Last active
January 11, 2024 09:24
-
-
Save shinaoka/e747f8c2e00c142045c825ab8d6659c1 to your computer and use it in GitHub Desktop.
Benchmark of cache in Julia
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Julia Version 1.10.0\n", | |
| "Commit 3120989f39b (2023-12-25 18:01 UTC)\n", | |
| "Build Info:\n", | |
| " Official https://julialang.org/ release\n", | |
| "Platform Info:\n", | |
| " OS: macOS (arm64-apple-darwin22.4.0)\n", | |
| " CPU: 8 × Apple M2\n", | |
| " WORD_SIZE: 64\n", | |
| " LIBM: libopenlibm\n", | |
| " LLVM: libLLVM-15.0.7 (ORCJIT, apple-m1)\n", | |
| " Threads: 1 on 4 virtual cores\n", | |
| "Environment:\n", | |
| " JULIA_NUM_THREADS = 1\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "using BenchmarkTools\n", | |
| "using StaticArrays\n", | |
| "\n", | |
| "versioninfo()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "BenchmarkTools.Trial: 10000 samples with 1000 evaluations.\n", | |
| " Range \u001b[90m(\u001b[39m\u001b[36m\u001b[1mmin\u001b[22m\u001b[39m … \u001b[35mmax\u001b[39m\u001b[90m): \u001b[39m\u001b[36m\u001b[1m6.250 ns\u001b[22m\u001b[39m … \u001b[35m66.167 ns\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmin … max\u001b[90m): \u001b[39m0.00% … 0.00%\n", | |
| " Time \u001b[90m(\u001b[39m\u001b[34m\u001b[1mmedian\u001b[22m\u001b[39m\u001b[90m): \u001b[39m\u001b[34m\u001b[1m6.583 ns \u001b[22m\u001b[39m\u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmedian\u001b[90m): \u001b[39m0.00%\n", | |
| " Time \u001b[90m(\u001b[39m\u001b[32m\u001b[1mmean\u001b[22m\u001b[39m ± \u001b[32mσ\u001b[39m\u001b[90m): \u001b[39m\u001b[32m\u001b[1m6.645 ns\u001b[22m\u001b[39m ± \u001b[32m 1.726 ns\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmean ± σ\u001b[90m): \u001b[39m0.00% ± 0.00%\n", | |
| "\n", | |
| " \u001b[39m \u001b[39m \u001b[39m▄\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▂\u001b[39m█\u001b[34m \u001b[39m\u001b[32m \u001b[39m\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \n", | |
| " \u001b[39m▂\u001b[39m▃\u001b[39m█\u001b[39m▃\u001b[39m▃\u001b[39m▂\u001b[39m▂\u001b[39m█\u001b[39m█\u001b[34m▇\u001b[39m\u001b[32m▅\u001b[39m\u001b[39m▃\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▁\u001b[39m▂\u001b[39m▂\u001b[39m▂\u001b[39m \u001b[39m▂\n", | |
| " 6.25 ns\u001b[90m Histogram: frequency by time\u001b[39m 8.5 ns \u001b[0m\u001b[1m<\u001b[22m\n", | |
| "\n", | |
| " Memory estimate\u001b[90m: \u001b[39m\u001b[33m0 bytes\u001b[39m, allocs estimate\u001b[90m: \u001b[39m\u001b[33m0\u001b[39m." | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "# Key is a single float (faster)\n", | |
| "let\n", | |
| " cache = Dict{Float64,MMatrix{6,6,Float64}}()\n", | |
| " for i in 1:100000\n", | |
| " cache[i] = rand(MMatrix{6,6,Float64})\n", | |
| " end\n", | |
| " x = 1.0\n", | |
| " @benchmark $cache[$x]\n", | |
| "end" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "BenchmarkTools.Trial: 10000 samples with 994 evaluations.\n", | |
| " Range \u001b[90m(\u001b[39m\u001b[36m\u001b[1mmin\u001b[22m\u001b[39m … \u001b[35mmax\u001b[39m\u001b[90m): \u001b[39m\u001b[36m\u001b[1m33.073 ns\u001b[22m\u001b[39m … \u001b[35m 2.130 μs\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmin … max\u001b[90m): \u001b[39m0.00% … 0.00%\n", | |
| " Time \u001b[90m(\u001b[39m\u001b[34m\u001b[1mmedian\u001b[22m\u001b[39m\u001b[90m): \u001b[39m\u001b[34m\u001b[1m33.325 ns \u001b[22m\u001b[39m\u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmedian\u001b[90m): \u001b[39m0.00%\n", | |
| " Time \u001b[90m(\u001b[39m\u001b[32m\u001b[1mmean\u001b[22m\u001b[39m ± \u001b[32mσ\u001b[39m\u001b[90m): \u001b[39m\u001b[32m\u001b[1m36.115 ns\u001b[22m\u001b[39m ± \u001b[32m39.618 ns\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmean ± σ\u001b[90m): \u001b[39m0.00% ± 0.00%\n", | |
| "\n", | |
| " \u001b[39m█\u001b[34m▄\u001b[39m\u001b[39m▅\u001b[39m▁\u001b[39m▄\u001b[39m▃\u001b[32m▁\u001b[39m\u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m▁\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▁\n", | |
| " \u001b[39m█\u001b[34m█\u001b[39m\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[32m█\u001b[39m\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m█\u001b[39m▇\u001b[39m▇\u001b[39m▆\u001b[39m▇\u001b[39m▇\u001b[39m▇\u001b[39m▇\u001b[39m▇\u001b[39m█\u001b[39m▆\u001b[39m▇\u001b[39m▆\u001b[39m▅\u001b[39m▅\u001b[39m▅\u001b[39m▅\u001b[39m▄\u001b[39m▅\u001b[39m▅\u001b[39m▄\u001b[39m▄\u001b[39m▄\u001b[39m▄\u001b[39m▄\u001b[39m▄\u001b[39m▅\u001b[39m▄\u001b[39m▄\u001b[39m▅\u001b[39m▅\u001b[39m▁\u001b[39m▅\u001b[39m▄\u001b[39m▄\u001b[39m▄\u001b[39m▅\u001b[39m▃\u001b[39m▁\u001b[39m▃\u001b[39m▄\u001b[39m▃\u001b[39m▃\u001b[39m \u001b[39m█\n", | |
| " 33.1 ns\u001b[90m \u001b[39m\u001b[90mHistogram: \u001b[39m\u001b[90m\u001b[1mlog(\u001b[22m\u001b[39m\u001b[90mfrequency\u001b[39m\u001b[90m\u001b[1m)\u001b[22m\u001b[39m\u001b[90m by time\u001b[39m 61.9 ns \u001b[0m\u001b[1m<\u001b[22m\n", | |
| "\n", | |
| " Memory estimate\u001b[90m: \u001b[39m\u001b[33m0 bytes\u001b[39m, allocs estimate\u001b[90m: \u001b[39m\u001b[33m0\u001b[39m." | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "# Key is a vector of integers (slower)\n", | |
| "# Keyword: computing hash of a vector of integers is slow\n", | |
| "let\n", | |
| " cache = Dict{Vector{Int},MMatrix{6,6,Float64}}()\n", | |
| " L = 20\n", | |
| " for i in 1:100000\n", | |
| " cache[fill(i,L)] = rand(MMatrix{6,6,Float64})\n", | |
| " end\n", | |
| " x = fill(1,L)\n", | |
| " @benchmark $cache[$x]\n", | |
| "end" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "BenchmarkTools.Trial: 10000 samples with 996 evaluations.\n", | |
| " Range \u001b[90m(\u001b[39m\u001b[36m\u001b[1mmin\u001b[22m\u001b[39m … \u001b[35mmax\u001b[39m\u001b[90m): \u001b[39m\u001b[36m\u001b[1m23.594 ns\u001b[22m\u001b[39m … \u001b[35m55.431 ns\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmin … max\u001b[90m): \u001b[39m0.00% … 0.00%\n", | |
| " Time \u001b[90m(\u001b[39m\u001b[34m\u001b[1mmedian\u001b[22m\u001b[39m\u001b[90m): \u001b[39m\u001b[34m\u001b[1m23.762 ns \u001b[22m\u001b[39m\u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmedian\u001b[90m): \u001b[39m0.00%\n", | |
| " Time \u001b[90m(\u001b[39m\u001b[32m\u001b[1mmean\u001b[22m\u001b[39m ± \u001b[32mσ\u001b[39m\u001b[90m): \u001b[39m\u001b[32m\u001b[1m24.142 ns\u001b[22m\u001b[39m ± \u001b[32m 1.890 ns\u001b[39m \u001b[90m┊\u001b[39m GC \u001b[90m(\u001b[39mmean ± σ\u001b[90m): \u001b[39m0.00% ± 0.00%\n", | |
| "\n", | |
| " \u001b[39m▆\u001b[34m█\u001b[39m\u001b[39m▁\u001b[32m \u001b[39m\u001b[39m▂\u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m \u001b[39m▁\n", | |
| " \u001b[39m█\u001b[34m█\u001b[39m\u001b[39m█\u001b[32m▅\u001b[39m\u001b[39m█\u001b[39m█\u001b[39m▆\u001b[39m▆\u001b[39m▅\u001b[39m▆\u001b[39m▇\u001b[39m▅\u001b[39m▆\u001b[39m▆\u001b[39m▃\u001b[39m▄\u001b[39m▄\u001b[39m▅\u001b[39m▅\u001b[39m▅\u001b[39m▅\u001b[39m▆\u001b[39m▆\u001b[39m▅\u001b[39m▅\u001b[39m▅\u001b[39m▅\u001b[39m▆\u001b[39m▅\u001b[39m▃\u001b[39m▄\u001b[39m▆\u001b[39m▆\u001b[39m▆\u001b[39m▅\u001b[39m▃\u001b[39m▅\u001b[39m▆\u001b[39m▃\u001b[39m▄\u001b[39m▅\u001b[39m▃\u001b[39m▅\u001b[39m▅\u001b[39m▅\u001b[39m▄\u001b[39m▄\u001b[39m▄\u001b[39m▃\u001b[39m▃\u001b[39m▅\u001b[39m▅\u001b[39m▄\u001b[39m▃\u001b[39m▃\u001b[39m▄\u001b[39m▂\u001b[39m▅\u001b[39m▅\u001b[39m \u001b[39m█\n", | |
| " 23.6 ns\u001b[90m \u001b[39m\u001b[90mHistogram: \u001b[39m\u001b[90m\u001b[1mlog(\u001b[22m\u001b[39m\u001b[90mfrequency\u001b[39m\u001b[90m\u001b[1m)\u001b[22m\u001b[39m\u001b[90m by time\u001b[39m 33 ns \u001b[0m\u001b[1m<\u001b[22m\n", | |
| "\n", | |
| " Memory estimate\u001b[90m: \u001b[39m\u001b[33m0 bytes\u001b[39m, allocs estimate\u001b[90m: \u001b[39m\u001b[33m0\u001b[39m." | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "# You can see computing hash of a vector of integers is slow\n", | |
| "let\n", | |
| " L = 20\n", | |
| " x = fill(1,L)\n", | |
| " @benchmark hash($x)\n", | |
| "end" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Julia 1.10.0", | |
| "language": "julia", | |
| "name": "julia-1.10" | |
| }, | |
| "language_info": { | |
| "file_extension": ".jl", | |
| "mimetype": "application/julia", | |
| "name": "julia", | |
| "version": "1.10.0" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment