Skip to content

Instantly share code, notes, and snippets.

@taoning
Last active September 16, 2021 21:21
Show Gist options
  • Select an option

  • Save taoning/a0d8e0a34dd973aaf24adb0689ec1fcc to your computer and use it in GitHub Desktop.

Select an option

Save taoning/a0d8e0a34dd973aaf24adb0689ec1fcc to your computer and use it in GitHub Desktop.
Plot Spatial Daylight Autonomy
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "8ef9eabb-423d-44bf-aa9b-6f42483ae113",
"metadata": {},
"outputs": [],
"source": [
"import datetime"
]
},
{
"cell_type": "code",
"execution_count": 204,
"id": "68a576a0-ff5a-4e96-9bfe-7502053ea965",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "ab862a41-60ed-4dcd-9212-4116c10c0e92",
"metadata": {},
"outputs": [],
"source": [
"fpath = \"Developer/frads/test/Results/grid_two_phase_floor.txt\""
]
},
{
"cell_type": "markdown",
"id": "507b9549-5701-425a-b07b-a88ff67da7ca",
"metadata": {},
"source": [
"### Read the input file into a pandas dataframe\n",
"Input file format: tab-separated\n",
"\n",
" x1,y1,z1 x2,y2,z2 x3,y3,z3\n",
" 0101_0730 v1 v2 v3\n",
" 0101_0830 v4 v5 v6\n",
" ..."
]
},
{
"cell_type": "code",
"execution_count": 150,
"id": "c01ca6f1-8f7d-433f-8652-a20cf735cd1f",
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(fpath, sep=\"\\t\", index_col=0, parse_dates=True, date_parser=lambda x: datetime.datetime.strptime(x, \"%m%d_%H%M\"))"
]
},
{
"cell_type": "markdown",
"id": "adbfd9d1-0be0-4c32-87a6-ae38bfd0dfe8",
"metadata": {},
"source": [
"#### Calculating fractions of daylit hours the sensor is >= 300 lux. Assuming \"daylight_hours_only\" is turned on when running mrad"
]
},
{
"cell_type": "code",
"execution_count": 151,
"id": "40b986d6-41da-400e-a386-c02ee869db13",
"metadata": {},
"outputs": [],
"source": [
"fractions = df[df>=300].count()/len(df)"
]
},
{
"cell_type": "markdown",
"id": "72df6bce-254a-4463-98e7-54e481b5cb2d",
"metadata": {},
"source": [
"#### Alternatively, you can calculate the fraction of the \"occupied\" 10 hours, say between 08:00 and 18:00, which is divided by 3650 (10 hours/day * 365 days)"
]
},
{
"cell_type": "code",
"execution_count": 152,
"id": "f030955b-6645-465c-b363-55ad06587e69",
"metadata": {},
"outputs": [],
"source": [
"fractions = df.between_time(\"08:00\", \"18:00\")[df>=300].count() / 3650"
]
},
{
"cell_type": "markdown",
"id": "af5ac2c6-347a-431c-a6aa-c77e5c48e6e4",
"metadata": {},
"source": [
"#### Here we generate a new dataframe with the column names (sensor positions) as new columns\n",
" e.g.:\n",
" \n",
" x1 y1 z1\n",
" x2 y2 z2\n",
" ..."
]
},
{
"cell_type": "code",
"execution_count": 153,
"id": "decd0f69-8077-48d3-ad78-c794fd8a2073",
"metadata": {},
"outputs": [],
"source": [
"df_with_grid = pd.DataFrame(fractions.index.format(formatter=lambda x: map(float, x.split(\",\"))))"
]
},
{
"cell_type": "markdown",
"id": "43fd3486-79de-4c63-93e8-86fc11294a0b",
"metadata": {},
"source": [
"#### We then add the fractions values in as the fourth columns"
]
},
{
"cell_type": "code",
"execution_count": 155,
"id": "43d20b2f-db6b-4bf8-904d-7c025c919717",
"metadata": {},
"outputs": [],
"source": [
"df_with_grid[3] = fractions.values"
]
},
{
"cell_type": "markdown",
"id": "b923a268-f1fa-4f42-8360-922a7ffda735",
"metadata": {},
"source": [
"#### Here we make a mesh grid based on the x and y position of the sensors"
]
},
{
"cell_type": "code",
"execution_count": 147,
"id": "1ce6e352-e3d0-4519-a835-fe5f94f1b965",
"metadata": {},
"outputs": [],
"source": [
"xpos = df_with_grid.iloc[:, 0].unique()\n",
"ypos = df_with_grid.iloc[:, 1].unique()\n",
"x, y = np.meshgrid(ypos, xpos)\n",
"z = df_with_grid.iloc[:, 3].values.reshape(len(xpos), len(ypos))"
]
},
{
"cell_type": "markdown",
"id": "3d4bd321-3cd2-49d9-b0d9-0ad473ba7781",
"metadata": {},
"source": [
"### Now we are ready to plot our fraction values\n",
"#### 1. We first make a contour plot "
]
},
{
"cell_type": "code",
"execution_count": 281,
"id": "560fedf7-73b4-4167-979d-cdba38985eab",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAVgAAAGWCAYAAAA9jpuEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZrElEQVR4nO3de8xl1VnH8d/DwAylpTTpaDLhVhrHWKgkrSPUFKUTOjjlD/gDo2CaXqyVGDEmapOqTW0x0dZraoLKpDbVJgWxTcwkjkJTR9oaW2dIlThg7QQKDJKUgUoxIzdZ/vG+B/Ycztln77PXs/e6fD8JYc7lXWftvZ/1O2uvc7MQggAA8Z0ydQcAoFQELAA4IWABwAkBCwBOCFgAcELAAoATAhZA9czsU2b2bTP79yW3m5n9sZkdNbN7zOzNXdolYAFA+rSkvS23v0PSzs3/fk7Sn3ZplIAFUL0QwpckPdFyl2sk/WXY8FVJrzGzHavaPbXtxh+75Pf5mBeA3r70L79qQ9u4eKuFp16I0RvpW/+nI5Kebly1L4Swr0cTZ0t6uHH52OZ1j7b9UWvAAsBUnnpB+uhZg3NakvTuJ8LTIYRdURrrgSUCAFjtEUnnNi6fs3ldKwIWAFbbL+ldm+8meIukJ0MIrcsDEksEACAzu1XS2yRtN7Njkn5T0mmSFEL4M0kHJF0l6aikE5Le26VdAhZA9UII16+4PUj6hb7tskQAAE4IWABwQsACgBMCFgCcELAA4ISABQAnBCwAOCFgAcAJAQsATghYAHBCwAKAEwIWAJwQsADghIAFACcELAA4IWABwAkBCwBOCFgAcELAAoATAhYAnBCwAOCEgAUAJwQsADghYAHACQELAE4IWABwQsACgBMCFgCcELAA4ISABQAnBCwAOCFgAcAJAQsATk6dugMAsMirXmG67KJtcRr78tNx2umJGSwAOCFgAcAJAQsATghYAHBCwAKAEwIWAJwQsADghIAFACcELAA4IWABwAkBCwBOCFgAcELAAoATAhYAnBCwAOCEgAUAJwQsADghYAHACQELAE4IWABwQsACgBMCFgCcELAA4ISABQAnBCwAOCFgAcAJAQsATghYAHBCwAKAEwIWAJwQsADghIAFACcELAA4IWABwAkBCwCSzGyvmX3DzI6a2QcX3H6emR00s6+b2T1mdtWqNglYANUzsy2Sbpb0DkkXSrrezC6cu9uHJN0eQniTpOsk/cmqdglYAJAukXQ0hHB/COFZSbdJumbuPkHSqzf/fZak/1rV6KlRuwgAkWw98zSdt3tHnMa+/MB2MzvcuGZfCGFf4/LZkh5uXD4m6dK5Vj4i6U4z+0VJr5T09lUPS8ACqMHxEMKugW1cL+nTIYQ/MLMfkfQZM3tjCOGFZX/AEgEASI9IOrdx+ZzN65reJ+l2SQoh/LOk0yVtb2uUgAUA6ZCknWZ2gZlt1caLWPvn7vOQpCskyczeoI2AfaytUQIWQPVCCM9LulHSHZLu08a7BY6Y2U1mdvXm3X5F0vvN7N8k3SrpPSGE0NYua7AAICmEcEDSgbnrPtz4972S3tqnTWawAOCEgAUAJwQsADghYAHACQELAE4IWABwQsACgBMCFgCcELAA4ISABQAnBCwAOCFgAcAJAQsATghYAHBCwAKAEwIWAJwQsADghIAFACcELAA4IWABwAkBCwBOCFgAcELAAoATAhYAnBCwAOCEgAUAJwQsADghYAHACQELAE4IWABwQsACgBMCFgCcnDp1BwBgkfDq0/Tcnh1xGrvpgTjt9MQMFgCcELAA4ISABQAnBCwAOCFgAcAJAQsATghYAHBCwAKAEwIWAJwQsADghIAFACcELAA4aQ3YM668QWdcecNYfQGAonT6Nq1FIXvizluidwZAPph8rbb21xXO71wCFygPITpMtO+DXXYgCF5gGoTj9Ny/cHvIQS4xnGf7o8Rtm0qsICnlmBCs6Uj6Fw081n6nWk+ef1yeePrzDo5m+znuY4I1PUkH7CJtSxHrFpjnrNKj6Fe1mWM4NKUQFLmcaaSwr7BcdgG7TIxCiz2opir+HNfDUw2KVIM21f2Fk7UG7IO7n3nx3+cf3ObemVScceUNgwZUqsWf4ilwqvtqXir7Lpf9hQ2dZ7C1he06M5ecin/qwMhpX83z3He57pdmPmw4c5J+pGatJYLZziRoT75PrsYM29z31bzStqerlwcqFhm0Blt70JY4uIYuj6xqG3kjWPsp5kWusRASALoa/G1aNcxea+K5RJDKC2tYH+O9H76uEACcELB40RgzTGax+WMW2x0BC0kEH/ohZLsZFLDsZABYjhksRp+9MlsuAxOs1QjYyhF2GIKQbUfAAoATArZiU85emTmXg1nscmsHLDs1bwQcYiohD8xsr5l9w8yOmtkHl9znJ83sXjM7YmafXdUmH5UFUD0z2yLpZkl7JB2TdMjM9ocQ7m3cZ6ekX5P01hDCd8zse1e1yxJBhVKZvabSD8SR+Sz2EklHQwj3hxCelXSbpGvm7vN+STeHEL4jSSGEb69qlBlsZQg1eDr/4LZo37h14hVBd1/8bJS2JG03s8ONy/tCCPsal8+W9HDj8jFJl8618f2SZGb/JGmLpI+EEP6+7UHXCtjMn6mAQWr78vlCHA8h7BrYxqmSdkp6m6RzJH3JzH4whPDfy/6AJYKKpDh7TbFPyzy4+5mXzc4WXVe7TJ90HpF0buPyOZvXNR2TtD+E8FwI4QFJ/6mNwF2KgK1ETkGWolUhStBm75CknWZ2gZltlXSdpP1z9/kbbcxeZWbbtbFkcH9bowRsJVL9ovBU+7UuQjZPIYTnJd0o6Q5J90m6PYRwxMxuMrOrN+92h6THzexeSQclfSCE8HhbuxZCWHrjG754fOmNmZ4GVC+lmWxO4bpOcNY2Rpr76L4rttvQ9n7gTa8Mn7zrwqHNSJJ+9KzDd0dYg+1t7Rksz9R5SiXUUulHV+uEZS1jhOWR5VgiqNDU4Tb144+p5OAhWFcbFLDs3HxNFXI1hetMSUE025ZStscbM9iKjR12NYZrU86hRKiuZ3DAstPzdsaVN4wSfCWEa4wXrXIaL8xWh2MGC0m+AVhCuMZEYNUjSsBSMGXwCELCdbHUx0zq/ctF1TNYToFeLmYglhiutb23FcNEC9jcQyr3/scUIxhLDNfYUq25VPuVo6pnsPOYzb5kSEASrsCGqN8H++DuZ7I5hWoL0py2wxNB6S+1WmOCERcz2CUoNCyTUiAibdEDNodg6tpHlgwwBmqsXMxgO2AAoAbUeXwuAVvigWI2i6bYywTUVpmq+9HDoYXM7zFBIhDRTfQZ7PkHtxE8wBoI7fJEDdjUgzV2ATMg6sRxR1dRlghSD1YAmMKggCVY03ujeEzN3+/iQwcbSp69nn9wW9HbN4W1AjbHQKFwhiFsx1HyE3aNeq3BlvgC1tMX3zW4jdrC+8SdtyT167RjiXGcn774rig1hzx0msGWFqozs0Kf/f/0ey6fsjtJ6RKgzGq7yyVUWSaIq3UGW8qMtWvBDJld1F6Upc9qhxzfRTWVS+BimGo/KttW4LWfxg0JypJDtq9166j2J+uSVBuwXfQdIAyMDaWFbN/jmvsTdAlnrakoPmAXDY6+xZ/7gJlCaSHbVZ86oabKV3zAxtRlQOQ+i601GIfiSRiLFBGwfUJh6CBgIHVXQlh3ecIcUg/L/nbqJ2qWCeIoImCX8SzStkE19eBYVwmBOCaebLFK9gE7ZPZ6/fbPv/jfOhhcq+Uc2m1PlDGPfap1xCx2uKwDNubgHRK0gIcUzoQI2WGyDtg288W5aPa6SN+QXWcNbfam/JRmd559SWk7uxpr9urZZiylfOBoCtn+ooHnoJ2F7K3Hr3V7jJm27eDjp+WYf+Ieo7ZiG/tjtE9uOV0HztwZqbXDkdrpJ9uAHcP12z8/6UCYD1+vwB1jhjl7jNyfNPrONEtbdprNZFNYvshBlksEY55ypjRAPJYVxj59T2W5wHuJpvQ1fZYNuskuYKcYoKsGy9jrZ7H2wVRhN2XIphKspYQvQduOJYIepl4yaBp6yj31THLsJYMx1uxrxtLBYlnNYKcOBWn4YMr9FD827/6vmrHGeB81XsKM9mRZBWwsQwdFagOr72lvaqHs0Z8xlgJiS/mtWlhPNksEqYXCvKcvvmvyX0Q4cectK0+5U92Pi/q1zvJBqtu3SEpLTvCRTcCu0iVcxjbFD9i1rW3mFD5SWv1tzi6nPHsp5e1utchiiSClgdaU0jLBvPl9luo+RHfNY5jaJwGxWDEz2Da1rm0xANNx1VPfPOlyrE8oMaNNW/IBm1NIpLAOi+Havsei61nLfKAuE2sdlqBNUxZLBClLeZkA3cR6Er/qqW+++N9UWDpIS9IzWI9CmQ/E2WCI96USqEnsMI11FsSMNg1Vz2CbgyPW7KPW9d5SLVseGForzb/1PAtiRjutZAN2yqLoG7YsEyB1BO00kl4iSEEzZIcuI1DgZZhyjXWoZg2yfODPQghLb9z7oaeW35iQ+Q8ZNF8FbjvFi6EZus1Xg5vraPMfNhgzaJv7hYBfbFXteNTNzDr1k7oHdz+j+67YbkPb2bHrteG9h348Rpf0O6fcencIYVeUxnooImCbxgzXmWWDRMp7oNRmVjtj1U3TrIZSDtk+35RFwG5oDdg3fPH45AHbtbC6vnfRa5DMLx+kPFBwsimelBfxCNmpvj6QgN2QfMD21fbjht6DZEjI5v49mssGf0rbtWq/TxmuM6tCNnWzffjA91xLwKqwgG37xM0Ug0TKd6DUZlHtxKqZH7pn68Lr77742YXXL6qfqWpn3bcdErAbWgP2gsc+n1TAthVZCrOPJkI2H7FfzFoWqIsMCdmU33NNwG7IKmC7SCFcZ9pe/EJahtRNn0BdpE/Ipmr+jPG37bMErAp7H2xK4Trrw2yQzPqW+kCp0Tp1MzRUF7U1H7Tz9ROzdvhwzDhaAzblgzBfbH0HyaoBsmxW0df8dx2sGigp7nOvJ4XUtnVV3cQM1WXtrwpZ5KV1ieDXw09nt0QwxiBZN3z5Qpl0tdWNd7AuMl9jqdXOqnF22asPsUSgFTPYKU+z1ymosQbJora6hG5zNoI0LKuZKUJ1/vGbNdW1dlJYGsNLkl2D7Voos6KbeqA0H6ctbEscAKsGfk7bPHWwNs2vzea0H7Eh2YDtaupgXfXYsdZyU1bCwE8pWOctWpsd+/F7uyx+P3LUGrCpFF2f4kqlzzPz/Vm1LSn0f+zBnMI2p459lKcsZrAlFVcO25JDH4EcZBGwANZz2hceneaBWSKQtCJgJzs4Szy3Z8fUXYgitf3ax9BjkOO2e9ZdjvsD3WU1g50vxtQDt8TBs2yblh2LEvbBkLorYfuxvqwCdt5pX3g0uZBlQJWvre44/vkys72SPiFpi6RPhhA+tuR+10r6nKQfDiEcbmsz64CV1g/Z2LPh2gdWik92nmbbW/txL4WZbZF0s6Q9ko5JOmRm+0MI987d70xJvyTpa13azT5gpTjh1vfUN+Zjl6r0fVP69lXmEklHQwj3S5KZ3SbpGkn3zt3vtyR9XNIHujRaRMB6YhB1V9ssFr6eeP41Eb9o6NbtZtY8nd8XQtjXuHy2pIcbl49JurTZgpm9WdK5IYS/NTMCFgA2HR/yZS9mdoqkP5T0nj5/d8q6DwgsMpvxM/NHZh6RdG7j8jmb182cKemNkv7RzL4l6S2S9ptZa2gTsAAgHZK008wuMLOtkq6TtH92YwjhyRDC9hDC60IIr5P0VUlXr3oXAQGL6Ji9IjchhOcl3SjpDkn3Sbo9hHDEzG4ys6vXbZc1WACQFEI4IOnA3HUfXnLft3VpkxksADghYAHACQELAE4IWABwQsACgBMCFgCcELAA4ISABQAnBCwAOCFgAcAJAQsATghYAHBCwAKAEwIWQFQPHeTrKmf4ukIAgxGqixGwAHojULshYAF0Qqj2R8ACWIhAHY4XuQC8DOEaBwEL4CSEazwsEQCQRLB6YAYLgHB1QsACI0oxyFLsUykI2Ew8dPBRBkLmZscvpeOYUl9KRMBmoDkICNqXS32fLOpfCv1NoQ+lI2CRtfknn1TMQrWtT1P2N6V9VTICFtlaFBJTB0fqs2lp+n1UEwI2Q+ft3jF1FyaX0sywy2y17W/HRLiOi4BFdrqExBhBksNstSmnvpaCgM0AM9aX9AkJr0DJLVglwnUqBGxmag7bFE7BPYLKO/wI1+lU/VHZLoVXc6ClZEhIPHTw0cHHMdeQyrXfpag6YLtoK1DCdxwxQmJIyI61nks9neyU/z1Tp99z+dTdGKTaJYJYg3ZMNQ7AmPs4hSWGMeXc91JUG7CxjFXEhGt9jz9Ezn0vSZUBS/Glz/MdAF3uM0WNUJflqS5gc3wVuDZTvqpewrEsYRtKUV3AeqGo4xhrP6b4MdsYfUhhG/CSqgKW4kvbVB8bzfGDA8hDNQE71lttkJeSjllJ21KKagJ2LBT5ethvL6nt7WQlqyJg+caitLG/UKoqAhYoGU9Q6SJgMbkaP0QRE/svXXwXAZKwLCRizs4WPUYps7/zdu8oZltKQsAiaV1mZ7NgWWcmV1IwlbQtpWCJANk7b/eOQafJJZ1iD90XiIuABQpEyKaBgHVAceenxGNW4jblpoo1WNamkJOYwVjyC3s5qCJggS5qeSLuGuA17AtvBCyAhfrOpAnklyNggYZaZrEeWPN9OV7kAgAnBCwwh5kYYiFggQWmClnCvSzZB+xze3bouT0UJYD0ZPkiF4GalrbjcdoX0n3B6Lk9O1r7xwteGCqbgF0VqqsGy1i6nOKN1deuT0Rd+7LOE1vzb1I4PvPbkErdoExJB2zMmWpqs5HZtnkM7r77bawzgvnHGSvYhmxfanWDvCQdsMsG4KIBs2qwjvlz0Ktmsd7BMt++1ywy9gzZS/Px+4btFD83xAtd5Ug6YJfpO2BrHyReATd1cK6jT5+nmrmmVj9YX/bvIlhlykGCfE19/KZ+fMRRdMBOXaRTPz7Wk8pxS6UfWF+WSwRdpFKcnO7lJZW6mZmifmLsg9d/NEJHClBkwDJIsI7U6mamb/2kuh01Ki5gUy0uQjZtqdbNzLL6Sb3ftWsN2FgHb6xgSb3YuoTs0G0oMcTX2Sclzvhy6WeuzGyvpE9I2iLpkyGEj83d/suSflbS85Iek/QzIYQH29ocZQY7RlDnUnze/RxzP6wT5mO+H7nNrO+51A18mdkWSTdL2iPpmKRDZrY/hHBv425fl7QrhHDCzH5e0u9K+qm2drNaImAwpCXn45Fz3+HiEklHQwj3S5KZ3SbpGkkvBmwI4WDj/l+V9M5VjWYVsADqsfW7p+j8g9uitPUf0nYzO9y4al8IYV/j8tmSHm5cPibp0pYm3yfp71Y9LgELoAbHQwi7YjRkZu+UtEvS5avuS8ACgPSIpHMbl8/ZvO4kZvZ2Sb8h6fIQwjOrGi36k1wA0NEhSTvN7AIz2yrpOkn7m3cwszdJukXS1SGEb3dplIAFUL0QwvOSbpR0h6T7JN0eQjhiZjeZ2dWbd/s9Sa+S9Ndm9q9mtn9Jcy9iiSBxXzmy8iykl8suivOiAfpbdSzXOTax6yOW10/dgTWEEA5IOjB33Ycb/3573zajByyB0N0UgyPWY8Y8LimGxNDtW2ebUtwPGGZlwE590NseP6fwnXo/xtbcnr7HIYd90bfuctgmjK81YFMvmq8ceSbpkE19/8XS5ziUsE9K2AaMI/s12FmxpxK0DL7l2DeoTfYBOzM/eMcO3NrDY9Ustvb9gzoVE7DzxghcQgNAm2IDdl7fwCU8+1s2i2VfolbVBOw8Bv042M+oGZ/kQlTNQCVcUTsCFgCcVLtEAD/MXIENzGABwAkBCwBOCFgAcELAAoATAhYAnBCwAOCEgAUAJwQsADghYAHACQELAE4IWABwQsACgJPqv+xl3V864AtNAKzCDHZNqfzIIoB0VR2wQ0OSkK3bZRdtowbQqtolglgD47KLtrFcUKFm/fStJeqlHlXOYJl1YErUXz2qDNjYGDB1iXG8qZk6VBewXoXNgKkDxxl9VBWw3oODwVe22MeXeilfVQE7BgYN+qBeylZNwFLIGMKzfqjNclXxNq2xC5i3bpWFAJzGC999TCfuvGXqbgxS/Ax2qsHBoCzDWMeReilT8QE7JQYN+qBeykPAAoCT4gN2yrVQ1mHzN+YxpF7KU3zAStMULoOlHGMcS+qlTFUErMRMBOmiXspVTcBKzESwPq/jSr2UraqAlXwLmsFSNo4v+qouYCWfgcLgq0PM40zNlK/KgJUobqwvRu1Qf3WoNmCleEXOYKnPkGNOvdSjiu8iaDMrdn5dFn1x7LFK9QE7s2ywtAUvAwxAGwJ2BUIUwLqqXoMFAE8ELAA4IWABwAkBCwBOCFgAcELAAoATAhYAnBCwAOCEgAUAJwQsADghYAHACQELAE4IWABwQsACgBMCFgCcELAA4ISABQAnBCwAOCFgAcAJAQsATghYAJBkZnvN7BtmdtTMPrjg9m1m9lebt3/NzF63qk0CFkD1zGyLpJslvUPShZKuN7ML5+72PknfCSF8n6Q/kvTxVe0SsAAgXSLpaAjh/hDCs5Juk3TN3H2ukfQXm//+nKQrzMzaGj217cZ3Pf5C6x8DgJf/OXHsji8f+sD2SM2dbmaHG5f3hRD2NS6fLenhxuVjki6da+PF+4QQnjezJyW9VtLxZQ/aGrAAMJUQwt6p+zAUSwQAID0i6dzG5XM2r1t4HzM7VdJZkh5va5SABQDpkKSdZnaBmW2VdJ2k/XP32S/p3Zv//glJ/xBCCG2NskQAoHqba6o3SrpD0hZJnwohHDGzmyQdDiHsl/Tnkj5jZkclPaGNEG5lKwIYALAmlggAwAkBCwBOCFgAcELAAoATAhYAnBCwAOCEgAUAJ/8P4QSXc3EofhsAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 360x414 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# We create a plot with the same size ratio as our data so \n",
"fig, axes = plt.subplots(figsize=(5,5.75))\n",
"cs = axes.contourf(y, x, z, cmap='turbo', levels=[i/10 for i in range(11)])\n",
"csbar = plt.colorbar(cs)\n",
"axes.spines[:].set_visible(False)\n",
"axes.get_xaxis().set_visible(False)\n",
"axes.get_yaxis().set_visible(False)\n",
"fig.tight_layout()"
]
},
{
"cell_type": "markdown",
"id": "c83b676a-5cad-46b5-b5cd-a0750715acf7",
"metadata": {},
"source": [
"#### 2. Next we make a grid with 50% contour line mapped to it"
]
},
{
"cell_type": "code",
"execution_count": 282,
"id": "fac3736e-b7ed-414c-96a0-ab07a54a8bf9",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAVgAAAGWCAYAAAA9jpuEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhCElEQVR4nO3de7TcZX3v8c93bnv2JQkhAQIhchEQBUSQix7lVqGyag/YHo/irV7osVphaW1Zco4elqKratUKLlFPsKi1ttR6PD2xxeLRqigtmCiiJgWMgUBC7ped7Mtcf9/zx+xsduLeO/k92b/Zz2/n/Vpr1p75zTy/55nZM9/5zvf3zDPm7gIAzLzCbA8AAOYqAiwAZIQACwAZIcACQEYIsACQkdJ0V15w/CuCphh4ux42mgDVJRelblOsHh3UV7u2M3Wbxs5HgvpqjW4NaofD13P0WanbFCrzgvpKGntTtwl9fbWGNgS1C/GTrd+xw93HswvmIzM0yWmzdK+7Xz0zezt00wZYAJgtIy69tVSckX39eau9eEZ2lBIBFkCUzKSS5XuePgEWQJRMUvGwCw2zi4NcAJARMlgA0SrlPIMlwAKIEiUCAMCUyGABRGkuZLAEWABxMqmY82lalAgAICNksACiZGIWAQBkwiQVc/4ZO+fDB4B4kcECiBazCAAgA2b5D7CUCAAgI9NmsO3GYLfGEWxk432p21QWnBbUV2NwbVA75Et95+rUbUq9xwb1xcLq0yODBQBMihosgCjNhWlaBFgAUZoLaxHk/P0BAOJFBgsgTnNgmhYBFkCUTFIh55+xcz58AIgXGSyAaFEiAIAMMIsAADAlMlgAUTLjiwYAkJkCJQIAwGTIYAFEqbMWwUylsLPz67QEWABxMkoEAIApHJEZLAtnY6axcPbMY7lCAMgQJQIAwKTIYAFEiS8aAECGCjmvEeT8/QEA4kUGCyBaOU9gCbAA4jQXarA5Hz4AxIsMFkC08n6QiwALIEqm/NdgKREAQEbIYAHEyfL/s90EWABRMlnua7A5f38AgHiRwQKIFiUCAMjCXK/BFisLujUOtRuDXesLOBKFvJ57jjk3g5EcOchgAUTJxBcNACAbc6BEkPPhA0C8yGABRIkSAQBkiBIBAMwBZna1mT1qZmvN7OZJrn+WmX3PzB4ys5+b2e8cbJ9ksADiZJJ1qURgZkVJd0i6StIGSSvNbIW7r5lws/dL+pq7f87MnifpHkknT7dfAiyAKHVqsF3r7iJJa919nSSZ2d2SrpU0McC6pPlj5xdIevpgOyXAAjgSLDazVRMuL3f35RMuL5X01ITLGyRdfMA+PiDp22Z2o6R+SVcerFMCLIA42YzOItju7hcc5j5eK+lL7v5JM3uxpK+Y2dnunkzVgAALIFLWtRqspI2Slk24fOLYtomul3S1JLn7v5tZVdJiSVun2imzCABAWinpdDM7xcwqkq6TtOKA2zwp6WWSZGbPlVSVtG26nZLBAohSNw9yuXvLzG6QdK+koqS73H21md0qaZW7r5D0p5LuNLM/UeeA15vd3afbLwEWQJy6OE1Lktz9HnWmXk3cdsuE82skvSTNPikRAEBGyGABRIu1CCbh7XoWuwXQZY2dj8xe5yZZzj9j53z4ABAvSgQAomSSCkVKBAAw87o8iyALlAgAICNksAAiZTJKBACQAUoEAICpkMECiBKzCAAgK6bc12ApEQBARshgAUQr7we5CLAAomSW/2lalAgAICNksADiNAcOchFgAUTLivn+kD1tgC1U5gftNGnsSd+oXQvqC8ChYZ3m7iODBRAnSgQAkBVmEQAApkAGCyBKRokAADJi+Z9FkO/RA0DEyGABRIsSAQBkwUzKeYClRAAAGSGDBRAtSgQAkAVmEQAApkIGCyBOJg5yAQAmRwYLIEo2BxZ7IcACiJNJyvlBrmkD7FxdoLdQrAa1S1gUHFMoDywLatccemqGRzI1K/Z0rS90kMECiBYlAgDIArMIAABTIYMFECez3H+TiwALIF6UCAAAkyGDBRCnOXCQiwALIF45D7CUCAAgI2SwAOJkJhXyncESYAHEK+fTtPI9egCIGBksgDgxiwAAMjIHAiwlAgDICBksgEhZ7jPYTAJs7At1z3vua4PaDT32jdRt2o3BoL4we/qXXZW6jSdhz/mQBbdDF4wPeV3O6iLdptxP06JEAAAZoUQAIFpOiQAAMkCJAAAwFTJYANGiRAAAWTDl/jN2zocPAPEigwUQJZdRIgCATDCLAAAwFTJYANHynGewBFgAcTLJc/4ZO+fDB4B4kcECiFbeM1gCLIA4Wf6/yZXz9wcAiNe0GezgVz8btNOTHjoudRtre1BfhU070zdqNoP6Ki85K3WbwnkXBPWlevox2uDeoK6SzU8GtWvv2Zq6TfnMi4L68sVHpW6TVItBfRV+/khQuxADL/7D1G0aLzw1g5FMbvuzZm/BeBclAgDITN4DbM6HDwDxIsACiNPYPNiZOB1Sd2ZXm9mjZrbWzG6e4javNrM1ZrbazP72YPukRAAgWkmXUkAzK0q6Q9JVkjZIWmlmK9x9zYTbnC7pv0t6ibvvMrNjD7ZfMlgAkC6StNbd17l7Q9Ldkq494Db/TdId7r5Lktz9oEd5CbAAouTdLREslTTxN9Q3jG2b6AxJZ5jZ/Wb2gJldfbCdUiIAEK0ZLBEsNrNVEy4vd/flKfdRknS6pMslnSjpPjM7x913T9cAAOa67e4+3aT0jZKWTbh84ti2iTZIetDdm5IeN7PH1Am4K6faKSUCANHqYolgpaTTzewUM6tIuk7SigNu84/qZK8ys8XqlAzWTbdTMlgAUXLr3iwCd2+Z2Q2S7pVUlHSXu682s1slrXL3FWPX/baZrZHUlnSTu++Ybr8EWACQ5O73SLrngG23TDjvkt4zdjokBFgA0fJC2BolsSDAAohTF0sEWcn58AEgXmSwAKLkyn8GS4AFEK1kLtdgi62w+FvcMO3MhUk1T1kc1FfyrEWp24T+DEXrnCWp21SGgrpS4fH0i2AntZGgvpLhXYHt0v+ffee2oL60d0/qJnbaSUFd7fjdU1K3OfrxSlBfVm+nblPZHrZgfHsg/et54ab5QX2hgwwWQJS6OQ82KwRYANHKe4kg5+8PABAvMlgAcaJEAADZcElJ2PHoaOT8/QEA4kUGCyBSnvuDXARYAFGaC9O0cj58AIgXGSyAaCVGiQAAZpxLauf8M3bOhw8A8SKDBRCnOXCQiwALIFp5r8Hm/P0BAOI1bQbbM9IbtNO9L6imbtO/Kf26mJJU2J5+ndCtL+4J6mtgV/rHozBYC+pLJy1L3cSaraCuiuuLYe2WnpG+0XHHBvXVPDb9Y1/eNBzUV3Vv+r6euGBrUF+nfjPgQ2SSBPW16YJy6jYj8weD+pJODmz3jLlwkIsSAYBosRYBAGBSZLAAouRGiQAAMkOJAAAwKTJYAFFySe2cZ7AEWABxmgPf5Mr58AEgXmSwAKI0F0oEZLAAkBEyWADRyvs0LQIsgCh1SgT5jrCUCAAgI2SwAOJklAgAIBOUCAAAU5o2gz32sbAFt5Wk/5kHq4UtFt16ZFXqNr/7sS8E9fWlzW9I3ebMm9IvnC1JKqT/cGHPeU5QV43H0z+GklRamP6+FefND+qr8mQjdRvf8nRQX+ve9lTqNi897rtBfe35xrtTt/HjFgf1tWhj+udU71BgDJgBc2EeLCUCAJEyJZQIAACTIYMFEKW5cJCLAAsgWm3lO8BSIgCAjJDBAoiSm3J/kIsACyBSpnbOP2Tne/QAEDEyWABRYhYBAGQoyfmH7HyPHgAiRgYLIEqUCAAgI84sAgDAVMhgAUQr7xksARZAlFymlhVnexiHZdoAa79Ov/CwJPnw3vRtgnqSWrufTN3myqF1QX1dcPSHU7f5+JpXBvXl7fQLTJefPDWor6S2K6hdY1NAu00/D+qrUF2Yus3Qr/5PUF//9PH0z/vFTx0QCKyiavV8VfteJE9GNbj7i5L/5v/0TT8/O3VfpcWnpG4jSb3rT0jdpnraSUF9oYMMFpghhcJR6u17iXr7X6pq78UqFPrGr0uSQe0dvHsWR5c/LkoEwBGtWjxZC8qXalH/perpOUdmkweE3r5LCLCpmVoE2LmjrKNUtHmqeVhpBEeCogZK52pB5VItqFyiavFZU96y2XxK5XLnd8t6qs+XWa/cR7s1UESAADumakt1ft9XVbJ+1ZKntb31A+1ofV+DycOS2rM9PMyy3uIZOq73jZpffrFKhQWT3sa9rXrtFxod+aFGR36oVvNJLVn6FVV6TpdZWT2956s2cn+XR55fnRLBHD7IdSRZVLpMJeuXJFULJ+jEymt1YuW1avpu7Wjdp+2tH2iPVipRfZZHim4zVXTa/E+rXFj0G9e1fVh7Gg8oGfyRRkf+TUkyuN/1tdEHVek5XZLU23sxATYFl6lFgJ0b+gqTHy0t21FaUr5GS8rX6Ewf1VZ/QJuTH2hLcr+a2tPlUWI2zC+/aL/g2mhv1mDzh9rduE9DzZ/I1dTiockDwejog5p/VOfn3qu9F3VlvIgHAVaSVNBA4czxS+sby1W2o7WoeJl6CseMby9Zr06wK3RC4QpJUs13aMjXa8jXa2Nyr3b4Q10fObJW1DHVV41f2jL6VW0cue2QW9drDytJaioUqipXTla5crqajV9lMM65xyUOcuWdqaLnVj+secXnjW/b3Fyhum/RWv2F5hWep0Wly7W4dLn6Cifv17Zqi1S1RVqs83Vy8ff0SGu5HkvuUvisXsSkYP06deCjml950fi2nfV/TrcTb6he+6l6+/6TJOnY4z+trZverWbj0Zkc6hxlua/B5vvt4TAV1a9zej+txaUrxrc93fgH1X3L2CXX3mS1nmjcoVUj/1X/2ni11rQ+q53JL9X236zFnll6my4sfURF9f3GdciXcuE4PWf+nfsF1221r2u0nT77HNy5XEkyIkkqFhfquBPuUE/PuTM2VsTriM1gK7ZIZ1c/rYHiGePbNjS+qnWN26dsM6T1Wpt8WWuTL0sqqE/Hqd9O0mnFN+iYwoWSpOMLV+iS0rP049ZNGtHGrO8GMtBbfI6ePf9TqkwoD20aWa5No3cG7a/ReERbN92oY5b8pYrFBSoUBnTM8bdr+5b3ztSQ5ySXqeVksLlTtWU6t/ev9guu6+q3a13jNh36x/tEI9qkbf6AHmi9S79u/934NfMLz9al5S/qGOOgRt685LdeqDMWLB8Pru4tPTH0geDguk+jvlpbN71T7dYOSVKhUNUxSz6hSy+deh7tka5Tgy3OyGm2HHEB9owzFukFvV9Qb2GppM4L6NHaB7Wh+TfB+3S1tbp9m37a+sB46aBiC/Si0m16zesvnJFxI3uv+oOr9ckv3qyidUo8rWSvfrXnxvR11yk0G2u15em3q9XcJEkyK+uWWy7Ry18etoYE4ndEBdjzzz9et93+O6oUjpYktb2m1bWbtKX1TzOy/w3Jt3R/6+0a9a2SJLOibnjPlXr/rf9ZlZ4jthoTPTPTu97/Jr33z9+mYrGT7dTbT+uxPddrqLVqRvtqtZ7Slqf/SM3GE5KkYrGgm29+iX7/98+cvuERaN88WDLYHLj8ilP00Y+9XH19FUlS0wf1i9F3amf7RzPaz25fo/uab9bO5JlVo17+irN1xxfeoGOPmzejfeHw9VQr+sjn/0xvePu149uGW6v16OBbVWs/nkmf7fZWbXn6HWrUn5lJcOONF+qNbzwnk/7yjACbA6985XN1yy1XqFIZy06SLXp49G3ak4QtnXcwde3Qv7X+WOvb/zi+7cznHa87v/IWnfOCEzPpE+ktXLRAn/37D+plr3jx+Lbv/cuDemzwj9TyHZn2nSS7tGXTO/XLX24d3/bWt75Ab3/7+Zn2i+6a859b3/LW8/WmN503fnn9+t3avPj6CVOxspGoqYfbH9HXP96rd/3ZlSqVijp6Ub9u//zrdNtffFsrvvGzTPvH9E569lLd/tfv09KTloxv+9s7v6nbP/Rlfe6h7nwd2pMh3XTTd3XrrZfpwgs7a7W+5jVnqb+/ok996kElSfbzqcslqVwy9VUL6q0W1Lfv1Gvq7Smob5mptyL19Uh9lX0nU19F+tCKRHtr2Y2tM4sg3yHK3Kf+J9b/dNnkVxbLKr7if0jjP/g4dmbsFyC97ZNu7/w1yQqdZd0KnfOygtytc709s61zm4K8MSrftUm+62kluzfLdz3duTy4Vf3nL57inhWkS94vO+vV45t8y8PSPe+U9uw8+CMzmf70/+z2U0PSSRep+OrPyAaeGWuy8qtKvnWr1G5O2m7414NSsSzrHZCqA7Jqv6w6IKsOSMVS5/4VilJh7LEqFMa329i2Z64vSnKpWZM3alKjJm+MdP42a6oMuLxZkyaekoMvcFM5ZX7qx2P4Z9v231AdkPUvlA0slMrVsfEXO2Mf+/+rUJQ09tfG7tO++1UoSO3W2KkpbzelVlNqN5XUG1K7NWFb5zaFJaeq94+XqzDQWcTbk7ZqX3mfGv+vM1Ng/ouWKK1kaPL/48E0Nw9LxYrKf/AZFc99xfj29kMr1FzxYVmlV6r0yXr6pUqf1NOvdrPcuVztl/V0tllPv6zaL1WqslKl81iWK7JSj1SqyMoVqdQjlXvGru+RlXuCxrzPrhvOU7J58jLKoq/vPuyfgz3mgmP99378qoPf8BDcWfzcT9z9ghnZWQphbw9WVOmyP5zhoaTn7ZY0ul0a3iINb5WGtoyd3yKdepXs1Kueue2TP5TufY/UmoXl4tb/WO3lr1Txus/LTuisYF+48PWypefKd2+QKv1jL6CxU0+/5pf7DvsFcDi81egE2saIvD4k1Yal+l55fViqDUn1IanalBrDUnN4/79JU+qZL1WPmnBaIPUsUO9v90v9C2UDR8v6j+q82GeR14Y18tm3qfXTf5m9QbQban75HdJ1n1Dxok5CUDzvGhXPu2b2xnQIrHduHVMws6sl3S6pKOkL7v7RKW73XyR9XdKF7j7tUdDA/DuOr4JasSQNLOmcpuGPflP6/v+UklaXRjaJwafVvuvVKlzzURWe33nh2Alnjwfc2FipIpUqUu98zeQv08c0bTzZvVnDn3idkicenu2hSElbzb97j7y2V6VLr+9at5030rq8Niwf3Ssf2SuvDXXOjw7JR/Z0/u67bt/50b1TZq8zNjapa180MLOipDskXSVpg6SVZrbC3dcccLt5kt4l6cFD2W9YgE1aav3fD3bOj5cYfPxy0kz2u7z/30Ryl3vSOZ90/npr/8vyZOw26nw8XniCCguPly08XrbwBNlRS1SY/8w3babiP/uS9O+fVBRvCs2akv/9bvnm1Spc+d7OR/lpeKsprw1JtaHOC6DWySS91eh8hHcfe8zack9k+x7LpD2+Xe6dx9Ss87Gw0itVemWVaufjZLkq6+2TlatjHyt7pXL1oGObKV4flg/tkg/vkhqjY2Meuw/J2H0YOz++zdvPbJekQkkqlqVSSVYsd0olxfL4dtt3ufTM+fa6hzT6N++T79jQlft5SNzV+sYt8j1bVbrkLZ3XSX1YaoxI9eFOWac+ovbevZ3L9RF5bViqj3Qex/pI5zFs1uXNhtSqd54rjZrUaqg1NCpv1fe7XtOUCCXJu1AHnrLv7i5XeJGkte6+TpLM7G5J10pac8DtPiTpY5JuOpSdBgbYttr3fWHKq9uj6TPFpBGwqHWpov6XniUNHCf17zsd27ncs0D69belNV9Lv9+M+f13qv0f35YtO7/zMbw+NFYTHe589G4Ma/iRTVIz3cEWK4Tlmj3H9P7mxuJYHa+nT9bTqQOrZ2DC+X6Vjl8kVQak8lhpY9/fQlmq75Fqu8dOg1J9UKrtVu2XT3QC6tBO+fDuzov8EDxT1z90nTf6/Gl/5zNqf+czU17f2Bl2EC6pHdELxy82s4kf55e7+/IJl5dKmvhTJhskXTxxB2Z2vqRl7v7PZpZhgI1FqyHt3dg55c3O9fKd66e+PmVwnXHtRudU27Nf7r9fmAs4yNV+dNvBbwRIks/oLILth3OQyzo/tvaXkt6cpl2+AyyAOaubNVhJGyUtm3D5xLFt+8yTdLak71tnVtQSSSvM7JrpDnQdEV80AICDWCnpdDM7xcwqkq6TtGLfle4+6O6L3f1kdz9Z0gOSpg2uEhksgEi5TO0uhSh3b5nZDZLuVWeyy13uvtrMbpW0yt1XTL+HyRFgAUSp2+vBuvs9ku45YNstU9z28kPZJyUCAMgIGSyAKHX5IFcmCLAAImVq5TxEUSIAgIzk++0BwJzlMrUpEQDAzHPPfw2WEgEAZGTaDLaxM2y58kIl/btO0ghbmGPX99KvQ1Aohi2K0gpYLMMC+6rMKwe1CxGyOI8ktbelX1u32Bv2oamxK/3aDM3hsPu147vdW2GrHbAgTejzt9iT/nUZ8pyfOaZ2zn/RIN+jBzBndfuLBlmgRAAAGSGDBRAll5hFAADZyH8NlhIBAGQk328PAOYsd75oAACZmAs1WEoEAJARMlgAkTIlOc9gCbAAojQXFnuhRAAAGSGDBRAnl5Ik3xksARZAlCgRAACmRAYLIFqJ5zsHnDbAjmwLWw/WA5Z2LZbD1rjsWVBJ3WZke/q1RSXJAv7XxcAPCdt+PZS6Td9A2Ptlua97H8P2Ppn+fknS8J70a7vOX5T+uSFJ9YB1ZOu1sPWM5y1Mv+5vsx7W1+an0r+ea3UP6uu4oFYHMjklAgDAZCgRAIiSuzGLAACy4jmvweZ79AAQMTJYANFKknzngPkePQBEjAwWQJw8/9O0CLAA4sVBLgDAZMhgAUTJZfKcH+QiwAKIk0vK+RcN8v32AAARI4MFECnL/UEuAiyAeFEiAABMhgwWQJzccp/BThtg262wxXY9Sd+unX6NY0lSsaedus2mDWELiRcK6RcFX3pKb1BfpVL6vhq19I+FFLaQuCQNbxxO3WZodzOor1bAc3HPjkZQXzt2pH8yJgHPeSlswe1tm8PuV8hjGHq/ZkzOp2nle/QAEDFKBACiZDLZXC4RAMCscZPlfLEXSgQAkBEyWADxyvlBLgIsgEjlvwab77cHAIgYGSyAOLlk7XxnsARYAFEymQo5r8Hme/QAEDEyWABxcuX+IBcBFkCkTEaJAAAwGTJYAHFyqUCJAABmnlEiAABMZdoMdtFZC4N2WhxIv4iw9YYl04XF1dRtVj24OqivEM9/y9Kgdgu2jaRuU1o6ENSXj4atdm4B/+ejt40G9eWNJHWb4snzg/pa+4FfpG7TbIctTH3BRcembtN7zJ6gvpKAxzBk8fwZ41KBLxoAQBb4ogEAYApksACiZFLuD3IRYAHEyS33Ndh8vz0AQMTIYAFEK+8HuQiwAKJkbiq08x1g8z16AIgYGSyAaDGLAACy4FKhbbM9isOS77cHAIgYGSyAKM2F3+QiwAKIk0uFhBIBAGASZLAAomQS82ABIBMuWdtm5HQozOxqM3vUzNaa2c2TXP8eM1tjZj83s++a2UkH3af71Avq/vWiQtBqu+306/oqcL1ihazTXexiWSdgjWNJ0mB9ZscxnUrgehoLKunbBK7tHfQ4hv6fQ55TjXZYXyHP+73NsL5ClAIfwxuHDr94OnDqC/2cDz94uLuRJD3w+vJP3P2Cqa43s6KkxyRdJWmDpJWSXuvuaybc5gpJD7r7iJm9Q9Ll7v6a6folgwUQKVMhmZnTIbhI0lp3X+fuDUl3S7p24g3c/Xvuvu+nRh6QdOLBdkoNFkCcxkoEM2Sxma2acHm5uy+fcHmppKcmXN4g6eJp9ne9pG8drFMCLIAjwfbpSgRpmNkbJF0g6bKD3ZYACyBK1t15sBslLZtw+cSxbfuPyexKSe+TdJm7H/RICQEWQLQs8OBhgJWSTjezU9QJrNdJet1+YzE7T9L/knS1u289lJ1ykAvAEc/dW5JukHSvpP+Q9DV3X21mt5rZNWM3+7ikAUn/YGY/M7MVB9svGSyAOHX5q7Lufo+kew7YdsuE81em3ScBFkCUTF0tEWSCEgEAZIQMFkCcXLLAb0LGggALIFoW+h36SFAiAICMkMECiBMlAgDIDiUCAMCkyGABxMklJfnOYKcNsKGLI3czq280utdXiHrwQszd+wZLa5pF16dTCfj8Mxr6eATU4uqB3wLa3cXnVOyfgGfz5WVySgQAgMlRIgAQp7leIgCAWRVSG4oIJQIAyAgZLIA4uUtJvjNYAiyAeFEiAABMhgwWQJxcMkoEAJAFp0QAAJgcGSyAOLmYRQAA2XCpne9fPaREAAAZIYMFECdKBACQlfyXCKYNsI0u3rdWFxfNufjEsMpIMaDZj58KewfeG7AWbyl4Cdmwhj0Ba3WGzroZaacfY+hSoi89MaxdiB9tSN+mm68VHB4yWABxcpfnPIPlIBcAZIQMFkC8knxnsARYAHHy/B/kokQAABkhgwUQL0oEAJABd6kdMF8xIpQIACAjZLAAouTK/zxYAiyAOLlLCSUCAMAkyGABxCvnB7kIsADi5C7PeYClRAAAGSGDBRCp/B/kIsACiNMc+KLBtAE2dGHfRpJ+ceR64ELMIYsq3/t42B2bF/B2tLcVvAp2aqELTIeqB0xRDHluSNJIF6dDfvfJ9G2Kgf/mkP9Zy7v3nCoZq3sfDjJYAHFyl7ebsz2Kw0KABRCp/AdYZhEAQEbIYAHEaQ58VZYACyBSlAgAAFMggwUQJ3cp5xksARZAlHwOTNOiRAAAGSGDBRAplyeN2R7EYSHAAojTHKjBUiIAgIyQwQKIlMvblAgAYOZ5/gMsJQIAyAgZLIBI5X8ebCYBNmQR4W4vFh2iGLD4cE8hbHHkkAXIQxdi7uaiyt38P3fz8SgFroFdD1yAvFu6ubj3gdwTSgQAgMlRIgAQKZcn9dkexGEhwAKIE7MIAABTIYMFEKc5kMESYAFEKpG3812DpUQAABkhgwUQpc6C2/nOYAmwACJFiQAAMAUyWABxokQAABlxSgQAgCkQYAFEqlMimInToTCzq83sUTNba2Y3T3J9j5n9/dj1D5rZyQfbJyUCAFFyT5S0a13py8yKku6QdJWkDZJWmtkKd18z4WbXS9rl7qeZ2XWSPibpNdPtlwwWAKSLJK1193Xu3pB0t6RrD7jNtZK+PHb+65JeZmbTLpg7bQb7J8ORrwYMYM4abQ/f+7Od9y+eod1VzWzVhMvL3X35hMtLJT014fIGSRcfsI/x27h7y8wGJS2StH2qTikRAIiSu18922M4XJQIAEDaKGnZhMsnjm2b9DZmVpK0QNKO6XZKgAUAaaWk083sFDOrSLpO0ooDbrNC0pvGzr9K0r+6+7Q/4EaJAMARb6ymeoOkeyUVJd3l7qvN7FZJq9x9haS/kvQVM1sraac6QXhadpAADAAIRIkAADJCgAWAjBBgASAjBFgAyAgBFgAyQoAFgIwQYAEgI/8ffhCdv95IbFAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 360x414 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, axes = plt.subplots(figsize=(5, 5.75))\n",
"# Use the same x,y mesh grid we created earlier\n",
"im = axes.pcolormesh(y, x, z, cmap=\"turbo\", shading=\"auto\")\n",
"\n",
"# Mapping the 50% contour line over the plot\n",
"axes.contour(cs, colors=\"w\", linewidths=[0,3,0], levels=[0, .5, 1])\n",
"\n",
"# Adding the legend and turn off axis visibility\n",
"cbar1 = plt.colorbar(im)\n",
"axes.spines[:].set_visible(False)\n",
"axes.get_xaxis().set_visible(False)\n",
"axes.get_yaxis().set_visible(False)\n",
"fig.tight_layout()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8071f122-5eb8-4041-be04-9ba929cdfbe6",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6rc1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment