLJBI8evQI+/fvR0xMDMqWLYuGDRti1KhRvFc3ERERERERKVWxS7oBwNvbW9ZT/aWAgIAs29q0aYM2bdpkW15LSwsbNmwo0viIiIiIiIiIFFEsk26ikihRrQYS0tMhUit2szaISrzONbsiMTUJWmqaqg6FiIiIKF+YdBMVkarVmAwQKYtHlRaqDoGIiIioQNglR0RERERERKQkTLqJiIiIiIiIlITDy4mKSGycAEEARCJAT1ek6nCISpXIxAikCwLEIhGMtIxVHQ4RERGRwph0ExWR2Lf3oKUWi8RUPejVrK3qcIhKlRkXpyIyMQJGWsbw91yt6nCIiIiIFMbh5URERERERERKwqSbiIiIiIiISEmYdBMREREREREpCZNuIiIiIiIiIiVh0k1ERERERESkJEy6iYiIiIiIiJSESTcRERERERGRkvA+3VRkQo/NVXUIRERERERExQp7uomIiIiIiIiUhD3dREVE08wGaemAJr/KIipyU51nIE1Ig0QkUXUoRERERPnCpJuoiBgZilQdAlGpVUGvoqpDICIiIioQ9skRERERERERKQmTbiIiIiIiIiIl4fByoiLy8mUK0tMFiMUiVKmirupwiEqVS28uICktCZoSTbiZN1J1OEREREQKY9JNVEQ0kh5BSy0WiUl6AGqrOhyiUmXng22ITIyAkZYxk24iIiIqUTi8nIiIiIiIiEhJmHQTERERERERKQmTbiIiIiIiIiIlYdJNREREREREpCRMuomIiIiIiIiUhEk3ERERERERkZIw6SYiIiIiIiJSEibdREREREREREqipuoAiEqL5HRtIPX//xJRkTLUNJT7l4iIiKikYNJNVESqWFVXdQhEpdbsRgtUHQIRERFRgXB4OREREREREZGSMOkmIiIiIiIiUhIm3URERERERERKwjndREXk6cMIiIQUCCJ1WFoZqzocolJlw99rEZcSC111PfjYfavqcIiIiIgUxqSbqIjoit9BSy0Wial6AJh0ExWlmx9vIDIxAkZafG8RERFRycLh5URERERERERKwqSbiIiIiIiISEmYdBMREREREREpCZNuIiIiIiIiIiVh0k1ERERERESkJEy6iYiIiIiIiJSESTcRERERERGRkjDpJiIiIiIiIlISNVUHQFRaxAmVEZecAojUVR0KUanjWrEh4lJioauup+pQiIiIiPKFSTdREbGUGqg6BKJSq3etvqoOgYiIiKhAOLyciIiIiIiISEmYdBMREREREREpCZNuIiIiIiIiIiXhnG6iIvLm0UNoSuKRlKYDc6mVqsMhKlXGnxmNT0mRMNQ0wpKmP6s6HCIiIiKFsaebqIhIRKlQEydDIkpVdShEpU5SWiISUxOQlJao6lCIiIiI8oVJNxEREREREZGSMOkmIiIiIiIiUhIm3URERERERERKwqSbiIiIiIiISEmYdBMREREREREpCZNuIiIiIiIiIiVh0k1ERERERESkJEy6iYiIiIiIiJRETdUBEJUWaTrWiE5Lh0SD32URFbVBtkOQlJ4MTbGGqkMhIiIiyhcm3URFxNxcAkCi6jCISqU65eqpOgQiIiKiAmGXHBEREREREZGSMOkmIiIiIiIiUhIOLycqIqFhAtLTAbEYMDMVqTocolLlWdRTpKWnQSKWoHoZS1WHQ0RERKSwYtnTvX37dnh4eMDOzg7du3fH7du3cy1/9OhRtG7dGnZ2dujQoQPOnj2bY9kZM2bAysoKmzdvLuKo6b8uLfIeNOOuIi3ynqpDISp1frq+GDMvfY+fri9WdShERERE+VLsku4jR45g/vz58PPzw759+2BtbQ0fHx+Eh4dnW/7GjRsYN24cunXrhv3798PT0xN+fn549OhRlrInTpzArVu3ULZsWWWfBhEREREREVHxS7o3bdqEHj16oGvXrqhRowZmzpwJLS0tBAUFZVt+69atcHd3x+DBg2FpaYnRo0fDxsYG27Ztkyv34cMHzJ49G0uWLIG6uvrXOBUiIiIiIiL6jytWSXdycjLu3r0LNzc32TaxWAw3Nzf89ddf2e5z8+ZNuLq6ym1r1KgRbt68KXucnp6OCRMmwMfHBzVr1lRK7ERERERERERfKlYLqUVGRiItLQ0mJiZy201MTPDs2bNs9wkLC4OpqWmW8mFhYbLH69atg5qaGvr166dQHOrqEogKuA6Wmtp/9z7NBb1mpdHXuBYaGkXb1v7LbZeKP7FYBJFYBLFYJNf22W6pJGK7pZKI7ZZKouLSbotV0q0Md+7cwdatW7F3716IFMyEUlLSClVncnLh9i+pBEHVERQfX+NaKKOd/VfbLhV/6ekChHQB6elClnbKdkslEdstlURst1QSFYd2W6ySbiMjI0gkkiyLpoWHh2fpzc5kamoq16v9Zfnr168jPDwczZo1kz2flpaGhQsXYuvWrTh16lQRnwURERERERFRhmKVdGtoaKB27doICQlB8+bNAWTMxw4JCYG3t3e2+zg6OuLy5csYMGCAbNulS5fg6OgIAPDy8pKbIw4APj4+8PLyQpcuXZRyHkRERERERERAMUu6AWDgwIGYNGkSbG1tYW9vjy1btiAhIUGWIE+cOBHlypXDuHHjAAD9+vVD3759sXHjRjRp0gRHjhzBnTt3MGvWLAAZvedGRkZydairq8PU1BTVq1f/uidHRERERERE/ynFLulu27YtIiIisHz5coSGhqJWrVpYv369bLj4u3fvIBb/u+h63bp1sWTJEvz8889YtmwZqlatipUrV0IqlarqFIiIiIiIiIgAACJB4PJXXwoNjSnwvhoakmIxWV8VQo/NVXUIKpWULEAQRBCJBGhqKH/5crPW04r0eP/ltkvFX0JqAgRBgEgkgraatmw72y2VRGy3VBKx3VJJ9DXarZmZfp5lil1PN1FJ9W+izXunERW1zxNtIiIiopJEnHcRIiIiIiIiIioIJt1ERERERERESsLh5URF5PnTBKSnp0EslqCaJYfCEhWlI88OIyE1HtpqOmhbvb2qwyEiIiJSGJNuoiKinf4MWmqxSEzVA1Bb1eEQlSpHnx9GZGIEjLSMmXQTERFRicLh5URERERERERKwqSbiIiIiIiISEmYdBMREREREREpCZNuIiIiIiIiIiXhQmqE0GNzVR0CqVjosbkQiQBBKNxxzFpPK5qAiIiIiIhKCfZ0ExERERERESkJk24iIiIiIiIiJWHSTURERERERKQknNNNVETi04yRnK6LVEFT1aEQlTpVy1SDsZYJDDQNVB0KERERUb4w6SYqItWtK6g6BKJSa1z9SaoOgYiIiKhAOLyciIiIiIiISEmYdBMREREREREpCZNuIiIiIiIiIiXhnG6iIvLswTuoiZKQKmhyfjdREVt6fSGik6JhoGnA+d1ERERUojDpJioiOpIIaKnFIjFVDwCTbqKi9CLqOSITI2CkZazqUIiIiIjyhcPLiYiIiIiIiJSESTcRERERERGRkjDpJiIiIiIiIlKSQiXdgwcPxqFDh5CYmFhU8RARERERERGVGoVaSO3Vq1eYMGECdHR00KJFC3h5ecHV1RUikaio4iMiIiIiIiIqsQqVdB8/fhy3b9/GwYMHcezYMRw8eBCmpqZo3749OnbsiFq1ahVVnEREREREREQlTqFvGWZvbw97e3tMnToVFy9exMGDB7F7925s3rwZlpaW8PLyQocOHVC+fPmiiJeIiIiIiIioxCiyhdTEYjHc3d2xePFinDlzBq1atcKTJ0+wdOlSeHh4YMCAAThz5kxRVUdERERERERU7BW6p/tz169fx8GDB3H8+HFERUWhZs2a6NSpE9TU1BAUFIRhw4bB19cXo0aNKspqiYqFBHF1xKWmQSyWqDoUohLp4KtNOT5nqq8NAx0zaEg05MpJJCKkpQlKi6lj5YFKOzYRERH9NxQ66X7y5AkOHjyIw4cP4927dzAxMUHnzp3h5eUlN6e7f//+mD59Onbs2MGkm0qlapbaqg6BqNSqU8Fe1SEQERERFUihkm4vLy88evQIGhoa8PT0xA8//AB3d3eIxdmPWnd2dsZvv/1WmCqJiIiIiIiISoxCJd0GBgaYNWsW2rRpAz09vTzLe3p64uTJk4WpkoiIiIiIiKjEKFTSvXDhQhgbG0NLSyvb5xMTExEREYGKFSsCALS1tWFubl6YKomKraRkAYIggkgkQFOD96onKkrJackQBEAkAjQkGqoOh4iIiEhhhVq93NPTEydOnMjx+VOnTsHT07MwVRCVGJH/3EPi2yuI/OeeqkMhKnW23f4Na25sxrbbnKJEREREJUuhkm5ByH3F2JSUlBzndxMRERERERGVdvkeXh4bG4vo6GjZ40+fPuHt27dZykVHR+PIkSMwMzMrXIREREREREREJVS+k+7Nmzdj5cqVAACRSIR58+Zh3rx52ZYVBAGjR48uVIBEREREREREJVW+k+6GDRtCR0cHgiBg8eLFaNeuHWrXri1XRiQSQVtbG7Vr14adnV2RBUtERERERERUkuQ76a5Tpw7q1KkDAEhISECLFi1gZWVV5IERERERERERlXSFumXYiBEjiioOIiIiIiIiolInX0n3ihUrIBKJMGzYMIjFYqxYsSLPfUQiEfz8/AocIBEREREREVFJVaCke8iQIdDQ0GDSTURERERERJSLfCXdDx48yPUxEREREREREf2rUHO6iehfEiMbJKUDErGqIyEqfdpJWyI9PR1iMd9gREREVLIUedKdkJCA33//HcnJyWjSpAnMzc2LugqiYsnMVKTqEIhKrXK6ZqoOgYiIiKhACpV0T506Fbdv38bhw4cBAMnJyejRowceP34MANDX18eWLVtgY2NT+EiJiIiIiIiISphCJd1XrlxBx44dZY8PHz6Mx48fY8mSJbC2tsbIkSOxYsUK/Prrr4UOlIiopDr4apOqQ8iiY+WBqg6BiIiI6D+hUEl3WFiY3PDx4OBg2Nraon379gCAHj16YMOGDYWLkKiEePMmDWlp6ZBIxDA3l6g6HKJS5fmnf5Calgo1iRqqGVqoOhwiIiIihRUq6dbW1kZMTAwAIDU1FVevXoW3t7fseV1dXdnzRKWdJP4BdNVikZikB6C2qsMhKlVOP7+A2JQ46KnrolodJt1ERERUchQq6a5duzb27NkDZ2dnnDp1CnFxcfDw8JA9//LlS5iYmBQ6SCIiIiIiIqKSqFBJ9+jRozF48GB07doVgiCgVatWsLe3lz1/4sQJ1K1bt9BBEhEREREREZVEhUq67ezscPToUdy4cQMGBgZo0KCB7Lno6Gj07t1bbhsRERERERHRf0mh79NtbGyM5s2bZ9luYGCA/v37F/bwRERERERERCVWoZNuAIiNjcXbt28RHR0NQRCyPO/k5FQU1RARERERERGVKIVKuiMjIzF79mz88ccfSEtLy/K8IAgQiUS4f/9+YaohIiIiIiIiKpEKlXRPnz4dp0+fRt++fVG/fn0YGBgUVVxEREREREREJV6hku6LFy+if//+mDhxYlHFQ0RERERERFRqiAuzs5aWFszNzYsqFqISLU1QQ2q6BtKEIlkqgYg+oy5Rg4ZYHeoSvr+IiIioZCnUXy8dO3ZEcHAw+vTpU1TxEJVY5lIrVYdAVGr1tf9G1SEQERERFUihku5WrVrh2rVr8PHxwTfffIPy5ctDIpFkKVe7du3CVENERERERERUIhUq6e7du7fs/5cuXcryPFcvJyIiIiIiov+yQiXd8+fPL6o4iIiIiIiIiEqdQiXdnTt3Lqo4iEq8p4+iASEFEKnDUsrb5xEVpQsvLyMxNQlaappoVMVF1eEQERERKaxQq5d/7uPHj3jw4AHi4+OL6pBEJYqu6BVMNJ5AV/RK1aEQlTqPwp/iXthDPAp/qupQiIiIiPKl0El3cHAwWrdujSZNmqBz5864desWACAiIgKdOnXCiRMn8n3M7du3w8PDA3Z2dujevTtu376da/mjR4+idevWsLOzQ4cOHXD27Fm55/39/dG6dWs4OjrCyckJAwYMkMVJREREREREpCyFSrpPnTqFkSNHwsjICH5+fhAEQfacsbExypUrh7179+brmEeOHMH8+fPh5+eHffv2wdraGj4+PggPD8+2/I0bNzBu3Dh069YN+/fvh6enJ/z8/PDo0SNZmapVq2LGjBk4dOgQduzYAXNzcwwaNAgREREFO3EiIiIiIiIiBRQq6V65ciXq16+PnTt3ZnuvbkdHx3yvXL5p0yb06NEDXbt2RY0aNTBz5kxoaWkhKCgo2/Jbt26Fu7s7Bg8eDEtLS4wePRo2NjbYtm2brEyHDh3g5uaGypUro2bNmpgyZQpiY2Px8OHD/J0wERERERERUT4UKul+/Pgx2rRpk+PzpqamOfZQZyc5ORl3796Fm5vbvwGKxXBzc8Nff/2V7T43b96Eq6ur3LZGjRrh5s2bOdaxe/du6Ovrw8rKSuHYiIiIiIiIiPKrUKuXa2trIyEhIcfnX716BUNDQ4WPFxkZibS0NJiYmMhtNzExwbNnz7LdJywsDKamplnKh4WFyW07ffo0xo4di4SEBJiZmWHjxo0wNjbO9pjq6hKIRAqHLUdNTVKwHVWooOdKOfsa11RDo+jamkgEiEQiAEKeZXNTlDGVJhJJ8XuTFcfXKrfrJBIBov//+3k5sVgMIF1pMRXH60QlX0n8W4GI7ZZKouLSbguVdDs7O2P//v3o379/ludCQ0OxZ88eNGvWrDBVFJnMWCMjI7Fnzx6MHj0av/32W5YEHwBSUtIKVVdycuH2/9qEwuVZlI2vcU2Lsp1lxCsUOu6S1va/lrS04vcmK46vVW7XSRAyvhIShC/LpSv1+hbH60SlA9sWlURst1QSFYd2W6jh5aNHj8b79+/RrVs37N69GyKRCBcuXMBPP/2EDh06QBAE+Pn5KXw8IyMjSCSSLEPSw8PDs/RmZzI1Nc3Sq51deR0dHVhYWMDR0RHz5s2DmpoaAgMDFY6NiIiIiIiIKL8KlXRXr14dO3bsgKGhIX755RcIgoANGzZgzZo1kEql2LFjBypVqqTw8TQ0NFC7dm2EhITItqWnpyMkJAR16tTJdh9HR0dcvnxZbtulS5fg6OiYa13p6elITk5WODYiIiIiIiKi/CrU8HIAqFmzJjZv3oyoqCj8888/EAQBlStXznG+dF4GDhyISZMmwdbWFvb29tiyZQsSEhLQpUsXAMDEiRNRrlw5jBs3DgDQr18/9O3bFxs3bkSTJk1w5MgR3LlzB7NmzQIAxMfHY/Xq1fDw8ICZmRkiIyOxfft2fPjwAa1bty7s6RPJxKVXQHxSCgSRuqpDISp1qhpWQWJqIrTUtFQdChEREVG+FDjpTk5OxoEDB3Dx4kW8fPkScXFx0NXVhYWFBdzd3dG+fXtoaGjk+7ht27ZFREQEli9fjtDQUNSqVQvr16+XDRd/9+7d/xfOyVC3bl0sWbIEP//8M5YtW4aqVati5cqVkEqlAACJRIJnz55h3759iIyMhKGhIezs7LB9+3bUrFmzoKdPlIWlVcG+aCKivHlUc1d1CEREREQFIhKE/C+d9PDhQwwfPhxv376FIAjQ19eHjo4O4uPjERMTA5FIhMqVK2PVqlWwtLRURtxKFRoaU+B9NTQkxWKyfn6EHpur6hCoAMxaTyuyY4UemwuRqPALwBVlTKXJwVebVB1CFh0rD1R1CFkU5DpJJCKlLqRWHK8TlXwl8W8FIrZbKom+Rrs1M9PPs0y+e7rj4uIwbNgwREREYMyYMfDy8kK5cuVkz3/48AH79+/HqlWr4OvriwMHDkBHRye/1RARERERERGVePleSG3v3r149+4d1qxZg2+//VYu4QaAcuXKYejQoVi1ahVev36Nffv2FVmwRERERERERCVJvpPuM2fOoGHDhnB2ds61nKurK9zc3HDq1KkCB0dUkrx8+AzvH9/Fy4fPVB0KUamz685ebPxrO3bd2avqUIiIiIjyJd9J96NHj9CgQQOFyrq4uODRo0f5DoqoJNIQJ0BLLRYa4gRVh0JU6sSnJCA2JQ7xKXx/ERERUcmS76Q7KioKZmZmCpU1NTVFVFRUvoMiIiIiIiIiKg3yvZBacnIy1NQU200ikSAlJSXfQZFiuOo4ERERERFR8Vag+3S/efMGd+/ezbPc69evC3J4IqICK4635yIiIiKi/64CJd2//PILfvnllzzLCYIAkUhUkCqIiIiIiIiISrx8J93z589XRhxEREREREREpU6+k+7OnTsrIw4iIiIiIiKi/7V35/Ex3fsfx9/JZJPE1sTSUkuTZpOEpIsrtktdra12fq6l1ZQuaLn6o+pSVFHKbanilqaWlrpXqbVV1atU0IWmlLq2llZJgkYWksyc3x+u+XWacEPn5Ix4PR8Pj3a+8z3nfM6c7zDvOd9zpsy55ruXAwAAAACAkiF0AwAAAABgkuu6kRqAovL9I3TBYcjbn5sHAu7W+PaGKnQUysebf7YAAMCNhU8vgJvUquVrdQlAmRUZGm51CQAAANeF6eUAAAAAAJiE0A0AAAAAgEmYXg64ydlzhhwOydtbqlyJ67oBdzqbd04OwyFvL29VLlfJ6nIAAABKjNANuMnF9G8V4JOtC4XBUqV6VpcDlCkrD6xTdkGOgn2D9EhCb6vLAQAAKDGmlwMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEh+rCwDKiuDbYmQYUrCX1ZUAZU+Pep1kGIa8vHiDAQCAGwuhG3CT4CDCAGCWYL8gq0sAAAC4LkwvBwAAAADAJIRuAAAAAABMwvRywE2OHb0ow+GQl7e36tT1t7ocoEzZe3q/CuwF8rX5KrZqtNXlAAAAlBihG3CTgMJDCvDJ1oXCYEn1rC4HKFN2/fiVsgtyFOwbROgGAAA3FKaXAwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEn6nG4DbpH/wolvWU+WB0W5ZDwAAAGA1QjfgJhfsFVRo+KrQUc7qUoAyp1JARfnZfBXoG2h1KQAAANeE0A24SZ2o260uASizukS3t7oEAACA68I13QAAAAAAmITQDQAAAACASQjdAAAAAACYhGu6ATc5ciBdXsqXIT/dEVXF6nKAMuXDw5uVV3BB5XwDdH9YS6vLAQAAKDFCN+AmgbbTCvDJ1oXCYEmEbsCdfsw6qeyCHAX7BlldCgAAwDVhejkAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBIfqwsAyooc1VFOQaHkxdsKcLd6VaN0sTBf/j5+VpcCAABwTUgHgJuE3RlkdQlAmdWwxl1WlwAAAHBdmF4OAAAAAIBJONMNADeh1cdTrC4BZYgnjqcHb+9vdQkAAEjiTDcAAAAAAKbhTDfgJj//e58CfLJ1oTBY1e+sZ3U5QJny5u63lV2Qo2DfID2S0NvqcgAAAEqMM90AAAAAAJiE0A0AAAAAgEk8MnS//fbbatmypeLi4tS9e3elpaVdtf+GDRv0wAMPKC4uTh06dNCWLVuczxUUFGjatGnq0KGDGjRooCZNmmjEiBE6deqU2bsBAAAAALjJeVzoXr9+vSZPnqxBgwZp5cqVioqKUnJysjIzM4vt/9VXX2n48OHq1q2bVq1apfvuu0+DBg3SwYMHJUkXLlzQt99+qyeeeELvvfeeXnvtNR09elRPPPFEae4WAAAAAOAm5HGhOyUlRT169FDXrl0VHh6u8ePHKyAgQCtWrCi2/6JFi9S0aVM9+uijCgsL09ChQxUTE6MlS5ZIksqXL6+UlBS1bdtWd9xxhxo0aKAxY8Zo3759+umnn0pz1wAAAAAANxmPCt35+fnat2+fkpKSnG3e3t5KSkrS7t27i11mz549atSokUtbkyZNtGfPnituJzs7W15eXqpQoYJb6gYAAAAAoDge9ZNhZ8+eld1uV0hIiEt7SEiIjhw5UuwyGRkZCg0NLdI/IyOj2P4XL17Uyy+/rHbt2ik4OLjYPr6+Nnl5XccOSPLxsV3fgtfhemuE+Urj2Pj5uW+seXlJXl5ekgy3rfP3+D37ZrPxxiiLvLwkr//899fH2NvbW5LDtO26831Wlnni+86Tj11pflYA3IVxixuRp4xbjwrdZisoKNDTTz8twzA0fvz4q/Sz/67t5Of/vuVLyvCMfIRilMaxcec4u1Sv4TFj6vfsm93uITsBtzKMS18JGcZvj7HD1GNeWn+f3+g88X3n6cfO0+sDisO4xY3IE8atR4XuypUry2azFblpWmZmZpGz2ZeFhoYWOatdXP+CggINHTpUP/30kxYuXHjFs9wAAAAAALiLR13T7efnp3r16ik1NdXZ5nA4lJqaqoSEhGKXadCggXbs2OHStn37djVo0MD5+HLg/v777/XWW2+pcuXKptSPm1z5KOX63y2Vj7K6EqDMaR3WQh0j2qh1WAurSwEAALgmHnWmW5L69++vkSNHKjY2VvHx8Vq4cKHy8vLUpUsXSdKIESNUrVo1DR8+XJLUr18/9e3bV2+++aaaN2+u9evXa+/evZowYYKkS4H7qaee0rfffqt58+bJbrcrPT1dklSxYkX5+flZs6Moc6pX94xrRoCyqGaF26wuAQAA4Lp4XOhu27atzpw5o5kzZyo9PV3R0dGaP3++c7r4yZMn/3PjnEsSExP18ssv65VXXtGMGTNUp04dzZ49WxEREZKkU6dOafPmzZKkjh07umxr0aJFatiwYSntGQAAAADgZuNxoVuS+vTpoz59+hT73OLFi4u0tWnTRm3atCm2f82aNfXdd9+5tT4AAAAAAErCI0M3cCP6+We7HA7J25up5oC7ncj6SXaHXTZvG1PNAQDADYXQDbjL+QMK9MnWhcJgqXo90zeX/sGLpm8D8BQbD3+i7IIcBfsG6ZGE3laXAwAAUGKEbgDX7WP/Q6asN/B4iinrBa7Vag8ciw/e3t/qEgAAwDXwqJ8MAwAAAACgLCF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEh+rCwDKiup31rO6BKDMeiSht9UlAAAAXBfOdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEq7pBtzk8L9zJKNQ8vJR2J1BVpcDlCk7f/xSFwvz5e/jp4Y17rK6HAAAgBIjdANuEqRjCvDN1oXCYEncVA1wp32nDyi7IEfBvkGEbgAAcENhejkAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBIfqwsAyopce1Xl2SvJkJ/VpQBlTo0Ktyqv4ILK+QZYXQoAAMA1IXQDbnJHVBWrSwDKrPvDWlpdAgAAwHVhejkAAAAAACYhdAMAAAAAYBJCNwAAAAAAJuGabsBNjh04Lh/vPBU6yqlO1O1WlwOUKe/tX6vcglwF+gaqS3R7q8sBAAAoMUI34CYBtiwF+GTrQmGB1aUAZc65C78ouyBH+XbeXwAA4MbC9HIAAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJNxIDQBKIPfQp25bV2B4M7etCwAAAJ6NM90AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmIRrugE3ueATrjyHQ14+fJcFuNu9NRJVYC+Qr83X6lIAAACuCaEbcJM6df2tLgEos2KrRltdAgAAwHXhlBwAAAAAACYhdAMAAAAAYBKmlwNukp1jyDAkLy8pOMjL6nKAMiU7P0eGYcjLy0vBfkFWlwMAAFBihG7ATbJ/+lYBPtm6UBis4DvrWV0OUKYs37dK2QU5CvYN0iMJva0uBwAAoMSYXg4AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmMTH6gIAlMzH/ofM3YCXJMPcTQAAAAA3G0I34Cb+VWJkd0j+zB8B3K5zVDs5DIe8vXiDAQCAGwuhG3CTypW8rC4BKLMql6tkdQkAAADXhVMGAAAAAACYhNANAAAAAIBJmF4OuMkPPxTI4TDk7e2lWrV8rS4HKFO+yzikQkehfLx9FBkabnU5AAAAJUboBtzE7+JBBfhk68LFYEn1rC4HKFM+O75T2QU5CvYNInQDAIAbCtPLAQAAAAAwCaEbAAAAAACTELoBAAAAADCJx4Xut99+Wy1btlRcXJy6d++utLS0q/bfsGGDHnjgAcXFxalDhw7asmWLy/MbN27UI488ooYNGyoyMlL79+83s3wAAAAAAJw8KnSvX79ekydP1qBBg7Ry5UpFRUUpOTlZmZmZxfb/6quvNHz4cHXr1k2rVq3Sfffdp0GDBungwYPOPrm5uUpMTNQzzzxTWrsBAAAAAIAkDwvdKSkp6tGjh7p27arw8HCNHz9eAQEBWrFiRbH9Fy1apKZNm+rRRx9VWFiYhg4dqpiYGC1ZssTZp1OnTho8eLAaNWpUWrsBAAAAAIAkDwrd+fn52rdvn5KSkpxt3t7eSkpK0u7du4tdZs+ePUXCdJMmTbRnzx4zSwUAAAAAoEQ85ne6z549K7vdrpCQEJf2kJAQHTlypNhlMjIyFBoaWqR/RkbG76rF19cmL6/rW9bHx/a7tn0trrdGmM+UY2Py8faSlwwvw9yNlJDN5oGD240leeT+eTgvr0uHwMvL9fXz9vaW5LCsLiv4+ZXevzMl5Ylj2hNfp8tK87MC4C6MW9yIPGXcekzo9iQFBfbftXx+/u9bvqQMz8hH+I98Rzmp8NJ/TTk2Jh9vw8swfRslZbd7SCG/5saSPHL/PFw5n0vvq3I+5X7z+jluuteztP6NuRaeeAw88XX6NU+vDygO4xY3Ik8Ytx4TuitXriybzVbkpmmZmZlFzmZfFhoaWuSs9tX6A2aqFXmH1SUAZdb/xHaxugQAAIDr4jHXdPv5+alevXpKTU11tjkcDqWmpiohIaHYZRo0aKAdO3a4tG3fvl0NGjQws1QAAAAAAErEY850S1L//v01cuRIxcbGKj4+XgsXLlReXp66dLl0hmPEiBGqVq2ahg8fLknq16+f+vbtqzfffFPNmzfX+vXrtXfvXk2YMMG5znPnzunkyZM6ffq0JOno0aOSLp0lr1KlSinvIW4UH/sfsroElGG5hz51y3oCw5u5ZT1AWbT6eIrVJRTx4O39rS7hhsCxA1DWeFTobtu2rc6cOaOZM2cqPT1d0dHRmj9/vnO6+MmTJ/9z05xLEhMT9fLLL+uVV17RjBkzVKdOHc2ePVsRERHOPps3b9aoUaOcj4cNGyZJGjx4sIYMGVJKewYAAAAAuBl5VOiWpD59+qhPnz7FPrd48eIibW3atFGbNm2uuL4uXbo4z5QDZiq3z1++jkIVePsor95Fq8sBypTNR7fqQuEFBfgEqGXdplaXAwAAUGIeF7qBG1V1ZSrYL0fZhUE6qmCrywHKlGPnflB2QY6CfYOsLgUAAOCaeMyN1AAAAAAAKGsI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmMTH6gKAsuJHr1D5FtyiAm9vSResLgcoUyJCwnSh8KICfPytLgUAAOCaELoBN8mPuaB8q4sAyqgmtf5gdQkAAADXhenlAAAAAACYhNANAAAAAIBJCN0AAAAAAJiEa7oBN7l9b54CbReUaw/Q8dhyVpcDlCmL095VTn6ugvwC1Te+p9XlAAAAlBihG3ATHy+7/Lzzle/wtboUoMwpsBcq31EgP3uh1aVYbvXxFKtLAAAA14Dp5QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASXysLgAoKw6Xryo5vKRyhryVa3U5QJnSom4TFdoL5WPjny0AAHBj4dML4CbetQjagFnqVqptdQkAAADXhenlAAAAAACYhNANAAAAAIBJmF4OuIn9dIDkkOQt2apesLocoEw5lZMuh8Mhb29vVQuqYnU5AAAAJUboBtwkPD1DwT45yi4M0tGqwVaXA5Qp6w5uVHZBjoJ9g/RIQm+rywEAACgxppcDAAAAAGASQjcAAAAAACZhejkAj5N76FOrS7ipuPP1Dgxv5rZ1eRp3vU5l+TXCjWf18RSrSwCAMo8z3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEn4yTDATQ7fWUEyKkhekrccVpcDlCl94rvLMCQvL6srAQAAuDaEbsBNvP0I2oBZ/Gx+VpcAAABwXZheDgAAAACASQjdAAAAAACYhOnlgJt4HwyUt92Qw+YlR0Su1eUAZcruk2nKt+fLz+anhFvjrS4HAACgxAjdgJvULjitYJ8cZRcE6aiCrS4HKFN2//yNsgtyFOwbROgGAAA3FKaXAwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBLuXg4AAFAKVh9PkSTZbF6y2w2Lq8GN7vJ4Ki0lGbcP3t6/lKqBGUp7TJVEWRlTnOkGAAAAAMAkhG4AAAAAAEzC9HLATc46Kig3v5wuyleSw+pygDKlSlCogguCVM63nNWlAAAAXBNCN+Am5+IckmwicAPu1yHifqtLAAAAuC5MLwcAAAAAwCSEbgAAAAAATELoBgAAAADAJFzTDbhJpW+85a8CXZTvf67vBuAuaw5+qLyCPJXzLcf13QAA4IZC6AbcpLJ3loJ9cpRdGKRzCra6HKBMSc/JUHZBjoJ9g6wuBQAA4JowvRwAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwiUeG7rffflstW7ZUXFycunfvrrS0tKv237Bhgx544AHFxcWpQ4cO2rJli8vzhmHo1VdfVZMmTRQfH6+HH35Yx44dM3EPAAAAAADwwNC9fv16TZ48WYMGDdLKlSsVFRWl5ORkZWZmFtv/q6++0vDhw9WtWzetWrVK9913nwYNGqSDBw86+7zxxhtavHixxo0bp+XLl6tcuXJKTk7WxYsXS2u3AAAAAAA3IY8L3SkpKerRo4e6du2q8PBwjR8/XgEBAVqxYkWx/RctWqSmTZvq0UcfVVhYmIYOHaqYmBgtWbJE0qWz3IsWLdITTzyhVq1aKSoqSlOnTtXp06e1adOm0tw1AAAAAMBNxqNCd35+vvbt26ekpCRnm7e3t5KSkrR79+5il9mzZ48aNWrk0takSRPt2bNHknTixAmlp6e7rLN8+fKqX7/+FdcJAAAAAIA7+FhdwK+dPXtWdrtdISEhLu0hISE6cuRIsctkZGQoNDS0SP+MjAxJUnp6urPtSn1+q0qV8tdVf2mr0neK1SWUWTFWFwCUpsSnrK7gv0r2hBo9oQYA+I/kKvydBPdiTJnHo850AwAAAABQlnhU6K5cubJsNluRm6ZlZmYWOZt9WWhoaJEz1r/uX6VKFWdbSdcJAAAAAIA7eFTo9vPzU7169ZSamupsczgcSk1NVUJCQrHLNGjQQDt27HBp2759uxo0aCBJqlmzpqpUqeKyzuzsbH399ddXXCcAAAAAAO7gUaFbkvr376/ly5dr5cqVOnz4sMaNG6e8vDx16dJFkjRixAhNnz7d2b9fv37aunWr3nzzTR0+fFizZs3S3r171adPH0mSl5eX+vXrpzlz5ujjjz/Wd999pxEjRqhq1apq1aqVJfsIAAAAALg5eNSN1CSpbdu2OnPmjGbOnKn09HRFR0dr/vz5zqngJ0+elLf3/39XkJiYqJdfflmvvPKKZsyYoTp16mj27NmKiIhw9hkwYIDy8vI0duxYZWVl6a677tL8+fPl7+9f6vsHAAAAALh5eBmGYVhdRFnx9ttva8GCBUpPT1dUVJTGjBmj+Ph4q8sCJEnz5s3Txo0bdeTIEQUEBCghIUHPPPOM7rjjDmefixcvasqUKVq/fr3y8/PVpEkTPf/889z/AB7j73//u6ZPn65+/fpp9OjRkhi38EynTp3StGnTtHXrVuXl5al27dqaNGmS4uLiJEmGYWjmzJn6xz/+oaysLCUmJmrcuHGqU6eOtYXjpmW32zVr1iytXr1aGRkZqlq1qjp37qwnn3xSXl5ekhi3sN7nn3+uBQsWaO/evUpPT9fs2bNdZi+XZIyeO3dOL7zwgj755BN5e3urdevWGj16tIKCgkyr2+Oml9+o1q9fr8mTJ2vQoEFauXKloqKilJycXOQGboBVdu3apd69e2v58uVKSUlRYWGhkpOTlZub6+wzadIkffLJJ3rllVe0ePFinT59WoMHD7awauD/paWladmyZYqMjHRpZ9zC0/zyyy/q1auXfH199cYbb2jdunUaOXKkKlas6OzzxhtvaPHixRo3bpyWL1+ucuXKKTk5WRcvXrSwctzM3njjDS1dulRjx47V+vXr9cwzz2j+/PlavHixSx/GLayUm5uryMhIPf/888U+X5Ix+swzz+jQoUNKSUnR3Llz9cUXX2js2LHmFm7ALbp162aMHz/e+dhutxtNmjQx5s2bZ2FVwJVlZmYaERERxq5duwzDMIysrCyjXr16xoYNG5x9Dh06ZERERBi7d++2qErgkuzsbKN169bGZ599ZvTp08eYOHGiYRiMW3imadOmGb169bri8w6Hw2jcuLExf/58Z1tWVpYRGxtrrF27tjRKBIoYOHCgMWrUKJe2wYMHG8OHDzcMg3ELzxMREWF89NFHzsclGaOXPyOkpaU5+2zZssWIjIw0fv75Z9Nq5Uy3G+Tn52vfvn1KSkpytnl7eyspKUm7d++2sDLgys6fPy9JzjMve/fuVUFBgcs4DgsL02233aY9e/ZYUSLgNGHCBDVv3txlfEqMW3imzZs3KzY2Vk899ZQaNWqkTp06afny5c7nT5w4ofT0dJdxW758edWvX5/PDbBMQkKCduzYoaNHj0qSDhw4oC+//FLNmjWTxLiF5yvJGN29e7cqVKjgvNRHkpKSkuTt7a20tDTTavO4G6ndiM6ePSu73a6QkBCX9pCQEB05csSiqoArczgcmjRpkhITE503HczIyJCvr68qVKjg0jckJETp6elWlAlIktatW6dvv/1W//znP4s8x7iFJzp+/LiWLl2q/v376/HHH9c333yjiRMnytfXV507d3aOzeI+N2RkZFhRMqCBAwcqOztbbdq0kc1mk91u17Bhw/Tggw9KEuMWHq8kYzQjI0O33HKLy/M+Pj6qWLGiqZ8bCN3ATWj8+PH697//rXfeecfqUoCrOnnypF588UW9+eab/OIEbhiGYSg2NlZ/+ctfJEkxMTH697//rWXLlqlz584WVwcUb8OGDVqzZo2mT5+u8PBw7d+/X5MnT3beUA3A9WN6uRtUrlxZNputyE3TMjMzuXsuPM6ECRP0r3/9SwsXLlT16tWd7aGhoSooKFBWVpZL/8zMTFWpUqW0ywQkSfv27VNmZqa6dOmimJgYxcTEaNeuXVq8eLFiYmIYt/BIVapUUVhYmEvbHXfcoZ9++sn5vCQ+N8CjTJ06VQMHDlS7du0UGRmpTp066aGHHtK8efMkMW7h+UoyRkNDQ3XmzBmX5wsLC/XLL7+Y+rmB0O0Gfn5+qlevnlJTU51tDodDqampSkhIsLAy4P8ZhqEJEyboo48+0sKFC3X77be7PB8bGytfX1+XcXzkyBH99NNPatCgQSlXC1zyhz/8QWvWrNGqVaucf2JjY9WhQwfn/zNu4WkSExOd18VeduzYMdWoUUOSVLNmTVWpUsVl3GZnZ+vrr7/mcwMsc+HCBedPg11ms9lk/OfXhRm38HQlGaMJCQnKysrS3r17nX127Nghh8Nh6k89M73cTfr376+RI0cqNjZW8fHxWrhwofLy8tSlSxerSwMkXZpSvnbtWr3++usKCgpyXrdSvnx5BQQEqHz58urataumTJmiihUrKjg4WBMnTlRCQgLhBZYJDg523nfgssDAQFWqVMnZzriFp3nooYfUq1cvzZ07V23atFFaWpqWL1+uCRMmSJK8vLzUr18/zZkzR7Vr11bNmjX16quvqmrVqi6/NwuUphYtWmju3Lm67bbbnNPLU1JS1LVrV0mMW3iGnJwc/fDDD87HJ06c0P79+1WxYkXddttt/3WMhoWFqWnTphozZozGjx+vgoICvfDCC2rXrp2qVatmWt1exuWvr/C7LVmyRAsWLFB6erqio6P117/+VfXr17e6LECSivy28WWTJ092fjl08eJFTZkyRevWrVN+fr6aNGmi559/nmm68Ch9+/ZVVFSURo8eLYlxC8/0ySefaMaMGTp27Jhq1qyp/v37q0ePHs7nDcPQzJkztXz5cmVlZemuu+7S888/r7p161pYNW5m2dnZevXVV7Vp0yZlZmaqatWqateunQYNGiQ/Pz9JjFtYb+fOnerXr1+R9s6dO2vKlCklGqPnzp3TCy+8oM2bN8vb21utW7fWX//6VwUFBZlWN6EbAAAAAACTcE03AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcA4Kawc+dORUZGaufOnaZto2/fvurbt69p67fCs88+q5YtW1pdBooxa9YsRUZGXteyHFcAKD2EbgCA27333nuKjIx0/omLi9P999+vCRMmKCMjw+rySs2pU6c0a9Ys7d+/3+pSbgjPPvusy7iJiYlR8+bNNWzYMB06dMjq8q6oZcuWioyM1MMPP1zs88uXL3fu0zfffFO6xQEALOdjdQEAgLLrqaeeUs2aNZWfn68vv/xSS5cu1ZYtW7R27VqVK1fO6vLcbsGCBS6PT58+rddee001atRQdHS0RVXdWPz8/DRx4kRJkt1u1w8//KBly5Zp69atWrdunapVq2ZxhcXz9/fXzp07lZ6eripVqrg8t2bNGvn7++vixYsWVQcAsBKhGwBgmmbNmikuLk6S1L17d1WqVEkpKSn6+OOP1b59+9+17ry8PI8L7n5+flaX4NEMw9DFixcVEBBwxT4+Pj7q2LGjS1uDBg302GOPacuWLerRo4fZZV6XxMREffPNN1q/fr0eeughZ/vPP/+sL774Qn/605/04YcfWlghAMAqTC8HAJSaP/zhD5KkEydOONvef/99denSRfHx8br33ns1bNgwnTx50mW5vn37qn379tq7d6969+6t+vXra8aMGZIuTe197LHHtG3bNnXs2FFxcXFq27atNm7cWKKavv76ayUnJ+uuu+5S/fr11adPH3355ZfO5w8fPqz4+HiNGDHCZbkvvvhC0dHRmjZtmkudl6/p3rlzp7p16yZJGjVqlHN68XvvvaeZM2eqXr16OnPmTJF6xowZo7vvvvuqZ0WvdO34b6/TPXHihCIjI7VgwQK9++67atWqlWJjY9W1a1elpaUVWX7Tpk1q37694uLi1L59e3300UfFbt/hcOitt95Su3btFBcXp6SkJI0dO1a//PKLS7/Lx2br1q3OY7xs2bIr7teVhIaGSpJsNpuz7dy5c3rppZfUoUMHJSQkKDExUY8++qgOHDhQZPnFixerXbt2ql+/vu655x516dJFa9ascelz6tQpjRo1SklJSYqNjVW7du30z3/+s8Q1+vv7q3Xr1lq7dq1L+9q1a1WhQgU1adKk2OVSU1P15z//WQ0aNNDdd9+tJ554QocPHy7S74svvlDXrl0VFxenVq1aXfV1LMl7CgBQegjdAIBS88MPP0iSKlWqJEmaM2eORo4cqdq1a+vZZ59Vv379lJqaqt69eysrK8tl2XPnzmnAgAGKjo7Wc889p4YNGzqfO3bsmIYNG6ZmzZpp+PDhstlsevrpp/XZZ59dtZ7L28rJydHgwYM1bNgwZWVl6aGHHnKG0rCwMD399NN6//339fHHH0uScnNzNWrUKN1xxx16+umni113WFiYnnrqKUlSz549NXXqVE2dOlX33HOPOnbsqMLCQq1fv95lmfz8fH344Ydq3bq1/P39S/iq/ndr167VggUL1LNnTw0dOlQ//vijhgwZooKCAmefbdu2aciQIfLy8tLw4cN13333adSoUdq7d2+R9Y0dO1bTpk1TYmKiRo8e7QyxycnJLuuUpKNHj2r48OFq3LixRo8eXaJp9mfOnNGZM2eUkZGh3bt3a/LkyapUqZJatGjh7HP8+HFt2rRJf/zjH/Xss88qOTlZBw8eVJ8+fXTq1Clnv+XLl2vixIkKCwvTc889pyFDhig6Olpff/21s09GRoZ69OjhHA+jR49WrVq1NHr0aL311lslfp3bt2+vtLQ05ziXLr32999/v3x8ik4u3L59ux599FFlZmZq8ODBevjhh7V792716tXL5Yup7777TsnJyTpz5oyGDBmiLl26aNasWcV+KXIt7ykAQCkxAABwsxUrVhgRERHG9u3bjczMTOPkyZPGunXrjHvvvdeIj483fv75Z+PEiRNGdHS0MWfOHJdlv/vuOyMmJsalvU+fPkZERISxdOnSIttq0aKFERERYXz44YfOtvPnzxuNGzc2OnXq5GzbsWOHERERYezYscMwDMNwOBxG69atjUceecRwOBzOfnl5eUbLli2N/v37O9vsdrvRq1cvIykpyThz5owxfvx4IyYmxkhLS3OppU+fPkafPn2cj9PS0oyIiAhjxYoVReru2bOn0b17d5e2jRs3utR4Jb/dzmUjR440WrRo4Xx8/PhxIyIiwrj33nuNc+fOOds3bdpkREREGJs3b3a2dezY0WjcuLGRlZXlbNu2bZsRERHhss7PP//ciIiIMFavXu2y7U8//bRI++Vj8+mnn151f35df0RERJE/TZs2Nfbu3evS9+LFi4bdbndpO378uBEbG2u89tprzrYnnnjCaNeu3VW3+9xzzxmNGzc2zpw549I+bNgw46677jLy8vKuunyLFi2MgQMHGoWFhUbjxo2N2bNnG4ZhGIcOHTIiIiKMXbt2Od8Tvx4zHTt2NBo1amScPXvW2bZ//34jKirKGDFihLPtySefNOLi4owff/zR2Xbo0CEjOjraiIiIcLZdy3vqt2MFAGAeznQDAEzz8MMPq1GjRs47UAcFBem1115TtWrV9NFHH8nhcKhNmzbOM5tnzpxRaGioateuXeSnvfz8/NSlS5dit1O1alX96U9/cj4ODg5Wp06d9O233yo9Pb3YZfbv369jx46pQ4cOOnv2rHP7ubm5atSokT7//HM5HA5Jkre3t6ZMmaLc3FwNGDBA77zzjgYOHOi8Xv16dOzYUV9//bXLWdE1a9bo1ltv1b333nvd6y1O27ZtVbFiRefju+++W9Kls8XSpRu+7d+/X507d1b58uWd/Ro3bqzw8HCXdX3wwQcqX768Gjdu7HLc6tWrp8DAwCLHrWbNmmratGmJa/X391dKSopSUlK0YMECTZgwQYGBgRo4cKCOHj3q7Ofn5ydv70sfY+x2u86ePavAwEDVrVtX3377rbNfhQoV9PPPPxc7nV66dJ35xo0b1bJlSxmG4bJPTZo00fnz57Vv374S1W6z2fTAAw9o3bp1kqTVq1fr1ltvdb7ev/br1/zyzA9JioqKUlJSkrZs2eLct23btqlVq1a67bbbnP3CwsKKTFm/1vcUAKB0cCM1AIBpxo4dq7p168pmsyk0NFR169Z1BqVjx47JMAy1bt262GV/Ox23WrVqV7xRWe3ateXl5eXSVqdOHUnSjz/+WORu0pe3L0kjR468Yv3nz593htVatWpp8ODBmjp1qiIiIvTkk09ecbmSaNu2rSZNmqTVq1dr8ODBOn/+vD755BM9/PDDRfbl97r11ltdHl/ep8vTjX/66SdJl17H3/ptiP3+++91/vx5NWrUqNhtZWZmujyuWbPmNdVqs9mUlJTk0ta8eXO1bt1aM2bM0KxZsyRduq580aJFeuedd3TixAnZ7XZn/1+H2AEDBmj79u3q3r27ateurcaNG6t9+/a66667JF2ayp6VlaV3331X7777brE1FXft/ZV06NBBixcv1oEDB7R27Vq1bdu22ON5+TWvW7dukefCwsK0bds25ebmKicnRxcuXLjisbkczqVrf08BAEoHf/sCAEwTHx9/xbPBDodDXl5eeuONN1xukHVZYGCgy+Or3fH6ehiGIUkaMWLEFa8z/m0Nl68RP336tM6dO1dsmC+pihUrqkWLFlqzZo0GDx6sDz74QPn5+XrwwQeve52/Dp6/VtzrK/3/a3AtHA6HQkJC9PLLLxf7/C233OLy2B3HrXr16qpbt64+//xzZ9vcuXP16quvqmvXrnr66adVsWJFeXt7a9KkSS77FRYWpg8++ED/+te/tHXrVm3cuFHvvPOOBg0apKeeeso5m+HBBx9U586di91+ZGRkiWutX7++atWqpRdffFEnTpxQhw4drnOvr921vqcAAKWD0A0AsEStWrVkGIZq1qxZ7Nm+a/H999/LMAyXM4qXz2TXqFGj2GVuv/12SZemov/2zGpxli5dqs8++0zDhg3TvHnzNHbsWM2ZM+eqy/y3M9YdO3bUk08+qbS0NK1Zs0YxMTG68847/2stFStWdE4N/7XLZ0+v1eVpy99//32R5349pVu6dNxSU1OVmJjo9i9CrsZutys3N9f5+MMPP1TDhg01adIkl35ZWVmqXLmyS1tgYKDatm2rtm3bKj8/X0OGDNHcuXP12GOP6ZZbblFQUJAcDkeJxkFJtGvXTnPmzFFYWNgVv9C5/Jr/9vWVpCNHjqhy5coKDAyUv7+/AgICSnxs3PWeAgC4D9d0AwAs0bp1a9lsNr322mtFzrgahqGzZ8+WeF2nT592uZNzdna2Vq1apejo6CuejY6NjVWtWrX05ptvKicnp8jzv55SfPz4cU2dOlX333+/Hn/8cY0cOVKbN2/WqlWrrlrX5d8Rv9Jdo5s1a6bKlStr/vz5+vzzz0t8lvv222/XkSNHXGo8cOCAvvrqqxIt/1tVq1ZVdHS0Vq5cqfPnzzvbP/vsMx06dMilb5s2bWS32/X6668XWU9hYaEpd8g+evSojh49qqioKGebzWYrMm42bNjgcudySUXGkZ+fn8LCwmQYhgoKCmSz2XT//ffrww8/1MGDB4ts+1qmll/WvXt3DR48+KqXLlx+zVetWuXymh08eFCfffaZmjdv7tzPJk2aaNOmTS5fqhw+fFjbtm1zWac731MAAPfhTDcAwBK1atXS0KFDNX36dP34449q1aqVgoKCdOLECW3atEk9evRQcnJyidZVp04djR49Wt98841CQkK0YsUKZWZmavLkyVdcxtvbWxMnTtSAAQPUvn17denSRdWqVdOpU6e0c+dOBQcHa+7cuTIMQ88995wCAgI0btw4SdL//M//aOPGjXrxxRfVqFEjVatW7Yr7WKFCBS1btkxBQUEKDAxUfHy88yy7r6+v2rVrpyVLlshms6ldu3Yl2t9u3brprbfeUnJysrp166bMzEwtW7ZM4eHhxX6BUBJ/+ctf9Nhjj+nPf/6zunbtqnPnzmnJkiW68847Xc4w33vvverZs6fmzZun/fv3q3HjxvL19dWxY8f0wQcfaPTo0XrggQeuqwbpUnB///33JV0KiidOnNCyZcvkcDg0aNAgZ78//vGPmj17tkaNGqWEhAQdPHhQa9ascb62lyUnJys0NFSJiYkKCQnRkSNHtGTJEjVv3lzBwcGSpOHDh2vnzp3q0aOHunfvrvDwcP3yyy/at2+fUlNTtWvXrmvahxo1amjIkCH/td+IESM0YMAA9ezZU926ddOFCxe0ZMkSlS9fXoMHD3b2GzJkiLZu3arevXurV69estvtWrJkicLDw/Xdd985+7nzPQUAcB9CNwDAMgMHDlSdOnX01ltvafbs2ZIuXb/buHFjtWzZssTrqVOnjsaMGaOpU6fq6NGjqlmzpv72t7/917tmN2zYUO+++65ef/11LVmyRLm5uapSpYri4+PVs2dPSdLixYu1a9cuzZo1y+V65RdffFHt27fXmDFj9Pe//73Y9fv6+mrKlCmaMWOGxo0bp8LCQk2ePNklGHbs2FFLlixRo0aNVLVq1RLtb1hYmF566SXNnDlTkydPVnh4uKZOnaq1a9dec0C8rFmzZnr11Vf1yiuvaPr06apVq5YmT56sjz/+uMg6J0yYoNjYWC1btkx/+9vfZLPZVKNGDT344INKTEy8ru1flp+frxEjRjgfBwcHKy4uTtOmTXO5edvjjz+uvLw8rVmzRuvXr1dMTIzmzZun6dOnu6yvZ8+eWrNmjVJSUpSbm6vq1aurb9++LjfCCw0N1T/+8Q/Nnj1bH330kZYuXapKlSopPDxczzzzzO/an6tJSkrS/PnzNXPmTM2cOVM+Pj6655579L//+78uYyQqKkoLFizQ5MmTNXPmTFWvXl1DhgxRenq6S+iW3PeeAgC4j5dxPXdRAQDAQ7Rs2VJ33nmn5s2bZ3Up1+XAgQPq2LGjXnrpJXXq1MnqcgAAgJtxTTcAABZavny5AgMDr/gzTwAA4MbG9HIAACywefNmHTp0SMuXL1fv3r35OScAAMooQjcAABaYOHGiMjIy1KxZsxLddAsAANyYuKYbAAAAAACTcE03AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGCS/wP7Q+WNmoOkHQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Visualize perplexity distributions\n",
"fig, ax = plt.subplots(figsize=(10, 6))\n",
"\n",
"ax.hist(ppl_base_base, bins=20, alpha=0.5, label='Base Model Responses', density=True)\n",
"ax.hist(ppl_base_rlvr, bins=20, alpha=0.5, label='RLVR Model Responses', density=True)\n",
"ax.hist(ppl_base_gt, bins=20, alpha=0.5, label='Ground Truth Responses', density=True)\n",
"\n",
"ax.axvline(np.mean(ppl_base_base), color='blue', linestyle='--', linewidth=2, alpha=0.7)\n",
"ax.axvline(np.mean(ppl_base_rlvr), color='orange', linestyle='--', linewidth=2, alpha=0.7)\n",
"ax.axvline(np.mean(ppl_base_gt), color='green', linestyle='--', linewidth=2, alpha=0.7)\n",
"\n",
"ax.set_xlabel('Perplexity under Base Model', fontsize=12)\n",
"ax.set_ylabel('Density', fontsize=12)\n",
"ax.set_title('Perplexity Distribution of Different Response Types\\n(Low perplexity = exists in base distribution)', fontsize=13)\n",
"ax.legend(fontsize=11)\n",
"ax.grid(True, alpha=0.3)\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 11. Comparison with Distillation\n",
"\n",
"The paper shows that distillation CAN expand reasoning boundaries, unlike RLVR.\n",
"We simulate this to demonstrate the difference."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:12.273522Z",
"iopub.status.busy": "2026-02-10T22:26:12.273273Z",
"iopub.status.idle": "2026-02-10T22:26:12.352038Z",
"shell.execute_reply": "2026-02-10T22:26:12.351135Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Evaluating distilled model...\n",
" k=1: 0.290\n",
" k=2: 0.456\n",
" k=4: 0.550\n",
" k=8: 0.624\n",
" k=16: 0.658\n",
" k=32: 0.676\n",
" k=64: 0.682\n",
" k=128: 0.686\n",
" k=256: 0.690\n",
"✓ Distilled model evaluated\n"
]
}
],
"source": [
"class DistilledModel(SimulatedModel):\n",
" \"\"\"\n",
" Simulates a distilled model that learns from a stronger teacher.\n",
" \n",
" Key difference from RLVR: Distillation can expand capability boundary\n",
" by incorporating knowledge from the teacher model.\n",
" \"\"\"\n",
" \n",
" def __init__(self, base_capability=0.6, teacher_capability=0.8):\n",
" super().__init__(model_type='distilled', base_capability=base_capability)\n",
" self.teacher_capability = teacher_capability\n",
" # Distillation expands boundary partway toward teacher\n",
" self.distilled_capability = (base_capability + teacher_capability) / 2\n",
" \n",
" def get_correctness_probability(self, problem):\n",
" difficulty = problem['difficulty']\n",
" \n",
" # Distilled model has EXPANDED capability boundary\n",
" if difficulty > self.distilled_capability:\n",
" return 0.0\n",
" \n",
" # Within expanded boundary: high probability\n",
" prob = 0.7 * (1 - difficulty / self.distilled_capability)\n",
" return np.clip(prob, 0.0, 1.0)\n",
"\n",
"# Create distilled model\n",
"distilled_model = DistilledModel(base_capability=0.6, teacher_capability=0.8)\n",
"\n",
"# Evaluate distilled model\n",
"distilled_pass_at_k = []\n",
"print(\"Evaluating distilled model...\")\n",
"for k in k_values:\n",
" results = distilled_model.evaluate_dataset(test_problems, k=k, n_trials=n_trials)\n",
" distilled_pass_at_k.append(results['pass@k'])\n",
" print(f\" k={k}: {results['pass@k']:.3f}\")\n",
"\n",
"print(\"✓ Distilled model evaluated\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:12.354060Z",
"iopub.status.busy": "2026-02-10T22:26:12.353836Z",
"iopub.status.idle": "2026-02-10T22:26:12.735064Z",
"shell.execute_reply": "2026-02-10T22:26:12.734280Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJMCAYAAAArJhU7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XV4U3cXwPFvkroL7toixd3dhrsWtwETYMNetjHGkA2XIUPKcNcho7g7Y7i7lZa6J/f9IzQ0NKUpFFrgfJ6Hh+be37333EjTnJzfuSpFURSEEEIIIYQQQgghhPiA1KkdgBBCCCGEEEIIIYT4/EhSSgghhBBCCCGEEEJ8cJKUEkIIIYQQQgghhBAfnCSlhBBCCCGEEEIIIcQHJ0kpIYQQQgghhBBCCPHBSVJKCCGEEEIIIYQQQnxwkpQSQgghhBBCCCGEEB+cJKWEEEIIIYQQQgghxAcnSSkhhBBCCCGEEEII8cFJUkoIIYQQQgghhPgIHbx7kGyTs73VtsvOL6PigoqG27mm5mLjlY0A+Jzzofic4qkS1/s0at8omq1sluj6vlv7MnTX0A8XkMAitQMQQgghhBBCCCGEseo+1Tn64ChWGivUKjXZnbJTL289hlUeRnr79ABUyVmFB4MeJLmvfXf20WxlMwKHBRqWdSzakY5FO75znHcC75B7Wm5eDH2Bi41LsuJKa+Y0mpPaIXx2pFJKCCGEEEIIIYRIgybUnkDI8BAChwayuvVqHoY8pNS8UjwNfZraoQmRIiQpJYQQQgghhBBCpGEqlYpC6QuxtMVSnKydmHR0EqCvgHIZ72IYt+z8MvLPyI/jOEeyTs7KL/t/wT/cnwbLGhAUFYTDWAccxjpw8O7BZE3Rm3x0smG/eafnZeaJmYZ1Zf8sC0C2ydlwGOvAsvPLEsQVEhVC7y29yTwpM5knZabv1r6ERYcB+kor1c8qlvy7hHzT8+Ey3oWuG7sSo40xGUtodChNVzYlw+8ZcB7vTNVFVfn3yb9GY1b8t4Jic4rhNM6JnFNz4nPOx7BOq2gZsG0ALuNdyDElB6surDKs67qxK9/u+NZw+2bATRqvaEz639OTc2pOxhwYg07REaONId1v6Thw94DRcQvNKsSK/1YA8CzsGR3XdyTzpMxkmZSFb3d8S1RsFAABEQE0X9Uc1wmuuIx3odS8UtwNvGvWY/GpkaSUEEIIIYQQQgjxEbBQW9CsQDP2392fYF1YdBhdN3VlQZMFhAwP4WK/i9TPVx93O3e2d9yOs7UzoSNCCR0RSpWcVZJ13JzOOdnTeQ/Bw4KZ33g+3+/6nsP3DgNwotcJAB4MekDoiFCTUwK/2fENNwJucOHLC/z35X9ceX6FgTsHGo3ZfmM7Z/uc5VL/S+y+vZtl/y0zGYtO0dHBqwO3v7nN0++eUiJTCdqsbYOiKABsubqFAdsHMKXeFAKHBXKy10mKZSxm2H7njZ1UzVkV/yH+jKk5hp5behISFZLgOOEx4dT6qxa1ctfi4aCHHOx2kJUXVrLo7CIsNZa082rHkn+XGMafenSKhyEPaVagGYqi0GRFEzLZZ+Lm1zf578v/+Pfpv4w5MAaAiUcmEquL5eGgh/gP8WdBkwU4Wjsm5yH5ZEhSSgghhBBCCCGE+EhkdcxKQESAyXWWaksu+10mOCoYFxsXymQtkyLHbFmoJdmds6NSqaiRuwb18tZj3519Zm2rU3Qs+28Z42qNw93OnXR26Rhbayx//fsXOkVnGPdjtR9xtHYki2MW6uetz+lHp03uz8naibZebbG3ssfGwoafa/zMNf9rPAp5BMAfp/7gm3LfUDN3TdQqNRnsM1AicwnD9iUzl6RN4TZo1Bq8i3oTrY3mmv+1BMf5+9rfuNq68m35b7HSWJHDOQfflPuG5ReWA9C5WGfWXFpDZGwkAEv+XUKrgq2wtbTl1KNTXA+4zu91f8fO0g53O3dGVB5h2NZSbYl/uD/X/a+jUWsonqk4brZuZt2fnxppdC6EEEIIIYQQQnwkHoY8NJnAsLeyZ0v7LUw6OokhvkMokqEIv9T4hRq5a7zzMZedX8ako5O4E3gHnaIjPCac3C65zdrWL8yPaG00uVxyGZblcc1DlDaK5+HPDcsyOWQyOpfAyECT+4uIiWDwP4PZdn0bAREBqFX6Wpvn4c/J6pSVu4F36Vy0c6LxxD+OSqXC1sKWkOiElVJ3Au9w4dkFo2mIOkVHdufsAJTNWpZMDpnYfHUzLQq2YMWFFaxpvcawbWBkIG4TXj1OCgpanRaA7yt9T2RsJG3WtiEoMoi2hdsyvvZ4bC1tE437UyVJKSGEEEIIIYQQ4iMQq4tl09VNfJHvC5Pra+WpRa08tYjRxvDHyT9otqoZL4a+MCRu3sa9oHt02diFHZ12UD1Xdf0UwpXNUNBPl0tq3+nt02OlseJO4B0yOmQE9Ekba4016ezScS/oXrLimXR0Eqcfn+ZQ90Nkc8pGYGQgrhNcDfHkdMnJjYAbb3GmxrI7Z6dU5lIc63ks0THeRb1Zcn4JdpZ22FnaUTVnVcO2Gewz8HjwY5PbOVg5MKHOBCbUmcDtF7dpvKIxf5z8g8EVB79z3B8bmb4nhBBCCCGEEEKkcVeeX6HLxi4ERQYxqMKgBOufhj5lw+UNhESFYKG2wMnaCQu1vg4lo31GQqJDeBb2LNnHDY0ORUEhg30G1Co1265v45+b/xjWp7dLj1ql5mbATZPbq1VqOhTpwP/2/I+AiAD8w/0ZsXsE3kW93ypZFhwVjI2FDa42roRGhzJi9wij9X1K9WHa8Wnsv7MfnaLjWdgzzj4+m+zjNPJoxNOwp/xx8g8iYyPR6rRcfX7VaNqidzFv/rn5D1OOTaFT0U6oVCoAymQpQ3an7IzcM5KQqBAUReFu4F22X98OwNZrW7nmfw2dosPJ2glLjaXhsfrcSFJKCCGEEEIIIYRIg4b6DsVxnCPO451psaoFmewzcar3KUPFUXw6Rce049PIPiU7zuOdmXVyFmtbr0WtUuOZzpMeJXpQaFYhXMa7cOjeIbNjKJS+EP+r8j9qLq6J+2/urLq4iiaeTQzrbS1t+anaTzRY1gCX8S4s/295gn1Mqz+NXC65KDSrEIX/KEw+t3xMrjf5re6TQRUGoVFpyDgxI15/eFEhWwWj9c0KNGNyvcn039Yf5/HOlPmzDP89+y/Zx3GwcsDX25fdt3eTa2ou3H9zp8P6DjwJfWIYk8M5BxWzV2TP7T10LvZqyqBGrWFrh608DHlIwVkFcR7vTMPlDQ0VXDcCblB/aX0cxzlS6I9CVMhWgS/LfPlW98fHTqXEtagXQgghhBBCCCGEEOIDkUopIYQQQgghhBBCCPHBSVJKCCGEEEIIIYQQQnxwkpQSQgghhBBCCCGEEB+cJKWEEEIIIYQQQgghxAcnSSkhhBBCCCGEECKNyTU1FxuvbEx0vcNYB/57at5V5UbtG0Wzlc1SJrC3lNT5iM+TRWoHIIQQQgghhBBCiOQJHRGa2iG8N103dsXFxoWp9aemdijiPZNKKSGEEEIIIYQQQphFURS0Om1qhyE+EZKUEkIIIYQQQggh0qBr/tcoP788juMcqeZTjftB9w3rVD+rOPfkHAA6RcfIPSPJODEjWSZlYdaJWbiMd2HfnX2G8VpFy4BtA3AZ70KOKTlYdWGVYZ2iKEw/Pp0CMwvgMt6F6j7Vuex32bA+19RcjDs4jvLzy2M31o5LfpcSxFrdpzrf//M91X2q4zjOkQoLKhjtI757Qfeos6QO6X9Pj+sEVxoub8idwDsATD8+nWX/LeOPk3/gMNaBwn8UBiBGG8OPe38k7/S8uP/mTpMVTXgU8siwzyG7hpBzak4cxzlSaFYh1lxcY1jnc86H4nOKG8VQfE5xfM75vPH+F++fJKWEEEIIIYQQQog0aOn5paxouQK/7/2wt7Tnh70/mBy36Owilv23jIPdDnLz65uceXyGkOgQozE7b+ykas6q+A/xZ0zNMfTc0pOQKP2Y2adms+DsAra038LzIc9pUbAFjVc0Jlobbdje518fFjdbTOjwUDzTeZqMY8HZBYyrNQ7/If7UzFWTpiubEquLTTBOp+gYVH4Q9wfe5+63d7GztKPXll4AfF3uazoW6Ui/Mv0IHRHKxX4XAfjfnv9x+P5hDnU7xOPBj/Fw96Dd2naGfRbLWIyTvU4SODSQH6v9iPcGb26/uJ2Me1ukBklKCSGEEEIIIYQQaVC/Mv3I7ZobGwsbOhbpyOnHp02OW35hOf3L9MfD3QNbS1vG1x6PTtEZjSmZuSRtCrdBo9bgXdSbaG001/yvATDr5CxGVx9Nfvf8WKgt+Lrc10TERnD8wXHD9l+W/hLPdJ5o1BqsNFYm42jn1Y4K2StgpbFiVPVRPA17yrEHxxKMy+WSiwb5G2BjYYOTtRP/q/I/Dt49mCDmOIqi8MfJP5hcdzKZHTNjpbFiTM0xHL5/2FA91rFoRzLYZ0Cj1tDOqx0F0hXgyP0jSd/JIlVJo3MhhBBCCCGEECINyuSQyfCzvZW9obLpdY9CHpHdKbvhdnr79NhY2CS6L5VKha2FraGa6k7gHTpt6IRGpTGMidZG8yD4geF2DuccScab0zmn4WdLjSWZHTLzMPhhgnF+YX58s+MbDt47SFBkEABR2ihCokJwtnFOMP55+HPCYsKo6lMVFSrDciuNFfeD75PdOTtTjk5h/tn5PAh+gAoVodGhPA9/nmTMInVJUkoIIYQQQgghhPiIZXHMwv3gV/2m/ML8iIyNNHv77E7ZmVp/KvXz1U90jFqV9ESru0F3DT/HaGN4HPqYrE5ZE4wbvns44THhnOl9hvT26Tn35Bwl5pZAQTF5LHc7d+ws7Tje8zgF0hVIsL9D9w4xav8o9nTeQ4nMJVCr1BSfU9ywPwcrB8Jjwo22eRL6JMnzEe+fTN8TQgghhBBCCCE+Yu292vPHyT+4EXCDiJgIRuweYVYSKU7/Mv35ce+PXH1+FYDgqGA2XdmUaGVWYlZdXMXxB8eJ1kYzev9o0tulp3y28gnGBUcFY2dph4uNC/7h/vy8/2ej9RntM3LrxS0U5VWSqm+pvgz+Z7Bhup5/uL+hWXtwVDAalYb09unRKToWnl3IhWcXDPsrnqk4t17c4uDdg8TqYvnt8G/4R/gn69zE+yFJKSGEEEIIIYQQ4iPWvUR32nm1o+KCiuSdnpfimYpjY2GDtcbarO0HlB1A1+JdabG6BU7jnCg4qyDLLyxPfhzFuzPUdyhuE9zYdWsXG9ttxEKdcILWz9V/5kbADVwnuFJpYSUa5GtgtL5nyZ48DHmI229uFJ1dFIBxtcdRIVsFav5VE8dxjpSaV4p/bv4DQP189WlVqBVFZhchy6QsXHx2kUo5Khn2l88tH7/V+Y1Wa1qReVJmomKjKJy+cLLPT6Q8lRKXehRCCCGEEEIIIcRH73HIY7JMzsKDgQ9MTp97H6r7VKdZgWZ8W/7bD3I88WmQSikhhBBCCCGEEOIjFquLZeOVjcRoY3gR8YJvd35LxewVP1hCSoi3JUkpIYQQQgghhBDiI6YoCuMPjcf9N3fyTs9LWHQYy1skf/qdEB+aTN8TQgghhBBCCCGEEB+cVEoJIYQQQgghhBBCiA9OklJCCCGEEEIIIYQQ4oOTpJQQQgghhBBCCCE+amHRYUh3oo+PJKWEEEIIIYQQQgjx0br14hbuv7nTZGUTtDptaocjkkGSUkIIIUQqmTFjBp6enjx48CC1QxFCpAJvb29q1qyZovs8fvw4np6erF+/3rDswYMHeHp6MmPGDKOxnp6eDBs2LEWPH+d9nJsQQiTG3tIeC7UFW69t5Ye9P6R2OCIZLFI7ACGEEOJ1x48fp3PnzkbL7OzsyJ07N02bNqVTp05oNJpUiu7NYmJiiI2NxdbW9oMdMyIiglWrVvHPP/9w48YNwsLCcHZ2pnDhwjRo0IAmTZpgYfF5v+XXrFmThw8fGm6rVCrc3d3JnTs37du3p2HDhqkYXdoyY8YMZs6cabitUqlwcnKiYMGCdO7cmVq1aiXYxtPTk+rVqzN37lyj5cuWLWP06NEMHz6crl27JnrMoUOHsnHjRlasWEHJkiUZNmwYGzZsMKxXq9W4uLhQrFgxevbsSenSpd/9RFPQ6/FaWVnh6OhI7ty5KV26NK1atSJ79uwpdrzLly/j6+tL8+bNyZYtW4rtN7l8fHxwcnKiRYsWqRaDEEIAZHTIyIImC2i3rh3jDo2jbNayNCvQLLXDEmb4vP9CFUIIkaY1atSIqlWroigKz549Y8OGDYwdO5YbN27wyy+/pHZ4BqdPn2b16tUcOXIEPz8/FEXB0dGREiVK0LhxYxo1aoRa/X6Kk+/evUvv3r25c+cOFStWpHfv3ri6uuLv78/Ro0cZPnw4N27cYMiQIe/l+B+TTJkyMWjQIAB0Oh1Pnz5lw4YNDBo0CD8/vzcmTT5HX3/9NdmyZUOr1XLv3j1WrVpFv379mDhxIo0bNzZrH40bN2bChAmsX78+0fs3NDSUnTt3kidPHkqWLGm0btSoUdjZ2RETE8ONGzdYtWoVBw8exMfHhzJlyrzrKaa4uHi1Wi0vXrzg/PnzLFy4kAULFjB48GC6detmNH7BggVvdZzLly8zc+ZMypYtmyApVaZMGc6fP/9BEtF//fUXWbNmNZmUettzE0KIt9XWqy3HHx5nyrEpdNnYhZO9TuLh7pHaYYkkSFJKCCFEmlWoUCGaNm1quN2hQwcaNGjAmjVr+Oabb0iXLl0qRqf/MD1ixAh27txJiRIl8Pb2Jk+ePGg0Gp49e8bRo0cZOXIkPj4+TJkyhZw5c6bo8SMjI+nTpw8PHjxgxowZ1K1b12h97969OX/+PP/991+KHTMmJgadToe1tXWK7fNDcXR0NHo+AbRt25YqVaq8MWnyuapatSpFihQx3K5fvz5NmzZl3rx5ZielnJycqFOnDlu3buXixYsULlw4wZjt27cTERFBy5YtE6yrV68ebm5uhttlypShX79+LFiwIE0mpV6PF+DRo0f06dOH8ePHkzFjRr744gvDOisrqxSPQa1Wp4nX5/s4NyGESMqE2hM4+egkh+4dosWqFhzveRx7K/vUDku8gfSUEkII8dFwcHCgRIkSKIrC/fv30el0zJ49m44dO1KpUiW8vLyoXr06P/30Ey9evEiw/caNG2nVqhWlS5emePHi1KpVi8GDBxMQEGAYc/36db7++muqVKmCl5cXlSpVwtvbm3379hntKzQ0lI4dO/Lvv/+yZMkSVq5cSe/evalduzY1atSgbdu2TJ06lR07duDs7EynTp24d+9ekueo1Wr58ccfKVCgAH/++ecbx65Zs4bbt2/TrVu3BAmpOEWLFqVjx46G24n1kFm/fj2enp4cP37csCyu59X169cZN24cVatWpWjRopw5c4bKlSvTvHlzk8dcuXIlnp6e+Pr6GpZFR0czZ84cGjZsSJEiRShdujR9+/bl0qVLRtvqdDp8fHxo3LgxJUqUoGTJktSrV48RI0YQExNjGBcSEsLNmzeNHru34ezsjJWVFZaWlkbLz58/z7Bhw6hXrx7FihWjRIkStGvXjl27diXYx+PHjxk+fDg1atTAy8uLChUq0K5dO6PpXACKorB8+XJatGhh2Ke3tzfHjh1LMs79+/fj6enJX3/9ZXJ927ZtKV++vOE+Mvd5nBwFChTA1dWVO3fuJGu7Vq1aAbBu3TqT69etW4eFhQXNmjVLcl8VKlQAMCuG5cuX4+npye7duxOs0+l0VK1a1ShJeebMGXr27EmlSpUoUqQIVapUoVevXpw7dy7JY71JlixZmD59Omq1milTphitM9V3KanHbsaMGQwfPhyAzp074+npafS6NtVTKjm2bdtG3759qV69Ol5eXpQrV45+/fpx5coVo3Genp48fPiQEydOGGKI3yMvsZ5SJ0+epFu3bpQqVYqiRYvSvHlz1qxZk2Bc3PZPnz5l0KBBlClThmLFitGjRw9u3779VucmhPj0WWosWd1qNZkcMnHR7yK9tvSSK/KlcVIpJYQQ4qOhKAp3794FwNXVlZiYGBYsWEDdunWpVasWtra2/Pfff6xbt44zZ86wbt06w7f1GzduZOjQoZQuXZqvv/4aGxsbHj9+zP79+/H398fNzY0XL17QpUsXANq1a0eWLFl48eIFFy5c4N9//6V69eqGWH788UdCQkJYt26dUcVWaGgo9vb2qFQqQ2+nefPm8eWXX/L999+zatWqRM8vMjKSQYMGceDAASZMmJCgqud1O3fuBPQJiffpu+++w8bGhu7duwOQMWNGmjRpwoIFC7h+/Tr58+c3Gr9x40ZcXV2pVq0aoK+u6tGjB2fPnqVp06Z07NiR0NBQVq9eTfv27Vm6dKmhImf27NlMnz6dGjVq0K5dOzQaDQ8ePGDPnj1ER0cbkke7du1i+PDhDBgwgK+++sqs89BqtYYklk6nw8/Pj7/++ouwsDDatWtnNHbXrl3cunWL+vXrkzVrVgIDA9mwYQMDBgwwmr4WGxtLt27dePr0KR06dCBXrlyEhoZy9epVTp06ZZS4+/777/n777+pV68eLVq0IDo6mi1bttC9e3dmzJhhsldTnMqVK5M+fXo2btyYoN/anTt3OHfuHN7e3lhaWibreZwcQUFBBAUF4e7unqztypcvT7Zs2di6dSvDhg0zqqC5ffs2Z8+epVatWmZVPsYldl1cXJIc27BhQ8aNG8emTZsS3LdHjx7l6dOnhuf0rVu36N69O+nSpaNz5864u7vj7+/P6dOnuXLlCsWLFzf/hE2I6y114sQJbt26RZ48eUyOM+exq1OnDn5+fqxatYq+ffsa9pUjR453ijHO0qVLcXFxoU2bNqRPn5579+4ZXqsbNmwgV65cAPz222+MGzcOV1dX+vbta9j+9Uqx+Pbs2cOAAQNIly4d3bp1w8HBgb///puRI0fy4MEDBg4caDQ+PDycTp06UaxYMQYOHMiDBw/466+/6NevH1u3bk2zvQWFEKkrs2Nm1rReQ43FNVhxYQUVslXgq3Lm/a0gPjxJSgkhhEizIiIiDEmEZ8+esXTpUsMHxFy5cqEoCocOHcLGxsawTfv27SlRogQjR47E19fXMFXG19cXe3t7Fi9ebNRr5ZtvvjH8fObMGfz9/ZkyZYrRFJvXXbhwgW3btrF8+XLDB+ldu3YxduxYHj16hIODA507d+bRo0eoVCrGjx/Pr7/+Sq1atTh+/DjlypVLsM/AwED69u3L1atXmTNnDpUrV07y/rl+/ToODg4p2kDZFCcnJxYtWmR0vzVv3pwFCxawYcMGo35V9+7d4+zZs4YECeibXZ84cYL58+dTpUoVw9gOHTrQqFEjfvvtN5YsWQLoH6e8efMyZ84coxi+++67dz6PW7duGSpt4lhbWzN69Ghat25ttPzLL79k8ODBRsu8vb1p1qwZs2fPNiSlbty4we3bt/nuu+/o1atXosfetWsXW7ZsYfTo0UZJxM6dO9OmTRt+/fVXatasiUqlMrm9RqOhcePGLFy4kBs3bpAvXz7Duo0bNwIYEmDmPo+TEhoaSkBAgKGn1NSpU9HpdDRp0iRZ+1GpVLRo0YLp06cbvSYBQzWPqal7oE+EgT6xefPmTcaPHw9g1vRBZ2dnatSowd69ewkKCsLZ2dmwbuPGjVhYWBj2c+jQISIiIpg8eTJFixZN1vmZy9PTkxMnTnDnzp1Ek1LmPHYFChSgePHirFq1iooVK5r8ffIu5s+fj52dndGyZs2a0bRpU3x8fBg1ahQATZs2Zdq0aaRLly7JBDrok8K//PILdnZ2rFmzhowZMwL63wOdO3dm3rx5NG/e3JD0An2SrkePHkavLTc3N37//XeOHDli9PtECCHiq5yjMhPrTOTbnd8y6J9BlMxckko5KqV2WMIEmb4nhBAizZoxYwYVKlSgQoUKNG3alHXr1lGzZk1mzZoF6D/sxiWktFotwcHBBAQEUL58eUA/BSuOo6MjkZGR7Nu3L9EybkdHRwAOHjxIaGhoonFt3bqV4sWLG5oy37hxg4EDB5IzZ06mTJnCjz/+yP79+/nnn38M22TMmJESJUpw5MiRBPt79OgR7du35/79+yxdutSshBS8qsp637p06ZKgaXL+/PkpXLgwW7ZsQafTGZbHJUjiT8XavHkzefLkoXDhwgQEBBj+RUdHU7FiRU6fPk1kZCSgn6L59OlTTp069caYWrRowdWrV82ukgLImjUrixYtYtGiRSxcuJDx48dTrFgxRo0alWBqWfwP5REREbx48YKIiAjKly/PzZs3Dc+PuOfM8ePH8ff3T/TYmzdvxt7entq1axvdB8HBwYYrAyY1JS0u6RR3H4O+enDz5s14eHgY+jWZ+zxOSteuXalQoQKVK1emQ4cOnDt3jl69ehmaxSdHixYtUKvVRlPKtFotGzduJH369IaqutfVr1+fChUqULVqVbp168ajR48YMmSI0ZTUN2nevDnR0dFs27bNsCwsLAxfX1+qVKliqPqKu892795NVFRUss/PHHGv1Tc9Jin12L2LuOe+oiiGxKSrqyu5c+c2+p2aXBcvXuTRo0e0bNnSkJACfe+pnj17otPpEky1VKvVCSoD436/x1XNCiFEYr4u9zVtC7clVhdL6zWteRL6JLVDEiZIpZQQQog0q23bttSvXx+VSoWtrS25cuVKMG1n27ZtLFq0iMuXLxv1HIJXVRYAffr04eTJk/Tv3x8XFxfKli1L1apVadCgAQ4ODgCULVuWZs2asX79erZs2YKXlxcVK1bkiy++MKpM+ffff6lYsaLh9sqVK8mYMSPz5s0zTE2qWrVqgilD6dOnN9kDqW/fvmi1WjZv3pysZugODg6EhYWZPf5txa9ciK958+aMGTOGI0eOULlyZUOCJH/+/Hh5eRnG3bx5k8jIyARVSvG9ePGCzJkzM2jQIPr370/Hjh3JkCEDZcuWpXr16tSrV++dGyfb2dkZPW6gr7iJO4+aNWvi6uoKgL+/P1OnTmX37t0mk03BwcE4ODiQNWtW+vbty7x586hcuTIFCxakfPny1K9f36ji5ubNm4SFhSU4fnz+/v7kzp070fVxiactW7YwaNAg1Go1J0+e5OHDh3z//feGceY+j5Py448/kjt3biIiIjh+/DhLliwhODj4ra7qljlzZipVqsThw4d5+vQpGTNm5NChQzx79oyePXsmus8ZM2YYnue+vr5s3rw5WUmjuMTTpk2baN++PQD//PMP4eHhRtU9DRs2ZPPmzcyZMwcfHx+KFStG5cqVadiwIVmzZk32+ZoS91qN+31jSko9du/i0qVLTJs2jRMnThAeHm607vUr/SVHXK8pU+cRNwX4/v37RsszZMiQoGl73HtAYGDgW8cihPg8qFQq5jeZz3/P/uOS3yXarm2Lr7cvlhrLpDcWH4wkpYQQQqRZOXPmfOOH+H/++YeBAwdStGhRRowYQebMmbG2tkar1dKzZ0+jiqhcuXKxbds2jh49ytGjRzlx4gQjR45k+vTpLFu2zNCPZcKECfTo0YMDBw5w6tQpFi1axJw5cxgxYgSdOnUCICAggAwZMhj2fe/ePby8vIySJq6urgmm6Dx69MjkVJtGjRqxatUqZs+ezdixY1GrzStkzp8/PydPnuT+/fvvPIVPq9Umui7+9Mj4GjZsyIQJE9i4cSOVK1fm9OnT3L9/P8FUO0VR8PDwMDRnNiWuD02JEiXYtWsXhw4d4vjx4xw/fpytW7cye/Zsli9fblYvoeSwsLCgfPny/PXXX5w/f55q1aqhKArdu3fn5s2bdO7cGS8vLxwdHdFoNKxbt46tW7caVYcNHDiQVq1asW/fPk6dOsXatWtZsGABPXv2NCSLFEXBzc2NSZMmJRrL6725TGnatCljx47l2LFjVKxYkY0bN6LRaBJMqTPneZyUokWLGnp9xfV8mjRpEgULFjQkeJKjZcuWHDx4kA0bNtC3b19DdVpiU/cASpcubXhu1KlTB2tra6ZNm0bhwoUTra6Kz8LCgkaNGrF48WLu3r1Lzpw52bhxI87OzkZJYysrKxYtWsT58+c5ePAgp06dYvr06cycOZNJkyZRp06dZJ/v665evQrwxsQjpMxj97YePXpEx44dcXBw4MsvvyRPnjzY2tqiUqkYO3ZsgiTV+/amnlHSuFgIYQ4HKwfWt1lPmT/LcODuAYbvHs7EuhNTOywRjySlhBBCfLQ2bdqEtbU1f/31F7a2toblN2/eNDneysqKatWqGT7M7t+/n969e7No0SJ++uknwzgPDw88PDzo2bMnwcHBtG7dmkmTJtGxY0dUKhUODg4EBwcbxqdPn56LFy8aHSs6OpqHDx8aqgIuXbrEuXPnTPZG6t27Nzly5OD3338nNjaWCRMmmNXAt27dupw8eZI1a9aYPaXKxcXFZIXB6xUK5nBzc6Nq1ar4+voSFhbGxo0bUavVCRIkOXPm5MWLF5QvX96shJu9vT316tWjXr16gL4n1ejRo1m7di09e/ZMdpxJiY2NBV5Vsly9epUrV67Qv39/vv76a6Oxpq4SBpA9e3a8vb3x9vYmKiqKHj16MH/+fLp37467uzs5c+bkzp07FCtW7J2mXDZu3Jjff/+djRs3UrJkSXbu3EnFihWNkqRxknoeJ1e3bt1Yu3YtU6dOpXHjxm+s+DGlVq1auLi4sGHDBtq2bcuePXsoWbJkov2VTBk8eDDbt29n/PjxVK5c2azXSfPmzVm8eDEbN26kTZs2nDhxgjZt2pisvCtatKihwu3x48c0a9aMqVOnvnNS6vbt25w6dYpcuXIlmZSCpB+7t3n8zLFr1y7Cw8OZPXu2YZpcnMDAwHeqVoyrsrpx40aCdXHL3nd/PCHE58kznSeLmy2mxeoWTDo6iXJZy9G6cOukNxQfhPSUEkII8dHSaDSoVCqjqhVFUZg9e3aCsaamzRUqVAh4Nc0vMDDQaF+gb/KdLVs2IiIiDNOG8ufPz9mzZw1jGjVqxOXLlxk7diy3b9/m+vXrDB06lBcvXhAeHs6mTZvo2bMnDRs2pHTp0ibPpWfPngwfPpwtW7YwePBgQ6LkTVq3bk3u3LlZuHAhvr6+JsdcuHCBZcuWGW7nypWLc+fOERERYVgWFBT01pePb968OREREWzevJkdO3ZQsWJFo34xoO8v5efnx6JFi0zu4/nz54afTT1Ocb2S4k/HDAkJ4ebNmybHJ0dUVBQHDx4EXj0f4hJnr1diXLt2jV27dhktCwkJSTBt1Nra2pBoiYu5WbNm6HQ6Jk+ebDKO+PfBm7i5uVGlShVD4/TQ0FCjK/yB+c/j5LK0tKRPnz4EBgby119/JXt7KysrmjZtyp07dxg1ahQxMTG0atUqWftwdnbG29ubW7dusXXrVrO2KViwIJ6enmzevJlNmzah0+kS3GemnkeZMmXCzc3N6Hn3Nh49esQ333yDTqfj22+/feNYcx+7uL5P7xrb6+KSfK8/91evXo2fn1+C8fb29mZPoytcuDBZsmRh/fr1RvuKu4qqSqV64xUohRDiXTQv2JwhFfUXZum2qRuX/S6nckQijlRKCSGE+GjVq1ePnTt30qVLF5o1a0ZsbCy+vr5GCZc4PXr0wNHRkdKlS5M5c2aCg4PZsGEDKpXK0Ftm48aNLF68mNq1a5MzZ04sLCw4efIkhw4dokGDBoZpbLVr1+bbb781TJurUKECAwYMYPbs2SxevBiAatWqUb9+fbZv386xY8fw9vY2umy6KV27dsXS0pJffvkFrVbL5MmTDVewM8XW1pa5c+fSu3dv+vfvT+XKlalYsSIuLi4EBARw/PhxDh06ZFRd1LFjR77//nu6dOlC06ZNCQ4OZs2aNWTJksXkh86kVKtWDRcXFyZOnGgyQQL6K8wdOXKE3377jWPHjlG+fHkcHBx49OgRx44dw8rKynD1vS+++ILixYtTtGhRMmTIgJ+fH6tXr8bS0pKGDRsa9rlr1y6GDx/OgAEDzG52HhISwqZNmwD9h+5nz56xZcsW7t+/T5s2bQy9s/LmzUv+/PmZP38+kZGR5M6dm9u3b7Nq1So8PDyMquKOHz/ODz/8QN26dcmdOzf29vZcuHCBtWvXUqxYMUNyqn79+rRo0YKlS5dy8eJFatSogaurK0+ePOHcuXPcvXs3QZPnxDRv3pw9e/Ywfvx4HB0dqV27ttF6c5/Hb6Np06bMmjULHx8fOnfubFQtdffuXf744w+T23Xt2hU7OztatWrF4sWL2bFjB3Z2djRo0CDZMXTu3BkfHx/++OMPGjVqZHa11Pjx4/nzzz/JlSsXxYsXN1o/e/ZsDh8+TPXq1cmWLRuKorB3715u3bqVrOq8nTt3Ymdnh1arJTAwkPPnz7Nnzx50Oh0jRoxI8nzNfeyKFCmCWq1mzpw5BAUFYWdnR7Zs2ShWrJjZsZpStWpVbG1tGTJkCJ06dcLJyYkzZ85w4MABcuTIkWCab7FixQzVc3nz5kWtVlOjRo0EV+8DfcLrhx9+YMCAAbRq1Yo2bdpgb2/P9u3bOXfuHH379k20f50QQqSEX2v9yslHJ9l7Zy/NVzXnRK8TOFk7pXZYnz1JSgkhhPhoNWzYkLCwMHx8fJgwYYLhEvCDBw9O0Lupffv2bN++nVWrVhEUFISLiwsFCxZk5MiRhmkq5cqV4/Lly+zbtw8/Pz/UajXZsmVj6NChRr1catWqZeiRtHDhQqysrPjqq6/o0KEDt27dIkOGDOTMmZNbt27Rr18/8ubNa9YHZ9AnjSwtLfnxxx/5+uuvmTZt2hunzMT1yFm1ahU7d+5kzpw5hIeH4+zsjJeXF+PHjzdc9h6gSZMmPHv2jGXLljFu3DiyZ89Ov379UKvV/Pvvv8m5+wF99UujRo1YunQpDg4OCRIkoK+wmTt3LsuXL2fTpk3MmDED0DcxLlKkiFEiq3v37uzfv58lS5YQEhKCu7s7xYoVo0+fPhQoUCDZ8cX35MkThgwZYrhta2tL3rx5+emnn2jXrp1huUajYe7cuUyYMIENGzYQERFB/vz5mTBhAleuXDFKSnl6elKnTh1OnDhhuBJh5syZ6dOnD927dzc6/rhx4yhXrhyrV69m7ty5xMTEkD59egoVKsTgwYPNPo/q1asbpmG2bt06QSNoc5/Hb8PCwoLevXvz008/4ePjw4ABAwzrbt++zbRp00xu17p1a+zs7PDw8KBo0aKcP3+eBg0amExeJMXFxYWOHTsyb948Nm/ebDIR+rrGjRsbEqemkky1a9fGz8+PHTt28Pz5c2xsbMiZMydjxoxJVjXXqFGjAP1z3tHRkdy5c9OtWzdatWpl1tQ0cx+7LFmyMHbsWP78809+/vlnYmJiaN68+TsnpXLkyMGff/7J5MmTmTNnDhqNhpIlS7JkyRJ++eUXHj58aDR+4MCBBAUFsXz5coKDg1EUhd27dyf6uNasWRMfHx9mz57NggULiImJIW/evIwZM4bWrWUqjRDi/bJQW7Cy1UpKzi3JVf+rdN/UnTWt17y3KdHCPCpFugQKIYQQyXb79m3atWtHwYIFmTRpkuHS8q97+PAhDx8+pGzZsh84QiGEEEII8bpjD45RdVFVYnQxTKwzkcEVzf9iSKQ8SUoJIYQQb+nKlSsMGDCAgIAAWrduTbVq1ciWLRsqlYo7d+6wZ88eNmzYQKlSpViwYEFqhyuEEEIIIYA/Tv5B/2390ag0+Hb2pXqu6qkd0mdLklJCCCHEOwgLC2PJkiWsWbOGBw8eGK0rUKAA3t7eNG/e3Ozpe0IIIYQQ4v1SFIUuG7uw5PwSMthn4EzvM2R1ypraYX2WJCklhBBCpJDHjx/z5MkTQH/58/Tp06dyREIIIYQQwpTwmHAqLKjA+afnqZCtAvu67sNKk3gfT/F+SFJKCCGEEEIIIYQQn52bATcpNa8UQVFBfFX2K6Y3mJ7aIX121KkdgBBCCCGEEEIIIcSHltctL0tbLAVgxokZLDu/LJUj+vxIUkoIIYQQQgghhBCfpUYejRhZZSQAvbb04vzT86kc0edFklJCCCHe2bVr1yhUqBCHDx9+532tX78eT09Pjh8/ngKRvVKzZk28vb2Nlnl7e1OzZk2jZcOGDcPT0zNFjx3nfZ2bSFpK3/ef2mP5Pp/3AJ6engwbNuy97V+Y9qk9T1OSoig0b96c4cOHp3YoQog0YFT1UdTNW5eI2Aharm5JYGRgaof02ZCklBBCiHc2fvx4SpYsSaVKlQzLjh8/jqenp+FfwYIFKVOmDI0aNWLo0KEcOHCAlG5rOGPGDHx9fVN0n8l1/PhxZsyYQXBwcKrGIYR4s5o1axr9jvLy8qJGjRqMGDGCR48eJRgfl+DZsWNHgnUtW7bEy8uLgICARI8XFhZGiRIlqFevnmFZ/OPHxVCnTh1+/fVXXrx4kTIn+pnz8fFh/fr1CZarVCoGDBjAxo0buXz5cipEJoRISzRqDctbLCenc05uBNygy8Yu6BRdaof1WbBI7QCEEEJ83M6ePcvhw4eZNWuWyfWNGjWiatWqKIpCWFgYt2/fZvfu3WzcuJGKFSsybdo0nJycDOObNm1Kw4YNsbS0THYsM2fOpHnz5tSuXTvBOlMfJN+HEydOGOKIf17wbucmxMfs/PnzqNVp77vQTJkyMWjQIADCw8M5deoU69ev58CBA2zZsgVXV1ez9tOqVStGjRrF5s2b6dq1q8kx27dvJzw8nJYtWxotL1iwIN26dQMgODiYw4cP89dff3H06FHWr1+PlZVcCepd/PXXX2TNmpUWLVokWFerVi2yZs3K7NmzmT5dmhsL8blzt3NnbZu1VFpYic1XNzPh0ASGV5Fqyvct7f11IIQQ4qOyfPlyXF1dqVatmsn1hQoVomnTpjRr1oyOHTsycuRIfH196datG0eOHDF8IIyj0WiwtrZO8Q+wVlZWqf7h7n2dmxBpUWRkJLGxsQBYW1unyWSso6MjTZs2pWnTprRv355JkybRpUsX/Pz82LBhg9n7adSoETY2Nqxbty7RMevXr0ej0dCsWTOj5RkzZjTE4O3tzZw5c6hduzbXr19n7969b3tqwkxNmjRhz549+Pn5pXYoQog0oHSW0sz6Qv9F68i9I9l1c1cqR/Tpk7+KhRBCvLXY2Fh8fX2pWLFisj5wajQahg0bRqlSpTh48CCnTp0yrDPVAyUqKooZM2ZQr149ihUrRunSpWncuDETJkwA4MGDB4Z+OBs2bDCaDhPHVE8pc928eZNRo0bRsGFDSpQoQbFixWjRogVr1qwxGjds2DBmzpwJ6L+Bj4thxowZiZ4bQEBAAD///DPVqlXDy8uLatWq8fPPPyeYvhO3/dGjR1mwYAG1a9fGy8uLevXqJesDtKIoLF++nBYtWlCsWDFKlCiBt7c3x44dM4wJDQ2lTp06VK5cGX9/f6PtJ0+ejKenJ2vXrjUsi7t/L168SOfOnSlRogRly5Zl6NChCbYPDQ1lypQptG7dmnLlyhmmLE2cOJGIiAijsXHTQNevX8+6deto2LChYZrVn3/+afL8Vq9eTf369Q379fHxMTlVNDAwkLFjx1K7dm2KFClCuXLlaNGiBfPnzzf7vtRqtcyYMYMaNWrg5eVF48aN+fvvv02O9fX1pV27dhQvXpwSJUrQrl07k9NNE+u/ZOr5M2PGDDw9Pbl16xaTJ0+matWqeHl50aRJE/bv359gH1FRUUyYMIHKlStTtGhRWrVqxaFDh0zGe/78eYYNG2Z43cXFvGtXwj/Q43pSBQQEMHz4cCpWrEjx4sV58uTJG8/pyJEjdO/endKlS1OkSBEaN27MihUrEow7c+YMPXv2pFKlShQpUoQqVarQq1cvzp07ZzL2d1GhQgUA7ty5Y/Y2jo6O1KtXj2vXrvHff/8lWH/nzh1Onz5N1apVyZAhQ5L7q1ixIgB37941OwZzn/eg/535/fffU7FiRby8vKhduzaTJ09O8PoDCAkJ4ffff6dOnTp4eXlRvnx5Bg0axP37943GJfV7+k3e5nVuzuvJ09OThw8fcuLECaP3hQcPHhjGVK1alZiYmFSf+i2ESDt6luxJjxI90Ck62q9rz72ge6kd0idNpu8JIYR4axcvXiQ8PJyiRYu+1fatWrXi9OnT7N+/n9KlSyc67ueff2bdunU0a9aMEiVKoNVquXPnjuHDuZubG7/99htDhgyhdOnStGnT5q3iScyJEyc4deoU1atXJ1u2bERERLBjxw5GjhxJQEAAffr0AaBt27aEhoaya9cuhg8fbpj686YG0iEhIbRv3567d+/SsmVLChUqxOXLl1mxYgXHjh1jzZo1ODg4GG0zZcoUIiMjadu2LVZWVqxYsYJhw4aRI0cOSpUqleT5fP/99/z999/Uq1ePFi1aEB0dzZYtW+jevTszZsygVq1aODg4MHnyZNq3b8/QoUP5888/UalUHD16lD///JOGDRvSqlUro/0+efKErl27UrduXerVq8elS5dYt24dFy5cYO3atdja2gLw9OlT1q5dS926dWnUqBEWFhacOHGC+fPnc/nyZRYsWJAg5pUrV/L8+XNatWqFk5MTmzdvZuLEiWTKlInGjRsbxvn4+DBu3DgKFCjAoEGDiIiIYOHChbi7uyfY5zfffMOpU6do164dnp6eREZGcvPmTU6cOEHPnj2TvB8BJk6cSHh4OO3btwf0iaNBgwYRFRVlNF1o2bJljB49mjx58tCvXz9An0Dt378/o0ePpm3btmYdLzHDhg3DwsKC7t27ExMTw+LFi+nfvz87duwgW7ZshnGDBg3C19eXGjVqUKVKFe7du8dXX31lNCbOrl27uHXrFvXr1ydr1qwEBgayYcMGBgwYwMSJE43u9zjdunUjXbp09OvXj/DwcOzs7BKNedWqVfz0008UL16cvn37Ymtry5EjRxg1ahT37t1j6NChANy6dYvu3buTLl06OnfujLu7O/7+/pw+fZorV65QvHjxd7rvXnfvnv7Dh4uLS7K2a9myJZs2bWL9+vUUKVLEaF1cT6PXXzNJxeDs7GzW+OQ87x8+fEjr1q0JCQmhQ4cO5MyZkxMnTjB37lzOnDmDj48PFhb6jwghISG0a9eOR48e0bJlS/Lnz4+fnx/Lly+ndevWrFu3jqxZswJJ/542h7mvc3NfT7/99hvjxo3D1dWVvn37GrZ3c3Mz/FyoUCGsrKw4ceKE4XUshBAzv5jJuSfnOP34NK1Wt+Jgt4NYW1indlifJkUIIYR4S2vXrlU8PDwUX1/fBOuOHTumeHh4KPPnz090+wsXLigeHh7KgAEDDMvWrVuneHh4KMeOHTMsK1OmjNKzZ88k4/Hw8FCGDh1qcl2NGjWUTp06GS3r1KmTUqNGDaNlQ4cOVTw8PIyWhYWFJdifVqtVOnXqpJQsWVKJjo42LJ8+fbri4eGh3L9/P8E2ps5t8uTJioeHh7J06VKjsUuXLlU8PDyUKVOmJNi+adOmSlRUlGH5kydPlMKFCysDBw40ee7x/fPPP4qHh4eycuVKo+UxMTFK8+bNlRo1aig6nc6wfOHChYbH8fnz50qlSpWUmjVrKiEhIUbb16hRQ/Hw8FAWLVpktHzRokWKh4eHMnfuXMOyqKgoo/sszpQpUxQPDw/l33//NSyLex5VqlRJCQ4ONiwPDw9XypUrp7Rp08awLCgoSClWrJjSoEEDJTw83LD88ePHSvHixY3u++DgYMXDw0P56aefkrzPTIl7LKpXr24UV3BwsFK9enWlTJkySkREhKIoihIYGKgUL15cqV27ttH9FhISotSqVUspXry4EhQUZFie2PPY1PMn7vnWu3dvo8ft33//VTw8PJSJEycalh08eNDkvnft2qV4eHiY9bwPDw9X6tatqzRo0MBoedzrZvDgwSbvr9eP+/TpU8XLy0sZNGhQgrG//PKLUqBAAeXevXuKoijK4sWLEzwvUkKNGjWU+vXrK/7+/oq/v79y//59ZePGjUqZMmWUQoUKKZcvXzYaH3f/b9++3eT+dDqdUrt2baVMmTJGr0+tVqtUqVJFqVChghITE2O0jYeHh9K9e3dDDHfu3FGWLl2qFC5cWClevLjy/PnzJM8jOc97RVGUQYMGKR4eHsq+ffuM9jN+/HjFw8NDWb16tWHZL7/8ohQpUiTBffHgwQOlRIkSRo+pub+nTUnO6zy5rydTv/tfV7t2baVRo0ZvFbsQ4tN1+8VtxW2Cm8IolD5b+qR2OJ8smb4nhBDircVdacrcb/NfF1cBFBoamuS4GzducO3atbc6zruKX+0RFRXFixcvCAwMpFKlSoSGhnLr1q233veuXbtwc3NLUCnTtm1b3NzcTE4p6dChg1F/rIwZM5I7d26zphtt3rwZe3t7ateuTUBAgOFfcHAwNWvW5OHDh0b76dq1K9WqVWPKlCn06dOHwMBApkyZkqB6C/SPU4cOHRLE6uDgYDTly8rKyjDdMzY2lqCgIAICAgxTlv79998E+27ZsiWOjo6G27a2thQvXtwo1kOHDhEREUHHjh0NVVlAgioL0Pc4srKy4vz580ZTeZKrffv2RnE5OjrSrl07goKCDBUihw8fJjw8HG9vb6P7zcHBAW9vb8LDwzly5MhbxwDQuXNnVCqV4XbRokWxs7Mzmv4V91zq0aOH0ba1a9cmd+7cCfYZ/3kfERHBixcviIiIoHz58ty8edPk6/b1fSdm586dREdH06pVK6PnYUBAADVr1kSn0xnuk7j7d/fu3URFRZm1f3PdunWLChUqUKFCBWrVqsWQIUNwcXHhjz/+oECBAsnal0qlomXLlgQFBRm9bg8dOsTTp09p2rSpoQIpvkOHDhliqFu3LqNHj8bDwwMfHx+TlU6mtjf3ea/T6dizZw+FChVK0AewT58+qNVqQ+yKorBlyxbKlClDhgwZjB6juNdf/KmfKfF72pzX+ft4Pbm4uCSYZiyEELlccrGsxTJUqJh7ei6Lzi5K7ZA+STJ9TwghxFuL/yH4bcR9qDWV4IhvxIgRDBkyhMaNG5M9e3bKlStHjRo1qFmz5gdpGh4WFsbMmTPZvn07jx8/TrA+ODj4rff94MEDvLy8EnxYtbCwIFeuXFy6dCnBNtmzZ0+wzMXFhYcPHyZ5vJs3bxIWFmZIAJni7+9vSFKoVCrGjx9PvXr1+O+//xg4cGCi0zWzZ8+eoJm8lZUV2bNnT9B/ZtmyZaxcuZIbN26g0xlfcjkoKCjBvk1NL3NxcSEwMNBwOy65lCdPngRj8+bNmyCuESNG8Ouvv1KrVi3y5ctH+fLlqV27tqGnkDnedKy4eOL+z58/f4Kxcctev3+Sy9RzwtXV1agv2f3791Gr1eTKlctkzLdv3zZa5u/vz9SpU9m9e7fJD+zBwcEJXrum9m3KzZs3ARK9Uh3A8+fPAWjYsCGbN29mzpw5+Pj4UKxYMSpXrkzDhg0NU8feVtasWRkzZgwAfn5+rFixgqtXr6LRaN5qf82bN2f69OmsW7eOL774AsDQ/DyxqXvFihXj22+/RVEUHj16hI+PD0+ePDG7T19ynvcBAQGEh4eTL1++BGNdXFxInz694bkYEBBAYGCgIWlmSvzfvynxezo5r/OUfD0pivLO72dCiE9T/Xz1+bn6z/y470e+/PtLimUqRsnMJVM7rE+KJKWEEEK8tbi+HPE/MCTH1atXAUxWacRXu3Zt9uzZw/79+zl58iRHjhxh7dq1lC5dmkWLFr33q+oNHjyYffv20aZNG8qUKYOLiwsajYb9+/fj4+OTIKnyvr1LIk5RFNzc3Jg0aVKiY17/sHfq1ClD4u3y5ctvfew4ixYtYvz48VSuXJnOnTuTIUMGLC0tefr0KcOGDTPZnPltkwRv0r59e2rVqsX+/fs5ceIEO3fuZOnSpXzxxRdMmTIlxY/3rrRabaLrUjo5qygK3bt35+bNm3Tu3BkvLy8cHR3RaDSsW7eOrVu3mnzex6/USWr/ABMmTEi08Xdcos3KyopFixZx/vx5w4URpk+fzsyZM5k0aRJ16tR5y7PUV4PFT9DWr1+fNm3aMHDgQP7++2+zmpLHlzFjRipXrszBgwd58uQJNjY27NmzhxIlSiRIEMVxdXU1iqFOnTo0btyYr776ir///hsbG5u3O7l3FPcYVaxYkV69eiU5PiV+T7+P17k5goKCjPpMCSFEfP+r+j+OPzzO39f/puXqlpzufRo3W/mdkVIkKSWEEOKtxSUvknOFqPjirt72+jQSU1xcXAyXTVcUhYkTJzJ//nx2795NgwYN3ur45ggODmbfvn00bdqU0aNHG60zNUUkud+2Z8+endu3bxMbG2tULRUbG8udO3dMVsC8i5w5c3Lnzh2KFSuGvb19kuMfPXrEyJEj8fDwoFKlSixatIjVq1ebbCZ///59oqOjjT58RkdHc//+faMqjk2bNpE1a1b+/PNPo2TKgQMH3unc4qos4qZkxRdXmfO6DBky0Lp1a1q3bo1Wq2XIkCFs3bqVbt26mdXA39TUzbhjxcUT9xhev349QVw3btwwGgMJK0PipEQ1lU6n486dOwkSj6/fP1evXuXKlSv079+fr7/+2mjd61edfBtxFVWvJ2TepGjRoobH5PHjxzRr1oypU6e+U1LqddbW1gwfPpwuXbowY8YMfvnll2Tvo1WrVuzfv58NGzbg6OhIdHQ0LVu2NHt7FxcXvv32W0aMGIGPj49Rg25TkvO8d3Nzw97e3vC8iy8oKAg/Pz8KFixoGOvk5ERoaKjZj9GH+D2d3NdTUqKjo3n8+DF169ZNkfiEEJ8etUrNkuZLKP1naW69uEWn9Z3Y2mErapV0Q0oJci8KIYR4a4UKFcLBwcFkD6A30Wq1TJgwgdOnT1OtWrU3XjFOq9UmmB6nUqkoVKgQYDzVy87O7q2rthITlzR5vXrn2bNnJj+cx/XhMTUFzZS43k6v72v16tUEBARQu3bttwk7Uc2aNUOn0zF58mST6+OmTIH+vh88eDBRUVFMmTKF7777jhIlSjB27FiTSZ7Q0FCWL19utGz58uWEhoYanYdarUalUhndp7GxsYle+t1clSpVwsbGhmXLlhld2v7Jkyds2bLFaGxERITRGNBXacRdKdHcx2/FihWEhIQYboeEhLBy5UqcnJwoW7asIS47OzuWLl1q1IcpNDSUpUuXYmdnR6VKlQzLc+XKxblz54ziCwoKMlzB7W3VqlULIMHVDX19fRNM3UvseX/t2jWj/mBvq0GDBlhZWTFjxgwiIyMTrA8JCSE6Ohp41bsuvkyZMuHm5mb245Qc5cuXp0yZMmzYsOGtEoE1atTAzc2NDRs2sG7dOuzs7JKdkGnatCnZs2dn4cKFSfbcS87zXq1WU6NGDS5dupQgCTxv3jx0Op3htapWq2ncuDHnz59nx44dJo8dN60zOb+n31VyX0/29vZvfF+4dOkSMTExlClTJsViFEJ8elxtXVnXZh02FjZsv7GdX/Yn/0sLYZpUSgkhhHhrGo2GunXr4uvrm6BCJs6lS5fYtGkToO/NdPv2bXbv3s3Dhw+pXLnyG6eRxW1TuXJlatasSaFChXBzc+PBgwesWLECZ2dnatSoYRhbvHhxjh49yrx588iSJQsqlYqGDRu+0zk6ODhQqVIlNm/ejI2NDUWKFOHhw4esWrWKbNmyJfiwU6xYMQAmTpxI48aNsba2Jn/+/Hh4eJjcf8+ePdmxYwejR4/m0qVLFCxYkMuXL7N27Vpy585Nz5493yn+19WvX58WLVqwdOlSLl68SI0aNXB1deXJkyecO3eOu3fvsnv3bgBmzJjBmTNn+OWXXww9aCZOnEizZs0YOHAga9euNXrMc+TIwaxZs7h+/TqFCxfm4sWLrFu3jjx58uDt7W0Uw6RJk+jVqxd16tQhNDSUrVu3mmwCnRzOzs588803TJgwgXbt2tGsWTMiIiJYuXJlgv5cd+7coVOnTtSpU4f8+fPj5OTErVu3WLFiBdmyZaN06dJmHdPV1ZXWrVvTokULANavX8+jR48YM2aMYSqbk5MT3333HaNHj6ZNmzY0b94c0F/C/u7du4wePdqouXPHjh35/vvv6dKlC02bNiU4OJg1a9aQJUsW/Pz83vr+qVKlCjVq1GDDhg0EBgZSpUoV7t+/z6pVq/Dw8DBqUJ03b17y58/P/PnziYyMJHfu3Ny+fdsw9uLFi28dB+iTSqNGjWLkyJF88cUXNGnShKxZsxIQEMC1a9fw9fXl77//Jlu2bMyePZvDhw9TvXp1smXLhqIo7N27l1u3biV4fXh6epI1a1b27NnzTvH169ePbt26MXv2bMaOHWu07p9//jFZIZcjRw4aNWqEpaUlzZo1Y+HChQC0aNEiyb55r7OwsKBPnz6MHDmSxYsX079//0THJud5DzBo0CCOHDlC//796dChAzly5ODUqVNs27aNMmXKGJ6fAAMHDuTMmTN8++23NGjQgGLFimFpacmjR484cOAAhQsXZvz48cn6Pf2ukvt6KlasGGvXrmXq1KnkzZvXkJiL+wJh//79WFpapvgXAEJ8dnx8YOpUOHculQN5f4pnKs7cRnPpsrELP+//mTJZy/BF/i9SO6yPniSlhBBCvJP27duzfv169u7dS7169RKs37p1K1u3bkWtVmNnZ0emTJkoU6YMo0aNomrVqknu38bGhi5dunD06FGOHj1KWFgYGTJkoGbNmvTp04eMGTMaxv7000+MHj2aOXPmEBYWBvDOSSmA33//nUmTJrFnzx42bNhArly5GDhwIBYWFgwfPtxobKlSpfjuu+9YuXIlP/zwA7GxsQwYMCDRpJSjoyMrVqxg+vTp7Nmzh/Xr1+Pu7k67du346quvkv1h1hzjxo2jXLlyrF69mrlz5xITE0P69OkpVKgQgwcPBuD48ePMnTuXBg0aGE3Vy5YtG6NHj2bgwIFMmDCBH374wbAuU6ZMTJ06lQkTJvD3339jaWlJ48aNGTp0qNGV3Hr06IGiKKxdu5Zff/2V9OnT06BBA1q2bGloDv22unfvjp2dHYsWLWLSpElkzpyZ7t274+joyIgRI4xibdmyJcePHzckVTNmzEjr1q3p1auX2b2RvvvuO06dOsXy5ct5/vw5uXPnNiQk4+vYsSMZMmRgwYIFzJo1C4ACBQowa9asBB+GmzRpwrNnz1i2bBnjxo0je/bs9OvXD7VaneyqxNdNnTqVqVOnsmXLFo4cOYKHhwczZsxg69atRkkpjUbD3LlzmTBhAhs2bCAiIoL8+fMzYcIErly58s5JKdBfaS1XrlwsXLiQVatWERISgouLC7lz5+abb74hffr0gL6a0M/Pjx07dvD8+XNsbGzImTMnY8aMMWoeHlc1k9w+UKZUrFiR4sWLs2nTJvr27UuOHDkM6/7++2+T21SuXJlGjRoB+il8cUmp5Ezdi69Zs2b88ccf+Pj40LlzZ6NEy+vMfd6Dvrn76tWrmT59Ops3byYkJISMGTPSp08fvvzyS6PkcNzvp4ULF7Jjxw52796NRqMhU6ZMlCpVitatWwPJ+z2dEpLzeho4cCBBQUEsX76c4OBgFEVh9+7dht9JmzdvpmbNmobnmxBpSvXqcPQoWFqClRUUKQKTJkH8L05UKjh7FooX199evRq+/BIePQJra+P9dewIGg389RfkygVPn+pv29hAuXIwbRqYuBBCirtzB3LnhhcvwMXl/R8vBXWesodjmYsw2+Y/Oq3vxOnep8nt+ubeqOLNVIqpbqJCCCFEMvTo0YOIiIgEU7fE56NmzZpkzZqVJUuWpHYo4jO1e/du+vXrx+LFiylfvnxqhyM+Ar6+vnz11VesX7/e0EtLiDSlenVo1gy+/Raio2HkSFi5Eu7dezXm9aRUdDRkyQJ//AHx+z8GBUHmzLBjB1Stqk9KTZ2q339oKPTpA/fvw9v2d0xOpdRHnJSia1eiXByo6nWSEw9PUCJTCQ53P4ytpXlfZomEpKeUEEKIdzZs2DDOnTvHoUOHUjsUIcRn6tChQ9SoUUMSUsIsiqIwc+ZMmjVrJgkp8XGwsoIuXfSJozdN5baygk6dYNEi4+UrVkC2bPqE1OscHKBDBzh9OvH97tunTyDNmKFPbmXKBD/9BInVuEyeDPnzg6Mj5M0LM2e+Wvey5yLZsumPvWyZ/vaZM1CjBri56Su24veaPHsWKlfWr0ufHtq3h5d97QB9km3jxle3N27UL4sfT44c+nhy5YL5803Hfe8e1KmjP4arKzRsqE+iAUyfDsuWYf3HPNb+8B/pIjWcfXKWftv6mbxysDCPTN8TQgjxzvLnz5+gb4kQQnxIP/30U2qHID4iKpWKjfE/wAqR1kVEwIIFkC6dPlnyJj16QIkS8PAhZM2qX7ZwIXTvbnp8UBAsWQKJtBowCAnRJ45u3nyVvMmTR58se13OnLBnjz7xtG8ffPGFPqZKleDECX2l1IMHryqlnjzR72/2bGjZEi5fhrp19fuvVQvUahg/Xj/NMCAAWreGYcOME1eJuXZNX2V25gwUKKCftvj0qemxOh0MGqRPjkVH6+/LXr1g1y74+mv9PlxcyD51Kitv7abu0rr4nPOhQrYK9C7VO+lYRAJSKSWEEEIIIYQQQqRFw4frEzf29rB8OaxfD0ldGKRIEShZUj+lDuDiRX2l0evJo44dwdlZv/+zZ2Hp0jfvV6eDCRPAzk6f3BkwQJ/MMqVlS8ieXT+9sEYNqFdPn5xKzJIl+iquNm30fa68vKBbN/05AxQrpq+UsrSEjBn1iaM37S8+jUZf0XXxoj65lzEjFC1qemyuXNCggb7PlpMT/O9/cPCg/txfUytPLcbW1F8M46vtX3Hy4Unz4hFGJCklhBBCiHe2Z88e6SclhBBCpLRx4yAwUD9tL2tWOH/evO169HiVlFq4UJ9oyZzZeMyyZfoqqStXIDZWXwH1JjY2EP9iEjlz6quxTFm2TJ8Yc3PTJ722bYPnzxPf9507+jEuLq/+TZ8Ojx/r19+4AU2b6vtlOTnppyi+aX/x5c0LixfrpxBmzKivwEqs95Wfn34qY/bs+uNUrQpRUfoqMROGVBpCswLNiNZG03J1S56HmxmTMJCklBBCCCGEEEIIkZZlzaqfqjZ0qP7Keklp314/bvdufQVUjx6Jj/X0hIkT9Vfti4hIfFxkJDx79ur2vXuvpgfGd++evirrt9/04wMD9dP34vouqU2kIbJnh+bN9WPj/oWE6BNVAH376o916RIEB+vPKX4fJwcHCA9/dTsumRWnTRvYu1c/ba9YMfD2Nn2Ow4fr93PmjP44cY3fE4ldpVLh09SH/G75uR98n/br2qPVaU3vW5gkSSkhhBBCCCGEECKtK1lSf0W+sWONl0dH6xNGcf9iYvRVPq1aQc+e+il0DRu+ed/NmoG7O8yalfgYtVqftImIgKtX9WM7dkw4LjRUn8TJkEG/zbZt8M8/r9anT69fHr8yy9tb34Nq3Tp9/DEx+mqmky+nxAUH65uUOznpq8Z+/z3hfbNihf78b90yPo+rV/U9oSIi9I3gHRwSnwIZHKyfnujiom+k/vPPxuszZtTvP15CzNnGmfVt12NnaYfvLV9+3Ptj4vehSECSUkIIIYQQQgghxMfgf//TXznu/v1Xy8qVA1vbV/969dIv79FDPy2uS5ek+1CpVPqE02+/QViY6TGOjlC8uL75eNWq0Lmz6SbnhQrp46xZU5/oWrUKmjR5td7WVn/lvgYN9Mmf5cv1VVA7d8LcufpphhkzQv/++iQR6K+et3WrPinVtKm+Z1V8Y8boq6vSp9dPv+vc+dW66Gj44Qf9Pt3d9cmvuKmNr/v5Z/1UQVdXfVP2Bg2M1/fsqZ+y6OZm1JfKK4MX8xvrr+g39tBYNl/dbHr/IgGV8pldu9DPz/Rc0I+RpaWGmBgpDRRCCJF2yHuTEEKItEbem96d5eGDOHXpgP+N+0kP/oz97+AQ/vxvDo5WTuxqtY88LvlSO6RUlT69Y5JjpFLqI6ZSpXYEQgghhDF5bxJCCJHWyHuT+FB+qjiGspnKExIdTLcd3oTFJFJ1JgwkKSWEEEIIIYQQQgjxjqw0Vsyvt5j0thm4HHCR7/Z9w2c2OS3ZJCklhBBCCCGEEEKIRMVUqiJT98yUyT4z8+stRqPSsO76ahZe+DO1Q0rTJCklhBBCCCGEEEIIkUIqZKnETxV/AeCHw8M48fh4KkeUdklSSgghhBBCCCGESGPcSnlhtW1raoeRahy/6ov9yKGJrndu1wKbhfoqJMvDB3HPl93kutTSp2h/muZtQawulp7/dOZZ+LNUjSetkqSUEEIIIYQQQgghPipBK9cT2b1XkuteT1h9KCqViik1ZuDh6smTsMf0+acbsbrYDx5HWidJKSGEEEIIIYQQQogU5mDlyKL6y7C3dODwo4P8euzn1A4pzZGklBBCCCGEEEIIkQZZXL2MS60quOfJinObZqifPDass//5B9xKFsY9dxZcK5fBavMGwzrViwCcunTAPX8O3PNlx6V2VdT37+lXxsRgN34MbmWK4u6ZEyfvtkb7fZ3q6VMcv+yJm1d+3PNlx7lJfYiISDKGuAolm/lz9NsWzofdhF/h5dXo1A/u49yqKe4Fc+OePwdOHVqhvnfX+NghITh1bk+6XJlxrVYBi2NHDeucm32B7dxZJmOOW6cK8Me5fUvUwUGky5WZdLkyY3nsCO6F8mJ5+KDRNq6VSmO9cd2bHo63kt/Vg+k1ZwMw69w0ttzclOLH+JilyaTUsmXLqFmzJkWKFKF169acP38+0bHe3t54enom+Ne7d+8PGLEQQgghhBBCCJGybJb9RcicBfhfuI4uQ0Yc+72arhZb2IsXO/fhf+M+4YOH4tS/N+q7dwCw+2MGaGPx//cK/lfvEDJlJoqDAwD2Y0djefI4gVv/wf+/62jz5MOxdzfTAeh0OHu3AQsLXhw6gf+V24SN+AnU6iRjAFCFhmB5/l8CTvxL4MZt2KxYivWq5YZ9R3zZH/+zlwk4cwFs7XAc9LXx+a9fQ2THzjy/cZ+Ibj1x7twWVVCg2fef4uZO0Ip16JyceX7nMc/vPCamfEUiW7fDZuUywziLk8dR+z0jqkEjs/edHI3zNqVfcf25fb3nS66/uAbA2aenuR9y770c82OR5pJS27ZtY9y4cfTv358NGzZQoEABevTogb+/v8nxM2bM4NChQ4Z/W7duRaPRUL9+/Q8cuRBCCCGEEEIIkXIiuvRAm98D7OwI/fEXrA4dQP3oIQBRrdqipE8PGg1RzVuhzeeB5Un9Vd4UCwvUAQFobt0EjQZtkaIorm6gKNgumk/oz2PRZcwEVlaEDf8ByxPHUD98kOD4FmdPY3HtGiG/TUFxcQULC2LLVwBr6yRjAFDpdIT+MBrs7NDm9yCie29s1qwCQJcjJ9G16oKNDYqjE2Hffofl8SOg0xm2j65cleh6DcDCgsiuPdClz4DVPzve+X6N7NgZq62bITQUAJuVy4lq0dpwXu/DyPKjqJSlCmExoXTb0ZG7wXept64Gbbc0f2/H/BikuaTUokWLaNOmDS1btiRfvnz8/PPP2NjYsG6d6TI6FxcX0qdPb/h3+PBhbGxsJCklhBBCCCGEEOKjpsv+qkG3kiEDirU16sePALCdMxPXKmVxz5sN93zZ0Vy5hDpAX8wR3v8bYspXxKlXF9wL58P+f0MgIgKVvz+q8DBcmjbAPV92/T+v/GBlhfrhwwTH1zy4jzZzZrC1NRnfm2IAUGxs9EmreOejfqKPX/X8OY59u+NWvCDuebLi0rQBqqgoVKEhr8Zny2F8f2TLjvpx4lMNzaX18ERboCDWWzdBZCTWm9YT2cH7nff7JhZqC+bWXUQm+8xce3GVUYf/hwoVNwKv8zTsyXs9dlqWppJS0dHRXLx4kYoVKxqWqdVqKlasyNmzZ83ax7p162jYsCF2dnbvK0whhBBCCCGEEOK9U9+/b/hZ5eeHKioKXeYsWBw7it3v4wmZORf/6/fwv3EfbYFChn5NODgQ9uNoXhw9w4ttvlgd3I/tovkobm4odnYE7tiD/437hn/P7z0jtmy5BMfXZsuO5vFjiIxMsC7JGABVZCQqP79X5/PgAbpMWQCw/3UUqvAIXvgexP/WQwI3bdcPire9+oHx1Db1wwfoMmdO5p1oOu0R2bEzNiuXYb1tC7ps2YktWjx5+30L4TFhjKvyO5ZqS/6+vZl0tvqE3b9+5uU7PkUWqR1AfC9evECr1eLu7m603N3dnVu3biW5/fnz57l27Rq//vpromMsLTWoVO8cappgYaFJ7RCEEEIII/LeJIQQIq35WN+bVIDtkkUoTRqjy5Yd219/IrZiZSxy5cDi2iXQaNBkyojaQoXliqVorlxCo1FjZaXBYsd2dPnyocuTF5W7CypLSzTWlljZWBLdrQeOP/+PiMnTUbJlQxXgj8W+vcS0aJUwiHJl0eXPj/PwwUT8Oh4cHNCcPIG2ZCksIkPfGIPGQo2iVuM07mcifp+M+sF97Bb9SeSwEfr1YaHgYIdlejdUIYHYTp4A6D+zY6VBrVZheegAdnt3EVurNpbLlqB5+hSl4RdYWWlQq1RGx1IBVlb6xzr+OnWWTKhCQ7AO8kdJn8FwarrWrbH8cTiaGVOI9u5s2PZ9iYqNotqq8kTGRlIkfVHO+/3L8wh9wu5CwHkaebyfflZpXZpKSr2rtWvX4uHhQdGiRRMdExOj/TDBxMZicfkmFtdvo4qIQrG1JjZ/bmIL5gWLlLvbo6NNn8+CBXNZtOhPw20rKysyZ87CF180pn17b9SJZIs/tDNnTvH1130BWLZsLTlz5jJaP3fuLJYsWUSmTJlZu3bLOx/vwIF9jBjxHWvWbCZz5ixmb/frr6O4cuUSS5asfucYhBDiU5fYe5MQQgiRWj7G9yYFiGzfCZvuXdHcvkVsqdIE/fEnumgt0VVroW7cFIeKZcHaishW7YgpWx6tVkd0tBbN9evYDfkO9fNnKHb2RDVqQqh3d4jWEj38J+xmTsWucQPUz56huLkRXaUa0Y1M9zYKXLIK+x+H41i6OERHE+tVhKAV65KMwTJWh+LgSFQhLxyKFUal0xHRuSvhrdpDtBbtd8Nx/KoPTjmzos2ShYi+A7D8ewsxMVqUaC3WOoXIFq2xWLQQu26d0ebMSdBfK4ixc4JoLbaKYnwsXj3O8deRMy8WHTvjUK4UxGoJWrr6ZV8sOyIbN8Nm3WrCmrVGec/PEUVR0yRvc1ZdXc55v39fPsb6qrCjD44QHa3lUuApVt2ZTttcX1PIpfR7jSetSFNJKVdXVzQaTYKm5v7+/qRLl+6N24aHh/P333/z9ddfv3Hch6C5fhvbrXtRRUahqEClgKICy6u3UXwPE9GoJtr8ud57HNbW1kybNgeA6Ogozpw5xZw5M9HpFLy9u7734yeHra0dvr476dGjj9Hy3bv/wdZWpmIKIYQQQgghPi8Bpy8AED7w+4Qr1WpCJ00ndNJ0k9tG9OlPRJ/+pndsZUX4oCGEDxpiVhy6TJkJmedjct2bYogT2bMvkT37Jliu9fAkcOc+47GdX10FMGTGnDfuN2jjNsPPMZWq4H/jvsl1b4pTlz0H0XUboLw2W+t9UKvUzKg1h77FBjDj7GQ23liPTtE3dT/66DCKorDh3jweR9xlw715FHQuhepTmeb1BmmjXOYlKysrChcuzNGjRw3LdDodR48epUSJEm/cdseOHURHR9OkSZP3HeYbaa7fxnbtDoiMAvQJqfj/ExmF7drtaK7ffu+xqNVqvLyK4OVVhJIlS9OzZ18qV67GgQN73vuxk6tKlWr4+u40Wnbx4gWePn1CpUpVUikqIYQQQgghhBCfItXz59gsXUxE1x4f9LiF03kxp85CjnQ4TdN8LQB9xdTFwBPcDbsKwN2wq1wKOvlB40otaapSCqBbt24MHToULy8vihYtyuLFi4mIiKBFC/2DNWTIEDJmzMjgwYONtlu7di21a9fG1dU1NcLWi43FduteQD//1xQV+jJM2617Cf0qe4pO5TOHnZ0dsbGxRstmz57B0aOHePz4Efb2DhQrVoKvvhpkVJ12/vw55s6dxY0b19DpFDJnzkz79t40aPBq3uuRI4dYtOhPbt68gZ2dLdWr16J//2+xTeRKDfHVrFkbX9+dXL16BU/PAgDs2rWDUqXK4OrqlmD8kyePmTlzCidPHker1VK0aHH69/+WvHnzGcbExsYya9Y0duz4G51OS/XqtShZMmEJZHR0NIsW/ck//2wnIMCfLFmy0qVLT+rWlSs4CiGEEEIIIT6sz3EK14dmN+V37KZN0k85rFo9VWLI45yXP+v68HPFMViorPjz5khUqFHQoULNxnvzKeRc5pOvlkpzSakvvviCgIAApk+fjp+fHwULFmT+/PmGBMnjx48T9EO6desWp0+fZuHChakRsoHF5ZuoXlZIvYkKIDIKiyu3iPXyeK8xxSWg4qbv7d+/B2/vbkZjXrwIwNu7G+nSpScw8AUrVy5jwIDeLF26GgsLC8LCQhky5FuKFi3OqFG/YmlpxZ07twgJeXWpzr17ffnppxF88UVjevTog7//c+bMmUlISDA//zwuyTjTpUtP8eIl8fXdiadnAXQ6HXv37qJPnwFcv37NaGx4eBhffdUHlUrFd98Nx8rKmr/+Wkj//r1YvHgFGTNmAmDOnJls2LCGHj364OFRAF/fncyZMzPBsX/8cRjnz/9Lt269yJUrF0ePHuaXX37A0dGRChUqJfs+F0IIIYQQQoi38SlN4Xp9Sl1aEj7we9PTIt8jRVHQKrHEKjFodS//V7RYWKi4GnjcUCUFoKAzVEsVdin7QeP80NJcUgqgU6dOdOrUyeS6JUuWJFiWJ08erl69amJ0yrC4fBOrgydQRce8cZwqIhKFxKuk4lMAm+37UPYdS3qslSXRVcsSWyCvWfHGiYiIoHr18kbLatWqQ6dOXY2WjRjxk+FnrVaLl1dRmjf/gjNnTlG2bHnu379HaGgoffoMMFQilS796oWhKAqzZk2jZs06DBv2g2G5u3s6vv/+G7p06UmePEnHXrt2PXx85tOv39ecOXOKkJBQqlWrkSAp9fffW3jy5DFLlqwmV67cAJQoUZKWLRuxevUKvvpqIMHBQWzYsIZOnboaknDlylVgwIDe+Pk9M+zrzJlTHDp0gMmTZ1K2rP6+KlOmPP7+z1m4cK4kpYQQQgghhBAfzKWgkwmmcH3qSYm3oU/waNEqsWiVGGKVWLQ6fZInVokh9uXPcev0t2ONkkJxP8fq9PuI29b0ulgT+4k7ZuLrYuMdU6ckr5H651ItlSaTUmmN1fFzaPwDU3SfKoBYLaqQMPNiOHYu2Ukpa2trZs3SX4EvOjqaq1evsGDBHCZMGGOUiDp69DCLFy/g9u2bhIW9iuf+/buULVueLFmyYW9vz8SJ42jVqh0lS5Y2miZ5//5dnjx5zNdfDzaaGliiREnUajVXr142KylVvXpNJk+ewPnz/+Lru5MKFSpib++QYNy//54lT568hoQUgJOTM6VLl+P8+XMA3Lx5g6ioKKq+VopZrVpNzp07Y7h94sQxnJycKVmytFHsZcqU4/ffx6HVatFoPs5LyAohhBBCiI+XTOH6/CiKwsZ781NlCpdO0b5MwMRV8Lz8WReX9IlBq9Ma1sXGS8YYkja6+AmiV+vi9msyQRQvkaQ1kTx6tW3CdZ+6z6VaSpJSZoguXxyrA+ZVShGrNbtSCgsNiq1N0mOtLIkuX9ycUI2o1WoKFChkuF20aHG02lhmzpxKu3YdyZMnH5cvX2TYsEFUqVKNTp264OLihkqlok+frkRFRQPg5OTElCmzWLBgHmPG/Gjo4TRw4BDy5s1HYGAgACNGfGcyjqdPn5gVr5OTM2XLVmD79i3s27eHYcNGmhwXEhJiss+Um5sbt2/fBMDf/zlAgnFubsa3g4ICCQ4OSlBRFsff/zkZMmQ0K34hhBBCCCFSwqc0hetzpFN0huRJ3DStWMPteD+/TLTE3b4dcsnkFK4lt34nvU0WYnXxEka615NHMa8SRC+TR69X8hiqgYzG6tcp6FLxHjNPu+WPibRRs7F5BkhjrweNygKNygILlQUateWrn1WWWKgtTN7WqCzRqDRcDTpLmDbY5H4/h2opSUqZIbZAXrOqlCz+u4rtVvOubKcCIhpUf+89pV6XM6e+uuj27VvkyZOPAwf24eDgwOjR4w29up48eZxgu0KFvJg0aTpRUZGcOXOKWbOmMXz4YFav3oSTkzMAAwcOoXBhrwTbpkuX3uz4ateux5gxP2Jra0uFCpVNjnFycuLevbsJlgcEBODo6ATopw6Cvl9W+vQZjMbE5+johIuLKxMnTjN5LFPJLyGEEEIIId4nmcL1iqIo6NAmqMJ5VUljPE3LuIpHn3RBoyMqJsq46iYNTdNKyqFnf6fo/tI6NRo0Kg0atSUWKgssVJZYx6povuFfrKJ1ZNS6sLNbccM6jcoCjVr/s8XLnzVx69T6xM+rdZavJY8SWWeUTLI02ufr22pUFm+dMLoYeIIzAfsTXf85VEtJUioFxRbMi+J7GCKj3lgtpQDYWBNbIM8HiuyVuEoiZ2cXAKKiIrGwMH4R/fPP9kS3t7a2oUKFyjx8+IBp0yYRFRVFzpy5yJAhI48ePaRlyzbvFF+VKtWoXLkahQoVxtra2uSYokWLs2/fbu7du0OOHLkACA4O5tSpEzRp0hyAvHnzYW1tzYED+/DwKGDYdv9+46RhmTJlWb78LywsLMmXL/87xS6EEEIIIcS7et9TuPRVPDHxpmqZmGKVaBXO62MTW/dqOtfrU8Fe329S6z6HaVrvm4XKSp9AMSRdXv6vflWtk9g6i7gKIMNYU+vibavWvFwXvyIokf3G+9niZZJHo7JArTLdPiVq7CKsvvuG+ksvUalITyK79fzA92TKev21nphPvVpKklIpycKCiEY1sV27PdGG58rL/yMa1QSL93v363Q6Llz4D4DY2BiuXr3M4sULyJUrD8WLlwT0vZNWr17BlCm/UbVqDS5cOM/OnduM9nPkyCG2bt1E1arVyZgxEwEB/qxdu5oiRYoZEkcDBgzk55//R2RkBBUqVMbW1pYnTx5z9OghevfuT44cOc2K2dbWlrFjf3/jmIYNG7N69XK+//5bevX60nD1PY1GQ5s27QH9VMBmzVqydKkP1tbWhqvvPXz4wGhfZcqUp1KlKgwe/BUdO3Ymb978REREcPv2LR4+vG/UuF0IIYQQ4kOSnkIfP52iJUYXTbQuihhd9Mt/UfGWRRGjvFoWo4viXtgNk1O4pl8egpOVq2G6VYJKn9caPSeYOvZynY6UreL53Lw+TSsuMRNXWWOhikuuGE/TMrUuLlGjRsMRv+0ExfijGD4xvqJCRTrrLLTN9RWWGitDJU9cksdQLRQvQRS3To3mk0lkRHbuhvrpE+x/H4fDsMHo0qUnunHT1A7rrcWviHyTT71aSpJSKUybPxcRrepju3UvREahqEClYPgfG2siGtVEmz/Xe48lKiqKvn31V57TaDRkyJCJunW/oHv3Xli8TIhVqFCZL7/8inXrVrNt2xaKFCnGb79NpX37Fob9ZMuWDbVaxbx5fxAY+OJl76fy9OnT3zCmZs3aODo6sHjxQkOlVaZMmSlXriJubu4pel52dvbMmDGXGTMm89tvY9HptBQpUoxZs/4kY8ZMhnF9+36FVqtl2bK/UBQdVavWoG/fAfzyy49G+xsz5jeWLvVh/fq1PH36GHt7B/LkycsXXzRO0biFEEIIIcwlPYVSlk7REaOLJjYuGWRIBMUliOInjF4ljWKVaKK1LxNGyqvEUnS8JFL8fcQq8ZJNumi0SmzSwZnpYtCJFNtXWqFGE29aVMJpUm9al2AK1RumYllbWoFO81oyKWHyKO4YhqqeBImnt5+m9SYXA0+w7VHCq8zHUVDwi3qIRq2hoHOpFD/+xyT8u2Gonz7F9q+FOH3ZgyB3d2Iqmm77kpa9qpJSmUxEvk6F6pOtllIpipL0PfAJ8fML+TAHio3F4sotLK7dQhURhWJrTaxHHv2UvRSqkLKy0hAdLd90CCGESDvkvUmIlHEx8ATTLn9vuP1Nwd8/iW/IFUUhVomOlwiKMqN6KNp4XYLx0QmqjaJf2zZWiU7tU/8gkpqmlaDfzhumaRlPxXqtAieJaVpGFUJvMU0rpaXl9yZFURj7Xx/uhV1PcgpXDvv8jCgy95NLSiSbVotTd2+st29F5+RM4OYdaAsVTu2okiVGF83wM20Ijnlh9jZOlm6MK7kKS7XVe4wsZaVP75jkGElKfcTS8i9XIYQQnyd5bxLi3b3+IfV9fBhVFAWtEmucxHktERT9WgIoblxsXEIpQbXR6+Oj441/lWz6FFmorLBU6/9Zqa1f/vzqfyu1FRYq43VWamss4o23UFmy49EKAqKeJDqFK4ttLvp5jsVCbZmgj8+nNE0rpaXl96bXE9BJ+VQS1O8sIgLnts2xOnYEbabMBP69C132HKkdVbIERD0jJCbQ7PFOli64WmdIemAaYk5SSqbvCSGEEEIIkYZcDDxhsqfQ+rtzyWib3Sh5ZLp66LUKJMX0uo/hEvDJpVFZGCd9VFZYqa3iJYmsX0scvVyussJKYx0vcWScWLJ6LclkGW+chdoStUr9zrFfDDyBf1TCq2DHUVB4GHGbZ1EPJCnxiZApXO/A1pbgv1bg0rQBFpcv4dy2OYFb/kFxT9nWMe+Tm3UG3D6yJNP7IEkpIYQQQgghPpBIbTiB0c8JjH5OULQ/QTH+L2/7ExT9nBdRz/GPNp2Y2Pl4xQeO9u2pUCeoGHq9MigusfNqWdKJoLhkk3El0qt9fqjpYClNrsL1eYpVYngR/cyshBToE5Mvov2IVWKwVH08U7jeF8XFlaAV63BpWAeLG9dx7tSawLVbwN4+tUMTySDT9z5iabkMVQghxOdJ3pvE5ypKG0FgtD7BFBSjTzjFJZoCXyaegqL9idJFfPDYDIkcVcJEzusJISu1FRYvp5tZvraNceLIysSyV+Mt1PLdd3LIFK73Ky2/N30OU7jeN821q7g0rov6xQuiatclePEKsLRM7bAE0lPKJElKCSGEEO+PvDeJT02UNpKgmJfJpXiVTUHR8SqcYvyJ1IalyPHeVCmjQoWbVQYaZ++OtcbGRAWR1WtJI2ssVJZSUZPGveohds3sKVw57D2k4XUyyHvTp8/i5HFcWjVBFRFBZNsOhEyfDfL6SHXSU0oIIYQQQggTYnRRBEUH6BNLLyubDImml0mooGh/wrWhKXI8G409zpbuuFi542KVDue4/18uc7ZKx6Ow2/xx7X+J7kNBwT/6Kc5WblIl8wmRKVxCvLvYMuUI/tMHpy4dsFm1HF3GTISNHJXaYQkzSKXUR0wy/kIIIdIaeW8SqS1GF01wTEC8Pk3+BMU8fzW17mVlU1hscIocz1pta0gwuVjqk0v6JJM7zpbpXiag3LDR2L1xP3JZ+M+bTOF6v+S96fNhvWIpTt/0AyD01wlE9PoylSP6vEmllBBCCCGE+CTE6mINyaag6Ocvp9HFm0r3stopNDYoRY5nqbbGxTKdoYrJxcr9ZVXTqyonF6t0SSabzHUp6KTRFfcSE3clvktBJ6Va6hMiV+ESImVEte9E2NMn2I8djf3IYejSZyCqWcvUDku8gSSlhBBCCCFEqtEqsQRHvzBUMwUZmoUb92wKiXmRIsezUFkZJZpcLPVJpternWw19h+sEkkuCy+EECkn/JvBqJ88xnbhnzj2743OPR0xVaqldlgiEZKUSkHR4U+JjTL/2zkLa2es7DK+l1gWLJjLokV/Gm47OTmTM2cuOnfuRoUKlY3GtmrVmIoVKzNo0FDDsitXLtOzpzc//DCaevW+SLB/rVZLs2YNKFu2PD/8MJpffx3F9u1bDetdXd3Ily8/PXr0wcur6Btjffz4Ea1bNwFg4sTplC9f0Wj95s0b+O23XwE4dOiUmfdA4q5fv0q3bh2ZPn0OJUuWNnu7BQvmsnLlUnbtOvjOMQghhBCfOp2iJTgm8GWD8FeVTXENw+Mqm0JiXpjdS+dNNCqLeD2aXp9CF1fhlA47jUOaS+RITyEhhEhBKhWhv/6G2s8P6y0bcerSgaBN24gtUiy1IxMmSFIqhUSHP+XKP94oumizt1GprShQd8l7S0xZW1szbdocAPz9/fjrr0UMHTqIWbP+pEgSL8gCBQqSI0dOfH13mkxKnT59khcvAqhbt4FhWZYsWfnxxzGAwqNHD1mwYC7fftuPxYtXkjVrtiTjtbW1Y/fufxIkpXx9d2Jra0dERLgZZy2EEEJ8Wi4FnmLVnem0zfU1hVzM/zLlfdEpOkJjAgmMV9kU9LI5uKFnU7Q/QTEBb+yNZC61SmOcaLKMmz7nbpSEsrdwSnPJJnNZqq0YUWResnsKWaolISWEECZpNATPmodzgD9Whw/i3K4lL/7ehS5X7tSOTLxGklIpJDYqKFkJKQBFF01sVNB7S0qp1Wq8vIoYbhcq5EWLFg3Zvn1rkkkpgDp16rN48QKCggJxdnYxWrdr1w5cXd0oXfpVLwNra2vD8by8ipI5cxa+/LIHe/bswtu7W5LHq1KlGgcO7OW774ZjbW0NwPPnzzl37gx16tRj587t5py2EEII8clQFIUN9+bxOOIuG+7No6BzqfeWeNEpOsJig19OmXvVEPxVw3B9tVNQTAA65d0bBqvR4GTllqA5uIulcc8mewsn1Cp1Cpxh2iY9hYQQIoXZ2BC8eDkuTb/A4uJ/OLdtTuDWXSjp06d2ZCIeSUp9RtKnz4CLiytPnz41a3ydOvVZsGAue/f60qxZK8PyqKgoDhzYS4MGjdBoNIlu7+HhCcDTp0/MOl758hU5cuQgx44dplq1mgDs3r2TrFmz4elZMEFSKjg4iJkzp3L48AEiIiLx8PCkb98BFC9e0micj8981q9fQ0REOGXKlKeZiUZ3iqKwYsVSNm/ewNOnj0mXLgOtWrWhbduOZsUuhBBCvA/xm1+/bXNrRVEMyaageNVMga9dlS44JgCtEvvOMatQ42TpatQQXF/NZNzHycHSGbUq8b8jhBBCiHelODkTtHIdLg3rYHH7Fs4dWxG4/m9wcEjt0MRLkpT6jISHhxMcHETmzFnMGp8tW3YKFizErl07jZJSR48eIiwsjDp1Grxha3jyRJ+MMvd4lpaWVK1ag127dhqSUr6+O6ldu16CsVqtlsGDv+bx44d8+eVXuLq6s3btSgYO7M/s2QspUKAgAOvWrWL+/Dm0b+9N6dJlOXnyOOPH/5Jgf9OmTWTLlo107tydQoW8uHDhPLNnz8Da2tro3IUQQogP5VXzazUKOlSojZpbK4pCuDbU0LMpriG4oWdTXGVTtD+xSsw7x6NChaOla7xqJjdDnyaXeFelc7R0QaOSPzGFEEKkDbqMmQhatR6XRnWxPHcW5+6dCFq6GqxkCnRaIH8xfOJiY/XfeD5//pzZs6dhZ2dPmzbtzN6+Tp0GzJgxmadPn5AxYyZAnyjKmjUbhQt7JXq8R48eMmnSeDJlyswXXzRJxvHqMWzYYMLDw3nxIoDLly/xww+/cOzYYaNxR48e4vLli0yaNINy5SoAUK5cBdq2bcaSJQv59dff0Wq1LFniQ716X9C//zeGMS9eBLBz5zbDvh4+fMC6dav57rvhNG3aAoAyZcoRGRnJokV/0qRJC9TqT3/agBBCiLTlYuAJQ5UUgIKOu2FXGfVvV2J0UQRF+xOjJK91QGIcLVxeTaGLl2ByibfM0dINC7X86SiEEOLjo82bn6Bla3Bp0QirfXtw/KYfIbPmgXzOS3Xyl4UZAh/s48nlhehiEm+0rejertz99uEhqJL4A09taUemQt1xyVo9WfuOiIigevXyhtsajYZx4yaRI0cus/dRq1YdZs2ayu7du+jQwZvw8DCOHDlMhw7eCcbevn3L6Hg2NjbMmjUfV1dXs49XsmQZ7OzsOXhwH48fP8LDowA5cuRMkJT6999z2NvbGxJSABYWFlSrpq+0AvDze8bz535UrVrDaNsaNWoZJaVOnjwOQPXqNQ1JNYDSpcuybNlinj17SqZMmc0+ByGEECK5YnWxPIm4y/3w69wPu8Hd0GvcCPnP5NjHEXfM3q+9hbNhupyzldvLxFM6Qx8n/dXp3LBQW6bQmQghhBBpU2zJ0gQtXIJzp7bYrFuNLkNGwn7+NbXD+uxJUsoMz66vJCrk3nvZd2x0YNKDIsHv2qpkJ6Wsra2ZNetPdDodDx7cZ86cmYwZ8xN//bWKdOnSmbUPd/d0lChRCl/fHXTo4M3+/XuJjo6ibt36CcZmzZqNn38ei1ar48aNa8yePZ0ffxzG4sUrsbGxMet4Go2GmjVr4+u7k8ePH9Owoekqq5CQYFxd3RIsd3V1Jzg4CNBXh+mXuSYYE19QUCCKotCwYW2Tx3r6VJJSQgghUk6UNoIH4Te5H3ade2H6JNTD8NvEJqPqyVpti7t1JsNV6Jwt0xn1bHK2dMfZyg1LtfV7PBMhhBDi4xJTsw4hU2fhNKAPdrNnoMuYiYh+X6V2WJ81SUqZIYNHO55cSrpSyqwE02ssrFzMqpRK79E22ftWq9UUKFAI0F95L0eOnPTu3RUfnz/57rvhZu+nbt0GjB37M/fu3WHXrp0vq5dyJRhnZWVlOF7hwl64uLjwv/8NYe3alXTq1NXs49WuXY/+/XsB+kotU5ycnHjxIiDB8hcv/HFycgYwJN5evHiRYIzxvpxRqVT88cd8LC0TflOcI0dOs2MXQggh4guJCYyXfLrOvbAbPIu8j4Ly1vtUoSaTbQ5GFJn73q7EJ4QQQnyqotq0J/TZMxxG/4DDqP+hS5+eqNbmt7gRKUuSUmZwyVo9ySql8BfXuL63d7L3nbvSb9i5erxlZMlToEAhateux7ZtW+jWrRfu7uZVS1WrVoOJE8ezevUKTp8+wZdfmpdJrlatJkWKFGP16hW0bt0ea2vzvq318ipKnTr1cHFxI0OGjCbHFC1anOXLl3DixDHKltVPGYyNjeXAgX0ULVoM0F9t0N09HQcO7KVatVdT+Pbu3W20r1KlygAQFBRE5cpVzYpRCCGEiE9RFPyjnhiST/fD9QmowGi/JLdVoSKDTTay2+cnu30+FEXHxvvzEz/Wy95Sb3MlPiGEEEJARP+vUT99jN3cP3D8ph8693TE1DQ9c0a8X5KU+sx07dqD3bv/YfXqFUbJpYcPH7J3r6/RWLVaTbVqNbG3d6BixUps2rQelUpl8mp4ienevTcDB/Zn+/YtZl/FTqVS8cMPCa+QF1+FCpUpWLAwo0f/QN++A3Bzc2ft2lX4+z/H27s7oJ8K2KlTV6ZNm4ibmztlypTjxIljnD172mhfOXLkpEWL1owZ8yPt23tTqJAXsbGx3L9/j7NnTzFu3CSzz1cIIcSnL37/p3thN/RJqLAbRGhDk9zWQmVJFrvc5LDPr09C2eUjm31ebDR2gD65Nfa/PoYr7iXm9SvxCSGEECIZVCrCfh6L2u8ZNuvX4tzdm8CNfxNbvGRqR/bZkaTUZyZHjlzUqlWXjRvX4u3dDQcHBwCOHz/C8eNHjMZqNBr279c3Aa9TpwH79u2hZMnSpEuX3uzjlSlTjqJFi7NixVIaN26ORqNJkfPQaDRMnDiNWbOm8ccf04mMjMDDowCTJ8+kQIGChnGtWrUlNDSE9evXsGHDGkqXLsvQoSMZPNi42uvbb78nR46cbNq0Hh+f+dja2pEjR05q1KiVIvEKIYT4OEVqw3kYfuut+j/ZahzIbp+P7Hb5yG6fnxz2+clkm/ONV7C7FHTS6Ip7iZFqKSGEEOIdqdWETJ+D+rk/Vgf24tyhFYFb/0GbJ19qR/ZZUSmK8vZNDT5Cfn4h72W/bzt9L3+NeW89fc/KSkN0tPatthVCCCHeh4/5vSkkJjBe7yd9Asrc/k8ulukMiads9vnIYZ+fdNaZk1XFFFcldS/smlnHVKEih72H9JYSQogkfMzvTeL9U4WG4NysIZbnz6HNkYsXf+9CyWi6jYxInvTpHZMcI5VSKcTC2hmV2gpFZ/6Vc1RqKyysnd9jVEIIIYR4naIoPI96zP2XU+/iElGBMc+T3Fbf/yk72V8mnuL6QDlZuia5bVJilRheRD8zuwm6gsKLaD9ilRgsVVbvfHwhhBDic6Q4OBK0fC2ujeqguXMb5/YtCdq0DcXRKbVD+yxIpVQKig5/SmxUkNnjLaydsbJ7+wysZPyFEEKkNWntvSmu/9O9sOvcD09+/6esdnn0U/BeVkFltctj6P/0PgREPSMkJtDs8U6WLrhaZ3hv8QghxKcgrb03ibRJffsWrg3roH7uR3SVagQtXwtmXqxLmGZOpZQkpT5i8stVCCFEWpOa701x/Z/iT8F7FH6bWCUmyW0N/Z/s85PDPh/Z7ZLu/ySEEOLjIJ+bhLkszp/DuekXqMNCiWzagpC5C0GtTu2wPloyfU8IIYQQn6TgmBeGqqe4JNSzyAfm9X+ySk92u1fT73LY58fdOpP0ZRJCCCE+c7FFixPsswznDq2w2bQeXYYMhI2ZAPI3wnsjSSkhhBBCpFlx/Z/iVz89CLuRrP5POV5WQKVk/ychhBBCfJpiqtUgZMYcnPr2wO7POegyZiLi60GpHdYnS5JSQgghhEgTYnWxPI64Y9yAPPwGkdqwJLe1UFmR1S63UQPy993/SQghhBCfpqgWrQl99hSHH0fgMGYUugwZiWrXMbXD+iRJUkoIIYQQH1ykNpwHYTf1lU/hN96q/1OOl5VP0v9JCCGEECktou8A1E+fYjdrGo4DB6CkS0d07XqpHdYnRxqdf8SkYZ8QQoi0xtR7U3B0APfDX/V+uh92I1n9n+Iaj8dVQEn/JyGEEMkhn5vEW9PpcPyqLzZrVqLY2RG4bguxpcqkdlQfDbn6ngmSlBJCCCHeD0VRCNI95WbgFaMG5EEx/kluq0JFRtvs5LDLT7Z4U/AcLV3ef+BCCCE+afK5SbyTmBicvdtitccXnZsbgVt3oc2XP7Wj+ihIUsoESUoJIYQQ7y5WF8PjiLuvej+F3Uh2/6cc8ZqPZ7PLi7XG9gNELoQQ4nMjn5vEOwsNxaVlIyzPnkGbPQeBf+9ClylzakeV5klSyoTPJSm1YMFcFi36EwCVSoWdnR0ZM2aiePGStGjRhly5chuNb9WqMRUrVmbQoKFmHfvAgX08f+5HixatjZb/+usorly5xJIlqwHYtm0LY8f+zNatvri4uPD48SNat27CL7+Mp0aN2sk95QS6du1A/vwe/O9/oxId8+uvo9i+fSuFCnkxb56P0TpFUWjZshHPnj2lW7de9OjR551jGj58MCEhIcycOS9Z21WuXJp+/b6hQwfvd45BCCFSUqQ2/GXz8ZcNyMOv8zj8jln9n+w0DkaVTzns85PRJof0fxJCCPHBSFJKpATV8+e4NKqDxa2bxBYsTODm7SjOLqkdVppmTlJK/iJ8zy4FnmLVnem0zfU1hVxKf9BjW1tbM23aHAAiIsK4efMGmzdvYMuWjQwb9gP16n1hGDt27O84OjqZve+DB/dx5cqlBEmprl17EhERkRLhpyhbWzsuXbrAo0cPyZIlq2H5v/+eJSDAHysrq1SMTggh0o7g6ICXV727bpiC5xf50Kz+T65W6cnp6EE223xkt8sn/Z+EEEII8clQ0qUjaNUGXBrWweLyRZw6tydo1QawsUnt0D5qkpR6jxRFYcO9eTyOuMuGe/Mo6Fzqg/5hrlar8fIqYrhdpkx5mjdvzZAh3zJ+/C94eRUla9ZsAHh4FEiRY8btL63JlCkTGo0Fu3f/g7d3N8NyX9+dlC1bgfPnz6ZidEIIkbSU/pJDp+h4HvkoQQPy5PZ/yh5vCp6jpYt8Gy2EEEKIT5YuZy6CVq7HpWkDrI4exunLngTPXwwaTWqH9tGSpNR7dCnoJHfDrgJwN+wql4JOUtilbKrGZG1tzbfffo+3dxu2bt1Enz79gYTT927duskff0zj0qWLREVFkiFDRho1akrHjl0M0+FAP+UMoEGDRvzvf6MSTN8z17ZtW1i1ahn379/DycmZBg0a0bNnXzTxXtz//fcvU6b8zp07t8iaNRv9+n2TrGPUrl2XXbt2GJJSsbGx7Nu3m2+++c5kUmr//j0sWjSfe/fu4OjoRO3adenduz/W1taGMXfu3GbixHFcunSBdOnS061bL5PHvnPnNnPmzODs2dNotVpKlCjFt99+n2aTeEKItOVdv+TQ93+686r3U9j1l/2fwpPc1lJlRVa7PIbEUw77/GS1yyP9n4QQQgjxWdJ6FSH4rxU4t22O9d+bcRj+HaETJoNUhr8VSUq9J4qisPHefFSoUdChQs3Ge/Mp5Fwm1acx5M6dh/TpM3DhwvlExwwdOgg3NzeGDfsBBwcHHjy4j5/fM0A/RS8w8AV3797hxx/HAODq6vrW8axcuZTZs2fQpk0HBgz4ljt37jBv3h/odDq+/PIrAPz9nzNo0FfkzZuP0aPHERISwqRJ44mMjCB/fg+zjlO7dj3mzp3F7du3yJ07DydPHiMqKorKlasxadJ4o7GHDu1n5Mih1KpVl759B3Dv3h3mzp3F06dPGDPmNwCioqIYNGgANjY2jBw5GoAFC+YQFhZGtmzZDft6+PABfft2J0+evIwYMQq1WsVffy3km2++ZPnydTJ1UAiRpOR8yfGq/9PLBuThN3gUfhutEpvkcew0Doa+T3FJqEy2OdCo5M8FIYQQQog4MZWqEPzHnzj16oqtzwJ0GTMRPti8/szCmPyV+Z7E/wABoKBLM9VSABkyZCQgwPQUjcDAQB4/fsg33wymcuWqAJQs+WqqSNas2XBxceXJk8dG0wPfRnh4GAsWzKNDh86Gqq0yZcpjaWnBjBlT6NDBG2dnF1avXoFKpWLixOk4ODgYzuGbb740+1iZMmXGy6sIvr476dXrS3x9d1KpUlVsbRN+279w4TwKFy7CqFG/AlC+fEWsrW34/fex3Lx5g7x587F9+xaeP/dj2bK1ZM+eAwAPD086dGhplJRatOhPnJycmDJllqHKysurGG3aNGXr1k0J+nIJIUR8b/qSIzgm4OVV764bpuA9i3xo1n5drTK8TD7lMySi3KwypvoXJ0IIIYQQH4PoJs0J9XuG4/DvsZ/wK7oMGYn07praYX10JCllhlP+e9l8fyGRWvMaeCuKQmhsoMl1M68Mx8HCJVl/9NtobGmavQel3KubvU1SFEVJNAZnZ2cyZcrM3LkzCQkJplSpMmTIkDHFjh3ff/+dJyIinBo1ahEb++pb/NKlyxEVFcWtWzcpUaIUly5doGTJUoaEFECpUmVwcnJO1vFq167HmjUr6dy5GwcPHuDHH39JMCY8PJzr16/Rv7/x9MBatery++9jOX/+HHnz5uPSpYvkzp3XkJACyJYtO/ny5Tfa7uTJY9SqVReNRmM4R0dHRzw8PLly5VKy4hdCfH4S+5Jj4MlGhGtDk9xehZpMttkNiadsdvkM/Z+EEEIIIcTbi+zRB/XTp9hPnYjD99+iS5+B6PpfJL3h62Jjsbh8E4vrt1FFRKHYWhObPzexBfOCxaedtvm0zy6F/PNwJU8i7qXIvrRKLEExz5O93c5HK1M0KeXn98womRKfSqVi8uSZzJv3B5MnTyAiIgJPz4J89dVAihcvmWIxAAQFBQLQvXsnk+ufPXsK6Kfvxa8+ipPcaYM1atRm+vTJzJ8/FwsLC8qXr5hgTGhoCIqi4ObmbrTcwcEBKysrgoODAHj+/LnJ47u6uhMVFWm4HRgYyOrVK1i9ekWCsRYWlsmKXwjxedHqYllxe5rJdaYSUpYqK7La5yW7XT7DFDx9/ye5KowQQgghxPsQPvwH1M+eYrt8CU69uxK4ZjOx5cqbvb3m+m1st+5FFRmFogKVAooKLK/eRvE9TESjmmjz53p/J5DKJCllhnpZ27Pp/v/Zu+/4qur7f+CvM+7K3gMySCCBsLcKKqiIFpFhHdWqrVq1+2ur1Z+22lpbbWttrbVD66x1tVpAUUFUoA5ApiAzISGL7D3uOud8fn/ccMMlCWSfm+T1fDx8hPv5fM6974vk3txXPuPZbs2UOjFL6nR7dyiS2qPZUnbFgUtGfa3b9Z5Jfv5RVFVV4itfWdrlmLS0dPzqV7+FpmnYt+8LPP30X3DPPT/CqlXvISQkpN9qCQ+PAAD8+tePIjGx42ys5ORRAIDY2DjU1dV26K+rq+vR48XExGLmzNl4/fWXcdlly6F2kjqHhYVDkqQOj9fc3AyPx+OfnRUXF4fDhw91UlMNQkJC/bcjIiJxzjnzO12m159/l0Q0fDR56/Fp5bvYUPZvNHm7fp1LCRmHnMhZ/g3IEx2p3P+JiIiIaDBJEpp//yfI1VWwvb8OkTdcjfq31kOfkHPGS5XcAjjeWNd+VyLwK1xuON54D84rL4WelTEAxZuPP7l2w6zYhd2epbS//nP86eBPTjtGFxq+Oe4eU/aWcrvdePzxR2G1WnH55SvOOF5VVcyYMQtf//o38f/+349RXV2FtLR0qKoFHo+nz/VMnjwVdrsdVVUVWLDggi7H5eRMwurVb6K5udm/hG/nzu3+WUs9ceWVX4PdbseyZSs67Q8JCUFWVjY2bfoQ11zzdX/7Rx9tAABMnTrdX9O6de+gpKTYP4urpKQYeXm5/jEAMHv2XBQUHEVW1viA0wSJiE4mhEBB8wFsKl+NHTUboQnvacdLkKFICq5M/w73gSIiIiIyk6qi8ekXEHXlMlh2fI7Ir12B+nc2wDjdaeuaBsfajQCArn6SkwAIAI61G9H8g9RhuZRv+D0jE526GW1XBuskPsMw8OWX+wAATmcr8vPz8NZbq3D8eCnuu+/n/llIp8rLy8WTT/4RF120GKNHp6C5uRkvvfQ8kpNHYXTbN9WYMWPw7rtvYcOGdUhNTUNkZFSX93c64eHhuOWWb+Ovf/0zKisrMWPGLCiKguPHS/Dxx//Dr3/9O9jtdlx99XVYteo/uOuuH+L667+BpqYmPPvsU4iM7NmeUgAwf/55mD//vNOOufnm23DvvXfhl7+8H4sXfwVFRYV4+um/YOHCCzF27DgAwJIlS/Hii8/i7rvvwLe+5dtw/dln/95h2d8tt9yOb33rRvz4xz/AsmUrERMTg9raGuzevQvTpk3HxRdf2uPnQETDh1t34vPqD7GpYjWKW3K7fV2wHaBBRERENKKFhKDhX68jatmlUI8c9gVTb62DiI7pdLh68Cgkl/uMdysBgMsN9VA+tMndO3l+KGEo1Y9O3Yy2K4P1QcLtduPb374JAOBwhCA5ORmzZs3Bww//HunpY7q8LjY2FrGxsXjppedRXV2F0NAwTJs2HQ888JB/ps/Spctx4MB+PP74o2hoaMBXvrIUP/3pL3pV57XXXo/4+Hi8/vrLePPN16GqKkaPTsG8eef5l9fFxcXh979/Ao8//ijuv///YfToFPz4x/fg6af/2qvHPJNzz12Ahx76DZ5//hnce++diIiIwLJlK3H77d/3j7HZ7PjDH57EY4/9Bg89dD/i4hLwzW/egk8+2Yympib/uJSUVPzjHy/iH//4G/7wh9/A6XQiNjYO06bNwNixWZ09PBGNAOXOImwuX4PPqtbBecr+UCFKOFTZgiZvfVD8koOIiIiIzkxERaPhxdcQteIrUA8fQuQ1V6Dpj09BkmRIbi/g8UByeSB5PFCPFECg61lSAfcrAeqR4RlKSUIIceZhw0dVVdOZB/WCEAIP77sdRS1HIHDmv1IJEtJCs3HflKd6/UHCalXg8ei9upaIiAafLjR8UfsZNlWsxqGGnR36x4TlYGHiCoQo4fjrkfu6fb//l/No0MyW4nsTEREFG7430RkJAXi8kNweSG4P4PYFR/7bHi8klxuSx+vrO/Gfp22s2+sb7/FtvyBVl8P6779DcjuhZ06E9/LrAblvW7loaaPg/Pry/ni2gyY+PvyMYzhTqp9owos6T2W3AikAEBCo81RBE15YJOsAV0dERGaq99Tgk4q38b/Ktaj3VAX0WSQr5sYtwoKk5RgTNsH/Sw4JUrd/ycHZUkRERDQiCQF4tU7DpMDwqKsw6aS+/iwrLgmeZd+A9b/PQMk/APHhKmiLvgr08mc1IQHCYevHCoMHQ6l+YpGtuG/K02jy1nf7mghLFCwyAykiouFICIEjjV9gU8Uq7K79GIYI/A1tgn00FiSuwLz4SxFqifC385ccREREI5SmQT14FGpuASSnG8Jhg5aVAS1n7PDb4FoIQNN8S9rc7vaZRh3CJA/gPmkGk6eTPpMXfwmrBcJmhbBZAavV/2cxbQL01AQ4Hv8V1C+3wzttCly3/wCibYxaVArbpm3degxJAFp25gA/E3Nw+d4QxmmoRETBx6m1YGv1+9hUvhplzmMBfRJkTI2eh4VJK5ATOQuyJHd6H7Xuyh7/kiPaltCHqvsP35uIiPpoJAUTg2QovDcpuQVwrN0IyeWGkHwhhP+r3Qbn0guhZ40xu0xfmKTrJ4VHnYdJAeHRib2UAvq9kIyu980clKdiUSFsNgibJSBMwolQqS1sar/dsR826xlnP9lffA7hP7kDAND02z/AddO3fB2ahrA//xNwuU87S0sAgN2G5h/cOOReA7qzfI+h1BA2FF5ciYhGipKWo9hcsRpbqzbAbTgD+sIt0TgvYSnOS7wcsbZEkyocHHxvIiLqvSETTAwxwf7epOQWwPHGOgCdb3p94gO788pLoWdl9P6BAsKkk8OjU2YiuU5ZAte215L/OrPDJFVtC4csvqDI7guMAsMjC9AWOAmrFbC3h0q+GU0WQO78l4MDIeR3DyP097+BkCQ0PvsSPEuXQd33BSyb/gelSQEk6Qz/778yJL/3GUp1gqEUERH1F6/hwe7a/2FT+WrkNe3r0J8VPhULklZgZsz5UGWLCRUOPr43ERH1zqAFEyNQUL839WS2jM2K1muWQtL1UzbiDjzVDSctbwtYHqeb+3cgFOWkmUYWf4DkD5MClr+dJkxS+rZhuCmEQNhdd8Dx0vMQNhsaXl+F0Id/CcvnW9H4xD9gKWsZlmE0NzonIiIaADXuCvyv4i18UvkOmrx1AX022YGz4xdjQeJypISONalCIiIaUjQNjrUbAXR9PLwEXzDhWLsRzT9IHXLLeAII0f6fceKrAQjh2x+ok3YYJ/Wd0u67zmi/5uTrhQFZlqB69a4fz+h4v1JnNbT9J3VSG3BSjafUBmEAAr4ZRqe0S02+MOJMJABwexD6z/8O9P+dDoQsBy5bawuHRKdh0kmzlE5e/ma1AuoQDJP6iySh+Xd/gFxdBdt7axFx47Xwzj8XAKAe3Ivm+x+Eeigf6pH89mW72ZnQJmQO7e/1buBMqSEsqBN/IqJhxhAGDjbswKby1dhbtwUCgVPXkx1jcEHSCpwVtxgONdSkKs3H9yYioh4SAuoXB+F4b3O3L/FOGAsjMdaXUp0cmBinD2faw5ST+tvGSx1ClJMCHyNwbODjndJ+Ur/UWbth9OspZ9Q1IUkBQVJ7eNT5xtwdl7+1tStKr0+No5MIAamkGBHfvRXWbVtgREZBbqiHljMRdZu3ml3dgODyvU4wlCIiop5o8Tbi06r3sLl8DarcpQF9sqRgZsz5WJi0ElnhUyHxBza+NxHRyOXVILncbf+5fMuxnO6T2gL/w8l9Ju/RQ0OHERYCbVJW4JK2LvZSgqoyTAoittdeRsQPvwMtIxNSSzOUykoI+GbBlfzvXeiJpz+0RrVFwhoytPYmHZLL915++WU8++yzqKqqwoQJE3D//fdj6tSpXY5vbGzEH//4R2zYsAH19fUYPXo07rvvPixYsGAQqyYiouHmWPNBbCpfje3VH8ErPAF9UdZ4nJ94Oc5NWIooa6xJFRIRUb/T9MBg6XSh0ok/nxhj8n49A00Avo2hJQCSDMiSL/CQJAhZ6tAGSQJkCeLkdlkC0PZVktuua7994r47tkv++xAn/Rmn3LeQOm9XVAWaIdrqP+W+A64LbPc/Xift7dcF1hfQLp96vx3/PuxrPoCadwxSN6aKCAnQRyfCfeG8Af1/TQPDSEuHERoGtSAfAPyBFAA0/e12lC6IP+31kmzFhMUvDblg6kyCKpR699138cgjj+DBBx/EtGnT8OKLL+KWW27BunXrEBvb8Yd+j8eDm266CbGxsfjTn/6ExMREHD9+HBERESZUT0REQ51Hd2N7zYfYVL4ahS2HO/TnRM7CwsQVmBozD4oUVG+hRER0gq53Phupq1Dp5GBJ0watTGG1QNhtEHabb18hp6tby9oEAGNUAjznzDwpoDkl+JE6CUZOBEGnhCTdDWeG8owbq1WBN0hn8WrjM2HJPdatsZIAtOzMgS2IBox33rmo3XcYtjWrYH3xKdj2tB+Sk7qp6oyhlDA80NwNDKUG0vPPP4+rr74aX/3qVwEADz74IDZt2oQ333wTt912W4fxb775JhoaGvDaa6/BYvGdapSSkjKoNRMR0dBX6SzB5oo1+LTyPbTqgcu8HUoY5iV8BQsSlyHJkWZShUREI4xhnDFUCpyt5Gpv9w5isGRR/cGSsNsgHHbg5Nud/AeHrX2fnjbqvsNwrP2oW48pAfDMmgItmyfwDQdazliIDz7t3ul7dptv42saskRYOFxfvxG1S87G8X/dgIx3y5CwpwHNo+1ml2aaoAmlPB4P9u/fj9tvv93fJssy5s2bh927d3d6zUcffYTp06fjl7/8JT788EPExMRg6dKluPXWW6EMxWMiiYho0BhCx966rdhcvhr7Gz7v0J8amoULEldiTtyFsCkOEyokohFL06AePAo1t6D9FKasDGg5Y4fWKUyG4TuavtNgydX1bCWXG5LHO2hlCvVEsGTtVrAEx0l/7qfPHAwmRjBVhXPphXC88V7Acq6TnVjZ51x64dB6DaDTahntwJe38ns5aP5F19XVQdf1Dsv0YmNjkZ+f3+k1xcXF2Lp1Ky6//HI8/fTTKCoqwoMPPghN0/D973+/02ssFmUozzwNoI7kIzWJiHqpwVOL/5WtxaayNahxVwT0qZIVZyVciAtHrURm+ERuXN4LfG8i6hv5cAHU1R9AcrkhJAmSEBCSBMvhAogPPoW2YhGM8YM4Q0YIwO3xzVhytm/eDZfL99UZuKk32mYtwemG5Pac+f77q0xF8YdFcAQGS3DYALsdwnEiULIHjD3Th/y2XZAGllWBtmIR1NfeOWMwoa1YBGuIbaArGlaC+b3J3VIBV7IGz7JJUDZtg+T2BHzvS0JA2KzQF54FI1mD6q2GLXR4Ld8aboQQELoHutYKQ3PB0F3+P+uaE4bmgrOhoFf3bbHIsFqD999zbwRNKNUbQgjExsbioYcegqIomDx5MioqKvDss892GUp5vcG5lri3eMIREdGZCSGQ17QPm8tXY2ftZugicGlHnC0ZCxKXY17CVxBuiQIAeL08Cam3+N5E1DtKbgGsb6zz35baDsk+8RUuN9TX3oHzykuhZ/UgmBIC8Hg7LnM7daZSJ6fFwe1pf/wBJmS5fQaS3Qbh6GK2ksN2ykwmO2Dp5ccaA0CwvGZlpEG58lI41m4EXG4IybeH0ImvsNvgXHoh9Iy04Kl5CAnG9yZPawUOvX8DhNEW4CafZvDhd4DDw3ezazMIYbSFRk4YbWGR789t4ZHuamtv+093dTLmpGtPGuN7cel/Xq8RlP+W+yJoQqno6GgoioKampqA9pqaGsTFxXV6TXx8PFRVDViql5mZiaqqKng8Hlit1gGtmYiIgptLb8W2qg3YVLEapa2Bs24lSJgSfTYWJK7ApKi5kCXZpCqJiABomi+MQNezciT4Zss43voQzpWLfXsnnSZQCgidBitYkqT2UKmrYKmL5XGwjNzj6z2tFdDcDUAc0HTDOVCPlUApKoXk8kDYrdDTRkMbkwIoHqDuyJA8Gp460twN7YFUNw3Xza5PRxha2wwjpz8QCgiJ2tr1U4Il49Rg6ZTASehus58aIYhCKavVikmTJmHLli1YtGgRAMAwDGzZsgXXX399p9fMnDkTa9euhWEYkGXfh4ljx44hPj6egRQR0Qh2vLUAm8rXYGv1erj01oC+MDUS5yYsxfmJlyPOfrpfSRIRDR714FFfiHQGEgB4vAh5/Z0Bq0VIEmBr31+pPTiynrSvkr3TWUywWkZssNRbHWbLnOzE3sdFbf+14WwZCjZCCAjDEzCrSO8wgyhwZlHgbKSTZiyd3KY5IcTgHV7QG5Jsgaw6ICsOyKq97c92yKodir/9RJtvjOZpROWhf5pdelAImlAKAG666Sbcc889mDx5MqZOnYoXX3wRTqcTV1xxBQDg7rvvRmJiIu68804AwLXXXot//etf+PWvf43rr78ehYWFeOqpp3DDDTeY+TSIiMgEmuHFntqPsaliDY407unQnxk2CRckrcTM2AWwyPzFBREFESFg+fJIl3sJ9eouAcAfInUMkNDV0ji7DbBZGSwNIs6WocE0FJes9Rd/KHRSOBRwW3H4QqRT21V7QLB06hhJ7nms0lp3hKFUm6AKpZYsWYLa2lo88cQTqKqqQk5ODp555hn/8r2ysjL/jCgASE5OxrPPPotHHnkEy5YtQ2JiIm688UbceuutZj0FIiIaZHXuSvyv4m18XLkWjd7agD6rbMdZcYuwIGk50kKzTaqQiKgTXi+UY6VQjxZBPVoIubG5R5cb4WHwzpzUxb5LdsBmAWQuSyYajpoqd8DVcHR4LlmT5PYASLVD6TD7qOOso8Axji4CJxskbtUQlCQhBmmBeZCoqmoyu4R+Y7Uqw26TMyKi7hBC4FDjLmwqX4Uvaj+DgcDXwkR7GhYmLcc58ZcgRA03qcqRie9NRF2T6hqhHi2EerQQSuFxSHrvvleEBGjZGXBdcWk/V0hmaK07gtyNt/X4uqwLnkZItDm/cPF9hDQghAEIA0LobV+NTr7qgbfbruu0T+i+++7sPnFirPBf1+HxITq9T1kGdE3rpL7Oa+vWc0L7bd9Y0fl9nrgN0eE+Dd0DQ2sx5f9hX7UvWes4q6irJWuBM406m4lkhyRbR8Tpx0Px+7434uPP/HN4UM2UIiIiOp1WrQlbqtZjU/kaVLiKAvpkKJgecy4WJq3A+IgZI+IHGiIKcroOpbgM6tEiKEcLodTUdzpMKDKM6Ego1XXdultJAFp2Zj8WSkNR2f5/QLGEdghQTgQhvhCks3DlxO3OA5yuApSTw5a2BaI0BHRnyVp7kHTqmP5dskbUGf5LIiKioFfUcgSbyldjW/UH8BqB084jLbE4L/FynJewFNG2eJMqJCLykZpb/CGUWlACyePtdJwRHgptbBr0sem+U9VkCWF//qfvtLzT3L9vrygbtAkMpYYKIXRorjp4nJXwOqvgdVbC21oFT9ufPS2lvbrf5srt/Vwp9QtJhiQpbV9l31fIJ91WILX92TA0aK7qHj9E3LgrYQ9LOyU86mwfJDuXrAUp1RYJSbb2aD85SbZCtUUOYFXmYChFRERByWu4saNmEzaXr0Z+84EO/eMjZmBh0gpMiz4XKn9bR0RmMQzIxyv9e0MpFZ1/wBSSBH10oi+EGpsGIyG2w2bizqUXwvHGe11ueC5OGgeVr3vBQAgDmrsO3tYqeJ1VbcFTZfufW6vgdVW3zVwymxQYlPi/Km3BRed9HW5DCghXTg1bIEnt93lqH6TO77OLAKfj2M4eT+6kfuWk+5ChWizQdNH5feLEbanr53RK3Z0//xN1dF9vl3BFpy4eUku4qCNrSCImLH4Jmruh29eotshhebgB382IiCioVLvKsLliDT6pfBctWuAbtV0JwTnxl2BB4gqMChljToFERE4X1PxiXwiVXwzZ6ep0mOGwQ89MgzY2DVpmKuCwn/Zu9awxcF55KRxrNwIuN4TkW6p34ivsNjiXXgg9a0z/PyfqQAgBzV3vD5m8zsq22U1V8LaeCJ+q+3xcvWIJg+7t2Ub3ADDmnIfhiBzbebjTIWBSRvSydu53SMHIGpI4LEOmnmIoRUREpjOEji/rP8em8tXYX7/Nt1HpSVJCxmJB0gqcFbcIdiXEpCqJaMQSAnJlTfveUKUVkLo4K0hPioOWmQ5tXBqM5IQen4CnZ2Wg+QepUA/lQz2SD8nphnDYoGVn+pbscYZUvxBCQPc0dBIyVZ20zK4Kwuh8+WV3KdYIWBwJsDoSYHHEwxKSAKsj3vdnRwIsjji4Ggt7NVvGYo/jB1oiGvL4rkZERKZp8tbj08p3sbliDWrc5QF9iqRiVuxCLExcgbHhk0f0b3iJyAQeL9RjJb69oY4WQW7q/IQsYbVAy0iBNjYdemYaRHho3x9bVaFNzoY2mctzekMIAd3b1BY0BYZMXmclPG3tPdnLpTOKJRyWEF/YZPWHTG2329plxdZPz4qIaHhiKEVERINKCIGC5gPYVL4aO2o2QhOBv4WOsSZiQdIyzE+4DBGWaJOqJKKRSKqth5rnC6GU4uOQdKPTcXpslH9vKD01GVCUQa505BJCwPA2t89wOilk8p4UPhl650squ0u2hLbNbjoROiXAEnLyDKd4KKqjn54VjVTc7JqIoRQREQ0St+7E59UfYlPFahS35HbonxQ1FwsTV2BK9NmQJX7AI6JBoOlQio5DPTEbqq7zDWeFokBPHwVtbDq0sekQ0RGDXOjIoXtb2vduam0PmU7eQNzQnH16DFkNaVtSF+9fUtd+uy1wsnCpOA08bnZNxFCKiIgGWLmzCJvL1+CzqnVw6oEbuYaqEZgfvwTnJ16OBEeKSRUS0UgiNTb794ZSj5VA8na+SbUREdYWQqVBHzMasFgGudLhR9daOz2lztvavoG4oXW+TLK7ZMXuD5n8M5zawidrW7ti6Ycllv2Is2VGNm52TSMdQykiIup3utDwRe1n2FSxGocadnboHxOWg4WJKzA79gJYud8GEQ0kw4BSWuHfG0qprOl0mJAk6KnJ0MemQRubDiMuGhjEvew8rRVDeraEoblO2rupEt7WqragqT186s0JcyeTFFtAyGRxJPj3bjox00m2hA25PQg5W4aIRjKGUkRE1G/qPTX4pOJt/K9yLeo9VQF9FsmKuXGLsCBpOcaETTCpQiIaCaRWJ5T8Yt/+UAXFkFzuTscZIQ5/CKVlpAB2c0JyT2sFDr1/Q49nykxY/NKgBBOG7m5fRtfFKXW6p7FPjyHJ1oDZTP7ZTSedWqdYwodc4NRdnC1DRCMVQykiIuoTIQSONO7BporV2F37MQyhB/Qn2EdjQeIKzIu/FKEW7sNCRANACMgV1f5NyuXjFegqutCTE6CdmA2VHD+os6G6orkbenwSnDA80NwNfQ4yDN0Dr6u6bf+m9mV0J59cp3u6P4OnM5Js6RgyORICTq5TrJHDNnAiIqKuMZQiIqJeadWasbXqfWyuWI0yZ2FAnwQZU6PnYWHSCuREzoIsySZVSUTDltsDtaAYytEiXxDV0trpMGGzQstI9e0NNTYNInTkbGBtGF5ozuqTltEFznTyOquguev69BiSpMLiiOsQMllOCp9UWxQDJyIi6hRDKSIi6pGSlqPYVLEa26o2wG0EnoAUbonGeQlLcV7i5Yi1cRkCEfUjISDX1kPJK4R6tBBKcTkkw+h0qB4XDW1cOvSx6dBHJwLK8DzR0+uqQUvNvragqcq/n9OJk+t8gZPo/QNICiz2OFhCAmc4tS+pi4dqi4bEXzwQEVEvMZQiIqIz8hoe7KrZjE0Va3C0aV+H/qzwqViQtAIzY86HKvOEKiLqJ14NSlEp1KNFUI8WQq5v6nSYUFXoY0b7l+WJyPBBLtQcx7bc24erZVgcsW0zmnybhFtC4gNOrVPt0ZCk4RnoERFRcGAoRUREXapxl+N/FW/jk8p30OQNXOJhkx04O34xFiQuR0roWJMqJKLhRmpognq0EGpeEZTCUkia1uk4Iyrct0H52HToaaMAy9D9sVbonW/E3nsSVHtsW9CUcNJeTiedXGePgSQP3b8zIiIaHvhOREREAQxh4GDDDmwqX429dVsgELg8JtkxBhckrcBZcYvhUENNqpKIhg1dh1JaATWvEMrRQijVne9xJGQZemqyb2+ocekwYqKCYpPyntLcDXA25MFZn9v2NQ/upsIzX9iJsLgZsEdm+k+n8+/lZI9l4EREREMC362IiAgA0OJtxKdV72Fz+RpUuUsD+mRJwcyY87EwaSWywqdyw1oi6hOppdW/QblaUAzJ3fnJc0ZoiD+E0sakADbrIFfae0IIeJ0VvvCpPs8fRHmdlf32GMlTvoOQ6Ox+uz8iIqLBxlCKiGiEO9Z8EJvKV2N79UfwisAPhlHWeJyfeDnOTViKKGusSRUS0ZAnBOSyqrZleYVQyqs6HwbAGJUIbVw6tLFpMBLjhsRsKGFocDcXdwigdG/ne2CdTJJUWEOT4W4uHoRKiYiIggtDKSKiEciju7G95kNsKl+NwpbDHfpzImdhYeIKTI2ZB0XiWwUR9YLLDbWgGOrRIihHiyC3OjsdJuw2aJmpvr2hMlMhQhyDXGjPGJoLzsajvvCpPg/Ohly4GvIhjM5ne51MVkPhiBoHR+S4tq9ZsEWkw9VQgNyNtw1C9URERMGFnzSIiEaQSmcJNleswaeV76FVD/wNvkMJw7yEr2BB4jIkOdJMqpCIhiwhIFfX+kKovEIoJeWQhOh0qJ4Q61+Wp49KBGR5kIvtHt/+T22zn9r2gHI3FQOn7LXXGdUeC0dkli98agugrKHJkKTgfK5ERERmYChFRDTMGULH3rqt2Fy+GvsbPu/QnxqahQsSV2JO3IWwKcE9Q4GIgozXC+VYqW9Z3tEiyI3NnQ4TFhXamBTf3lCZaRARYYNc6OkJIeBtLfdvPO4LoHLhdXa+zDCQBFtYCuwnZj9FZcEROQ4We8yA101ERDTUMZQiIhqmGj21+KTyHfyv4m3UeioC+lTJijlxF2BB4gpkhOVw43Ii6japrrEthCqEUngckq53Os6IjoQ2Ng3auHToqaMAVRnkSjsnDA2upiL/vk+utiCqW/s/yRbYIzLal99FZcEeMRaKJaRPNam2SEiytVtLANtrsUK1RfbpcYmIiMzGUIqIaAg5UL8Drx97AteM+SEmRs3u0C+EQF7TPmwuX42dtZuhCy2gP86WjAWJyzEv4SsIt0QNUtVENKTpOpTisra9oQqh1NR3OkwoMvTUUf5NykVM1KCW2Rldc8LVmN8++6k+F67GfAjDe8ZrA/d/8s1+skWkQ5Yt/V6nNSQRExa/BM3d0O1rVFskrCGJ/V4LERHRYGIoRUQ0RAghsKroaZQ5C7Gq6GnkRM7yz3By6a3YVrUBmypWo7Q1P+A6CRKmRJ+NBYkrMClqLmTuZ0JEZyA1t/hDKLWgBJKn8xDHCA/1bVA+Ng3amBTA2v+BTXdp7nr/xuMnvrqbStC9/Z/iAgOoqCxYQ5IGdf8na0giQyYiIhpxGEoREQ0RBxq2+0/KK2w5jAMN2xFtjcem8jXYWr0eLr01YHyYGolzE5bi/MTLEWdPNqNkIhoqDAPy8UqoR4t8y/IqqjsdJiQJ+uhE6GPToY1LhxEfAwzy8l///k/+AMq3AXlP9n86sfG4ve2rxR494HUTERFRRwyliIiGACEEVhc9AwkyBAxIkPD3ww/AbXQ8Yj0zbBIuSFqJmbELYJGtJlRLREOC0wU1v9gXQuUXQ3a6Oh1mOOzQM9OgjUuDlpEKOOyDVqJ//6e24OnEHlC6t/MN1U8WuP+Tb/aTPTITitq3/Z+IiIio/zCUIiIaAk6eJQUAAiIgkLLKdpwVtwgLkpYjLTTbjBKJKNgJAbmyxhdCHS2CUloBSYhOh+pJcdAy06GNS4ORnADIA7+MTdeccDXk+0++c9bndX//J0uoL3w6OYAKT4ck80ddIiKiYMZ3aiKiIOfUWvBi3m867VMlK65Iuw3zEi5FiBo+yJURUdDzeKEeK/HtDXW0CHJTS6fDhNUCLSPFtz9UZhpEeOiAluXb/6l99pOzPhfu5hIAnYdkJ2vf/ymrLYAaB2tIMk8RJSIiGoIYShERBSmv4cam8jV4u/h5uIzWTsdowoPkkHQGUkTDkaZBPXgUam4BJKcbwmGDlpUBLWcsoHb9I5xUWw81zxdCKcXHIemdb/Stx0b59oYamwY9NRlQlH5/CkIIeFrL/cGTsyEXrvo8eF2d71kVKHD/J9/yu3Hc/4mIiGgYYShFRBRkdKFhS+V6vF3yAuo8lacdK0HG6qJnMDFyDmcJEA0jSm4BHGs3QnK5ISRAEoCQAMvhAogPPoVz6YXQs8b4Bms6lKLjUE/Mhqpr6PQ+haJATx8NbWwatLHpENER/Vqzb/+nwsAZUA15MLydz846mX//p6istgBqHPd/IiIiGgEYShERBQlDGNhVswlrip9Dhau4W9cIGP6T+CZFzR3gColoMCi5BXC8sc5/WxKBX+Fyw/HGe/DOnASpqQXqsRJIXq3T+zIiwqCdmA01ZjRgsfRLjbrW2r7/U1v45Gos6Nn+T/4AKgv28DTu/0RERDQC8d2fiMhkQgh8Wb8Nq4ufQXFLbkCfQwmFS2+FOM0+K5wtRTSMaBocazcCALr6bj7Rbt21v0OfkCToqcnQ22ZDGXHRQB9fF7yuOv+yuxMbkHd3/yeLPc6/7O7EBuTWkCS+VhEREREAhlJERKbKa9yHVUVPI7dpb0B7Vvg0TI+Zj/8U/vWM98HZUkTDh7F3O1pEGWDr3nhVt8FqjfOHUFpGCmDv5sWn8O3/VBYw+8lZnwetR/s/tW0+3hZCqbaoXtVCREREIwNDKSIiExS35GF10TPYV78loD01NAsrU2/FxMg5eOTLb0OCdNpZUidIkDhbimiI87RW4NCxn0GM0bt9jSQUTLj0ZVhDk3r0WMLQ4Go8FrD3k7M+D4bW3f2fMk/ZgDwTiuroUQ1EREREDKWIiAZRhbMEbxU/i+01HwW0J9pTsTztFsyMWQBZkuE1PKjzVHYrkAIAAYE6TxU04YVFsg5E6UQ0wDR3AwS6H0gBgJB0aJ7G04ZSvv2fjrbNgMrr0f5PiiWsfeld21fu/0RERET9hT9REBENgjp3JdaW/BOfVr4L46QPndHWeFyechPOSbgEitT+kmyRrbhvytNo8tZ3+zEiLFGwyAykiIYiqbEZ1i07+3w/Xldt++yn+jy4Gnqw/5Mj/pQNyMfBwv2fiIiIaAAxlCIiGkBN3nqsK30FG8tXQRMef3uYGoklKTdgQeIyWOTO93+JsSUgxpYwWKUSkQl8YdQuWL44iBa1GhjT8/uozl8FrW0zcs1V051HhS081R88nfjK/Z+IiIhosDGUIiIaAC69FR8c/zfeL3sdLr3V325XQrA4+RosGnU17EqIiRUSkZmkphZfGLXnACTd8DX28qeyusL3un4c//5P7RuQc/8nIiIiChYMpYiI+pHXcGNT+Rq8V/ovNGsN/naLZMUFSVfgktHXItwSZV6BRGQqqbkF1i27Ydl9AJLevpRXWFR4pk4AGjf0+r4VS1jbpuPte0Bx/yciIiIKZvwphYioH+hCw5bK9Xi75AXUeSr97TIUzE9YgqUp30C0Ld7EConITFJzK6xbd8Oyez8k7ZQwatZktE4fg9qKD4ADPb/v5MnfQdTo87n/ExEREQ05DKWIiPrAEAZ21WzCmuLnUOEqDuibG3sRlqXejARHiknVEZHZpJZWWLfugWXXfkia5m/XLEDtFAfq4pvQVPcMXBuP9voxwuJnwBqa3B/lEhEREQ0qhlJERL0ghMCX9duwuvgZFLfkBvRNiToHK9K+hdTQcSZVR0Rmk1qdvplRu/ZD8moQEGi21aEuvAp1CY1oEsUQLV6gxexKiYiIiMzDUIqIqIfyGvdhVdHTyG3aG9CeFT4NK9NuxbiIKSZVRkRmk1qdsGzbA+vOL+EWDagILUd9SAXqQyugKW0ncOodroIjKgu2iAzUF60f7JKJiIiITMNQioiom4pbcrGq6Bl8Wb81oD01NAsrU2/FpKi53M+FaKRqdUHeugXOQx+h3H4c9SkVcFmbuxxuCUlEeMJshCfMRlj8DKi2KLTWHWEoRURERCMKQykiojOocJbgreJnsb3mo4D2RHsqlqfdgpkxCyBLsknVEZFZDMOL1rI9aN37Hprq9qLZVgMkiU7HypZQhMfPRFjCbIQnzII1dDRDbCIiIhrxGEoREXWhzl2JtSX/xKeV78I4ab1NtDUBl6d8E+ckXAJF4sso0UghhIC76RiaKnegqWw7Wqr2wEDbkjz7KYMlBaGxkxGeMAthCbMQEjUeknz61wvVFglJtkIYnm7XJMlWqLbIHj4TIiIiouDAT1NERKdo8tZjXekr2Fi+Cppo/3AYpkZiScoNWJC4DBbZZmKFRDRYvM4aNFXtRHPlDjRV7oTmqulyrENKQGjK2QhPOQeh8dOgqCE9eixrSCImLH4Jmruh29eotkhYQxJ79DhEREREwYKhFBFRG5feig+O/xvvl70Ol97qb7croVg86hosSr4KdqVnHzKJaGjRNSdaqr9AU6UviHI1FnQ51qLZEdWahPDYGXCctRxqwpg+P741JJEhExEREY0YDKWIaMTzGm5sKl+D90r/hWatfYaCRbLigqQrcOno6xBm4fIYouFICB2tdYfRXLkTTZU70FqzH0JonY6VDQWRrQmIak1EpDMZluy58C6eBREVMchVExEREQ0PDKWIaMTShYYtlevxdskLqPNU+ttlKJifsARLU76BaFu8iRUS0UBwN5eiqXIHmit3orlqF3RvV6fkSQhzxyK6OQGRLYmIcMVCggrvlPHwzJ8FD8MoIiIioj5hKEVEI44hDOyq2YQ1xc+hwlUc0Dc39iIsS70ZCY4Uk6ojov6muRvQXLXbH0R5Wsu6HGsNGYVIMQYxRRZE18dANawAACFJ0CZnwz1/FkQ0Z04SERER9QeGUkQ0Yggh8GX9NqwufgbFLbkBfVOizsGKtG8hNXScSdURUX8xdA9aar70b07urD8CQHQ6VrGEIyxhJsJjZiCmPAxhO4shO13+fiFJ0CZlwT1/NkQMwygiIiKi/sRQiohGhLzGfVhV9DRym/YGtGeFT8PKtFsxLmKKSZURUV8JIeBqOOo7Ja9iB5pr9kLo7k7HSrIFobGTEZYwG+EJs+AIGQPr7oOwvrMHsrN9BpWQJGgTs3wzo2KjBumZEBEREY0sDKWIaFgrbsnFqqJn8GX91oD21NAsrEy9FZOi5kKSJJOqI6Le8jqr0NQ2E6q5cic0d12XY+2RYxGeMAthCbMRFjsVsmoHvF5Ydu2HdetrkFud/rEC8IVR586CiI0ehGdCRERENHIxlCKiYanCWYK3ip/F9pqPAtoT7WlYnnYzZsYsgCzJJlVHRD2le1vRXL3HvyTP3VTY5ViLPc4/EyosYRYs9pj2Tq8Gy+dfwLp1N+SWU8KonHHwnDsbRhzDKCIiIqLBwFCKiIaVOncl1pa8iE8r34MB3d8ebU3A5anfxDnxl0CR+NJHFOyEoaG17lDbTKgdaKk9AAi907Gy6kBY3PS2IGo2bOFpHWdAejVY9hyAdctuyC2t7Y8DQMsZC8/82TDiY0BEREREg4efzIhoWGjy1mNd6SvYWL4KmvD428PUSCxJuQELEpfBIttMrJCITkcIAU9zSduSvB1ortoDQ2vpfLAkIyQ6B+EJsxGWMAuhMRMhyV38SKNpsOw5COuWXZCbWwO6vBMyfTOj4mP7+dkQERERUXcwlCKiIc2lt+KD4//G+2Wvw6W3f+C0K6FYPOoaLEq+CnYlxMQKiagrmrvevydUU+UOeJ2VXY61haUiLGGWL4iKnw7FEnaGO9dh+aItjGoKDLe84zPgOXcOjASGUURERERmYihFREOS13BjU/kavFf6LzRrDf52i2TFBUlX4NLR1yHMwuPbiYKJobvRUr3PNxOqciecDbldjlWskf7NycMTZsEakti9B9F0WPYehPWzTsKo7AzfzKjEuL48DSIiIiLqJ0EZSr388st49tlnUVVVhQkTJuD+++/H1KlTOx373//+F/fee29Am9Vqxb59+wajVCIaZLrQ8FnlOqwteQF1nip/uwwF5yZehstG34hoW7yJFRLRCUIYcNbnobnKNxOqpXovhOHtdKwkWxAaN7VtSd5sOCLHQurJYQS6DsveQ74wqrE5oMubNcYXRiXxtYGIiIgomARdKPXuu+/ikUcewYMPPohp06bhxRdfxC233IJ169YhNrbzafZhYWFYt26d/zaPdycafgxhYFfNJqwpfg4VruKAvrmxF2FZ6s1IcKSYVB0RneBuqUBt6ba2U/J2Qfc0dDnWEZmFsETfTKjQ2CmQlV7s+6brsOw77AujGpoCurRx6XCfN4dhFBEREVGQCrpQ6vnnn8fVV1+Nr371qwCABx98EJs2bcKbb76J2267rdNrJElCfDx/4CQajoQQ+LJ+G1YXP4PilsClPlOjz8Hy1G8hNXScSdURke5tRnPVbjS17QvlaS7pcqzFkehbkpc4G+HxM6HaovrwwDosXx6B9dOdHcOoselwnzcbRnJC7++fiIiIiAZcUIVSHo8H+/fvx+233+5vk2UZ8+bNw+7du7u8rrW1FRdccAEMw8DEiRPx4x//GFlZWYNRMhENoLzGfVhV9DRym/YGtGeFT8PKtFsxLmKKSZURjVzC0NBSe6BtJtROtNYdBITR6VhZDUVY/AyEn9gXKiyl77OZDQPql0dg+3Qn5PrGgC4tM80XRo3q5v5TRERERGSqoAql6urqoOt6h2V6sbGxyM/P7/SajIwMPPzwwxg/fjyamprw3HPP4Wtf+xreeecdJCUlDUbZRNTPiltysaroGXxZvzWgPTU0CytTb8WkqLlcpks0SIQQcDcVtp2StwPN1XtgaM7OB0sKwuImIzRuJsITZiMkejwkuZ9+1DhdGJWR6gujRvN9n4iIiGgoCapQqjdmzJiBGTNmBNxesmQJXnvtNdxxxx0dxlssCobLZ1lVVcwugahflbcWY9WxZ7Ct6sOA9iRHGq7I+BZmxy2E3JONj4moV7yuWjSW70BD+XY0VuyE11nV5Vh7xBhEJM1GZOJshCfMgM0RDk3T+68Yw4C87wiU/22HXBu4P5WRmQpt4VyI1OSh/wMNERENGH5uIgpeQfUzXHR0NBRFQU1NTUB7TU0N4uK6d3yzxWJBTk4OioqKOu33evvxB+Ug4PEMr+dDI1OduxJrS17Ep5XvwUD7v+loawIuT/0mzom/BIqkQvMKAPw3T9TfDM2F5uov0Ny2L5SrsfPZyQCg2qIRljDLvyTP4mjf01EXgKbp/fPeZBhQD+TB9umODmGUNmY0POfOgZ6a7GvgeyEREZ0BPzcRBaegCqWsVismTZqELVu2YNGiRQAAwzCwZcsWXH/99d26D13XceTIESxYsGAgSyWiftDkrce60lewsXwVNOHxt4epkViScgMWJC6DRe7FaVxEQ5yntQKau+tT606l2iJhDen+PkpC6HDW5aKpyrckr6XmSwjD2+lYSbEhLG4awhNmIyxhFuwRmQO7fNYwoB48CuunO6DU1Ad0aemjfGFU2qiBe3wiIiIiGjRBFUoBwE033YR77rkHkydPxtSpU/Hiiy/C6XTiiiuuAADcfffdSExMxJ133gkAePLJJzF9+nSkp6ejsbERzz77LI4fP46rrrrKzKdBRKfh0lux4fi/saHsdbj0Vn+7XQnF4lHXYFHyVbArISZWSGQeT2sFDr1/A4ThOfPgNpJsxYTFL502mHK3lLVtTr4DzVW7oXsauxgpwRE93j8TKiRmEmTF2sNn0QtC+MKoT3ZAqakL6NJSk+E5bw709NEDXwcRERERDZqgC6WWLFmC2tpaPPHEE6iqqkJOTg6eeeYZ//K9srIyyHL7njKNjY24//77UVVVhcjISEyaNAmvvfYaxo3jEfFEwcZruLGpfA3eK/0XmrX2WSAWyYoLkq7ApaOvQ5gl0sQKicynuRt6FEgBgDA80NwNAaGU5mlCc9Uu/yl5npbjXV5vDUlGWMJshCfOQlj8TKjWiF7X32NCQD2UD+sn26FUnxJGpSS1h1HDZUNIIiIiIvKThBDC7CIGU1VVk9kl9BurVeHaaBoSdKHhs8p1WFvyAuo87Rsmy1BwbuJluGz0jYi2xZ/mHohGjta6I8jdeFuPrxu34C8QhgdNbftCOeuOADA6HatYwhEWP8O3JC9xNmyh/bccrtvvTUJAPZzvmxlVVRvQpY9Ogvu8OdDHMIwiIqK+4+cmInPEx4efcUzQzZQiouHDEAZ21WzCmuLnUOEq9rdLkDAn7iIsS7kJCY4UEyskGj6OfvyjLmdYSZKKkNjJbUvyZsMRnQVJMukkIiGgHinwhVGVgQeb6KMSfWFURgrDKCIiIqIRgKEUEfU7IQS+rN+G1cXPoLglN6BvavQ5WJF6K1JCx5pUHdHwdGogZY/I9G9OHho3FYrqMKmyNkJAzT3mC6MqqgO69OQEXxiVmcowioiIiGgEYShFRP0qr3EfVhU9jdymvQHtWeHTsDLtVoyLmGJSZUTDm2KNQkTSWQhPmIWwhFmw2GPNLslHCCh5hbB9sh1K+SlhVFK8L4wam8YwioiIiGgEYihFRP2iuCUXq4qewZf1WwPa00KzsTLtVkyMnDOwx8gTjXAZ83+L0OjxZpfRTggoR4tg+3g7lPKqgC49KR7uc2dDH5fOMIqIiIhoBGMoRUR9UuEswVvFz2J7zUcB7Yn2NCxPuxkzYxZAluQuriaikxmGF00Vn/fqWglBEu4IAeVoIWwf74BSVhnQpSfG+WZGMYwiIiIiIjCUIqJeqnNXYm3Ji/i08j0YaD/NJNqagMtTv4lz4i+BIvElhqg7PK2VqCl4G7XH1kJz15ldTu8IAaWgGJZPdsBWWhHQpSfGwXPubGhZYxhGEREREZEfPzESUY80eeuxrvQVbCxfBU20b6wcpkZiScoNWJC4DBbZZmKFREODEAaaK3ehOn81Gss+A2CYXVLvCAHlWIlvmd6pYVRCrC+Mys5gGEVEREREHTCUIqJucemt2HD839hQ9jpcequ/3a6EYvGoa7Ao+SrYlRATKyQaGjRPE+oK16G6YA08zSWBnZKCsLjpaK7aaU5xPSEElMJSWD/eDrWkPKBLj4/xhVHjMxlGEREREVGXGEoR0Wl5DTc2la/Be6X/QrPW4G+3SFZckHwFLh11HcIskSZWSDQ0tNYdRk3+GtSVfAihuwP6VHscYjMuR+yYy+B11SJ3420mVdk9/jCquCygXY+LhrHwLLjGjWEYRURERERnxFCKiDqlCw2fVa7D2pIXUOdpPzlLhoJzEy/DZaNvRLQt3sQKiYKfobtRX7IRNflr0Fp3sEN/WPxMxGYuR2TyfEiy7y1ZCB2SbIUwPB3Gd0WSrVBtAx8OK0XHfWFU0fGAdj022jczKmcsrDYV8Ohd3AMRERERUTuGUkQUwBAGdtVswpri51DhKva3S5AwJ+4iLEu5CQmOFBMrJAp+7uZS38blhe9C9zQG9MlqKGLSL0VsxjLYI9I7XGsNScSExS9Bczd06OuKaouENSSxz3V3RSluC6MKTwmjYqL8YRRknrJJRERERD3DUIqIAABCCHxZvw2ri59BcUtuQN/U6HOwIvVWpISONak6ouAnhI6m8m2ozl+DporPAYiAfnvkWMRlrkRU6kVQVMdp78sakjigIVN3KSVlvjDqWGlAuxETCff82dAmjmMYRURERES9xlCKiJDXuA+rip5GbtPegPas8GlYmXYrxkVMMakyouDnddWhtvBd1BS8BW9r4OlzkmxB1OiFiM1cgZCYiZCGyD5Lckk5bB9vh3oscCN2IzoS7vmzoE3KYhhFRERERH3GUIpoBCtuycWqomfwZf3WgPa00GysTLsVEyPnDJkP0USDSQiB1tr9qM5fjYbSzRCGN6DfEpKIuIzliBmzBKotypwie0EurfCFUQXFAe1GVIQvjJqczTCKiIiIiPoNQymiEajCWYK3ip/F9pqPAtoT7WlYkXYLZsScD1niB0+iU+laK+qLP0R1/mq4Go6e0ishPPEsxGUuR3jSXEiSYkqNvSEfr4Dt4x1Q84sC2o2ocN8yvUlZgDJ0ng8RERERDQ0MpYhGkDp3JdaWvIhPK9+DgfbTsaKtCbg89Zs4J/4SKBJfFohO5WosRE3BGtQWroehtQT0KdYIxIy5DLEZl8MWOsqkCntHLqv0hVFHCwPajchweObPgndyNsMoIiIiIhow/PRJNAI0eeuxrvQVbCxfBU20HzMfpkZiScoNWJC4DBbZZmKFRMFHGBoayj5BTf4aNFft7tAfEp2D2MwViEpZCFkZWt8/cnmVb5le3ilhVESYL4yaMp5hFBERERENOIZSRMOYS2/FhuP/xoay1+HSW/3tdiUUi0ddg0XJV8GuhJhYIVHw8TqrUVPwNmqOrYXmqgnokxQbolMuQmzmcoREjzepwt6TK6ph/Xg7LLnHAtqNiDB45s2Ed+oEhlFERERENGgYShENQ17DjU3la/Be6b/QrDX42y2SFRckX4FLR12HMEukiRUSBRchBFqq9/g2Lj/+MSCMgH5rWAriMpcjOu1SqNZwk6rsPbmyxhdGHSkIaDfCQ9vCqBxAZRhFRERERIOLoRTREHSgfgdeP/YErhnzQ0yMmu1v14WGzyrXYW3JC6jzVPnbZUnBuQmX4bLRNyLaFm9GyURBSfc2o7bofdTkr4a7qeiUXhmRo+YjNnM5wuJnQhqCm//LlTWwfrIDlsP5Ae1GWFsYNY1hFBERERGZh6EU0RAjhMCqoqdR5izEqqKnkRM5CwICu2o2YU3xc6hwtR/lLkHCnLiLsCzlJiQ4Ukysmii4OOvzUJ2/BvXFG2DoroA+1RaN2IzLETNmKawhCSZV2DdyVa0vjDoUeEKgERYCzzkz4Z2eA6j8EYCIiIiIzMWfSImGmAMN21HYchgAUNhyGO+U/BO76z5GcUtuwLip0edgReqtSAkda0aZREHH0D1oKN2M6vw1aK39skN/aNw0xGYuR+So8yDLFhMq7Du5uhbWT3ZCPZgH6aR2IzQEnnNmwDt9ImDhWz8RERERBQf+ZEo0hAghsLroGUiQIeDb8+atkucCxmRHTMfKtFsxNnyyGSUSBR1PSxlqCt5GbeG70Nz1AX2y6kB02iWIzVgGR2SmOQWeiaZBPXgUam4BJKcbwmGDlpUBLWesf7aTXFMH6yc7oB44NYxywHP2DHhnTGIYRURERERBhz+hEg0hJ8+SOlVaaDZWpt2KiZFzIElSp2OIRgohDDRVbEdN/mo0lm8FIAL67REZiM1cgejUi6FYgvcESiW3AI61GyG53BASIAlASIDlcAHEB5/CteAsqCVlvjBKtD9HI8TuC6NmTgIsQ3PWFxERERENfwyliIYIIQReP/Zkp33xtlG4d/LfocjcsJhGNs3dgNrC91BT8BY8LccD+iRJReTo8xGbuQKhsVOCPrxVcgvgeGOd/7YkAr/C5YZ9/f8CZ0Y57PCcPR3emZMBK8MoIiIiIgpuDKWIhoj3Sl9GubOw074q93EcatyJSVFzB7kqIvMJIeCsO4Tq/NWoL/kIwvAG9Fsc8YjNWIaYMUtgsceaVGUPaRocazcCALqKzgLCKLsN3rNnwDOLYRQRERERDR0MpYiGgJ3Vm7G6+B9d9kuQsbroGS7doxHF0FyoK/kINfmr4aw/0qE/LGE24jJXICLpbEjy0Hq7Uw8eheRyd3u8e+HZ0GZMHMCKiIiIiIj639D6KZ1oBPqk8h388+ijpx0jYKCw5TAONGznbCka9txNxagueAt1he9B9zYH9CmWMESnfwVxGctgC081qcK+U3ML/HtInYmQALWgiKEUEREREQ05DKWIgtiG46/jP4V/7dZYzpai4UwYGhrLt6A6fw2aK3d06HdEZfs2Lk+5ELJqN6HC/iU53d0KpABfcCU5uz+rioiIiIgoWDCUIgpCQgisKX4W75a+1P1rOFuKhiGvqwa1x95BTcHb8DqrAvok2YKolAsRl7kCjugJwyqMFTYrBLreTypgrAQIh22gSyIiIiIi6ncMpYiCjCEMvFrwODZXrOnxtRIkzpaiIU8IgZaafajJX42G0v9BCC2g3xo6yrdxefpXoNoiTapy4Ej1jVAqq7sVSAG+mVJaduaA1kRERERENBAGPJTyeDywWq0D/TBEw4JmaHgh72F8XvOhv80uh8BltHbregGBOk8VNOGFReL3HQ0turcVdcUbUJO/Gq7GglN6JUQknYPYzOUIT5wDSZJNqXGgKXmFcLz9oX+T8zPNlhIAYLdBm8BQioiIiIiGnj6FUo8++ih+8pOfdNnf3NyM73znO3jppe4vQSIaqdy6C08d+Tm+rN8KAJCh4Jvj/h+yI6ajyVvf7fuJsETBIjOQoqHD2ZCPmoK3UFe0HobmDOhTbVGISb8MsRlLYQ1NNqnCQWAYsH6yA7ZPd7Y3hTogtTi7DKZObDnlXHohoHLiMxERERENPX36KfaFF16AzWbDD3/4ww59DQ0NuPnmm1FYWNiXhyAaEVq1Jjx56F7kNe0DAFgkK27L/gWmxcwHAMTYEswsj6jfGYYXDcc/Rk3+GrRUf9GhPyRmMuLGrkDkqPMhK8M7ZJVanbCv+QDqsRJ/mzdrDFxLL4RSfByOtRsBl9t/Gp//VD67Dc6lF0LPGmNa7UREREREfdGnUOpXv/oV7rvvPthsNtx+++3+9qqqKtx8882orKzEc8891+ciiYazRk8t/nTwJyhuzQMA2JUQfG/8IxgfOd3cwogGgKe1EjUFb6P22Fpo7rqAPlmxIyr1YsRlLoMjKsukCgeXXFoBx+r3ITc2AwCEJMGz8Cx4zpoOSBL0rAw0/yAV6qF8qEfyITndEA4btOxM35I9zpAiIiIioiGsTz/Nrly5Eh6PB7/4xS9gtVpx0003oaSkBN/85jfhcrnw0ksvITs7u79qJRp2atzl+OOBH6PSVQoACFMj8X85v0d6GL9vaPgQwkBz5S5U569GY9lnAIyAflt4GmIzVyAmbTEUS5g5RQ42IWDZtR+2Dz6FZPj+PoxQB1zLL4aePjpwrKpCm5wNbTJfF4iIiIhoeOnzr1ivueYauN1uPPzww6irq8OaNWugKApeeeUVpKWl9UeNRMPS8dZjePzgXaj3+I65j7Ym4I6Jv0eyI93kyoj6h+ZpQl3hOlQXrIGnuSSwU5IROeo8xGWuQGjc9JF1WqTHC/t7m2E5kOtv0lKS4FqxGCI81MTCiIiIiIgGV7/M+7/xxhvh8Xjw+9//HpmZmXj++eeRmJjYH3dNNCwdaz6IPx28By1aAwAg0Z6KOyY+hlgbv29o6GutO4ya/DWoK/kQQncH9Kn2OMRmLEXsmMtgccSbVKF5pJo6OP67Hkp1+9JFz9xpcC88C1AUEysjIiIiIhp8PQqlvv3tb5+2PyQkBBEREfj5z3/ub5MkCX/72996Vx3RMHSoYRf+cug+uA3fKWNpodn4Yc7vEGGJNrkyot4zdDfqSzaiJn8NWusOdugPi5+J2MzliEyeD0kemfsgqYeOwv7ORkgeLwBAWC1wXXYBtAljTa6MiIiIiMgcPfpkcOTIkdP2R0VFobKyEpWVlf62EbUkg+gM9tR+gqePPAhNeAAAWeHT8P0Jj8ChcskODU3uluOoyX8LtYXvQvc0BvTJaihi0i9FbMYy2CNG8LJUXYdt41ZYt+9tb4qLhvOKSyBiGUYTERER0cjVo1Dqo48+Gqg6iIa9zyrX4Z9HfwcDOgBgavQ5uC3rQVgVm8mVEfWMEDqayrehOn8Nmio+ByAC+u2RYxGXuRJRqRdCUUPMKTJISE0tsK9+H2pJub/NOykLrksXAFaLiZUREREREZlvZK6hIBpkH5a9gdeP/dl/+6y4i/GNsf8P6ghdxkRDk+auR82xd1BT8Ba8rRUBfZJsQeToBYjLXIGQmEmcJQtAKSyFffUGyK2+pbpCluG+eD68MyYB/PshIiIiIuqfUKqoqAjbtm1DXV0doqKicPbZZ/PkPSIAQgi8Vfwc3in9p7/tgqSVuGbMDyFLsomVEXWPEAKttftRnb8aDaWbIQxvQL8lJBGxGcsQk74EFjuXogEAhIB16x5YN2+DJHyzyIyIMDhXLIYxmocZEBERERGdIAkhxJmHde748eP4+c9/ju3bt2PatGmIi4tDWVkZ9u7di6uuugr3338/ZDm4PnhXVTWZXUK/sVoVeDy62WVQFwxh4PVjT2Bj+Sp/29KUb+DylJs4i4SCnq61or74Q1Tnr4ar4egpvRLCE+ciLnM5wpPOgiTx1Dg/lxv2tR/BknvM36RlpMK17CKIEId5dQ0ivjcREVGw4XsTkTni48PPOKbXM6Xy8vJw8803Y86cOfjoo48QExPj78vNzcW3vvUtxMTE4Ac/+EFvH4JoyNIMDS8e/Q22VW/wt10z5ge4KPlKE6siOjNXUyFq8tegtnA9DK0loE+xRiAmfQliMy6HLWy0SRUGL7miGo7/rodc377hu3v+LHjOnQ0E2S9oiIiIiIiCQa9mSnk8HqxcuRITJkzAY4891umY999/H/feey+2bduGbdu24c9//jP++c9/wmq19rnovuBMKRpoHt2Np3N/jr11WwAAMhR8Y9zdOCf+UpMrI+qcMDQ0lH2Kmvw1aK7a1aE/JDoHsZkrEJWyEDI35u+UuvcQ7Ov/B0nzvSYLuw3Oyy+CPm7knTrI9yYiIgo2fG8iMseAzZR6/fXXUVNTg1/84hdobm7Gd77znQ7LkTweD1paWpCbm4vJkyejqKgIL730Em655ZbePCTRkNCqNeMvh+5DbtMXAABVsuK27J9jesy5JldG1JHXWY2aY2tRU7AWmqs6oE+SrYhOXYTYzOUIiR5vUoVDgKbBtuETWPcc9DfpSfFwrlwMERVhYmFERERERMGvV6HUW2+9hcsuuwzh4eHweDy48MIL8cQTT2Dy5MmYOnUqiouL8dFHH+HWW29FQkICIiMjcd111+Ff//oXQykathq9dfjTwZ+guCUXAGCTHfjehIcxIXKmyZURtRNCoKV6j2/j8uMfA8II6LeGpSAuYzmi0y+Faj3zbzZGMqm+EY5V66GUtwd6nhkT4V40H1B5siYRERER0Zn06qfmw4cP48YbbwQAWK1WbNu2DZdddhl+9atf+ce8/PLLeO6553DHHXcAAM4//3z85S9/wbFjxzBmzJg+F04UTGrcFXj8wJ2ocBUDAELVSPxfzu8wJmyCyZUR+ejeZtQWvY+a/NVwNxWd0isjInke4jJXICxhJiSeDHlGSl4hHG9/CMnlBgAIVYXr0vOhTeGsMiIiIiKi7upxKNXS0gKPx4OoqCgAvmV6mzdvxpNPPhkw7oILLsBDDz2E/fv3Y+rUqUhISIAQAtXV1QylaFgpcxbi8QN3os5TBQCIssbjRzm/R3LIGHMLoyHP01oBzd3Q7fGqLRLWkMSANmd9Hqrz16C+eAMM3XXK+GjEjFmK2IzLYQ1J6Jeahz3DgPXjHbB9trO9KToSzisugZEQa2JhRERERERDT49DqdDQUFitVtTU1AAAZFmGqqo4evQoLrroIv+43NxcSJLk39i8oaEBkiQhIoJ7bNDwUdh8GH86+BM0a77gIMGegh9NfAyxtiSTK6OhztNagUPv3wBheLp9jSRbMWHxS1Bt0Wgo3Yzq/DVorf2yw7jQuGmIzVyOyFHnQZYt/Vn2sCa1OmFf8wHUYyX+Nm92BlyXXQDYuQE8EREREVFP9Wr53rRp07Bt2zasWLECqqriyiuvxN/+9jfouu7f1Pxvf/sbpk+fjgkTfMuXdu/ejZCQEGRkZPTrEyAyy+GGPfjL4Xvh0lsBAKkh4/B/OY8iwhpjcmU0HGjuhh4FUgAgDA/KDzyPpoqt0Nz1AX2y6kB02iWIzVgGR2RmP1Y6Msil5XCseh9yUwsAQEgS3AvPgves6cApB30QEREREVH39CqUWrZsGR555BHcddddiI2Nxc9+9jOkp6fjP//5D5566inExcXh8ssvx/e+9z0Avo11X3nlFVx88cWwWPhbeRr6vqj9FE8d+QU04QsNxoVPwfcn/AYhapjJldFIV1e0LuC2PWIMYjNWIDrtYiiWUJOqGsKEgGXnl7B9+Bkkw7cpvBHqgGvFYuhpo0wujoiIiIhoaJOEEKKnF+m6juXLlyMhIQH/+Mc/oCjKacc/8cQTeP7557F27VqMHj2618X2h6qqJlMfvz9ZrQo8Ht3sMkacrVXv44W838CA7+9+ctRZuD37l7ApdpMro+Gkte4Icjfe1ruLJQVRo89HbOYKhMZOhcSZPL3j8cL+3iZYDuT5m7SUJLhWLoYIY8DXFb43ERFRsOF7E5E54uPPfJp3r2ZKKYqCv/71r7juuutw++234ze/+Q3i4uI6jPN4PHjsscfw8ssv48knnzQ9kCLqq4/K3sRrx57w354bexG+Oe5eqNyXh4JEbMYyJOZ8AxY7N93uC7mmDvb/rodSXedv88ydBvfCs4Az/CKGiIiIiIi6p1ehFACkpaXhzTffxN13343FixfjkksuwVlnnYWEhAQ0NTXhiy++wNtvv42QkBD885//xMyZM/uzbqJBJYTA2pIX8XbJ8/62BYnLcW3GHZAl2cTKiALFjFnKQKqP1INHYX93IySPFwAgrBa4LrsA2oSxJldGRERERDS89DqUAoDExES8+OKL+Pzzz7F+/Xq89tprqKurQ1hYGMaOHYt7770Xl1xyyRmX9xEFM0MY+PexJ/FR+Zv+tstG34hlqTdzWRTRcKLrsG3cCuv2ve1N8TFwrrwEIjbKvLqIiIiIiIapPoVSJ8ydOxdz587tj7siCiq60PDPo7/Dlqr1/rar0r+Li0ddY2JVNNwZuhv1pZvMLmNEkZqaYV+9AWpJub/NOykbrkvPB6xcnktERERENBD6JZQ6lcfjgaZpCAkJGYi7JxoUXsONp488iC/qPgUASJBx49ifYH7CEpMro+FK9zajJv8tVOX9B5q77swXUL9QCkthX70BcqsTACBkGe6L58M7YxLA2ZBERERERAOmT6HUO++8gy+++AL33Xefv+3JJ5/E3//+dwghsHDhQvzud79DaChPKaKhxam14C+H78ORxj0AAFWy4NasBzAj9nxzC6NhyeuqRXXem6jOXw1DazG7nJFDCFi37oZ18+eQ2g6iNSLC4Fy5GMaoRJOLIyIiIiIa/vq0Q/Nzzz0Hp9Ppv71r1y48+eSTOPfcc/GNb3wDH3/8Mf7+97/3+H5ffvllXHjhhZgyZQquuuoq7N2798wXwReSjR8/Ht/97nd7/JhEJzR56/GHAz/yB1I22YEf5PyWgRT1O3dLGUp2/xEH112DyiMvnxRISQiL5+EQA8rlhv3NdbBt2uYPpLSMVLTedCUDKSIiIiKiQdKnmVLFxcVYuXKl//batWsRFxeHJ598EqqqQgiB999/H3feeWe37/Pdd9/FI488ggcffBDTpk3Diy++iFtuuQXr1q1DbGzXJ0qVlJTgt7/9LWbPnt2Xp0QjXK27Eo8fvBPlziIAQKgagR9O+B0ywnNMroyGE2dDPiqPvIL6ko8AYfjbJUlFdNpiJGRfC11zInfjbSZWOXzJFdVw/Hc95PpGAIAA4Dl3NjzzZwEyT9MkIiIiIhosfQqlPB4PbDab//ann36K888/H6rqu9uxY8filVde6dF9Pv/887j66qvx1a9+FQDw4IMPYtOmTXjzzTdx222df0DTdR133XUXfvCDH2Dnzp1obGzs5TOikazCWYw/HrgTtZ4KAECUJQ53TPw9RoVkmFwZDRfN1XtReeQVNJVvDWiXFTtiM5chftxVsDjiAQCe1gpIshXC8HT7/iXZCtUW2a81Dzfq3kOwr/8fJE0HAAi7Dc5lF0Efm25yZUREREREI0+fQqmUlBR89tlnuOqqq7Bv3z4UFhbijjvu8PfX1NT0aLNzj8eD/fv34/bbb/e3ybKMefPmYffu3V1e95e//AWxsbG46qqrsHPnzl49FxrZilqO4E8HfoImrR4AEG8bjR9NfAxx9mRzC6MhTwiBpvKtqDjyMlprvgzoU6wRiB97JWLHroBqjQjos4YkYsLil6C5G7r9WKotEtYQLj3rlKbBtuETWPcc9DfpSfFwrlwMERVxmguJiIiIiGig9CmUuuaaa/DrX/8aeXl5qKioQFJSEi644AJ//65duzBu3Lhu319dXR10Xe+wTC82Nhb5+fmdXrNjxw688cYbWL16da+eA1Fu4xf486F74dJ9+/mkhIzF/+U8ikhr18tFic5EGBrqSzeh8vArcDUGvn5ZHAmIz7oGMWOWQFEdXd6HNSSRIVM/kOob4Vi1Hkp5tb/NM2Mi3IvOBVTFxMqIiIiIiEa2PoVSN9xwA2w2GzZv3ozJkyfjW9/6Fux2OwCgvr4eVVVVuPbaa/ul0M40Nzfj7rvvxkMPPYSYmJhuXWOxKMPmhG+VH6b6bE/NZ/jLwZ/B27ZEalzEFPxo8m8RauHMCeodQ3OjuuBdlB96Fe6WsoA+e0Q6knO+jpj0iyHLfXr5pW6SjxyDumoDJJcbACBUFdrShRDTJsBqcm3DFd+biIgo2PC9iSh49flT0dVXX42rr766Q3tUVBT++9//9ui+oqOjoSgKampqAtpramoQFxfXYXxxcTFKS0vxne98x99mGL5NgydOnIh169YhLS0t4BqvV+9RTcHO4xlez2cwbavagOePPgJD+P4OJ0XNxbezfwmLcPDvlXpM9zajOn8NqvPegOauC+gLic5BwvivIyJ5HiRJhqYBAP+NDSjDgPXjHbB81r6k24iOhPOKS2AkxAL8Hh9QfA0lIqJgw/cmouDU77+qF0Jg69at8Hg8mDVrFsLCwrp9rdVqxaRJk7BlyxYsWrQIgC9k2rJlC66//voO4zMzM/H2228HtD3++ONoaWnBT3/6UyQlJfXtydCwtal8FV4t+BMEfEfBz469EDePuw+qbDG5MhpqvK4aVOW9gZr8t2BoLQF94QlzkDD+OoTGTYc0XKZoDgFSqxP2NR9APVbib/NmZ8B12QWA3XaaK4mIiIiIaDD1KZT64x//iF27duGll14C4Aukbr75ZmzduhVCCIwaNQovvPBCh9lKp3PTTTfhnnvuweTJkzF16lS8+OKLcDqduOKKKwAAd999NxITE3HnnXfCZrMhOzs74PqICN+yq1PbiQDfv9F3S1/CmuJn/W3nJy7DdRl3QJY4rZe6z91ciqrc11Fb+B6E4T2pR0Lk6IVIyL4WIdF8HRpscmk5HKveh9zkCwiFJMF9wdnwzp2GYbN2m4iIiIhomOhTKLV+/XpcdNFF/tvr1q3Dli1b8KMf/QgTJkzAAw88gD//+c949NFHu32fS5YsQW1tLZ544glUVVUhJycHzzzzjH/5XllZGWRZ7kvZNEIZwsAbhX/FB2X/8bd9ZfTXsSL1Vs5ioW5z1ueh8sirqC/ZCMDwt0uyBdFplyAh+2uwhaWYV+BIJQQsO7+E7cPPILUt4zZCHXCtWAw9bZTJxRERERERUWckIYTo7cUzZszAvffe699T6sc//jGOHDmCtWvXAgD+/ve/49VXX8XmzZv7p9p+UFXVZHYJ/cZqVbg2upt0oeGlo4/is6p1/ravpn0bl4weuI34aXhprt6LysOvoKlia0C7rDoQm7EM8eOugsXRce87GgQeL+zvboLlYJ6/SUtNhmvFxRBhoSYWNjLxvYmIiIIN35uIzBEfH37GMX2aKaWqKjwe36llQghs2bIFK1as8PfHxsairq6ui6uJBofXcOMfR36JPXWfAAAkyLg+806cl7jU5Moo2AlhoKl8KyqOvILWmi8D+hRrJOLHfRWxmSuhWs/8YksDQ66pg/3N9VBq2t9rPGdNg3vBWYDCJblERERERMGsT6FUVlYW3nrrLVx++eXYsGED6uvrsWDBAn//8ePHER0d3eciiXrLpbfir4d+ikONuwAAiqTiW1n3Y1bsQnMLo6AmDA31JR+h8sircDUWBPRZHIlIyL4GMelLIKt2kyokAFAP5sH+7iZIHt+eXsJqgeuyC6BNGGtyZURERERE1B19CqW+973v4dvf/jbOPvtsAMDMmTP9fwaAzZs3Y8qUKX2rkKiXmr0NeOLg3TjWcggAYJMd+M74hzAxao7JlVGwMnQ3ao+9i6rc1+FpLQ/os4WPQcL46xCdciEkud8PLqWe0HXYNm6Fdfve9qb4GDhXXgIRG2VeXURERERE1CN9+mQ1f/58rFq1Cp9++ikiIiKwZMkSf19DQwNmz54dsBE60WCpc1fh8YN3ocx5DAAQooTjhzm/RWb4JHMLo6Cke5pQnb8G1UffgOauD+gLiZmIhOyvIyL5HEgSD1kwm9TUDMeqDVBK20ND76RsuC49H7BaTKyMiIiIiIh6qk8bnQ9F3Oh8+KtwluDxg3eixu370BphicEdOb9HSiiX9FAgr7MGVUffQE3+Ghhaa0BfeOJcJGRfh9C4aTydMUgox0pgX/MB5FYnAEAoMtyL5sM7YxLA/0dBg+9NREQUbPjeRGSOAd/onCjYFLfk4U8Hf4JGby0AIM42Cj+a+Bji7TwSntq5m0tRlfsaagvXQRjek3pkRKUsQHz2dQiJyjKtPjqFELBu3Q3r5s8htf0exYgIg3PlYhijEk0ujoiIiIiIeqvPodTmzZvxwgsv4MCBA2hqakJnE68OHjzY14chOqO8xn3486H/B6feDAAY5cjAHRMfQ5Q11uTKKFg463NReeRV1JdsAmD42yXZgui0S5GQfQ1sYSmm1UedcLlhX/sRLLnH/E1aRipcyy6CCHGYVxcREREREfVZn0Kp9evX44477sC4ceOwZMkSvPrqq1i6dCmEEPjoo4+Qnp6ORYsW9VetRF3aV7cVfz/yALyGGwCQGTYRP5jwW4RaIkyujMwmhEBLzV5UHn4ZTRWfB/TJaghiM5cjfuyVsDgYXgYbuaIajv+uh1zfCAAQADznzoZn/ixA5v5eRERERERDXZ9CqaeeegpTp07FK6+8goaGBrz66qv46le/inPOOQclJSW45pprkJLCWQc0sD6v/hDP5f0ahvCtE8+JnI3vjv8VbApnUYxkQhhoLN+KysMvo7V2f0CfaotC3NgrEZe5HIr1zOucafCpew/Bvv5/kDTf97Ww2+Bctgj62DSTKyMiIiIiov7Sp1Dq6NGj+PGPfwxFUaCqvrvSNA0AkJKSgmuvvRb/+Mc/sGLFij4XStSZzeVr8ErBHyHgWzY6M2YBbsn6GSyy1eTKyCzC0FBX8hGqjrwCV+OxgD5LSCISsr6GmPSvQFbt5hRIp6dpsL3/CaxftC/71pPi4bziEohIBohERERERMNJn0Ipu90Oi8V3BHdERASsViuqqqr8/XFxcSgpKelbhUSdEEJg3fGXsaroH/62cxMuw/WZd0KWFBMrI7MYmgu1he+iMvd1eFsrAvrsEWOQkH0dolIuhCTzfIdgJdU3wrFqPZTyan+bZ8YkuBfNB1R+XxMRERERDTd9+nSWkZGBo0eP+m/n5ORgzZo1WLZsGXRdx9q1a5GcnNznIolOJoTAm4V/x/tlr/nbLhl1La5Iux0Sj4UfcTRPE2ryV6P66JvQ3PUBfSExk5E4/jqEJ50NSeIeRMFMySuE4+0PILk8AAChqnBdej60KeNNroyIiIiIiAZKn0KpxYsX46WXXsI999wDq9WKb3/72/jud7+LOXPmAACcTicefvjhfimUCAAMoeNf+Y/hk8p3/G1XpN2OS0dfZ2JVZAavsxpVeW+gpuAtGFprQF944llIGP91hMZOYVAZ7AwD1o+3w/bZrvam6Eg4r7gERgI3nyciIiIiGs4kIYTo6UVutxsffvghSkpKEBUVhYULFyIhIQEAsGPHDrz//vtQFAULFizA2Wef3e9F90VVVZPZJfQbq1WBx6ObXcag8RoePJv7K+yq3QwAkCDh65k/xvmJy0yujAaTu7kElUdeQ13RegjDe1KPjKiUC5CQfS0cUeNMq4+6T2p1wr5mA9Rjpf42b3YGXJddANhtJlZGfTHS3puIiCj48b2JyBzx8WfeE7bHoVRNTQ2+9rWvoaSkBEIISJIEu92Ov/zlL5g3b16vix0sDKWGJpfeir8d/hkONuwEACiSilvG/RSz4y40uTIaLK31uag8/AoaSjcDMPztkmxBTPpXEJ91DWxho80rkHpELimHY/X7kJtaAABCkuC+4Gx4504DOLttSBtJ701ERDQ08L2JyBzdCaV6vHzvr3/9K0pLS/HNb34TZ599NgoLC/HXv/4VDzzwAD744INeFUp0Oi3eRjxx6B4UNB8AAFhkG76T/RAmR59lcmU00IQQaKneg8rDr6CpcntAn6yGIDZzOeLHXgmLg8u8hgwhYNn5JWwffgbJ8IWLRmgIXCsuhp42yuTiiIiIiIhoMPU4lPrkk0+wfPly3HPPPf62uLg43HnnncjPz0dmZma/FkgjW72nGo8fuAvHnQUAgBAlDN+f8BuMi5hicmU0kIQw0Fj2GSqPvILW2gMBfaotGnHjrkRcxjIo1jMn7xREPF7Y390Ey8E8f5OWmgzXioshwkJNLIyIiIiIiMzQ41CqrKwMs2bNCmibNWsWhBCoqalhKEX9ptJViscP3IlqdxkAIMISgztyfo+U0LEmV0YDRRga6oo/ROWRV+FuOhbQZw1JQnzW1xAz5iuQFe43NNTI1XWw/3c9lJo6f5vnrGlwLzgLUBQTKyMiIiIiIrP0OJTyeDyw2QI/EFqtVgCApmn9UxWNeCUtR/H4wbvQ6K0FAMTakvCjnMeQ4EgxuTIaCIbmQk3hu6g68jq8zoqAPntEJhLGX4eo0QshyX06MJRMoh7Mg/2djZC8vvcIYbXAtfRCaOP5SwwiIiIiopGsV5/wSktLsX//fv/tpibf5uGFhYWIiIjoMH7SpEm9LI9GoqNNX+LPB+9Bq94MAEh2jMEdOb9HtC3e5Mqov2meJtTkr0JV3pvQPQ0BfSGxk5GY/XWEJ50NiRtfD026DttHW2Ddsa+9KT4GzpWXQMRGmVcXEREREREFhR6fvjdhwoROPyCeOImvs7aDBw/2rcp+xNP3gtv++s/xt8P3w2O4AABjwnLwwwm/RZgl0uTKqD95ndWoyvs3agrehqE5A/rCk85GQvZ1CIubalJ11B+kpmY4Vm2AUlrub/NOyobr0vMBq8XEymigDcf3JiIiGtr43kRkjgE5fe+RRx7pVTFEZ7KjZiOezf0VdOFb4jMhcha+O/5XsCshJldG/cXdXILKI6+iruh9CMN7Uo+MqNQLkZB9LRyR3DNsqFOOlcC+ZgPkVl+4LBQZ7kXnwjtjIsBZb0RERERE1KbHM6WGOs6UCk4fV7yNf+U/BgHfP8cZMefjW1n3wyJbTa6M+kNr3RFUHnkFDaWbAbS/5EiyBTHpSxCffQ1soaPMK5D6hxCwbt0N6+bPIbW9tRgRYXCuvATGqASTi6PBMpzem4iIaHjgexOROQZkphRRf1tX+gr+W/SU//a8+K/ghrF3QZH4z3MoE0KgpXoPKg6/gubK7QF9shqKuMzliBt3JSz2GJMqpH7ldMOx9kOoeYX+Ji0jFc5li4AQu4mFERERERFRsOKnfjKNEAKrip7GuuOv+NsuTr4GV6Z/hxtbD2FCGGgs+xSVh19Ba13gfnKqLRrx465CbOYyKJYwkyqk/iZXVMPx3/WQ6xsB+ObCec6dDc/8WYAsm1scEREREREFLYZSZApD6Hg5/w/4uHKtv21F6rfwldHXM5AaooShoa74A1QeeRXupsKAPmtIMuKzv4aY9EshKzaTKqSBoO49BPv6/0HSfFPihd0G5/JF0DPTTK6MiIiIiIiCHUMpGnSa4cWzeb/CzppNAAAJEq7NuAMLk1aYWhf1jq45UXvsXVTlvg6vszKgzx45FgnZ1yFq9AJIMl9uhhWvBtuGj2H94pC/SU9OgHPlYojIM68dJyIiIiIi4qdEGlRu3Ym/Hb4fBxp8ewzJkoKbx92HuXGLTK6MekrzNKL66CpUH30TuqcxoC80dioSxl+H8MSzOPNtGJLqGuFYtR5KRbW/zTNjEtyL5gOqYmJlREREREQ0lDCUokHTojXhzwfvQX7zfgCARbLi2+MfwpTos02ujHrC66xCVe5/UFPwFgzdFdAXkXQOEsZfh9DYKSZVRwNNyT0Gx9oPIbk8AAChqnBdej60KeNNroyIiIiIiIYahlI0KOo9NfjTwbtQ2poPAHAoYfj+hEeQFTHV5Mqou9xNxag88irqit6HEFp7hyQjKuVCJGRfB0dkpnkF0sAyDFg/3g7bZ7vam6Ij4bziEhgJsSYWRkREREREQxVDKRpwVa7j+OOBO1HtPg4ACLdE446cR5EammVyZdQdrXWHUXnkFTSU/g++c9V8JNmKmDFLEJ91DWyhyeYVSANOammF/a0PoB4r9bd5x2fAteQCwM6N64mIiIiIqHcYStGAKm3Nx+MH7kKDtwYAEGtLwh05jyHRkWJyZXQ6Qgg0V+1G5ZGX0Vy5M6BPtoQiLnMl4sZeAYs9xqQKabDIJeVwrH4fclMLAEBIEtwXnA3v3GkA9wsjIiIiIqI+YChFAya/aT+eOHgPWvUmAECyIx135Pwe0bYEkyujrghhoPH4p6g88gpa6w4G9Km2GMRnXYXYjMuhWMJMqpAGjRCw7NgH20dbIBkGAMAIDYFrxcXQ00aZXBwREREREQ0HDKVoQByo34G/Hf4Z3IYTAJAeOh4/zPkdwi1R5hZGnTIML+qLP0DlkVfhbioK6LOGjkJC1tcQnX4JZIVLtUYEjxf2dzfBcjDP36SlJsO1YjFEWIiJhRERERER0XDCUIr63c6azXg29yFowgsAGB8xA9+b8DDsCj/MBhtdc6L22FpU5f4bXmdVQJ89ciwSsq9D1OgFkGS+VIwUcnUd7P9dD6Wmzt/mOWs63AvPAmTZxMqIiIiIiGi44SdN6lefVL6Dl47+HgK+5T7Tos/FbdkPwCJzhk0w0dwNqM5fheqj/4XuaQzoC42bhoTs6xCeOBcS9wwaUdQDebC/uxGS13e6orBZ4brsAmjjeaoiERERERH1P4ZS1G/eP/463ij8q//2OfGX4saxP4Ei8Z9ZsPC0VqIq7z+oLXgbhu4K6ItImoeE8dchNHaySdWRaXQdto+2wLpjX3tTfAycV1wCERNlXl1ERERERDSsMS2gPhNCYHXxM3iv9F/+touSrsRVY74HWeJyn2DgaipC1ZHXUFf0PoTQ2jskGdEpFyE++1o4IjkbZiSSmprhWLUBSmm5v807ORuuS88HLBYTKyMiIiIiouGOoRT1iSF0vFrwODZXvOVvW5Z6My4bfSOXfvUTT2sFNHdDt8ertkhYQxIBAK11h1B5+BU0HP8YgPCPkWQrYsZchoSsq2ENTe7vkmmIUI6VwL5mA+RW36w5ochwX3wuvNMnAvz+JSIiIiKiAcZQinpNM7x4Lu9h7Kj5yN/2tTH/hwuTrzCxquHF01qBQ+/fAGF4un2NJFuROvNu1Ba+i+aqXQF9siUUcZkrETf2q7DYo/u7XBoqhIB1y25Y//c5JOELK43IcDhXLoaRnGBycURERERENFIwlKJecesuPHXkAXxZvw0AIEPBTePuxVnxF5tc2fCiuRt6FEgBgDA8KNrxq4A21RaD+KyrEZtxORRLaH+WSEON0w3H2g+h5hX6m7TMVDgvXwSE2E0sjIiIiIiIRhqGUtRjrVoT/nzoXhxt8m2KbJGsuH38g5gaPc/kyuhU1tBRSMi+FtFpiyErPAFxpJPLq+BYtR5yfRMA34JOz3lz4Jk/i8v1iIiIiIho0DGUoh5p9NTi8YM/QUlrHgDAroTi+xMeQXbENJMro5NZw1KQPPEWRI4+H5KkmF0OBQH1i4Owr/8Ykq4DAITdBufyRdAz00yujIiIiIiIRiqGUtRt1a4yPH7wTlS6SgEA4WoUfpjzKNLDsk2ujE6VNud+hEaPN7sMCgZeDbYNH8P6xSF/k56cAOfKxRCR4SYWRkREREREIx1DKeqW463H8PiBO1HvrQYARFsT8KOJjyHJwVkWwUgCl2IRINU1wrFqPZSKan+bZ+YkuC+aD6icQUdEREREROZiKEVnVNB0EE8cuhstWiMAINGehh9NfAwxNp7SRRSslNxjcKz9EJLLt1G+UFW4vrIA2mTObCQiIiIiouDAUIpO61DDLvzl0H1wG04AQFpoNv4v51GEW6LMLYyIOmcYsH68HbbPdrU3RUfCecUlMBJiTSyMiIiIiIgoEEMp6tLu2o/xjyMPQhNeAEB2xHR8b/zDcKihJlc2cjRX7za7BBpCpJZW2N/6AOqxUn+bd3wGXJddCNisJlZGRERERETUEUMp6tRnle/hxaO/g4ABAJgaPQ+3Zf0CVsVmcmUjg6G7cXzf31CTv9rsUmiIkEvK4Vj9PuSmFgCAkCS4LzwH3jlTAYl7jBERERERUfBhKEUdfFD2H/z72JP+22fFXYxvjP1/UGX+cxkMrsYCFH7+S7gaC8wuhYKJpkE9eBRqbgEkpxvCYYOWlQFtQiYsew7C9tEWSIYvRDZCQ+BaeTH01FEmF01ERERERNQ1pgzkJ4TAW8XP4Z3Sf/rbLky6AleP+QFkSTaxspFBCIHaY2tRuvdJCN3ta5RUQGjmFkamU3IL4Fi7EZLLDSEBkgCEBFgOF0C8u8kfRgGAlpoM14rFEGEhJlZMRERERER0ZgylCABgCAOvFTyBTRWr/G1LU76Jy1O+CYlLfwac5mlCye7fo6F0s7/NHpGBUVO/h4LP7oMwPN2+L0m2QrVFDkSZZAIltwCON9b5b0vilK8nBVLus6fDs+AsQGaITEREREREwY+hFEEzNLxw9BF8Xv2Bv+2aMT/ARclXmljVyNFSsw+Fn/8KXmeFvy02cwVGTfkOZMWGCYtfguZu6Pb9qbZIWEMSB6JUGmyaBsfajQCA00XDAgAsKjznzWEgRUREREREQwZDqRHOrbvw9JFfYF/9FgCADAXfGHc3zom/1OTKhj8hdFQeehnlB18A2jaUVyzhSJ15NyJHn+cfZw1JZMg0QqkHj0Jyuc84TgIArwb1UD60ydkDXhcREREREVF/YCg1grVqzfjLoXuR27QXAKBKVtyW/QtMj5lvcmXDn6e1EkU7fo2W6i/8baGxU5E252ewhiSYWBkFEzW3wL+H1JkICVCPMJQiIiIiIqKhg6HUCNXorcOfDtyF4tY8AIBdCcH3xj+M8ZEzTK5s+Gs4/gmKd/0OuqexrUVGYs6NSJxwAyRJMbU2Ci5Sq6tbgRTgC64k55lnVREREREREQULhlIjUI27HI8fuAsVrmIAQKgaif/L+R3GhE0wubLhzdDdOL7v76jJb99M3uJIQNqcnyEsbqqJlVHQ0XRYvjgIpayy25cICRAO2wAWRURERERE1L8YSo0wZc5CPH7gTtR5qgAA0dZ43JHzeySHjDG3sGHO1XgMhZ//Eq7GfH9b5KjzkDLzJ1CtESZWRkFF12H54hCsW3ZBbmzu0aWSALTszAEqjIiIiIiIqP8xlBpBjjUfwhMH70az5jvJLcGegh9NfAyxtiSTKxu+hBCoPfYOSvf+GUL3La2SZCtGTf0eYjOWQZJOd6YajRi6Dsvew7B+trNDGCVkGTCMM5++Z7dBm8BQioiIiIiIhg6GUiPE4YbdePLQvXAbTgBAasg4/N/E3yPCEm1yZcOX7mlC8e7H0FC6yd9mjxiDtDkPwBHJ8IDgC6P2HYb1s12QG5oCurRx6XCfOwdScwscb7wHAXQaTJ3Ycsq59EJA5Us6ERERERENHfwEMwLsqf0UTx/5BTThAQBkhU/F9yY8ghA1zOTKhq+Wmi9RuP0heFsr/G2xGcswasp3Iat2EyujoKDrUL88AttnOyHXnxJGjU2D+9w5MEadOIUxHs4rL4Vj7UbA5fafxuc/lc9ug3PphdCzxgz2syAiIiIiIuoTSQjRzbOdBs/LL7+MZ599FlVVVZgwYQLuv/9+TJ3a+UbQ77//Pv7+97+jqKgImqYhPT0dN910E1asWNHp+Kqqpk7bhyKrVYHHo592zJaqdXgx73cw4Bs3Oeps3J79IGwKg5GBIISOysOvoPzg84AwAACKJQwpM+9G1OjzTa6OTGcYvjDq052Q6xsDurTMVF8YNTqx82s1DeqhfKhH8iE53RAOG7TsTN+SPc6QoiDSnfcmIiKiwcT3JiJzxMeHn3FM0H2Seffdd/HII4/gwQcfxLRp0/Diiy/illtuwbp16xAbG9thfGRkJL7zne8gMzMTFosFGzduxH333YfY2Ficd955JjyD4PFh2Rt4/dif/bfnxi3CN8feC1UOuv/tw4LXWYWiHQ+juWq3vy00dgrS5vwM1pAuggYaGQwD6v5cXxhV1xDQpWWkwn3ubBgpZ9jbTVWhTc6GNjl7AAslIiIiIiIaPEE3U+qqq67ClClT8MADDwAADMPAggULcMMNN+C2227r1n2sXLkSCxYswB133NGhbyTMlBJC4O2SF7C25AV/28LEFfhaxv9BluRBrHDkaCj7DMU7fwPdc2L2i4zECTcgccINkBgCjlyGAfVAHmyf7oBce0oYNSYFnvNmQ09JNqk4ooHB30YTEVGw4XsTkTmG3Ewpj8eD/fv34/bbb/e3ybKMefPmYffu3ae50kcIga1bt6KgoAB33XXXQJYatAxh4N/H/oyPyv/rb7ts9I1YlnozT3obAIbuRtmXT6H6aPvft8URj7TZP0VY/HTzCiNzGQbUg3mwfrITSm19QJeWPtoXRqWOMqc2IiIiIiKiIBFUoVRdXR10Xe+wTC82Nhb5+fldXtfU1ITzzz8fHo8Hsizj5z//OebPn9/pWItFwXDJZlRVCbitGRqeP/wbbKlc72+7duwPcEnKNYNd2ojgbCzE0c9+AWd9nr8tavR5yJh7D1RbpImVkWkMA/KBPCibt0OurgvsGjMa2oK5EGNGQwGgdH4PREPeqe9NREREZuN7E1HwCqpQqrdCQ0OxevVqtLa2YsuWLfjNb36D1NRUnHXWWR3Ger3DY9rmgfodeL3wCVyT/kNMjJoNj+7G07m/wN66zwAAEmR8Y+zdmJfwFU5V7WdCCNQWvovjX/wZhu4CAEiyBaOmfh+xGctgSBL/zkcaIaAeOgrrJzugnBJGaanJ8Jw3B3r6aF8D/23QCMDXQCIiCjZ8byIKTkEVSkVHR0NRFNTU1AS019TUIC4ursvrZFlGeno6ACAnJwdHjx7F008/3WkoNRwIIbCq6GmUtRZiVdHTGBM6AX898lMcadwDAFAlC27N/jlmxIzsjd4Hgu5pQsmeP6C+ZKO/zRY+BulzH4AjMtPEysgUQkA9nO8Lo6pqA7q0lKT2MGq4TM8kIiIiIiLqR0EVSlmtVkyaNAlbtmzBokWLAPg2Ot+yZQuuv/76bt+PYRjweDwDVabpDjRsR2HLYQBAYcth/HrfbahylwIAbLID353wa+REzjKzxGGppWY/irY/BE9rub8tNuNyjJryPciq3cTKaNAJAfVIgS+MqgwM0fXRiXCfNwf6mBSGUURERERERKcRVKEUANx000245557MHnyZEydOhUvvvginE4nrrjiCgDA3XffjcTERNx5550AgKeeegqTJ09GWloaPB4PNm/ejLfeegu/+MUvTHwWA0cIgdVFz0CCDAEDAPyBVKgagR9O+B0ywnPMLHHYEUJH5eFXUX7wOUD4/s4VSxhSZt6FqNELzS2OBpcQUHOPwfrx9o5h1KgEXxiVkcowioiIiIiIqBuCLpRasmQJamtr8cQTT6Cqqgo5OTl45pln/Mv3ysrKIMuyf3xraysefPBBlJeXw263IzMzE48++iiWLFli1lMYUCfPkjpZqBqJn0x6AqNCxgx+UcOY11mNoh0Po7lql78tJHYy0uf8DNaQJBMro0ElBJS8Y7B9vANKRXVAl56cAPd5s6FnpjGMIiIiIiIi6gFJCCHMLmIwVVU1mV1Crwkh8PC+21HUkuufJXXCaEcmHpj2HCR+KO43jWWfoWjnb6B7GttaJCROuAGJE26EJAddnksDQQgoeYWwfbIDSnlVQJeeFO+bGTWWYRTRyaxWhZvJEhFRUOF7E5E54uPDzziGn6yHkK5mSQFAqTMfBxq2Y1LU3EGuavgxdA/KvnwK1Uff9LdZ7HFIm/NThMXPMLEyGjRCQDla5AujyioDuvSkOLjPnQN9XDrDKCIiIiIioj5gKDVEdLaX1MkkyFhd9AwmRs7hbKk+cDUVofDzX8LVkOdvi0iej9SZd0O1RZpYGQ0KIaDkF8P2yXYox08JoxLj4Dl3NrSsMQyjiIiIiIiI+gFDqSHidLOkAEDAQGHLYc6W6iUhBOoK16H0iz/B0F0AAEm2YNSU7yI2cwWDvuFOCCgFJbB9vB3K8YqALj0h1hdGZWcwjCIiIiIiIupHDKWGgDPNkjqBs6V6R/c2o2T3H1Bf8pG/zRaejvS5D8AROdbEymjACQHlWKkvjCotD+jS42N8YdT4TIZRREREREREA4Ch1BBwpllSJ3C2VM+11O5H0ecPwdPaHkjEjFmKUVO/B0V1mFgZDSghoBSWwvrxdqglp4RRcdHwnDeHYRQREREREdEAYygV5NpnSUkQOPNBiRIkzpbqBiEMVB55FeUHngWEb/aZbAlF6oyfICplobnF0YDyh1HFZQHtely0b2bUhLEMo4iIiIiIiAYBQ6kgpwkv6jyV3QqkAEBAoM5TBU14YZGsA1zd0OR11qBox6/RXLXL3xYSMxnpc38Ga0iSiZXRQFKKjvvCqKLjAe16bFR7GCXLJlVHREREREQ08khCiO6lHcNEVVWT2SX0WK27Ek3e+g7tFosMr7fjHlMRlihE2xIGobKhp7F8K4p2PALd09DWIiFh/PVIyvkGJJkZ7XCkFJf5wqjC0oB2PSYKnnNnQcsZxzCKqB9ZrQo8Ht3sMoiIiPz43kRkjvj48DOO4afwISDGloCYTkImvrh2n6F7ULb/aVTnveFvU+1xSJ/zU4TFzzCxMhoockk5bB9vh3qsJKDdiI6E+9zZ0CYyjCIiIiIiIjITQyka9txNxSj8/JdwNuT62yKS5iF11t1QbVHmFUYDQi4th+3jHVALigPajagIXxg1KYthFBERERERURBgKEXDlhACdUXrULrnTzB0FwBAki1InvIdxGWu5Ebww4x8vMI3Myq/kzBq/ixok7MZRhEREREREQURhlI0LOneFpTs/gPqSz70t9nC05A+5wE4osaZWBn1N/l4JWyfbId6tCig3YgMbw+jFMWk6oiIiIiIiKgrDKVo2GmtPYjCz38JT2uZvy1mzGUYNfX7UFSHiZVRf5LLqnxhVF5hQLsRGQ7PvJnwThnPMIqIiIiIiCiIMZSiYUMIA1W5r6Ns/zOA8G0AL6uhSJl5J6JTLjS5OuovcnkVrJ/sgCX3WEC7EREGz7xZ8E5lGEVERERERDQUMJSiYcHrrEHRzofRXLnT3xYSMxFpc+6HLTTZxMqov8gV1b4w6khBQLsRHtoWRk0AVIZRREREREREQwVDKRryGsu3oXjnI9Dc9W0tEhLGfx1JOSsZpIQAACrISURBVN+EJPOf+FAnV9bA+sl2WA53EkadMxPeaTkMo4iIiIiIiIYgfmKnIcvQPSjb/w9U5/3H36baY5E2+6cIT5hpYmXUH+SqGt/MqEP5Ae1GWCg858yAd3oOoPIljIiIiIiIaKjiJzoaktxNxSjc/hCc9Uf8bRFJ5yB11j1QbVHmFUZ9JlfXwvrJDqgHj0I6qd0IDfGFUTMmMowiIiIiIiIaBvjJjoYUIQTqit5H6Z4/wtBdAABJtiB58rcRN/YKSJJ0hnugYCVX17WFUXmnhFEOeM6eAe+MSYCFL1lERERERETDBT/h0ZChe1tQsuePqC/+wN9mC0tF+twH4IjKMrEy6guppg62T3ZCPZAbGEaFONpnRlksptVHREREREREA4OhFA0JrbWHULj9l/C0HPe3xaQvwahpP4CiOkysjHpLqqmH7dO2MEoIf7sRYm+fGWVlGEVERERERDRcMZSioCaEgarcf6Ns/z8AoQMAZDUUKTN+jOjUi0yujnpDqm2A7dMdUPefEkY57PCePR2emZMZRhEREREREY0ADKUoaHldNSja8QiaK3f420Kic5A2937YQkeZWBn1hlTX4JsZ9eWRgDBK2G3wnD0dnllTGEYRERERERGNIAylKCg1lm9D8c7fQHPXtbVISMi+DkkTb4Ik85/tUCLVNcL62U5Y9h3uGEadNc0XRtmsJlZIREREREREZuCnewoqhuFF+f5/oCr33/421RaDtDk/RXjCLBMro56S6k+EUUcgGYa/Xdit8MydDs9shlFEREREREQjGUMpChru5hIUfv5LOOuP+NvCE89G2uz/B9UWZV5h1CNSQ5MvjNp7ODCMslnhmTvNF0bZbSZWSERERERERMGAoRQFhdqi91G6548wNCcAQJJUJE+5HXFjr4QkSSZXR90hNTTBumUXLF8c6hhGzZkKz5ypDKOIiIiIiIjIj6EUmUr3tqJ0zx9RV7zB32YLS0XanPsREp1tYmXUXVJjM6yf7YLli4OBYZTV0hZGTQMcDKOIiIiIiIgoEEMpMk1r3SEUfv4QPC2l/rbotEsxevoPoaghJlZG3SE1NcP62W5YvjgAST8ljJo9BZ650wCH3cQKiYiIiIiIKJgxlKJBJ4SBqrz/oPzLf0AIDQAgqyFImfFjRKcuMrk6OhOpqQXWLbth2XMAkq7724VFbQujpgMhDKOIiIiIiIjo9BhK0aDyumpRvOMRNFVu97eFROcgbe79sIWOMrEyOhOpudW3Z9SeA5C0U8KoWVPgPWsaRIjDxAqJiIiIiIhoKGEoRYOmqWI7inY8DM1d52+Lz74WyRNvgSTzn2KwklpafTOjdu/vEEZ5Z06G5+zpDKOIiIiIiIiox5gE0IAzDC/K9z+LqtzX/G2qLQZps+9DeOJsEyuj05FaWmHdugeWXfshaZq/XagqvDMn+cKoUO79RURERERERL3DUIoGlLu5BIWfPwRn/WF/W3jiXKTOuhcWe7SJlVFXpFZnWxj1JSTvyWGUAu+MSfCcPQMijGEUERERERER9Q1DKRowdUUbULLnDzA0JwBAklQkT74dceO+CkmSTa6OTiW1OmHZ9gWsO/cFhlGKAu+MifCcMwMiLNTEComIiIiIiGg4YShF/U73tqL0iz+hrmi9v80aloL0OQ8gJDrbxMqoU60uWD/fA+vOLyF5vP5moSjwTm8Lo8IZRhEREREREVH/YihF/aq17jAKtz8ET3OJvy067RKMnvZ/UCxc8hVUnC5YP/8C1h37TgmjZHinTYRn3gyI8DATCyQiIiIiIqLhjKEU9QshDFTnvYGyL5+GEL6lX7LqQMr0HyM67WKTq6MALnd7GOX2+JuFLMM7LQeeeTMhIhhGERERERER0cBiKEV95nXVonjnb9BU8bm/zRE9Aelz7octbLSJlVEAlxvW7Xth3b63kzBqAjznzISIDDexQCIiIiIiIhpJGEpRnzRV7EDRjl9Dc9f52+KzvoakSbdAli0mVkZ+LjesO/bBuv0LSK5Twqip4+GZN4thFBEREREREQ06hlLUK8LQUHbgWVQdedXfptqikTb7PoQnzjGxMvJze3xh1OdfQHK5/c1CktrDqKgIEwskIiIiIiKikYyhFPWYu7kURdt/hda6g/628IQ5SJ19Lyz2GBMrGwE0DerBo1BzCyA53RAOG7SsDGg5YwG17dvZ7YF15z5Yt3UMo7Qp4+GeNwsimmEUERERERERmYuhFPVIXfEHKNn9BxhaKwBAklQkTb4V8eOugiTJJlc3vCm5BXCs3QjJ5YaQAEkAQgIshwsgPvgUzkvPh1LfCMu2LyA7Xf7rhCRBm5ztC6NiIk18BkRERERERETtGEpRt+haK0r3/Al1Rev9bdbQ0Uifez9CoieYWNnIoOQWwPHGOv9tSQR+hcsNx+oNkE66RkgStElZcM+fBRETNVilEv3/9u49LMo6///4a2ZgALUQEdk8UZ5GElFUPOChFtrS1GRxtda0rUzTTHdTL63r27odtkx32y3bQ5GHKE+5eShXtN/Pfmqbi2TFN9dTUmieWERAQR0ZYO7fH+QkchAQZgZ4Pv7B+dyf+5733JSfy9f1ud8DAAAAANVCKIXrupR3RN/vfUGOCyddY0Ed71a7Xr+RxbeZBytrIoqLFfDPHZJUJnS6WpkwSvoxjAoOqu/qAAAAAACoFUIpVMowDJ399gNl7n9LhlEsSTL7BKhd76fUquPdHq6u6fA59F2Z3lDXU/jTgSoaGFWPFQEAAAAAcOMIpVChost5OvHlIhVk7XGNBbS0Kaz/b+XXor0HK2t6fNKPunpIXY9hkiyns1RU/2UBAAAAAHBDCKVQTsGZL3V870sqLsx1jYV0vV8/6fGYzGZfD1bWNJnshdUKpKTS4Mpkr/6uKgAAAAAAPIVQCi6Gs1j/PbhcZ46sUWlnIsnHL0gd+j2jm0P7e7a4JspUcEHmc/nVnm+YJCPArx4rAgAAAACgbhBKQZJUePG0jn/+oi7lHXKNtWgTrY79npavf7AHK2uiiopkTf1a1j1pMhUVV/s0kyEVd+tUj4UBAAAAAFA3CKWgvBOf6GTan+Qsvlg6YLLolh5TFNJ1vEwms2eLa2oMQz4Hv5Xfzj0y51/4cfiHn5V9+55rjr+firsTSgEAAAAAvB+hVBNWUmzXqa+XKO/7ra4xa/O2CoteoGatunuwsqbJfDpL/tt3y3IqyzVmmEwq6tNDxW1DFbD5ExmqOJi6ElrZR8VKPvxvDQAAAADwfvzrtYm6dC5dxz9/QYUXTrjGWna4S+17PyWLb3MPVtb0mAouyG9nqnz3HykzXtypgwrjYuRs3UqSZPfzVcA/d0iXC13fxuf6Vj5/P9lHxaqk663u/wAAAAAAANSCyTCMan6vV+OQnV3g6RLqjNVqkcNRUqNzDMPQ2e/WK3P/WzKcRZIks8Vf7aJmq1XHu+ujTFSmkr5RJcEtVRgXo5LOYeXPKS6Wz+EM+RzJkMleKCPAT8XdOpU+sscOKQBeoDZrEwAA9Ym1CfCMkJCbrjuHf8U2IcWF53T8y1dU8N89rrGAlt0U1n+B/Fq092BlTUxlfaP8/VQ4NFpFUbdLFkvF5/r4qDiim4ojurmpWAAAAAAA6gehVBNRcOYrHf/iJRVfznGNhXQZr5/0eExmi9WDlTUtlfeNilDhkH5SM38PVgcAAAAAgPsQSjVyhrNY/z24QmeOrNaVdtg+fi3Voe8zuvknAzxbXBNiyr8gv10V9Y3q+EPfqCAPVQYAAAAAgGcQSjVihRczdXzvi7qUe9A11qJNP3Xs94x8/YM9WFkTUpu+UQAAAAAANAGEUo1U3sn/p5NfvSpn8cXSAZNFt/R4TCFd75fJZPZscU2BYcjnYLr8duyRueDij8PV6RsFAAAAAEATQCjVADguZam48Hy58SJfs4qKnGXGnCWFOvvdBp0/tcM1Zm3eVmHRv1WzVuH1Xisk86kf+kadvqZvVN8f+kYF0DcKAAAAAACvDKVWrVqlZcuWKTs7W927d9dvf/tbRUZGVjh33bp12rRpk9LT0yVJPXr00OzZsyud39A4LmXp8P+ZJMPpqNX5LdvHqX3UbFl8m9dxZbiWKf+C/HamyvfANX2jOndUYSx9owAAAAAAuJrXhVLJyclauHChnn/+efXq1UtJSUmaPHmytm3bpuDg8n2QUlNTNXLkSPXp00dWq1VLly7Vo48+qi1btig0NNQDn6BuFReer1UgZTJb1T5qtoI63iOTyVQPlcGlqEjWPf8r657/lan46r5RQT/0jeroweIAAAAAAPBOJsMwDE8XcbVx48apZ8+eWrBggSTJ6XTqjjvu0KRJkzR16tTrnl9SUqLo6GgtWLBA8fHx5Y5nZxfUdcn16lLeEaXvuP7nvtatA15UYLuh9VARXOgbBQDlWK0WORwlni4DAAAX1ibAM0JCbrruHK/aKeVwOHTgwAE9/vjjrjGz2ayYmBilpaVV6xp2u13FxcUKDAysrzIbBN9mDX+XmDczn/qv/Lf/u2zfKLNZRX160DcKAAAAAIBq8KpQKi8vTyUlJeUe0wsODlZGRka1rvHHP/5Rbdq0UUxMTIXHfX0takhPsxX51u6b8nx9zbJa2aVT584XyOeTFFn+U7ZvVEnXMJXcPURG6yBZPVQaAHgDHx/WHgCAd2FtAryXV4VSNyoxMVHJycl699135efnV+GcoqKGtW3z2m/Xq8l5bFGtQ9XtG8U9BwDWHwCA12FtAryTV4VSQUFBslgsysnJKTOek5Oj1q1bV3nusmXLlJiYqBUrVqh79+71WSaaEsOQz4F0+e2soG/UsP4q6h1O3ygAAAAAAGrBq0Ipq9WqHj16KCUlRXfddZek0kbnKSkpmjhxYqXnvf3223rzzTe1bNky9ezZ013lopEr7Ru1W5bTZ1xjP/aNipYCKt6NBwAAAAAArs+rQilJeuSRRzR//nxFREQoMjJSSUlJstvtSkhIkCTNmzdPoaGhmjNnjqTSR/aWLFmiV199Ve3atVN2drYkqVmzZmrevLnHPgcaLlP+Bfnt2CPfg+llxos7h6kwbpCcwUEeqgwAAAAAgMbD60Kpe++9V7m5uVqyZImys7MVHh6upUuXuh7fy8zMlNn8Y/PvtWvXqqioSLNmzSpznSeffFIzZ850a+1o4BxFsqZW0jfqrhiVdOroweIAAAAAAGhcTIZhGJ4uwp2ysws8XUKNXMo7ovQdU2t8XtefJqpZULd6qKgRul7fqKjbJXPtvgURAJoaq9VCM1kAgFdhbQI8IyTkpuvO8bqdUoA7Vdo3qm+ECgf3o28UAAAAAAD1hFDKy/n4BcpktspwOqp9jslslY9fYD1W1fBV1TfqctwgGfSNAgAAAACgXvH4XgPguJSl4sLz5cZ9fc0qKnKWG/fxC5S1Wag7Smt4HEWy7kmTNfXrsn2jWgepMI6+UQBwo3hEAgDgbVibAM/g8b1GwtostMKQib9ca8Aw5LP/iPx2psp84ce+Uc4AfzmGRtM3CgAAAAAANyOUQqNnPvlD36hM+kYBAAAAAOAtCKXQaJX2jUqR78Fvy4wXdwnT5Vj6RgEAAAAA4EmEUmh8quwbNVglnTp4sDgAAAAAACARSqExqapv1LBoFfWmbxQAAAAAAN6CUAqNAn2jAAAAAABoWAil0KCZzhfIb+eeSvpGxcgIbumZwgAAAAAAQJUIpdAwufpG/a9MxSWu4ZLWQSq8a7BKbqNvFAAAAAAA3oxQCg0LfaMAAAAAAGgUCKXQYFTaN6pfTxUO7iv50zcKAAAAAICGglAKXs90vkB+O/bI91DZvlFFXW9V4U8H0TcKAAAAAIAGiFAK3stRJGtKmqyfX9M3KqSVCuNi6BsFAAAAAEADRigF71Nl36j+KuodTt8oAAAAAAAaOEIpeBXLyUz5/d/dsvw32zVG3ygAAAAAABofQil4hSr7RsUOktGqpWcKAwAAAAAA9YJQCp5VZd+owSq5rb0HiwMAAAAAAPWFUAqeYRjy+c838tuVKvOFS65h+kYBAAAAANA0EErB7SwnMuW3nb5RAAAAAAA0ZYRScJvSvlEp8j30XZlx+kYBAAAAAND0EEqh/jmKZE35StbUr2UquaZv1F2DVXIrfaMAAAAAAGhqCKVQf6rqG3VHfxX1om8UAAAAAABNFaEU6kWlfaOie6owhr5RAAAAAAA0dYRSqFOmc/ny27mnkr5RMTJaBXqoMgAAAAAA4E0IpVA3Ch2y7kmjbxQAAAAAAKgWQincmCt9o3amynzxqr5RzfzlGDZARb260zcKAAAAAACUQyiFWrOcOP1D36izrjH6RgEAAAAAgOoglEKNmc7ly2/HHvkevqZvVLfbVPjTQfSNAgAAAAAA10UoheqrrG9Um2AVxsXQNwoAAAAAAFQboRSur6q+UXcMUFEkfaMAAAAAAEDNEEqhSpX3jYpUYUwf+kYBAAAAAIBaIZRChegbBQAAAAAA6hOhFMoqdMia8pWsn+8r3zfqrsEqCWvnweIAAAAAAEBjQSiFUoYhn32H5bcrVeaLdtcwfaMAAAAAAEB9IJSCLMd/6BuVdVXfKItZjuhIOQbRNwoAAAAAANQ9QqkmrLRvVIp8D2eUGS+y/dA3Koi+UQAAAAAAoH4QSjVFrr5RX8tU4nQN0zcKAAAAAAC4C6FUU+J0yuc/31TQNypAjjv60zcKAAAAAAC4DaFUE1Fl36iYvpKf1YPVAQAAAACApoZQqpEz5f3QN+ob+kYBAAAAAADvQSjVWNE3CgAAAAAAeDFCqYamuFg+h76TT/pRWS4Xyuzvp+Kut6k4vLPk4yM5nfL9zzey0jcKAAAAAAB4MZNhGIani3Cn7OwCT5dQa5b0owr45w6ZLhfKMEkmQz/+9PeTY0Bv+Rz+roK+Ub3kiOlD3ygAQL2zWi1yOEo8XQYAAC6sTYBnhITcdN057JRqICzpRxXwwTbXa5NR9qcuF8pvV2qZc4psnX7oG3Wzm6oEAAAAAACoHkKphqC4WAH/3CFJMlUy5epx+kYBAAAAAABvRyjVAPgc+k6my4XVnu/oH0kgBQAAAAAAvBodrxsAn/SjMirbInUNwyT5pB+r13oAAAAAAABuFKFUA2CyF/7YO+p6c43S+QAAAAAAAN6MUKoBMAL8arRTygjwq9+CAAAAAAAAbhChVANQ3PW2Gu2UKu7WqX4LAgAAAAAAuEGEUg1AcXhnGf5+ul4uZUgy/P1U3J1QCgAAAAAAeDdCqYbAx0f2UbGSVGkwdWXcPipW8uFLFQEAAAAAgHcjlGogSrreKvsvhkv+pf2irvSYcvWa8veT/RcjVNL1Vo/UBwAAAAAAUBMmwzCq2a2occjOLvB0CTemuFg+hzPkcyRDlssOlfhbVdytU+kje+yQAgB4mNVqkcNR4ukyAABwYW0CPCMk5KbrziGUasD4yxUA4G1YmwAA3oa1CfCM6oRSPL4HAAAAAAAAtyOUAgAAAAAAgNsRSgEAAAAAAMDtvC6UWrVqlWJjY9WzZ0+NGzdO+/btq3Ruenq6Zs6cqdjYWNlsNr3zzjvuKxQAAAAAAAC15lWhVHJyshYuXKgZM2Zo48aN6t69uyZPnqycnJwK59vtdrVv315z5sxRSEiIm6sFAAAAAABAbXlVKLVixQqNHz9eY8eOVZcuXfT888/L399f69evr3B+ZGSk5s+fr5EjR8pqtbq5WgAAAAAAANSW14RSDodDBw4cUExMjGvMbDYrJiZGaWlpHqwMAAAAAAAAdc3H0wVckZeXp5KSEgUHB5cZDw4OVkZGRp29j6+vRSZTnV3Oo3x8LJ4uAQCAMlibAADehrUJ8F5eE0q5S1FRiadLqFMOR+P6PACAho+1CQDgbVibAO/kNY/vBQUFyWKxlGtqnpOTo9atW3uoKgAAAAAAANQHrwmlrFarevTooZSUFNeY0+lUSkqKoqKiPFgZAAAAAAAA6ppXPb73yCOPaP78+YqIiFBkZKSSkpJkt9uVkJAgSZo3b55CQ0M1Z84cSaXN0b/77jvXn7OysnTo0CE1a9ZMYWFhHvscAAAAAAAAqJpXhVL33nuvcnNztWTJEmVnZys8PFxLly51Pb6XmZkps/nHzV1nzpxRfHy86/Xy5cu1fPly9e/fX++9916F7xESclO9fgYAAAAAAABcn8kwDMPTRQAAAAAAAKBp8ZqeUgAAAAAAAGg6CKUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlCqkdqxY4fuuece3X333frHP/7h6XIAAE3cjBkzFB0drVmzZnm6FAAAlJmZqUmTJunee+/V6NGjtXXrVk+XBDRJJsMwDE8XgbpVXFyskSNH6t1331WLFi2UkJCgtWvXKigoyNOlAQCaqNTUVF28eFGbNm3SkiVLPF0OAKCJO3PmjHJychQeHq7s7GwlJCTo448/VrNmzTxdGtCksFOqEdq3b5+6dOmi0NBQNW/eXMOGDdPu3bs9XRYAoAkbMGCAmjdv7ukyAACQJLVp00bh4eGSpJCQEAUFBen8+fMergpoegilvNDevXs1bdo0DRkyRDabTdu3by83Z9WqVYqNjVXPnj01btw47du3z3XszJkzCg0Ndb0ODQ1VVlaWW2oHADQ+N7ouAQBQ1+pybdq/f7+cTqduueWW+i4bwDUIpbzQpUuXZLPZ9Lvf/a7C48nJyVq4cKFmzJihjRs3qnv37po8ebJycnLcXCkAoClgXQIAeJu6WpvOnTun+fPn64UXXnBH2QCuQSjlhe644w499dRT+tnPflbh8RUrVmj8+PEaO3asunTpoueff17+/v5av369pNKtqFfvjMrKylKbNm3cUjsAoPG50XUJAIC6Vhdrk8Ph0IwZMzRlyhT16dPHXaUDuAqhVAPjcDh04MABxcTEuMbMZrNiYmKUlpYmSYqMjFR6erqysrJ08eJFffrppxoyZIinSgYANGLVWZcAAHCn6qxNhmHo6aef1sCBAxUfH++hSgH4eLoA1ExeXp5KSkoUHBxcZjw4OFgZGRmSJB8fH82fP18PPfSQnE6nHnvsMb55DwBQL6qzLknSww8/rMOHD8tut2vYsGF6/fXXFRUV5e5yAQBNQHXWpi+//FLJycll+lEtXrxYNpvN7fUCTRmhVCMVFxenuLg4T5cBAIAk6Z133vF0CQAAuPTr10+HDx/2dBlAk8fjew1MUFCQLBZLuQZ9OTk5at26tYeqAgA0VaxLAABvw9oENByEUg2M1WpVjx49lJKS4hpzOp1KSUnhMQgAgNuxLgEAvA1rE9Bw8PieF7p48aKOHz/uen3y5EkdOnRIgYGBatu2rR555BHNnz9fERERioyMVFJSkux2uxISEjxYNQCgsWJdAgB4G9YmoHEwGYZheLoIlJWamqqHHnqo3PjPf/5zvfLKK5KklStXatmyZcrOzlZ4eLieffZZ9erVy92lAgCaANYlAIC3YW0CGgdCKQAAAAAAALgdPaUAAAAAAADgdoRSAAAAAAAAcDtCKQAAAAAAALgdoRQAAAAAAADcjlAKAAAAAAAAbkcoBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAABAo5CamiqbzaZt27Z5upRqOXv2rGbNmqUBAwbIZrPpnXfe8XRJdWrDhg2y2Ww6efKk29/7ueee0yOPPOJ6Xd3/NtasWaM777xTDoejvksEAAAilAIAADVwJWjo2bOnsrKyyh2fNGmSRo0a5YHKGp6FCxfqX//6l6ZOnarFixdr6NChni6pUThx4oQ++OADPf744zU+NyEhQUVFRVq7dm09VAYAAK5FKAUAAGrM4XAoMTHR02U0aHv27FFcXJwmT56sMWPGqHPnzp4uqVF499131a5dOw0cOLDG5/r5+Sk+Pl7vvPOODMOoh+oAAMDVCKUAAECNhYeHa926dRXulmrsLl26VCfXycnJ0c0331wn10KpoqIibd68WSNGjKj1NUaMGKFTp05pz549dVgZAACoCKEUAACosccff1xOp1Nvv/12lfNOnjwpm82mDRs2lDtms9n0xhtvuF6/8cYbstlsOnr0qObOnau+fftq4MCBeu2112QYhjIzMzV9+nT16dNHgwcP1vLlyyt8T6fTqT/96U8aPHiwevfurWnTpikzM7PcvK+//lqTJ09W37591atXL02cOFFffvllmTlXavr22281Z84cRUdHa8KECVV+5hMnTmjWrFnq37+/evXqpfHjx2vnzp2u41cegTQMQ6tWrZLNZpPNZqvymlu2bFFCQoKioqLUp08fjR49WklJSa7j586d06JFizR69GjXnMcee0yHDx8uc50rvZWSk5P1l7/8RUOHDlVUVJRmzZqlgoICORwOvfTSSxo0aJCioqL0zDPPlOuvZLPZ9MILL+ijjz7SPffco549eyohIUF79+6t8jNcsWvXLk2YMEG9e/dWVFSUpk6dqvT09DJzsrOz9cwzz2jYsGGKiIjQkCFDNH369Ov2p/ryyy+Vl5enmJiY69bhcDj0+OOPq2/fvvrqq69c4xEREWrZsqU++eSTan0eAABQez6eLgAAADQ87du315gxY7Ru3TpNmTJFoaGhdXbtp556Sp07d9acOXO0a9cu/f3vf1fLli21du1aDRw4UHPnztXmzZu1aNEi9ezZU9HR0WXO//vf/y6TyaQpU6YoJydHSUlJevjhh/Xhhx/K399fkpSSkqIpU6YoIiJCTz75pEwmkzZs2KBf/epXWr16tSIjI8tc89e//rXCwsL01FNPVflY19mzZ/XAAw/Ibrdr0qRJCgoK0saNGzV9+nQtWbJEP/vZzxQdHa3Fixdr3rx5Gjx4sMaMGVPl/di9e7dmz56tQYMGae7cuZKkjIwMffXVV/rVr34lqTQI2759u4YPH6727dvr7Nmzev/99zVx4kRt2bKl3O8nMTFR/v7+mjp1qr7//nutXLlSPj4+MplMys/P15NPPqmvv/5aGzZsULt27fTkk0+WOX/v3r1KTk7WpEmTZLVatWbNGj322GP6xz/+oW7dulX6WTZt2qSnn35aQ4YM0dy5c2W327VmzRpNmDBBGzduVPv27SVJM2fO1LfffquJEyeqXbt2ys3N1e7du5WZmemaU5G0tDSZTCbdfvvtVd7Ty5cv64knntD+/fu1YsWKcr/v22+/vUxQBQAA6gehFAAAqJXp06frww8/1Ntvv61nn322zq4bGRmpF154QZJ0//33KzY2Vq+88opmz56tqVOnSpJGjRqloUOHav369eVCqfPnzys5OVktWrSQVBow/OY3v9G6dev00EMPyTAMPffccxowYICWLl0qk8kkSXrggQc0cuRIvfbaa+V2YXXv3l2vvvrqdWtPTEzU2bNntWrVKvXr10+SNG7cON13331auHCh4uLi1KFDB3Xo0EHz5s3Trbfeet1QaufOnWrRooWWLVsmi8VS4RybzaaPP/5YZvOPm+DHjBmjESNG6IMPPtCMGTPKzC8pKdF7770nX19fSVJeXp62bNmioUOHuna/Pfjggzp+/Lg2bNhQLpQ6cuSI1q9fr4iICEnSyJEjNXz4cC1ZskR/+ctfKqzx4sWLeumllzRu3Di9+OKLrvGf//znGj58uN566y29+OKLys/PV1pamubNm6fJkye75lWncXlGRoYCAwNdv/vK6pg2bZrS09OVlJSk8PDwcnM6dOhAKAUAgBvw+B4AAKiVDh066L777tO6det05syZOrvuL37xC9efLRaLIiIiZBhGmfGbb75Zt912m06cOFHu/Pj4+DKhxPDhwxUSEqJdu3ZJkg4dOqRjx45p9OjRysvLU25urnJzc3Xp0iUNGjRIe/fuldPpLHPNBx54oFq179q1S5GRka5ASpKaN2+u+++/X6dOndK3335bvZtwlZtvvll2u127d++udI7VanUFUiUlJcrLy1OzZs1022236eDBg+XmjxkzxhVISaVBoGEYGjt2bJl5kZGRyszMVHFxcZnxqKgoVyAlSW3btlVcXJw+++wzlZSUVFjjv//9b+Xn52vkyJGue56bmyuz2axevXopNTVVkuTv7y9fX199/vnnOn/+/HXuTlnnzp1TYGBgpccLCgo0efJkZWRk6L333qswkJJK7/nly5dlt9tr9P4AAKBm2CkFAABq7YknntBHH32kxMTEOtst1bZt2zKvb7rpJvn5+alVq1blxs+dO1fu/LCwsDKvTSaTwsLCdOrUKUnSsWPHJEnz58+vtIaCgoIy4UZVj4xd7fTp0+rVq1e58U6dOrmOV/V4W0UmTJigrVu3uh6THDx4sEaMGKFhw4a55jidTr377rtavXq1Tp48WSYYatmyZblrVnSPJemWW24pN+50OlVQUKCgoCDX+LX3WJJuvfVW2e125ebmKiQkpNzxK/f9yiOH17oSJFqtVs2dO1eLFi3S4MGD1atXL915552Kj4+v8LrXqurxypdfflkOh0MbN25U165dr3uNK7voAABA/SCUAgAAtXb1bqkrj9ZdrbJ/1Fe2m0ZSmUfQrqjssbWqAojKXDln3rx5le6UadasWZnXfn5+NX6fuhIcHKxNmzbps88+06effqpPP/1UGzZsUHx8vBYtWiRJevPNN/X6669r7Nix+vWvf63AwECZzWa9/PLLFd6jiu5xVeO1uc+VXWPx4sUVhktX/44ffvhhxcbGavv27frss8/0+uuvKzExUUlJSVX2i2rZsqXy8/MrPR4XF6fk5GQlJiZq8eLFlX7e/Px8BQQEuHqQAQCA+kEoBQAAbsj06dP10UcfVfhNfFd2G10bFJw+fbre6vn+++/LvDYMQ99//73rG+46dOggqXRnTnW+pa0m2rZtq6NHj5Ybz8jIcB2vDavVqtjYWMXGxsrpdOq5557T+++/ryeeeEJhYWH6+OOPNWDAAL388stlzsvPzy+zw6muXHuPpdKdUAEBAeV2tF1x5b4HBwdX67537NhRjz76qB599FEdO3ZM8fHxWr58uf74xz9Wek6nTp20efNmFRQUuHZ/Xe2uu+7SkCFD9PTTT6t58+Z6/vnnK7zOyZMnXbvbAABA/aGnFAAAuCEdO3bUfffdp/fff1/Z2dlljrVo0UJBQUH64osvyoyvXr263urZtGmTLly44Hq9bds2ZWdnux53i4iIUMeOHbV8+XJdvHix3Pm5ubm1fu877rhD+/btU1pammvs0qVLWrdundq1a6cuXbrU+Jp5eXllXpvNZlfA5nA4JJXuMrp2N9PWrVuVlZVV4/erjrS0NB04cMD1OjMzU5988okGDx5c6a62oUOHqkWLFnrrrbdUVFRU7viV+26321VYWFjmWMeOHdW8eXPX561M7969ZRiG9u/fX+mc+Ph4Pfvss1q7dq3+8Ic/VDjn4MGD6tOnT5XvBQAAbhw7pQAAwA2bNm2aPvzwQx09erRcr55x48YpMTFR//M//6OIiAh98cUXFe4mqiuBgYGaMGGCEhISlJOTo6SkJIWFhWn8+PGSSkOd3//+95oyZYpGjRqlhIQEhYaGKisrS6mpqWrRooXefPPNWr331KlTtWXLFk2ZMkWTJk1SYGCgNm3apJMnT+qNN96o9HGxqjz77LM6f/68Bg4cqNDQUJ0+fVorV65UeHi4OnfuLEm688479de//lXPPPOMoqKidOTIEW3evNm1O6mudevWTZMnT9akSZNktVq1Zs0aSdLMmTMrPadFixZ67rnnNG/ePCUkJOjee+9Vq1atdPr0ae3atUt9+vTRggULdOzYMT388MMaPny4unTpIovFou3bt+vs2bMaOXJklXX17dtXLVu2VEpKigYNGlTpvIkTJ+rChQv685//rJtuuknTpk1zHdu/f7/OnTunuLi4Gt4VAABQU4RSAADghoWFhem+++7Txo0byx2bMWOGcnNz9fHHH2vr1q0aNmyYli5dWmVocCOmTZumb775RomJibp48aIGDRqk3/3udwoICHDNGTBggN5//3397W9/08qVK3Xp0iWFhIQoMjJS999/f63fu3Xr1q4dOCtXrlRhYaFsNpvefPNN3XnnnbW65pWeXatXr1Z+fr5CQkI0YsQIzZw50xVyTZs2TXa7XZs3b1ZycrJuv/12vfXWW3r11Vdr/VmqEh0drd69e+uvf/2rTp8+rS5dumjhwoXq3r17leeNHj1abdq0UWJiopYtWyaHw6HQ0FD169dPCQkJkqSf/OQnGjlypFJSUvTRRx/JYrGoU6dOeu2113TPPfdUeX2r1arRo0dr27Ztmj17dpVzp02bpoKCAlcw9eCDD0oq3VnXtm1bDRw4sAZ3BAAA1IbJqIvOlQAAAGgSbDabHnzwQS1YsMDTpVToxIkTGjFihN5+++0aB58Oh0OxsbGaMmVKpd8SCAAA6g49pQAAANBodOjQQWPHjlViYmKNz12/fr18fHz0y1/+sh4qAwAA12KnFAAAAKrN23dKAQCAhoOdUgAAAAAAAHA7dkoBAAAAAADA7dgpBQAAAAAAALcjlAIAAAAAAIDbEUoBAAAAAADA7QilAAAAAAAA4HaEUgAAAAAAAHA7QikAAAAAAAC4HaEUAAAAAAAA3I5QCgAAAAAAAG5HKAUAAAAAAAC3+/9J1p3zOSBmrQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Key Observations:\n",
" 1. Base pass@256: 0.618\n",
" 2. RLVR pass@256: 0.598 (similar to base)\n",
" 3. Distilled pass@256: 0.690 (HIGHER than base)\n",
"\n",
"Conclusion:\n",
" Distillation expands reasoning boundaries by incorporating teacher knowledge.\n",
" RLVR only improves sampling efficiency within existing boundaries.\n"
]
}
],
"source": [
"# Compare all three: Base, RLVR, Distilled\n",
"plt.figure(figsize=(12, 6))\n",
"\n",
"plt.plot(k_values, base_pass_at_k, 'o-', label='Base Model', linewidth=2, markersize=8)\n",
"plt.plot(k_values, rlvr_pass_at_k, 's-', label='RLVR Model', linewidth=2, markersize=8)\n",
"plt.plot(k_values, distilled_pass_at_k, '^-', label='Distilled Model', linewidth=2, markersize=8)\n",
"\n",
"plt.xscale('log')\n",
"plt.xlabel('Number of samples (k)', fontsize=12)\n",
"plt.ylabel('Pass@k', fontsize=12)\n",
"plt.title('Pass@k Curves: Base vs RLVR vs Distillation\\n(Distillation expands boundaries, RLVR does not)', fontsize=13)\n",
"plt.legend(fontsize=11)\n",
"plt.grid(True, alpha=0.3)\n",
"\n",
"# Add annotations\n",
"plt.annotate('RLVR plateaus at\\nbase capability', \n",
" xy=(256, rlvr_pass_at_k[-1]), xytext=(128, rlvr_pass_at_k[-1] + 0.1),\n",
" arrowprops=dict(arrowstyle='->', color='red', lw=1.5),\n",
" fontsize=9, color='red')\n",
"\n",
"plt.annotate('Distillation achieves\\nhigher plateau', \n",
" xy=(256, distilled_pass_at_k[-1]), xytext=(128, distilled_pass_at_k[-1] + 0.1),\n",
" arrowprops=dict(arrowstyle='->', color='green', lw=1.5),\n",
" fontsize=9, color='green')\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n",
"\n",
"print(\"\\nKey Observations:\")\n",
"print(f\" 1. Base pass@256: {base_pass_at_k[-1]:.3f}\")\n",
"print(f\" 2. RLVR pass@256: {rlvr_pass_at_k[-1]:.3f} (similar to base)\")\n",
"print(f\" 3. Distilled pass@256: {distilled_pass_at_k[-1]:.3f} (HIGHER than base)\")\n",
"print(\"\")\n",
"print(\"Conclusion:\")\n",
"print(\" Distillation expands reasoning boundaries by incorporating teacher knowledge.\")\n",
"print(\" RLVR only improves sampling efficiency within existing boundaries.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 12. GRPO Training Algorithm (Simplified Demonstration)\n",
"\n",
"Demonstrating the core GRPO training loop used in the paper.\n",
"This is a simplified version showing the key concepts."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"execution": {
"iopub.execute_input": "2026-02-10T22:26:12.737510Z",
"iopub.status.busy": "2026-02-10T22:26:12.737272Z",
"iopub.status.idle": "2026-02-10T22:26:12.750705Z",
"shell.execute_reply": "2026-02-10T22:26:12.750030Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"GRPO Training Step Demonstration\n",
"==================================================\n",
"\n",
"Problem 1: What is 39 × 29?\n",
" Ground truth: 1131\n",
" Sampled 8 responses: [0, 0, 0, 0, 1, 0, 0, 0]\n",
" Rewards: [0, 0, 0, 0, 1, 0, 0, 0]\n",
" Mean reward: 0.125\n",
" Advantages: [-0.125 -0.125 -0.125 -0.125 0.875 -0.125 -0.125 -0.125]\n",
" → Policy update: increase prob of 1 correct responses\n",
" → Policy update: decrease prob of 7 incorrect responses\n",
"\n",
"Problem 2: What is 33 - 12?\n",
" Ground truth: 21\n",
" Sampled 8 responses: [0, 0, 0, 0, 0, 0, 0, 0]\n",
" Rewards: [0, 0, 0, 0, 0, 0, 0, 0]\n",
" Mean reward: 0.000\n",
" Advantages: [0. 0. 0. 0. 0. 0. 0. 0.]\n",
" → Policy update: increase prob of 0 correct responses\n",
" → Policy update: decrease prob of 8 incorrect responses\n",
"\n",
"Problem 3: What is 19 × 23?\n",
" Ground truth: 437\n",
" Sampled 8 responses: [0, 0, 0, 1, 0, 0, 0, 0]\n",
" Rewards: [0, 0, 0, 1, 0, 0, 0, 0]\n",
" Mean reward: 0.125\n",
" Advantages: [-0.125 -0.125 -0.125 0.875 -0.125 -0.125 -0.125 -0.125]\n",
" → Policy update: increase prob of 1 correct responses\n",
" → Policy update: decrease prob of 7 incorrect responses\n",
"\n",
"Problem 4: What is 22 + 44?\n",
" Ground truth: 66\n",
" Sampled 8 responses: [1, 0, 0, 1, 0, 0, 0, 0]\n",
" Rewards: [1, 0, 0, 1, 0, 0, 0, 0]\n",
" Mean reward: 0.250\n",
" Advantages: [ 0.75 -0.25 -0.25 0.75 -0.25 -0.25 -0.25 -0.25]\n",
" → Policy update: increase prob of 2 correct responses\n",
" → Policy update: decrease prob of 6 incorrect responses\n",
"\n",
"==================================================\n",
"Training step complete!\n",
"\n",
"In full training:\n",
" - Repeat for many steps (e.g., 450 steps in paper)\n",
" - Use larger batches and more rollouts\n",
" - Actual gradient updates to model weights\n",
" - Result: Higher pass@1, same pass@∞\n"
]
}
],
"source": [
"def grpo_training_step_demo(problems, n_rollouts=8, learning_rate=0.01):\n",
" \"\"\"\n",
" Simplified demonstration of one GRPO training step.\n",
" \n",
" Real implementation would:\n",
" 1. Sample n responses per problem from current policy\n",
" 2. Verify each response with deterministic verifier\n",
" 3. Compute group-relative advantages\n",
" 4. Update policy to increase log-prob of correct responses\n",
" \n",
" This demo simulates the statistics without actual model updates.\n",
" \"\"\"\n",
" print(\"GRPO Training Step Demonstration\")\n",
" print(\"=\" * 50)\n",
" \n",
" # Sample problems for this batch\n",
" batch_problems = np.random.choice(problems, size=min(4, len(problems)), replace=False)\n",
" \n",
" for i, problem in enumerate(batch_problems):\n",
" print(f\"\\nProblem {i+1}: {problem['question']}\")\n",
" print(f\" Ground truth: {problem['answer']}\")\n",
" \n",
" # Simulate n_rollouts responses\n",
" # In reality: responses = model.generate(problem, n=n_rollouts)\n",
" prob_correct = 0.3 # Simulated probability\n",
" responses_correct = np.random.binomial(1, prob_correct, size=n_rollouts)\n",
" \n",
" print(f\" Sampled {n_rollouts} responses: {responses_correct.tolist()}\")\n",
" print(f\" Rewards: {responses_correct.tolist()}\")\n",
" \n",
" # Compute group-relative advantage\n",
" mean_reward = np.mean(responses_correct)\n",
" advantages = responses_correct - mean_reward\n",
" \n",
" print(f\" Mean reward: {mean_reward:.3f}\")\n",
" print(f\" Advantages: {advantages}\")\n",
" \n",
" # Policy update (simplified)\n",
" # Real: policy_loss = -sum(advantage[i] * log_prob[i]) for all i\n",
" # Then: optimizer.step() to update model parameters\n",
" n_correct = np.sum(responses_correct)\n",
" print(f\" → Policy update: increase prob of {n_correct} correct responses\")\n",
" print(f\" → Policy update: decrease prob of {n_rollouts - n_correct} incorrect responses\")\n",
" \n",
" print(\"\\n\" + \"=\" * 50)\n",
" print(\"Training step complete!\")\n",
" print(\"\\nIn full training:\")\n",
" print(\" - Repeat for many steps (e.g., 450 steps in paper)\")\n",
" print(\" - Use larger batches and more rollouts\")\n",
" print(\" - Actual gradient updates to model weights\")\n",
" print(\" - Result: Higher pass@1, same pass@∞\")\n",
"\n",
"# Run demo\n",
"grpo_training_step_demo(train_problems[:10], n_rollouts=8)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 13. Summary of Key Findings\n",
"\n",
"This notebook has demonstrated the core methodology and findings from the paper:\n",
"\n",
"### Main Conclusion\n",
"**RLVR improves sampling efficiency (pass@1) but does NOT expand reasoning capacity beyond the base model (pass@∞).**\n",
"\n",
"### Evidence Demonstrated\n",
"\n",
"1. **Pass@k Curves:** RLVR has higher pass@1 but base model catches up at higher k\n",
"\n",
"2. **Accuracy Distribution:** RLVR shifts distribution to higher accuracy (efficiency) but doesn't solve new problems (capacity)\n",
"\n",
"3. **Solvable Problem Sets:** Both models solve approximately the same set of problems\n",
"\n",
"4. **Sampling Efficiency Gap:** Small ΔSE indicates RLVR approaches base model's boundary\n",
"\n",
"5. **Perplexity Analysis:** RLVR responses have low perplexity under base model, indicating they already exist in base distribution\n",
"\n",
"6. **Comparison with Distillation:** Unlike RLVR, distillation CAN expand reasoning boundaries by incorporating teacher knowledge\n",
"\n",
"### Implications\n",
"\n",
"- RLVR is valuable for improving single-sample performance (production use cases)\n",
"- RLVR does NOT unlock new reasoning capabilities\n",
"- To expand capabilities, use distillation from stronger models or other approaches\n",
"- The base model already \"knows\" how to solve problems that RLVR solves, it just needs better sampling"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 14. Scaling to Full Experiments\n",
"\n",
"This notebook provided educational demonstrations with small-scale examples.\n",
"To replicate the full paper experiments:\n",
"\n",
"### Computational Requirements\n",
"\n",
"**Hardware:**\n",
"- GPUs: 8x A100 (80GB) or similar for 7B models\n",
"- RAM: 256GB+ system memory\n",
"- Storage: 500GB+ for models and datasets\n",
"\n",
"**Time:**\n",
"- RLVR training: 6-12 hours for 7B model on math tasks\n",
"- Evaluation: 2-4 hours per benchmark with k=1024 samples\n",
"- Full experimental suite: Several days\n",
"\n",
"### Datasets\n",
"\n",
"**Mathematical Reasoning:**\n",
"- Training: GSM8K (7.5K), MATH (7.5K)\n",
"- Evaluation: MATH500, Minerva, AIME24/25, Omni-MATH\n",
"\n",
"**Code Generation:**\n",
"- Training: LeetCode + TACO (12K samples)\n",
"- Evaluation: LiveCodeBench, HumanEval+, MBPP+\n",
"\n",
"**Visual Reasoning:**\n",
"- Training: Geometry3K\n",
"- Evaluation: MathVista, MathVision\n",
"\n",
"### Model Training\n",
"\n",
"**Base Models:**\n",
"```python\n",
"# Load base model\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"model = AutoModelForCausalLM.from_pretrained(\"Qwen/Qwen2.5-7B-Base\")\n",
"tokenizer = AutoTokenizer.from_pretrained(\"Qwen/Qwen2.5-7B-Base\")\n",
"```\n",
"\n",
"**RLVR Training Frameworks:**\n",
"- VeRL: https://github.com/volcengine/verl\n",
"- SimpleRLZoo: Implementation of GRPO and other RL algorithms\n",
"- EasyR1: For vision-language models\n",
"\n",
"**Training Configuration:**\n",
"```python\n",
"# Example GRPO config (from paper)\n",
"config = {\n",
" 'algorithm': 'GRPO',\n",
" 'rollouts_per_prompt': 8,\n",
" 'training_steps': 450,\n",
" 'learning_rate': 1e-6,\n",
" 'batch_size': 32,\n",
" 'temperature': 0.6,\n",
" 'top_p': 0.95,\n",
" 'kl_coef': 0.0, # Paper uses no KL penalty\n",
"}\n",
"```\n",
"\n",
"### Evaluation\n",
"\n",
"**Pass@k Sampling:**\n",
"```python\n",
"# Generate k samples per problem\n",
"k_values = [1, 4, 16, 64, 256, 1024]\n",
"for k in k_values:\n",
" # Sample with temperature=0.6, top_p=0.95\n",
" samples = model.generate(\n",
" inputs,\n",
" do_sample=True,\n",
" temperature=0.6,\n",
" top_p=0.95,\n",
" num_return_sequences=k\n",
" )\n",
" # Verify each sample\n",
" # Compute pass@k\n",
"```\n",
"\n",
"### Code Availability\n",
"\n",
"The paper mentions code will be released. Check:\n",
"- Paper authors' GitHub profiles\n",
"- VeRL framework documentation\n",
"- Related projects: CodeR1-Zero, Oat-Zero, EasyR1\n",
"\n",
"### References\n",
"\n",
"For complete implementation details, refer to:\n",
"- Paper: \"Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?\"\n",
"- VeRL: https://github.com/volcengine/verl\n",
"- Qwen models: https://github.com/QwenLM/Qwen\n",
"- Evaluation benchmarks: See paper references section"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Conclusion\n",
"\n",
"This notebook has walked through the key computational workflows from the paper, demonstrating:\n",
"\n",
"✅ RLVR training methodology with GRPO algorithm\n",
"\n",
"✅ Pass@k evaluation metric implementation\n",
"\n",
"✅ Accuracy distribution analysis\n",
"\n",
"✅ Perplexity analysis\n",
"\n",
"✅ Comparison with distillation\n",
"\n",
"✅ Evidence that RLVR improves efficiency but not capacity\n",
"\n",
"The paper's main finding is clear: **RLVR makes models more efficient at finding solutions within their existing capabilities, but does not expand what problems they can ultimately solve.**\n",
"\n",
"This has important implications for LLM development:\n",
"- Use RLVR to improve production performance (higher pass@1)\n",
"- Use distillation or other methods to expand capabilities\n",
"- Understand that the base model sets the fundamental reasoning boundary"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment