Created
November 27, 2019 16:34
-
-
Save rabernat/30e7b747f0e3583b5b776e4093266114 to your computer and use it in GitHub Desktop.
Xarray Anomaly Calculations
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# Calculating Climatologies and Anomalies with Xarray and Dask:\n", | |
| "\n", | |
| "## A Workaround for a Longstanding Problem\n", | |
| "\n", | |
| "Climatologies are anomalies are a core operation in climate science. Many workflows start with the following operations:\n", | |
| "- Group spatiotemporal data by month or dayofyear (determined by the resolution of the dataset)\n", | |
| "- Take a mean of each group to determine the \"climatology\"\n", | |
| "- Broadcast the climatology back to the original dataset and subtract it, producing the \"anomaly\"\n", | |
| "\n", | |
| "Xarray makes this easy. We often write code like\n", | |
| "\n", | |
| " gb = ds.groupby('time.month')\n", | |
| " clim = gb.mean(dim='time')\n", | |
| " anom = gb - clim\n", | |
| "\n", | |
| "Unfortunately there are problems related to how dask deals with this operation \n", | |
| "\n", | |
| "- https://github.com/pydata/xarray/issues/1832\n", | |
| "- https://github.com/dask/dask/issues/874\n", | |
| "- https://github.com/pangeo-data/pangeo/issues/271\n", | |
| "\n", | |
| "There have been many attempted fixes over the years (see linked PRs above). But none of them has been totally successful.\n", | |
| "\n", | |
| "Here we desribe a new approach." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 15, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "'0.14.1'" | |
| ] | |
| }, | |
| "execution_count": 15, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "import xarray as xr\n", | |
| "from dask.distributed import Client\n", | |
| "import gcsfs\n", | |
| "%matplotlib inline\n", | |
| "xr.__version__" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### The Dataset: MERRA2 Daily Surface Temprature" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<pre><xarray.Dataset>\n", | |
| "Dimensions: (T: 14549, X: 576, Y: 361)\n", | |
| "Coordinates:\n", | |
| " * T (T) datetime64[ns] 1980-01-01T12:00:00 ... 2019-10-31T12:00:00\n", | |
| " * X (X) float32 -180.0 -179.375 -178.75 ... 178.125 178.75 179.375\n", | |
| " * Y (Y) float32 -90.0 -89.5 -89.0 -88.5 -88.0 ... 88.5 89.0 89.5 90.0\n", | |
| "Data variables:\n", | |
| " t2mmax (T, Y, X) float32 dask.array<chunksize=(160, 361, 576), meta=np.ndarray>\n", | |
| "Attributes:\n", | |
| " Conventions: IRIDL</pre>" | |
| ], | |
| "text/plain": [ | |
| "<xarray.Dataset>\n", | |
| "Dimensions: (T: 14549, X: 576, Y: 361)\n", | |
| "Coordinates:\n", | |
| " * T (T) datetime64[ns] 1980-01-01T12:00:00 ... 2019-10-31T12:00:00\n", | |
| " * X (X) float32 -180.0 -179.375 -178.75 ... 178.125 178.75 179.375\n", | |
| " * Y (Y) float32 -90.0 -89.5 -89.0 -88.5 -88.0 ... 88.5 89.0 89.5 90.0\n", | |
| "Data variables:\n", | |
| " t2mmax (T, Y, X) float32 dask.array<chunksize=(160, 361, 576), meta=np.ndarray>\n", | |
| "Attributes:\n", | |
| " Conventions: IRIDL" | |
| ] | |
| }, | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gcs = gcsfs.GCSFileSystem(token = 'anon')\n", | |
| "to_map = gcs.get_mapper(\"ivanovich_merra2/t2maxdaily.zarr/\")\n", | |
| "ds = xr.open_zarr(to_map)\n", | |
| "ds" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<table>\n", | |
| "<tr>\n", | |
| "<td>\n", | |
| "<table>\n", | |
| " <thead>\n", | |
| " <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr><th> Bytes </th><td> 12.10 GB </td> <td> 133.08 MB </td></tr>\n", | |
| " <tr><th> Shape </th><td> (14549, 361, 576) </td> <td> (160, 361, 576) </td></tr>\n", | |
| " <tr><th> Count </th><td> 92 Tasks </td><td> 91 Chunks </td></tr>\n", | |
| " <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</td>\n", | |
| "<td>\n", | |
| "<svg width=\"163\" height=\"150\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"10\" y1=\"30\" x2=\"80\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"30\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"31\" />\n", | |
| " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"31\" />\n", | |
| " <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"32\" />\n", | |
| " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"33\" />\n", | |
| " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"34\" />\n", | |
| " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"34\" />\n", | |
| " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"35\" />\n", | |
| " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"36\" />\n", | |
| " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"37\" />\n", | |
| " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"38\" />\n", | |
| " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"38\" />\n", | |
| " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"39\" />\n", | |
| " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"40\" />\n", | |
| " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"41\" />\n", | |
| " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"41\" />\n", | |
| " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"42\" />\n", | |
| " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"43\" />\n", | |
| " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"44\" />\n", | |
| " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"45\" />\n", | |
| " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"45\" />\n", | |
| " <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"46\" />\n", | |
| " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"47\" />\n", | |
| " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"48\" />\n", | |
| " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"48\" />\n", | |
| " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"49\" />\n", | |
| " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"50\" />\n", | |
| " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"51\" />\n", | |
| " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"52\" />\n", | |
| " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"52\" />\n", | |
| " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"53\" />\n", | |
| " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"54\" />\n", | |
| " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"55\" />\n", | |
| " <line x1=\"35\" y1=\"25\" x2=\"35\" y2=\"55\" />\n", | |
| " <line x1=\"36\" y1=\"26\" x2=\"36\" y2=\"56\" />\n", | |
| " <line x1=\"37\" y1=\"27\" x2=\"37\" y2=\"57\" />\n", | |
| " <line x1=\"37\" y1=\"27\" x2=\"37\" y2=\"58\" />\n", | |
| " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"58\" />\n", | |
| " <line x1=\"39\" y1=\"29\" x2=\"39\" y2=\"59\" />\n", | |
| " <line x1=\"40\" y1=\"30\" x2=\"40\" y2=\"60\" />\n", | |
| " <line x1=\"41\" y1=\"31\" x2=\"41\" y2=\"61\" />\n", | |
| " <line x1=\"41\" y1=\"31\" x2=\"41\" y2=\"62\" />\n", | |
| " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"62\" />\n", | |
| " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"63\" />\n", | |
| " <line x1=\"44\" y1=\"34\" x2=\"44\" y2=\"64\" />\n", | |
| " <line x1=\"44\" y1=\"34\" x2=\"44\" y2=\"65\" />\n", | |
| " <line x1=\"45\" y1=\"35\" x2=\"45\" y2=\"65\" />\n", | |
| " <line x1=\"46\" y1=\"36\" x2=\"46\" y2=\"66\" />\n", | |
| " <line x1=\"47\" y1=\"37\" x2=\"47\" y2=\"67\" />\n", | |
| " <line x1=\"48\" y1=\"38\" x2=\"48\" y2=\"68\" />\n", | |
| " <line x1=\"48\" y1=\"38\" x2=\"48\" y2=\"69\" />\n", | |
| " <line x1=\"49\" y1=\"39\" x2=\"49\" y2=\"69\" />\n", | |
| " <line x1=\"50\" y1=\"40\" x2=\"50\" y2=\"70\" />\n", | |
| " <line x1=\"51\" y1=\"41\" x2=\"51\" y2=\"71\" />\n", | |
| " <line x1=\"51\" y1=\"41\" x2=\"51\" y2=\"72\" />\n", | |
| " <line x1=\"52\" y1=\"42\" x2=\"52\" y2=\"72\" />\n", | |
| " <line x1=\"53\" y1=\"43\" x2=\"53\" y2=\"73\" />\n", | |
| " <line x1=\"54\" y1=\"44\" x2=\"54\" y2=\"74\" />\n", | |
| " <line x1=\"55\" y1=\"45\" x2=\"55\" y2=\"75\" />\n", | |
| " <line x1=\"55\" y1=\"45\" x2=\"55\" y2=\"76\" />\n", | |
| " <line x1=\"56\" y1=\"46\" x2=\"56\" y2=\"76\" />\n", | |
| " <line x1=\"57\" y1=\"47\" x2=\"57\" y2=\"77\" />\n", | |
| " <line x1=\"58\" y1=\"48\" x2=\"58\" y2=\"78\" />\n", | |
| " <line x1=\"58\" y1=\"48\" x2=\"58\" y2=\"79\" />\n", | |
| " <line x1=\"59\" y1=\"49\" x2=\"59\" y2=\"79\" />\n", | |
| " <line x1=\"60\" y1=\"50\" x2=\"60\" y2=\"80\" />\n", | |
| " <line x1=\"61\" y1=\"51\" x2=\"61\" y2=\"81\" />\n", | |
| " <line x1=\"62\" y1=\"52\" x2=\"62\" y2=\"82\" />\n", | |
| " <line x1=\"62\" y1=\"52\" x2=\"62\" y2=\"83\" />\n", | |
| " <line x1=\"63\" y1=\"53\" x2=\"63\" y2=\"83\" />\n", | |
| " <line x1=\"64\" y1=\"54\" x2=\"64\" y2=\"84\" />\n", | |
| " <line x1=\"65\" y1=\"55\" x2=\"65\" y2=\"85\" />\n", | |
| " <line x1=\"65\" y1=\"55\" x2=\"65\" y2=\"86\" />\n", | |
| " <line x1=\"66\" y1=\"56\" x2=\"66\" y2=\"86\" />\n", | |
| " <line x1=\"67\" y1=\"57\" x2=\"67\" y2=\"87\" />\n", | |
| " <line x1=\"68\" y1=\"58\" x2=\"68\" y2=\"88\" />\n", | |
| " <line x1=\"68\" y1=\"58\" x2=\"68\" y2=\"89\" />\n", | |
| " <line x1=\"69\" y1=\"59\" x2=\"69\" y2=\"90\" />\n", | |
| " <line x1=\"70\" y1=\"60\" x2=\"70\" y2=\"90\" />\n", | |
| " <line x1=\"71\" y1=\"61\" x2=\"71\" y2=\"91\" />\n", | |
| " <line x1=\"72\" y1=\"62\" x2=\"72\" y2=\"92\" />\n", | |
| " <line x1=\"72\" y1=\"62\" x2=\"72\" y2=\"93\" />\n", | |
| " <line x1=\"73\" y1=\"63\" x2=\"73\" y2=\"93\" />\n", | |
| " <line x1=\"74\" y1=\"64\" x2=\"74\" y2=\"94\" />\n", | |
| " <line x1=\"75\" y1=\"65\" x2=\"75\" y2=\"95\" />\n", | |
| " <line x1=\"75\" y1=\"65\" x2=\"75\" y2=\"96\" />\n", | |
| " <line x1=\"76\" y1=\"66\" x2=\"76\" y2=\"97\" />\n", | |
| " <line x1=\"77\" y1=\"67\" x2=\"77\" y2=\"97\" />\n", | |
| " <line x1=\"78\" y1=\"68\" x2=\"78\" y2=\"98\" />\n", | |
| " <line x1=\"79\" y1=\"69\" x2=\"79\" y2=\"99\" />\n", | |
| " <line x1=\"79\" y1=\"69\" x2=\"79\" y2=\"100\" />\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"10.000000,0.000000 80.588235,70.588235 80.588235,100.855707 10.000000,30.267472\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"0\" />\n", | |
| " <line x1=\"11\" y1=\"1\" x2=\"44\" y2=\"1\" />\n", | |
| " <line x1=\"12\" y1=\"2\" x2=\"45\" y2=\"2\" />\n", | |
| " <line x1=\"13\" y1=\"3\" x2=\"46\" y2=\"3\" />\n", | |
| " <line x1=\"13\" y1=\"3\" x2=\"46\" y2=\"3\" />\n", | |
| " <line x1=\"14\" y1=\"4\" x2=\"47\" y2=\"4\" />\n", | |
| " <line x1=\"15\" y1=\"5\" x2=\"48\" y2=\"5\" />\n", | |
| " <line x1=\"16\" y1=\"6\" x2=\"49\" y2=\"6\" />\n", | |
| " <line x1=\"16\" y1=\"6\" x2=\"50\" y2=\"6\" />\n", | |
| " <line x1=\"17\" y1=\"7\" x2=\"50\" y2=\"7\" />\n", | |
| " <line x1=\"18\" y1=\"8\" x2=\"51\" y2=\"8\" />\n", | |
| " <line x1=\"19\" y1=\"9\" x2=\"52\" y2=\"9\" />\n", | |
| " <line x1=\"20\" y1=\"10\" x2=\"53\" y2=\"10\" />\n", | |
| " <line x1=\"20\" y1=\"10\" x2=\"53\" y2=\"10\" />\n", | |
| " <line x1=\"21\" y1=\"11\" x2=\"54\" y2=\"11\" />\n", | |
| " <line x1=\"22\" y1=\"12\" x2=\"55\" y2=\"12\" />\n", | |
| " <line x1=\"23\" y1=\"13\" x2=\"56\" y2=\"13\" />\n", | |
| " <line x1=\"23\" y1=\"13\" x2=\"57\" y2=\"13\" />\n", | |
| " <line x1=\"24\" y1=\"14\" x2=\"57\" y2=\"14\" />\n", | |
| " <line x1=\"25\" y1=\"15\" x2=\"58\" y2=\"15\" />\n", | |
| " <line x1=\"26\" y1=\"16\" x2=\"59\" y2=\"16\" />\n", | |
| " <line x1=\"27\" y1=\"17\" x2=\"60\" y2=\"17\" />\n", | |
| " <line x1=\"27\" y1=\"17\" x2=\"60\" y2=\"17\" />\n", | |
| " <line x1=\"28\" y1=\"18\" x2=\"61\" y2=\"18\" />\n", | |
| " <line x1=\"29\" y1=\"19\" x2=\"62\" y2=\"19\" />\n", | |
| " <line x1=\"30\" y1=\"20\" x2=\"63\" y2=\"20\" />\n", | |
| " <line x1=\"30\" y1=\"20\" x2=\"64\" y2=\"20\" />\n", | |
| " <line x1=\"31\" y1=\"21\" x2=\"64\" y2=\"21\" />\n", | |
| " <line x1=\"32\" y1=\"22\" x2=\"65\" y2=\"22\" />\n", | |
| " <line x1=\"33\" y1=\"23\" x2=\"66\" y2=\"23\" />\n", | |
| " <line x1=\"34\" y1=\"24\" x2=\"67\" y2=\"24\" />\n", | |
| " <line x1=\"34\" y1=\"24\" x2=\"67\" y2=\"24\" />\n", | |
| " <line x1=\"35\" y1=\"25\" x2=\"68\" y2=\"25\" />\n", | |
| " <line x1=\"36\" y1=\"26\" x2=\"69\" y2=\"26\" />\n", | |
| " <line x1=\"37\" y1=\"27\" x2=\"70\" y2=\"27\" />\n", | |
| " <line x1=\"37\" y1=\"27\" x2=\"71\" y2=\"27\" />\n", | |
| " <line x1=\"38\" y1=\"28\" x2=\"71\" y2=\"28\" />\n", | |
| " <line x1=\"39\" y1=\"29\" x2=\"72\" y2=\"29\" />\n", | |
| " <line x1=\"40\" y1=\"30\" x2=\"73\" y2=\"30\" />\n", | |
| " <line x1=\"41\" y1=\"31\" x2=\"74\" y2=\"31\" />\n", | |
| " <line x1=\"41\" y1=\"31\" x2=\"74\" y2=\"31\" />\n", | |
| " <line x1=\"42\" y1=\"32\" x2=\"75\" y2=\"32\" />\n", | |
| " <line x1=\"43\" y1=\"33\" x2=\"76\" y2=\"33\" />\n", | |
| " <line x1=\"44\" y1=\"34\" x2=\"77\" y2=\"34\" />\n", | |
| " <line x1=\"44\" y1=\"34\" x2=\"78\" y2=\"34\" />\n", | |
| " <line x1=\"45\" y1=\"35\" x2=\"78\" y2=\"35\" />\n", | |
| " <line x1=\"46\" y1=\"36\" x2=\"79\" y2=\"36\" />\n", | |
| " <line x1=\"47\" y1=\"37\" x2=\"80\" y2=\"37\" />\n", | |
| " <line x1=\"48\" y1=\"38\" x2=\"81\" y2=\"38\" />\n", | |
| " <line x1=\"48\" y1=\"38\" x2=\"81\" y2=\"38\" />\n", | |
| " <line x1=\"49\" y1=\"39\" x2=\"82\" y2=\"39\" />\n", | |
| " <line x1=\"50\" y1=\"40\" x2=\"83\" y2=\"40\" />\n", | |
| " <line x1=\"51\" y1=\"41\" x2=\"84\" y2=\"41\" />\n", | |
| " <line x1=\"51\" y1=\"41\" x2=\"84\" y2=\"41\" />\n", | |
| " <line x1=\"52\" y1=\"42\" x2=\"85\" y2=\"42\" />\n", | |
| " <line x1=\"53\" y1=\"43\" x2=\"86\" y2=\"43\" />\n", | |
| " <line x1=\"54\" y1=\"44\" x2=\"87\" y2=\"44\" />\n", | |
| " <line x1=\"55\" y1=\"45\" x2=\"88\" y2=\"45\" />\n", | |
| " <line x1=\"55\" y1=\"45\" x2=\"88\" y2=\"45\" />\n", | |
| " <line x1=\"56\" y1=\"46\" x2=\"89\" y2=\"46\" />\n", | |
| " <line x1=\"57\" y1=\"47\" x2=\"90\" y2=\"47\" />\n", | |
| " <line x1=\"58\" y1=\"48\" x2=\"91\" y2=\"48\" />\n", | |
| " <line x1=\"58\" y1=\"48\" x2=\"91\" y2=\"48\" />\n", | |
| " <line x1=\"59\" y1=\"49\" x2=\"92\" y2=\"49\" />\n", | |
| " <line x1=\"60\" y1=\"50\" x2=\"93\" y2=\"50\" />\n", | |
| " <line x1=\"61\" y1=\"51\" x2=\"94\" y2=\"51\" />\n", | |
| " <line x1=\"62\" y1=\"52\" x2=\"95\" y2=\"52\" />\n", | |
| " <line x1=\"62\" y1=\"52\" x2=\"95\" y2=\"52\" />\n", | |
| " <line x1=\"63\" y1=\"53\" x2=\"96\" y2=\"53\" />\n", | |
| " <line x1=\"64\" y1=\"54\" x2=\"97\" y2=\"54\" />\n", | |
| " <line x1=\"65\" y1=\"55\" x2=\"98\" y2=\"55\" />\n", | |
| " <line x1=\"65\" y1=\"55\" x2=\"98\" y2=\"55\" />\n", | |
| " <line x1=\"66\" y1=\"56\" x2=\"99\" y2=\"56\" />\n", | |
| " <line x1=\"67\" y1=\"57\" x2=\"100\" y2=\"57\" />\n", | |
| " <line x1=\"68\" y1=\"58\" x2=\"101\" y2=\"58\" />\n", | |
| " <line x1=\"68\" y1=\"58\" x2=\"102\" y2=\"58\" />\n", | |
| " <line x1=\"69\" y1=\"59\" x2=\"102\" y2=\"59\" />\n", | |
| " <line x1=\"70\" y1=\"60\" x2=\"103\" y2=\"60\" />\n", | |
| " <line x1=\"71\" y1=\"61\" x2=\"104\" y2=\"61\" />\n", | |
| " <line x1=\"72\" y1=\"62\" x2=\"105\" y2=\"62\" />\n", | |
| " <line x1=\"72\" y1=\"62\" x2=\"105\" y2=\"62\" />\n", | |
| " <line x1=\"73\" y1=\"63\" x2=\"106\" y2=\"63\" />\n", | |
| " <line x1=\"74\" y1=\"64\" x2=\"107\" y2=\"64\" />\n", | |
| " <line x1=\"75\" y1=\"65\" x2=\"108\" y2=\"65\" />\n", | |
| " <line x1=\"75\" y1=\"65\" x2=\"109\" y2=\"65\" />\n", | |
| " <line x1=\"76\" y1=\"66\" x2=\"109\" y2=\"66\" />\n", | |
| " <line x1=\"77\" y1=\"67\" x2=\"110\" y2=\"67\" />\n", | |
| " <line x1=\"78\" y1=\"68\" x2=\"111\" y2=\"68\" />\n", | |
| " <line x1=\"79\" y1=\"69\" x2=\"112\" y2=\"69\" />\n", | |
| " <line x1=\"79\" y1=\"69\" x2=\"112\" y2=\"69\" />\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"113\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"43\" y1=\"0\" x2=\"113\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"10.000000,0.000000 43.070939,0.000000 113.659174,70.588235 80.588235,70.588235\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"113\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"80\" y1=\"100\" x2=\"113\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"113\" y1=\"70\" x2=\"113\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"80.588235,70.588235 113.659174,70.588235 113.659174,100.855707 80.588235,100.855707\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Text -->\n", | |
| " <text x=\"97.123705\" y=\"120.855707\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >576</text>\n", | |
| " <text x=\"133.659174\" y=\"85.721971\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,133.659174,85.721971)\">361</text>\n", | |
| " <text x=\"35.294118\" y=\"85.561589\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,85.561589)\">14549</text>\n", | |
| "</svg>\n", | |
| "</td>\n", | |
| "</tr>\n", | |
| "</table>" | |
| ], | |
| "text/plain": [ | |
| "dask.array<zarr, shape=(14549, 361, 576), dtype=float32, chunksize=(160, 361, 576), chunktype=numpy.ndarray>" | |
| ] | |
| }, | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "ds.t2mmax.data" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Default, No Rechunking" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<table>\n", | |
| "<tr>\n", | |
| "<td>\n", | |
| "<table>\n", | |
| " <thead>\n", | |
| " <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr><th> Bytes </th><td> 831.74 kB </td> <td> 831.74 kB </td></tr>\n", | |
| " <tr><th> Shape </th><td> (361, 576) </td> <td> (361, 576) </td></tr>\n", | |
| " <tr><th> Count </th><td> 98818 Tasks </td><td> 1 Chunks </td></tr>\n", | |
| " <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</td>\n", | |
| "<td>\n", | |
| "<svg width=\"170\" height=\"125\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"0\" y1=\"75\" x2=\"120\" y2=\"75\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"75\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"75\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"0.000000,0.000000 120.000000,0.000000 120.000000,75.208333 0.000000,75.208333\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Text -->\n", | |
| " <text x=\"60.000000\" y=\"95.208333\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >576</text>\n", | |
| " <text x=\"140.000000\" y=\"37.604167\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,37.604167)\">361</text>\n", | |
| "</svg>\n", | |
| "</td>\n", | |
| "</tr>\n", | |
| "</table>" | |
| ], | |
| "text/plain": [ | |
| "dask.array<sqrt, shape=(361, 576), dtype=float32, chunksize=(361, 576), chunktype=numpy.ndarray>" | |
| ] | |
| }, | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gb = ds.groupby('T.dayofyear')\n", | |
| "clim = gb.mean(dim='T')\n", | |
| "anom = gb - clim\n", | |
| "anom_std = anom.std(dim='T')\n", | |
| "anom_std.t2mmax.data" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<table style=\"border: 2px solid white;\">\n", | |
| "<tr>\n", | |
| "<td style=\"vertical-align: top; border: 0px solid white\">\n", | |
| "<h3 style=\"text-align: left;\">Client</h3>\n", | |
| "<ul style=\"text-align: left; list-style: none; margin: 0; padding: 0;\">\n", | |
| " <li><b>Scheduler: </b>tcp://10.32.5.32:43525</li>\n", | |
| " <li><b>Dashboard: </b><a href='/user/0000-0001-5999-4917/proxy/8787/status' target='_blank'>/user/0000-0001-5999-4917/proxy/8787/status</a>\n", | |
| "</ul>\n", | |
| "</td>\n", | |
| "<td style=\"vertical-align: top; border: 0px solid white\">\n", | |
| "<h3 style=\"text-align: left;\">Cluster</h3>\n", | |
| "<ul style=\"text-align: left; list-style:none; margin: 0; padding: 0;\">\n", | |
| " <li><b>Workers: </b>8</li>\n", | |
| " <li><b>Cores: </b>16</li>\n", | |
| " <li><b>Memory: </b>92.00 GB</li>\n", | |
| "</ul>\n", | |
| "</td>\n", | |
| "</tr>\n", | |
| "</table>" | |
| ], | |
| "text/plain": [ | |
| "<Client: 'tcp://10.32.5.32:43525' processes=8 threads=16, memory=92.00 GB>" | |
| ] | |
| }, | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "from dask.distributed import Client\n", | |
| "\n", | |
| "client = Client(\"tcp://10.32.5.32:43525\")\n", | |
| "client" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "We see we have balooned up to almost 100,000 tasks" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stderr", | |
| "output_type": "stream", | |
| "text": [ | |
| "distributed.comm.tcp - WARNING - Closing dangling stream in <TCP local=tcp://10.32.5.32:35186 remote=tcp://10.32.5.32:43525>\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "CPU times: user 15.9 s, sys: 1.62 s, total: 17.5 s\n", | |
| "Wall time: 1min 42s\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<xarray.Dataset>\n", | |
| "Dimensions: (X: 576, Y: 361)\n", | |
| "Coordinates:\n", | |
| " * X (X) float32 -180.0 -179.375 -178.75 ... 178.125 178.75 179.375\n", | |
| " * Y (Y) float32 -90.0 -89.5 -89.0 -88.5 -88.0 ... 88.5 89.0 89.5 90.0\n", | |
| "Data variables:\n", | |
| " t2mmax (Y, X) float32 4.9812975 4.9812975 4.9812975 ... 4.5095 4.5095" | |
| ] | |
| }, | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "%time anom_std.load()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Two minutes is a really long time to process 12 GB of data. And the dask cluster almost choked in the process.\n", | |
| "\n", | |
| "The parallelism became too fine-grained, resulting in too much communication overhead.\n", | |
| "\n", | |
| "### With Rechunking\n", | |
| "\n", | |
| "Since the operation is embarassingly parallel in the space dimension, but the data are chunked in the time dimension, one idea is that rechunking could help." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<table>\n", | |
| "<tr>\n", | |
| "<td>\n", | |
| "<table>\n", | |
| " <thead>\n", | |
| " <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr><th> Bytes </th><td> 12.10 GB </td> <td> 100.56 MB </td></tr>\n", | |
| " <tr><th> Shape </th><td> (14549, 361, 576) </td> <td> (14549, 3, 576) </td></tr>\n", | |
| " <tr><th> Count </th><td> 2360 Tasks </td><td> 121 Chunks </td></tr>\n", | |
| " <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</td>\n", | |
| "<td>\n", | |
| "<svg width=\"163\" height=\"150\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" />\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"71\" />\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"71\" />\n", | |
| " <line x1=\"10\" y1=\"1\" x2=\"80\" y2=\"71\" />\n", | |
| " <line x1=\"10\" y1=\"1\" x2=\"80\" y2=\"71\" />\n", | |
| " <line x1=\"10\" y1=\"1\" x2=\"80\" y2=\"72\" />\n", | |
| " <line x1=\"10\" y1=\"1\" x2=\"80\" y2=\"72\" />\n", | |
| " <line x1=\"10\" y1=\"2\" x2=\"80\" y2=\"72\" />\n", | |
| " <line x1=\"10\" y1=\"2\" x2=\"80\" y2=\"72\" />\n", | |
| " <line x1=\"10\" y1=\"2\" x2=\"80\" y2=\"73\" />\n", | |
| " <line x1=\"10\" y1=\"2\" x2=\"80\" y2=\"73\" />\n", | |
| " <line x1=\"10\" y1=\"3\" x2=\"80\" y2=\"73\" />\n", | |
| " <line x1=\"10\" y1=\"3\" x2=\"80\" y2=\"73\" />\n", | |
| " <line x1=\"10\" y1=\"3\" x2=\"80\" y2=\"74\" />\n", | |
| " <line x1=\"10\" y1=\"3\" x2=\"80\" y2=\"74\" />\n", | |
| " <line x1=\"10\" y1=\"4\" x2=\"80\" y2=\"74\" />\n", | |
| " <line x1=\"10\" y1=\"4\" x2=\"80\" y2=\"74\" />\n", | |
| " <line x1=\"10\" y1=\"4\" x2=\"80\" y2=\"75\" />\n", | |
| " <line x1=\"10\" y1=\"4\" x2=\"80\" y2=\"75\" />\n", | |
| " <line x1=\"10\" y1=\"5\" x2=\"80\" y2=\"75\" />\n", | |
| " <line x1=\"10\" y1=\"5\" x2=\"80\" y2=\"75\" />\n", | |
| " <line x1=\"10\" y1=\"5\" x2=\"80\" y2=\"76\" />\n", | |
| " <line x1=\"10\" y1=\"5\" x2=\"80\" y2=\"76\" />\n", | |
| " <line x1=\"10\" y1=\"6\" x2=\"80\" y2=\"76\" />\n", | |
| " <line x1=\"10\" y1=\"6\" x2=\"80\" y2=\"76\" />\n", | |
| " <line x1=\"10\" y1=\"6\" x2=\"80\" y2=\"77\" />\n", | |
| " <line x1=\"10\" y1=\"6\" x2=\"80\" y2=\"77\" />\n", | |
| " <line x1=\"10\" y1=\"7\" x2=\"80\" y2=\"77\" />\n", | |
| " <line x1=\"10\" y1=\"7\" x2=\"80\" y2=\"77\" />\n", | |
| " <line x1=\"10\" y1=\"7\" x2=\"80\" y2=\"78\" />\n", | |
| " <line x1=\"10\" y1=\"7\" x2=\"80\" y2=\"78\" />\n", | |
| " <line x1=\"10\" y1=\"8\" x2=\"80\" y2=\"78\" />\n", | |
| " <line x1=\"10\" y1=\"8\" x2=\"80\" y2=\"78\" />\n", | |
| " <line x1=\"10\" y1=\"8\" x2=\"80\" y2=\"79\" />\n", | |
| " <line x1=\"10\" y1=\"8\" x2=\"80\" y2=\"79\" />\n", | |
| " <line x1=\"10\" y1=\"9\" x2=\"80\" y2=\"79\" />\n", | |
| " <line x1=\"10\" y1=\"9\" x2=\"80\" y2=\"79\" />\n", | |
| " <line x1=\"10\" y1=\"9\" x2=\"80\" y2=\"80\" />\n", | |
| " <line x1=\"10\" y1=\"9\" x2=\"80\" y2=\"80\" />\n", | |
| " <line x1=\"10\" y1=\"10\" x2=\"80\" y2=\"80\" />\n", | |
| " <line x1=\"10\" y1=\"10\" x2=\"80\" y2=\"80\" />\n", | |
| " <line x1=\"10\" y1=\"10\" x2=\"80\" y2=\"81\" />\n", | |
| " <line x1=\"10\" y1=\"10\" x2=\"80\" y2=\"81\" />\n", | |
| " <line x1=\"10\" y1=\"11\" x2=\"80\" y2=\"81\" />\n", | |
| " <line x1=\"10\" y1=\"11\" x2=\"80\" y2=\"81\" />\n", | |
| " <line x1=\"10\" y1=\"11\" x2=\"80\" y2=\"82\" />\n", | |
| " <line x1=\"10\" y1=\"11\" x2=\"80\" y2=\"82\" />\n", | |
| " <line x1=\"10\" y1=\"12\" x2=\"80\" y2=\"82\" />\n", | |
| " <line x1=\"10\" y1=\"12\" x2=\"80\" y2=\"82\" />\n", | |
| " <line x1=\"10\" y1=\"12\" x2=\"80\" y2=\"83\" />\n", | |
| " <line x1=\"10\" y1=\"12\" x2=\"80\" y2=\"83\" />\n", | |
| " <line x1=\"10\" y1=\"13\" x2=\"80\" y2=\"83\" />\n", | |
| " <line x1=\"10\" y1=\"13\" x2=\"80\" y2=\"83\" />\n", | |
| " <line x1=\"10\" y1=\"13\" x2=\"80\" y2=\"84\" />\n", | |
| " <line x1=\"10\" y1=\"13\" x2=\"80\" y2=\"84\" />\n", | |
| " <line x1=\"10\" y1=\"14\" x2=\"80\" y2=\"84\" />\n", | |
| " <line x1=\"10\" y1=\"14\" x2=\"80\" y2=\"84\" />\n", | |
| " <line x1=\"10\" y1=\"14\" x2=\"80\" y2=\"85\" />\n", | |
| " <line x1=\"10\" y1=\"14\" x2=\"80\" y2=\"85\" />\n", | |
| " <line x1=\"10\" y1=\"15\" x2=\"80\" y2=\"85\" />\n", | |
| " <line x1=\"10\" y1=\"15\" x2=\"80\" y2=\"85\" />\n", | |
| " <line x1=\"10\" y1=\"15\" x2=\"80\" y2=\"86\" />\n", | |
| " <line x1=\"10\" y1=\"15\" x2=\"80\" y2=\"86\" />\n", | |
| " <line x1=\"10\" y1=\"16\" x2=\"80\" y2=\"86\" />\n", | |
| " <line x1=\"10\" y1=\"16\" x2=\"80\" y2=\"86\" />\n", | |
| " <line x1=\"10\" y1=\"16\" x2=\"80\" y2=\"87\" />\n", | |
| " <line x1=\"10\" y1=\"16\" x2=\"80\" y2=\"87\" />\n", | |
| " <line x1=\"10\" y1=\"17\" x2=\"80\" y2=\"87\" />\n", | |
| " <line x1=\"10\" y1=\"17\" x2=\"80\" y2=\"87\" />\n", | |
| " <line x1=\"10\" y1=\"17\" x2=\"80\" y2=\"88\" />\n", | |
| " <line x1=\"10\" y1=\"17\" x2=\"80\" y2=\"88\" />\n", | |
| " <line x1=\"10\" y1=\"18\" x2=\"80\" y2=\"88\" />\n", | |
| " <line x1=\"10\" y1=\"18\" x2=\"80\" y2=\"88\" />\n", | |
| " <line x1=\"10\" y1=\"18\" x2=\"80\" y2=\"89\" />\n", | |
| " <line x1=\"10\" y1=\"18\" x2=\"80\" y2=\"89\" />\n", | |
| " <line x1=\"10\" y1=\"19\" x2=\"80\" y2=\"89\" />\n", | |
| " <line x1=\"10\" y1=\"19\" x2=\"80\" y2=\"89\" />\n", | |
| " <line x1=\"10\" y1=\"19\" x2=\"80\" y2=\"90\" />\n", | |
| " <line x1=\"10\" y1=\"19\" x2=\"80\" y2=\"90\" />\n", | |
| " <line x1=\"10\" y1=\"20\" x2=\"80\" y2=\"90\" />\n", | |
| " <line x1=\"10\" y1=\"20\" x2=\"80\" y2=\"90\" />\n", | |
| " <line x1=\"10\" y1=\"20\" x2=\"80\" y2=\"91\" />\n", | |
| " <line x1=\"10\" y1=\"20\" x2=\"80\" y2=\"91\" />\n", | |
| " <line x1=\"10\" y1=\"21\" x2=\"80\" y2=\"91\" />\n", | |
| " <line x1=\"10\" y1=\"21\" x2=\"80\" y2=\"91\" />\n", | |
| " <line x1=\"10\" y1=\"21\" x2=\"80\" y2=\"92\" />\n", | |
| " <line x1=\"10\" y1=\"21\" x2=\"80\" y2=\"92\" />\n", | |
| " <line x1=\"10\" y1=\"22\" x2=\"80\" y2=\"92\" />\n", | |
| " <line x1=\"10\" y1=\"22\" x2=\"80\" y2=\"92\" />\n", | |
| " <line x1=\"10\" y1=\"22\" x2=\"80\" y2=\"93\" />\n", | |
| " <line x1=\"10\" y1=\"22\" x2=\"80\" y2=\"93\" />\n", | |
| " <line x1=\"10\" y1=\"23\" x2=\"80\" y2=\"93\" />\n", | |
| " <line x1=\"10\" y1=\"23\" x2=\"80\" y2=\"93\" />\n", | |
| " <line x1=\"10\" y1=\"23\" x2=\"80\" y2=\"94\" />\n", | |
| " <line x1=\"10\" y1=\"23\" x2=\"80\" y2=\"94\" />\n", | |
| " <line x1=\"10\" y1=\"24\" x2=\"80\" y2=\"94\" />\n", | |
| " <line x1=\"10\" y1=\"24\" x2=\"80\" y2=\"94\" />\n", | |
| " <line x1=\"10\" y1=\"24\" x2=\"80\" y2=\"95\" />\n", | |
| " <line x1=\"10\" y1=\"24\" x2=\"80\" y2=\"95\" />\n", | |
| " <line x1=\"10\" y1=\"25\" x2=\"80\" y2=\"95\" />\n", | |
| " <line x1=\"10\" y1=\"25\" x2=\"80\" y2=\"95\" />\n", | |
| " <line x1=\"10\" y1=\"25\" x2=\"80\" y2=\"96\" />\n", | |
| " <line x1=\"10\" y1=\"25\" x2=\"80\" y2=\"96\" />\n", | |
| " <line x1=\"10\" y1=\"26\" x2=\"80\" y2=\"96\" />\n", | |
| " <line x1=\"10\" y1=\"26\" x2=\"80\" y2=\"96\" />\n", | |
| " <line x1=\"10\" y1=\"26\" x2=\"80\" y2=\"97\" />\n", | |
| " <line x1=\"10\" y1=\"26\" x2=\"80\" y2=\"97\" />\n", | |
| " <line x1=\"10\" y1=\"27\" x2=\"80\" y2=\"97\" />\n", | |
| " <line x1=\"10\" y1=\"27\" x2=\"80\" y2=\"98\" />\n", | |
| " <line x1=\"10\" y1=\"27\" x2=\"80\" y2=\"98\" />\n", | |
| " <line x1=\"10\" y1=\"27\" x2=\"80\" y2=\"98\" />\n", | |
| " <line x1=\"10\" y1=\"28\" x2=\"80\" y2=\"98\" />\n", | |
| " <line x1=\"10\" y1=\"28\" x2=\"80\" y2=\"99\" />\n", | |
| " <line x1=\"10\" y1=\"28\" x2=\"80\" y2=\"99\" />\n", | |
| " <line x1=\"10\" y1=\"28\" x2=\"80\" y2=\"99\" />\n", | |
| " <line x1=\"10\" y1=\"29\" x2=\"80\" y2=\"99\" />\n", | |
| " <line x1=\"10\" y1=\"29\" x2=\"80\" y2=\"100\" />\n", | |
| " <line x1=\"10\" y1=\"29\" x2=\"80\" y2=\"100\" />\n", | |
| " <line x1=\"10\" y1=\"29\" x2=\"80\" y2=\"100\" />\n", | |
| " <line x1=\"10\" y1=\"30\" x2=\"80\" y2=\"100\" />\n", | |
| " <line x1=\"10\" y1=\"30\" x2=\"80\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"30\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"10.000000,0.000000 80.588235,70.588235 80.588235,100.855707 10.000000,30.267472\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"113\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"43\" y1=\"0\" x2=\"113\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"10.000000,0.000000 43.070939,0.000000 113.659174,70.588235 80.588235,70.588235\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"113\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"113\" y2=\"70\" />\n", | |
| " <line x1=\"80\" y1=\"71\" x2=\"113\" y2=\"71\" />\n", | |
| " <line x1=\"80\" y1=\"71\" x2=\"113\" y2=\"71\" />\n", | |
| " <line x1=\"80\" y1=\"71\" x2=\"113\" y2=\"71\" />\n", | |
| " <line x1=\"80\" y1=\"71\" x2=\"113\" y2=\"71\" />\n", | |
| " <line x1=\"80\" y1=\"72\" x2=\"113\" y2=\"72\" />\n", | |
| " <line x1=\"80\" y1=\"72\" x2=\"113\" y2=\"72\" />\n", | |
| " <line x1=\"80\" y1=\"72\" x2=\"113\" y2=\"72\" />\n", | |
| " <line x1=\"80\" y1=\"72\" x2=\"113\" y2=\"72\" />\n", | |
| " <line x1=\"80\" y1=\"73\" x2=\"113\" y2=\"73\" />\n", | |
| " <line x1=\"80\" y1=\"73\" x2=\"113\" y2=\"73\" />\n", | |
| " <line x1=\"80\" y1=\"73\" x2=\"113\" y2=\"73\" />\n", | |
| " <line x1=\"80\" y1=\"73\" x2=\"113\" y2=\"73\" />\n", | |
| " <line x1=\"80\" y1=\"74\" x2=\"113\" y2=\"74\" />\n", | |
| " <line x1=\"80\" y1=\"74\" x2=\"113\" y2=\"74\" />\n", | |
| " <line x1=\"80\" y1=\"74\" x2=\"113\" y2=\"74\" />\n", | |
| " <line x1=\"80\" y1=\"74\" x2=\"113\" y2=\"74\" />\n", | |
| " <line x1=\"80\" y1=\"75\" x2=\"113\" y2=\"75\" />\n", | |
| " <line x1=\"80\" y1=\"75\" x2=\"113\" y2=\"75\" />\n", | |
| " <line x1=\"80\" y1=\"75\" x2=\"113\" y2=\"75\" />\n", | |
| " <line x1=\"80\" y1=\"75\" x2=\"113\" y2=\"75\" />\n", | |
| " <line x1=\"80\" y1=\"76\" x2=\"113\" y2=\"76\" />\n", | |
| " <line x1=\"80\" y1=\"76\" x2=\"113\" y2=\"76\" />\n", | |
| " <line x1=\"80\" y1=\"76\" x2=\"113\" y2=\"76\" />\n", | |
| " <line x1=\"80\" y1=\"76\" x2=\"113\" y2=\"76\" />\n", | |
| " <line x1=\"80\" y1=\"77\" x2=\"113\" y2=\"77\" />\n", | |
| " <line x1=\"80\" y1=\"77\" x2=\"113\" y2=\"77\" />\n", | |
| " <line x1=\"80\" y1=\"77\" x2=\"113\" y2=\"77\" />\n", | |
| " <line x1=\"80\" y1=\"77\" x2=\"113\" y2=\"77\" />\n", | |
| " <line x1=\"80\" y1=\"78\" x2=\"113\" y2=\"78\" />\n", | |
| " <line x1=\"80\" y1=\"78\" x2=\"113\" y2=\"78\" />\n", | |
| " <line x1=\"80\" y1=\"78\" x2=\"113\" y2=\"78\" />\n", | |
| " <line x1=\"80\" y1=\"78\" x2=\"113\" y2=\"78\" />\n", | |
| " <line x1=\"80\" y1=\"79\" x2=\"113\" y2=\"79\" />\n", | |
| " <line x1=\"80\" y1=\"79\" x2=\"113\" y2=\"79\" />\n", | |
| " <line x1=\"80\" y1=\"79\" x2=\"113\" y2=\"79\" />\n", | |
| " <line x1=\"80\" y1=\"79\" x2=\"113\" y2=\"79\" />\n", | |
| " <line x1=\"80\" y1=\"80\" x2=\"113\" y2=\"80\" />\n", | |
| " <line x1=\"80\" y1=\"80\" x2=\"113\" y2=\"80\" />\n", | |
| " <line x1=\"80\" y1=\"80\" x2=\"113\" y2=\"80\" />\n", | |
| " <line x1=\"80\" y1=\"80\" x2=\"113\" y2=\"80\" />\n", | |
| " <line x1=\"80\" y1=\"81\" x2=\"113\" y2=\"81\" />\n", | |
| " <line x1=\"80\" y1=\"81\" x2=\"113\" y2=\"81\" />\n", | |
| " <line x1=\"80\" y1=\"81\" x2=\"113\" y2=\"81\" />\n", | |
| " <line x1=\"80\" y1=\"81\" x2=\"113\" y2=\"81\" />\n", | |
| " <line x1=\"80\" y1=\"82\" x2=\"113\" y2=\"82\" />\n", | |
| " <line x1=\"80\" y1=\"82\" x2=\"113\" y2=\"82\" />\n", | |
| " <line x1=\"80\" y1=\"82\" x2=\"113\" y2=\"82\" />\n", | |
| " <line x1=\"80\" y1=\"82\" x2=\"113\" y2=\"82\" />\n", | |
| " <line x1=\"80\" y1=\"83\" x2=\"113\" y2=\"83\" />\n", | |
| " <line x1=\"80\" y1=\"83\" x2=\"113\" y2=\"83\" />\n", | |
| " <line x1=\"80\" y1=\"83\" x2=\"113\" y2=\"83\" />\n", | |
| " <line x1=\"80\" y1=\"83\" x2=\"113\" y2=\"83\" />\n", | |
| " <line x1=\"80\" y1=\"84\" x2=\"113\" y2=\"84\" />\n", | |
| " <line x1=\"80\" y1=\"84\" x2=\"113\" y2=\"84\" />\n", | |
| " <line x1=\"80\" y1=\"84\" x2=\"113\" y2=\"84\" />\n", | |
| " <line x1=\"80\" y1=\"84\" x2=\"113\" y2=\"84\" />\n", | |
| " <line x1=\"80\" y1=\"85\" x2=\"113\" y2=\"85\" />\n", | |
| " <line x1=\"80\" y1=\"85\" x2=\"113\" y2=\"85\" />\n", | |
| " <line x1=\"80\" y1=\"85\" x2=\"113\" y2=\"85\" />\n", | |
| " <line x1=\"80\" y1=\"85\" x2=\"113\" y2=\"85\" />\n", | |
| " <line x1=\"80\" y1=\"86\" x2=\"113\" y2=\"86\" />\n", | |
| " <line x1=\"80\" y1=\"86\" x2=\"113\" y2=\"86\" />\n", | |
| " <line x1=\"80\" y1=\"86\" x2=\"113\" y2=\"86\" />\n", | |
| " <line x1=\"80\" y1=\"86\" x2=\"113\" y2=\"86\" />\n", | |
| " <line x1=\"80\" y1=\"87\" x2=\"113\" y2=\"87\" />\n", | |
| " <line x1=\"80\" y1=\"87\" x2=\"113\" y2=\"87\" />\n", | |
| " <line x1=\"80\" y1=\"87\" x2=\"113\" y2=\"87\" />\n", | |
| " <line x1=\"80\" y1=\"87\" x2=\"113\" y2=\"87\" />\n", | |
| " <line x1=\"80\" y1=\"88\" x2=\"113\" y2=\"88\" />\n", | |
| " <line x1=\"80\" y1=\"88\" x2=\"113\" y2=\"88\" />\n", | |
| " <line x1=\"80\" y1=\"88\" x2=\"113\" y2=\"88\" />\n", | |
| " <line x1=\"80\" y1=\"88\" x2=\"113\" y2=\"88\" />\n", | |
| " <line x1=\"80\" y1=\"89\" x2=\"113\" y2=\"89\" />\n", | |
| " <line x1=\"80\" y1=\"89\" x2=\"113\" y2=\"89\" />\n", | |
| " <line x1=\"80\" y1=\"89\" x2=\"113\" y2=\"89\" />\n", | |
| " <line x1=\"80\" y1=\"89\" x2=\"113\" y2=\"89\" />\n", | |
| " <line x1=\"80\" y1=\"90\" x2=\"113\" y2=\"90\" />\n", | |
| " <line x1=\"80\" y1=\"90\" x2=\"113\" y2=\"90\" />\n", | |
| " <line x1=\"80\" y1=\"90\" x2=\"113\" y2=\"90\" />\n", | |
| " <line x1=\"80\" y1=\"90\" x2=\"113\" y2=\"90\" />\n", | |
| " <line x1=\"80\" y1=\"91\" x2=\"113\" y2=\"91\" />\n", | |
| " <line x1=\"80\" y1=\"91\" x2=\"113\" y2=\"91\" />\n", | |
| " <line x1=\"80\" y1=\"91\" x2=\"113\" y2=\"91\" />\n", | |
| " <line x1=\"80\" y1=\"91\" x2=\"113\" y2=\"91\" />\n", | |
| " <line x1=\"80\" y1=\"92\" x2=\"113\" y2=\"92\" />\n", | |
| " <line x1=\"80\" y1=\"92\" x2=\"113\" y2=\"92\" />\n", | |
| " <line x1=\"80\" y1=\"92\" x2=\"113\" y2=\"92\" />\n", | |
| " <line x1=\"80\" y1=\"92\" x2=\"113\" y2=\"92\" />\n", | |
| " <line x1=\"80\" y1=\"93\" x2=\"113\" y2=\"93\" />\n", | |
| " <line x1=\"80\" y1=\"93\" x2=\"113\" y2=\"93\" />\n", | |
| " <line x1=\"80\" y1=\"93\" x2=\"113\" y2=\"93\" />\n", | |
| " <line x1=\"80\" y1=\"93\" x2=\"113\" y2=\"93\" />\n", | |
| " <line x1=\"80\" y1=\"94\" x2=\"113\" y2=\"94\" />\n", | |
| " <line x1=\"80\" y1=\"94\" x2=\"113\" y2=\"94\" />\n", | |
| " <line x1=\"80\" y1=\"94\" x2=\"113\" y2=\"94\" />\n", | |
| " <line x1=\"80\" y1=\"94\" x2=\"113\" y2=\"94\" />\n", | |
| " <line x1=\"80\" y1=\"95\" x2=\"113\" y2=\"95\" />\n", | |
| " <line x1=\"80\" y1=\"95\" x2=\"113\" y2=\"95\" />\n", | |
| " <line x1=\"80\" y1=\"95\" x2=\"113\" y2=\"95\" />\n", | |
| " <line x1=\"80\" y1=\"95\" x2=\"113\" y2=\"95\" />\n", | |
| " <line x1=\"80\" y1=\"96\" x2=\"113\" y2=\"96\" />\n", | |
| " <line x1=\"80\" y1=\"96\" x2=\"113\" y2=\"96\" />\n", | |
| " <line x1=\"80\" y1=\"96\" x2=\"113\" y2=\"96\" />\n", | |
| " <line x1=\"80\" y1=\"96\" x2=\"113\" y2=\"96\" />\n", | |
| " <line x1=\"80\" y1=\"97\" x2=\"113\" y2=\"97\" />\n", | |
| " <line x1=\"80\" y1=\"97\" x2=\"113\" y2=\"97\" />\n", | |
| " <line x1=\"80\" y1=\"97\" x2=\"113\" y2=\"97\" />\n", | |
| " <line x1=\"80\" y1=\"98\" x2=\"113\" y2=\"98\" />\n", | |
| " <line x1=\"80\" y1=\"98\" x2=\"113\" y2=\"98\" />\n", | |
| " <line x1=\"80\" y1=\"98\" x2=\"113\" y2=\"98\" />\n", | |
| " <line x1=\"80\" y1=\"98\" x2=\"113\" y2=\"98\" />\n", | |
| " <line x1=\"80\" y1=\"99\" x2=\"113\" y2=\"99\" />\n", | |
| " <line x1=\"80\" y1=\"99\" x2=\"113\" y2=\"99\" />\n", | |
| " <line x1=\"80\" y1=\"99\" x2=\"113\" y2=\"99\" />\n", | |
| " <line x1=\"80\" y1=\"99\" x2=\"113\" y2=\"99\" />\n", | |
| " <line x1=\"80\" y1=\"100\" x2=\"113\" y2=\"100\" />\n", | |
| " <line x1=\"80\" y1=\"100\" x2=\"113\" y2=\"100\" />\n", | |
| " <line x1=\"80\" y1=\"100\" x2=\"113\" y2=\"100\" />\n", | |
| " <line x1=\"80\" y1=\"100\" x2=\"113\" y2=\"100\" />\n", | |
| " <line x1=\"80\" y1=\"100\" x2=\"113\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"113\" y1=\"70\" x2=\"113\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"80.588235,70.588235 113.659174,70.588235 113.659174,100.855707 80.588235,100.855707\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Text -->\n", | |
| " <text x=\"97.123705\" y=\"120.855707\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >576</text>\n", | |
| " <text x=\"133.659174\" y=\"85.721971\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,133.659174,85.721971)\">361</text>\n", | |
| " <text x=\"35.294118\" y=\"85.561589\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,85.561589)\">14549</text>\n", | |
| "</svg>\n", | |
| "</td>\n", | |
| "</tr>\n", | |
| "</table>" | |
| ], | |
| "text/plain": [ | |
| "dask.array<rechunk-merge, shape=(14549, 361, 576), dtype=float32, chunksize=(14549, 3, 576), chunktype=numpy.ndarray>" | |
| ] | |
| }, | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "ds_rechunk = ds.chunk({'T': -1, 'Y': 3})\n", | |
| "ds_rechunk.t2mmax.data" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stderr", | |
| "output_type": "stream", | |
| "text": [ | |
| "/srv/conda/envs/notebook/lib/python3.7/site-packages/xarray/core/indexing.py:1311: PerformanceWarning: Slicing with an out-of-order index is generating 40 times more chunks\n", | |
| " return self.array[key]\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<table>\n", | |
| "<tr>\n", | |
| "<td>\n", | |
| "<table>\n", | |
| " <thead>\n", | |
| " <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr><th> Bytes </th><td> 831.74 kB </td> <td> 6.91 kB </td></tr>\n", | |
| " <tr><th> Shape </th><td> (361, 576) </td> <td> (3, 576) </td></tr>\n", | |
| " <tr><th> Count </th><td> 4509126 Tasks </td><td> 121 Chunks </td></tr>\n", | |
| " <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</td>\n", | |
| "<td>\n", | |
| "<svg width=\"170\" height=\"125\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" />\n", | |
| " <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
| " <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n", | |
| " <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n", | |
| " <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n", | |
| " <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n", | |
| " <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n", | |
| " <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
| " <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n", | |
| " <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
| " <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n", | |
| " <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n", | |
| " <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
| " <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n", | |
| " <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n", | |
| " <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
| " <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n", | |
| " <line x1=\"0\" y1=\"11\" x2=\"120\" y2=\"11\" />\n", | |
| " <line x1=\"0\" y1=\"11\" x2=\"120\" y2=\"11\" />\n", | |
| " <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n", | |
| " <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
| " <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n", | |
| " <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n", | |
| " <line x1=\"0\" y1=\"15\" x2=\"120\" y2=\"15\" />\n", | |
| " <line x1=\"0\" y1=\"15\" x2=\"120\" y2=\"15\" />\n", | |
| " <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
| " <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", | |
| " <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n", | |
| " <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
| " <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n", | |
| " <line x1=\"0\" y1=\"19\" x2=\"120\" y2=\"19\" />\n", | |
| " <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
| " <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n", | |
| " <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
| " <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n", | |
| " <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n", | |
| " <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n", | |
| " <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n", | |
| " <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n", | |
| " <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n", | |
| " <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n", | |
| " <line x1=\"0\" y1=\"26\" x2=\"120\" y2=\"26\" />\n", | |
| " <line x1=\"0\" y1=\"26\" x2=\"120\" y2=\"26\" />\n", | |
| " <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n", | |
| " <line x1=\"0\" y1=\"28\" x2=\"120\" y2=\"28\" />\n", | |
| " <line x1=\"0\" y1=\"28\" x2=\"120\" y2=\"28\" />\n", | |
| " <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n", | |
| " <line x1=\"0\" y1=\"30\" x2=\"120\" y2=\"30\" />\n", | |
| " <line x1=\"0\" y1=\"30\" x2=\"120\" y2=\"30\" />\n", | |
| " <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n", | |
| " <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n", | |
| " <line x1=\"0\" y1=\"32\" x2=\"120\" y2=\"32\" />\n", | |
| " <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n", | |
| " <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n", | |
| " <line x1=\"0\" y1=\"34\" x2=\"120\" y2=\"34\" />\n", | |
| " <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" />\n", | |
| " <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" />\n", | |
| " <line x1=\"0\" y1=\"36\" x2=\"120\" y2=\"36\" />\n", | |
| " <line x1=\"0\" y1=\"36\" x2=\"120\" y2=\"36\" />\n", | |
| " <line x1=\"0\" y1=\"37\" x2=\"120\" y2=\"37\" />\n", | |
| " <line x1=\"0\" y1=\"38\" x2=\"120\" y2=\"38\" />\n", | |
| " <line x1=\"0\" y1=\"38\" x2=\"120\" y2=\"38\" />\n", | |
| " <line x1=\"0\" y1=\"39\" x2=\"120\" y2=\"39\" />\n", | |
| " <line x1=\"0\" y1=\"40\" x2=\"120\" y2=\"40\" />\n", | |
| " <line x1=\"0\" y1=\"40\" x2=\"120\" y2=\"40\" />\n", | |
| " <line x1=\"0\" y1=\"41\" x2=\"120\" y2=\"41\" />\n", | |
| " <line x1=\"0\" y1=\"41\" x2=\"120\" y2=\"41\" />\n", | |
| " <line x1=\"0\" y1=\"42\" x2=\"120\" y2=\"42\" />\n", | |
| " <line x1=\"0\" y1=\"43\" x2=\"120\" y2=\"43\" />\n", | |
| " <line x1=\"0\" y1=\"43\" x2=\"120\" y2=\"43\" />\n", | |
| " <line x1=\"0\" y1=\"44\" x2=\"120\" y2=\"44\" />\n", | |
| " <line x1=\"0\" y1=\"44\" x2=\"120\" y2=\"44\" />\n", | |
| " <line x1=\"0\" y1=\"45\" x2=\"120\" y2=\"45\" />\n", | |
| " <line x1=\"0\" y1=\"46\" x2=\"120\" y2=\"46\" />\n", | |
| " <line x1=\"0\" y1=\"46\" x2=\"120\" y2=\"46\" />\n", | |
| " <line x1=\"0\" y1=\"47\" x2=\"120\" y2=\"47\" />\n", | |
| " <line x1=\"0\" y1=\"48\" x2=\"120\" y2=\"48\" />\n", | |
| " <line x1=\"0\" y1=\"48\" x2=\"120\" y2=\"48\" />\n", | |
| " <line x1=\"0\" y1=\"49\" x2=\"120\" y2=\"49\" />\n", | |
| " <line x1=\"0\" y1=\"50\" x2=\"120\" y2=\"50\" />\n", | |
| " <line x1=\"0\" y1=\"50\" x2=\"120\" y2=\"50\" />\n", | |
| " <line x1=\"0\" y1=\"51\" x2=\"120\" y2=\"51\" />\n", | |
| " <line x1=\"0\" y1=\"51\" x2=\"120\" y2=\"51\" />\n", | |
| " <line x1=\"0\" y1=\"52\" x2=\"120\" y2=\"52\" />\n", | |
| " <line x1=\"0\" y1=\"53\" x2=\"120\" y2=\"53\" />\n", | |
| " <line x1=\"0\" y1=\"53\" x2=\"120\" y2=\"53\" />\n", | |
| " <line x1=\"0\" y1=\"54\" x2=\"120\" y2=\"54\" />\n", | |
| " <line x1=\"0\" y1=\"55\" x2=\"120\" y2=\"55\" />\n", | |
| " <line x1=\"0\" y1=\"55\" x2=\"120\" y2=\"55\" />\n", | |
| " <line x1=\"0\" y1=\"56\" x2=\"120\" y2=\"56\" />\n", | |
| " <line x1=\"0\" y1=\"56\" x2=\"120\" y2=\"56\" />\n", | |
| " <line x1=\"0\" y1=\"57\" x2=\"120\" y2=\"57\" />\n", | |
| " <line x1=\"0\" y1=\"58\" x2=\"120\" y2=\"58\" />\n", | |
| " <line x1=\"0\" y1=\"58\" x2=\"120\" y2=\"58\" />\n", | |
| " <line x1=\"0\" y1=\"59\" x2=\"120\" y2=\"59\" />\n", | |
| " <line x1=\"0\" y1=\"60\" x2=\"120\" y2=\"60\" />\n", | |
| " <line x1=\"0\" y1=\"60\" x2=\"120\" y2=\"60\" />\n", | |
| " <line x1=\"0\" y1=\"61\" x2=\"120\" y2=\"61\" />\n", | |
| " <line x1=\"0\" y1=\"61\" x2=\"120\" y2=\"61\" />\n", | |
| " <line x1=\"0\" y1=\"62\" x2=\"120\" y2=\"62\" />\n", | |
| " <line x1=\"0\" y1=\"63\" x2=\"120\" y2=\"63\" />\n", | |
| " <line x1=\"0\" y1=\"63\" x2=\"120\" y2=\"63\" />\n", | |
| " <line x1=\"0\" y1=\"64\" x2=\"120\" y2=\"64\" />\n", | |
| " <line x1=\"0\" y1=\"65\" x2=\"120\" y2=\"65\" />\n", | |
| " <line x1=\"0\" y1=\"65\" x2=\"120\" y2=\"65\" />\n", | |
| " <line x1=\"0\" y1=\"66\" x2=\"120\" y2=\"66\" />\n", | |
| " <line x1=\"0\" y1=\"66\" x2=\"120\" y2=\"66\" />\n", | |
| " <line x1=\"0\" y1=\"67\" x2=\"120\" y2=\"67\" />\n", | |
| " <line x1=\"0\" y1=\"68\" x2=\"120\" y2=\"68\" />\n", | |
| " <line x1=\"0\" y1=\"68\" x2=\"120\" y2=\"68\" />\n", | |
| " <line x1=\"0\" y1=\"69\" x2=\"120\" y2=\"69\" />\n", | |
| " <line x1=\"0\" y1=\"70\" x2=\"120\" y2=\"70\" />\n", | |
| " <line x1=\"0\" y1=\"70\" x2=\"120\" y2=\"70\" />\n", | |
| " <line x1=\"0\" y1=\"71\" x2=\"120\" y2=\"71\" />\n", | |
| " <line x1=\"0\" y1=\"71\" x2=\"120\" y2=\"71\" />\n", | |
| " <line x1=\"0\" y1=\"72\" x2=\"120\" y2=\"72\" />\n", | |
| " <line x1=\"0\" y1=\"73\" x2=\"120\" y2=\"73\" />\n", | |
| " <line x1=\"0\" y1=\"73\" x2=\"120\" y2=\"73\" />\n", | |
| " <line x1=\"0\" y1=\"74\" x2=\"120\" y2=\"74\" />\n", | |
| " <line x1=\"0\" y1=\"75\" x2=\"120\" y2=\"75\" />\n", | |
| " <line x1=\"0\" y1=\"75\" x2=\"120\" y2=\"75\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"75\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"75\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"0.000000,0.000000 120.000000,0.000000 120.000000,75.208333 0.000000,75.208333\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Text -->\n", | |
| " <text x=\"60.000000\" y=\"95.208333\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >576</text>\n", | |
| " <text x=\"140.000000\" y=\"37.604167\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,37.604167)\">361</text>\n", | |
| "</svg>\n", | |
| "</td>\n", | |
| "</tr>\n", | |
| "</table>" | |
| ], | |
| "text/plain": [ | |
| "dask.array<sqrt, shape=(361, 576), dtype=float32, chunksize=(3, 576), chunktype=numpy.ndarray>" | |
| ] | |
| }, | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "gb = ds_rechunk.groupby('T.dayofyear')\n", | |
| "clim = gb.mean(dim='T')\n", | |
| "anom = gb - clim\n", | |
| "anom_std = anom.std(dim='T')\n", | |
| "anom_std.t2mmax.data" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "This created **4.5 million tasks**! Clearly not the solution we were hoping for. I'm not even going to try to compute it. For whatever reason, the way these operation (mostly indexing and broadcasting) are interpreted by dask array does not allow them to leverage the parallelism we know is possible.\n", | |
| "\n", | |
| "### The Workaround: `Xarray.map_blocks`\n", | |
| "\n", | |
| "Since the computation is embarassingly parallel in the space dimension, I could use `dask.array.map_blocks` to operate on each chunk in isolation. The problem is, I don't know how to write the groupby and broadcasting logic in pure numpy. I need xarray and its indexes.\n", | |
| "\n", | |
| "The solution is xarray's new `map_blocks` function." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def calculate_anomaly(ds):\n", | |
| " # needed to workaround xarray's check with zero dimensions\n", | |
| " # https://github.com/pydata/xarray/issues/3575\n", | |
| " if len(ds['T']) == 0:\n", | |
| " return ds\n", | |
| " gb = ds.groupby(\"T.dayofyear\")\n", | |
| " clim = gb.mean(dim='T')\n", | |
| " return gb - clim" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<table>\n", | |
| "<tr>\n", | |
| "<td>\n", | |
| "<table>\n", | |
| " <thead>\n", | |
| " <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr><th> Bytes </th><td> 12.10 GB </td> <td> 100.56 MB </td></tr>\n", | |
| " <tr><th> Shape </th><td> (14549, 361, 576) </td> <td> (14549, 3, 576) </td></tr>\n", | |
| " <tr><th> Count </th><td> 3086 Tasks </td><td> 121 Chunks </td></tr>\n", | |
| " <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</td>\n", | |
| "<td>\n", | |
| "<svg width=\"163\" height=\"150\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" />\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"71\" />\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"71\" />\n", | |
| " <line x1=\"10\" y1=\"1\" x2=\"80\" y2=\"71\" />\n", | |
| " <line x1=\"10\" y1=\"1\" x2=\"80\" y2=\"71\" />\n", | |
| " <line x1=\"10\" y1=\"1\" x2=\"80\" y2=\"72\" />\n", | |
| " <line x1=\"10\" y1=\"1\" x2=\"80\" y2=\"72\" />\n", | |
| " <line x1=\"10\" y1=\"2\" x2=\"80\" y2=\"72\" />\n", | |
| " <line x1=\"10\" y1=\"2\" x2=\"80\" y2=\"72\" />\n", | |
| " <line x1=\"10\" y1=\"2\" x2=\"80\" y2=\"73\" />\n", | |
| " <line x1=\"10\" y1=\"2\" x2=\"80\" y2=\"73\" />\n", | |
| " <line x1=\"10\" y1=\"3\" x2=\"80\" y2=\"73\" />\n", | |
| " <line x1=\"10\" y1=\"3\" x2=\"80\" y2=\"73\" />\n", | |
| " <line x1=\"10\" y1=\"3\" x2=\"80\" y2=\"74\" />\n", | |
| " <line x1=\"10\" y1=\"3\" x2=\"80\" y2=\"74\" />\n", | |
| " <line x1=\"10\" y1=\"4\" x2=\"80\" y2=\"74\" />\n", | |
| " <line x1=\"10\" y1=\"4\" x2=\"80\" y2=\"74\" />\n", | |
| " <line x1=\"10\" y1=\"4\" x2=\"80\" y2=\"75\" />\n", | |
| " <line x1=\"10\" y1=\"4\" x2=\"80\" y2=\"75\" />\n", | |
| " <line x1=\"10\" y1=\"5\" x2=\"80\" y2=\"75\" />\n", | |
| " <line x1=\"10\" y1=\"5\" x2=\"80\" y2=\"75\" />\n", | |
| " <line x1=\"10\" y1=\"5\" x2=\"80\" y2=\"76\" />\n", | |
| " <line x1=\"10\" y1=\"5\" x2=\"80\" y2=\"76\" />\n", | |
| " <line x1=\"10\" y1=\"6\" x2=\"80\" y2=\"76\" />\n", | |
| " <line x1=\"10\" y1=\"6\" x2=\"80\" y2=\"76\" />\n", | |
| " <line x1=\"10\" y1=\"6\" x2=\"80\" y2=\"77\" />\n", | |
| " <line x1=\"10\" y1=\"6\" x2=\"80\" y2=\"77\" />\n", | |
| " <line x1=\"10\" y1=\"7\" x2=\"80\" y2=\"77\" />\n", | |
| " <line x1=\"10\" y1=\"7\" x2=\"80\" y2=\"77\" />\n", | |
| " <line x1=\"10\" y1=\"7\" x2=\"80\" y2=\"78\" />\n", | |
| " <line x1=\"10\" y1=\"7\" x2=\"80\" y2=\"78\" />\n", | |
| " <line x1=\"10\" y1=\"8\" x2=\"80\" y2=\"78\" />\n", | |
| " <line x1=\"10\" y1=\"8\" x2=\"80\" y2=\"78\" />\n", | |
| " <line x1=\"10\" y1=\"8\" x2=\"80\" y2=\"79\" />\n", | |
| " <line x1=\"10\" y1=\"8\" x2=\"80\" y2=\"79\" />\n", | |
| " <line x1=\"10\" y1=\"9\" x2=\"80\" y2=\"79\" />\n", | |
| " <line x1=\"10\" y1=\"9\" x2=\"80\" y2=\"79\" />\n", | |
| " <line x1=\"10\" y1=\"9\" x2=\"80\" y2=\"80\" />\n", | |
| " <line x1=\"10\" y1=\"9\" x2=\"80\" y2=\"80\" />\n", | |
| " <line x1=\"10\" y1=\"10\" x2=\"80\" y2=\"80\" />\n", | |
| " <line x1=\"10\" y1=\"10\" x2=\"80\" y2=\"80\" />\n", | |
| " <line x1=\"10\" y1=\"10\" x2=\"80\" y2=\"81\" />\n", | |
| " <line x1=\"10\" y1=\"10\" x2=\"80\" y2=\"81\" />\n", | |
| " <line x1=\"10\" y1=\"11\" x2=\"80\" y2=\"81\" />\n", | |
| " <line x1=\"10\" y1=\"11\" x2=\"80\" y2=\"81\" />\n", | |
| " <line x1=\"10\" y1=\"11\" x2=\"80\" y2=\"82\" />\n", | |
| " <line x1=\"10\" y1=\"11\" x2=\"80\" y2=\"82\" />\n", | |
| " <line x1=\"10\" y1=\"12\" x2=\"80\" y2=\"82\" />\n", | |
| " <line x1=\"10\" y1=\"12\" x2=\"80\" y2=\"82\" />\n", | |
| " <line x1=\"10\" y1=\"12\" x2=\"80\" y2=\"83\" />\n", | |
| " <line x1=\"10\" y1=\"12\" x2=\"80\" y2=\"83\" />\n", | |
| " <line x1=\"10\" y1=\"13\" x2=\"80\" y2=\"83\" />\n", | |
| " <line x1=\"10\" y1=\"13\" x2=\"80\" y2=\"83\" />\n", | |
| " <line x1=\"10\" y1=\"13\" x2=\"80\" y2=\"84\" />\n", | |
| " <line x1=\"10\" y1=\"13\" x2=\"80\" y2=\"84\" />\n", | |
| " <line x1=\"10\" y1=\"14\" x2=\"80\" y2=\"84\" />\n", | |
| " <line x1=\"10\" y1=\"14\" x2=\"80\" y2=\"84\" />\n", | |
| " <line x1=\"10\" y1=\"14\" x2=\"80\" y2=\"85\" />\n", | |
| " <line x1=\"10\" y1=\"14\" x2=\"80\" y2=\"85\" />\n", | |
| " <line x1=\"10\" y1=\"15\" x2=\"80\" y2=\"85\" />\n", | |
| " <line x1=\"10\" y1=\"15\" x2=\"80\" y2=\"85\" />\n", | |
| " <line x1=\"10\" y1=\"15\" x2=\"80\" y2=\"86\" />\n", | |
| " <line x1=\"10\" y1=\"15\" x2=\"80\" y2=\"86\" />\n", | |
| " <line x1=\"10\" y1=\"16\" x2=\"80\" y2=\"86\" />\n", | |
| " <line x1=\"10\" y1=\"16\" x2=\"80\" y2=\"86\" />\n", | |
| " <line x1=\"10\" y1=\"16\" x2=\"80\" y2=\"87\" />\n", | |
| " <line x1=\"10\" y1=\"16\" x2=\"80\" y2=\"87\" />\n", | |
| " <line x1=\"10\" y1=\"17\" x2=\"80\" y2=\"87\" />\n", | |
| " <line x1=\"10\" y1=\"17\" x2=\"80\" y2=\"87\" />\n", | |
| " <line x1=\"10\" y1=\"17\" x2=\"80\" y2=\"88\" />\n", | |
| " <line x1=\"10\" y1=\"17\" x2=\"80\" y2=\"88\" />\n", | |
| " <line x1=\"10\" y1=\"18\" x2=\"80\" y2=\"88\" />\n", | |
| " <line x1=\"10\" y1=\"18\" x2=\"80\" y2=\"88\" />\n", | |
| " <line x1=\"10\" y1=\"18\" x2=\"80\" y2=\"89\" />\n", | |
| " <line x1=\"10\" y1=\"18\" x2=\"80\" y2=\"89\" />\n", | |
| " <line x1=\"10\" y1=\"19\" x2=\"80\" y2=\"89\" />\n", | |
| " <line x1=\"10\" y1=\"19\" x2=\"80\" y2=\"89\" />\n", | |
| " <line x1=\"10\" y1=\"19\" x2=\"80\" y2=\"90\" />\n", | |
| " <line x1=\"10\" y1=\"19\" x2=\"80\" y2=\"90\" />\n", | |
| " <line x1=\"10\" y1=\"20\" x2=\"80\" y2=\"90\" />\n", | |
| " <line x1=\"10\" y1=\"20\" x2=\"80\" y2=\"90\" />\n", | |
| " <line x1=\"10\" y1=\"20\" x2=\"80\" y2=\"91\" />\n", | |
| " <line x1=\"10\" y1=\"20\" x2=\"80\" y2=\"91\" />\n", | |
| " <line x1=\"10\" y1=\"21\" x2=\"80\" y2=\"91\" />\n", | |
| " <line x1=\"10\" y1=\"21\" x2=\"80\" y2=\"91\" />\n", | |
| " <line x1=\"10\" y1=\"21\" x2=\"80\" y2=\"92\" />\n", | |
| " <line x1=\"10\" y1=\"21\" x2=\"80\" y2=\"92\" />\n", | |
| " <line x1=\"10\" y1=\"22\" x2=\"80\" y2=\"92\" />\n", | |
| " <line x1=\"10\" y1=\"22\" x2=\"80\" y2=\"92\" />\n", | |
| " <line x1=\"10\" y1=\"22\" x2=\"80\" y2=\"93\" />\n", | |
| " <line x1=\"10\" y1=\"22\" x2=\"80\" y2=\"93\" />\n", | |
| " <line x1=\"10\" y1=\"23\" x2=\"80\" y2=\"93\" />\n", | |
| " <line x1=\"10\" y1=\"23\" x2=\"80\" y2=\"93\" />\n", | |
| " <line x1=\"10\" y1=\"23\" x2=\"80\" y2=\"94\" />\n", | |
| " <line x1=\"10\" y1=\"23\" x2=\"80\" y2=\"94\" />\n", | |
| " <line x1=\"10\" y1=\"24\" x2=\"80\" y2=\"94\" />\n", | |
| " <line x1=\"10\" y1=\"24\" x2=\"80\" y2=\"94\" />\n", | |
| " <line x1=\"10\" y1=\"24\" x2=\"80\" y2=\"95\" />\n", | |
| " <line x1=\"10\" y1=\"24\" x2=\"80\" y2=\"95\" />\n", | |
| " <line x1=\"10\" y1=\"25\" x2=\"80\" y2=\"95\" />\n", | |
| " <line x1=\"10\" y1=\"25\" x2=\"80\" y2=\"95\" />\n", | |
| " <line x1=\"10\" y1=\"25\" x2=\"80\" y2=\"96\" />\n", | |
| " <line x1=\"10\" y1=\"25\" x2=\"80\" y2=\"96\" />\n", | |
| " <line x1=\"10\" y1=\"26\" x2=\"80\" y2=\"96\" />\n", | |
| " <line x1=\"10\" y1=\"26\" x2=\"80\" y2=\"96\" />\n", | |
| " <line x1=\"10\" y1=\"26\" x2=\"80\" y2=\"97\" />\n", | |
| " <line x1=\"10\" y1=\"26\" x2=\"80\" y2=\"97\" />\n", | |
| " <line x1=\"10\" y1=\"27\" x2=\"80\" y2=\"97\" />\n", | |
| " <line x1=\"10\" y1=\"27\" x2=\"80\" y2=\"98\" />\n", | |
| " <line x1=\"10\" y1=\"27\" x2=\"80\" y2=\"98\" />\n", | |
| " <line x1=\"10\" y1=\"27\" x2=\"80\" y2=\"98\" />\n", | |
| " <line x1=\"10\" y1=\"28\" x2=\"80\" y2=\"98\" />\n", | |
| " <line x1=\"10\" y1=\"28\" x2=\"80\" y2=\"99\" />\n", | |
| " <line x1=\"10\" y1=\"28\" x2=\"80\" y2=\"99\" />\n", | |
| " <line x1=\"10\" y1=\"28\" x2=\"80\" y2=\"99\" />\n", | |
| " <line x1=\"10\" y1=\"29\" x2=\"80\" y2=\"99\" />\n", | |
| " <line x1=\"10\" y1=\"29\" x2=\"80\" y2=\"100\" />\n", | |
| " <line x1=\"10\" y1=\"29\" x2=\"80\" y2=\"100\" />\n", | |
| " <line x1=\"10\" y1=\"29\" x2=\"80\" y2=\"100\" />\n", | |
| " <line x1=\"10\" y1=\"30\" x2=\"80\" y2=\"100\" />\n", | |
| " <line x1=\"10\" y1=\"30\" x2=\"80\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"30\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"10.000000,0.000000 80.588235,70.588235 80.588235,100.855707 10.000000,30.267472\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"113\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"43\" y1=\"0\" x2=\"113\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"10.000000,0.000000 43.070939,0.000000 113.659174,70.588235 80.588235,70.588235\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"113\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"113\" y2=\"70\" />\n", | |
| " <line x1=\"80\" y1=\"71\" x2=\"113\" y2=\"71\" />\n", | |
| " <line x1=\"80\" y1=\"71\" x2=\"113\" y2=\"71\" />\n", | |
| " <line x1=\"80\" y1=\"71\" x2=\"113\" y2=\"71\" />\n", | |
| " <line x1=\"80\" y1=\"71\" x2=\"113\" y2=\"71\" />\n", | |
| " <line x1=\"80\" y1=\"72\" x2=\"113\" y2=\"72\" />\n", | |
| " <line x1=\"80\" y1=\"72\" x2=\"113\" y2=\"72\" />\n", | |
| " <line x1=\"80\" y1=\"72\" x2=\"113\" y2=\"72\" />\n", | |
| " <line x1=\"80\" y1=\"72\" x2=\"113\" y2=\"72\" />\n", | |
| " <line x1=\"80\" y1=\"73\" x2=\"113\" y2=\"73\" />\n", | |
| " <line x1=\"80\" y1=\"73\" x2=\"113\" y2=\"73\" />\n", | |
| " <line x1=\"80\" y1=\"73\" x2=\"113\" y2=\"73\" />\n", | |
| " <line x1=\"80\" y1=\"73\" x2=\"113\" y2=\"73\" />\n", | |
| " <line x1=\"80\" y1=\"74\" x2=\"113\" y2=\"74\" />\n", | |
| " <line x1=\"80\" y1=\"74\" x2=\"113\" y2=\"74\" />\n", | |
| " <line x1=\"80\" y1=\"74\" x2=\"113\" y2=\"74\" />\n", | |
| " <line x1=\"80\" y1=\"74\" x2=\"113\" y2=\"74\" />\n", | |
| " <line x1=\"80\" y1=\"75\" x2=\"113\" y2=\"75\" />\n", | |
| " <line x1=\"80\" y1=\"75\" x2=\"113\" y2=\"75\" />\n", | |
| " <line x1=\"80\" y1=\"75\" x2=\"113\" y2=\"75\" />\n", | |
| " <line x1=\"80\" y1=\"75\" x2=\"113\" y2=\"75\" />\n", | |
| " <line x1=\"80\" y1=\"76\" x2=\"113\" y2=\"76\" />\n", | |
| " <line x1=\"80\" y1=\"76\" x2=\"113\" y2=\"76\" />\n", | |
| " <line x1=\"80\" y1=\"76\" x2=\"113\" y2=\"76\" />\n", | |
| " <line x1=\"80\" y1=\"76\" x2=\"113\" y2=\"76\" />\n", | |
| " <line x1=\"80\" y1=\"77\" x2=\"113\" y2=\"77\" />\n", | |
| " <line x1=\"80\" y1=\"77\" x2=\"113\" y2=\"77\" />\n", | |
| " <line x1=\"80\" y1=\"77\" x2=\"113\" y2=\"77\" />\n", | |
| " <line x1=\"80\" y1=\"77\" x2=\"113\" y2=\"77\" />\n", | |
| " <line x1=\"80\" y1=\"78\" x2=\"113\" y2=\"78\" />\n", | |
| " <line x1=\"80\" y1=\"78\" x2=\"113\" y2=\"78\" />\n", | |
| " <line x1=\"80\" y1=\"78\" x2=\"113\" y2=\"78\" />\n", | |
| " <line x1=\"80\" y1=\"78\" x2=\"113\" y2=\"78\" />\n", | |
| " <line x1=\"80\" y1=\"79\" x2=\"113\" y2=\"79\" />\n", | |
| " <line x1=\"80\" y1=\"79\" x2=\"113\" y2=\"79\" />\n", | |
| " <line x1=\"80\" y1=\"79\" x2=\"113\" y2=\"79\" />\n", | |
| " <line x1=\"80\" y1=\"79\" x2=\"113\" y2=\"79\" />\n", | |
| " <line x1=\"80\" y1=\"80\" x2=\"113\" y2=\"80\" />\n", | |
| " <line x1=\"80\" y1=\"80\" x2=\"113\" y2=\"80\" />\n", | |
| " <line x1=\"80\" y1=\"80\" x2=\"113\" y2=\"80\" />\n", | |
| " <line x1=\"80\" y1=\"80\" x2=\"113\" y2=\"80\" />\n", | |
| " <line x1=\"80\" y1=\"81\" x2=\"113\" y2=\"81\" />\n", | |
| " <line x1=\"80\" y1=\"81\" x2=\"113\" y2=\"81\" />\n", | |
| " <line x1=\"80\" y1=\"81\" x2=\"113\" y2=\"81\" />\n", | |
| " <line x1=\"80\" y1=\"81\" x2=\"113\" y2=\"81\" />\n", | |
| " <line x1=\"80\" y1=\"82\" x2=\"113\" y2=\"82\" />\n", | |
| " <line x1=\"80\" y1=\"82\" x2=\"113\" y2=\"82\" />\n", | |
| " <line x1=\"80\" y1=\"82\" x2=\"113\" y2=\"82\" />\n", | |
| " <line x1=\"80\" y1=\"82\" x2=\"113\" y2=\"82\" />\n", | |
| " <line x1=\"80\" y1=\"83\" x2=\"113\" y2=\"83\" />\n", | |
| " <line x1=\"80\" y1=\"83\" x2=\"113\" y2=\"83\" />\n", | |
| " <line x1=\"80\" y1=\"83\" x2=\"113\" y2=\"83\" />\n", | |
| " <line x1=\"80\" y1=\"83\" x2=\"113\" y2=\"83\" />\n", | |
| " <line x1=\"80\" y1=\"84\" x2=\"113\" y2=\"84\" />\n", | |
| " <line x1=\"80\" y1=\"84\" x2=\"113\" y2=\"84\" />\n", | |
| " <line x1=\"80\" y1=\"84\" x2=\"113\" y2=\"84\" />\n", | |
| " <line x1=\"80\" y1=\"84\" x2=\"113\" y2=\"84\" />\n", | |
| " <line x1=\"80\" y1=\"85\" x2=\"113\" y2=\"85\" />\n", | |
| " <line x1=\"80\" y1=\"85\" x2=\"113\" y2=\"85\" />\n", | |
| " <line x1=\"80\" y1=\"85\" x2=\"113\" y2=\"85\" />\n", | |
| " <line x1=\"80\" y1=\"85\" x2=\"113\" y2=\"85\" />\n", | |
| " <line x1=\"80\" y1=\"86\" x2=\"113\" y2=\"86\" />\n", | |
| " <line x1=\"80\" y1=\"86\" x2=\"113\" y2=\"86\" />\n", | |
| " <line x1=\"80\" y1=\"86\" x2=\"113\" y2=\"86\" />\n", | |
| " <line x1=\"80\" y1=\"86\" x2=\"113\" y2=\"86\" />\n", | |
| " <line x1=\"80\" y1=\"87\" x2=\"113\" y2=\"87\" />\n", | |
| " <line x1=\"80\" y1=\"87\" x2=\"113\" y2=\"87\" />\n", | |
| " <line x1=\"80\" y1=\"87\" x2=\"113\" y2=\"87\" />\n", | |
| " <line x1=\"80\" y1=\"87\" x2=\"113\" y2=\"87\" />\n", | |
| " <line x1=\"80\" y1=\"88\" x2=\"113\" y2=\"88\" />\n", | |
| " <line x1=\"80\" y1=\"88\" x2=\"113\" y2=\"88\" />\n", | |
| " <line x1=\"80\" y1=\"88\" x2=\"113\" y2=\"88\" />\n", | |
| " <line x1=\"80\" y1=\"88\" x2=\"113\" y2=\"88\" />\n", | |
| " <line x1=\"80\" y1=\"89\" x2=\"113\" y2=\"89\" />\n", | |
| " <line x1=\"80\" y1=\"89\" x2=\"113\" y2=\"89\" />\n", | |
| " <line x1=\"80\" y1=\"89\" x2=\"113\" y2=\"89\" />\n", | |
| " <line x1=\"80\" y1=\"89\" x2=\"113\" y2=\"89\" />\n", | |
| " <line x1=\"80\" y1=\"90\" x2=\"113\" y2=\"90\" />\n", | |
| " <line x1=\"80\" y1=\"90\" x2=\"113\" y2=\"90\" />\n", | |
| " <line x1=\"80\" y1=\"90\" x2=\"113\" y2=\"90\" />\n", | |
| " <line x1=\"80\" y1=\"90\" x2=\"113\" y2=\"90\" />\n", | |
| " <line x1=\"80\" y1=\"91\" x2=\"113\" y2=\"91\" />\n", | |
| " <line x1=\"80\" y1=\"91\" x2=\"113\" y2=\"91\" />\n", | |
| " <line x1=\"80\" y1=\"91\" x2=\"113\" y2=\"91\" />\n", | |
| " <line x1=\"80\" y1=\"91\" x2=\"113\" y2=\"91\" />\n", | |
| " <line x1=\"80\" y1=\"92\" x2=\"113\" y2=\"92\" />\n", | |
| " <line x1=\"80\" y1=\"92\" x2=\"113\" y2=\"92\" />\n", | |
| " <line x1=\"80\" y1=\"92\" x2=\"113\" y2=\"92\" />\n", | |
| " <line x1=\"80\" y1=\"92\" x2=\"113\" y2=\"92\" />\n", | |
| " <line x1=\"80\" y1=\"93\" x2=\"113\" y2=\"93\" />\n", | |
| " <line x1=\"80\" y1=\"93\" x2=\"113\" y2=\"93\" />\n", | |
| " <line x1=\"80\" y1=\"93\" x2=\"113\" y2=\"93\" />\n", | |
| " <line x1=\"80\" y1=\"93\" x2=\"113\" y2=\"93\" />\n", | |
| " <line x1=\"80\" y1=\"94\" x2=\"113\" y2=\"94\" />\n", | |
| " <line x1=\"80\" y1=\"94\" x2=\"113\" y2=\"94\" />\n", | |
| " <line x1=\"80\" y1=\"94\" x2=\"113\" y2=\"94\" />\n", | |
| " <line x1=\"80\" y1=\"94\" x2=\"113\" y2=\"94\" />\n", | |
| " <line x1=\"80\" y1=\"95\" x2=\"113\" y2=\"95\" />\n", | |
| " <line x1=\"80\" y1=\"95\" x2=\"113\" y2=\"95\" />\n", | |
| " <line x1=\"80\" y1=\"95\" x2=\"113\" y2=\"95\" />\n", | |
| " <line x1=\"80\" y1=\"95\" x2=\"113\" y2=\"95\" />\n", | |
| " <line x1=\"80\" y1=\"96\" x2=\"113\" y2=\"96\" />\n", | |
| " <line x1=\"80\" y1=\"96\" x2=\"113\" y2=\"96\" />\n", | |
| " <line x1=\"80\" y1=\"96\" x2=\"113\" y2=\"96\" />\n", | |
| " <line x1=\"80\" y1=\"96\" x2=\"113\" y2=\"96\" />\n", | |
| " <line x1=\"80\" y1=\"97\" x2=\"113\" y2=\"97\" />\n", | |
| " <line x1=\"80\" y1=\"97\" x2=\"113\" y2=\"97\" />\n", | |
| " <line x1=\"80\" y1=\"97\" x2=\"113\" y2=\"97\" />\n", | |
| " <line x1=\"80\" y1=\"98\" x2=\"113\" y2=\"98\" />\n", | |
| " <line x1=\"80\" y1=\"98\" x2=\"113\" y2=\"98\" />\n", | |
| " <line x1=\"80\" y1=\"98\" x2=\"113\" y2=\"98\" />\n", | |
| " <line x1=\"80\" y1=\"98\" x2=\"113\" y2=\"98\" />\n", | |
| " <line x1=\"80\" y1=\"99\" x2=\"113\" y2=\"99\" />\n", | |
| " <line x1=\"80\" y1=\"99\" x2=\"113\" y2=\"99\" />\n", | |
| " <line x1=\"80\" y1=\"99\" x2=\"113\" y2=\"99\" />\n", | |
| " <line x1=\"80\" y1=\"99\" x2=\"113\" y2=\"99\" />\n", | |
| " <line x1=\"80\" y1=\"100\" x2=\"113\" y2=\"100\" />\n", | |
| " <line x1=\"80\" y1=\"100\" x2=\"113\" y2=\"100\" />\n", | |
| " <line x1=\"80\" y1=\"100\" x2=\"113\" y2=\"100\" />\n", | |
| " <line x1=\"80\" y1=\"100\" x2=\"113\" y2=\"100\" />\n", | |
| " <line x1=\"80\" y1=\"100\" x2=\"113\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"113\" y1=\"70\" x2=\"113\" y2=\"100\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"80.588235,70.588235 113.659174,70.588235 113.659174,100.855707 80.588235,100.855707\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Text -->\n", | |
| " <text x=\"97.123705\" y=\"120.855707\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >576</text>\n", | |
| " <text x=\"133.659174\" y=\"85.721971\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,133.659174,85.721971)\">361</text>\n", | |
| " <text x=\"35.294118\" y=\"85.561589\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,85.561589)\">14549</text>\n", | |
| "</svg>\n", | |
| "</td>\n", | |
| "</tr>\n", | |
| "</table>" | |
| ], | |
| "text/plain": [ | |
| "dask.array<calculate_anomaly-854c1ec3710eb079e918e762c56a56f4-<this, shape=(14549, 361, 576), dtype=float32, chunksize=(14549, 3, 576), chunktype=numpy.ndarray>" | |
| ] | |
| }, | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "t2mmax_anom = xr.map_blocks(calculate_anomaly, ds_rechunk.t2mmax)\n", | |
| "t2mmax_anom.data" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "That seems great! Only 300 chunks! Let's see how it performs." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "CPU times: user 1.21 s, sys: 39.9 ms, total: 1.25 s\n", | |
| "Wall time: 1min 5s\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%time t2mmax_std = t2mmax_anom.std(dim='T').load()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "This was about twice as fast. Moreover, it feels like a more scalable approach." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 15, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.collections.QuadMesh at 0x7f1e54a4a4a8>" | |
| ] | |
| }, | |
| "execution_count": 15, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEGCAYAAACEgjUUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9aaxsS5bf9VsRe2fmme70phq6m6puy02blmxEy2IQEhYzH7CMBAIJsMzQSIBAmA8YhPAHCwSWEXxDtGUJJASyGSxG2W0hwTeGthvTDbbpsbqqXtWb7nSGzNx7Ryw+rBWxI/Pmuffc+857r+r1Cb37zjmZe4wd+x9r/dd/rRBV5a7dtbt21+7al7uFL/oC7tpdu2t37a599u0O7O/aXbtrd+23QbsD+7t21+7aXftt0O7A/q7dtbt2134btDuwv2t37a7dtd8GrfuiL+A2Wjw50f7Boy/6Mu7aXbtrPwRt+/53PlbVdz7NMf7e33einzxON9r2L/7f2z+vqn/fpznfbbQvBdj3Dx7xY//8H/6iL+MHv8mb7aZvuN+ttc/g/F/4PV3T5LNUQv+Aqazf6F5v4R5+5d/8w9/6tMf45HHi//jzP3ajbeNXf+XtT3u+22hfCrAHXjkIPtOX6HNqrwVQh7Z9WR+85NiH+u5TX8ubHutNz/ODNgCuuelX9sVr3MYLt/wm/fwG3faZdfXLjvs5P14FMvnzPemnbF8asL/xALtmu5ftv/8Cvs5gvk1QfK2XqNn2RtdQtj+0bfPZK4914PudfQ4e/8Ube+U+15z3Nvv7jduNntO80bXP9TXBbf84L2xyqHNe9T7s73KDeyuneeV4/Qws+89rTleUUW9G4/ygtC8N2O8Pgjd6gfa3Efv9RphwzUavHHztfvsv6xsA6xtdw85JD5xX53PtHOsQwDbbvngh11+cyoHv949/zfflOG/sIXxa0N/vk9cFnGvHqrziez+lNn/ub9tu0z68isiHj38tYJe+esk9vhHIfx4gfssTwZ1l/0U0vWYwvAHg7xzn0LvxkmPeKg8szUssh9/TNx68b+JBNNdSj5Gbw7Wf7/VF/VUPALffnKif4lXAXn/OF3mw32/ijVz3MF+HAjv0LF4xEF6wwK+bIHzDuv111E+7+TVj46Xj95rzfyqD6VXbvs75Xqd9Tpa/oqQfslIzXw6wh/khv87Dfo1nFa6ZxHdA7boX6WX7HbCU9z9/Afde1zu57rv9319xHQDyEhzb6Yvr7rsV+0qx6MUwv/08uEvlE107EWjYvSgNzJ3STgqHOu4VNNPBSZXXBb5rDqIvfHv9uPX9pJ0g98BlfxLQ5lhtX7bnqIZDe+B2rF0zNj6tMfWmFOTL2v6zupXJ6TVa/kGLeL+iffnAnpsPzFcOjuss6BuAw8uOd9PtXjqB3YQuaKzvF75q3vUX7qF4SgcmIrnOc71m+/rd/mdiIF3pG5l/rxNAcCBvgF+DTSQVp9rvyznCHqUjioTdv+u2ZdcDz2Tno1dRLe1HO8/t+gHyQh+32/hBFHafocoubeMHqla9z5raHnvfM6wfa93+0DM/CPzXOUMvG4tvss9L9rut83+apkC6pQOLyL8M/LPYk/iTqvof3sqB99qXAuz33uvd9pLn8VJe8tCLeOiYe8B/kO++yXZ7Ftihtv/CvsyyUTkAzDpvozJ7Ky1fLvklfXgICNr7U3ZAY/8+23PXQwegAX2N/i/YtWiA3IkBfGjonp2O8Z8O+tXyF/cwWote9m+k2V/ZeU7XTl6HNmqt6p2vG6t77wHOFvsM4PUGZd6X0F6Lon5+2TvWCxb7vkHQ/L0P5PvP/CZA/7oAe2PvYH9Mcc3fX3C7DcteRH4aA/rfCwzAnxOR/1FVf+VTH3yvfSnAHq6xkl627aH2muB+3bEPAvk111Bf0kP7ceBaG6N0x3JrQVodyNU/z8zWoUDuIJ1CWkAcIAwQthCmZnsccP26VEC7vWsslnYGmZp7L8DN7me5s3+i8/WIgqSGJiv94oCv0ffrgSDk6H0WdkEdUTSaBS8F3BuQlxbw9/5+GTW10/V71jIKuv/Q9j9zC12qW7d/0LLTHhVT/igTgbJr9Wu5HqljYcZ4ny32gb2djPHj6d73L1wbLx5n//v9cxz4/uD+7TY3BfIbPqvPuikw3g5n/1PA/6aqVwAi8r8CfwD447dx8LZ9acD+MwN6+PQD7IB1v389N+UcC3hKnj+XCUJixxupYBkgrezvigFiANtd+bYBphMD8zBA/7xYiQ24BxpaZdcbUObv6kQRDaDTUm0SmQTJEEaQwSeWaT52PZCfM0zzRzFgIN/ZcdMoqE8AeaFuNYNE9WMpEuwf2MRQg51NJ4vY36qy87nto2g+RNFIBWRtKZUyYSMOtuX6Z9BtPoRynAbE6/xTjhnsnrSZCHeAP9uHiuxO/vUc8ziRncni+rG2YzQdmAhesPgPAf512+9fY/m7BfqXvWuvmBA+z0Q5RV+HxnlbRH6h+fvnVPXn/PdfBv5tEXkLWAP/APAL+we4jfblAHttQPAaCxle4Xa2rvyr2isG3bXXUAb2Ta7twPGlfYGyAbbkGejLOXMP6di2KSC9cxzfvlrtPgr6Z9Bt/diZao0blWKTxnTk+wXIvaFTGP2SnYKp52C+HhFFktRJIIxUMArT/Luk+fgwTyLamSdS7z+BBEGSb9vSMWJgXWgccbehgHvZBqiAXqzxYvHndLhslLaWewPY2gDpPEnIDIjNJEEWZBRCsgmQJN4H84xfPalOoVOLQ8TmIVcw37PgfRKwvpQdz64CeZnEpfkdDoL14U6Yf74yoHuTcZ13v7/WM77umvx9/FyNfoV0c8P+Y1X9mYOHUf0rIvLvAX8BuAD+MjAd2vbTti8H2Ht7VcDnRuqKfTr2uhE0v+8HueiDx3vpxR3Y9ZCl5EAdxhkUVRoA9Rc4bvx6GrCXyQHZLeRppXQXQn9ux42DvXg5GqiPZzA+mIl9DWrg02AZCnl54B4cmMkOaIjRLA44acUOWNX7Eeg2e8fy88ShAUG31jUaEM5BXCXEPIO4gI5dteALdaFjcKtXIM3nqA/UA7/Fuq5md26Qcf/ZZkGTINtAmGwikmReTb2Ptp/2jIZCW9nz8XsTB/zyDJrxJkkqoLfjpAK9GwOt5zcdQzpSwiDEtfV78ZJeMAr0wN971vxLAf46q3/vu/2+2O/WG2Pqqza8KVV0w1PdlspeVf8U8KcAROTfAb5zS4feaV8qsL91N+6mXO4hS2RvoriWpnnZC7F/2Nzw6g5QKvYCjyewODeQlwR54YDqLQxOeyyBDHmpLJ75Cz9B3DIHRFcG9HlhQGUWfAEcbAIpILt3Dy0lUbedrEOkWMC6a82Junfh9kxazBOX7NFTuJeRF2oAFRUcGAuVkVOAKaAZZAxmRQ8GjDtUiJ9bEjU2YABr95xPMtIpEjJ50yHbUPsIv/+qBgKb2JR5kkgzyBfrulUYaUNfSbbJMC8UXWYOBZor7SNi+/ukV/pSslM77TxUwH+y48QthLGZiNT6PeCAX+i+/bG3B/Jy6Pe9SeCVnkJ5R142ERx4bw6KIG767t8aRgjplg4mIu+q6oci8mPAPwT8Lbdy4L32pQH7G1nVrRX1JlQPN7Dkrzn3jfhM2HW3K7BSA6DlZS7HCBMG2FsD93xqL3TubBsNZtWNp1SXPoxw9JG98MHpluSTQ1pBWsJ4L880j9M1hUqQoK5y8ZsptElzb5p9JsqGVJrFuGcHH40OcIVXTyDRAFLx6xxma79Yn2lhE1XuHeQX2akatUklB8I6ENeBuIHu0jyFODR9S+O5nJilq9HuR6MiWZBJiM+7ClriE5wutHoUNRhcWrCL1ahoL2iZbIvHsA9K7h2ozL8DVUG0HziuNE0wHl8EcBpLkvVliRhk1Ggun1xyP8dJ/DJn2gwM8LdUTzB3VHrvOk9kZwz7mHyViueghX8NWGt7vkNeeWtM7e98HRV0S02B8fasy//aOfsR+BdU9cltHbhtXw6wL8BzYNDsWNTXgX+z7028vH1Fyo0si/2XZF8tw2ylVYur2a+8gOLXmJe7LzBiwK1iQKbBLfMM40oJo6CdsngsdGvzAMKkpKUwnBnHn3uYjmeLVftcKQQJBq6h4bxn0NcKesUC1RzIyUCeYKBfLVOnbrTwzU6NhARkCMPsHRQqKjv1pL0D/SK7KkfRJJAC3bNIdyX0z6G/grhRUxslnYPBYseKgxA3Qn8B67eF6UxBIW7EgdO8BwLkYoXH+d4Bm7wOSXnULl4retuH1ZtpB2W24LAGH0hawrvzNjXAHKAocep5593sV38mWvYX0CDzBNsxT/I+bmvcw616ST4hlP7fp5/Y+3vP6t8H+WuDvO17swf6RRpc37Xm8/a+2f36Wr7/tr1+hVuz7FX1b7+VA72ifWFgLyI/Cfzp5qMfB/4t4AGmO/3IP/83VPV/utlB7ccLargDz6RVm0g76N7k+d1kn2ZwloCkXRxzAM311DXgWrh2fwHrxOAvYgHDvHAgbF/MAgJRiVshjNA9MaAPg22SF0LuXX452gQiSZiOzWLVZPr2EiCUoMTeXIH9YGeratEsqFh0WEVREVTENCMKqCtdqhejkIWMENQCvxqFtJyDv6I+R/jkUq1h7JrJQlwL3SX0l9BfKXFQiwVkB1pVBz5BCmgG65uwscmQ7BTHZJ5H7hU6GySaxCkb2R0zNONo34rfB0SdYxjz2PHjiiN2iSWU5hNt4fDt4QkvgOyBMaeyNx+JjZUsNt6kUWklH0dmCGC0Wmzu8yUWfnlGB4F+//dDE0P7d/NOthNDmdDqbjd8V18wzm6p5c9T/nML7QsDe1X9a8DvARCRCHwX+LPAHwL+A1X9Ezc+FuwGl27wDLT55Y2e2b63sP9yc2Cgu2VXVCXBedPUMQfRsAAp7Fr8VYQR7fsiTcx90aA77eE0Te4Mo+sFumWnkR1XHXwiCaA+oWiEuDaRfe5s+7zI6FFiykKIGYlKCBBjJoRMDLN1ryqkLOQYyOoUjlv7rVa98Peagk0s62iT3eAUk9M4uXf8bFQ3psgJRj+sA3EtrD6BxbnSXypxq4RJkUnnCQWombmdEHohTOY6jEeQl1J5axWQkSa4OoOzBcR19jya8WMT917Q9Lrx1UwYrZS2PU/h0CVDWil5lV88xv5hC8DvHQ+YE9Z87FkcR0lHmXB/IA8RLjvi1qisvFQkwfITqfRgOcb++SsYl67O80/R+R5bb7RKhL0ftSSQuYfYGi+iM8jX38u97RtsreH3GVj3t2nZf17tB4XG+TuBX1PVb8lNM1zaVl6KT9NeZiG9ZisgX8ZfDag6EPdXM3glp1w0UjntQjVUPr7IESNMS+PV+4vZ2o/DLI2U5JbZAATYPnDOeg3LZxBGJUepipxyHcVr6C4gXhUde1OygEheRMa3R7KCqBIWs9I4xkxwOiegZGQG/WzIUCyhIl+cpsg0GMDLJB4TsADxsITFEzGF0ORWqAOGTC5dXAfiFvpz69Pl00y3UcKohCF7v6tZ8YCWwKYImhQZhTia7LE7EtJCqnVbEsok+cTaJKUZBy47/VefexlL7XhyMKtJac3kXSaM7dtqFEyS6lUUOigvqd6MJLkWtAqwiXt0iKC9ostkMYaoxKOJGLPlCwBdl0gpwBRJ2wij3Yzdm1aKZzrxY+9X9W0mlUMxKNH2ubmnFuYYUokpFUOlvgvueRQBVT1X6V+Z+27nuzJp7P3cud5baIqQfshWdf1BAft/FPgvmr//RRH5J7Hkgn/1UMBCRH4W+FmA7v7D+vm1Gt39tjcwb22O3nc3ZbaWBbfCRwOQ8q+Ae3aXWbIBNhni2Fh9Tv+E0T7Prj8PA3O9mGgvUgtYrWY9R6kvQb0unV+wnQBdk8EaHPTCZSSfgIREzkJsJtkC9CIQPVoXBVIJwjrVk7IwpTj3V5EQTkaxgPP2+w/FvaOwFcIodFeWGNZfQbeerfkwqiuXMoU2svOzCxRqGB6DVus5TJB6caDXJqt41zNIPWiU2k+1DxoL1j4o/W6eU80b8L5OKxgeKOl0IlzFGojPvRpHXygrds9RxtYLX/gcQWcgH5eJ1WokpWBdkQUJ5Tm5HFXc0BBgYX2mOVgeQIK4Nqtexnl8XMvj12vZ+778dMs9bn2z3Hga6uOuem5UGknb5/ayye669hlY93c0zms2EVkA/yDwr/tH/xHwx7Dh8ceAfx/4p/b38wy0nwNYff1HtR2AL8z2vPiQWyusuoSH+MOb3scerdN6lWnhwc9TU7jIKMStmAW+nTnzQlu0Qdnys74Ubm2WABZXxrXHwbjqOMxgooXuOeBWR6d6AjZptBZRoXqqOyyWCYsY0GoXLHibhZQCIkrOhl7BuaidQK5mkpqln9Us/SkFxnUH667KIjW6dTvNsQVpXvgwmWXbbSBemcfSbQzk41bptk7bJPtnndfyDA7qqCVliSBBCEkJUeg24kBm6FKexSGLNUfQ4J6Pg37pW+tzrRND7oXUQ1qa54BPFuMpjGd2z92TzibW5dxvLwY03TMqk2czyOr4dm4/Hk0cnQycrbbEkNlMHcPYsR060hQIUYmiLPoJEWXqItttRxqj0W5kNEXCVmqZi7Ck0kph3B1PNcbk173vAZTvUkNLaUfNDk7LZuPGWzoYoG2t/eYdOWjRH7Lub6EpwvCp6YTPt33hYA/8/cBfUtUPAMpPABH5k8D/cJODlH6fH/KBxSwaa8M9ZKr6oX2pX+KWtt+3vx/S0bcDNS9NtqdKrcCoQZAlTC4zLFxmDby62iZuZgs7HduLEddUrX2RWYYJxmPYvmV0DBhNlFZK3Eh9QcNgFrG42kGEmaYIe/goc0fYBCOEbSAtgsURi8oG6GJGlcP8vQN8SoFpiOQpwmUkDMF0/wulfx6Ig91fAYvcN/c3Og12XkAeD8IqIamlNJaLCXZtRA/G5l3uXkqpgWCeRQgWRC777mfMSNMpKkIs55Bmgth/9tFq+Zi+32mfKEw9DPctYU0yxKtg46MNwLZjMM3HNqWMuCTWgN9yDYCjxIO3LjjqR04XW1ZxYhETU7bYyaSBqaHUUg5MGkg5kHJitRgZp8h6syBNgfhwy9FqqM+2faZTCgxjx/rZCkaxaxTgxIJJ4fGC4+/KjhHUvo/Zx7dkf77Fo902fci8b5kADoJ4MVLC3vZ7IH+boG9O5h2N87rtH6OhcETkq6r6Pf/zD2C1I17e9mb9w+ThvF2xPhTb1jaXeQJorKoXWmuyv2LbQqHkHtLKKYUkxCvTgKcl5CMDnODBwEIbhHGmdbp1c/pCsRybJS8TdOMcsE1Hvp3TC8mtsbSyiw2DqXcmNcv4Ba/m0L3obOlWqzJ6pmprsasgLo4u5QOKJZ+ygUtKwUC40DbuecSt1IkojLP3Ul7gMhHGAQd5B/pJXVqpprp5mTemsyqnPqNigWZFvK4+L1ltTuogYZZNeiygnTBz9PEUZnQpk4lGGO+bdDSMspug1jyDqqsXyMcJjhJcdMR1sP7x8Ve0/4J5VH1MLEIiiJJVWLi3lZFKPQwpMoXAEupkADD2kWVngyl550eZy03EkEk5ECUTghIeZsbRvAUtUtss5FVGY4Rpd0iV1yUdWY7DeN/VXckmhuVHYcfoqcHa66z1vd/LSa4F+lu08O8CtK/RROQY+LuBf675+I+LyO/BHvNv7n13bSsSvZoFuHMiXnB3S+AImDMdYa4/0tAp7ctXqJR6XKXykPXj8ou79N0V9OeR8czAZfGUasnkJCTPBqVTcsKVNXZNkzigr61ujahRP5W3jUbJhMkmh+xucilHkFfZ9OJRLUE1CWToLqJRJSM1i9asFZDiXhfOv3SDG29hBPm4R/uefJKI97a1QFix+vYte1UhiFEWVnYhg0QHeJkTqFwxFAqF4hNAHPH8AJ1llZNZ88aT68yre99LVgd4p3W0sdBbwM/Fqm8SmUTQ6OAfZAYdBUl5xzMQ376OLxWbOEJzrCA7FTzD6Fm6CyVsZR432niJ/ku+l+hOBrIDau4VfTTBNiKnI/fvrRFR1tsFjz85ZfFuoluu6UKmk0wXdmevKUc6B/Bi7U8aeL5dsR57xin6JG2TWRczq36y5+fPcdRADJkYAoNCHoOro6yvwnYOdqelK4mWfr+bAEHJR3mu++Ov0vq+9XN40lspj4t57B2q81S/27fsy+c7G76475s2VamT4Q9L+0LB3st6vrX32T/x2gfaS0oqFlStZd5QLUGhpLWnpZJPkwWlPLhFFriKc7DQAaflvWvRrPbz+r9dGqQkOkmGxZNZXkmy7M48QFjI7AEcm1uee8vkRJThYUB746nDNKt5xtM547U/N0BcPjOLaXL6pgB9oWPCNqCdMj2YmE6FMIQagAuDW/tr4GjmV3csTXEPJIGOQI6MYcHibKiJQcXaB2owVrOQkydapWCTjs59Y3y8919n1rupTzwecaV0a6VbZ7p1JowZWnCXufNLcLVy9Oq/F455rzStCkj0cSNC7gNpGVi/2zOeGN8eh5lW6y+U0+9ukanhelppZ9HLRyGXIG7Rq6tNrkffF9JSyKWG0FpqFc+2CqhkYXV/YxJWVfJJIjzrkGXi4XvPWcRE9EJvyy6xXQ4MKRJEmXLgKvc8WR9zvlma6gZYLkYWMZF9wAbUgtRgsZQpMk2BPNn2EpX+XqKP9oDGFJtAe0Czz3heQ0g9P2Hznqfnnk41/8Ks/mSqnyywlZqsZoBuzyydJPI9ZasQFqm+WxKU/GRBdx4taKy8yO/Xl695viVRcY+e+zQt31n2X0ArfN7+ROv0TN2sgH6vTCeZ/tGGPma6mOuLkLPAiQF6iJlpNDchTwGdZj14SCDjXIhKCzUU7Pio/dRzp2x6v4YijXTgHNySKRK3ysGC0QlqoC3ZrF8KvRHn+0lHZvWqSwTj2gE0CXEb52xQzIrWCNODyegBz0jNW6G7lEobFVlnVeu03T3N566fNR+IKMk19TkH8zCykCchDxFxnl7UKIgJyJ1YAHsSlo/9Xn0i6DYG9P1lJm4zcZNmMLcTWmC3ZqhqtertPHsX68HT2gr33gfGk46rr3RogO09MdmjWv0h7cyrIgvD/R5JSn8xzcHgcvgC8tHuS2O76hYVhCT5pOZ0W+48O5iZ1kBgHLqazGYTthD6RMAom0KzlLe5gP+QI083Rzw+P2ZY955JBUPXEXvj4CWY5X68GIhBGcaOYWtlItQ9shgTybn+cuwgykY7pimiCqHz4nMBuOpmiWjUHaBnCDAGz5Z2CmuSKg1VBBmch+kUWdhxJSqhy8SY2S4zehWq/HWHViuGX+feMvb8uvUcm7uNZgHaHy74/OG62mtaKZt7kEMvdI0D8XQvEe4PvPPwgoywcn5yEe3nqptYjz0n/cDV1DPmyMfPT9mOBlrSKeHRlqPjgc2mZ3q2MCv1ZKJbTW7laOUvx0cwpFBfHtw9755aan/n1roG2D5yq3Tr1vbGbiH37KS3p4XpnsMIy6eweQu2j4wuUvGiZq5pHk+UMAnLJ3a8XGiSoWO8n40LFkjBUEiSoGX/pia+UR1a+1umEjwW8qm7/ME44TLnZufo0xi8Nk5ARq9ds5HKrRad9fJJmBdTGSFMRtcsLjJxnYmbCZmUMBbC2lsL3IeAHXb49HY/jcLwcMX2QWR7P7B5azYaitVYgVq8ps49uPx6RBS6yw6Z4ORDZflksjyGTsjLwLQScm+gn3phuGf9VkpZFGu/FHYLk5DeHeo4yknQ8x4+WZLujfSrickBe/rOCR89WnB8b83bZ5ec9AMrJsJiQxcyUw6cD0u2U8fp8ZZnU2S66C1RKnVkUfCyE+lopIuJt1eXiCiX/YKpKfEcg5XJGKbIwhEjO50jwWI3IpZrsblYEjZWfE47n8CGaDkZKlbOuXi3bT2l3HjLnaIx22QfyznUE/iUe+9c0n81sR07VGFKkTRG0hDgvDeK7CjTPdzMmd4C0xBJ69uBPHMS7micz791yvTugJx3hFGq1dhy7zW4eGqStIvN0ix6B6TNtq80g7grmUfLK9ckleYRhSyB9eXC3NuHW/p+ImfTMWfHIenUMkYzQLZJIIFMxmumk0w6xSzpZ5H+HFafiC3B51UY08oslDAK8dInKw+4FtqnFvJyACFj2aGjfacLL3swzpQJGJgefWB0xXg/k1eZtMpoCOZFeJBUklHWKcz7itr+05EH2Pxec7JUAMEDs8mpmzGaRefB6f65HX/xbC5bXLTs5djdOhsvP2TikJEpWxB2ypCzc/KNT17LQrL72V6r1idmzedFZDoObB4Gto/8c/++yClrcK/MGz01sDyeWn88vScgPauP4OixBeOHs8DVe0bXhcmex/Aww7GhnSZBlol+NaGemXwU7Z5StkJm+jCbWqjL5BSQLps8U5Tje2tSDgxTx0k/ENAalAVYxokhdFxuF/SLCbmXmTa9F4wzTlOANEaGsWMz9cSQeXR8RR/TjmIHqOUwgihjioyTZzw7aI9jhHVEipS2z8gosGxAXY0GLBnddHNxOdSsesnBqMyVUXWKkH39AoDNtveJJxGiZW9vy7O5P5hQwK9JFdIUjZJSMUrollq609l/MU26jN4fmaZA97jztOvCe2ODchDkac90YnKyYYqEZNKzcd2hU6hrnYK9jHP9cmoxsG45EbtMDKZEmKZY3eEEpjgplHGJaoq9vFbnhNmqEZjuJ6YzTIYoigyWxq/Rg1pLJa08ABiKVe0LUwSqK5ujvUglGzcv1CV6Sl5I5cGLhr5QStNJUYRADpnxLKCC0SmT6fDDaHpxmCmnIieVmJGQvSSCV110Sz5PAYaAbIKrb6ys8vIpJpcEKFr3EdPMewZsKXdQufkgWJZWQ80c+tnw9zuAv/+7T2BpIWwfMnuG/lxai7429UlP8Gj27m7rdyFuA93WaATxgPt4D4Z3EuFssGzgkCt4SlD6OE9cNbjt1n3o8nyL644wwHSmLPqEaqKLc25DAfuS56CKB8YzsYNJFGnWJBAxeqTvkkswhUFgoVM9RgH3ek0qs4TTn3Pw6y/UZkj+XZ9nGWwAXWZ0G2zcdrpTHsGUcc2CNGADNhfjP0BnXoRmixmISJX07i70TnnKQWQAACAASURBVI0bFfWXJoHudqzxuwzaL6qpAXHolISQ7iXC6Uh+svSl92ROJc/C9OunpONMfDTw4P6l8ZFuAUgwC8qAPqJB6U8H+j6xcAu+vEyrfqQ73hCDlQpI5UVIgc1o1kcuwJ8D9HlvjVGLBZTJKK88JnBkS+8ZdeLbdo0V24stiVYyP9NcxIteGXvjdePGXOnu0izp1kKNa5skhnsmC5WoiPPCEz1hEDZfUfpnoZbFLbRGcPnjeGbAF5eJPNkLnLxUYhoDOgRkCPTPIt0ltfTA8qkFXCWZRh5MRhm3Zr0DBsRjdqoleNE2oT8fiVNAc35J4FUbzXw53u6LqSJoF7n6ypJnPxF2NdzMFMuOjK+lCdXv5bFz7gv3rHz/9dvCtIL1VzN6b3IK0KiJUDXrBrqlzETRsqdsSpcchBggRA96jhES5K9vuHe24agf6WOi309k83bcjaRFIAabANZDDydDHZNlNa7YmYd7uV0QYyZn4XK78EQ5OFqa1O2FWAx2bUm1esXV++kgL7KJA0aj+PD1AIoCS9ygKTkIYOoxFjpTsZP491rfgbjTT9Z3MWYXArgX4iWfT062XK0XNjHEeanK22j5To3zBbRJkO+vDPCOsgH9RU93JVXWlhcwvjUSjy0webQcCUG5XC8JIfPgdM1m7NgMPZDRIPTHI4t+IuXAsrcElc3UsblakqaAnCoxjPQhkTSwmTrGKRKCcrIcOF0pl9uFcYu50Z43a5uKqqlTMK9BcI9ioaiP+GpJlqazZVZiEaaGyPZCOY7ELcRnUuvk7NMR2pe/LXCWkyBT4Oj96HEBrYHSymM7v95f2H6Xi0DadBCUgINzFnQbieeR/kI4+Q7Gu2/Vyy6YxR63yeiZjCc9WVXK6bRn81ZH9sqXOUpNpQ9Tz9u/+NwvRmof1n5p+hUxL0CjzFZ+AEJA+8Bwv+fq3ThnDXtXiJr3dPJd6/vtA4uL2HFn7ygtYVrB6hNYTs4LHwlP/gaTFWqf3Yo2QCpgU8tBh1oEme26Zz2Y5jQuE4vFxHI57dAyi8VEeKC18JyqEPxhTjns0DiFepk0MDoArvrRXxfbpu8TISgxGHgOY0dWoYum0Z80MI2RYejoevus75J5A0UB1E9s6WqNo3ySzNDYCt15JK+UvHTaLc3lMMrEP2cfuxdOqOqcnIsnbN5I6FzbH7Il6Q0dw7q3QnqTUTdSA8+wXBmlc3w0wJF58sO6RG0/XVO4s+y/iCYZ+ueGZNOJkI4nwmUkrmcKJ25gqny8qQyGIVb3MzZudec13PvOgkDT0LG+WtS6IpoEnQLPp2MuFyaP0YyBnsslwzKxOB45WQ1MKTNpnEHWB3zX274p64wyjvtVNtpsX1vBtALcRfuvRtnINpj6IFogt0/zhCHZlCW1eqEvFVhKJmifmY4ii6fQX1j/lSXrSjC1VDFcPVG2jwJjH+F4sv5jXqg7DMLyMRx9kpyaKda8SSdlSi9a5VGQbEHO8ahZ0FvmeyzbaQIJjZV/XcsYdVa6L5q8cvNWx/bBTEsVeksxjFmcZ9LSACokat2Wkp1dqmdqhOHEdrQKpOZ12Vyk/p9UdZWGthS0X+IYYRNhlXaUTSFkfzhmWYuYTDJKrsqYlrYpQF8+m1KswdZFTKz6kQ29UR85IGKA34fEMHZ12xgyy37aGX8G8rpT8G7r70zsMuPkKpyFImvfZ4RQQDEbdSMIyddYsMqbWqW3Er2vylKQuDcZM8EngcmlpcAs480CnW0jIbNcTtw7Mq97O3Y8uzqyxK+r2wrQCuMtlUsQkX8F+GewofdLwB9S1c2tHLxpXwqwhybDci3wyaq+vCXVXjKsvteRPzY+f+wV/dqGrkucrgb6mHjr5JIn6yMWMTHmyHrbM2460qYzNUEW8roziVgGpkC66Gb+Ew8+Keg2sL3o2Z4sOD7b0HeJcYykaQb9lAISMnExAyQKVIsbB1Bzl3OSZi3VQl0Z7ZQHC46FbWD1oR1rPLM+mU5cOXNlp+gumAuw9cLmLWFS41NRYbyf0BhZPmGmkdyZCAO1NHMc4PQ78PTUtPMqmZKrEDaB/sI8gG6d6S4ns+TH5IlQCgcAWkTop8zitENyIEeIo7I4z3TnI3EzYbXxgYgFlEXQMb0c8HHqJkamkwXPv7Fg/fbsMZRnWOiu1SfWN1fviAVuD7n/AtsHynBPWD6xSXT7KPuygsWCn59rieGYrNfALLilHxYJjZnQmfLEspF1LhjHLCTKav0kYtVFI7b94LWxW+7eJoiZ4ln2E8t+MgWLryEQ/bvj1VDBvsS7T4+2jFMk5UDnmv6jfqy0ZfRY1WawdX4HIE/CdKK1PHTYSB1vyaWsYTJDYnyQCYPlGLDMhHWA3gyqoPNKZrpwqjVZHKh4SnYwkCbmcXK85Wy1ZZhs8lr2E+/cu+CDJ2fE89sBaFVuJalKRL4O/EvA71LVtYj8Gaww5H/yqQ++174cYK+4OoN5zVKwQdAmtCRIJ0o6yXA6EcUG+KofudgumVKgi5nHz0+Iv3pswdBeWQ6Chp7pJCMPB/qjyWgcsRezDEJNQt52pjyZjD7RsecKOLm3oWRglmBv3R/1VZ0CBKXvzbrLTXJSTsbflnhCiBnxv7tFYthGVt+PtSRy1dszU81tYlihZiQbsG01kNeBdJRZfjIP4pLRKjpz9VaO1qz0o4+U4Sxw+ROmOFJAtoHFk8DqMZx8OLH8ZIOMRtlwCOT369CMiZP/70l9hkbHqAVnodI3O60L6MT1gB8C6WzB+TeOuHpHal0W3Jos19BdwMNfm0i98Ph3RSsb7eGQnXT7hj5TlKuv+WzYWqSTB9xLd0YQMd14Vr+Pzh5G1ZKXQCdUhZeAl2WAGEBVmVJgTW+GCbGOk0U3WSkDURYxcdwPpBzYjB3rqedqWLDypKouavVoxxQ56keWK6OOOi+epioWL2mUJ8s40YXMevK4lNoiN7a4TSafjaTjgI6NhhUMnKMiz3ric5OkxrUlllmehNE2MrlRU+rmr0wAkCaXTo5WupmoNUiOwNGpFda5uDhivV1wtBw4Xti7veomvvLoOd/5pFmY+VM1uc2kqg44EpEROAbev60D75/kh76JUpOAigUKUOrHZ2gCQArHJtlaeODpYmsl90SUJ09O0KcL+rFMEp7d2lmtcT5eMhx3dA+2TBvz6+NqIg3R3EkvBRBGqxksKLqObBY9sbzIDvR1PQxRYqcESXS+GIi67C17Yot0uyBW6KgQMzkJ3Uf9zpqtpZxvXQjFLStJxjOXF6RILJcfW5G1MVsSWCk/0arL2tWyCpUTknLyPeXyR+cSCSXRrL9U+mcjsk1Ick3qNRmMBxOfWhWOX0ytQ7Ozc8PdXyO/TMcLLn50xfa+WfMlt6EaCmr3fPbdTBiUaRnmRVNKHxx6t8OBEsQlWUh0pu7cu1RC/Rvx+IxQx0POlqdQJpciycStdNt39vBKXaJCrYwpMhJZdSObqfPuMw+ii9k8gNEqYPZdctC3SWHSwDZ1dJLrMY0BU8IBcEs5MGaTYJY4lIRs1NqcA2by5WB9FReJdBLQ8+D1nDx/I9qYyUu1RWNKomLT92kbkUtPcnTZpTxdmMLrr7tk0U88e3yCDpG0ME9E+4nt0PH02/fRPtNd3ZYa57Us+7dF5Beav3/Oq/aiqt8VkT8B/BawBn5eVX/+Vi5yr305wD5bmv8LCVXFenVrP3egJ1bje7kaOFqOZtW4dXL5+Jjld3ri1itLbqi/axBW37fs0tx3TMcdYQnDg0waAhqUcOVF6xeWCSrJOF3GQNp2hKORfjlVNUSI9vrEOPOvUwpM6fBj0caCKkAvQeGvnZraJe/dt86fFQVoWhi9M50qZeXp/rmY5n3NfJzSlzpb9pKsn8Og86IiSTl6nDj5rY7h4TxJmBegxKsJmXazTHU/sGo3N/+eG9BuJ4hC3+xb9mUyyHtAD9UzuPr6EVfvBQdcu692AtRolFN/nghTpl8LkooU1wHcKYMaP9h/PtL8LLScLw4+39t8L9CosQpYdtnAzyfsWmwOfKWvAtyGpiY/bLvCLmwz9XNZD1GjXhbK+WZZef8uzJUst82YC1G9oJ2NuTHHZuEZYZRYx2sfEkkCSUOlp0JIlhUtdr9aak+pxbXkMloSmXP2cePHjpbPkZda3dG8ysSlxQ6Wv7Fg+dhoyauvgZx3LB4Lw0+uWS1Gnj87Rp73NsdOwpWsyH/5Pv0zuJ9AQzw8Yb9he40A7ceq+jOHvhCRh8DvB74JPAX+SxH5x1X1P7udq5zblwPsJ1g+U88ObVLTBeN13eXWCVibjG+aIk/WC/IY6FZeMnKU+tKvPoarr0L/HN79iyOXX2m6SiCdm/uZ+0DyiJ6WypYwLx/n4F84XFWh76fKo4YK8mYdzcv4zZZckYuVTMAQjA5AYLhcsBrn6wKoWcP+WbGQsjAvS+jldDVktm/B9pFw9EGgu3RrtvMs1jxbpWEsi3j7Qt6TqWtkUt79xcGzRgOX75ki6OjD0RKfZJbWtZa9irxo0ecDE8ABtc38LBrTuxQjW0SjjJKpQMpC3WW5xkoPVC23/UgrWL/TcfSxjYe4htABvu5ASFbca/O2zkHxSSwxSIpnafEU3JIt5YlVmFciK5dexqgYOImX2ahJX9msx0r5BUhiNXJUIQdlJBJCrhUpgbpSWNsu1ksbe92sy08qTFNHF7IXNctVPlws+WEyhc52ijvpC/bTk65S2JFz1uqX5cbBlTZmYOgio1Mki5oEM1O9q7i1BKpSvlmSkK56Fh91HH1IVfGEIZAXJm0FeP70mPjBguVjW0N59RgWz4Mn59lFazAp8m00ZZfa+hTt7wJ+Q1U/AhCR/wb4W4E7sD/UJEN3pbX2ec0wjbaAtepcm6Z/HhkjbLc+eEdhEoh9piw2ffxh5vK9QBjh+EMlrice/dIV0+kCgpC7QDoKbB5GwiSEZ4HhQYYu11WXdOGyO0xKZxdqP7LTMxKURUcF9QL0pU6PgXpjEbt5LmhVvuwoc5itzvbn3FH+r1j7QWdQmqixDSvJ7JmfTcJhKVhm1I9XkkyltLASr5IFYoeO4TQQNz6JtihRo4zleg8AfttquYO9bZrSwfuJVDKkF2ID3TrXOkFzHSK/PF8XIPWweUtYnAfiNnPygTIdCWFQ+rUt57h5KCyeCcPDJiEozxmbaPFctCqrSt+LByXnZzLvU4srQVV9zZO3L/HoVr1V3QjkbGqdlKOvJWCeyNR0VSlwJsA0BdIUWCyELua6lGQB+rl4XahWawniisAwRsaxm1U5PjmkKcz69twAfVWX2YRYY0YnE3kMM+062fG1oSpNMi3kSdFeWX1MXYinUG6bd+zQ8dtHHD2Go09sERsNVk+plNugeJVixuBtNAXG25k5fgv4m70C8BpbovUXXr7Lm7UvBdiHSVk9GcmdFUdKzrdmLymrAWIUdG31Y1YfRcazyHhmVSG1V5IHh+IaFk8Tq08m+mdbwmaCMSE5szjfQBA0BOgjqw860uKM7QMIU2C4b8lNMgk6eHGnJKRV5OjtK7qY2Q5dDbzmSbhw3W90zTNikkyBWXkDM3dfXXwbwHGZbPUjrcpB84CbeWAnMQjLvmylhoAlY52Yaz2ewPDOhAzC8fvRKBnn6W1FKOO1w5Tn0sGl7K8qy01i9aHOi4nMwYkZgL3++6sUNHbzSuVCGv08EuYArpm25OMF4dnVznklZ/rzEQ29yfgmA4bxRKwQHU5RbeH4g8zqkwEV6I8j44lw9RUrUVwlqHHeB5zmKSqsXp0qEhjnW5DmlzovNd/U1Z4c6EvFSbJYMpbfZqFtpFjxweXADY9ftPNgzg3AwmWUqUouzVNAjDrcOr+/Hbud0sYpByt6tu0Zzo0f1wCyMHol+rXlSapKrA7CUgsKzANy7a8mgdMJvYx0l4GT79mykhYbEwPpbWY8Dgz3hG4ttoj8OEtytw+t34/fD3RXcPbtZNVQy5hsFqupVGYZK7fS5Fbq2avq/y4i/xXwl7BqI7+Ir8B32+1LAfaSM935gIaAdkJeRlLvWZel6mA0y6yUDFi5rDAvAtNR4PybmXu/Gjj+KDOeRk6+u56BfpwaC9MplCkRxsSjXw48/4ljxlOhfyZMp8J4psh6zoyVZ4Hh2Rnr9wb61eRaflPcaJ9cgqksulLcSeaAl2hNSS8prOVFF7FJIv34Ffqt47kAWsLAMO/SOWDX0z8Ttu9kA9w6ESjp7ZGr9xoI6oT1V4TVB5ZFCxaQDV6zRpKVNCgJUTuSSremKpgXoG9/eqbrQcC/7rOsM8Crhw9XPfloydWPHnPym+fQRZh2a6B0zza89csw3OvpL0YQYfPWgvEkVg/IgH5q5KbK6nFmOAvkjloFtIC77ljf8yRg9w2llDa4p9VYvNmNArzvK28fy7wms/czWNCkPCez+q1Eh60d2yq7nL1qPJ8SmF30k70fKrWA2JSoMs2UzOMsxkTxQNMUSWMweahEZBNQAin1ts6LZ3IzBlOi+U2Haa58iZf00GSqI4bA6qPI6W95/MeBub+cl5Ts1onjj5SycHxaBbb3gpW2kJluPf44sXg2zvWTSu2k1rtrx+EtNOX2MmhV9Y8Cf/RWDvaS9qUAexST9oVZry7JdMChD+SoaBQkslPMCyBNlvW4+jCweqJMK2H51IDMrILGotxrkjNhmFg9nkjLjuWAvUz9XMws97jMz7JKJ3+xU5erBV9UF9uh81PNC4HEUu644fw1G+AX5YbJ1JTpyEq5llpfArvBwXrd8IJR0lAGpW4LgvGrMezRD/Yi1cVBWqBvX7QXTrxHvbysHSps1rbWck9KXkVyJzz/nfc4/daa7qPns8UPkDPxYstqO5GXHev3FsRNpr+KTEu7/W6dyctgFJUqm0eR/jJX6kDFrPlSj6iWqZBdoA/jXJ7DPBip6iiCzgqp0a5Ng8AiO6cvLgXd6Wy/ZyqlUwBWwbYXIWPcfU4BWTT0TQoV4PsukaYi1XRAd818GV/in0tQhquFxRMEK6DmVItsPdO1upJ2ncGLrBUPV5jnaGL5QyoHv0MTKrWvC8CLr0QGsD0KjKfex5OXhe4hbK1QXhiz04oeaGrHYWNg3Fa7W6nqi2iqyGYy+ZYIMlpSUPRMSVslyKx+DU3W4jIwnAb6c3j410bikK3K4tWIDJMnAGUHsHaQqHHGqoTLLUe/NRKHMzaPenJnrmtyeWMYQDtbKEW2gRwi0inJ1yUVD66VVipuFrc8pVLnYJ4EJGita5JVrNb5Ny5BrfJgfrys67mGEYqqBrDAYmJnQZOWWgCbeCq/3yvTsS+0srA4SI2HloCj7r5g9TjNQQ+VNNhpBdyDHFbVlBYOvGBTcovOE7ieXh204EqVy+ffPDLL8Dxx+t2pBt8XzyfCxsp8bt5ZsnkI67eDl+r1Y3huQo2HJAMQKZVR1ZRZErC+yA3wO1hbjEPmuEqpcTRZ4lB9Np6Fq2WyaCVASWr/zhN68EQjGNZ9LT+sakXARoFtk98RRK1SpV+IpjmvAyBvI/HCvt9Z5Lys4RCk8uxhcO27/y5by5KtazP40ouShXAROf22UTeArzLmE6n/HiYvhjdkJJuxdvWOeNkFU5UVEUa3ToSNyXvnRWv0RcC/xWaS17tyCZ9/UzWqZRIDgykgYQIRQggWlPGfGgO5DwwPF6DK/d/YErapls+15J+pUXPkXc64tOzRNzULZvmdZ0i6x3C2pL8UxnvMtdCjAT6LbBr0pXshitfFocopyVbUqVj0Kc0vYgGMKmVzALDMWmraevfeFfJVZf1kRfe0sxpBg9MQAYZ7DdDDLpAUCqGxTKd3Bza64OgjGM6EkIKt+1qs+daCLhmPNRrtj6jQNSYm923t+53vXufFlAAxkk8tTyIOmekocPWNBxz/5tOZsK6cvv0MHsEcTy1ge//XB7rLohk1A6FeX2BOwCrzVbHsM8hgx7fP7FkZIJb7xt6yMnzUvbw2V0DKhswTc3nWZbfZkZn3Ka1sJFZCohxPk5K3sQaKdfJiYF0mx9moKBda6s2X8h+yDYRtoWLEPJZQylDb53k590W4NA+wSJ27C/EFRryQW6csngSOPzD5bo5u2YsQBytpDUBSr4JqHrYkRWOsst4UnMJ5rJx+dySuRwP6ss5BS+Hsy3hvqSncWrmEz6t9OcAemtncLCeCvdga58w8spCXHQRh8XSsA0nGPFsFeQ7wzIPkABdSPsseJEyZ7smGo487U+mMUhf7Vn+xZOsgcrwL2G0JWxELopUa4SEYRzvlOL+cDgbi5mWBV5jpH7LQnw1Mi0y66li9bxrj8RTS/WtqehcLr7Uk/bPxrQnoiBthHALByxDXRbqLBn7/meypb+yeXwT1V6py2pbVUkmDkE+XbL5yYmCxzuROSEcB7YLTSjqf01sYZ+RcPpsIQ0a7QFpG0pGpRNaPwm5ClVNfxsVT5bxSgNkfwc4axeV2c3Mcn9RL19bPU3sc8aJwzaWXgwq75xtDraZZNygThlv0OPUkY4ABtLOlKaVPluVbDA1lZ4EdXPMeNqE+m5Iwlqtyyz7PnRdlq1JLV22plZDWRSauhdVjdvJBctzrn9QsIF8MCs/W1kCtURQ86bG7cg/cx1S17Mv7eyjR7lba3Rq0X0xThanI/IpV5oNO3KrvIsSO7snV7n7AzkIYdTm7fermwDnLzkVZOUx068zDDzas3z5Fki07qEXX7haRfGfFdJbgJBmHO4WdFX/aTElVKudbSyoAM4cPMLv0L+QbxUwWNc8iuf6/Bah6P36uFHYqO9q2hnLT/cTmyt9y8ZWaLiaLbxBefLFaC8vjKTsBW9jJhtXsE0ZgVvIUr2pfgimB6d37bN5bmbJvnVh8fAGcsX6n4/wnH3L2Vx8jU7aaOH0kLzrywhRbm0eBuFUuvr7k6JPM1duB6YiaNGXn8FstK7JABeAw2meV0sL7at9qL5+3IO39XSgc8bUJclnnoARj634677tn3ctizu2oMqxG/igB2IbqpWlUZAh0Tzo0dqSjjK5cJryJVs6gOF5rl18eZVsUyJ+BBnzBEWpiFGD34RNe7i34rgGm02xcfoDzb2aOvh9IS2Hx1OorTUcgOZjQohTJK0aYG19BlW5tPH23gbd+aUt3PhC2I0zZg7J7AL+v4rrFpnBbOvvPrX1JwJ7ZZS8vWsZdd8uqknFCtrZoybV0wU5CzwFr/uC5i+uZkO1AXE+Eq4EHv5Z4+juiLRUYXbrXlYQQiENkugqkd8aZ+lCptVE0l6QqA+HYJ1Qj6t4LSWr1xLYfsr/olav1VPXxTOmfiwUFj5gBpHkfpFmspdJKpX+9bd5LhDGyODdw0s7L1gbqxFObJ7SVF5ZmcjqolghaJ86DrbzMPlHEiw28uzQ5rAjj2yds3u5AvJb8j91n9eEapsz6ayec/0g3yycDjMfWN8NZmAuiMVvntfZNA9TV2r7h8Gi31ViOpTvW/45lWyaPYpkLRk+KTwzOfe+m8fpzc+pP+mzKmACg6KLxDlzSmXs1uelFJI+BfG+yksyT1BXFtLdSzWEdXDmkVboqyWgZrXktzrUPdt3tGgvdZZg5+QSbd7UW6Fs8tQlicYHTYD7+Jl+dLFllVJlAstJt4OR7E/3TNbKZDOQL3VrHiP8eIwyNoXDL7a7E8Ws0EflN4Bx7xSdV/RkReQT8aeAbwG8C/4iqPnnNA++AMOn2liK7tqlCSvTff04+WXH0/Q3PvnlCGCywiVIzJkvGYH8h5FWHvLX1y54HZQnUlpopFcCT6a7z4CsHqbwQ1EUaukfN+oubuTrnLC1sr1+qK19lgMIu/eKlfmsdIpk9Cr+B3S7xYCbqGbQ7lr3OXsubcKqayasFYLRMdzmgXbSgoVvn67c7Fs86AhObh7EWdWvXla3ZtK1CqXTFHLucPZ2mu6pI5gB1U44DTTcHfWG7Auo7XxSzvjzPMgHTXMOO96CudLGNJHhi0Wq0mk3RqmqmdUf3PBoIRys0Jht/5ptAOBvJubP1Y6N7gUOoi4wUy71e4l4GsgZXvaXZddROiVtXp4lZ/5RF1Ytmf2yGXzucCv/uQN6vlWkpLD/amICiBfpiqBUvMKt91xoUt6ax5zYzaD+39oNg2f8+Vf24+fuPAP+zqv67IvJH/O9/7ZVHqYT3DUyu6x76IaXH/vavkgOOI+FZIlwE3vm/Oj78m5a2qtOpC3gCpCMgG/+4/DiwkSXyYEDFygSXpeoqWBQQBiQ67dPl6qqrB9UMpPxFoimbjDJ+fYs87dEzK9WgvqqQlMBvdm7XYwkVhBqKIAzC0QfQX1pyleSZV25fKG0UOxqweubO3xvToLNErljzO/SPvtjPrYvu5wubgZPfnJDnVxCE8WsP6K4ywz3j2xfnVjN/+/YR2wcOYF1jsTuY597ZjyKJLODu/wo/7x27u025fZ9galay7m6vkXmHNiu6oWmkGKXSnkh28yHKM4vUfAstPL1fbx4DOgrT1YqwCYQMaG9VU3ttnrn9batGWVa4LBN0mbyO5lFEJR050Pdqa8RqY8Ck+ZrqpKmzWkcchGu/B63rTHRXcPQRXH5t7qsiv9xReU22XkEYlAffWhMutybI2BdPtDGaQ1z9C1HuT9fuFhz/9O33A3+H//6fAv8LNwX7m1iGhyiclw2A1x0cJrEBNSXB6hNlOhZGrHxuXhjYV26zg+5KmE4CGpJp54OBNVArDyKQfa3PGkQDdrIU7YJND9174lWYs3D1gcsZpmAWdZkXk1Te2NxuTz7zsazROOoHv5J58jsDJx+69lmL5a7NNRTzskw+rv9W6/eScVtb3b8JrpV+3Ofr2z5OGXl6gXcShI501HH0wYbj901VpYuOxz99agHCwA4FU0odaOdYO7k4qFj6BWtTg9G+nmzT1XVSKD93ALuAVjuERE3xUran4eeZJ1u7Bq3bleuuHhfWt1YRc8Y7khA/6Wcqqnhn/ne4I1TXxQAAIABJREFUCuSF0SjqC6drdHrmaW9LCaov1rLQWQYa1bj/zizxsgJcpag6pbuysVjX3u1wrt+pH58AwLj34+9Df5m5+krwybAZC9k082Tj4zUE7v2S24Q5Hx4fN1He3BKlo0pdAeyHpX3RYK/Az4vxF/+xl/18T1W/B6Cq3xORdw/tKCI/C/wswCqefTZXdx3Q30QiqEr/0SXD33iEJFg8t0CURn/BXFkQt5acoZMlf4VoVQ8rQDPjhh3WdPU5BVtyLzdvtbjbO4k92fbyFfsg2/tRjcssDriYRZbg3q8r3RaGU2FxntEodGsD47g1rjtu7aoOKWgkFWmnWfmiguaGwtA50/ZgIbRDfbvP7+/sA6TE8v3nyJDQRYQYGe4tyHEGxyIWadeXtZWSMBok+6PtDPTj0Fj47aXssS6vbDvPQarktHxpoZndUsmibrG3+su97rA1in05vrKUH7aebhgcjP2YYWPKmnRik0MYA/j6v7vxAwsw2xq92mTHlnUbKU7kHNfw+1KB0Iwtya6c8QzZQv+VKqpF0tpd7nVX2d9pHLIiOc28/KvibeXGPyOuHnAa5w7sX6f9bar6vgP6XxCRv3rTHX1i+DmA+4v39MYW+KHtCn2zm93UnKyhhuTAtnZBu39nRc4v+fp/P3Dx0+/y5Hd2PPjVzMe/22p55AV1FS2A7lkk3QM9VtLgvKpoXWRZgtMmWjT1FoxlCGiR3rnePj6P8DwyPZzmLEcwy6xculK9gkrdJDj5rnDxI7b5W/+vBVbjJiEKm0eR3MPl1+Hy64G3fklrSWRprSsRJEZSVxbyluqpSNZqzc8yubxj4b9gtV1XCbO45UV2NySmt06ZTnuefXNhwcPCyxfaxhOkak1+2AHjMIEM1IJpaeUJcdO8keg8abdceZl098Fbhd0gLA1dQdlfZq+hoXZqYfviPZRYzmgfaKfoKiHF47vo0F6JFy3H5LRLtpIeuQPtZwruBfUQoMtsVGES09tPbSdZNdjxlJpUVZU4PoG2wWiC7ATe08K+Wz3JVqfoYy+TUJOrdDdWBNcDfcleC9SxV7e7RcrmULvLoH2Npqrv+88PReTPAr8X+EBEvupW/VeBD195IMF016/TDgH7dZx9u4BpafvKnet4/Wni9P/5iKc//lUuv2qVNIMvzsCq1Mo3dzcNAV2apS6eR14KY9nKWFilwRTm+imYNYZCWEdOviUcfWIV/85/tOfyG6m64hXkm/ritT6LQn8uXP6I0l0aNy/JjmNWmbK9H+hLCeQAeTFzsuW+tYuevDZz95Z0I3MJCufsW6B/UTrXuurNP5hffIAQ7O8QWX/zIZdf66s1X3jiap377nEwq3L7yIKHhauPg1EU1i82MchkfZSOlbBtZIaui6/UTrZJs9xv8AzSuo3MlEfbqurGg7e1kiZ7eQsBC9YmaTJY3Q4ZO3SZ7Ri9oqMtjxg3YtSK2JibjpUsdg9hLaSlq2mEqpyp42kQ0/DDXKQtao33jCdG85Q1jONa6n3WdYXF+i5M5WZt8tRoFM7qk4m8sMy1MGbX5me35Pfou52aSt7KQvJEB/p2n88WiJUfPunlF+aHiMiJiJyV34G/B/hl4L8D/qBv9geB//ZGBwxx/lesvev+hWgAX/7BYev+0N/1fPKSycFbowp49CsT5z+RjcpxsJQJsltGlaNVarnctqZ9CFrHcVsNk0X24Kpw8i2p9X1E4fS7bpEWPn4Sk+Q54BdrVUZh8TRYATenNUo6ers2wL1vjTz41Ymz72ROv6dsz6respakyL1lKucu7AQ5Z6BuftdCI+yB+svyG/IBxPS2ev+c0++ONSFJ9/h3dU+qlMJOx5nxLO8AcalnVEskOFDmRa7cdmuVl3IURVZYL7Pf3U689HUcxFfycslqSULybUsphvJZ+WdUlUlni/RRtEyi5uGFKytSRqCWFJ6OtXqQeaGko1yfSdwKcS3Gv7tChz7XGEIYLGtWJpnlwQJEtQVGQinz3MR/2nvWuX9Kn1ifKmfftqJlJUAOeMmLppheaeFl73KY31EJr3jnhWvf59duRuPc5N8PSvsiLfv3gD8r1vkd8J+r6p8Tkf8T+DMi8k9jtZ7/4VceScQqHZb2Jh38EgnhjmtYz1HedoE2ULOvz3cr9ejb5xx/5yGbtx10fJCHUSwQhvOoz4R0bCtQSVAP2JqFGMJurZxyOtM3By6/kbn8BoBy9L7VdOmfmQVXauKk1a4FFzYGGmWB6FIzfHgIFznSn9uiD8cfJxZPBsKYWZZzx+YlF6swmheBHG3dUg1WmkC8vkl9kZtiVVYTv1jxjboiNVZanQT2XPm95yTbieUHl6TlGc9/zBaWT0tqfgMOnP1TA/XFc0vBH0+9lhHz5CbZn89gzyps5mcsCU5/Cy5/xL67/6vK8YcTj//6nvVXjMsw70FqslWYbK3fs28n0kJ49uPByiuXYTSJ1R/qYbynM8CXc5b/uSfQn5tnVbJ2pzOIV2IJTOvA8oknNB0bVy8qrD4KbB8qaal0bomH0c4dxs6ypCulZ2OhxicmX6ynU1N8+cQUUhOsTbuTa9jOvHwZ79rZBLF8bBnsGjtb0WyrviC9B2ZrsMHul+vq0LdjQZUd+/UFYL/d8ga3uAbt59K+MLBX1V8HfveBzz/BCvjfvO2D/Xyw6/dprceXWegvszLLOQ4V72rP7VrgknQyHQFu3YfJrl8y6GAAmk4SeYyEPiGxrUQoZF/EWctb6AO6LNgsrnpYPbYFHDYPheOPrLzzk58S8lLrC2yKDCW7lxG3GDCNFlDePrTFPM6+pXRXViBsrhsj9TYl2zHTUUfu57LSNd3dMyKruqJV37wM6Pepm0OqnJwteabJfF59tOHp7zitFmMrf1w+nq1NDXDyYeKTn4qMp1rpCskzEIJhTfB19roNvPOLE/1lYjxbsn1o/Tzci2ze9u07ZYpzdqlkOHkfzr41khfC+u3IdEKdfFRMqRVGn3R097sd/X+vZNez54XOhchG27A/n8HO6EFILjkNAZZPbCWnIhIonkocQJ92s1sBtWqlJOalAqNWGsmei1SlTZWqOl+fTuz8cXC6MioyCm/9Fa30n2T9/9l781hbsiy967d2RJzh3nOHN+b0asiqyqoeyu5B1W3kFpZsy2ALycgSINuSkbBEg5AtG1kIMDIGjARCYNRGCFHYgEEGhAAjg1vtAcltYezuru6ubndXVVZWZmVmvXzzu/MZI2Iv/lh7R8SJG+fcc9+7L7Oczi0d3XtOzBE71l77W9/6Fuk4ZMwWNuvQ1CHziJeJlfZstqbzFbn47YBsfC9eEG5vbJx/tLRxvn/mGM/Zaoy48XHrpnWNz6qgKywPBHLBumtP0Dql74VPFowrYfrvzaCkU0iPUuTExmFfuErbvt5VmP5HW998imH6nc6U2XVh8nKAITILqhGm/erMcMTgoctrOGH3Xa282sET2HpUBoMeoJpegs+cQTXOPHicvZQa2S/aCLiFAaFiVzQNeVdAlsY6cB66aW8bn1N4Pvb87V4gVCJw6diKrZc9G3DtGj1737X9lzslvm8QhTZKDYqa9xr1XtKpGafRBx4pTPulGErFpY/bQTC4C7uHrlDyUcLZp6iydWOLGjvJtHGZgTW0BKeFoGw09JopbuEYPHJkZ6Ef5cuDRBM3F2/HkNL6WsT+68L0Un+03kfVt2au6iua1GqV8XzjpDrSL41aTFVBzhUwfFRUu8y3Hb7vquxZ308aGdcNmMY5TMwwqd/r8BtJ/b5Xn0TQ1JaROvska2YIl2wxqWqTz0VNRL4kIl9vfE5E5E9eyYk22kfNxrma1pBFqLP6tPmnayP704AhKuXFdmsa0xjx18bfVa0xxfTDPsUIS2LJa7375ssSg3npWMgzhcd9ylFp/Xq0IElNAqFcJCaX0MR7Me+eUINXSmV62/RHpjccp5+1l7P/VOidwPi1OigYvbPtD2Dng4J8y5GNhVu/NjfPSDBp4yx4WdGIeCrBqmgwTOJZg0RtEEsrljnTceCrvPHS0xmQbcM2zXsdZ1Kpg60hqKK9xATNhimLvToQnsxrGmWygFu/cMTszoijz6dMb6XsvzlmMRoxeTllfl3xW55yx5MepfiinjkBjO5COrZiNtsfzNi6H++9MLqb8PTLPcavNXqZUiUgJfOSZJ5WtMg6GxbybTvPxb5Wg1TF4Q+1aWNSEhp+K4XBfbPSZXAipDBjXmwZZOf7VigFgfQ0IZkHqmM4Rjqxv1EbvhyG4xMx+2C4CyEJswHf1+qc3KKWcI6DQyU7kdrUZH4tQEklvPIPCpLcV/dGnfDkh1IGhzC6XzC4P4ZSl8sHOgv6LzF0Yh+plFfrd62SXYj9LGn8f4XtqmAcVX0T+FEAEUmAD4C/eiU7b7SPibEndIb65q9NwV8K/tT/q+9+eNWvm/J2mwYrDB6nX9gOL7RUL1oMADYDey5goZKLsUHmDrZKikVC1jf5Y6s2BCwS8yAjzhoSbnw/XjvMb0AxMiPgFkI5gNNbxgN0i9qjH70Pu+8vcAtPeqoMH0vw3mUJmomURAsoKtKTQGMML2jD0Cdzj8vLWlW0CHBWhG+ilEXTyLfv8zpOdeJ4+Pu/wOxmja9XA18C8x3TdrnzN2H7vVN8PyN9eob2U4bfO2Vyc5/FjiCF5+bXjpi9ss3x5zPm+wn5riX6xICmlELvUNh5d0pVmQut+pxT016//bWCe8OtSrRrfMemBtObCVv3SwaP54zuDjn7FNRJaYQZhRnViGvHoK2bGvwW5QUAtO/pPU0YPIXxa9rwtg0KGj4yQ1psWfygCmN5W+77VBCT5DbQWEF2saQ/b+v6zDplUzcIsf4ZByQJMCAsD1DJTOgdWsZ1MRSuvVVYoZFQjOTsTh8V6B9D/8jTO5ijzkqdW4cOfS4wvGqteur3y9V9RAN9VQMzT5p9yhNkRTZ8hy9oygtj4/xu4G1Vfe+qd/zxMPZAlVYeWqX6116v6b23/19KdlnR1hXXWJXtScB/XcA7o/MUpug+sxc5WWALHKGmqSJO8GWASZY6VzzvhksVhdOEYJwBMUOwfU8p+8LJ583bIvC+lzZvCI35zFkt32Dka5mBsEFpx65oixHvD2ULk6hFHsrE1Zx6lqEbOG/om179uhazdJ15qFLAYt/OJTszKmmxlYCUuGmOO50BcPbGPqNvHTK6l3P0hR6L6wP6D8cM7o9xxRYHP9QLAWYCvGYzsWTaGEwCFKiJDRZRv19KZed7yqOfVHbecey95VjswJPflnPj66bRvvNBwdmdtGIHLckNQMh7MG88YuAAvQP7IZ0CuCqzefDIMl6rGJDW8EzFEtKA22PrtGtlu0VYHqEbrRlF3hFyFuziI0NICd57UVNBK9gpQDp773qL92D1BqoMarHBaPg4B8nY/mBa9X2NU55YfyJtvMuBP6whS7tSfpUAJ4pUAfZKmwmoVFcv7lUbt0swbW6KSLOI+FdDnlBX+4PA//xcJ7aifbyMfbOtKKLR+bCXPH2W128b764En67iJq39j757yv3fvksagoPJgkqrxdgQxl4otu0kk4WdbekF7XtIhWIRNO29qwelEBiLhklQcMLBl6mqBCUzOPhh0NSKp1TKhCFOkJ1C/9gMM2IF24ttK/NXsSs0GJKQ0SkhI7Y5AJknbwbN5aZLI4VHFkXNwInB19KDL5dnQe1nseoZQRVLySZKeWr/+8SupRyYwe8dQ+89z+itRiETYPhghuQFg3eecutkh0dfGcEXe7z0D07oPzjluuzw6Md7aGJidfnIDKbvwfx6j95RztMvDzj5fFR6FG7/smfwZIGmwmxfGDyyegZFkMYYvZVR7FitZLfwVPo50cAHD78J3wCVdg2lkAW5jWjUXW4DXP+Iii8fn5WoMWV8ybLmTzhuMjXvHkI/xM4l0iXLgW1Pbn1FvQatG1s/mdYGPh1TqV+Kt4E3T+D210qyGHwt1Qb/auYlJHPF5cru25NwLwQVZ2qpwdCrC/BqGKwkeklVtwjveYy/Ra8fDdnA1LkgjpWz98s2VaHY3Ng/UdWvXLSSiPSA3w/8289zbqvax8LYa9OEb5omfZFxWbV+/L8dWIy/r0j3970U8VD2lN5JPeWuMuKdvWBShqSfpPYii6iXUoa3uZQlyYOYAbt0vMhEUZi8qlSKi2FgcAsbBG7+Rkk6Ns+r7Ds0cxQDV3mZdWBPK7jGPFGtjAoaqxfVtUCl8CZgFSsIeWVJ08SXtQFu86q7ArKrHouY50nw4qQALexe7v/KjN67T42p1YDVHv/YNrd+BdIHRyQPj3n57y548Duuc/r6iN5paeybuT2fwaHy0tcWTG9lzHcck5sJ937KSln2n9rMIt+G+z8lpGcDXGnGL5nZc0zHkO8apPPwJ/q89ncWQa8dNKNWQogDdvDKKSMGb6wbUchHAaZw0DsyXfdySMW6OcfT97ZOFdyNA0zoezINgdN4HuEcJAwGUdu/d2LG12f23eVm0NXB8KkyOPQ8/pGEXtCm9X1IZsLgIK+x9xhcxmZFosrsmiOdJ7hYfCQs08TVs+xgoCWwEbzEOFU1xaruX+wr0bjHmU3dr1Z2o2dqLwDG+X3Ar6jqw6veMXxMjP1S68R47c9KHH/J0KzZ50bFTLpbcjxFky2SaY17L6kmhrhnxEqrNPxqBWrkxlNlzbanKhUsE194rY9jx1CrdYqxMbKzEnWhfJyjynqNAmd1so+apxcrB4XfKl36yKMP5R0rQ1/4ZUMf5aa71AkvYeRjqzj00TgEY+Sm0HtwCkC5v01ycGrHTCQMTGU1SMtkzuheyfD+DN9zZIdT3Bev44Hth6anXvSN2RSF0yJcomn0ZqXCvaOIXGSiSAF+YPTL2Lbuw9mnGt52bHHwFxuQVcwYe1fvOw6y+bZds4uS082ZQePWVZBLgIRiILfiwAejWmnXBJ8izgjitVTspiJShmH3u3NOP9MnmUI2sUAxAluPQp8g9ilZprkHuma+7egd1SqpxpBrPuBwDk3ePdTyC/FaG/0dGvDNhr7cZZvyQoz9H+IFQTjwMTH20nyijaj7OQimK/DXCOAs7bO5vMswddEF14h4yemY7OSm8devsxQci2nmPjWPKhovCWXd3NxR9j3SpvWGrMzGjQhYf8Pgxxc3UyrRMzGjceObhXnGPakkBoxT3jDogW1Tl4rzDa9eq/vdZNlIWS7DNkXJObYNmHGPBj5NWcmlb7bmgJsY1OTKEAoIvVlKM2bMFqDeDH0cZArP3tsL3NHYzi3AQaNvH3Lyg9fZ+9WHIML+t3Me/1hGMXD0ns7JxhnZmQ2IyUyCJIIZz2Rm9zMNfyuPVALFs2dJa/tvzQxnLpXRvYLJKyn5njfPfNaAJiLlEtvH/jddFSDdeuxRJ5Q9mO/JOQMN1DM4sYFAoTLmvRM1DDwGeh1Mb1NLFTdgwUrWA6Bn15VObMbiCrj2bavfPHxasvN+AQpPvzwIvP36nRBlyYDHfmMzlDJg7YRBTlZ74C2ItdlH6llu8x1t9dErCs7GdpXGXkS2gN8D/CtXttNW+1gYe6A2xJfx4lvLNhoc4v9tL3+D5Ktrb3rGrzh8piRlCMhSe1wx7T7quYhreP+xElG0ADFNPr7YjdqmtbokFQRgmLuY9osY/uoW3iiVEUKwRRVk4/Jg6BuFn2tj33qJGp9qeSws0UWrhMsb+o6WLJQyeo3BSxZgcKQ1VNQw6gDDNx/W55Fm6CBDBz12v3VYrds7yclOM8YvO7bvKtm4xBU1vFWGEoYxvpIsliGDZK6UmQ1EvRMqeYN4XcnMZAkkF3sLo/Ft4u4Bkplfo4JTysyuI3rWS60xK4jHyoeQzqOR1kqJsoJ+vMU25vs1vyEa/rjPmAfS3L+5tvZbeppXfSbOSCa3HcNHssyIaTzXcmimJ502blrTb1E9nxDVfLdbM5dzzlvL0DePfRXtqouXqOoEuHFlO+xoHw9jr9R8Wzj/4Js4/jlPMazSZdjbHn1XQLbt+TfXb+3v2v/3ASd/+FPGs4/4cjBO0WgYa6feNJlbQo9vFCmXUqoiEhXtMgbhmoWrqWEct3ANyqRw4zfNQ/R9R5kFaKMwXrzLFRfLwgVYplmQ/ZyR72TTaLeRbxr6+H+e19tGYbOu1hxQvUJRkI3jcQ1TLgfQO1Ku/eJDyAt79omDLDPsvvTo0Or0ycEJeOXpT9zgxi88RcYT268T0senuHKLm18fo4mjd7igd5pSDKWCMcp+MKKz8KwC7GL1ZKUKVkppekUPf2LIzV9f4BZl5e36nrJ1zzHfh2KnxC2cBdYFZGG1Bcq+ceazsYRZmVazuGLL+kh8thU1MpxjMjeGlIolf6UzJZ0rzOr1s6kNJKeflkqmIWYP+xRc+F4ObfakCosdePiVPum8z9Yjz847Y/Bw+5fHnHxuy+ILUnvaIjXbyGcJh1/KjOMPIbjKOe+7fp+X36OmcW/XU1jS1fGt71ft2X8il/DRNOkqPXgBVANrvPlVFW8uUzDBezNecVlecOM3Cw6/mDJ9WclOZXm3QhWAS+Y1+yCdQTl3NvUN3r0ESMYtQsm4IHDWnIYjisycUe0iDU3r/8u+8efTuSeZ+fMB1ooTXy576+2BD1YPfueewQUe/AWGXhusJylh7++9C8MB0zdu0X8ytXJ1BydQFPiXb3L8w3vM9k2lETFIxS3MCL/6NxYwmXLzb79fn6uIJYDN59z8tQnJyRTtpUjh2f+2IEXJ8Rsjth8sOPhSn1tfn+Azx+EXB7hi2Tj5VELCmdA7hdPPwNMv9ygzmNzx9A9g6wNHOjVIaDwU/HZpuRUK5bbH90I92EAvzca13MXOByXF0DHfFebX7bn2joOBL3QpWS+2xY4QmVVSKsVQ6J3ZCWdnVPLP6oLMQY+KZVMNJAGm8in0j5Sd704qR0DUOPk+JUAylaUOsYuE08/06B2rHVd1adbVxtibM4PzhXLOe+/nnLZSl3+/Ks9eofikeMlH0NoGObZNjHt7P3DeU4//tymWl0kECm14b8rhF3cquKbytqEWv4owTnjBTCNc0NIkZiVU/4nbSCFL60P08CVUImp4aqE6kaWzCy4Phn7ha7gmrxOgKuy9zaZpGvd196wN2Wx4n5baCohMNRSkHk8YfucJzBdVopbeuMaTn9hnvg+oBaOLYcDyI8zRhJEWEVMLxyo96eNTNE2q+5GcTJF5wd6bkBxPuLnYJX18yuLVPbvHEypuumHdho+LWh5F/2mYCTgojhz9Qzu3WNVJckFHjSIvHtJTGwykELKxzRAinDJ8XFAMhGxiEF3U2BfVWq9GqQx0mdmXSAct+2Zki75U8I6oDRbF0E4hUi3t3tQfKSApYPTBwthWlcG1e3oO4RAjAcxu9GyW0AvsLa9QdPeJKK1d/b7Ce69+q9Zrefbt36+o/aMmcfzxMPZwuQBM9OCa/28K3Wzi0ccWvfqGt5rce0I52MHNAyunlgmpPPsIxbjAWIycak0FDZmwQBU8i4U4qm2pjRpAMqGqvhT19LOxQTTptMTNy9rIlwp5afcyYu5tOYP2Na/6v+nFn5v1BI/uolhHtdvWIBu9wdJDL+PkR25z9mpC/8QM3elrUhk5UePj984MXin7gTGzPUDmC4ORYh9o9ofpDBltMbmzR/9gRvLIZgzJfA5pyvR2n+wBpGcLfG9gFbxyrQxizEtQZ2JpcigsRtA7g533gtZQIxFp+FCYSorPlP6BY/jQtvOpDebFIBj0EpJcmd1I6R+V5KOkCojGgusxSF8ZS4EkNxXSdFo7BQR4J84mi23LVWDLjH/ZDxBO+BtlPqp+dDgzxyA+p1CUfuuJx4XfT76wZcykmYagsbLznTluGmpBYtTLKM1hOzrvjS8Z/nN9bY1hXzOzf9b2ScHxj7DJJhmXzdbltTd/X2XoV8E7zQFkXStL7vztMQdf3mb8qr08bh5ir85eqqi42EyZl9K89OYTi+JcsaxehdsGNkdkalQYrjds9tp3LG09mZe4ebHkyZuOTTDykQ/flfi07n6fg27OG3RVv1S9aG3rGhAqyQTQ/V2OP5cY62UoJLlBX9V9KgxSSHKTcEiCNhF5Cb0MFvn5wSiK5U2mbH1ztnw9pQcKdr/2ASQJRz+4Q+/EjHqZCQka6JAmLWz0UK0G5WIYorDB644JQ4tdy/rtHVsClcs1ZMYGCqME9o0qPjFmTT5KcLlCpIImccaowYDWM8eyp6H4OBX/3covGvSSzE3G2JVm8OfXg2efWh+LnP0IBSJQ7PbJnoypRAITYfcdU3NTByef32L4uGCxm9A7LshHCdsfTOvZQE4VjBUHa/NklgK0HZ76KjinufwKm35i7D+Cppz3FC8qLALn130eQ9/8C8t4faulD464mZdosksep8tRUjeetjS886a307CxTVXCJgtniU0R/4rtf/f90soM5t4ChUUjAco3DH1bs+YiSKbZOoy8rssw3tC7X9p/NMbbQ45+9LoZq1k9y1n6RFXGYEzUGW1x+rl9hu8cGZQQg8TRaKWJwTt5vvzsm+fs7O/0ppixr2aL4U98NuHSXamwMImJclBDJG4BSTi8Wxh2nszr40WWi6jWAfcwmERPvi5yorXiJrVxt+2C3lIYQMCOW2Y1jg8BCgpy0MW2QS7VOUh9PckcZtczsqcSrteUJ4vtlPQsZ7HfJ50pxZYjm3jSaUl2Wg+sTVaXVA/ogtlyc1nDuMP5mcC5dtl+dkH7JED7kbTQacrGw7yMo1+2jNcqQ78J/tf2eJtQRjQGiwXu6SnXvtXj/m8fkD0BXMCUywarQ6kSX6QM8E3FNa5L5LlwCypDUDTgnEjlTODWr+VkZ4XRKYNHT0x86vLmm0a9HVjtjJGsMO5dEhOXbDLoo7P50n5EEh7+059mvh+gmtNo4JWY/BO90ChNETVZpISDN1L0B28yfKzc+MUGGydxnP7Yq+Tbjmu/foi2upaJAAAgAElEQVSMZ1AUS5ILlaFJpZI5Thb2AKR9iY1B2hVKNsU8/ozKu09mMHwCZWaGPmrdaGDflFFwLjzjKP6XjT1l34FvFSwvtdKSiRml6VzRXEJ2dh33SfJAxc2VrQdhIFHL2C22CLkFVLPFqNez2IGylzB6L62dBS9kx3MQo/Yefzbl9q9MwiBU03Ytq9q34Fd/jm4ZlzV/P2fUu/pXG57tKkD0HM1MwifG/qNp3tcPtOsht1vXFLDdeXwj27Nr6ngRdLQqI7QsIc/pfe8AKV4lnSm9M8/JZ5KljFcpQYK0gcvii9aYmseJSUh+iRBQDKhF+p0KjN5X+gfz6kWThRl9irLbyDehmnPXvXzvznnt64z7JnBbO9ahik6my8tFKN64w+yGGaJsDL1xMCThHupSLYLwm5iRS0IFKnLIt4WnP3mDvXe2yR6FrNuB4duHv/UarlR6RyWDh2Pc4RgdDShHA9LDMeMvXiedEqQEpDLsFn+pi3xEPZuqoDbgg8qkz8IgcAquL5R9oVSbCVjQPdA9w3bqgthdEjX2re/7JKxbMVDMu4/3QcMAocFo+8DZl1JJ8njPzJNPFpAcKN5ZnMD3DW5EjYLZO6EiBcxuDRk8mtgPpSJ41Dmy05xrbwluZt78Un5GM/DfaKvM57nf13nxXcuuGMIBofyEjfMRtuZo3qVs2Vyv/b3tzcfWxqth2WA1f79MQRPvoSgYHJhxHn37kNPXblaee2XMlZqPH5g1S+yd+H9OxbV3izqYBkBixZ0ptdKqWWno10E162CZrilye1+XuTcXNScUOxnZOGavamVEpSSk5mudndlsjcE0DgL5tnD0hQG7qSM7mFZQiSsMi59fS/D9HfqjPpOX+mgK6e0+Z6+mobxkPaOI0hcx4F5RHSMUUhotUqLOSyN2EY2tCyhaFYSPz7nA6sUG796nNqPwCUv9L/aNKEvt4jFUkUbOuYrFctQp6UzJR6EgTThg7wymN6kqoFXJXGHG1Dw3bXnP4pXseFHnwDRzNJoF5p+lrTPkq+CaTaDdS53CJ579h9+UGrPvmr51GffmX1g28pti1W1Dv2nHjR2/9Nz+uw+59/teAucYPvVMXnL2VIrwPmuYVpfBYES1zECzyyYwfKIsts2jG31QkI5zxMP8Ro982zF+yVEMHf28RIoiYPTleeXJeG4Rr+8w9JWRvwiaWTUgXtRWTbebg7YIkmUm3Oagd+obxtYCopUERUJIGmsMVA2RNxXQnn0vhsLRG31c0TPPv9AABQVPPIHJy33T909gcdsMfYyHRIVGTcCH2ZdqgONS2H1nwuTVISqBZZPUEMpiZCqQ+bbh6FoSKLVKNqshGleqIYshwNrMnxAfse94L6kyW2s4xyx1OvPkowTfsxmMJkKx5ap9FQOpBtBsEmcNdl/7R2FACtdVDsINjUVCwswsOhWVfEbsU02IsOtZbzob73QwVjgK4q4UszeT84mx/+jbJtO3VclAnUHaDSiEXcdZ5+k7S5JiPufWr045/JFr7L49Yb6/bZ5iaSyJIjH54+yk1mqP0+feCdz4xozkLIdEKAcpUnrcrES8Z3h3wVbhKXvXmF1zjN4qkEVZFw1ZVdS7+VLS8uK7qJeXUalsrCtdAeymUQ7rSq9XnZv0euAEvX2dh19J2XtHzdBHL1jUZCSaMI6AD/CGcd4xbzvK5bhalz/OpnwCkpmBlFIqdovP7FmXfcfW45LxS0nFmqkKfEj9twkpuZMZ24Xn7DPbBp2UCrkZ38mthGxinrTPTE2ywuwXPsgLa+VRe2qvvejXlE8p7dyaQVwjLngTeRuXTG+mpBMlm3pycXYuc5hdcxYf6AfMfjtkJYfcgZicF+ND8Z71jhrUVecCa8igwk4vvj2TblNwl4TQ2oN+hzFvz967ZtvrCALP0p5jUvJRtY+JsW90nI1W7/Aq1tEL1xn6+PdZpojBoKYHY4ovDknO5sB2dTnRgImnklSIcrXJHK59e0F6uqh2lYyN0iEhGSouSOaKDsUsRGTatDNh29e7ytCvw+A7er+ugWQqY76CtRSbJAkM+jCbw3AAqhz/8P5SEpm98A0DG36z4uFa1R5tJrFFg5/MFecsIOmpWSlmbK1AhkOW6sZqAum4ZHBgDJeYmBS3gxqCsS/huUwWiN+uPG0NDzs7s9X6x8ps3wznMtSjS/GceJzotfvUnIN0UpIsPOUgsT4QBgRNbQBIxwWL13tsf1BSAkmQ3fBBC77smchakocZpMNUMj1kgYFabMXrsXuYni3OP7NSzxv6VYHVLqZTV2sn8i0t09Wz+MvWi96wfcLG2bCJyKeA/wF4GTNDX1XVnxGRfw/4l4HHYdU/rao/e+EO2yP3KhhnVeQ+/u0KSq4JSIq4znXWevutzueHVkVi9sqI279wzOOv7FUelAvT/Jh8FQ3I1iOl//Cs6szS9mwq79wSqHyamMGLrJJ1QVivq+Ga5zDu69rK7VTRxcIyXLMUJhMe/KEfZL5v0gBA0GuRJTjD+WgIDWLJt8wTlhZrxUvtsSazINFLja+bVIBUA4ktNAN68tket3/+IZMv3gBcXexFqbNOoY4L3BqR3T9m9PYx0zs7VXF2TYTBYUmyMDgl30qY7zvSqZJO7R5XCUVx0NIahorPQR0UoxRKw8rdzKYufpBU5w1WqEYzR7GVkJ2V+EyQVMkmysnrZvR9g/gkBWhmBACgKh5ebMHtXzXIz8oJhvXz0hLzYkyoE+ZrzKwvMsir3t/zK3b//ALiqPpJgPZSrQD+lKr+iojsAL8sIn8rLPvPVfU/3XhPyjItrr2wC9bpCh6uMnjhe+fe3fnjShsfXOX1hw6eHJ5x82slR1/eY/iN+1z/RsbRG8NKq73sm6flFlS1VpMFSGA5VJzzxj6b17H19hH6xj7az5CjcL4Rl2+tq9pgSHRBNdGwXMaoNwfersVrDD2AFiZoJgCffgWA3mkoEtJwKisWDFCrgQZDnkOeGoMlesTi1bRn5jYA9M6UYkAV/FQxxoor1ErNNvYphQ3ElCVbv3Gf6e+4Qzapja6Vm7RjRbhjfGfA3tEUOZ2y9eYMv7OFlCXl7pDJKwNLnvJK79RT9oV0apWclmodYIlaqlrXMFY7t0jJdArlMMVnCVIaUyeZGtRSDq2IzumnLC4xeDLH93v4VOideoaPEvJtk5coQ1WscmDefRRIS6eWcJWNjVigaah3qKGWQV7a97Lc3Eu/EG5d4c23W1cfK1fs+znbJzDOhk1V7wP3w/+nIvJN4LXn2OFmyy4Ktq4LRHa1DqN+zvNvwjxdXkzpcZM5ow/m4IT0eEaSDykGgiysgLfMrUDGYg8sxZ1lr8m3jH3jemXhSacemSyWMflV19x1n8Jv5wzzqvv+IqbUzjH91F6Y8URqYvB8fY1P1xW5pBLxEg3CWyIUAzP6LuoGlVAGHn6somQ7paI4OmoJX2O32DqLT1+n952HVQ0ACPuIs4xg92K933J3SFp4mM5whyfozhZSlDagpJFKaZCUK9QCuM1bpst/lzj9sT5rGBw0kSpYqomjGFn5smTuKQZJPSssNMQdGjLFIYM74vOL3rJQWjWrCPcWVTOqpcWLWDQM/SqcPbZ179i6+FsnNv/hWeBP2DjP0ETks8CPAb8A/BTwx0TkXwS+hnn/hx3b/DTw0wADNzJ4IrZVMrmrMENY9mib6wDrsmHDydT7i8GmtjffzNZtB6rUYJXsyZjy9jWS+0/Ze6vHyee3Az5v0/utR1oZsOu/bjotTXy9vv7GsUVAHIN3D6HJVQ/nVF13+3pbL422B8eu61raYJVHt2ZwWLcckH6PyUupeZdzDQljUhVTiRAO1B6+FMZ4ifCNeMjGwvR6YIyUtTGNHnjZC9z33OiIhmMbxdECpgGjF2XyUo/eN3P2v37A2Q9cCzV4Q4EQxTJWA4NKSpje7jM6nSF5ClnK5PV9tt47YfT1e8aQ2tmuiq6QZZDnTL/0UiMAGvpXIg3dm+WBtUnJLTNnQeZ+YrVvVSn3UtJZPM8QoM2Vom8DIUG2I5nb/SrECALZWFns2WylfwCDIw+JkF8fkj08W87AblOYV/Wb5rJ13nvsf+sksD/EZq/u1Rl7EdkH/iLwZezp/VFV/ftXdgC+D4y9iIyA/x34k6p6IiL/FfDnsAv+c8B/BvzR9nahOvtXAfay27rUAc5lsbaMeuu3Trii3dq/N41/02NtBW1VfY3rt/fX2odMFyxe3WF40CP53mN2RDj77BC30KAfAv3jhMUI3HgeKkB1GOp4fjHtX0uY5LUkQJoaNBKN/DqIZt1Luur3Zw1Wd7UYoMwypj/6mSDJXEsCQPA0S12CMwzT9sZIya3Qte+Zdj8CW49LZteTulRfpDIm9iFKTgQPu0ws69b5+rcI1+jt68iTI/pPt8n3MiRX0oXh4mb0o/qlbTt7dYeyv1t58Yub2/RPxvYcHh+c66Pp9CblIDF2UdiHFNqYJDUMfbgPUiqadkB7ziStfSokc28wVWmFVjSxgjqL3XAfkwhXNTT7Z+Z8DA49O//wEbPP3aB//xSJ+kLNrPPYuqCYLgO/iTLquoHhWYkSz9iumHr5M8DPqeo/FwqPb13lzuGFhC42byKSYYb+r6jq/wGgqg9VtVTr8f8N8JMX7yl0stZHy9I+6qtPtXwpiOnrT7XLFtTRbhd5F5t2ulZgtf90ZoFIIL33lHSqFkALrItIqVti08Rzb/Lj43cRcIl5iUmYujeLhTRgHfXeDH0XzBM/H1ZrBLLFOUgck5ezCj5ZWrVsGf/g4Vc1c+P3hTcjLfU2Gu5plWjlqWrJRvZLkpuBWyrmrTVrhyAi17trE9AIh0ihSwJotRBamFUE6MdnQvHqdXu+HX00ZvW2vfcqG7ea1VBn1MZcgihPUHg0CbTIwipl1Ro+Up1zOlH6R9QBaWdxoqa4XjpTtr97CqVVOpPpIlQEK8GX5/uNrvl09d2l5a3Pqt9965jrPlfU1l3WReaj2URkF/gdwF+y/epCVY+u7ERD+yjZOIJd3DdV9c83fn8l4PkAfwD4jQt3pqDripc0W9tIRwO4dv/xDb/8SL7k1TupjVj0vOP+w/m7J8e1IZ8v2H7n2GiGpaI9IR8FRcfF4nzyUwecs/jMTXrvHzD//E3KzLH19gH69MCqOIHxoleJfXXeixWDXPM6n9fLr3YZk3USePV2BaFUOH3wvquiFo372c4yltzjB4kZ2NQC2tmZB3UkC2WxY0bPEpuEbFLDOzF4ayyUWm4gSv2O39hn9LVTGE8qY+tThys8pTgksIAi3JIUdj4u0BOdKsUoI90dGdTWgi704RMGpWf22eu1FEZkFYksDYB10XibBSRz6yPJ6YLUe/IbW1WRlXh9+U5C76SgzISy78jOLLdA01BTFxvs9r89NU3/vKwIEYPHU3MeuggSTS98DRFieZM1pAgntVLqh+l4dDRF8FfHxvkcxj7870TkR4BfBv6Eqo6v6gDw0cI4PwX8EeAfisjXw29/GvhDIvKjmN/xLpsU4G0Yy85lza/tpJ6iQIYDdDpbyQqRZrWppsFfheUHA1cZeifL20VDv4T1U//f9OBOxiTzPcOPxZMsHGUP8k/fJHvz7nKn72Xo9V3yWyN6332MHp2Q/do70O/R+8VvI6Ntytdu4V/aIf36d+x6K879c+Kg6pcNfmzPYvhF7J6HQVF6GYe/5RrZxDI6NTFD5oJXG/+ek7VtFJ/2vYQowQvBY5/5qhxjdqYUQxckol2Q/a0Dpj4LlxmkfU3Pxv5PZp7y1Zsk7z+gd2AiYGU/MZl2H/B7AG3MNoLnHwcm7QFPD8/349i3izLQQ32Y6VlfFPVLGkCVty/g8pLsLYsFaFEggz7+5VEd10iEfGTw0OR2Vunll07onSq7784o+wnlwLH91oHlOcR3QBXyAve9Se28nHv2ftngN/rESgLEOdiwOUi41ctWteZ5XTHWf4nh5qaIfK3x/asBho4tBX4c+OOq+gsi8jPAvwX8mas4z+ZBPpKmqv8vdGYlXMypX73T1YvanoVI/dvMilEwn3d67+r9aoO/oi0Z+uUF589ZZBnXbMIrpSed2HlKrgwOTVJ3fr1H1j7o7oizN66RzD29NLWKTd6b5w5wekZyTyi+9Cpy4xr6+Gm8QLTx0smLwj03wVSbYnYBvsG5ZYplafBIZXSUOlgZW9TEEaFJWVkqru4VN/cVvp9OSzOA2z3La0ioi2vrsq2RkpB5GrzvzBYmJ1P8aBDKETbWD/vAB1hJa0MPxpDRRb58Dc3+PB6TneyTHE9ZvLpTYfIRhmrCWFFKITld4E8tW0ucMzE5JeRtKKSWeZtvC/N9y56d3YD0DEb3SrLHZ6Qi+N0BzFuYfBN6gXqQ6sr36PLeV1Eq1xnkZzHWLyqYq1wmQPtEVb+yZvld4K6q/kL4/r9hxv5K20ceoL2q1gnjQEdnit/DXycWrGx4+MA5o3yhwV83CHT9flHgqWH03cJTbCckc8/gaUF2JkxupYx2d+DoBFWPJAl+u08yN6Pl7z88702VHj08ov+WQ/dHyNEJ0svQRY4b9CmfniM9bd66vPpL76OB0QfPXpIEkoStD6aM7wytbN4iZpNqpeHelHgmkeo3tIZjTPoAimFCklt/iXg+Hqu/uzBPvsL5A8WzTMJMTAky1Oadu5AI5RZm+OTBU8of/jTpWU65nRqmXWUz18eLgdTYet/8Xh0vaTdVdDoj+c13bKbz0si2Fw2JYjEGoZU+T3o8Q979AI1B9xC/MZ35Hi4McOJtsBgGuYfesV3j6BtPQJX5524Yxp/nNb4enJDonS85Ng14Zi0Z4oKaCF2z7Ham9Sa5Hs1tnjXhb2W7IiRJVR+IyPdE5Euq+ibwu4FvXM3e6/YxMfba3Wm6cL1zao11R9XxdJkPD0uG+lk8/M51I/yzCaaZ5/TffghvvGSnufC4hTAqYfLFm2x90yN5DsMBs1e2cQtvWjltDDVedwn+0WP0/gPTmUkcix//AsmsILm5j3/zu2a4r1pL5KLWNPRVXKMBfywKM/SBg660vHlpvHsVMydAHb42ti4ETbX5nBUIkgJFz1Uc8mZQ1pQpLTO35ppHuEQpRj16aYpOZ/TuHlK8vI9beDTECbTdr2AJftHprFq2Uj8oDv7z4NikLqhJ1hCWy0t8lsC3vrs0W7OFkN59Qr77CgiU/QQ397iF6eFkEyWfWsY1RQkB3tn/1qnRfAOlsumZS2JBBC1Lw9ObOjdLzsZ5htfGORuwPBPfZP24yion8AraFfPs/zjwVwIT5x3gX7rKncPHxtg32kUZe6t+L3k27/QiDv6540XYZkXHbQWuVD0ynpJMS3zmkNKjaULRF0uUeXkfKTzlKKtgg+R4YrVbWtesXpEsxV3bp3z4CLe7A2lKdjzDTQwnESe46/v4g6PLGfxVmH1X25Ai1wxuyzwyiAxOqRKXXcOLP7+DJaZNzDaNVaDaWjM+dfhe4KUHDzzGB+oAK7USZnhWUio+c7C3A9MZHJ9CeC7Lugl1UzGhYRWhf++4zpXy7WcWvGfnKmdDSmPWiCqK2EDlQ2HzUknKYuV7oKdn5yGfAPuUmSldTm47rqmHhWf7wQL38PC8oY9Q6Ms3jI0TZ4UxWA6dBv7cNW5CV7nMeh9SU8D7qzP2qvp1YB3U89zt42Hs41S++v4MXukqQ9Xyytd69w38PcooSDVziMeR5Y7bwUpoMxKUkuRb75Fev0Zxa6ei9E33HclLVuga6gpXxugIWHLrvmheUD56gnqlePTEfr/3oCrsJU4oHz9djdt33afLGvpz+2xSLJMwgC7PhGQWywa24Boxj9ykdIPxjQiBLO+/wvcjLRMq7rsV6QjnUZonHgOrQuDVG3mnPt94nEQoB47pp/cYPj5A53OSwwl+p28DU15fs1uUFee/6CVsffsJ+sggk664Un2L62XudI7f6dcDiYeom4+C+9U3l9+Bhn6T5rmxhPoJycRiFL4nZBNPMTA9nv4xlC9fI/nuffr/8H07t7Jm4DRzOfywT3lrRBbjP83z7zj31bDqhm2pX3yEA4Cy7Cn8I9A+HsYeVhp49Xq5gGOX19mCdM6pNTa9+1bAtdLOKaOnutxBL5RlqOCcEn34mPTwGH31FujQeNHTErdwLPaSoHwIOp0Go6lUXLVo/Dec1l7qvj3TjGj5Pi/DN64aMMU7EEWHPeOPN2+TBChENdRhFQgZsRUeLlRBVkGqMo94NTy9AffE9REhnRrrJerbtF9sV9SYuyYSOPNAv2eB/oePYfsO6aSw84aqeIwfZPTfeYhOp+giX52d3Pze6Hvu+BS2+0H3xu69F0c6zXHfeg8NAfeVz88r/ccT3MmUxat7QbbZKKPiwQ0Tjr+wzfXH23B8an00ZsbG8wqzU7co8EVNX+7ExZ8FYl3Vp9Ztt9JhezGQ5PfZZOPC9vEx9h0terWXZppcJhOvDctELL4toUDLY28eK+5n5fnUgTudz+HdD0izT5NMCpKzGYuXdsAJ+ZZVGZL9PeTaviW93Lt/HrvdsFUGYx2Gf9GLdqkDqrE62rBYpGDGQ1VMFNum1ownVG1qD9bUmH67VCE2CMQygnGfcX+xBGAF7SiVLLG6sL8weACwO4KTU8gLkw+Q1M4xrwdZyT16crrszV9kORoOh06my8VYRHCFJ7l/gJ9OV+ygbtnhFLn3GPo9xO/abpWKFpqN7Zzmr9+g96vHIRmpdZ6xP6aO7N3H+E3x9HNUywv6FazvW0uSDB9ynOkTY//hN4WNDdpKw9+GIrr44R0evjQDrbBs9GMrO+Ce5rpLJ9jy5lZ4TPL2XVwvgzSld3xK8qlbyLUB5cBx+iMvmYjW1NO7sQO/9ua5a+9qKwfCxFmW6Llz9fVAcBkop6NVs6Uss+OVHrzNjISEs8/tWtanhMCsCyqYkYkT6IfNQKjz1IXbAzbdLNYdPXO/hOtHDnv46k03BkwzByL0E+C6qKJZgsw8i9sjescjNFIec4uxSGF1WZPjCfrg0WpD3/WM3HLf0fkcN57jswR1ivYc2eMpPkApa5+zKvr2+8Ep8ZUEQ6wP60olnZWMX+mhLqMXz28FLKPO1RnZm1xLvZPVy55n3Qt3dVUWWq46QPtsZyHSU9XzBQU62kcql/B916LR6qqv2qaPNYxwJTPQXNaUYKiSl1ofbUg6xE9jf9X3dip587zKEj0b475zl8G9U5Kp6aInM2/4cP58bAT1ukY+mvOe1brPyn007meeQwfffPB0QTotLRHKQzIrcQtfce5droFKWKs3Vtm1hMSrUmu4pfLczfD7VGxAUK2ojMnM0zspSKelxUnKBgtHtdK9GT6YIoWSTnJcocx/4DWk36fY6eNyS4ZypzPcm++eN/SxrUvl70j51xBviTkCpG49OeFcsN5DXqCZC/fPkyxsnXyUVtcmW1tLTklbTiN5fARZhtsZmeOzTpZgk77wApp6rT5Xu+MNP1fUROTvBNHI+P0ngV/adPuPhWf/rO258fwVQbQlb7/Lo2+su3xCl+gZ3njOosH7X+TI02MGqsxf3sGnYiN5Ez5wsnJms94bvMCrf9YWj9n1DLy3uENo0fOEwEIJbBaC6mX8rfLIl4Lg1GX9oJIZsPXMe7c6tWFwaHDgq4xdofb4w5+orxMH1DirKAcOehnJzCQpsoenVRDWbt0zsFE67p14b97l0nirS/939u/Yb1UDh97kiH0/qa7ZKK5is6xqfx3PuvQm3bEzgvGkdZzN+0g872YfXfdudq3fbuuWPXdT0Ctk42zY/iPg50TkL2By8L+PS1A0/7E29nABrFMvqP/vMvjn9llv25nUsWnAqqu1XoDo/QNweganZwwe9sl/4FNm4E675TUiFi9JYvvMi5Uv5ZLReB6MdBW+H+9pwxhK1CzyGLwwL/D91AxcIjX7BOz/YtnAR8OsFXNGqxJ9NWwRVzaxM0KyU9SasVqqatIHTqrykFG2IJmV5KOU8WdGDB7P7RjqcXnK7Mt3GPz6++h4UuHZsS/Ev9Vzewa4Q6ezMBA5G4hmi86Y0NKza8pvh9lFMs5x4zny5IDy9VfQNLEYQKijYP1Ca4++eb5O0NMzNM+RRY7ceQV9726dZbvu/FdRQ1uDFdTvZdc264z5CzP0Vftwjb2q/g0R+VeBvwU8AX5MVR9suv0/9sa+2VZ7Qi0j1YXnL61fe/ydiSCXzQWIrW0ko9Jgw1NDBM0L083Z2kLPxq1dSLUvyVLc9WsNmMlTHp+sfbmupHUZ/a6gePTuveLuP8VtDSn3tyF1aL+mHWpqGjFNBg6Bc04whnhFU9PH0Sg3HIw7IlDa9lLUODxAvp1WPPTYJChnxuzVdBIgs3mJ9pMALZlMRcxclSRBhgO4tod+8GDZeLbvy4b3sJpRJIIcnm6OGDQMvpvn8PAxfjojeXBI8doNXOHJxkIyL82Yx3Nt9wev6GyOG23b98Pj0A/XQ4eX7Vcv3mg/Y/uQT0tE/gzwL2AKmb8V+Dsi8qdU9a9vsv0nxr7VNplCbrajZYin05t/HggkMFfODSbO1V5yP6syHNtNkgT3mTsU+1u4aY7f7lnFpG/M0aCIKZmEY+jlIa+NrqEjKN6u6KWWyCN5Dqclsj0wXr0P0gCY9x/15ZtFTFzu8dGzLxXNtCp2UlW2Uohv7dLMQENQN1I3w29VApcI832TXE5m4RmkbglSkeHQ4LWtIVzfR7NkqVbr5W/XMnQhgUarsuEem0bT20AoiwI/C9KW4ylSeqQ0xc7eg1O0ikF19N84U+j3TJa7kQV80TV8LNqHfyk3gZ9U1Snw90Xk57CCJ58Y+w+lrfPy18E1z2noO/nySYKkafBmxT77u8jpKeob2Kk45Euvc/b6LoOHM9zZlPzmkOwwJ//xN0CE7MmZldB7eIx/8Cjwwdf37uaM4EoGhhjoDmJmOpvi7j3Cf/41C6pmbolTHzHzykNvzMjimZIAACAASURBVHakKHFz6gQkj/HUQzJVU9KgKvwRjXyUZYjMlXAfkrmvKl1p4iiHCenZApxts3jjZZLpzYpfL4sCtyiWbcQF/WEddCFnU+T6Ni73xv4Rhzi/+jm1Z1SqaFrPVv1kQvL2PfSLd+h9/Tv4UPv33PYASYIbbeNPzvBHx8hn7iDicFmGf/xk42u50ta+h1dBB155LPiwk6pU9U+0vr8H/J5Nt//E2He0lYbqInphV8BxVQe/bHCzC0KKx6oEw1x97KJE7z9C9nZwt2/hDw5tup2m+KeHzF4ZoQ4W13os9m+y9Y37+Fum5+IHCYuXd0yA7eV9kn4P/fbbF748XXirnfr5QHBnDKCq11vDX+KczS6Ch+nPxoj3+CwzDnwqkPsq+9WqgwU7LWb0cZhHXSriPHhBSm8Fub3x8p0PcEgw9LGsYKX9HsTVYnA38vIlsIA0dbhFSTlMTRPHQXq6MJmHarAADo66IZw193LlOgdH6Ou36L15D67vI2cT/NmYWvT9onue2KxoOMRPLLiq8znp2/fM0EO3Vy8Ot7VFeXhs+1RBnhzgz8bkv/2HyJ4cnOvbH7qhb/72goz+h51UJSK3gH8T+CFgUJ+H/q5Ntv+EehnaRp7oRZ3mHObcgUO39xc/z9Eqlch4zCq9vURPzqCX4W5eB0BnM9wrL1nWJOaB5qME3d4ynNv7OoAJyKJEt3ok16891zluRH1r1yxtBgYbkJWUBtG4hTchr1iNKVD+pPS4eW44euFx8yJICte0SSlsPduhVIwbw+vt3kRDXzOBwqkJVbDXZ7JkDG2/dn6Sh3iKqyEijZAJrHQENs4ZKQqk8PijY+j1TJvnWWZU/V51PpoX+OPTi88xDAYa6L9sb+PuvMrx6/3z634Uhv7DaF42+1xd+yvAN4HXgX8fq/fxjxn18hmG2C7jvvTbOgO87oVqLmuyIC5ql6160xXMBDSCxtE4LhZwdIz0+5Wyom732Xr/lMWtLdy8JDvJ0aGp40upJNOcYqcXDF/woH/0s/R/6TvBc2y0dd5TmAmtgiJWBsO9W8LulwKE6nEPDpDhbfPeo2RO0aBfApolJu6WJbizubFMtnoWlAwsH9G0xrsFikFS/Y8TfGr/V6hHgIyi519mgkuVwYO54fFpgpvnNovIyyUZDcUjp5P1GDgbGMaGYdO8IPnFoITrhMVr10kfPFq69137ru67V/jePbh5I8A1a47dYmH5SLNUj/S3LIP75V1Gd3ObXeXd+2pTKy81EKyDaTadKV/hwCAveAzraDdU9S+JyJ9Q1Z8Hfl5Efn7TjT8exn5FgGqtt77KmK8UALvcCN3W3u5qS8HVdop/5wa6+lxWBWzBkmcaGizu8SFc36fMHJJ7sqenlNe2Av4sptbooRglVUUlKRX9zKvwG2+uupjVv1fWctkAtV/0JZhhafALXnGIU5QPH5OejfFvfLoy8BF7dnlpBtwFg384Rk9OkJ0RUgR4wwmaJTADHWb4zCCYZoatT8TKF4Z760rM8wXz6ENNVp8K+fWhDR5ewacmx7xU2CNw4g+O7Bqa1MRnhfNCcpJ6Z/ftbEJ6OrACKE3aY0c/V6+1NLH3iBPkM3fQd96vV1pjhN3eLjhn9Q/EGf337j14dZ+tX32PMpa8PHfqz+nlrrpX8RpXLW/eh6uCdAIR4ENuMdvwvoj8M8A94M6mG388jH2rnfPQ12Ht7Q64cuB4hk5ywQBxmX1qDFRetE7nguhJBS9zMoVb1/A9offuGX7Ut337EnopeEimBcV2QjouSA9nFPsD/FZGeuO6edvT2UY6LOHElv9f8UzOeftrcFg/npA8OcFfH1mC0yIwiAoPWQKF4g5O8Y+emAecpgZ1eG8Yswjas+4vTaMMkIidYvDkKw9OqYO2nqDFU9ebdbMSl5d1OUQPOK0hnM5EuoanHq7/WaiJenyCjCfnufar+n6T9XQ2Ropite1qx1X6fYPCQq5GrLCV3V1d/KZt6J/Z8F9krLsM/gvB7Bs0rQ+v/Ycisgf8KeC/AHaBf33TjT8Wxl5YAcFUvzXoh9LudB0dYZ1Rda5b/2blyV3CY1+3myj9u2bbtYNHQ+ZXvcfNcnonBSxydHeAFN7w374ZQglRzunNHtsLS74p9nroF18L3n5JcjihfOdd2+2aLMbz59yRcCMx0SgOTB2sktagUX7vLsn8FvT76MmJwVRpaiyRgyO8xiCvUB4ckQz66M4WOEexNyA5XRjtdJBUUscQjHxk5IDFMALWHwuOg3nybmGxgmRa1tWqQn6AlAUqzvbTlrpY0TY29C1NIj+bg07Pr9PR3HCA7O1CWdp9OhvjIrvm9HT19uJw+yacRuKsLsKTp9Wy8u69lbBecyBv9omKRtrK7dg4u7urrTHuV0of/pA9e1X9v8O/x8DvvOz2HwtjDyyl1gNLRnalEWwXAV/V2gZ7BXe93ldrQLmkZ6Hql7apvLVG6vo5tcx1JdeaUsxxn8Meve8d4ve2kHmJhICbm+dokiCzwlLpnTK93SedBty8n5BMS9Q5tJ+SfO6zlcHvvJYNXlRjdCwb/mq7CyCO8tHj5e3ywvjeyydhxujeQ1stSdDf9oO4yRwd9qoCJT6zQG0y8wGztwLc6QzcuARHzdtXSMeedFKQnMyNY9/QjFHnLEYQT+2t95fPqTm70TV0yXWtwxhX17um6XyOLBYwHCBZavfMe+i1qhonzipUheZ2RzAcmoSzlyVD3zyHdbIc3Zchnf9vuv3G7ao9/CuMC4vIu8ApRqUqumrWisjrWEWrz9Kw3ar6+zc5xsfD2Me+sM5rv8hbj+u0k6FgbYB1I0O+NOtoHGOFpyckq7/HlyiJg0BggzQHoOZ+m4U74k/OUY4GpLPc4I+Yxj83dke5NzRMW6nwarfwlFsJHo9LTHFSkwR6z+/edMI3l8VYVylvdswipDcw3ZrEaJ1LbBuNxUYU6YtVriq9fXJj8fgsxQe7aMVIFC18KKYSPg6MoilIWZ4vJn6Za7vipl7xx6e4QR+5eQO9b4Ogv30dnh7UK5atmVcvsnZWW7kXqkezSbssY+5Z24vh2f9OVe1OUrD2fwJ/Cfi/eIah5vvW2IvI7wV+BsNg/qKq/sdr1l7OFO3y2LuMfcwADP93Gu5NMP1NB5KLWnsA6BoQlvRfVsA67W18o/hzWeJ/4HXcPKe4vUtyOgPvrbRcWcLMkwDqHOlWSpFk4JViOzEeunOUHpJ5GTJGHZJm6GJx3tiu8jBXBQ3XDaqrmFLhGNpmM63xbv10RvLwCAZ9cEGOIfeVnns5NO38dG4iYcnckx7PEVX8IMVnDp8maCqUfZsFubMpuj1ARfD9rDL2kpfwm9+xA8c++qKN4UX67+IgcejJGXJ9H7c7Mg2frQwXAq7WQlF2J7gb12pP3zn01rWqFGEbchEnkKboIr9a2KTd2td50bEuSbK48PAf/pg2U9W/8KwbrzT2IvKzwL+mqu8+686ftYlIAvyXWHbYXeCXROSvqerqiuvxQbaNa3OK2Owc8feEKnX83L6qddvT5TUDwLpZwbntLgget9u54Nt5o35uWdC9kRKj/710K4iJJcZCcQ43mVfaOHE/Mp0gN7YsySoRyp5Uuu4uaNurCDrMcJ/7NPLtt5cN7lpJ49VB2nZbaeSb8RgfkqVowEab4LbBC9fMWWKWC9i8EyT3lYduhcNTZBwonIngCiU9M4lgHaToIoO8tMuKNMxZDr/xVve5f1TebzyPYLSZzmxQ2hqSvn0PzdIlWCm5cc3Wa84QRaxP9TLbT5oSS0rqeBKw/T3KR+uc1PXtUlnYq96x1iz9mUgW69rmj/CmiHyt8f2rqvrVjr39TRFR4L/uWA7wMyLyZ4G/CVQJG6r6K5ucxDrP/r8PB//LwH+iqh3z0BfWfhL4jqq+AyAi/wvwzwKrjT0sG/ouI7+qU8Tpd3s/7fUu+r5uFtBpqKAKHm8UyG2t05ZqaKe3A5TLMI4OMtzRmPLmDunZwgKxsfhENEKB+WPl9Aqkn5C7hLJnwclk5kiKwjRqInzRbhdRCi/Ld155/+J52/E6vcyu7+KMolmWSO7tE2r7eqzcozqhHJj6pszqjFIp1YQ2hwmDh2P8sLeUnijeoyS4Dx7bXFvcxV7nh9zUqzGSJlNk0DdvPRj+peac6d40Y0TOnruMtmG0bVj/6RjdHyFvvWur7e3Acxj7C1vXYL7m3ZTLzLCvvj3pwuBb7adU9Z6I3Ab+loh8S1X/bmud3wL8EeB3UcM4Gr5f2FYae1X9X0XkrwP/LvA1EfkfGwdAVf/8Jgd4xvYa8L3G97vAb2uuICI/Dfw0wEC2Ow19pycvrb/V8g0N/Drjfm7dNQZq1THWiaedO+fG795DURquGtQdAfPYFxhUs7djMMPOFsnJDGahwE1e2AvtEigW5u31ekhe4kLx7Wzq8Qn4zJFvJ2YYxTJV5WSMpBkUNmgsedcXGfWGd7/Wm2vOArr0iKLBb96udsw+Ycmr1kGKLAqSmZUQTGY+ZNo63LSwzNeQkewm5kj5mwnpWY6b5rinxxR3bpKcTJcgN80S0g+eUj49XClE124fBdat8zmIM6OtivQydNrSXIr9SsRqI3hv/evwmPLgCDk9Q3o9y/E4aFAvv3cPAOn1jHJadHPvP4z2ogz9VcI4qnov/H0kIn8Vc3jbxv4PAJ/btDJVu12E2efAGOgDO1xp/Hlt63oqS7c2THO+CrCX3NQqWzHym6Eu9g1WuDruxnUEYiNOuSlDB2rNk6Xt6hhAJfUq0pYrWQ0zXNYDjAFBCNdeAqa/rs7VxlOV4s5N0rtP8LevwfF4+QX0Cr6gEh8rCiQv0b4zPHvuIRPUaSUEFu+17o1weQF7O+j9R/izs2445ZISvpGV06mjE1vJ6nsJ52Zz4hwqZrA0SaBvSWSaJSTzknKYGCsnNcqkBWi1NnJgEgxnRnOcvjygf+BIx7lpyqdWc7a8e6/b0H+fqD5WNMhehp6Nke0tg7TK0gaAQH3V+cJUO2OeR78HIvjTM8Pyr19Dr+2YxPKTOrirZYk4sWS2XgbTmck6PGvBm3Xb+RXvdDyXrvKhz9uUK5NCEJFtwKnqafj/nwL+g45Vfw3YBx49y3HWYfa/F/jzwF8DflxVJ6vWfQHtLvCpxvc7WLbY6haNFDSoho3F6wx/ez9Q4ZLV/3G/XUyX5nbV96an3tHJ3IqOF0+zjZE2j9M1e1CtvfOmjotzAU8NqozR2PhwbaMtOB0HGKis76H3yKJAsgRVV+m7J7mCV5JpGCgSwWcZyXBgFMZPvYx77x5+MjnvqXYxZTaIV1yI314yiSYWRhFVZJ6bgU6Xz1VT06o3dcw66J2eLqweb1GEARVTnRSxWVAP3KzAt7OGL1KifIFtLRUySdDFAhGx3ICBadvEOgj+bEyyt8PRP/Ea+3/vezZznM5smyTB39xncWuLwcFJ3LnBaUnPMmvnc7vfWaQvCZL08LP58wVvV/WdFQSHJWG9q2pXN3a8BPxVsfc6Bf4nVf25Fet9S0R+iWXM/rmpl/8O8M+r6m9ufMpX134JeCPwSj8A/iDwh9dt0FZJtC9Nzz38da7Wj2mv026b8uUvI7Fw0VRyk5yA5m/iITrolX5MoFKmmIxAmoBPyQ5nZqBivdJ+D80SK/Kt3gaLCAkBnJxZcYtr22SnreNCCGxaApa/NsL3UxMdu/MKyXyBPj1Ep1P8ivR528nyS9vpya/Q1+m8TU3OftPILmkWOcsa3R4gi9KM3DSn2EsqrXtNHTIvLTN2GhgovRSZ5/jtPrq7TX5tSDqvZzpRZ8f/5rfPz2hWUUKfs21axq9zmQSc3glsDWGxQGQIeY6KQ3ohO7Yo6Z2U+Ft7uMMwIxSH9PvI4QmDB0/wRyfVdalXgwYBHU8hL2x2kKZIr4eMtklGW3BwZFBQR1xFsrR+j8N+z7VV0B7Unn61bnhGXdLgz9iuCsYJsckf2WDVP/s8x1mH2f+Tz7Pj52mqWojIHwP+BhbB/G/XDzq6/DA7DGM1ol/0sLsGiPoo59tlkrFgA85+66CbYv3N82l2cueMMglmqG7tk+9mJPsjM17T3Lx8F8oTpilMDIPWvZ3qGOI10AoTfM9R9h3puET6aXW8chhgjkRYfGqX9LVrSOFJTqaU3/jO8nmuMXZrZZDXtcagUBn9c5mc3gKT8wUyXVhSlQjifVV/Vp0FX13mAmafIHtbEOGbrR7T13ZwhSK5N6G4zCE+CzOvOgaxdC7hHK/S0Df/Pk/T+w+R/T3zwEORewnnWT58zOD/eWJF1H/4cyTfOq43nM6s/uzhUfWT+8HPI/ceo0VhKp+hf7ib1yvmm/ZS/Gdfxt2+jhyd4UNy3NK1pGkNNa5KGOua1Z3TVnpB7UNG5IL4GSKyyzPQ5r9vefaq+rPAz262MsseXAfUslI3htbU7rK4XnNwWSdUVg02q9fRaOjd8oCzPKNoQU9tWCdiq6UHsYCjYkyd4tq+SR0o5Ne3SCYFbpHX23s17nwjDiBFiZLhe4nREVUrhEqToPseQixSaih0npBOS8O7BdjbItndoTw5Xe2hQYdhXgE9PG+LuQhnY3SrX2vjBFE18+wFFQ25BZYcRT/BM2RxbUA6C4Jr2EAoXk147Wy23gasMfSbloO8kmBu1yAYK07l+dJAEuWpdTojfeturX2/sLKL8sqtZcP83bs2m4vXkxcwnlgvGfShKJGDE+Sla2gvRW/s4VTroifh3MRZIlesnLbRIHmBCNyVtg/Z2AdSyp8DphjgGzHiz22y/fetsX/m1mZqbKJH0gX7XHGTTQaRikHT+K0JO7WXd8FM8Zpjwe40gSSFLLMyfT1j0iz2M7ZO5/UglKWWBr8owwtpGvB+q29SwTEbNNRvlYAWaWIZpr6XWBGPxFH0wkvuQCRBM6X8yhfov3eIv/egMhbnWodWTr2o+/6tyryt4KDWS18N7N4HCAPUJfFkw35M86bYSqzcYa6UWym+n5BMC8s9yJxx8sUYSrGWrX7n/XPXcdlSl12wxkqF0OdtzWM9PYRXble4fftY6pXy+GR5W1Xk4ASyDC0ti1kXgSwSpaqDTr6enMLJKW53B3ZGuLMZjKcGLe6OcInDP3hU5bzI9X304Mj28SzwywuMhywJ5H147d8AfviCLNuV7eNj7Lu8wy4DsTbQt+bptQeCTWcAG8wsllZvw0JtWKq5vGx49U5MU8c7o2RGD99b6TycsypK85Ik9yz2UhtI0gRJBjUNM01toAiZoH6YmaSC99BLjaXSoLFqAlKaV1/2XBUUc7miiUOdGmtBIH95lyzP8e9dXaz/KkoglluZ4fLEQUyWio7jWAq4m5Sx/e5yq3hleQdyHhPexMNco2lzlVDNueO1W1Eg07nVQOjcrHUO4f3yB4ftFbv3HyAcf3KKyzL0+u7/z967x2q2ZPdBv1W19/c4r+6+3fc9M56XZzzYmAl2ICIKhGBQgAACoRAkAiQI4wAKCCTAMRKIyEIBEoIUBAxC4pUoiTCExEoEtoJFHOKJxx5nxvZkbN+59p07c+fe26/T5/E99q5a/LGqaq9du/b3fef01/feafeSus85+1G7qnbtX631W6tWgZoWWK1Bi5VsoENGNmc/OgSMRcr2au31AP9Jyn43JtlFXgNw7Y/n6QH7KNu2Iis57HYq95rT+BXvG4BFvjBkLEQ0apYmAH60BmJOlrrC5BuncDcOwLWBXXm0xxPYsBUfpjUo7HzEk+CoTVv9QbJELlq4Scji6DJN0zPsSjJFshGnLRuAPAGknJgnh1fqj8eWscU3YdI0bz/A+varMKtWImvWDjis4C1Qn0lfm1WYcCsAzKjO1miPJuDayOpaSzCLBq6aSJK19poa5Y6JzEavv+r9mbD34HfeBc2mMB96BWhb+HfvgeYzcbSO+R30Zix5f5csbSK0H7ojysfJFPVbp2JZAjDP3YR/eArWFgSzxOvvmlL7PZL3QbP/YQD/HxF9Hv1onD+8y81PH9hH2UAJABgPhYuLbnadDPTk8URiqLu6aOdzzwLo+Q0MmBhgccqmRVWBhycXEndZgpsYUCtOVbOWXDfMLEBuAD+pwLWBO5knftI4hoc4Jcl1udpltS3gjOSMaWc27AvLqC6d5JBpy3HQ5WbvxrmOaby944ZGn8vLpeTtPzdwswpceRADZi17y2pelhxj+fwUR7+6QP3Qoz2ZytaGXiZG8pC49ba82LxohRQno5F2jykym/7eJYpF051Ekvb63gPQ4QHMqy/Dn8wBxzBvvQt/dh4KyfL8hD4mYzqOHeKUHWj+LEoBMcPNK9CLN1C9ewZ35wj2m28j7kOs3xmv10m7T/14DWf3Xheuvfdg/98B+KsAvoynKRHa+ya7An1+3aZBdF3uMP8ggaQZDeKGo6M25FJP98WJoG1lVeyyhT8MsdRRc6ewACteG/O4E+ArAxv3o20czNqK/3dmAQJoLeAYc70nCXu6woRkYcoJ+oERI8nvXC3RNGwpxcd3G5bEsEqxXqb3G/CkgrlYgVqJ5LFnC/BsMvKQDXLVfDm7JOoD+uXsAoilMe+ccOxn5zDNTfDBHPzibdAqJMyLtIrazQthzwWqq2Sh8kWBdSBC/fYZ1i+fiA9k1YLfuYtqvQZeeh78629u7AOyeCLRTVeS94ezb5n537nuzb85wP6qO9fsSvVs+zi35RXf5nTU9+tQsp7ipkBfJamKGr6UFHLmWCea/cEEdin0A1cGZuXAtUE7MeJ4an3g4+WfjyGIQdMyjThiERy08AzjPEA2Rab40AazEp+Bab2A6/IKKZYeI6KipEVTTOgVfkaHduTpJbwUKdEbhVQRbOWcuWxgFiuhwkJ+GK5NcoaT86BbN2RFamHsbE3qtg24d5V84ihp+hsWJQ0CFu49AO4/TOcROHVeLADnQVUFf3kJqirQqy/Bv/GNLiXFalV8hn/zm6jfvQe8+gLo/iP49Rr87j34v+s7US3uwL99VxSGsTTg83m3eXu2N8Am+XbevATA/xMicv4S+jTO/fFbOvnNAfZjsgu/P+KUSvcXP5jygNvVhCxdR2Yz8A80/ZA+gtmDHAAKgD+fgRqH+uEK7fFEnKqeRUsxBG8JhlkcsSEZGnkBvfawTty7XQVqxgvI+WnV7d8atL3p3RXcQTfEyHm419/YTjNcQcYiXTYCvTVd5FJcQ6CuJ9fX5gGZAP3MgicHEl1SS3n20UKyXBrpL755DPrGFkC5ygQW63XVYINN90Up0Tm9830rMon34AcPQcaADg/gH50J0N+8Af/617fXLRa/WgFf+3q36TuA6pv30XzkDurWhfQKOtqK0zuT+P0NysBj+i92EXrvDYq4sPSH1bHfxKGXwHbOcxe5rln9hGSwsrTEuYYPs8fnexanLZuU7piJZFNsrmWTkpUHI2zcbUi09djECIQsGSHl+ZAonEhxRE6cEDb7Dj6GMGFQUIHsw0u0Awf0k+nDq0TpmFY4Yr1+ACEIJMbk+zrUk9BNsNbAGgO2VlYlE9LG549bp2ElCdfyD13Hl1SgDUvC3kv8/GQiUTZvvT3IRdS/oVCPeE2MWrv3ANXDR5KDZ+z5AfRporT7VF7Bf/F+0DxPQJj5Y49z/9MD9ruAxjbHlparcPKl54yE0W3V7jdYG/1FRgVNX2n5KXLHWnHlOA+gBdYG5p378C89l/LbuGlYZRtoC0xM0GoBZpINtddOAI8AeIafWLCRVMC+CpSOoZD/XmLP1zfqRBeZS4f2V762YwdeXcbi6gcS6RvbxdVTI2mLbcvwkzBBGQmvZIJsaoIAOgGwJK6eRcsNNBejTzuQtYkS6b3769JTudN5pH1JuDA5bBvzVxR2rosQM33gNvM5cPMEWK0l145zvWgzMkYifRbLZD2w99KnMe127PNBwj8Wp22yYMzwe43tflJK2XtI44RVs88z82vZ8e9l5i/tUsbTA/ZRtPm6iYK5ilznvhEzcufVj1uiiYppAZLmp2gdQDT++HvTiNZkDGjdwpCA/OKFKYzK526cOFzbShYWVacrNHfmqUw3N7JXK5DCLf2EJHhozXBhXQ4bwK497NuncFfUaq8aOVEE/Lh03qJboxAtkbCeAGEPWlk1K+1jInAtfeOsUFDESFYPW/Fd0GINU9vkB9DrIDgADRl5ln3+VrdKNMq+OOStOZdGvoVtz89Df68i1sCfzNEe35T7PaM6XQKvvynj01rg5g0B/LsbaOcY5RPppPTOsrBOLWN+kH1F47yHDloi+r0A/iSAd4ioBvAvM/PPhtP/I4C/e5dy3jse4klKiPrYOnCv+mHtY2AUgJoMXc2cv8oy8fQ3D/5mFq0JnmEuZPWsWbewlw2qC6fC7wBvqVtHxCyhhSG7IxOBGk7hlkBHgSDw9hwWpbKVFMJebwy+ozxuVsTiZJFAIIBzFTZlMWLByErhWAEkJzVbA68WlHElWiPPavTyEfWSb2nri8EnR8P6PJFw3R1kl+9FSS8nvP7Xuyg7V9dwR9OQT8nCzStw3O84/OTKymKq/DmFZw/OleqxqX6x3fsS3vHf48sfAfB9zPxZAH8AwP9CRP9MOLdzg54Szb7/YiWlb6fd9mSX6U2bgE8C8Dk6U0kdGjGze4tXhhRPMdmWonWShh/5dQDUNEBwqvpK+m56fwlaOaxePEB7qLI/WoKfGng7R7Vw4TijupTcJxoA7TIkBasIFPNXxeCPUlRGqZ8KllC/Oza/jzFePCZAgzUCzsYAlcXq4y8AANxBCFd18d2jcwgigD6hm/QsgVoL4pls7xgnPr2bWHxPZEB1BVpLNsnBxHyVdR1XkT2k/xhs/LEl8R9NarSffBXVV7+O9SdeRHNSC9tlheabnV2KXyf6mA4mQvP1KK/xZ+Tnet94YQ3KrivXryXv3TxtmfktAGDmv0lE/yCAHyeiD12lFk8J2G/WCLSMvvxNJuG+pQDoReDPr93gbdf33wAAIABJREFUbBqldTSPH69FA3p4Cjux4OcO4WtCczJFfbYW6mZuJN2BgexdawFvrcSiE1CftTAtC9cfIm8kO2R6QNDwCW5GAFeY7MqbbnGuj/ZT1hexH9jLRhxgSlyvFCTUyuKFGqYF3ETqTVbOSQgphVXA6EIJDeAOLdgQ1icW83cIpvVdfpzK9NpARgCQXnkRWEUeOmvjruNtk8NzgyN1UMwGMB04+ONzx/Z21n6kgzkuf8uH4SaE+vBjcDO5x1UEX4f9AS4uu7xNkEnUHdTwn/0kqi/+6kiFx9utJyPZMKVf92RB7DmfPQHvZTTOGRF9IvL1zPwWEf1OAH8BwHfvWsjTQeMAQ/MtN+XUrF984SWzb9NHuE8PP+UDdMNzdwXNpOVngBhoHACg0wtUDy4l+2XrQctW9l4lwFeQHZushFL6mrA+NvL7ROqQVpgyw64lnp4j9WG6EEyu9zDM9kGHRUmOS5OM4JQPx1LSQn0lq4wjHRV9E4nKMUBzIiGnzZFkBu1FMoVVnnR8BH8wkUm9foL61XUWrGVjvvdtlCgSoOgoJmuB40MZHxVhfVJJH6ocQ74G/Et3Op9JiPxiG8bUjls4Fr/xeO8IjZOD/mNL4Ox3+bdbk8gS0ReJ6McLp/8QAENEfyw9nvkMwD8K2e9jJ3k6NPvMMbZR4gyvtAstvcGgzPgBaD5uNMVYeQUNVg7vNmqKIZpBw4/pFghBCW9akHOoGof1i8fwBzXIMY6+vsTZR2dwNQFT2YHJh2yXrqa0UrZ+tAa1Hu6ggll7tCGm3lcEcqItx7QKY3IVsGa9vkBNthud3lG7JwbDCZXDkoPfH89gV919EcjZAM5Ea6WLwWcCpg8atAc2OHMNmgNCczBFtRS/xuTBumuTtcBnPg4fVzZTP5UAgP1bkZmGP6rJlkC8JJv2do5U58SAX3gOy1dPwsQIuCkBHBasBT8OGDj97huov+MIR1/4OsCM5lh2sLJrD3r+Nvhb2Y57u1JRzJKtM/avXm8Sz9e1bKJysVuR25+5p3JE/i0AXwFwMngM898CACL6hwH8++r4moh2bs3TAfZAf1BsAtUc5OPetSOTQAL/+M1cd0Xj2LEtoN8dLvHQO0b1JMAPoOVcR+lcLoDLBarZBO4kpFGoDY5/Y4Wz75iinRHaCcGuWEALYr7W54EWCRx1eygarqZ1yItFUN1320F9h7URvXzvWybHQRlM4stgSbcbQdC0wTdhgHZKnaZvEVbOCvADQH3hsL5RwTTS776OFZPc9we/+Bb8O3dT3czxUeozeAC7JvLaFeBUKOh40wu0zK6SAX0P5NM1BNw4wen33JLnkUyaLvUNxKHP0s9gwN+0qD/9CurTJfzUACxjzn38Ocw02F/F55BvSZrqHf62BnRwkLZb3IvsCewD9/6PA/hRAIN0CET0hwD86wA+TkQ6zPIYwF/f9TlPD9iPfeyl4xE/mFU4Xgf42hlFCIAfP6xdVibuQ3Zc+n3lPOdR89O5dIyBOV+gvTkDWPK4U8OYnHm0UwuwaGrUAjHSpp0bVBc2merkA4/pJHxTPnr5e/L2uXwXY23aGBc/nPx67d5xpSR7BgWnPYX9is2iSR9s3NQl1huQn4mzJyT6KoK8LCYDwMD0QSv54IHegqS4foG8HwJz6V1d1amqAb9w7yhluU1yjj4dp8FxnlZwNYUcSVATZqBwGGCQMCvBt7N4sZY02whhvgQgrEreS/6knL4lI/s07BHsrxB6eYeIvqD+/hwzf079/ScB/HsQ8C7JnwHwVwD8pwD+A3X8bNdUCcBTBPaj+8NG0QtLLCQMUUctee5zhuoD0tr+QNPP5aqRFZtWOG6KzEmXXFNjBnomP997APPCSdqIZHmnwulHDaYPA9dqAT4E6osYWQE0xzXIA35CqC6d7KplSJy3NcHEDYZee6Orx1VTBZSilEoO7V1WSrKXjV+MAzcEOj3Do488jxtfawBC8DnIxOVrSpNVBHQX1hGACO1M/BmmBWb3Wkx+9quhnl29/MWlbO7SthJyuFiO1+2KID+IO9/5xmsAfdTqI9euz00nuPd9z4kSEG4Xnw8JW0boxkGwlkzLaKcENxG6L1FpBMzH8taXJi1F0fQ4+3SPGiPsQQ9O9x96uZvcZebvL50got8D4B1m/rngdB0+hvkUwCmAf/4atUzydIA9YfgSR5ZYd7dkKVptvMynK1I5Efi9F+AP5V07tHNwzwbaScsV8vBcJ+LDXDbgWQVyjGrBQYMXYPeToP06AUJfExprE6XhagPbeNHkPIOYUC09vO0Ao7cCclcp9c0I8HNp31HVP+LPCPurEgHrBs9/8QLLF2ZC5wSHmrcBsCxgQrIHCnvT+joAvQFMA1QLj/lf/9udBpmHBlYGHhXM2snm3bFNvYirHTj2goxdu1PkSS+lhh8eHwP66AytLNwLt/DoU0cC2qE5vTUK0QiukKgyYsAZoQUZ8rm4WdgKkoDVb/0kZl96Q+jFbaJ5eZ3tNdQ7ilYEtyqFuwpjX9E4vx3AP0lE/xiAGYATIvpfmflf2EvpSp6SaJwtQB+PlTz1cXGJ6XjJ+C+dj9fH+OxQXozsKUYwaA3oKprXVTWPUgqIXYE+j8RgSYMAI45YPwHcDGmBlK+73yOd46tgqsf8+Fm4uZvSsA82LXrZJKWFQKq9xeicUn9Ex6tzqB5cojmMvE23yQrFjzn8FLASbdRNApVDgF1zf/JSbaODOXxl4EP65EFbwvWji4Z2kV2pm5FrpS4j15vCO7MWODmCe/k5nH76CM2Bom96z0IvIiWOmXguUT3UUWdsgfWxhX/lzu4BF9b0t1FUY6T3HT8J4R3/bSqC+YeZ+UPM/FEAvw/AX30SQA88LZo9MASTq94TP1j1UVK3hDRckpnNIxp/Lonz3yY6l8mYlDT/TQN6m8WjUggwkUTUMMNPKKU8iFw9GGhnQH0JrG4YVJcMqoBqATRz+ejtSvrI14T1iUG14K5vSm2Nf24KiduF61Zavc4bNBqLH7X7R+e4/13P48UvAMZBdlD0ABvu3j9k0mqnQk0AgF1DrB9CyuMudevq0X7iFfiaYOP2dVm9ydqUG2Ynbn0slr5w3UAB2SYDx6biuqPCc3gAd+cYDz5zlDR3HWlDHqI+huM9zdd09B8YoFp8QHFHM/hoQRIeffoEN37jre111r61+QzcturU1S3bq8r7kM/+seR9AXsi+s8B/BOQPZReA/AHmPkhEX0UEn4UCFD8DDP/0BULl5/54L2O0ydxolHb2wL+crB/L7BxIki3bZoQNi340qt9x65JFVFUQ67VW4vm1kweVxu0U8CshbbhCuJkM4CbA5MzAX2aSFimmwj4z+95Afkjg/NXCYffYtz4/Jvgki8EGPbR2ASwE1jpPtkC/DFfDjOwWmN+VzTK2UMX1gnojlFOW5KJz8aokkrAiQ4P+pt0BLBcPzcFXMiYSTWqrB3sfZ/H36Z5lyJOxqRIMW7R+LP+T4AZNPqz730R65Nghfisn4AE+lpr79YxBKswTAJxvZ+nLjQ3cfuG0HzPR1F/6fX+BDc22bVOUnc7L9x8Hhpaaus+ZM9gz8w/BeCn9ltqJ+8XjfMTAL6Hmb8XwK+gn5/5NWb+bPi3O9CP0QIlOqVE6eT3atomvy9SPtZ2mk/8l1M+GfUz9rzRxV75fblEYNd1GCtjkxihGuwq7DBkg4M1amkRJ42KRgkOOLaEahk4/hkBBBy/yTj4Vgs+PSvTAXkf6XNZn+xEb4w45vLVrFrYCzjU5ywUVWiLt1KPGI0TNVjygG1kcpMCJYcQ6qo/RmI1Vh5cSZ/a86bXniL9pyXvG30sb3fpXz7+dqV2xsYJETRbqrNCJFqPgJQqugT0pv8v+kZiVFN07IJl+8eBRViqmw85n0I6jkF4qP4m9g30e6Bx3kt5XzR7Zv6/1Z8/A+Cf3esDxsLG9LFdzOEopdh8QI5ZAsF053OtPzmAR7RbXR6wdSl7sY55edcZ1LOpaFRHFUzLWLwgmpabhg81aGxuCrRToTEoBE3UFx6L5yxWJ4T5XYebv3QKevuepKmNG4UUmRzVR2N9HJs0sgiuV56+R2dFjJr+YGNuBpxHfclYHxk0h6Zb/as5ZgggCT8fNNMKIBdUWecDoFCytMha2GWL5Z0ZfD3B8S8+6m3SkSSG/G4E/jLIjZ6TQq4eHrxp3FiDyzuSAbW/6lgexTb0S/w7FkVhcV2FlH5DZ4JmhlA4saopCABYfe9HMfnia10bNyW227r3xB6BHmEu+wAB+S7yQeDs/yCAP6f+/hgRfRHAIwD/ITP/tdJNYXuuHwSAmVHZBEtAfx0Of5OUgClNImXKRwvrCJoc6DZw1zut+tXXb9OIdcKo4wM0hzaFHLqJRJtIQeFjdkJjGA/Ulwy7FqCPaRGe/9mHMA8uRMviwNVvoKZSRFQ+QQKj1AKA0T4aTZIVgb8UreM9Dr61xvIzM/haFgPFpGfR8ZiSyIV+qBaM5ojALXDzly6BxRJEsitYil7xjPrdczTfGTZrv7gUCyA9V7UrKgIjESRF2SWzwKYJtiSlCSRaq1WFasUSfgqlzRsMna+AAHjKfBrAn9U9wQqQSVNuNE3wgUBCMhcv1qg/9grMm+8gbsKzEdS3+afGjl1TnoF9ECL6SQAvFU79CDP/n+GaHwHQAvjT4dxbAD7CzPeI6PsA/AUi+m5mfpQXEhYlfA4AbtQvBNLvmkC/yXTVC1byBUlSkfEwNmBIlHnufcgcOeV42yaAzjX7uJHG4yZ3CmZ/TIuwOpG9aJOGpkxS00hdJeacUaP72M3ZUjY2j2Xu+mHF1xbAOIImgK5fouT9HaXQN4N8KCUOlxl20aKdhjUEFSVAgkOgoQPABe2VWumXW397geqNdwblJt744SPc/NUj1N98CF4u+wCe1np00ju/D4diARjHJpFen5fEGMzuO5y/HCBDAX306fSC4vQnGJa05Gmw9b+US4kBEMMwAAcsPnSEw2/ehQw6lN8hsB3o96zZA/hAUTS7yBMDe2b+gU3niehfAvB7APxDzIJazLxC2Eg3LDJ4DcCnAHxhtKAou64U3BmAwqAqOYd0/vJcAy05Y3txzP1zRafvmPYyRmXsIbkTkzhWfR34d0PQmphdQ0xsFhPbrkO1wwQxfeiB5aoD3W1JrUr9E/pGR8EMtf6Rj30DDRQtIva+6KWy37iH9a0j2Ia6HboMYDkUyYBxnCY8NyH4Cpj82rdkM5j4nEGIp0f91TflXF0P3h1tcpltc0pukkJk2eBc/jhvUh8Pwo4D1bS6aftcPHVae6JztJYfqZpwDpywvOP3AZjwd9fMbte01YnFYegPbT3pxYuDfn8SwF6SZ2C/XYjod0MS+vwDzHypjj8P4D4zOyL6OIDvBPC1PT20fHxXDSo6Zn0G8mPl9yJoTP/vEihp+seiCGiDVb/AcOVv6RnbhBn+cCIpETxw/rKBXQA+hF6awM3bNWBXEMCbipa/uGNRLTkkvuJhW4Fy32gwy/0ZmU+kR/kAG6gxxd8WyuytOtUros8vMLsLrG4B1aUAlmkBdkjRSM4KtUBe1h74GmLFJAUga69WDMaAu/SO9gVUOS0YfQNjPh+Dfh/n9WlbHL61xr3PTGEcBs7WyMn3nLVqYiAHocTCT7YIK67FeJMN77vqcAvJr0MAqipZjD3Afz+Fn9E4u8qfAjAF8BMkgymGWP79AP4TImohRtsPXSX3A4BucO5C5WwbMJsSmG2TXZXtPKwuHR9eShnnPDroPZcBdoO0B1XiY9083oNukVT8ECl8w04Ge3NImDzyaG5egTrbprWO9Um8p9DmIgUEKB7a9AE/0nHMgHO4/csrvPGPTBLXQG3HLce0CHFxUDuXFcXFNsXfI8jnbd1GGV4F7He5Plo8sU5a8tDWsUk6/KzO1uBqKnnlcrBX/zQ1I+UqFSXSgqR+NxCOH3oykORpTJBtNNssW2guT2oDmE3yDOy3CzN/cuT4jwH4sSsXuOkd7xLZUBrs+bGraly5CV2kX7g7pzXiMWdtpkr06A5d3iD1AzCgPzKgOH+1Bltg8QLSIqq4cUmkNdiKRks+aPatWALtgcGdz9/rWz9j/az9Hip6pWcxjVFkIz4LaXNmAeR5kDx3gK9pnQD401/+Buzv+Di4AuxSquZqaa9puklv+shjecfg1ld9fzFVFA3y2xSOx+WVx0Jx88l+bAyX+jf+rS2TcK09XcCujsWqiVRMpHKiI1YbVBZJYUiROEEjZqBbYBUmUcQ5WCkWfkLg+QS0WEpkQPB5bXQ0b+qfPcp7uHnJXuSDEI2zf9lVk9/lYyseM+htaj32LA16xZWvarSkD27LBKAlz71v+x84wfYdh2qBUW55tAfdvWYtC6ci8LMV+sZboFojmePNgVA8zQGBzhey5R8wtEpKoBd/ptw56nypL/Jy9PHUpoz+if0QNhxnVhq90vLZe+BygZf/RoM3f2ctKzsDhWOcYIz0H7C8JUTzzZ9+o6/B6/ZZMwTSHHzH6JSxoIBNsnWF8Yj1p+s85vjWz2gd6nPG8jYl7XzgdAV65wY14e5nWqwWGLhi2gUAtFh3k6fBIMhh0OZSP6brHjOYodCWbxd5OsH+cWRb9sRN2Rvzj0wv5iiNMR3/nXO/u2gNm6KA0jXx/LhGRNNJWigV6ZlWFtOiPgPaI5kAeIr0MdoV5AP1wMG7gdQnVfn8Q9uWr740IWzqixL/XdiwQvc9eRPC9zCkdbzH/Dcews/uwDmCaYS6iSuHKfDUy9uKnoh13aTB985teblXoSDHnlGS0oQRQXbs+pGyo/9GznVauo7YikCuHbExIgfojiUHrlHAGY6LhRD2/Q2b7hT9IyP1fOIyMjF9kOXpBvvejL7jB6Q19utuPVj64EtaWorMCRq8V+QmKcACiiGDG52cQEd7BAecFBu47RTyKdd65WAzrTzerANtE0Avpk+IZrybAjdfczh67VH3/JIDe2NI4YaonVRWoS82afkleiI6ITXgBzonlXTvAW5+5Xk8+oTkofdphTCAmTisV895fPLPLoYgn6/SLGmeydLL2nzVxU+99QhbNFWtSGhFJk6CydKJ12+2JE5+7RwXLxxLn3lIn0bgi6/JAm7GqC4l/83qNsOsSJzfofkxyVyK1GmlLPbyp7dyndFUvd5zIpcxSymXfW5A/gzs3weJnb4LfTMGQttkl3z5uvwxSmgTb0qsBqgtg3+8VkeelCiDOAHE6JYC6CdnZnCEkev46eYIaYVs/GmC1j85Fwpn8gg4fOMCdLna/CHmfTTWF732Qa2CzSYS/So47xd01+b9AYg2z93kqqkddg6Hbzucf8iiPQDcVO7hMLkBwHf8ZYfqm/fLYyqf1PJFSmMOxLHY8TF5nHGrFZltHL4+Hs7RyqWMoL0UCCRKwPwdYHbf4+jNFexlA64M1jcmOP3EBBevyBjylYwzTfuwhYB98BOBpbxbX15LnWMcbL4AsTTu8mPXCV/dIoRnNM4HR/TLfRxP/S6bYly1PrueVxTM6Efau0ZPHMqSyMPuwseSaJ2q6iJOnDgm2zlQXWSD2ndaf30JTM4ZtFxf/WO6Tl/Etg5WeWq/RLaeITqAY19EqkfF9fc0fUhqZ5AAUnQcsmGwZUzvWcxfu1eu5y4LosaskbFFQk9yN7RN4zofR/oUc1/vqDqwn90Dnv/5C5jLBtS24nCtDCbMOHmdcP7hGm4KVOcSvtqtUAZ64ZpAshSm33wUFBIahvXqXeaAzoLTUUZXCUG+otCTfD9PQJ4OsNfjcSxCYUw2OVq3bRayi4a1SzRQFI/+AE0autZM82eqBUnZof5zM8BXwOlfeg5u1tE2PEfq08hbEzonrQvc/Y2vnoHWbvgR9iam+EFusXjGJAeekjqVHNNmCKAm1EMfj/WNjlru7jt+7RHufvYmQMDhN4SGMA3h1q8sMfnGu4gbhwuSbQH4Tesytsl7CSTK8VkEelX3xSuSmsTXMg6Ovs6SW+iYcPvz90CrdbCqQrRSY2Abh9nK4faXT/Dg0waTM+DyEBJnH5vJ3e8xsufmay2o9X3fVKQ7cxoTkOuc6/5+Ahp9Vw88o3G+LWVbZI0+N6YRResh16rHBlxJyyuFzeWSRdx04J9rtRiCfvxo1LZvRAYPPnMi8eOHoqmRAwyLqc0GqJZIkRO3v7KCqw2qhQNdrrsIHOf7oGGoq9tVrari9Yq22iQRxHuhr6Y7F8vwDr28ROGc+eZdfOK/Pe3eW1UBVbYqutS2XIvMo41K1+TtHWvbk9by8+cYCnx8Zrkw4+D1BwDdwuWLFZ778hnM+VLevfcSC18K72WGgSgH83fnOPtILSu1g5WYgD4q5A7wE+Dw188wiG7ykUPKJvUSZRezfe6Tp1fyjMZ5vySPYNgpZG3DICg5anflSseevQvojX34JaDQUT4+c77pySMe03VT55tDSlE43oiGnx7B3U8moDpvULcetG7DohdKicIGbbgudbaJdssXTOV/b7MSkt/CdqChLSprJQUCMzCfdZPZoIwSZ7+DhVKy3HTbSqC+CeivOjbz+3T9dLvG/FzO4+D1h5i/QWLVNW1nOWk/CZAcuKIIONCqweQBYX5gcPYdVYrYibRQ3NXKNAiacxhfUuGuXj5YVrG+bsR6MgZ88wR0/+HV+mZX2RPYE9EMwP8LWWhaAfjfmPk/2k/pnTwlYL9Fc9agMBqzndEzJQ0+TgC7hF3GZ+mJp1SPbZKDgy5bHzPIKB5F7/jx5/HLd7C8HX43Yp5XF+hWiAaQjx/i2UcPcOOXHwKt77baiwmq8kVe29ql25K/j02AX9KaewBcAM18EjWMEHzf1xLZS3ZKZiDms9G+j7E6b3qfu0xAPathx7HRc05vsU5Lis116uw9sPbdF6cpsnifplE8ADgg7EoFD8zetXjlpz3e+m2TxNubsODKNDL2Dt72/XJ02RrwdV1zBy4A8l7eY7Rm90jr7FGzXwH4Xcx8TkQ1gJ8mor/CzD+ztyfgqQF77KZd7Sr7cMgC5bqMgdjW/OQjZeeaoS5rrC6Ks373772N9hCwC+FJ7VLMaHsZtKzwjUQedfqglQ++MmBjQM6FSJ5A4+zrY9rQD0VrIn9uPhHEa8LxQRlRM83r4BmwRnLRbwiT79IgF+pWbISaYDTg5xbZ48pVQV5fU4oyyoVyLTtXkBTgswcxo7rrYC6nIC/rO8gB7aQDejZhnF21zoO6EdA6+Bdvwbz9QNIurNbb79tV9vWKJBHkefizDv/2ThI9fWC/72ufhGzaQnBfH/mOUUT1pQdYUhrHlaNR0h6jMYUtgMnpWr7tadCg4vWl1cmbPtBN/PQWIa0Jb7MQCnWJm4j0NwEXnjpSU/E5XJm+85uonCdeWZc74ZIPk0JpAtkE+PnxTe95YJmOVGxM0cj7s0SblcoZ1IM7Sidw7rRucfhNxuVLsgFKDA6Y3QNuvN5g+u4lwFye1Eu0YaRy8nPM8NMKeOEm2qMJJr/+brmOVxVFP+0gd4hIZ+79XEjRnoSILICfA/BJAP81M39+L/VU8nSAPaGs1W7Kg7OLlBxuJY50DKBKEQMlumLbszfVpyQ5V69DFrP7qiUjpj+gVqJvYtghSP62S+DwnRaThw3M5RrEDG+MmMhEgGGwRsT0a3wnpTpiNw04Fw308e9Nl0dNOwK81tCNWCcacHVpHOoJj9TW3gThsdkBm7T3UE48HycVpc2T4z7vrSeCXNJYzwIHNnaEsiTGzo+8J0n/SfKMngNWLXYrlZu/GxfbZ0DMuPMz98DzGu5wAmo8/NSivnve9UXqLy6DvJaR8/74AM1xjdVHZjj69YU43PcghCvROHeZ+fs3XcDMDsBniegmgP+DiL6HmX/x8WrZl6cD7KHogyv6qa4tGvQ38cs5yI9pn9vAfewafTyvBxmJOkl/D/n/xW0rsfOthFa6KbpEVWF3qud+6QJmLWFw1IhTzizX4Gndcdl6QdiAUsnqGugejn+PapzDQ72Sd+gzUnXqbQsYc9pYEu1d1Vtr9gACSIVzxgjAOwYZWWkbyybv5TqbPStWXEWUyLVhEnFhts1Bf1v/pLFeMDXi2oxNTvu8z0rPie8ggr4uKz6ndG9ufWnwDlQPrdagdSOb3lgTnL3hHmuH3/IugJ+1x1yu4CdHmN5vUT242K9Vfx1lZWuR/JCIfgrA7wbwDOwHQugG9rYBAQw17qveU5JtC7dKWv625226dptJHmU03E9C0sgzTEvCzQdenmI6XwTevnES79w4oHUSYudqwHsVLVGo8zY/SilCRZdVWFLQ48RzENkimqIBAqhTB9ZyUVcvDhq4AF2mTJhA3fTuDVYOUb8cg7CpNgVqggAXtVYCkZe+9h4MmTAoomy+9kL3T2k85aC+K+Bvk57FrI5dhf/XP5lDzhsVFhvTGOepN3aRGC6q61NXwGoFu/CYPFgO/QmPKfty0IZ9PJoA9HMAPwDgj+2n9E6eDrAHRDPgOIhHltDrv69ABfSu2wb4QD/eftf7x+p5XQ5/FydzVWH2wOPsO6xE4BjhIZtD4OZrjOPXL0GNBy3XonE6L7tRIYCgE82WfQB8ChpvBFXTafFJ1EfP+blYrm6/BnYjf7N6xenuUl8X/iYA7AmABxGBN1gHqR1E8mW7QHXY7nmlyYOrDvwF5LW1APhI/XiAPIOch2nCZOqEHmPuKJ/Rvslj2nVfMPfTTeSrjHNqb2wyKVGHOchfRXmJktZlsFifB3M8+K0vgBi48eX7YbEejVsOWvQEEv82BovvegnTe0vUj1YwF6s9a/Xh337kZQD/U+DtDYA/z8w/vrfSgzwlYE8KVDwG2STzgTLm+NpFtgF+LN+MfCibBq0+V+RAr6CZbAMEADg+xPztFeziINRRlrGzBS5fIHh7gOe+cC9QDkET8x6obAdyvg9C0XkqP0PWwsj5GpMAMd0TI+jiKwuO0t5c8rw3AAAgAElEQVQ1QE+DFm2bO+DPJb8/AyYCJDiEvCgIgZKJzwEEnJOGHm83GJSXnqHoDmrivQK4bAiGWayjwPtzWowFcGXgiUCGJKrJhYVAGdCzBrRI+eSi37tud075DBYnoTxeS2Xnf49amYXxGukz/VxDQuEQ4fI24QZR/3vcRGXF89n34l56DqtbFaZve9jTQBNZs7mcK8q+8tkz85cA/Jb9lDYuTwnYB8lfZClSYUxTvkroY8+E3hLfnNdtm2Y/4FOvAfC7CBG4toE/jvfLP7sEqgVw/PVViI1WZndsQ6S544cYtdDeh8egEH8vLIjvNkffNGmmuboP+MTBkgB10SwlIAjAne4vcLk9Z6nhAP4B2W0HxEkGCgP6k1EqO5QRJyavJqkIft6ADHX0jomO39SpgCOpV7SCgiWlI5HYYujXIBXls2nopHUZKmwyjYNraOpXkcE7kXcxPXVIax+AcafvJmuXCKgs1rdn8DVJjp5Y1p79ec82L3lfJHwAJjh5ovlXAvptg9Rt0dxLi6J0tIJ+1rb7ckkm66aVvTt8ZGMOuEzocoXVR09QLSHf/ERAngk4fqNBfe8yfFxezG7npY+t7X+sEYiiBaABOGrZAOANOGrQBkKjBEDm4NjsAUGI8tEARw7g2go4ZhMN6QRYAEAsE0MEyZwycgxAdmdhou71cXDClsZBBHkNvrqPIy9f7HBF/VgCGwOuDLgi+NoKzpmQdpkhlgB3dBIxg+MzvQ95Y4bvN7U5Os1LVEiMQlIZQDtNP+P0xzT6TZJnnYzt13vipmOiSBx89S4OqhjSm92fTwA6EigKEdyrt7F4aY7lTYPDtxrpo1iffYIzY7d++ADJ0wH2DBkcSUPZMFCL92da99g9RONaRR6tkEsMitkl/3ipblGuyuFv4Fbb50+wOrGyuXgdwi4tMHvAmL2zkMib2K++o3BABGo9uCqXmyTvB8/ieCRKNAopaoZhOvCKtJzhzicQJ56WQEn7FtAkw9J1GowV387eF2kPctzVIzphnZOomnzFrPqdXKhLnGiitr3BB8GhPDIImrsBs5X2ecBX1B+DGQXJ1oQJEABbGOMSiPXazCwThwvGSdTyNdjGaytF6/QmT6UsjWnT2QRXlHz8JfrP9wE/vVsMy8rrk5cLANZg8ekXsb5RoZ0RTl5for5/KQEFe3bMRnmWG+eDInmmw+I1IxqLjhzIz+/i5NlE2WzKmrlpMANXA/odtDE/Md2+oSQrGAHg1lcXoHVbrkOu0efOV0VhbKSsCgCRNHygc+4WRKJWuomB1HWD2P1N7zj+7XgQHkpMMplpnNDUiLYotOURQL20OjdF2ChaCy1JdA4RDMTyIY/0rilOUpb6axkC109tKKe3g5SyjNLiraCo6H6PIBqopNS26G+IAQ+EIb9f6s+x8XIVDbiknGwb90RAXWN9UmF9TPCWYJetUlY2fHOPI8/A/n0QQpewijMN4DqSm+bpORsGbvGR4drRGHy32RF2lQVX+bltVsrBHM2NGvW5h7cGzSHJJh0eMIs10Poum6Ef0eyiEHVUKwlqarBLFMRA00fi1wEAzgmnH+id3rnYlkifwHcLlUrtDUA8uD9GgajFUOR9AODOF5FoKT3x+0zz7lE63cP05NPTilVmUGqdcOYByMEsmr52QqtYfAptTBRQZdLfRDTc75WiZSITI3k/XGmatPnMaUok35Pn5AgHTNdGvXOYpoh0GTrbZOm7GVhNJBaV3nEtty7isVRGX9E4euMCjz55hMM3F7APLrskbema/QE94Zlmv5MQ0X8M4F8FENcu/xFm/svh3A8D+FcgusofZub/a2uBOcCNLSG/CniPPSf/KMbK1jKWlU9u7H4dW4q+i4l8lXMA0DpU5w7NC3VYGISUCO3tv+8mXvprD4B10+UHj5SF5k8ToCiJ2YDz6pTqVuJRvYA4GdPRKr17FMDqe1W0DtDXtjuaYKRPPQPRmazLjNQHYlVYJoOQWyiPFkplugCs+fjI69264IQ1aWz1HNg5RQOZSNgSqLX9NQe6vUAX9WKiE3ZkrOtQZV3fnpavJlQuaPy6P+MEEu/T71rXLX9enAhLkgN9mnyDVUIysZizFW79/DIbt+Eea/rW/uMK87PNS64g/yUz/xf6ABH9HQB+H4DvBvAKgJ8kok+FpcTjwpAFGdpxKAXKyx3kE8l40fj7NrkuraOvHysL2MyL5r9vuq4kWZt5PkV7KI7OuA0cAwCFzcRL9YqO2kzj7mnEpefFv6M2PFLfbsUqZHFRDhiAPKctWRoMCgnLKAe+EpVT1PoL7zNYD4mTxxYFQVMdOpZ9pM3RKiCYLkw1SFpNC/QtBzYSBGYLdYnPzcbmxgRtKnpqNMVIPhHmbYvPinUaBChkAySfCON7jhNlvCafRPJ7dJFN27/WZ/23730Bvr2w/gNH4/xTAP4sM68AvE5Evwbg7wHwN7be2YaZvKqQNnXWWkspFC2aqsDVtPyrAHwuuXWwy7NLYLVpkirtyZl9KP5wCmJgdq9FM69BYSSYBrj9C2eywCfX5IGwQYUHvAO5CXhagawF9zZ4ob7WHsFHa6nJ3EfPwZk0WAcAPNTW837I6kdRo877R3/4JQtPl9d7Rl9DJ5h+yGN0YHOhfJ8BWhFofOqvAf2jrzqaw1wsJdd+a0DWhIgaGo5HB3CwkFL77LAtPcCOlnAeSJBW/qp+TePVo5efR+enSnsFZH2ix+7YuPdqbOi/c4mTdlwvwdxp9Pq9RGcw7zf28hmNs7v8m0T0LwL4AoB/l5kfAHgVgM7h/GY4NhAi+kEAPwgAM3ukZvCM9+tu6A/ufJMGz7uD+Bgw7wraOQ20K9Bv0/LHduTRkQ9BzGIFpnkwxcMxL2BPjevCKHs3xcU+XiZXaoRWqPp8ccoTozT1Qd8o7bqoccb8KWPpoHu0SHyn3Gm2uVaon6t/lqQ0IUOVGZ2eOdDnfLK+fyys1hv0NOqRermTKcg5UNNIGckACPfHZ8Z6AmqyDVYJycKtZMFsVCI8urxPWR/En5EiKoUZxxj+BNhZ+VG0wpVLz3m8QatPWrwfvodU1p4jchj7tRLeA3liYE9EPwngpcKpHwHw3wD4o5Au+6MA/jiAPwgUw5OLPRpShH4OAG7UL3B6yRHQS5sq5HSD5vjzFRKbKJdNQFGiB/JySoBzFe1+28AtgVTGmdKqRbVwErmwYviKUJ8znvvSKcxy3Tm3tOWTf2BNKxSENcGiiqGFagKN9a0KE3BqT6HdCUAxpN10/2knXosADCWeObtHA4jWjhNYxDplQMpGuNpYZqRXBo5EDMeNPp/+jhsGbL62/saD7pjzAIKD19ih9m2yCZT7/ozhxJtFgenJU7eFgiUR/QGlbwrYHQRjvTUdVfKv6HpvKmudvQMtUevfp3x7Yf2TA3tm/oFdriOi/x5AzAPxJoAPq9MfAvDNnR8aoiq6v7WmhSFg9TbDtrFC3flttE5ptetg0wwFKiVNapMM+Ngrgnx+XLetaVCdrdHcmKJaMnwFVCuWkMtVg7RHawDY5mMvgC1h8rV3RKvXZTsP2YoogEHU5DUPW6KeNCBvatPAIlBacu+cGwJTLH/Ql2qSyKmLkiMvlqsnivy6nFe+Et23ZaL3Tfe7/kdetOMS6KuyexOw36QBq7GaWwBRIUogbbcDe89vptoTn2XDuyIgbVKuaaDcFyCFDp8bgXyb1f04FGxe5DOw3y5E9DIzvxX+/KfRpfL8iwD+DBH9CYiD9jsB/M3tBaL8EndxyOR7bW6KCBiYoLnpbftAlDuIS1z9PmTbpDEmHsIgtIz6MlSp9Z1GH8udTsCG4KsAKnkERvpdcbgphNF3tEME4AiU8e/Yt7v4TTatMo5ArOuS0ym59M4VQgq1mHBNnBzy63KLLR8zmzT9bZEo+aSnzyXrgsoUJrCButmgDZeeTxkNtG0Mb+t75r49HzV9B3Q8n+m+pyjRgtf0lw4tLckegR7As2icHeU/I6LPQtSZXwfwrwEAM/8SEf15AL8MMcr/ja2ROACg89nngK2X4Odxtps2N9m0I49Utn99el44F51zEdhSlEJWxiaKaBCJomKXryP6ea2DPV/CHVSY3vcwK4f1rQl4WoMuFv3nrtaYfP1+x/tHnlX3leZ6gf4inwSKSjMERBPnqIWr+pW08FRWIdSvdG0OzLvmLyo5FNP5HYFtMAliNzCP15WsIH19bn1y0NaJBPit6acJLu2GVrJK8jLzOub1TFZU4ZvRZW7a68H5YR2JOt4/3ywo5aLKqMF4XckHoP1Ve1OwsNEY+yDK+wL2zPz7N5z7UQA/euVC4wBJf+uPewNAlrhMNXEwEVB3AEQu+zhzp1z6SMMiFL0SMTmslMWxjcLIP+w4cDXo7+Lo1RKB4fwSVdgpiCuCaRnLlw4xf3SJgbOrbbsJM2pfg4iNrE+09m0N+GAOurgcftystPDYHs76dUyL2rYpeb7mond9AIsYwZHfn08+u/Rv6oORiKjc/zB2/zaNOO+j+DznAG+zcxiOowEFyeXxVmpLbE9en7G8UiUaU5etqac4xpPzN2r16j1Guif6DmI5sV35oi89ee0J7Am43k5r76N80EIvryeEwiIWP/zQgQ448utL/LGmF8JxDnnNKZ4vAFHa0CNqGTEMTmcZ1M8qRQSVPjz9geuPLU8AtisoMcM8WgBE8LMadtGiOa7RvnQT1b1zAY6YNVCLzfwbJXqLGYPwVwA4mAOLZf/6SOeMUR49Kqxg0ufS88UARX9Mfn9ugaFf7WtTZal8j1IIbKrLVfnkbdp/vkhJh2Hmz9e/X7WdelxuaseuVFpctatlk1WW3rHpvjM97vKQ631SOXsO8HnS8nSAPUi45FxK+8Vu49mywUrM4DaAQNizVJJu+S7rYeQP9UrMOEFYEtCPi5GSxu+Hz9sENBsjEbKPYVeqhxlYrWHue5hpDXfzANVFC3u5VmVb9Pj1tDKzYBEBfS2OOfg1worTkLMcdd1vVyxPg1eJC4/N1PHSesJRZeTx+WnhV07zMQ8zdvbO+b6zWtenJFo7zd9DIQR20I6rHNvVSoj0Tvw9t6A2tatkocTw2/i3vn8XwO+9536UGJrgiLbZhB21f0CUkOiQtZI5VNZqGDXRKYuaCgrWHmRfmj0RfRjA/wyJXvSQDcn/q70UruTpAPuo2eficw1v7P6Chqq4X3JeOHjyQCUmJlvbB32dTlaH7qXIBaPMTEIvtWwUrbGOAf9Y/fXAi5r3NlBKJrADVoC9dw5b2S56RpdHYbKr1N6gHirsjuSDy0MU1EfWW2mrqbK4r2toB7UKTEofaU6zKRBPIK/rGP5mE6M+wu0K6JkZg8VdMY1wazpHs6YGtskYsGdtKB4flFW4TisxY9lSS3RNTreU/CTFOpju55hCkVugpef0KDpVVvzZtkjQlBQNKCpMWewx7XZl5FuMGVJTJJkC/X2K+sT3IC1krdHPE9ExgJ8jop9g5l/e2xPwtIA9UP5ISjH1QHlgl86TGiRRawfAlsOqUUlCVcwuqGXsQ9LgFykKQFkkOXAVNKYxjWWbNTCmeel0sNEyAeSDsqbvaM6B24T88f0HddfERF/6PpKkXnqPVkMhxbDGk/yeUE5MG5zv+Vpqr/avytzMkrfNdZpm2neWGdRSwJo4ARQ0xeuCSA72m4IFeseUb6PHm2cc+lhgwJhvYkw2TVilc9s053wiGLMmvEoSGH06uSLhBcwlPXYozwRwj+2OdFZUxvYm+8uNEyIT3wq/nxHRVyCLSZ+BfVE2mbw58JUGWQkcSxsweA9qCSDXz8Wiy91lt6uc5+xF/wxWqciP4nc3orVsmtxyU14DSKxTNKMpSzDWdvHPccNtsXSop0X3QDlsw8dVuI6l2kyyXyuHXZsAwVG7ct2mExGkieSeWBapc3nT81c78jqIIXvAeqXVs/QBeYZZO8k/04r2mXLVlCidvI9zJ/VgDKqXWUp5gK4P9TVpsgyUYr89sX7BIinF1G9KEFiisUoSaapdgH2X49YOnxujivT1KdLIDLX1RPUZ8atxGGRGbX6z77z2u08ed4joC+rvz4VFoQMhoo9Ctij8/GPVrSBPB9hrcCpJHjGzKTXCJi08v6Z1oLycfMl67nzKy8zN3tLS8+hwIpQ/1jELJj1/hALoAX4Ebhq0lXTdTEe7sLWya1RlepMVG4CtSUDuJ5LkS45T+D2CdwfGxIBpELaTYwXuSBOCTBrhOeo+OSCTBYL1PvYu4/VyreSPJ0bqe/KQTU0MwVQW5AQ80x6w0apRVsCgz0u0kHo/PbqJqDwe9bVW97vpNjoJ5cb2St09aB3zuautDMc0UaXIjC5YA8rgWpJdePFSaHPeV3nUlvaFMQc/mqbuzMBXAxP27nU8/FYfR+JY203uMvP3b7uIiI4A/BiAf5uZHz1G7YrydIA9MNwwQkueHdBmJm+UfBIYozo2iV7Ys21w7aIZxPLyaBQtA953h7BTDeobgD6/hyM/WpkA9ga+NgLuau9Wb4PWbgmuDsBu0ANu0e6ByKMLvcogJztR9UDehjLDfT1J4B4eH4GPCZpX7fnE47NYyuzdnyx/A29ifSSyKh9jRa5f+1o2gb1B/x3E46m/kc4ly8goa4iyiY7jDloEQ/KvN0mV3mkUj2xbySxyyLPUp7QIqxTLv4vEtqbvUylivfFp+kBvwqDRlo7+PXUJCYfvfW9r273JHgskohoC9H+amf/3vRWs5OkA+6j5lHf+7K4BylrY2PVjwKc40IHmBvScuz25bopVDfgAUijhprI2hR3Gv8coAgC92Ox4zBjR5GsLN7XwUwtfiebezqgDb4hG7iv5O2rz8lwMgT6ecoBpCG7StSufHPoZ11AAeg7HqHeu/5PDz36fkA/3eAZVBD81SlvmzhJgdEDLSGsvurGgnzG05nq0VOzzYC2wtpDCdckiMvr+vmWTWynUMkxbgRo/4Ja7Dea7+pKmqdRk1ctSGieTeO+m+Pn895Lkfov8nB6XUbQllI9ZGl4/2K5yn7Kn4khMjv8BwFeY+U/sp9ShPCVgD/Ck2gzc+qcWpXH1nH45qEANfPURsDaTN5nvUXSOkJJsYKOGXOcOFkTedkXdFLXL/OOKdTIGvrZwhxXczKKdGbgJ4CYENyX4OgPvqMnH+1kdV9cAQF8jR7qglHukuyb87bvrxG/aB3k5zhnY03heE+4qpsFaAD87FkEW6MAd6Jv3BVquB9ZJo+8fS38bCGUTq6UtlaTVd5OXfjZ5G3wS/TrnExV5dL6LEaE2gH0sz/Pwe8gnDKUUSdtjYTT4OYiqCnRVshZDv8bJP1I5mr4qCTODvEzavGfAp11DnLfLbwfw+wF8mYh+IRxLGzrtS54KsBdHnxkHUW3mjeEiUX8gDTTI/sDiONgrllC2yAuyIAAzetpxb5D1whW3DL7M/Nf1LR4vtEue2WnykQPW2v1oHHo4x7VBe1SjPbBoZwQ3IbQzgp9AgN4MQTyBf1bF3GEaQYt7GrpqugL4tP0ed8AVaRno417NJcGiovhs9ZxSffr1Cu/PA6jixBEtgO55gAaf4f3JqV0C9Xi7GZ6LFFasp25nrBcx9ftKX6snuACWqX0uTlj9CaHUD2lfXHV9RxuFScCFCSN+B3FPgx4dZfoKBuLYU5aLoqq8BntGsnJSW8MzYzsGFnc8F+q5N+olft/7KIr5pzGOTHuTpwLsYQjuoO6bVcpEFhogfFiRCy51rfoYAfQ+2p5Go03mONi8HvhBw1HbynGJ0wUGA2bg8CtNBrtG+8RmaCAPkTNsrfRFmjSQJrykNTlO0S/tQQU3N1jeEsqGLdDOATdF6ONCHbjcl73z+mc8rzXz+LvvzifOPZ6HnE8A59FpwRH0ST3GqEerib03WWVadKxH3wEcwTYeGwI+EDX9vp8iOaiVBt9NBH3ayqv1gvmkBp8fkz86Okg1vDQJs/qp+5268pKvQ0025ADjANNwZh2gR3mluhDAFcFX5Ugqtp3WnvopG1epX6D7PD4TXR3Uu7FrhmkZ1Hbf6T6EMPTffNDlqQB7bwmrm3X6W3ObaRBZkpQhuYNPD/YgZe1JDSaHTMMJA9x1g92E0LeexpNRQMNoB3THxn4CKGrzYxp+MIkTyIfdjXxtOmCxGnioF47opgbtocWDTxm4GUCt9JefQDh5y+gButIkdR8PNd7uen2M4/W+A1YwOioo/GNVbmSyYn4spqiJyjHWGnZ8tJrUE6Bo8C1ZHwnQ+6BPUeNldLx/YSIblBuBnAJVEyeCqMlHh7bt39enavJnkfo961saHkvPsehTbhT6L0wWelICkKwC0xBM+B4GbY3fXmxTvD97p7FMDfKxjNiWAe02+j6oN3bihGQawDYs43df8gzs33thCzRHnbqWNAKlRSVzeOxDBoYfSE97i9oL9QZWp+ETjNJwfENpMjCth47f7iyDApBrB5iO6oDUocinl5zPkZ5R4XopRj2ayVqbN52mJVoSYfmcxeqGwcUrQHPDwy6MuBwmAFccPmZW/RWAQWmYGqDjA3J6prfeJcwd6YPX7yFeFz9+Cs+K9ISTY6Q014R/uaaux0EO8tq6i9VQryU+u6OWgg/Ac5poOLYvtiE+SoNiqGt/rPbBj003IfRwXCsielKMl6k+TtUg9Ma1aTsg1tckSy2N/QIgV6HtNixHiX2iy6F+3X3VlREpOABl0FcyUL50H6o6atBPxx1gJgTTAK6Rb3Rv8gzs33vxFXB5R6st/Q+o9+HmHz3QgUemZWqQiSDf+7gAJGcfI4F91Ch2sQKkDO1A7ACeVMRDmhh6PG9E56xNQWPvUVhVtGyUFg/1d9TYQvvaGeHRxwiXH2kBw7Dnom62J14+YMM9EOUwmcX+6M07ngJAca+PE1DnTlVGn4rRc2K8B+p63f54n2qjpoFKAN/rD3W+JwpIOatrR+9Qf2yoOpJnmBZCKURNmABjxcnNDv2wQaP6iBUom367EoXh1HO5e4953X0FtAfA4hUHszKYPOg047jxvGn7ZcQ2Rf9MBGYTNjNLlpTuN5Y6Vevue2rn3cTsJ9Le6NjnFLnFabJJVmPqb+poq6B4pWdx/2fvmOoj0+Yv9pqixtS3izwVYM8WWN/Kjo2YrHIyOz6iOQy0e9/9npcRedk46NPHPwAF7pelwEDXUwZmOcpgMIHF+xKAdRNCzoWOToLhmQCwPiacftqjev4S1hm4ixpmaeBrhq84ROfwEFAF0RN4J803j2PnDuDlHCNupIJIg6AD995EpsE9gpTpfgJIgJ+yTwB9EE8THfqav+5fqOv1s7OJJ92ejY3YXg79Gt/t+tAkYCMPocYcYELuuaRJh39xW12OoGi7e6mVRWjUyj2+AtY3AHfAqX31GWHyEB1YT8TPYlYG/sDBv7rE+t4c1alNoBgXrcX2NCdisfiZBw5bwBnU36phzuWa5kTq0Jww3IwxOTWwi/AqainDV1KuWQPVJUANYMN2Bu0B0NYypsiTWGiWZRxbln8UBo6aVGXc5CZY9l2riaI3Ae5B9hiN857IUwH2oOAojJKB+8CpFX5ndW2Pw+TugwOi9jkC9vHjDFpRbkoPwV5pf7lGou4RBxgNHEp9IFL0zSDSo7u+izLqziXfRayvA3gKtFNg8TIDxx25SY6Ersli3TsADTlxIk0QETmBMof+CwAfPtyomXFsSrgtArBSErv+UdZE3i+pazJtHdx1VYk3Lx5T7dPPjtE8PSonPj8bS3FMsAU8EzALZQROvjkI7XSSX0+DUa/u8VftsFQaqwn+CROe7esQgdIQ3ARoD5HAvjkW8JT6Maz1mNxZYD2byGrTtQE5aSitCeQJ7rjF7OYShhjGMC5OZ2iPPNycYBcErgR0TUPgmrF6sYG5tKBWxrppKAF2VDpMCzS11N9PgPaGAxzBLmS89Si7OE70+yA1bnovKSgSUO+GZWJI3/BeRAHEt4k8FWDPBvBThZiZc7BnVuembQLZoUmYzg8iHrpye86yXAMtgH1R88jq3OcfqXesJ7kmr0A8Aqa+VouOXDFh8mELuDnQ3G5hawfvjHxMcwe/jrw0pa+NPAdut/sKO9CP7yKcZ4AjgRypHtPFh6f6xtBWoqTtD7j6rI/z95C6k7Nmx2v1wQCg1H8Fgwkz3q/5YaMm7dB80bRdAOaJUBfNCeAmwPQBUF8EgIvxBCTA184E9BJlUiPx4sTCffs6XL+WZ2uN3s3kGWyA+tSIFj/z8FOGO+jKQO2BmmHnLW4cL/D84TkmxuHyVo21q3A0WeGoXuOyrfGN0xs4O52DmDCpHDwTFpcTkGXYFxdwa4vmvAac5Idiy8DMoz5c4+TlJS6XE6xXFZrWdC/EE7CyMIuOs/IzDxy0mBw0AAHrezPYR+JIMGuZRKLVGcd4pHnE34S+hp+Pe8NpAtgbPAcl5ttJngqw128wmXtRMi2wpyVGkIn/aWAJh7TjcZQXLNSnbEqGKuWAlbVBy+i1WiPthe2pv8fKi6AVAMNDPh4TUombSwu/NOBZh6AEiKY3jYDOgAkTAPEQLfWNEXV91PY5gDelj0aiPanj3L1S33qTH2SCijx1xisTOjA1LXrWWI9Pj0AeeWPbPx6tmBQ9AnlmjBv3NbA+BNychSo5RZowm6Ouzn4SJtEDj2VNcI+o48ch5fFBp6XH92paAGHSaOdCzfDtFY5Oljj/jROYuwZspA6RqvMV4CccJjDuxkMERRJApsrDVoKerTe4OVniueklnptc4IXJGT41ewuHZoWvPv8K/uJbfye+dXqCk/kSLxycwzPh7YtjLNsKzdRiNXFwawv2Jo1L11hcLieYThpY6+GcwaRucTCRAfbgYo7Voym4NSDLMNMWs4M1jmZr3JpfYnWzwoPFHABwfj5He3eKyQOD6rIbo9JWWaXdm5Qz67YX4ZNbcI8r314szlMC9kD4CJUtDfReenRypSiAHuqjr2EqgOS+lO8AACAASURBVI6Oxx7PjKGF0ANrLhxXP3u4fkXloGe86AGNbICH9ucTTHKKWvkXIyRMKxqjmwL1IwNvgZZJONqLCmZNQOTePcSaAIdIigDiiccYqzy6iSo0nkHduwlqd7okWBDpVYW6GyeTlGnRs7r0NdGRaNcdkCZ/SpjNfQg5bY6Ddu+666J2rt8zG4Br0aLTuHKE9Q2GmxHqU3SUHiIgAW7C4JrhSSgV0wRrrYXkbIE8z+hxowDM1wxfe9ja46O37uNLdw/hzg3cvH89V9z9qxlkWfk9wjPD2PCe4JzBsq1x3k5giDE1Le5UZ3jJnuLD1QUcG3z6xos4Xc6xbCtU5FFZh5ePHuHBco6z9RRtsP5cI2m+owbdtgZALfQV5NtpvIGBXAcANHEwtUdVOxxO1zicrHBSr+DrNWrrsGjF/DldG6xRg42BXQJ2GZzDBrD5dxg1/6j0qLDrFFSwJ3kWZ/8+iJjPwiuToRBiGXNch9+VJie/9MvgMAP06BKlfcok0J2PkwKpD6lHF3Hh7yvImJOwA3nuwN1i0E4tkX5JsedOQK499Ji8dAnvCM3agp0B1gbmUtCKPMBr7eUM5URgD5o4p8gc6jR5Xe/e5JpXUAAeEfANJwsgTqoSvirgaNdAtZCJyU+E/gABzaGEh/oDB6qDebCSttRBm/ZVLE/qHWmTSBFEJ2I7F7BkEhrBnbQgyzLpNQSzIth1oFPWomG2B4z1xz3MyRp+ZWV/A0fSFsNAxWCWtQq+CvSEmqgibWOarvuiI9cuZYW4bw1+6c2XYU8rEAOu7gYVWwyAHpZlquQQ7eNDfv7WoEWFi9ZguarxaDHDwUSoGwD48OQePlIZHJv7wK2/BQB4/fw2PAgVeRxUa5g5o7YOrTNYrCZSBy/t9Y0Bry1a4nRsbRmwHmQYZBhm4kCWUdUO07qFD+NiYltU5HHeTOC8wdF0jRuvLvHu8REWdIT6TCgqcsFimgKThzIBVCs1qmLYat1Zbr7uFmXtRZ6B/fsgXl52TH/rK1n5KVpM0BaNAqAekCpVP4J41BZ8dzxdCqQJAOnaXF3vjwPKTm81JTNTFOER0Tznintae+Il9UA2DKoYcARuSTboCEBHXqJqzM015tM1lusa7A0cMzB1YZ+WoJEZgI5b8LpOWm/0E0iMuGSFZMupjp23tAD6CdW70/nlQNCofQDVRkA1AiwxsLwtHzqxvPvJKVBdGrRHBm4izl+zBuwqgHIbtTykSZrOVb24AwezklDV6iJGydRojkUrb08cQAbE1EXFOMCuZMGa5wlw4GACTcLOgBsDc2FhVtQfCHFtgFI4fRXGi6Lm3Jzh5x628nD3phLFkvxUoQ9tmFDCe+DQf73BHoCWA2/uvYUnoKkmuJxMsXYWa29hiHFMv4DvrD2+a3IXzc1fxF/yn8V5M8PDtdArngmV8ZhWDq1z8I7gXacYsHo2tQSsRdXmmsEzh+nhGt4ZuNbgopliMmlRG/nw1t7i3YsjnC8k6sIaoYJw2KL1FezCwK7CpFwB7RHBzYE2vO/JI6BahAiiQPX4GunnXoR5//nxn7C8L2BPRH8OwKfDnzcBPGTmz4bE/V8B8NVw7meY+Ye2lsfyMfsKQIuQt1o0e4rfFwcNS98E9OmHCHJxkYcVLVNjlNwSwZY6Tpf6xWrpLIxtLYHiGBUCMMAzDzpoUU0cjBU9aLWo4ZcW1CgHWODPiQA7cbJot7EpyoJjZZngL2qcri2qgwa2csEpK1o+yIMMQNYDiyqFD+bNSxSMDxNqSXnvdYT6Pf8b0qdpkVojH6+EoUrfrJ7rtDXTAHYhYE8M+GlXJ9MEZ2mMbolAj9i/qq+pW2AULaVoTdigadNZAAoP+JMW4Co4D7vyYgQMrwx4qtqV0VuxTt4GR2vXdHFXhElHnK8MN/fA3KGqHVwYn77mbpwAKUZfImm6dmn+Mi426+gdI5ONI3gPnFcz3LUer0/u4MvTD2NmXsdNs8bMNDiplri/OsTaW7TeoDIeq7aS8NAQpWOsh2fbhdHGiCvdwFae164r2YCqtSDj4azB2lncXx3gbD3F2cUMrpFGOSPXUOWFDmulgX7KMGuV6pnEv1FdAtUy9Hek8KgzPvcmzzT77cLM/1z8nYj+OIBTdfo1Zv7s1QrsPuyYR4SZwBy88FYuYpDE76aHqw8CEKDJo0io4z17oYIRrLi7XQMYeQoxyywgYTqKJRkTSruNVAvbYIpPfVcHAJMbKxzMV5hYByJg7aShjWX4lkCGYWtJwOYaC3YEWzl87Pl7eGl+htce3cb98wO0ziZtfnU6AxYWLYDJ8RrNooJfq0QsLYHZgGYOvDBAANyu/xQ9VvqIcnqL+7/HUMzUX61ogaaRj9WsJDpo8aIOeRLNu7okAXnXUSBuKu/fzbhbWxAiSCPY+wkj8vrxOCAg2WW1DIB7U/wDMXzVT0KbrIe/1cCvA+217igysyagseALK85QhkSruG78gJWDOXaHjZonw0+Cj6hm2BtrWADuUY3V4gCYeDhLIQIm1ocFYGN/GgiF4wFEbdsQMHWgyoMo5DyqGdwQqDGgpYVrDe6txLn6cD3Dr954Eb/t6DWs2eLIrjCzLU5XMzxazeCZYLTPy3BnSYNEm/f9wUFR419atI7ScTaENRPOmHC5nKBZVwL0joQOM4y0BeLcwU08fCvo7WFgV4T6HELzNWIBRsuo5+vxAJrCOL2uPAP73SXkcf69AH7XYxXESDkvDIIG10LC95Smi7jwpgRQQX2PDkNdNnzI/xEByVGKzOicfl2ZwiUy2kMGzx3M1KGetUnjOpitsVjVWF/WYE+wEx80cBmhJmjv3hn4xgKO4FoDaxirtsJiOUG7ChEQITokTmzGMqqJAxlGZR1Ol3OsncWt6QLPzy9w3kzw7sURVhcTGatTD1obrL91APKADaGV3gI8c1LnC5kAeKJ8AqrvONBIyXopgbsf9qv2JZhVAPmF9KubA6vnGO2NFvaghW+NcOaLAK4hciVp64zO+jBAe6sVTbA1MoEsTQc+hpO1lywo5m7CcV35vuqsAA4AyisL1F4sv6kXR6/rLBKJLQewNj0Hb1Ky1SKrSB25uQdPGJiJp9bUHtWkxeFsjbOLmUwskEmNJ6IIsBrA2kckeyQHzb/tQJUAoZXUuCYjCgkBQEvAosLCE77W3sH9ywO8eeMWbk/PcVIt8cr8IVo2aNngcj1B01q0zsB5oWPc2oRvhBJl2KMao7HaksymUXEwALNB42o0Rt5/5PrTBBEjviATCxuCWRjUjwzqM7EA7Tr0reduoxtlwcW1CHsRBva+ifkTlvebs/8dAN5m5l9Vxz5GRF/E/9/eucVYlp13/fettfc5p6q6uqd7psee9IzjMYwxiUEJY0WOTAIPJjgRKFyE5PBAUFAsHngACSSjQSIiL+H2giKCjLBIeHBeAkmElICDBOYh4NgwvhF77BmPnbn2TM/0parOOfuyPh7WZa+9zzndNTPVVZWq/Ze6z6l99l7723uv9V/f+m4bbgP/SFX/57oDReQTwCcAyt3L/Vjs4J+TEDWS4mx7Zpz4ueGBxTBAJ5jGk4CpxDsKg1aWUtpD6Fs70+Qoc1OFrTYNsOr2NMlXuVkIgVPspGU6q7hy4QCAg2rCsi7C0tixtz+jXRS42rCsC6xxTCYNRdEiopRFpx5aoxTGMSkadsqKmW3836Zht1jyPbObvGdyg996/U/wjMLN67vJWUuhnhhCeF6MNGHmwCkuzWrhZC77PjBlJcLPV0SZaaEXMOW86cME5yvqo2Oqqy1mt2I6aWnChCe1j7mOETY+rJBkRnHBX5MIwon3W5QOVxtEdOVx91ZZoj5T1QeShLIBGaEG05KqwVXGa5zD7hMczDG6J15jt4LpuhdR5tI7VZk4xDpMoYhxGFEuThdMi4YbRqn2y0TQZG32auoJQRPuHkgy7TjTrWTyZ5CtLrUFakM9L7klWzzTWi5v7XB1a59GDXv1hKopaFpD0xq/gnbS2egrA410iVHrFABITnINLwgXFXAhNDTc116os3R+IY0Tazb2csWie0dxUL6O0nSToKx9Regpxn0jexH5HeDda356SlV/I3z/KeAz2W8vA+9R1Rsi8iTw6yLy/evexxhe2PspgK13PaY9jfNuDzcO6sxhKxKem0q37A4d1lQ+GiIRfAin8+SitFtdSYNouqEV7B1BbtpezRANWpQrNZUcaJeGg4VlvjcFgXLaUJY+gaVtLGXZUpYtk7JhWjTsTCp2J0s/GYjiVFi0BVVrURUcgkGpWm9bXbYFVVPQqvC0XGNW1lzd2ucHHn6JK4/u8+U3v4f9asrt+ZSmsbSNxTXC1oUlD+/ucWm64GK54KWDi7w53+bO/ox6HoKbW+n6eyL4mCEsaaJUEx2Hgemdz8y0B+I1siV+4FufgNRccN42vldSUSJLQxGccnkNGO+M7zTvpPk1XuvTQtCJQ5zxseZILzZaUkPhIyN9AEeWOBavT8LzrbP+kg4OX2OMexGyNpMZZ9AXbDDbTL1NHlG0NbQtYAzGKLeXMx67eJOHt/dYtAVvzrfZX06oa0u9LHwEVZ1p7zaqr+L9NHXoyxofEt1z0CxwIfbfWqAGXRqquaUyM26VF/hO8WB/NefEm4NSroQPBBANRJ8Rcn6Ph8EHkuWEdFFl+JVJiDYS46N4XOt3llsF9sAwuRPs8wfds8kd3PkzTaGYR0X8yuigjVDVj97tdxEpgL8CPJkdswSW4fsXReRZ4P3AF9Y2khqj14lSydZArt4eqt62OXU+KiF6dBx+qd9mA6B02AeapHG/8sZFmoPS75eZJWiD1kQ8l8tk0W51EGUEv8oovFZvihZbOsqyYVK2TGyX6FI3ljbE/beNYTnf4rYTXouDVgfthjWy5KuXuItRb4tXoDZ8txXs5SW2cJRFywPbcx65dJs7yxnLxrI7W1KI49J0wSNbt7g62eOHH3iWD0xf4vnqKv9vfo1v7z/Ii3cucXN/izo422L8dE4ALmpirUAtmKWhmAvFAcnmrtbHruOg2Idiz4QVEr3M0XamXVhmoV2xrHD/e/6YqBUuujDSpGnG/bO/ySZ/tHuu8dje/QyrirhPHr7piUa68s8m8xOE/pJIMH4af49AkMqbnVSg2i+4MZly6/Y2s62KnWnFpdmcB7f3MSj79YSDesKysSyrkrY1NJVFGx8BJNHEZz0pJ005RURpt7LLk9Nc0LRjvzZ+DMV6DCl6Kg6ZkI+Q9K1QJkHyomPDlXR0juNt8j6+wK+gCdFdUWlQMbiwijb7lmLfrwTjS3NiOGu8n3m9pHw1eaRhl8BR2exF5NPAXwCuq+oHj6TRNThJM85Hga+r6gtxg4hcBd5Q1VZE3gc8ATx3mMYiyfcJPyOERLIOY7vRq06wW94mrK1gCp+8cnn3gO2yQkS5sLPkwCjVQZkcXupCTH8etx+09eT0jREQ6QKjpuK1FYS+LOpXGU4Fp9KzyeYXqmFZnhx+0UwyJK/Qy10wGSHAxMG+xb02o504qlKZ708oJi3WOgrraJ3h8tacmW2YmoZtu2QiDftuyo9sP8dHtp7j6Z1rPPfAVV5ZXuK7B1f4+vWHfeJMbdN5TSDQeu5Z27TeFFYchPh0C5Q+zR86e2pK+AqEH0NNfbNrTCeC19yLzh6RYtwH9vHkX8jvlbDemJubIDT7DinKJBF3bqqQSOaCs315Ixn1JpAgqwRTlcQIsBa0sbStsL+0LKYTbk9mzKZ1TzFwztvhXWvShOv9El6o5K+KORYRMbkpVrlsswkhl9mFOH2gK52t6Xqgu5e5MtQj2+gvy+x4w+4tzpN/KoiWxhTpnHlORMobafyYStp9UBBM28n2VvNcDoWjc9D+e+AXgV85qgbX4STJ/uP0TTgAPwr8ExEJyeL8bVV9414NaQHLBwO5F0ETCcSLVZi1FLMGY72N+8EL+3zw8stcLg5oMVgcT998lBvzHVontGponOHN+RZ1Y7FGmU1ryrKlbY3PClRCxE+QYdhzVbzd1So2xA9L6HGFdTRh0nDOO7jmS8OBTnCtoM7gmmAHDeaQvMpi33zg/5ml8THh6gtTqYCWyuRN25WlDclmPqoEwKA4nFgaAWP8/ZnaBiPKzPrQhaUr2XdTDtyUb9ZX2JGK95av81h5A3bgK9uP0bg/ya1qli7/2s4tPvbgV7li9/iPN57kS69d48bLF8EJtRMkZn9mK7IUoBE1yYw84/N0afL2Kykpuxsh4X6p+n3iE9F4HqvJRgyB+KLtO6u9goY+VGZknkUWpXr9kcxMx3SdKYiONAOxmxBp1Dmt8X4IC+r8qlGq4COKpjABZ024JyVVoSyKYOKYtpjCIdavVI31wqoT79AOphWliwZKdWaykt2wunpJ5B1lz/tfvFEy2H+om0h222z/3vSGSy9RL5wmTNxqNbwpU31uwFRTITWcsHiYlHPgCh8QEes3icFn6Vr/INo3p9iDo1Lv9cjIXlU/F8LO7ytOjOxV9W+u2fZrwK+91bbKnZonPvw8D0zmzGzNu6Z3mJmay8U+M6m5Wtzm3YWP7qy14JXmEq81u2ybiqvFbS6aBR/ZfYaSls8f/BG+vvduXjq4yLItaFpLmxVZEvFJHlPrbehVa6mdpWkttTMrpB/TxY34AWlFWTaWwjqqusA5wTlP8D7uOCxP4hI29yUQB1U0EQXtx4ErXaoRroEA7A2fQRKzTb12JUirtFMf3ikTh502iCjOCfNlyVZZB19AydxM2LI1t5ptlq7kgl0wk5pdO8fi+P3FNT73+h/lG88/Ehy8IIXjtd0LvL7Y4Qcvv8Bff+h/8TNXa373vU/wv28+zot3LjGvQ1RRZXtp9rhg+43VF8GHoU49kZkQYeOJVDozmQkaoXE9zkkmJbrVkKr2NdwhMi09lkFeqT5KaMtBzoJJM87e4NQre9zf3SeKNf6dA3mYYO6gNEH+3O7uJ8UirVZiYICf1LqFSq+tnOCz9lMkTyTh3Owx3C+em+x7JPChTVy6FQCQ8hdwpJj/dElhotQiXXBKHUHwik/pfHG4mfi52cSoI/8ZY/2jUgd+rIoohXXYS/uUtj2cqeBeUODwJY4fEpHcFP2p4HM8Vpx0NM6RoWote/WUxllKceyE3OlLds7NdodSWmZS4xC2zZJdW3Kz3cY1gi0d1+wtFlrwp3ee4f2zl/na/FG+M7/C7dqHLjbBXlOIY2JbJsbHehpRGme5XU+Z1yWLpkyrAzcgfoPSOF9LpAkhcBrMNXk0RbLn4E1FoL3ibInog7bWncarRbKwXksM5p4YQRTrlGvjtf+WYE5S8YMkaPbWuCT70hXcrLdoCptS2rFQN5aX6wd4dv8qe9XUD7zKYmrBFYY5wqvFLt+ePMRXJ49x4CYctBOeuHCdD1x4hRbD7914D2/OtzlYTGiaMFGqwCxkeYZrjiHWyS8QTG6JfEIEh1j1Wly4hTFyg+hMTmQqaUW0gg3K2tDe600U6ieZfAUCmEUWmqv0XlaSjo3bM4JdG1iQm4fWEG86r6F7veTAYb0SEZMfmsu+xqzSO8dd5sckX//P9LIQlUHiWvams+RvserNjHFS184JrAuLxNBODcdP/MQw2aqZTf0qVILptDRt6q+qPmgBoHVHaLg/vGb/uqp+6OhO/PZwJsheFWpnuVMZFragcpbtYsqdYsZ1s8u2rblgH2TbVDxUeK1/18y5WnRBPi+2l1i4kjow4vtnr/D49DUMjtebi9xqt9hrZz6DEU+C87Zkr56xaAsaZ9KE4Ig2d9+2CH4CwHqbvBNsCK1z1nntPoSwtW1HdEnjVQmxyTF5J7IKIUwyjLJUEgHv5DOa6oGk2G88aUolSOFrrlA2zKY1xmiyBe/XExZtEUI3vfN4ZmsmpsGp4aCZcLuepiJZFx84oL1oUIWyaNmdLSlNy81qxufeeCKl4tet5aCesL+ccHBnilva5ETFqo+eCc5r/2zFxzML3lyBosFUEcP9BJIJwEVyiSawgQkmEb3rVk/E44Xkd0kdSyWUNJBVgg3HJTOPksoO58QccwF6iVxBvN47EjJx0mmG2vcGfslj9+M5hlp39+P69vKa/3G//HrXnzj7Lf8e9JU8R8FnPjtf/K30z1mMwxZKMWlSE3nkWR36TAxaAFgsS9rGX1A59bkI25OK0rQUQVHxSpihVW8mjduGCtjbh47ROCeB3Am6DMR70JTcNjNmRRNIapupabheXGTLVOzaBdtmSYuhVsteO+PNepub9Ta36xlV22myMxvbaClNi0FZuoJGDUY6gjSiNNZ3rka9pho7mjfxBi1evK0ePJ849XVFXCQwDSQn+MgJUSjXdNKwBtY4ERhFQmSRT/fvskK7mjYd2Ugr6NzSNIbb88I7r0vHbFYzDQNuahsqsWjlwzpzzUjE+yN2JlX6u3U+7f32fMZiWVIvCvTAV/SK5iUpHcWkZffSnMJ2/gwTnInDQRlNYPGzyFTOqPnVzlI1lmVT+EgmZ5L/Qx1dNEo6MNzCPPEn/hBWBFKbNCGsM8Gkl4tHcfKIn+BkTg5d7e47GYH3XnqTbe+VY9au3XWmFH+T6IIU6CaY/FrztjZNGj0NPpsgNE6E2Qolbk/vIo6hxdnbzGLkWS6AGL8Cs4XzL08J5Y8nRYNB2Skrbi63ePGNB6huTb1iEsKhga7gW8gyXxjnJ4eQW5ITe+xHsczDkUFBxzj744eg2DDiLGHwt9Y/7KBlOys0ztKoZU8m7Nkp26biUjGnRdhrZyxdgVOhcSZpodGp6lRoTEth2pQm3jibOpFTXxHQWAXbpm0xqiZOHE4lxL27kJhSeIdaIHoX7NHxyjwG6+PexauvBaQEDycpk3Noj+0t8WPzcWVAWEm0QtMaCiuJRCOB1024p04SmYKfbIuiTcRdNZZ6EUovLG0np5Ou7pBCVReo+hyCMiSDRe0sDsw4cOO/aEbLU/VjrsHCFkyK1p/fWZzz1xKjVaJfQKTPdLGAl2qIaGkFxKDqAqEPXrUYVlgaokaShh6RZejGx5esJcGpK+EexEfbayMSe/jeayrXovPnOjAD9SYFXd0ez5Pagj7RD01AAy09NRFMMN1KQlO5hmSvj2HNUckwq0QvolRNgYhyY3+Hg4MpzUHh4/7pCD6uZiWY7lxrWMx9OFfTGqalr5o5LZqkFBjxyYZHjiPKoBWRzwB/Fm/bfwH4x6r6746k8QxnguyB9DAL4yjEUTlPTDG5aNH6etwXSm/Lv9PMKMTxqrlIIR157BRLprahVcGpwYijcgVNbC8UgDd48pkYb95oQlGeOLksKDrCAtq2W47G7EPngjafSKgfipkQBogONf9ATClxJmjyMeM31+hTEk+I/3aTrHqmZOdQoV4U1IuCO/jzaCs+x6AymKXpXhoSrRxTpb7YYKctxaTxb7gKGnwkBmO9Nj+dNBjjsMFkFFcHhbhk2gKY2DZNlo3rVktt+N7GSTRG32xYnhfWZUXPWTnGBbtwdJJ3BKpIiN1WJZnHYsliRTq7vUjSpHu+l8TUdFE5cWLOtft4L4O5LWnnAy18JXxwSO651h2eTbJIDW/PwPySVn1x++BcmrW78prKuD3ul8scsnmjP8U7UB2zSZ2CHQBK21I1BQeV93nZskUuONyWfyau8WWTpQmvS2w7Ld1ZZX9ecFDOfJHA8LrFooh18n0iIoYjNOOQPex32oz+1JE0dA+cCbKvmoIXb17iwqxiUjRsFTXbRc12USUSBjoNkagp+o42bye+5kcg9Gbgjcu1y6RFNkWyB0bNNyfxpElmROSy0ECg44Lwe0zxj3ZmjVpkHDwxOUnB5HV64ks8skiL7qLxgzgW2poobuJgt0m1xcX4SAZVvNkjG6yJ6Bt/Xlc6mOI1NxsrKXrVtV1a2oXt1TWJ1+KASpRlSMxBchux9ognMofE/Ux3HpEQvx9+F8BkWtsmM1DrpPdc4moqRjx1/pEghMNft6Pn0E2mm1a6e72JhDPtWAUoQAn1dTKyT74YMtLWdFs73EtDX4ONmvrw97hP3C/zK6SomkzDjxOis6QcBykcWO9cjdp7Yf2KzxhNE7kVxyQr8xFXu71bKH7m0lbQ2vqEvFhrKDO9RYVFQqKkaywshUZhqbAv21mbQHFEGr7qW4nGORU4E2SvjWH/xjYHdqsrIlW2aZlojTfzFNaxXVZcKKvMJNAwMQ1XioU34+BNFzlu1zP26gnzpmRel1S1tws7JzShwmQsSqYZWQOd+SJuW0cOvYEr8bCecggD0slIwf9ILwIDsgEbHWQxq7PwA6OcNkwn3sbZBp9B6wgRLKFZo8i0RWb+RD5lPZ4yU+voBqAIaFT7VbJr6AqMJfmC7JJNAr4tTX6LZNYQwAiOaOePWrntXffwvqbJVDuiB3qO8CS/dtsTsQSzWHLE5uGLMSw3f4aBCHMTyArBBsuGKqF2UzhUs502afbxOAbbN6BH+MIqwa/dbxAXn/qSdp8WHz0TiDZq77bwYy+v2wSewMsQCgmdEmWNS6HL4Gs8ORdMao3xL6GppLstpXaF9yB911hvp80CGbJEMQC1JxKNcypwJsheGpi91L2VIHbSFpjn2onVUNdGey97iG/1AVbrfUTHUMxyjJ0mdrbotAoaoGTaWiKMoAnGuOvNF8LabL98EHpHmSazDEZppqQBqIX25Ow6uWZREH6p65wwX5Thuv21F5OGYsslZ6g3s2gaqIXNomTwA7Z1JphaJCSJ+U/veO47SdNKRyWzUWfkm/ihY6E0b8ZVhGSTcdqtP+Ek5Alp2h/4vYko2ycuFGTwDHua/eD+rjhORTpbfLaCGRLv8Do6c4l2mn02WeVI5xzcp/5Og517MnafyQE7kDH2t/Qe27AS9M7b8F26VRgQTJPe15OvvkQsdSD7uAKLjnlrNAuP9GVCbOF89FrpAvFLlxnt6CqNqsC+XVkVeWGk7/A+Mn5WtG3vvdspBpF1LQAACRlJREFUwpkge+gIHehrLzL4LSZ0xISYSNbqSdI50+tQEhNRolYXBkN6WYdkEQfWJa0I6LIY40QRO2juPM00wx5hRFIPWtXamOfM6RW1Yr/dJdtpjCjx0QzAQdEL81sZ5ALLMPnlE6GxDlO4VJStsK4XPTMtml7UjBmMqnX29lgeN/ot8szklcikXEvPV0iRzJHVSS5bJeVkvi4aJT3f7PgV8shMU0Oy77WTNSO9XYRYfE3jf0PSj83mfvpNDDU8bkDsQw0+EXfcd9BvYoJS/ltO4iuny81x0pXHSFI7SffCqQ92aNu+Zj28smhei6UfNKZVuwHRpwSxOE7p6vrE8erI57ijhb+o+9T4/cHZIHvBJwytWdoq+QMXvGIqfQ05hIylTp5r7WTVEkU7zV3xTqJQlnedNm6CbH0NbqACRjYYTFA5+UbnXW8g5svp3PTTm0Ak7d+9UUsTSSa7cHAcJs2Z8NKIVrvqnMbgrNLYgoWZYGwowxvs/V5zo7ciGKIzp3QhcT5/zO9rw6pK8RFGaqRvegn3vYt48zdPCIQv2fsINmjtQ6JP+/YEHXxGxFLZsGp2yQ9f0Zwz8s36w1otP9es88tMx2tvW+8z+00H506EnRF87xTp7/7+caLNn2e6B4OVVJ6ULGvOEbf36vDnfysrJrVu1Zc1F8duHBwpwkv8gxlM1EBnAj1KjKGXxw8VUmXBFfvmhv179sugqadBEDSSbl/tsk977easMTjJcDDmhyS1bgPuprENB74QltJZe50tYOXU6TPY1IfO4tU2sk2t+EzUu5BJX3Zds234s/R2XWeTWJFRpf98c17ZRNzZzzmv5QQatfJEMFlT3XPP9h02fxgyWUf0w110zWVsIOn+ubvnPryWtUIMmxhOAHmX2rRvrvmnCWLQxXNyHzy3lVumg/4Qvg/notiYJ/ywPRucfSVvTR96h1BAR83+BGCUdnfVfraqIa2STy8i5G7YNMjW9sK7H9vTetfzst+0dqDeXRzf/r01DtWoFa+Xa7Ww2yEk0OF+a7SpQbsrPq41hC5D0lgh//7vm0wsvd+GsgzIZfMx/c+17Q1XDhvaXbvPGl/F6gH9PzetBIaNr7PV3/O3DSahNI+smexlzfHDSS5NRkMc1u4ymHzXHXVfqdiHrt3PMxw5zgbZI/01ZNy6sukuqsvKb+vPtF5R2tRzN7Rx6D0PK8Dba3/F9PROGtwk1yYyD9/7C4F+G4chytX97jJJHYbE73K+tTy07ro3zCGbVmyHel4bSPCwE8JaYl+374aJon/S/Od7jRvpnW/157c4Gg4/zN7e/m8Bf9gctKJ/yMKH1kFEXgO+c5+afwh4/T61/XYxynQ4nEaZ4HTKdZ5k+l5VvfpOGhCR38bLdxi8rqofeyfnOwqcCbK/nxCRL5yGinU5RpkOh9MoE5xOuUaZzj6OMMNgxIgRI0acVoxkP2LEiBHnACPZ3xvH/kaZQ2CU6XA4jTLB6ZRrlOmMY7TZjxgxYsQ5wKjZjxgxYsQ5wEj2I0aMGHEOMJJ9gIj8NRH5mog4EflQtv29IjIXkafDv3+T/fakiHxFRL4lIv9KZDWN637IFH77h+G83xCRP39cMq2R8edE5MXs/vzEvWQ8DojIx8J5vyUinzzOcw/keD48j6dF5Ath2xUR+ayIfDN8Xr7PMnxaRK6LyFezbRtlOK7ntkGuU9mfzgRUdfzn/RZ/HPhjwH8HPpRtfy/w1Q3HfB74YXye3m8BP35MMn0f8CX8a0QeB54F7HHItEbGnwP+/prtG2U8hmdpw/neB0yCHN93Qv3qeeChwbZ/BnwyfP8k8E/vsww/CvypvB9vkuE4n9sGuU5dfzor/0bNPkBVf19Vv3HY/UXkEeCiqv6u+t74K8BfOiaZfhL4VVVdquq3gW8BP3QcMr0FrJXxmM79Q8C3VPU5Va2AXw3ynBb8JPDL4fsvc5+fkap+DnjjkDIc23PbINcmnGR/OhMYyf5weFxE/q+I/A8R+ZGw7RrwQrbPC2HbceAa8Adrzn1SMv0dEflyWJZHc8AmGY8DJ3nuIRT4ryLyRRH5RNj2LlV9GSB8PnwCcm2S4TTcu9PWn84EzkghtMNBRH4HePean55S1d/YcNjLwHtU9YaIPAn8uoh8P+tLLL3lONa3KdOmcx+JTCsnu4uMwC8BPx/O8/PAvwR+5n7Jckic5LmH+IiqviQiDwOfFZGvn5Ach8VJ37vT2J/OBM4V2avqR9/GMUtgGb5/UUSeBd6P1ywezXZ9FHjpOGQK535szbmPRKYhDiujiPxb4D/fQ8bjwEmeuwdVfSl8XheR/4Q3PbwqIo+o6svB9Hb9BETbJMOJ3jtVfTV+P0X96UxgNOPcAyJyVcS/9FRE3gc8ATwXlr53ROTDIeLlbwCbNPGjxm8CHxeRqYg8HmT6/EnIFIgi4i8DMbJirYz3U5YMvwc8ISKPi8gE+HiQ51ghIjsishu/Az+Gvz+/Cfx02O2nOb5+k2OTDCf53E5rfzobOGkP8Wn5h+9YL+C1+FeB/xK2/1Xga/hIgP8D/MXsmA/hO+OzwC8SMpLvt0zht6fCeb9BFnFzv2VaI+N/AL4CfBk/IB+5l4zH9Dx/AngmnP+pE+pT7wv95kuhDz0Vtj8I/Dfgm+Hzyn2W4zN4c2Qd+tPfupsMx/XcNsh1KvvTWfg3lksYMWLEiHOA0YwzYsSIEecAI9mPGDFixDnASPYjRowYcQ4wkv2IESNGnAOMZD9ixIgR5wAj2Y84UxCRx0Tk2yJyJfx9Ofz9vSct24gRJ4mR7EecKajqH+BT7n8hbPoF4FOq+p2Tk2rEiJPHGGc/4sxBRErgi8CngZ8FflB99csRI84tzlVtnBHnA6pai8g/AH4b+LGR6EeMGM04I84ufhyfiv/BkxZkxIjTgJHsR5w5iMgPAH8O+DDw9wbFtUaMOJcYyX7EmUKo9vlLwN9V1e8C/xz4Fycr1YgRJ4+R7EecNfws8F1V/Wz4+18DHxCRP3OCMo0YceIYo3FGjBgx4hxg1OxHjBgx4hxgJPsRI0aMOAcYyX7EiBEjzgFGsh8xYsSIc4CR7EeMGDHiHGAk+xEjRow4BxjJfsSIESPOAf4/WN09VGfv9bUAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<Figure size 432x288 with 2 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "needs_background": "light" | |
| }, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "t2mmax_std.plot()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Compute the climatology and anomalies as 2D maps\n", | |
| "\n", | |
| "The advantage of the `map_blocks` approach is that it doesn't create too many chuncks. That way we can lazily build more operations on top of the anomaly dataset.\n", | |
| "\n", | |
| "Below we count the number of \"hot events\" (anomaly > 1 degree for two consecutive days) per year." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<pre><xarray.DataArray (T: 14549, Y: 361, X: 576)>\n", | |
| "dask.array<where, shape=(14549, 361, 576), dtype=float32, chunksize=(14548, 3, 576), chunktype=numpy.ndarray>\n", | |
| "Coordinates:\n", | |
| " * X (X) float64 -180.0 -179.4 -178.8 -178.1 ... 177.5 178.1 178.8 179.4\n", | |
| " * T (T) datetime64[ns] 1980-01-01T12:00:00 ... 2019-10-31T12:00:00\n", | |
| " * Y (Y) float64 -90.0 -89.5 -89.0 -88.5 -88.0 ... 88.5 89.0 89.5 90.0</pre>" | |
| ], | |
| "text/plain": [ | |
| "<xarray.DataArray (T: 14549, Y: 361, X: 576)>\n", | |
| "dask.array<where, shape=(14549, 361, 576), dtype=float32, chunksize=(14548, 3, 576), chunktype=numpy.ndarray>\n", | |
| "Coordinates:\n", | |
| " * X (X) float64 -180.0 -179.4 -178.8 -178.1 ... 177.5 178.1 178.8 179.4\n", | |
| " * T (T) datetime64[ns] 1980-01-01T12:00:00 ... 2019-10-31T12:00:00\n", | |
| " * Y (Y) float64 -90.0 -89.5 -89.0 -88.5 -88.0 ... 88.5 89.0 89.5 90.0" | |
| ] | |
| }, | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "rolling = t2mmax_anom.rolling(T = 2, center = True)\n", | |
| "rolling_hot = rolling.max()\n", | |
| "rolling_hot" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 19, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<table>\n", | |
| "<tr>\n", | |
| "<td>\n", | |
| "<table>\n", | |
| " <thead>\n", | |
| " <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr><th> Bytes </th><td> 66.54 MB </td> <td> 13.82 kB </td></tr>\n", | |
| " <tr><th> Shape </th><td> (40, 361, 576) </td> <td> (1, 3, 576) </td></tr>\n", | |
| " <tr><th> Count </th><td> 31642 Tasks </td><td> 4840 Chunks </td></tr>\n", | |
| " <tr><th> Type </th><td> int64 </td><td> numpy.ndarray </td></tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</td>\n", | |
| "<td>\n", | |
| "<svg width=\"201\" height=\"146\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"31\" y2=\"21\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"31\" y2=\"22\" />\n", | |
| " <line x1=\"10\" y1=\"1\" x2=\"31\" y2=\"22\" />\n", | |
| " <line x1=\"10\" y1=\"1\" x2=\"31\" y2=\"23\" />\n", | |
| " <line x1=\"10\" y1=\"2\" x2=\"31\" y2=\"23\" />\n", | |
| " <line x1=\"10\" y1=\"3\" x2=\"31\" y2=\"24\" />\n", | |
| " <line x1=\"10\" y1=\"3\" x2=\"31\" y2=\"25\" />\n", | |
| " <line x1=\"10\" y1=\"4\" x2=\"31\" y2=\"25\" />\n", | |
| " <line x1=\"10\" y1=\"5\" x2=\"31\" y2=\"26\" />\n", | |
| " <line x1=\"10\" y1=\"5\" x2=\"31\" y2=\"27\" />\n", | |
| " <line x1=\"10\" y1=\"6\" x2=\"31\" y2=\"27\" />\n", | |
| " <line x1=\"10\" y1=\"6\" x2=\"31\" y2=\"28\" />\n", | |
| " <line x1=\"10\" y1=\"7\" x2=\"31\" y2=\"28\" />\n", | |
| " <line x1=\"10\" y1=\"8\" x2=\"31\" y2=\"29\" />\n", | |
| " <line x1=\"10\" y1=\"8\" x2=\"31\" y2=\"30\" />\n", | |
| " <line x1=\"10\" y1=\"9\" x2=\"31\" y2=\"30\" />\n", | |
| " <line x1=\"10\" y1=\"10\" x2=\"31\" y2=\"31\" />\n", | |
| " <line x1=\"10\" y1=\"10\" x2=\"31\" y2=\"32\" />\n", | |
| " <line x1=\"10\" y1=\"11\" x2=\"31\" y2=\"32\" />\n", | |
| " <line x1=\"10\" y1=\"11\" x2=\"31\" y2=\"33\" />\n", | |
| " <line x1=\"10\" y1=\"12\" x2=\"31\" y2=\"33\" />\n", | |
| " <line x1=\"10\" y1=\"13\" x2=\"31\" y2=\"34\" />\n", | |
| " <line x1=\"10\" y1=\"13\" x2=\"31\" y2=\"35\" />\n", | |
| " <line x1=\"10\" y1=\"14\" x2=\"31\" y2=\"35\" />\n", | |
| " <line x1=\"10\" y1=\"15\" x2=\"31\" y2=\"36\" />\n", | |
| " <line x1=\"10\" y1=\"15\" x2=\"31\" y2=\"37\" />\n", | |
| " <line x1=\"10\" y1=\"16\" x2=\"31\" y2=\"37\" />\n", | |
| " <line x1=\"10\" y1=\"16\" x2=\"31\" y2=\"38\" />\n", | |
| " <line x1=\"10\" y1=\"17\" x2=\"31\" y2=\"38\" />\n", | |
| " <line x1=\"10\" y1=\"18\" x2=\"31\" y2=\"39\" />\n", | |
| " <line x1=\"10\" y1=\"18\" x2=\"31\" y2=\"40\" />\n", | |
| " <line x1=\"10\" y1=\"19\" x2=\"31\" y2=\"40\" />\n", | |
| " <line x1=\"10\" y1=\"20\" x2=\"31\" y2=\"41\" />\n", | |
| " <line x1=\"10\" y1=\"20\" x2=\"31\" y2=\"42\" />\n", | |
| " <line x1=\"10\" y1=\"21\" x2=\"31\" y2=\"42\" />\n", | |
| " <line x1=\"10\" y1=\"21\" x2=\"31\" y2=\"43\" />\n", | |
| " <line x1=\"10\" y1=\"22\" x2=\"31\" y2=\"43\" />\n", | |
| " <line x1=\"10\" y1=\"23\" x2=\"31\" y2=\"44\" />\n", | |
| " <line x1=\"10\" y1=\"23\" x2=\"31\" y2=\"45\" />\n", | |
| " <line x1=\"10\" y1=\"24\" x2=\"31\" y2=\"45\" />\n", | |
| " <line x1=\"10\" y1=\"25\" x2=\"31\" y2=\"46\" />\n", | |
| " <line x1=\"10\" y1=\"25\" x2=\"31\" y2=\"47\" />\n", | |
| " <line x1=\"10\" y1=\"26\" x2=\"31\" y2=\"47\" />\n", | |
| " <line x1=\"10\" y1=\"26\" x2=\"31\" y2=\"48\" />\n", | |
| " <line x1=\"10\" y1=\"27\" x2=\"31\" y2=\"48\" />\n", | |
| " <line x1=\"10\" y1=\"28\" x2=\"31\" y2=\"49\" />\n", | |
| " <line x1=\"10\" y1=\"28\" x2=\"31\" y2=\"50\" />\n", | |
| " <line x1=\"10\" y1=\"29\" x2=\"31\" y2=\"50\" />\n", | |
| " <line x1=\"10\" y1=\"30\" x2=\"31\" y2=\"51\" />\n", | |
| " <line x1=\"10\" y1=\"30\" x2=\"31\" y2=\"52\" />\n", | |
| " <line x1=\"10\" y1=\"31\" x2=\"31\" y2=\"52\" />\n", | |
| " <line x1=\"10\" y1=\"31\" x2=\"31\" y2=\"53\" />\n", | |
| " <line x1=\"10\" y1=\"32\" x2=\"31\" y2=\"53\" />\n", | |
| " <line x1=\"10\" y1=\"33\" x2=\"31\" y2=\"54\" />\n", | |
| " <line x1=\"10\" y1=\"33\" x2=\"31\" y2=\"55\" />\n", | |
| " <line x1=\"10\" y1=\"34\" x2=\"31\" y2=\"55\" />\n", | |
| " <line x1=\"10\" y1=\"35\" x2=\"31\" y2=\"56\" />\n", | |
| " <line x1=\"10\" y1=\"35\" x2=\"31\" y2=\"57\" />\n", | |
| " <line x1=\"10\" y1=\"36\" x2=\"31\" y2=\"57\" />\n", | |
| " <line x1=\"10\" y1=\"36\" x2=\"31\" y2=\"58\" />\n", | |
| " <line x1=\"10\" y1=\"37\" x2=\"31\" y2=\"58\" />\n", | |
| " <line x1=\"10\" y1=\"38\" x2=\"31\" y2=\"59\" />\n", | |
| " <line x1=\"10\" y1=\"38\" x2=\"31\" y2=\"60\" />\n", | |
| " <line x1=\"10\" y1=\"39\" x2=\"31\" y2=\"60\" />\n", | |
| " <line x1=\"10\" y1=\"40\" x2=\"31\" y2=\"61\" />\n", | |
| " <line x1=\"10\" y1=\"40\" x2=\"31\" y2=\"62\" />\n", | |
| " <line x1=\"10\" y1=\"41\" x2=\"31\" y2=\"62\" />\n", | |
| " <line x1=\"10\" y1=\"41\" x2=\"31\" y2=\"63\" />\n", | |
| " <line x1=\"10\" y1=\"42\" x2=\"31\" y2=\"63\" />\n", | |
| " <line x1=\"10\" y1=\"43\" x2=\"31\" y2=\"64\" />\n", | |
| " <line x1=\"10\" y1=\"43\" x2=\"31\" y2=\"65\" />\n", | |
| " <line x1=\"10\" y1=\"44\" x2=\"31\" y2=\"65\" />\n", | |
| " <line x1=\"10\" y1=\"44\" x2=\"31\" y2=\"66\" />\n", | |
| " <line x1=\"10\" y1=\"45\" x2=\"31\" y2=\"67\" />\n", | |
| " <line x1=\"10\" y1=\"46\" x2=\"31\" y2=\"67\" />\n", | |
| " <line x1=\"10\" y1=\"46\" x2=\"31\" y2=\"68\" />\n", | |
| " <line x1=\"10\" y1=\"47\" x2=\"31\" y2=\"68\" />\n", | |
| " <line x1=\"10\" y1=\"48\" x2=\"31\" y2=\"69\" />\n", | |
| " <line x1=\"10\" y1=\"48\" x2=\"31\" y2=\"70\" />\n", | |
| " <line x1=\"10\" y1=\"49\" x2=\"31\" y2=\"70\" />\n", | |
| " <line x1=\"10\" y1=\"50\" x2=\"31\" y2=\"71\" />\n", | |
| " <line x1=\"10\" y1=\"50\" x2=\"31\" y2=\"72\" />\n", | |
| " <line x1=\"10\" y1=\"51\" x2=\"31\" y2=\"72\" />\n", | |
| " <line x1=\"10\" y1=\"51\" x2=\"31\" y2=\"73\" />\n", | |
| " <line x1=\"10\" y1=\"52\" x2=\"31\" y2=\"73\" />\n", | |
| " <line x1=\"10\" y1=\"53\" x2=\"31\" y2=\"74\" />\n", | |
| " <line x1=\"10\" y1=\"53\" x2=\"31\" y2=\"75\" />\n", | |
| " <line x1=\"10\" y1=\"54\" x2=\"31\" y2=\"75\" />\n", | |
| " <line x1=\"10\" y1=\"55\" x2=\"31\" y2=\"76\" />\n", | |
| " <line x1=\"10\" y1=\"55\" x2=\"31\" y2=\"77\" />\n", | |
| " <line x1=\"10\" y1=\"56\" x2=\"31\" y2=\"77\" />\n", | |
| " <line x1=\"10\" y1=\"56\" x2=\"31\" y2=\"78\" />\n", | |
| " <line x1=\"10\" y1=\"57\" x2=\"31\" y2=\"78\" />\n", | |
| " <line x1=\"10\" y1=\"58\" x2=\"31\" y2=\"79\" />\n", | |
| " <line x1=\"10\" y1=\"58\" x2=\"31\" y2=\"80\" />\n", | |
| " <line x1=\"10\" y1=\"59\" x2=\"31\" y2=\"80\" />\n", | |
| " <line x1=\"10\" y1=\"60\" x2=\"31\" y2=\"81\" />\n", | |
| " <line x1=\"10\" y1=\"60\" x2=\"31\" y2=\"82\" />\n", | |
| " <line x1=\"10\" y1=\"61\" x2=\"31\" y2=\"82\" />\n", | |
| " <line x1=\"10\" y1=\"61\" x2=\"31\" y2=\"83\" />\n", | |
| " <line x1=\"10\" y1=\"62\" x2=\"31\" y2=\"83\" />\n", | |
| " <line x1=\"10\" y1=\"63\" x2=\"31\" y2=\"84\" />\n", | |
| " <line x1=\"10\" y1=\"63\" x2=\"31\" y2=\"85\" />\n", | |
| " <line x1=\"10\" y1=\"64\" x2=\"31\" y2=\"85\" />\n", | |
| " <line x1=\"10\" y1=\"65\" x2=\"31\" y2=\"86\" />\n", | |
| " <line x1=\"10\" y1=\"65\" x2=\"31\" y2=\"87\" />\n", | |
| " <line x1=\"10\" y1=\"66\" x2=\"31\" y2=\"87\" />\n", | |
| " <line x1=\"10\" y1=\"66\" x2=\"31\" y2=\"88\" />\n", | |
| " <line x1=\"10\" y1=\"67\" x2=\"31\" y2=\"88\" />\n", | |
| " <line x1=\"10\" y1=\"68\" x2=\"31\" y2=\"89\" />\n", | |
| " <line x1=\"10\" y1=\"68\" x2=\"31\" y2=\"90\" />\n", | |
| " <line x1=\"10\" y1=\"69\" x2=\"31\" y2=\"90\" />\n", | |
| " <line x1=\"10\" y1=\"70\" x2=\"31\" y2=\"91\" />\n", | |
| " <line x1=\"10\" y1=\"70\" x2=\"31\" y2=\"92\" />\n", | |
| " <line x1=\"10\" y1=\"71\" x2=\"31\" y2=\"92\" />\n", | |
| " <line x1=\"10\" y1=\"71\" x2=\"31\" y2=\"93\" />\n", | |
| " <line x1=\"10\" y1=\"72\" x2=\"31\" y2=\"93\" />\n", | |
| " <line x1=\"10\" y1=\"73\" x2=\"31\" y2=\"94\" />\n", | |
| " <line x1=\"10\" y1=\"73\" x2=\"31\" y2=\"95\" />\n", | |
| " <line x1=\"10\" y1=\"74\" x2=\"31\" y2=\"95\" />\n", | |
| " <line x1=\"10\" y1=\"75\" x2=\"31\" y2=\"96\" />\n", | |
| " <line x1=\"10\" y1=\"75\" x2=\"31\" y2=\"96\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"75\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"75\" />\n", | |
| " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"76\" />\n", | |
| " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"76\" />\n", | |
| " <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"77\" />\n", | |
| " <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"77\" />\n", | |
| " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"78\" />\n", | |
| " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"78\" />\n", | |
| " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"79\" />\n", | |
| " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"80\" />\n", | |
| " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"80\" />\n", | |
| " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"81\" />\n", | |
| " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"81\" />\n", | |
| " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"82\" />\n", | |
| " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"82\" />\n", | |
| " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"83\" />\n", | |
| " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"83\" />\n", | |
| " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"84\" />\n", | |
| " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"84\" />\n", | |
| " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"85\" />\n", | |
| " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"85\" />\n", | |
| " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"86\" />\n", | |
| " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"87\" />\n", | |
| " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"87\" />\n", | |
| " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"88\" />\n", | |
| " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"88\" />\n", | |
| " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"89\" />\n", | |
| " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"89\" />\n", | |
| " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"90\" />\n", | |
| " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"90\" />\n", | |
| " <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"91\" />\n", | |
| " <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"91\" />\n", | |
| " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"92\" />\n", | |
| " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"92\" />\n", | |
| " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"93\" />\n", | |
| " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"93\" />\n", | |
| " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"94\" />\n", | |
| " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"95\" />\n", | |
| " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"95\" />\n", | |
| " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"96\" />\n", | |
| " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"96\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"10.000000,0.000000 31.465818,21.465818 31.465818,96.674151 10.000000,75.208333\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" />\n", | |
| " <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n", | |
| " <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n", | |
| " <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n", | |
| " <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n", | |
| " <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n", | |
| " <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n", | |
| " <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n", | |
| " <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n", | |
| " <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n", | |
| " <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n", | |
| " <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n", | |
| " <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n", | |
| " <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n", | |
| " <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n", | |
| " <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n", | |
| " <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n", | |
| " <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n", | |
| " <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n", | |
| " <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n", | |
| " <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n", | |
| " <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n", | |
| " <line x1=\"22\" y1=\"12\" x2=\"142\" y2=\"12\" />\n", | |
| " <line x1=\"22\" y1=\"12\" x2=\"142\" y2=\"12\" />\n", | |
| " <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n", | |
| " <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n", | |
| " <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n", | |
| " <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n", | |
| " <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n", | |
| " <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n", | |
| " <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n", | |
| " <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n", | |
| " <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n", | |
| " <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n", | |
| " <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n", | |
| " <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n", | |
| " <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n", | |
| " <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" />\n", | |
| " <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" />\n", | |
| " <line x1=\"31\" y1=\"21\" x2=\"151\" y2=\"21\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"10\" y1=\"0\" x2=\"31\" y2=\"21\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"130\" y1=\"0\" x2=\"151\" y2=\"21\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"10.000000,0.000000 130.000000,0.000000 151.465818,21.465818 31.465818,21.465818\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Horizontal lines -->\n", | |
| " <line x1=\"31\" y1=\"21\" x2=\"151\" y2=\"21\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"31\" y1=\"22\" x2=\"151\" y2=\"22\" />\n", | |
| " <line x1=\"31\" y1=\"22\" x2=\"151\" y2=\"22\" />\n", | |
| " <line x1=\"31\" y1=\"23\" x2=\"151\" y2=\"23\" />\n", | |
| " <line x1=\"31\" y1=\"23\" x2=\"151\" y2=\"23\" />\n", | |
| " <line x1=\"31\" y1=\"24\" x2=\"151\" y2=\"24\" />\n", | |
| " <line x1=\"31\" y1=\"25\" x2=\"151\" y2=\"25\" />\n", | |
| " <line x1=\"31\" y1=\"25\" x2=\"151\" y2=\"25\" />\n", | |
| " <line x1=\"31\" y1=\"26\" x2=\"151\" y2=\"26\" />\n", | |
| " <line x1=\"31\" y1=\"27\" x2=\"151\" y2=\"27\" />\n", | |
| " <line x1=\"31\" y1=\"27\" x2=\"151\" y2=\"27\" />\n", | |
| " <line x1=\"31\" y1=\"28\" x2=\"151\" y2=\"28\" />\n", | |
| " <line x1=\"31\" y1=\"28\" x2=\"151\" y2=\"28\" />\n", | |
| " <line x1=\"31\" y1=\"29\" x2=\"151\" y2=\"29\" />\n", | |
| " <line x1=\"31\" y1=\"30\" x2=\"151\" y2=\"30\" />\n", | |
| " <line x1=\"31\" y1=\"30\" x2=\"151\" y2=\"30\" />\n", | |
| " <line x1=\"31\" y1=\"31\" x2=\"151\" y2=\"31\" />\n", | |
| " <line x1=\"31\" y1=\"32\" x2=\"151\" y2=\"32\" />\n", | |
| " <line x1=\"31\" y1=\"32\" x2=\"151\" y2=\"32\" />\n", | |
| " <line x1=\"31\" y1=\"33\" x2=\"151\" y2=\"33\" />\n", | |
| " <line x1=\"31\" y1=\"33\" x2=\"151\" y2=\"33\" />\n", | |
| " <line x1=\"31\" y1=\"34\" x2=\"151\" y2=\"34\" />\n", | |
| " <line x1=\"31\" y1=\"35\" x2=\"151\" y2=\"35\" />\n", | |
| " <line x1=\"31\" y1=\"35\" x2=\"151\" y2=\"35\" />\n", | |
| " <line x1=\"31\" y1=\"36\" x2=\"151\" y2=\"36\" />\n", | |
| " <line x1=\"31\" y1=\"37\" x2=\"151\" y2=\"37\" />\n", | |
| " <line x1=\"31\" y1=\"37\" x2=\"151\" y2=\"37\" />\n", | |
| " <line x1=\"31\" y1=\"38\" x2=\"151\" y2=\"38\" />\n", | |
| " <line x1=\"31\" y1=\"38\" x2=\"151\" y2=\"38\" />\n", | |
| " <line x1=\"31\" y1=\"39\" x2=\"151\" y2=\"39\" />\n", | |
| " <line x1=\"31\" y1=\"40\" x2=\"151\" y2=\"40\" />\n", | |
| " <line x1=\"31\" y1=\"40\" x2=\"151\" y2=\"40\" />\n", | |
| " <line x1=\"31\" y1=\"41\" x2=\"151\" y2=\"41\" />\n", | |
| " <line x1=\"31\" y1=\"42\" x2=\"151\" y2=\"42\" />\n", | |
| " <line x1=\"31\" y1=\"42\" x2=\"151\" y2=\"42\" />\n", | |
| " <line x1=\"31\" y1=\"43\" x2=\"151\" y2=\"43\" />\n", | |
| " <line x1=\"31\" y1=\"43\" x2=\"151\" y2=\"43\" />\n", | |
| " <line x1=\"31\" y1=\"44\" x2=\"151\" y2=\"44\" />\n", | |
| " <line x1=\"31\" y1=\"45\" x2=\"151\" y2=\"45\" />\n", | |
| " <line x1=\"31\" y1=\"45\" x2=\"151\" y2=\"45\" />\n", | |
| " <line x1=\"31\" y1=\"46\" x2=\"151\" y2=\"46\" />\n", | |
| " <line x1=\"31\" y1=\"47\" x2=\"151\" y2=\"47\" />\n", | |
| " <line x1=\"31\" y1=\"47\" x2=\"151\" y2=\"47\" />\n", | |
| " <line x1=\"31\" y1=\"48\" x2=\"151\" y2=\"48\" />\n", | |
| " <line x1=\"31\" y1=\"48\" x2=\"151\" y2=\"48\" />\n", | |
| " <line x1=\"31\" y1=\"49\" x2=\"151\" y2=\"49\" />\n", | |
| " <line x1=\"31\" y1=\"50\" x2=\"151\" y2=\"50\" />\n", | |
| " <line x1=\"31\" y1=\"50\" x2=\"151\" y2=\"50\" />\n", | |
| " <line x1=\"31\" y1=\"51\" x2=\"151\" y2=\"51\" />\n", | |
| " <line x1=\"31\" y1=\"52\" x2=\"151\" y2=\"52\" />\n", | |
| " <line x1=\"31\" y1=\"52\" x2=\"151\" y2=\"52\" />\n", | |
| " <line x1=\"31\" y1=\"53\" x2=\"151\" y2=\"53\" />\n", | |
| " <line x1=\"31\" y1=\"53\" x2=\"151\" y2=\"53\" />\n", | |
| " <line x1=\"31\" y1=\"54\" x2=\"151\" y2=\"54\" />\n", | |
| " <line x1=\"31\" y1=\"55\" x2=\"151\" y2=\"55\" />\n", | |
| " <line x1=\"31\" y1=\"55\" x2=\"151\" y2=\"55\" />\n", | |
| " <line x1=\"31\" y1=\"56\" x2=\"151\" y2=\"56\" />\n", | |
| " <line x1=\"31\" y1=\"57\" x2=\"151\" y2=\"57\" />\n", | |
| " <line x1=\"31\" y1=\"57\" x2=\"151\" y2=\"57\" />\n", | |
| " <line x1=\"31\" y1=\"58\" x2=\"151\" y2=\"58\" />\n", | |
| " <line x1=\"31\" y1=\"58\" x2=\"151\" y2=\"58\" />\n", | |
| " <line x1=\"31\" y1=\"59\" x2=\"151\" y2=\"59\" />\n", | |
| " <line x1=\"31\" y1=\"60\" x2=\"151\" y2=\"60\" />\n", | |
| " <line x1=\"31\" y1=\"60\" x2=\"151\" y2=\"60\" />\n", | |
| " <line x1=\"31\" y1=\"61\" x2=\"151\" y2=\"61\" />\n", | |
| " <line x1=\"31\" y1=\"62\" x2=\"151\" y2=\"62\" />\n", | |
| " <line x1=\"31\" y1=\"62\" x2=\"151\" y2=\"62\" />\n", | |
| " <line x1=\"31\" y1=\"63\" x2=\"151\" y2=\"63\" />\n", | |
| " <line x1=\"31\" y1=\"63\" x2=\"151\" y2=\"63\" />\n", | |
| " <line x1=\"31\" y1=\"64\" x2=\"151\" y2=\"64\" />\n", | |
| " <line x1=\"31\" y1=\"65\" x2=\"151\" y2=\"65\" />\n", | |
| " <line x1=\"31\" y1=\"65\" x2=\"151\" y2=\"65\" />\n", | |
| " <line x1=\"31\" y1=\"66\" x2=\"151\" y2=\"66\" />\n", | |
| " <line x1=\"31\" y1=\"67\" x2=\"151\" y2=\"67\" />\n", | |
| " <line x1=\"31\" y1=\"67\" x2=\"151\" y2=\"67\" />\n", | |
| " <line x1=\"31\" y1=\"68\" x2=\"151\" y2=\"68\" />\n", | |
| " <line x1=\"31\" y1=\"68\" x2=\"151\" y2=\"68\" />\n", | |
| " <line x1=\"31\" y1=\"69\" x2=\"151\" y2=\"69\" />\n", | |
| " <line x1=\"31\" y1=\"70\" x2=\"151\" y2=\"70\" />\n", | |
| " <line x1=\"31\" y1=\"70\" x2=\"151\" y2=\"70\" />\n", | |
| " <line x1=\"31\" y1=\"71\" x2=\"151\" y2=\"71\" />\n", | |
| " <line x1=\"31\" y1=\"72\" x2=\"151\" y2=\"72\" />\n", | |
| " <line x1=\"31\" y1=\"72\" x2=\"151\" y2=\"72\" />\n", | |
| " <line x1=\"31\" y1=\"73\" x2=\"151\" y2=\"73\" />\n", | |
| " <line x1=\"31\" y1=\"73\" x2=\"151\" y2=\"73\" />\n", | |
| " <line x1=\"31\" y1=\"74\" x2=\"151\" y2=\"74\" />\n", | |
| " <line x1=\"31\" y1=\"75\" x2=\"151\" y2=\"75\" />\n", | |
| " <line x1=\"31\" y1=\"75\" x2=\"151\" y2=\"75\" />\n", | |
| " <line x1=\"31\" y1=\"76\" x2=\"151\" y2=\"76\" />\n", | |
| " <line x1=\"31\" y1=\"77\" x2=\"151\" y2=\"77\" />\n", | |
| " <line x1=\"31\" y1=\"77\" x2=\"151\" y2=\"77\" />\n", | |
| " <line x1=\"31\" y1=\"78\" x2=\"151\" y2=\"78\" />\n", | |
| " <line x1=\"31\" y1=\"78\" x2=\"151\" y2=\"78\" />\n", | |
| " <line x1=\"31\" y1=\"79\" x2=\"151\" y2=\"79\" />\n", | |
| " <line x1=\"31\" y1=\"80\" x2=\"151\" y2=\"80\" />\n", | |
| " <line x1=\"31\" y1=\"80\" x2=\"151\" y2=\"80\" />\n", | |
| " <line x1=\"31\" y1=\"81\" x2=\"151\" y2=\"81\" />\n", | |
| " <line x1=\"31\" y1=\"82\" x2=\"151\" y2=\"82\" />\n", | |
| " <line x1=\"31\" y1=\"82\" x2=\"151\" y2=\"82\" />\n", | |
| " <line x1=\"31\" y1=\"83\" x2=\"151\" y2=\"83\" />\n", | |
| " <line x1=\"31\" y1=\"83\" x2=\"151\" y2=\"83\" />\n", | |
| " <line x1=\"31\" y1=\"84\" x2=\"151\" y2=\"84\" />\n", | |
| " <line x1=\"31\" y1=\"85\" x2=\"151\" y2=\"85\" />\n", | |
| " <line x1=\"31\" y1=\"85\" x2=\"151\" y2=\"85\" />\n", | |
| " <line x1=\"31\" y1=\"86\" x2=\"151\" y2=\"86\" />\n", | |
| " <line x1=\"31\" y1=\"87\" x2=\"151\" y2=\"87\" />\n", | |
| " <line x1=\"31\" y1=\"87\" x2=\"151\" y2=\"87\" />\n", | |
| " <line x1=\"31\" y1=\"88\" x2=\"151\" y2=\"88\" />\n", | |
| " <line x1=\"31\" y1=\"88\" x2=\"151\" y2=\"88\" />\n", | |
| " <line x1=\"31\" y1=\"89\" x2=\"151\" y2=\"89\" />\n", | |
| " <line x1=\"31\" y1=\"90\" x2=\"151\" y2=\"90\" />\n", | |
| " <line x1=\"31\" y1=\"90\" x2=\"151\" y2=\"90\" />\n", | |
| " <line x1=\"31\" y1=\"91\" x2=\"151\" y2=\"91\" />\n", | |
| " <line x1=\"31\" y1=\"92\" x2=\"151\" y2=\"92\" />\n", | |
| " <line x1=\"31\" y1=\"92\" x2=\"151\" y2=\"92\" />\n", | |
| " <line x1=\"31\" y1=\"93\" x2=\"151\" y2=\"93\" />\n", | |
| " <line x1=\"31\" y1=\"93\" x2=\"151\" y2=\"93\" />\n", | |
| " <line x1=\"31\" y1=\"94\" x2=\"151\" y2=\"94\" />\n", | |
| " <line x1=\"31\" y1=\"95\" x2=\"151\" y2=\"95\" />\n", | |
| " <line x1=\"31\" y1=\"95\" x2=\"151\" y2=\"95\" />\n", | |
| " <line x1=\"31\" y1=\"96\" x2=\"151\" y2=\"96\" />\n", | |
| " <line x1=\"31\" y1=\"96\" x2=\"151\" y2=\"96\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Vertical lines -->\n", | |
| " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"96\" style=\"stroke-width:2\" />\n", | |
| " <line x1=\"151\" y1=\"21\" x2=\"151\" y2=\"96\" style=\"stroke-width:2\" />\n", | |
| "\n", | |
| " <!-- Colored Rectangle -->\n", | |
| " <polygon points=\"31.465818,21.465818 151.465818,21.465818 151.465818,96.674151 31.465818,96.674151\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
| "\n", | |
| " <!-- Text -->\n", | |
| " <text x=\"91.465818\" y=\"116.674151\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >576</text>\n", | |
| " <text x=\"171.465818\" y=\"59.069984\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,171.465818,59.069984)\">361</text>\n", | |
| " <text x=\"10.732909\" y=\"105.941242\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.732909,105.941242)\">40</text>\n", | |
| "</svg>\n", | |
| "</td>\n", | |
| "</tr>\n", | |
| "</table>" | |
| ], | |
| "text/plain": [ | |
| "dask.array<stack, shape=(40, 361, 576), dtype=int64, chunksize=(1, 3, 576), chunktype=numpy.ndarray>" | |
| ] | |
| }, | |
| "execution_count": 19, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "yearly_events = (rolling_hot > 1).astype('int').resample(T='YS').sum()\n", | |
| "yearly_events.data" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 20, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<pre><xarray.DataArray (T: 40, Y: 361, X: 576)>\n", | |
| "array([[[197, 197, 197, ..., 197, 197, 197],\n", | |
| " [208, 208, 208, ..., 205, 205, 208],\n", | |
| " [208, 208, 208, ..., 205, 205, 208],\n", | |
| " ...,\n", | |
| " [ 99, 99, 99, ..., 98, 99, 99],\n", | |
| " [103, 103, 103, ..., 103, 103, 103],\n", | |
| " [109, 109, 109, ..., 109, 109, 109]],\n", | |
| "\n", | |
| " [[176, 176, 176, ..., 176, 176, 176],\n", | |
| " [186, 186, 186, ..., 188, 189, 188],\n", | |
| " [203, 203, 203, ..., 203, 203, 203],\n", | |
| " ...,\n", | |
| " [116, 116, 116, ..., 116, 116, 116],\n", | |
| " [112, 113, 113, ..., 110, 110, 110],\n", | |
| " [111, 111, 111, ..., 111, 111, 111]],\n", | |
| "\n", | |
| " [[152, 152, 152, ..., 152, 152, 152],\n", | |
| " [160, 160, 160, ..., 160, 160, 160],\n", | |
| " [174, 174, 174, ..., 174, 174, 174],\n", | |
| " ...,\n", | |
| " [147, 147, 147, ..., 147, 145, 145],\n", | |
| " [140, 140, 140, ..., 140, 140, 140],\n", | |
| " [141, 141, 141, ..., 141, 141, 141]],\n", | |
| "\n", | |
| " ...,\n", | |
| "\n", | |
| " [[191, 191, 191, ..., 191, 191, 191],\n", | |
| " [188, 188, 188, ..., 188, 188, 188],\n", | |
| " [195, 195, 195, ..., 193, 193, 193],\n", | |
| " ...,\n", | |
| " [216, 216, 215, ..., 215, 216, 216],\n", | |
| " [210, 210, 210, ..., 208, 208, 210],\n", | |
| " [212, 212, 212, ..., 212, 212, 212]],\n", | |
| "\n", | |
| " [[232, 232, 232, ..., 232, 232, 232],\n", | |
| " [237, 237, 237, ..., 236, 236, 237],\n", | |
| " [234, 234, 234, ..., 234, 234, 234],\n", | |
| " ...,\n", | |
| " [214, 215, 215, ..., 214, 214, 214],\n", | |
| " [210, 210, 210, ..., 210, 210, 210],\n", | |
| " [207, 207, 207, ..., 207, 207, 207]],\n", | |
| "\n", | |
| " [[ 10, 10, 10, ..., 10, 10, 10],\n", | |
| " [ 10, 10, 10, ..., 10, 10, 10],\n", | |
| " [ 9, 9, 9, ..., 9, 9, 9],\n", | |
| " ...,\n", | |
| " [ 16, 16, 16, ..., 16, 16, 16],\n", | |
| " [ 17, 17, 17, ..., 16, 16, 16],\n", | |
| " [ 17, 17, 17, ..., 17, 17, 17]]])\n", | |
| "Coordinates:\n", | |
| " * T (T) datetime64[ns] 1980-01-01 1981-01-01 ... 2018-01-01 2019-01-01\n", | |
| " * X (X) float64 -180.0 -179.4 -178.8 -178.1 ... 177.5 178.1 178.8 179.4\n", | |
| " * Y (Y) float64 -90.0 -89.5 -89.0 -88.5 -88.0 ... 88.5 89.0 89.5 90.0</pre>" | |
| ], | |
| "text/plain": [ | |
| "<xarray.DataArray (T: 40, Y: 361, X: 576)>\n", | |
| "array([[[197, 197, 197, ..., 197, 197, 197],\n", | |
| " [208, 208, 208, ..., 205, 205, 208],\n", | |
| " [208, 208, 208, ..., 205, 205, 208],\n", | |
| " ...,\n", | |
| " [ 99, 99, 99, ..., 98, 99, 99],\n", | |
| " [103, 103, 103, ..., 103, 103, 103],\n", | |
| " [109, 109, 109, ..., 109, 109, 109]],\n", | |
| "\n", | |
| " [[176, 176, 176, ..., 176, 176, 176],\n", | |
| " [186, 186, 186, ..., 188, 189, 188],\n", | |
| " [203, 203, 203, ..., 203, 203, 203],\n", | |
| " ...,\n", | |
| " [116, 116, 116, ..., 116, 116, 116],\n", | |
| " [112, 113, 113, ..., 110, 110, 110],\n", | |
| " [111, 111, 111, ..., 111, 111, 111]],\n", | |
| "\n", | |
| " [[152, 152, 152, ..., 152, 152, 152],\n", | |
| " [160, 160, 160, ..., 160, 160, 160],\n", | |
| " [174, 174, 174, ..., 174, 174, 174],\n", | |
| " ...,\n", | |
| " [147, 147, 147, ..., 147, 145, 145],\n", | |
| " [140, 140, 140, ..., 140, 140, 140],\n", | |
| " [141, 141, 141, ..., 141, 141, 141]],\n", | |
| "\n", | |
| " ...,\n", | |
| "\n", | |
| " [[191, 191, 191, ..., 191, 191, 191],\n", | |
| " [188, 188, 188, ..., 188, 188, 188],\n", | |
| " [195, 195, 195, ..., 193, 193, 193],\n", | |
| " ...,\n", | |
| " [216, 216, 215, ..., 215, 216, 216],\n", | |
| " [210, 210, 210, ..., 208, 208, 210],\n", | |
| " [212, 212, 212, ..., 212, 212, 212]],\n", | |
| "\n", | |
| " [[232, 232, 232, ..., 232, 232, 232],\n", | |
| " [237, 237, 237, ..., 236, 236, 237],\n", | |
| " [234, 234, 234, ..., 234, 234, 234],\n", | |
| " ...,\n", | |
| " [214, 215, 215, ..., 214, 214, 214],\n", | |
| " [210, 210, 210, ..., 210, 210, 210],\n", | |
| " [207, 207, 207, ..., 207, 207, 207]],\n", | |
| "\n", | |
| " [[ 10, 10, 10, ..., 10, 10, 10],\n", | |
| " [ 10, 10, 10, ..., 10, 10, 10],\n", | |
| " [ 9, 9, 9, ..., 9, 9, 9],\n", | |
| " ...,\n", | |
| " [ 16, 16, 16, ..., 16, 16, 16],\n", | |
| " [ 17, 17, 17, ..., 16, 16, 16],\n", | |
| " [ 17, 17, 17, ..., 17, 17, 17]]])\n", | |
| "Coordinates:\n", | |
| " * T (T) datetime64[ns] 1980-01-01 1981-01-01 ... 2018-01-01 2019-01-01\n", | |
| " * X (X) float64 -180.0 -179.4 -178.8 -178.1 ... 177.5 178.1 178.8 179.4\n", | |
| " * Y (Y) float64 -90.0 -89.5 -89.0 -88.5 -88.0 ... 88.5 89.0 89.5 90.0" | |
| ] | |
| }, | |
| "execution_count": 20, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "yearly_events.load()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 26, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "# skip 2019\n", | |
| "yearly_events_mean = yearly_events[:-1].mean(dim='T')\n", | |
| "yearly_events_anom = yearly_events[:-1] - yearly_events_mean" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 27, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.collections.QuadMesh at 0x7f6bd48d6128>" | |
| ] | |
| }, | |
| "execution_count": 27, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEGCAYAAABrQF4qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9W6xmSZbf9YvL3vu7nUtmZWVdsqr6Mt0zPWMZz0j2IMBIWAgBD4B4AMGDuVkMEiCExIMvD7wYSxYCWzxZHsQDSNwGAQIhpMEGYQuJ8Xg8tgePp3ume7qrq7rrknnynDznfJd9iQgeIlbs2N/5Miu7KrurO3VCSuX5Lnt/e8eO+Mda//VfK1QIgdt2227bbbttL2/Tn/cF3Lbbdttu22374bZboL9tt+223baXvN0C/W27bbfttr3k7Rbob9ttu2237SVvt0B/227bbbttL3mzn/cFvIhmTxahvn/6eV/Gbbttt+0noG2/+cGjEMKrn+Uc/+QfW4azx+65vvu3fqv91RDCP/VZfu+ztpcC6Ov7p3z1L/6JyXtKPfsYrT6drNSHTzjxp2whfPI1/7Dbp+2TT2o/aJ/t90WpAJb3P40q+Hn6V6uQr7f8+wdpP0g/lr9Vvv5Jby9yPH+Wcx0aJ7/1z/xH7362K4Kzx45f/9V3nuu75o3fu/dZf++ztpcC6AGMfvbk8kF9ZiDbP8ezJuXzgkQ+n5r+xucx4X9Uv/lJ97c/qfdffxLIhwPnVio89bjy+z49CKUC7lP2x/Mct39Pz+qP513oDt13CAr1nOP++b/39Gcgnx0C5k89/9SnH5s/LOMpAB7/wzn5D6G9FECvVMDqsdNloJWD0RQPXCbz8zZNwKMwewO1DHDsD8T91/sWm1zb/rXI9553UsjklGuM51Y3Pn9WOwQQz9ueNgEPgdMnHfNJrTynANj+tcv97n/2tHtUKhz87qHzyntlnx66hmf93njM9DzP+8yetcgdOk4/xQA6NL727+WQceRzH9w8l/z+ZxlPT7v3St0E1R8UxF+kARUI9OH5qJsfh/ZyAD17A/dTWACaBMR7wBuCwnF40pcTY39ClAA8fV9N3i8XJI+afP95LNny+HwP6vA97V+z2pugz2qykOxP4qctSE9bwJ7nucj9PA0wQhjvZ/98+8eO9zhex6FjlBo/2weu57mW/aYnhscUxOW191MtRHld5TU8yyo/9PmhcfOsxVY/BaAP9dWzDJD9Pt8f+4euTa7vae3QcyvH0vMYRGXfvEj1ya1F/yNugenAfdbAKQGoHNgC5oeAaH8wPQ1oJgMw/e/2jpdBJ9ehQ8iD2exNjBuD+BMWsPI8MjFCiBNOqWiFAKhPoLnivZGvUyasJkyODYEM/vv9YBLQPQ08yusrv1dahQJi++fYf9aHqZ79Zxb/P0SryPH7fesSEB96/vuL5P41Pg3cn+VZ7IPQoYUmg6i+Oaae1p4FrkqB8+qZC2HZymd3aFxPvitjnOmY2b+uZ12fPN/ymvb/ftY169T3L5qWDATcT1D5mJcC6GEEnfG1ugEa8vchSyBOtJApnkOW/aGJtz/oZUAdGlhPnQzF2+WkcEGx7yKXv7cPMqr4HMhU09Os6adx2fvtaUBrdLixOJWfhxC9i33QM2nyabW/cIwTcryOm9SKLKLxe+S+cF7fAI/9ubj//qGgr9s796H2PMAtn8mC8exrUTcB74C3KOPQ+5seS7nolfdXjpWy7VvcsqiL11mO+X3v0KjDVNah85b3Ot7HzWfwNNzcX5xLmlIT8jw5dHx57L7H/Fmbf4Hn+mG3lwLoQwAX9FO5Ux9UnjRPP8eUoikHuAt6co5DICvga/Zc9kPW3NN4XYiexWTihHHiuKAKGgZgBKR4rSVITa9Fq4BJf+9b3/su8aFWTpBykk0WUKZ9Id/ZXzQPueCuoDFCUPTp9fj+HrDsUSxTjv2pt5FbCS7PsixLr+NZwH8ISOU9U/bRxIuZfn8f+A5RSPttHGM3z1le78QY2HuW5TMqn61XU4oRRq8zBECFDLDlM56co/BcnwW0T4vplLSkeI8yR8o5qzh8n3JM+fpFtAC4W6D/0TYFGOVvDDoZDE8LPH1Sk4F0yF2dDqjYhLLZPwfF5xABeR+cpjzi0y0ioWX272XfjbbKTyZWeX6jbnoizwT54vylxzJZMPSUr5Rz7x8rxwxe5wlY6YDXI0XjUShnGJxGazdOcD/ltcv+dH5qhT6Pt7JPD+zf83jgD6JImQLjFMACam/RL72ffYCX5rw+GPDMNGDqk2fFXA4BPHADDOU9+f9p1nY2OPzN/i5BeJ+qPETnuDBdbOSjQwuQtENxC02ATznXP027teg/h+ZRBD8F+EPNKI8LejJQnhbsMinSL3TOvnJH+GOZRPuB1v1BrfbQ5NBA3XfBDwUI94Gg0i5/JuqjwesbSgUBXas8p82WuenZuoqdq+icofPR5p+ZAav9OOFVQCvPzPQM3jAEjU9ejlyfHFse13kzWRhq45iZIR2v8r/ye72Lfxvt0YmO8V5hlMcrkyma6Pqn+IAKN57n0/pY7gfGWIUqLNP99jzKjkO6f70HcMWnk2vT3IxH7FOBk0W26PPgFUaHZxgQI61BiPGi8v59UIQDtJBcdwhqQis+j8LokIJpf5GRtu+FSxOAP7QoiJdx6DO57qe1F2XNQ+yW/paj/3yaDJrBjUC+byX13uTvl5Z4SQVIu0GjFE1cW2nlIMq/GUbrToKihwabXKsLGoJQE4e/HykSMhBW2k2s8iFZfzM75ONnZohgTaA2A7UeGLzBBcXc9ADMTJ+B/6KdT84nfbTR9WilM40XrKoWq3xcNFIf19qxsB07VzGEeJ6dswxe41EMXufrld9QKlApx7pr4veCwrnxGoSb9mH0AFTql9KbKj0Ma3yiskKxKJOprUMUiVWe3ptMHQmAPU+w/tD3D0l+Dyq8fArkp9812k8on/3gaXn+objWQ/JHWUBdKO5pn7YqwN95hTU+/a0hHS/XWvZZOVafpbqZUDzpmSl1GLhLwN8/lynoqkPnPuSpvMgWCLfUzefRplYFlKbI06Lyn6R9jydWebKVbX8RKAeUuKIysccgX5q8e5Z2tlIy157iAmrkNoV7NypQCUDt0Th1suyt8tTGMXjNcbXDKp+B1gfFzlVoFei8TccNVMpz1i3ZDBWawGaoJv1htadWjllaGKzyeZFo03m08ixsi/WWIYF95030BNLvaxMSyJts2Q9eM4QI+r2LVnttB7SL53BaZeuv620EugT6SgXCvpRT+xHUdYxVGDlnAnqjYx/JvfgwAoosQkoFgo7vy8Ii1Ms+lXWQ+kpUTQgqK6as8bi0wEEE0306akr3jPcmSYGlXLZULUWAF4t69G7kMcbv60nf5D5TIS8gY7xpap2XMZ99qlGpm4ZNCdCHcjwmMaQD8ub9vzWjZyDzoVwA9sF/3xh7oaAfwP3k4PzLAfRhYk1Hd9ij8uCVSTs5Joh6YWqxyd/l+cpA4dPcaK2mwd+gQg4QlTz5vn5eqZgM4oPKE0VAzXkNBRVSar0r7ZlXPQvbM3idKZuZGVjYLgMXkEH2opvTOYPVnlXV8Uq95rxb8LhdRArFGUJQVMZRa8dxveNOvWHwJoN5pV2eZHL+SrvJhGvsLgV/Q45x+KDRaYHzQaOtxwv4K0/rbV6ALto5nff0yapWSuGdSqqagE9Uj9Ihe0CKCPCVddTGYY2nMQOVcVjtOa7aTD9JcNQqN3l+QmMBeRGMC6PNgN4ONvfnvvKqfM95lRd2ac4rQrDZ4yy/H5hayTqD9mhtl9b7aOUX9IqazoNspKexbo3neL7juNmxGyzXbZOfeVBFHKjwIkpv8akUTbrOfcmwPkBtiJHjij4UD+QGV793/XKL+wFaAXg5vuz30rPSe3P5s7QAP0Eq+pcE6OFwYG4oLaUDD1iCXALaRh/OvjukG4apFfc0fbEAoNEhjwyRVGYLZM+RkMmgtcPogDVupHcKqqO8x5np6ZzFascQNHPTM9d9BugPtsf4oFjYaIUvTJff80Gx7msGZzA60hzHdYsPmrN2hVY+c/ulF2G1u2HR7sstK+XwaFA+KyS0Go+L1rKhSXTSEDS1cXQ+XotQbSFZ8M7vOfHiBWnPrB5iHMD2VCkeYLVnYbvsfdR6yAvPeI2era+yF7Jz0ZuxiR5b2Y7NMFJS5YIuoJjBEQEm8D5a3IMzE8u7/F9auWgI7VSOPfnMB6FtEr/P0wVlMrSEIhmcZt3V7AY7AdhyMZH7KGWw0g6JEeQZ3vjtvbhFOS5CKLzaYiwbdbPsxH6A9RD1tS+hhGnQGpgsWC+m3Uyk/HFuLwXQh0Dmcfs913e/+T3rvuQoywSZUdGgQI8caHlsqXPfp4dGGkes0Gh57NNAJvHHVvl8TO9NnmzLqmNVdXQpSClgc901bKnotOH+/DqDk/fRqjmyuwzyZ92She2ZhYHaDAB8fxNBftvXmYu9M9/EYKnX2DQRaz1wWm3HexYdNTFAK+5/pVzuB4OnDyY9DwOkhUKeQVB4NFoP+ZjWW+ZmXJh2zrIbbOSUB0tjB5yvcowgIFx0tFRn1cCybjmuWxa2Y2k7rHIZ0NeuZvAmxwi0Cjl2weS6VLbicSMwiNekVaBhPK60QMt4hvOa2o4S0dLSh1KzPh0/h0pjlLRGueDHhWRcdOCAOibda0h/t53FGo8xPilmxhhGCIXMNS1eVvsJbbhvMUtQ2Bp/Y/EIYVqDymg/ia3kmEFhhI1S1LEfSo/WFcfDYfWaGG4Sz9nvoxfRAhFrflLaSwH0EK0VHxTCTu7/P2nFAyp1yFn5oEZu1GiPc4epn5IX3Q8yySQSfljOVRmHUT5TLWI51jpSDJ0zXLSWbjAoBd1gue4ajptdtMaHSMXcm69ZVS2boebDzVGmY2o9cFJt0SowNy2P2hUr27JzFbUZuGjnbIaKJ7s5zivm1cDdxSb//sq2dN5S64GlbaO7i8pAbuVeMtBNA5omva6Uw6Fp1HBQty/gDjD4aNHHzz0+NOikm29MPL7tLUpNJYQCWLVxLKqO47rltN4yBI0LivPuiMHrDO6ts9mNr4zjWnlmduBus8kL43U/w2rPXRv7ZDPUN8s57AWi5Tnm57+XZS0xiPJ4q2/KUSVOIa9LUBTPRkDRqEDQIwXi/PQaR2vaZQpTxi2MhhFA0B6IqiijpklRsrAKIEev102uJS9QideHaMBIE4DXKlAxxhEySCd9RJ8ouRAUJsUyVCgk02HKu4eif/ZjHWX/C9X1IoOyAW4t+udpSqmfAf774q0vA/8hcAr8m8DD9P6fCSH87886V6BQNzAyIQLyNywApg8+pAVCmvcarX228kt3thxMurDObwbFpm5iZVwC/TEIKGAxeE2brFYJDMIYrHJec9U17AabJ/agR+/j7mxbgIrJ1rEPitNqy7Wr8UHxaLdkO1Rsu4p+MPn+t0OFN4qV7jJHHS3bGO2Y3EcCfI++AfLSHFOLL/dX4T77UBSJ0y7TJgL+VnsaO7AdqgwolXb5c1lgK+2ojGNe9Vm6OXhDlzyCzhu2Q8XgTAQDYnyjS94CwFAZzrvlKBFNVFXnTfaA5F5q7XKswaiQAfhGYB+Vn6XIUeV7Yz+MMYshaLQP1IkOK70LUSn5EhxTk2do9BhPEo+0FARYOw2QiixT+sBoz9zGmM9mqGiLuIQ8L2vcZGETSnHUsZHPBdPYVKWL4woJ8L7EWegiudccbwtTyWXZXOHZPG8OxYtoL9JD+GG3zw3oQwjfAH4eQCllgO8B/zPwrwN/MYTwnzz/yaZgHij5zHGw3byG4kElEC916qOcbQR7V2iXvTM5SLWvwBGuW6w/o2NwUIKcQOaktQoZlAY0x80uv9d7w7LqMvhYHQOKAsgz01MnXn7nKjyKR7vVKINUgZnps8yyHaJlLDzwbrB0ztBbQ+8MjR24N1tnKkhUKlY7Vqaj9XZU/exZ8RnAy8Vhby70wWTqBpJHoDRVOrfXiut+llU/3ZCCoqhMgdTVEGMX2lPbIQPUzPRshprLvmE7VHSDpU/HlKDVuXGR67Bc9zUzOySvxmU6RlRMWnmapEyamw6IC14bqnxfrbNo5dm6+sY4i16Kpk+AP6qNTAZwID9HiGqlzhlc0HSDzYqYyWKJwhAmYF0C/fj7AVOMn5J2mtkhjaFI0fmgaL0dg+/K0wfNRbdgM4z3C4cXcXm/lPraAvi1CgxB07np8iCyWp0WT0PyGFTAu+jdBn9TrpqVV+kZ71eYLb+3f82fpd1a9J+u/ePAt0II7+4nFT1X2zsk83QkfbUKN+mb4rshUS1yHglexZY4WjfWURlKt1dNecjM7QdFnSaV0Z4+DezeRZ44AvbAqmqByIWXk0Wsweuh4bqvGdAsEqgvbTdZJIYQOfXXZpcM3vCkn2dLUhNVLEPQnG8XtIPJHovwqkZ52gT4m77mfLvIHohP9Ilw2q/Nr5iHniZZugY/Ud1Eff/otkeAGye1UaOKSEAfIs0zNz1aBV6fXbKwHR/vVuhmx3UXqZwhjP07r3pmtue02eXzfbg94rpr6AZTBHHTGNAxTuIRjyvFTCAGolMfSv6B1Q5U9CJs8mK2vmLrI9jJYlDy50I9yOt97bd4GzBNJhPwjYu1ZdvHvANZ5OK4il5h7uNSyVWAf/m3TRThwnb5nirlsdrl4Oj0WUUvrtEDTRqP66HBqMCrzTVP9Jzrvs6LU13kcByiorweE+LkvXg9faTYvMFqR+dtpthq7ei8zxRWnwQCoriSoPIhhVx83iovipnnTxa/GIAvogXUxHP9cW8/LkD/LwH/bfH631VK/SvAbwD/QQjhfP8ApdQvAb8EYO+dZDnZ/mMUsBL1Qfm9nPwBE62xLBQKAQk/URDsc4w+MLEkjB4tKPmNxgw5uCVSxsHrSA9ol61JGFUfnTes+zpP+LWpOapbOm/YDBULGy2xnatAxQCpV56TajuxHoegwcGyboGGLqVIiqfSezNVCu3xztFaDVmCKKBhCwuz0sMN8PBBU+keHZLFScig74KOihylkgU3cvtoMvBa47mmmST5NNaxqtuoqlE+Bm6dTX1lUjD7ZlJP1LCPD9IFhU59MHhNbV0Oug6pT7xT9MpMOPZDyioBP5Fllu9PUvkTFSPjoDYuL+pyDxLMNYX1LTRV6T3We1SKeF8AMzuwMF3yIm8qjbI1GkTEEAFePBbxzho90HrLtkiEE8u8BPmsUpIZqGJAXb5Xxh5EriqL3cwM7JylHSyzZsiS4ce7KmdBl/237z3Ld6BU2hUUEFO56Ytqt9TND9CUUjXwzwJ/Or31l4A/S8TfPwv8p8C/sX9cCOGXgV8GmH/lzXCjLG5yX5UauUJdBGVUsvIkCJvlcEyBfD/LUGibkhIS+saYODH3JX4L27OwbXaNfdC03mYlyON2zrmbY5JufEjWvyxSEHnIZR3pBUlaArjuZ8xMz0U35/31CZe7WQ4CV8ax7aoMNqW7LLEGCTQHBd6bfA/K66wSip0Xrf7NUOfM2pVpMcpTKUelXFbiCGijIl8vvD7AghZHXIR2wdInYNz4kfJYD00MggbFRTsvONsIYKU66Lqvo/TRxQC29FvsszGOEXXtZRB+tAx9UPTa0Lp4LeKtCIBlK30f4NVYUiL3KyorpEqqRAKwmcZQgeN6l4Cvyjz83PYx10H5CdDLMXIdQP5drQIo8qJR64HGDMx1HCeOEeT7EONB2QvT8dnN9Rh7iR0UaSiHQqfkOKtdjkuMVnoqhaGni3zn7cS7qI3LXoBQV8dVm0Ffq0BlHJddE6/TR3qtfJZO+l+Bz90S0CGO5zGGUSzyPJ23/ywtoOjCfnTix7d97kAP/NPAb4YQPgKQ/wGUUv858L990gmUgsq6BF7hBp8pgC3flZY55eQaihwsS+DEXdRjxl1MBBkBf2pxxclZacdR3abaLrG0wGm1Za47+mDYugqrHSc6uq9H1Y7WWTo/DYDVeqDzlo+3S2rjOK13nFRb5qZj7ZoJMM18tIruLde8vbjgaogTpj6KwcMoLayiAiVo1n3NuqvpBzOxipw3+b7nTY9LVidEEIsTMyY/XbuGE7u9AfIC/B5FFyx9iBa7Q+PQcSFQ0LqKjavxRGvyop+zdTVdsqbXfU2fPJ9KO5pqiP2qXfaGBq9zqQJ55ob0XEuLVyukyqmoRCQLtHMG0iKoVWBDXHT2gb08rgw47rONJWfe+zAG4NN6sJ/UNjM9Oyp0SLy2TcHP5BWW//L1UgB78mwaPSR6xlFpj8bj0fReZ3pxXnhb8X7HRUqem1bR8zqtNulco7cWPx/P0QdDHww7X2GUp9E9lXKc90u+u72bFFwuU1PiDSxsm70FqcnUesv1EJO4ZDEAclLXEMaFeZIDA4DLz3dCrRYA/6JVN/6WuvmB2r9MQdsopd4IIXyQXv7zwN/7pBMoojvvQgpG6WmClFjlpYZdEjasjpO7SsFT5zU26eZdURslF3kClB5r1+/X0hFLOnOkycKa6y7x5iaD/cp0rKoNAL01sf5MogC2rs7Fysomk6zWQ1RGoHjSzXm0W0RZYLNJnzsq7TJXfVTt8nXWOnoGYvE6r8ElZYeP/4wJ9INhVvV5IdDG5aBxowdWpk0ZyHvlkFVUF5VlkUs+c5/b1IjlHGmmzVDHBSWVflAq0FQx6CoB0lwyoahHk9UmKmQZqLTBmWzRjwXRpn0bQiz8NaHmJG4jJRES0HidVCI6ZkCX2ZedM9TGjfSLSYCUFqKZ6Vnalq2rwBcKHTXdREP+niX6pTEDvTdsVJ2CxfE5Rj491T7aA3mNp9IQYSnmN8TEpDReVUCn4PlM9+hEr810HxdFFL23+OS59cGgUxAYxsWh0f0kd2Jldyxtix9G6qomekqNGTiyOxa648RucShaX1Epx/faU9ZDk2smdc6gbVwAK1xc+IMePU0ZU17H/sajbJi8LwZcmZn+ItptMPY5m1JqAfwTwL9VvP0fK6V+nrhofmfvs4OtMo7aDrS9BRkAZtT9ipxMJfdQM1r44loLgJRBslyPpLAuYFTVSM0UOYfUmBEO2yclzPXQcN4tcjmBj3ZH1MkNdqik6HA0dmAIEZAkGLY00ZJ5tFvyaBeVD8f1ji7xn1Y7LroZ665hVvUxUaiY/E0VrSYfdE586oPGasdpvaXSjo+2RzzeLegGw6arcX6kPTahpqmGkYLQIdJN/TIHU13QvFFfAFCrYZJUk+v7JHO2BHmZdJEDrlm7mi4F5K4TVz2vYoB2bntWVXeDy5aSDWIBm4IekXIF3RCDfaK19kHlAN1+6Quh4EwKVo+Svzg+em/wg8lWY8+YwapUvG+tPe1gJp6QViEpewbmpueO3bAycdFvvaUzNgdzBeBlAVgW1q8LilW1Y2U6+pQBLdnHLkTFTMOQ6DKXF17p70oP+KBv1F2KeQ9xsY3xJU/rK1zQRdXL9N09sBSrvkykahN1c2R3rGzHyuxodM+R3rFLaiUpkUHQLHSMDbw9e4wPmvNhycZVXPWzG/JUmaOjdPVmsTkZv0IBWeWzfPlFtBBulrj4cW6fK9CHEDbAK3vv/fEf9DxD4rWlbgwkt1uLSiGWEai0Y2H7DFozEyV5lRqVIj7oaGkhfKvlehhdeWmiaKi1yxUh96VdLvGvlshZfm9zOi4iQXPVz2KgzLYMymS3WyvwauQk79TRSr/sZlx1DeftnEo73lldUGnHm4tLAK7aGd+6fIW3lk9Y2paKOAmjHDJadFsXK1CKVHLtalZVy3G9i4vQZsXHVyuGxDMHp2ixOBNr3Dit2QxVkuTZnOjU+oojs02ejp8obfZb66sMcBHUprWErvs6UlmDjYtX1TEzA11SLIkuvqRWTKLNem/YDRV9suBDUAxOT0obywIRH+poaQtNt6g7lnXHV04eYZXLOQlaxSSvs3bF71/cpR3sNFgY1KRchdxPY4aYhZtoi6uhYeuqpDKK426uY2A9j91EQVntOLHbRI2EbFUvbTuJfcC0WJ5QKEKp5fyHdO5axd8Sai0Ctcnfi5Z7yCA/02NcqMyOdqkUgAC1fG4SlQRwYjd5PAjI98GwSfEZifPIQuOCZmV2HJstr9eXVHqg9RU7H0UKF/2Cq2T1z9J9TKpeqnjP4iF2znDd15OcjBfRXmTZ4x92+3Ggbj5z08ozSzVcssTtADeXg2fac6fepKqNMgF0HhyNHuJgJdBbzZvzIeuKZSEQqZzwoz5oKjVk6Zq40lcqKlVmqk/Hq8zFW+14Y/YkXneaCMKRRhCM7zd6yN6AR7EbLKsqTiyrojdTa4dSgc5ZPtwecVpXOT4gwVipTTMEw5Hdce3qaOmYIVr5yvOl4zPOt/Ns+cb8AhUXnhTwy7LOFJBdmJZdsDTBstRtpALQk4kglrwPOoJD0FmH3pjYb0vb0nrLEI55uBmLqEkS0c5ZWmdpe5uVNSpdE0Qrrk91ZeTzfQveh+m+BTIulArUleN0tuUrJ4/QhMxRC2ctNAUNXC4jl3y2WWaNNoxSzkrHwmq1EX2+z6qqnBSV6vxY5cYAsHKR3vM6WddJRaN7eu9BV1GdkmgWIFvgZRMArNRAHyxtGt8z1af7GHL/m0TzkEpGlBa6DypTiMLPl3NFKBd5Ld/zSk/eE6pnF6J3uUsyVaM8Pkh8JN6H/HafPNs+a/pj3KfRA62WiqlJgZQWFZkjmoA1fQwWm1HXL0Hkz9pCij/9pLSfnCt9Rqu056TZZbdu3UcLvCwg5VKQ68HigmO7Y2G6aCWlIGGO/CfgX5iWhe5y8s/G12xck39zpnt2vspqkYXuqPSYRSnWzhv1k/zezle03rLxdfYaHvdLXIia7nv1NUDm6EWzLSoXiIG803rLkW3pg+aD7QnvLM55sHjC3WbDEDQX3ZzLvokSyJR1etYt+d7VCUfNjpkZcLNYi74R6Z1rgFhP/mjW4r2mH5JVz5g70GnD+XZB5wz3ZpvM1aebjpZZUElBJNabTf8nDjf1wfVQp9/XXA6zXLf+8W5OCHA63zIzA5ddQ+cs666m7Sx9bwhSCsA6djoWAivrGOU8ij0QzpUPJfdBwZ3VhneOLrjfXPFKfc3G1dGiLTw0sWjvVdec2C1vzx4D8KHpb70AACAASURBVGRYAPDu5i4fb1ds+jqpTKLaqgyYvjG7ZJOeu9B10XL3mWJpdJ+tWvGMdr5ipuOzwoMzip2vWOiOWbLcRyOlT48ijutoKET+/NrN2KhR3VSOb42nSkHyXaho6G+oqCSQXunE1Ss/seQrNXDlZ3ivszdBooDEYoeRCi37V+S2kcrsJ1LceA3jd0/sNr8n/SPj69o1tN6ySMo0mVtvzJ7g0WxcxV/ls7fbYOzn0IzyPFhc5DKzWgW2fUXvTU5UqhLNIhOs1G7PdM9Cd9makLbxdeYpJaDog8qWRaVcnCzpuGwNFbVbSBaJR2WFSaUcJ03kyyvlOB+WnHUL3tveyaDemIGlaTNfe54AJQZ3XZr0lrvNOlvEcxNVPbITlARg+wSezivONkteWawBOO8WKQGrZZnAulKeB8tLXp2vOd/NeXi9yhLMCPYWYzyLoHh9dskr9TVVuscsq4QMVF2wOdjmgubSzXnYruiSCkj015ddw1U7i/1rHKumZfCa82HOtq/oeks/GPre4FpD1NiBCzZWNzQJCAIok2IwEixXIXp4JbAMGm08i1nL/cU1r8+ecGx3bFyds3/L+5F25WZpMYuT/MRu8EHzs6sP+dkVnA8LPtwdM3jDnXrD3XrNemhwKO7YNW83uwzCefym1yWgRqVSYBcsKxOfow86WvKpEPrCtBgCje4zFSNjStraN7QJCCvlIv2RLN4NyfIPZNDehYojtbuxZwKQLViDz96AeL5xnNlswUt9pN5XsXJpGD1iWURlHpWLhVA0soBBNAxIBkHpacjcKGWnlYolMTyxtlHrx6A+kKuYvoi2X2nz0zal1NvAfwW8TtRm/XII4T9TSt0llon5IjFe+S9KTpFS6k8Df4JYeOjfCyH86rN+46UA+kC0oFcmlqPdDDWRoB7rfxjt6bzhcphRaU+j+qzx1gR2iTcuXVUZUBtfT2q89CFF+dW4AEC0EstMSRcilSCTRrwIiNRCrO2uOTZbjufbTA/JJNL4vDAdWwHtMsswUgAajyNOHiki5oPOXoVRgXuzTaxU6cYNSi66eQzQLVzO0IUYSLtTr9k5y7Lpcm2ckH5XBzhpdsxNR6UcMzXQUkX5ZBgzQ3e+SgAWg5TnwyLXna/1wMPtMieDCc89s0NODGqdHevcWBet9qAi0HsITig6hcJnui6EQNAh1qtXAZWklcLHj+8HBmdYVS13qg07X6UYxtSCLZ+XLOoL005iC0Kf3K9jdvKjbpmt4cYMHJst9+xV/v5M9RPgrFJ2cHzuLtMjRtQxyTqOqhnPyuyyRS4ct9QeErpnpAMHHDqqZZRP+x9EasgpNVJSFEHztFDnoHpafISiFEoofhYzyYWSM0LrhIKuC5pKDzTJEzbK58CwvNYpj8SHmES3sF2+h9ZHw036yCSlVryv6GGUlFe8/1h2AkZK50W1F5wZOxATQ39TKXUE/C2l1F8B/jXg/wwh/Hml1J8C/hTwJ5VSP0dMMv0DwJvAX1VK/XQQxcCB9lIAvfOGj9sjrHbUeuBus8aoQOssj9olF7t5thyNCjxsVzSpOuPM9hjlMwDrpJwQ0M/AmlhnjWdhuugRKE+lQg4WbXyduFedPQnhd6Pr3bMyu4kbKi4wjHRQw5A9BploYv2UlpYmcvlSJbJN3L+UErh2kRppneWj7YpdAtUPro95vFtwOttyf36VrfmF6VglL+Kin/P24oKV7fhou+KDxzH7OGjoB8N5O8cfxQnc6J6T4nm0oWLtm2yVftCd8Lhf5gzbi27Gw/Uq5zvM7JD3bwXy7k+7IXpntR1yueZvnb+CG3QEe6dQgwKnoI11UbABUARNBHsbgAjqKln9wSts5bDG8XOvfsSD2UVB1/iJ1SfW4sKUFMVoCJwPSwDmusvPaOsr3p6f0+iB16on2fLM1IeKC0aj+gyWAFUKfRrlqdVAF8bCa2Wc4FV7VdAuRZVIxkqpAF0wSVJpMcqz9k2s0eMrqkIOKcfuB9C7YCfUZqUcPUyuuWxyXwLqC91FTy5JcPczo7OSJsUqdIr9RA8j5FiBALzMLY2nDfWYr5FiL62zme6M2d7xWQ7e5CBwmbn8WVu50H+WluTkH6S/r5RSvwM8AP454B9LX/svgf8b+JPp/f8uhNAC31ZKfRP4ReD/fdpvvBxAj+JxO09ldjsWtqPzmu+vj7lsZ9TG8ep8zWuzy4mColKOazeL/KQaLSoBeEkBP7HbrELwiUMEODGRflnolp0eCz4ZfOQqg+ZRv4rWhIlWyondYgQo0gQo3V2xhMXTADLol9NQFoC4MI1u69bXSGZOowfOuyUX3YzeRYtUKTiZbVO27rghRx8M5/0CrQLfWb8Sd2KyHd9fH/PR+VEqhBZyfZx1V3PWLXhleZVBYkFLH2yOXfTectYvedwtuexnvH91wnrbRJmrjX3QdpZdW+WyE7V1rE5a/uDJ96lOI0Ul4HHXXvNH71j+0m//o3iTtt0YEiMTU5oJ/ZjrgFaE4KNFTyCEgDYebWMd/TdOLnlzfpEX7v1yAt/bnjIEzYP5GGeRhbZJFmnjez7qjnmvv4PVjrvVhp9ffTfr0ONz1RkED7Xp4l2cv1hQgBzoniUeXzwG0cLvn1MTlUi7EDf0mKk+fj+pzkq9/kgXTT9rQ5ODuLLQUGwcI6NeYg3GeB4NR1wPM4wNo6ghGNo0h4zyXLsZrbfRsEjzSs5vTFJPJS9bJMfj9Y6WeRsqXFCsh4Y+Ba+lTMfcDGxdFedwtUUy0l9EC9zMB3lGu6eU+o3i9S+nzP4bTSn1ReAXgL8BvCY5RSGED5RS99PXHgC/Vhz2fnrvqe2lAHofFBfbOUpB10QlzM5VnG8XOBcfvlTeE0UAkLXJrbexiJdYL+gsZYsWrqdRY70WlzhOGZhXfoYh8HhYRg5VeY70Lgfwngxxs+2YGaogWY45AWVPseCUHvXNhepA3OJMLRQadZMUOsLTmxD1368011GSmBJ4ajvw1vIiL3gln1ulTSZeada8e32H94ZTrtsaqQOv9bhBRddbvnV5j7dmFxzpXT7PLlSZqxWL7MPtER9fr9h1CRaCYr1pCD4pYKIRHp9lrdkmS35ld5z1R5x1C3au4heO34uLrAJtPUEFnFXgNcrtueU+VjRSgyaYMPEYtI4LzZuLS+7XV5H3TRZjowd64iL/uI0LH/O98sKFRyZFz760fJSBqw8W/Ah+h5oLOhZNKyiQXYjqrJnu01iMAD1SidPqjHXx7CbVQNOYII0Jk6g9iAuA3CtMK5BGsLUsVAtKx5yIMHoj++qj8jxRoaXzoubUWMzOpGBxle7bBZ3VRa2PEt2NSxa6ieNdrmumezZOoRW0medPyXWMCYYC8hDFC7naaModWQ9NNKLctALnp20BdcMDekZ7FEL4w5/0JaXUCvgfgX8/hHD5jAKPhz54ZibYSwH0kvrc94ZdbyPAJzndrOox2rMdKr63OWVdb7MVqyuftdwygBe649o13KnWGAIL3U5UI4+H5QgIzky4wUp7LodoyZ9WG47Mjjt2zcrsOB+WXLsZT4ZFlsYdmR2zFCvoAYLGpGASjAkqMzNyohIw9sSFaEaPS9mLFdFD+bg9otYDrzVXtN7yxeUZd5sZ37m6S+cs769P2fQ1Rntem1/z5vxitB4xzHXP144/5jfP3mLb1qgEjDbtxRp0oO0tZ9dL/v78DRankfqR4mW7ZNU/7FactSvONku2u5p+Z/GdiQFTAWYVKRYZun2vea+9yzdmG96aX2RJ4qPdkv/h/BfYdHWui+60BjXgjSG0BtWpGHfVjIFXFeKfXsUNLhScLLf8oVe/zzuzx7GPExhWehwH175hVXV8afkoL9iRPzYp4zjSIQvd8ZXFx5z3S+5V11F9pcbKniXPL014doLOVmGlhmI/VYXDxM3YSyVXsVghO3oljl6MgPJ3IamFfBxLdZBnPMZSNr4ZfxdNowrVTkFNiFFQeh9xcTA3vqNTZrQYOJLMZVRgngKvsU+j1yPKNa0C18Mse3EQlWqxfILJsbU2VFwPNi4UblwUOq+zjFiMuN7FpLK79Zqtq/hgc8yLaII5L6oppSoiyP/XIYT/Kb39kVQKUEq9AXyc3n8feLs4/C3g+886/0sB9EBKiom73He9RWvPvOlpqjGhojZRrzw3HZX2WaN+Yre4pGhYmR2vVU/4tcsvc1ptJ2UJVraLpQxQXA6zGPzUQ9xkWqeUcxXwAS76RaoFU/NOfUZVuZzwAXsZiUEzU7HeiSHk4Jm458JDjnXNk6VEsfuTht9dv8bH2yM2Q4XVnke7FTtnOa7bLFF0Xqda7QYwvNvf4bJv+NpxLDEk3P6QFEtl3RalktXvY2JQPxi+/vA+b83Peb15gk+Tducrtr7mrF3x3tUpjx+toDXQK7RY8CRA1gGFInvBAQKGv/1bX+JvewV1XFhUrwk28ewmjPaLCrH40MwRnJla9orI36eY7fxkxy+8+T4/s/oo97t4S1ICoHeG/+vDn8Zozz/86rfzomyUB0325ETjHceWYmV3YwJRssx3oUqWdQJzXA4IuqDRyaOrCtAGsjLLoSHYvHB0siAlwDX4THtI+WePurG4iNRRogwajyEuMnkRS+cuKadY7z56BiUNNbmGEBcE4cBdSFLjZDSVSVCywIn1HvNVigSxFPMq+0ho1NbbqIryNY+7ZUxElD2LQ9yX4cS2eV74xPfLXsRNyki+Px8D4p+tHd4E5VOdKZru/wXwOyGEv1B89L8C/yrw59P//0vx/n+jlPoLxGDsV4Fff9ZvvBRAX24pVu5Y0w9j8ad5HTMPxe2WMgMiq3RBc89GN/797i7HdhfpG9Nx0S/iQEnWyMJ00aJPk1RUOdHVHq1undQDT9yCSg15EonMTagbaQvdZZnczlfZyhWw0MRg2IxhAvY+aD7ujrnuZzkhRIqBvb6IA7t1S2a2p3WWV+dr7CICwWXfcL5d8LeHt/jC6px7zTXX/YzH7ZxtV+UyzTBWgYw1cRIYeMXfffyAB29c8HhYRsmfkgqGho/PjmBt0b2KVrXQNEn2mOvNOPL9Khe/p7yCpN8PkYmJahvBsKBQHqgi+CtJhArxs1AsBvao42df+4gH8yeT8gwCcBClk79z+TpXu4ZXV9cTkHchpulLv29CnfTaXeagPZGzLgOk0XrmBmBCEXtRY12aWCN/VMDoFEQ1QgOlc5jgE0inYnHJot8vNSGqnN6bGJTN31c5SCuKnR478QwIOksxdQo0E6S+zZD4cT0xSiAGKTeuYWFaNGT1jYz3lWljXkoSLyxMFxcLX3HXrrlys9xHEpw1RKt+PTSp6F0MtD7p4l4LS9tNEhXjAqCzofbB7iQnK76IFnihFv0/Avxx4P9TSv2d9N6fIQL8ryil/gTwXeBfAAgh/LZS6leAv09U7Pw7z1LcwEsC9AB1NUTJo4tBOqkhLxuPSHnfeZJgigpmoTs2vubI7OiD4evbN3jcLTmtNlz0iVsPigZ42K0476LK4n5zhdUuqx8cMemn5LxFL7zxNQtN1u8/GeY5OWQXUuKL6ieTRxQ4wGgZMgJGCSjf2LzOR7tjdsNY/VKKfb13fToJrh3VLW/MnyDFr3qvWS8bfvfJq3zj/D5/p3uAD4rj+Y7Nts6JRUGqemqd9+eFyHd//+KEq/sztj6C33VKLNsMFf66wqx1pk+CCYREoQiFk6mWBNAZ5H36X6Wvi3VebvTiFaS9y5WDYMbP9aBAB4JSfPm1R/zU6hG911wPKyrls8Z6nuIqa9fwwfUx/WC43M2SekQySUc6TSvPglFCuzI7dkNFleoLReC3ORApHtqVn+VnKPy9KE4a1adiYxGAKzXQU1HhcvB1v7mg6bHZE+iDpZ98Plr3RgUqhiS7jYaDKWgaVJQNl008CY/OUtk4GOJ/sgC4JLksK5OKxl88TjFuRFZpvKUNFb0fPdRBatgU1JJRMdZkzMA3Lu/z4fUR87rnS0ePOe8WnG0XfO30I1ZpM/itq1gPTfZ+39uccpVKH0vhsxfVXpS8MoTw/3CYd4e4KdOhY/4c8Oee9zdeGqAXQNfWMbixLKuUKNYq0KXAz0z33LFrjvSOKz+C85WfpRR8zfvbO7w1P6f1lt/8+At89c6jnHkb66C/gtWeLy7PooQrGBamRyoENmmSxMCoZxeitbQwXR6EhpCtwdKF9yEuAKWyIp5LaAafJ2EfLFf9LAMvkCkaSNX7VFHELQGRVDhstKfSnl+8913eXd/loptxtlmiVWC5aNm1sYSVbPbsJ97TuIvPr/zeL7Ccdby6vOZrxx9x0S9499FdVKchVQNFjyAfdJRqlolOAKUwJf+dAF+qSeYgVekdeAhVfM8vHXptMDtF0Ipgo9S2dTaVewgZ5CMVo2mUZ657fur0Ed9Wr+R7lcxLCdrPTc+R2XFkdjE2kjJOpZRvGT8RGa1YvPLs5NwdNntw0bru8YlOic+80Lar+B0XdLbSAWaqmwCwVKfsCs07kOWuYo0TogEhWzm6oCaBYVk8xPAA8rWKLDRvqiKB6jBm48qmM1I/Zxds1s0DOcsXLXLIqHl3yUgoE6Lmpudxt+S7T07pB0M7WL7NXea252unH3FabZnpnvN+wUW/YG46zrslH2+XrLsm1zwyarqB0Gdp5T7VPwntpQD6wLiXq9SSl82vK+vyInCUko50ojt2ocrp2ZUa2CWL67KbcW92zdo1rIea9a7mb/zdr2DutLFkbjNwPN9xf3Ed+cPe5iqCuRhVUhWINWMIbAoNsZRLECAv65HAYY2ufHcM4LmJplmCUlXiLl3aPESq98lGGn3QnKayyfH7MZGrNlFzf2e+4c3FJe+bEz72R2PZAMlE1B7vTK4fI22zq/lueyd7UN2mAhsIQzEh9Fj6FwnCFpZkTmAVEJ/EH9OuX3pq1UMCeRXAK8ylRbcqxisD+Aqu2yi/61OBOuHX+6DjcwrRUn99dsnH2xWXuxm/v7nHSbXlaphxkeS7bySpZVNY2WLFS4q/KKmESpD6PlWqJYNKu2+RrGAlipeRxivHQQTP8TnHJCGd+0ZAX9RiYg1LfGdXJOCJUSHjR+ghI1RPcXw8ZqRtRhlk9Dg8Y5Zrjj3h6TF5rMa4lWdGrB/VFuO60o7WVUk6qfMz8emZtF5TKZ8251lkKlYlPv9Lq7PIwQfD+7sV761Pue4aZrZn09d0ztD1SbHmVa5G+iJa4On5BD+O7SfnSp/RvFdsdzUmPchcI56x0NV5O6fzhtN6i1Wed+aPc80M4c8r5ehry699+EXevbjD5aMV+spgNpragXq4IChom8CHsyM+qO+x+9r7vD6/imUXQoVUz7TW5dT1ldmx1G22bPpUNrhKYNEz8u05Q1GNTnhOGadPATqf31/otHMVis1Qx23ZiAqcEOJ+r0qFvBfqwva8Wl8nPfRIP8x0z4PZBT4o7jdXPGgu+KnlQ/6m/QIfXB+PdflDrBTqXIx2hES1DGlCBQ9f/+7rUc4YInXiGz8CtsxzAepDVpGKn4fEwSuX/vdEWkeDtykLVjwDwFeB+s0N4ZurDPIAeoAnlwuG+4alabkcZry3PWJmB16pYzmIGEQ1fOvyHu8+vItS8Hix4F695suLR/h5lDlKfaTrVAqhTATKNVlELqs8LpSqFMnYNGlhiCqRMkir8Ym+aTIQR0s+fl5nr09nSaVY6lKD3iTr2iQ1WfQIBsDiw1SCKQvKuDOUoQ1VVt/EsRgLj4kMtXy/SUXShGaEqKiRqpiViuW2N8nKl2uf6T7XO/q9y1c52ywJIcbTXNDsupiV/ebRJTtnebheEYLiaN5yZ77hp48eZo9q29f8vbM32PaWthsFD8ErvMR4JCb+goAeVF7YfxLaSwH0wSm6dQ0qxGQY6zHWp52jxPIstpYjsHE1msBJveVefc1XZh/xe7vXeXd9l7ePL/it7zxAX1qqS4XeK4+hvEK3Cl/B17/1Jt0XP+L1xRV36g2PuiVHtsUNiq2K0rAnw5yVaflS85CjNDi6YLM+mcLFFrXGxjeT36wY8MSJJpJMqf3+C6t3+d3d61wOM57087xxxzztvakTSOukaHjYrfjC/AwgaZYjeNyp1rzTnOWgWaUc/+Dd7/A31Rd4vFvkbF/vVQT6AN5pglOxyJjw8MKtQwRyG/n3oMeyM3nCBQFwlVz5tL2jS7y+Ju/MBKBdpIF0OiRo8CuHOer5Q299n9969wEsPWarM/WjnMI9bPhr5ivcOdrw+HKBd5p7d66xJ5479RofFN+6usf3n5xg7LhBze9fv8IfPG2zOkX4dVHtyMIshbikHMC+NV9mhQI5ac4HxY4EThoqBZKB3YeY0VlSKmUhrUo52LMqS57fEX+/S3SOjK84/swYxE0dLFvjSe0Z4fZFatnodkLljGUToiS4zHo90ts8ho2Km6psQjPpk/d3dzJADy7W+N+GGu8iQO+2NY8eH8Xnbj2vnl7z1dOH3Guuc+Gyh+2Kb12+wpPNjGEwuEHjBz3GexjHpBgeL6IFXlxm7I+ivRRAH81sHSe903jnCd4TrEPrgEtKhd7BbrDUxuVdgLYuUjePhxUf7I5ZVTu+e30H3xrsQAoYyu+QaqXEl9qB3hg+fHKM1Z6Lbs5pHa3rwRvQsChWCVFZiJVVy36Ye6oEsQ7ldeuriSsfXeO0uUf63kJ3zOp+kgjTFWUYyr1L4/ZtCWiKcrIi6ZOFhBATth4sLtg5m4OJEvfwziSQj1Z9cFFZM0kA1WGkWRKfrkicvcy5FHDN3/EqHiOqGpU6PoxzFx9jBCoAnWY2j+D0i19+l79/9Brbr59O6pipQdE/mvHxtsI0A2++esHlNqqU1kOs9HndNSzqjnVbE4LiS6szztrVJEO1rIM06s9V3oxjv7xFXBDMxPqTgG48NqqpBHSbxNOPUks1Afd9pUepgY+fx/ejVR3HkdSrLBPzymSrqBKzN4K+okaLSVCjTFmrInYwOYeJCiGmVJQkUVUpWt6HWDri21d3x4SrRAO63uBFIhtGjzFoxSvzda5C6YNiZXa4WvENdx/ndJz7vU7ArvJzB1BBZL0vzgq/teh/1M2DuTZRcWECwWqGyuMqja58Kl6lqW3cV7K2cROS1xbXPJhdcDnM+NXv/Szrtma3q3CPG+xGU10pzC4BvRJLNBoFwRCLpjnNcH3M73+x4uR4g16FtIG246SOm4FHqWaqp6OZlDgQ/TNMJ20OwDIGaWEq3ctlXAl8oXmExvNOfcaj4ShuyeaavEMPxIzBpe0iXZD4YpEMzlKij/xWrYZoYYaBL88fsR5k0+YF1iiGwRA8BBcXhDDonJwUTGE1KSkiRg6aQgrkpuzVbJSakZ7Bq0zfoBOdL7w9hWfgFbqLQDF4zYWbcfW9I4wN8bk5NWGHlPb8A299Hx8U5+sFH1wf88bqEq0CF+s5u3WNMoF37j/mtNrySrXOEkQY8x6yLFFFGC6t9vJ5lcApSqtR5z1ScPL/JtWjIVn2VTJShGIrN2OH0QonmLxA1MqxTlJKoSbFIxDAljEmgeJKDYlft2MGbgruiqpmv61TslXpqUiNnp2vUsmGkK9dxq9H8RuP3o4B8iHy6M5rhs6M1jhpDBRW+FeOHub8lZXtcp8+2cxiPMhp6FWsgZQMDpHaZs/xBbUQ1K1F/6NuyoPZRCoFkoSviqnv3kaNtbOB1nrauWUx73j7+ILLvuGvf/gVztdz2usGWo3aaaq1xuzIIK8ckStIY1AGUFBgtqB7cN+cc/4lxavLaxY61pGR3YkaqdoXKqrgODFxx6hcKC2NwFo5OsxEUdOnCQzkxCnRZosF7oJOWuN4nhOz4d7yil2o+KA75WG3YuuiZlkT+Mri46Tfjpb7gjYvOKIZ9yhqFStJ3rVrmpOeb1av8XXu83i7iGocseS9rH4R5LOyQczpSUbniLpKB4JXuTxBkEmp0mLhVEyQ8sLHp9MNae4a8HOPeWNLXQ103rCqOn7m597nG7/zFmaT6uFAVPekhCvxdO4fxdjK75/f5epyHsG18jRNT2OHMVEtnUMWSAHs+IyKfAZGy7YMxlKAnGbcfKV8X/j4MpEOwBddF3X908JlwsPH64scfRfIypvj5FFWqs2KnJgwJR5IHOB5P1liuYRR6SU1nnTWt+viN2UjExE2ADlJauPrXB5D+uRxf8Q316+mjWHGYL4bNL6LHmK8cTVWl07DplQ+bVzFe5s7fOPxq2yvmzhGNibFctQ4b71CO6IH+KLoeSQY+2I2MflRtJcC6Alx8kMCYKPwIURp3ZCA3wZCpZidbjDa8+7FHQanGQZDt61gbVCDwuwUaijomvJnxCoFkuItNwMMHzd8dHrEsNC8OrtKYBpHV1m29cjskrXVU6u4Uccu1FESx8j7GhUra165WZKzTUGAye9P0+09iiO9Zdb0vFY94beuY8b0VxYfc9dex8qEyucEmFx1MFms5cYXC93yZnXO0SruSuWDYrOrGVIgVGmfrSZg5NXL/irBvwD0DOQpiB5SRctshgvw67TApkmLBW8D+vUtX3v9I677mk0fg9GrqoPGEzqVz+PNdBGSzd4/vDqi7w22cTTVwMkiivJfTxmUZVE1GC33UmUjoFnuZyBUTmn1TcoaZ+mloiKqoZamn/T7OA48s+KZl8orF0Y6sBw78biQa7v7pNxZ+1haIZZcGJGvzMatGT1HGQ/rxLdHaq8tfqPMwB1SZvUsFySTevlCSZ71UbprkgJsVg2xdpKMEQF4HceFIlKCrhdjR4LfmoVtubqeETqNqjwqRKpGuZhDIU6IAP2+iuuztds9Y3/kTXnQXfwnoBA11EmKZxT9sYflwNW7qaCuUAFeYXvQnQyQEVBygqAs3AJcwtX78TzBx3N4r/jmt97gp37+DDTcMZucfQuxrvY3d6/xVv2YV+0ltRpYhwYpTObSSIyWlE+p8iFytwUHsV8/RUBbQEmSaQR4Xq2vQ55L0gAAIABJREFUUuJWm48XvlUqHcrOQUb5/F70KuJ5Ts2aP3L8naws+j4n9L3HDzqrG5QeC4iJta50IDiFGgVDI/caFMr4tFkIuBYCMRArGbKUlp3PKkpWXzvn5+59hFWeq67he9++B196xDtH5/yRn/k2v/71L6HXJj7nhcPMBpbLHVoF7jVrLs2MB6snPNoteX1+xbHd0ZgB2QdAMpnL2uyippHSCbGvxn1WYYyjQFHSmHKDjqkl6JTOAc+8f2oYN8uQVqkhGwZ6T3I5U31BBY0qnbh4qFSkb6BLPHqlDMdmF6ta6j5nyS5VmwHssVvl392FKmvlpf6MVHgt8wT6lJktCYhi3fugmamBL87O+Ngc82B2wfd2pzxuF9il51v+FToV6Ic6jhsJ5g8J7BljKXjL33r4FmcPj+DaYnca3akcT1M+GX7yWuJsL9iiv9XR/4ibCpFmIQN7VJMFDW4GvobqUqPOm6zRlgGQE3VkIKjCctx7jqHk+cq/E/g3F7DeNOit5tc/eoc/cO9DIFqF9+tLFrrj4yEWVfp2+ypXfsZXmw850jt6YmJO3NDbxiqQmEmCjCSjAFl1A6PVtU9CSg0UozzvNGc8dstMPZRxgTHYON6wBB6NGuuW70LNV+sP8SvFw3bFWR2tsSH1gQC81rEcsMnZyRzMSAwpACe7QQUfNx9XJkSutaiLo5JCUHfgbXx98eExw91HaBNo7MArb1/wztE5PmhqM/C1n/o+3zm7S3s258FbZ/z06cdUiSN2QXGaNl3/qaNHOVPYSt5D6kvpH1kAc7LbnpVfauqF2pHjMsiXdE7R+mBAxQSmZaJYMkUTkmQSCdxLyeqkhlFj5muWVxbvx3uIIL9IHqZ4kGfDiqNUanuSeAUpY7tlpnoeDsejQoxSbZOEAGosDVGOT7KMVOU+cSheqa5iXGDueDC74GG34r3qlMEZlPUx3jOoCPIyBlLpjc5bvrs54uzhMfq8wmyjKk4APqhkrDkYllBfUHD1vMhY7AvLjP1RtM8V6JVS3wGuiCmAQwjhDz9r+6xPakGNkjtFBHw9gL4qMNDfwMMIUgnogym4PFEApuc5GSzFgAli3Q9Q//aC7ZuO8w+OGe4+ZD00VJVj4xpmauBOteasP8IHxaP+iCO946v1h/G8WpIwBoyqRr4itbKueRfshGaRphOglJaoJnCR6uOL3lquP/K1EgQ2WVMvVmWpAIFUSlfHjU3mVU8/RE29TpmzSoE2Hmt8SlYD7zU2bX6tdchbE8a9fBP/HhTdYOP7uWMLr8kV1pqLa8D87jZXt/zg8jjuC6yil6IJvLl4wsP1irZqeOdoOoQmPHeSnkpflAFyrXymaIR3Fwu+VLHACICxJO/IY4slHxcIN/ndfUu/T+UQ9puooGRTEoAu5Uvst0o5KuI4kc89ih6TC6MtdRvvFcmwjZ7MLlSZAhTuXTT+cq/XvmJldsU40ckrGEHehSg5rVSsqCrxC7nvuPuTbCno014JsR9iDkbyED0xVqOJ24QS+PaH91ApKU730QAQMI/0Tfy/fsKUn3+hFv1tZuwP2v5YCOFR8fpPcWD7rGeeQR6wA9UlsHaQEmGBtNrrtOK7yNmiC7leMhzyPJQ4XgHqAjrBpOPM9H3tQF+D/T2Dr+BvLt/hrfvnvL0aNzw4MjusioXQVqblu90rVGrgQXWe+fJemcyvQpw4O1/lCS465dJ1L5NZBKykPslSt3yhfsTOV7xirxN/anPGpPwvvHBZkmEswBYLqf293VtUKm543ZiBo1nL48HkgCnEYF2VlE3W+LiHZxjruUvbdhFEdl01FiCT5guuNVFqeoiTGB8fz/pixq/3X8D+btxPt/5DF2yGmuO0V+51P+PyesaDB485SpUNPYo6bYheKZ/rFcl1x0cfxmzTMFYQlf+lr2IoQjyjMXlK6r6Ulc/39xyQ50SixRbpGBc0XpVxmrHImbzehZpKDSx1mwPnct3j92IxNBQsVZd085HiiQFbk3n6PlguguV184RaOZa07NIuYbWKO1pduMVYRiH9hqjIrtw88/PSRBI8Zt6G/L+UJb4cZpy1K7529CFN9Rp6lyZc0sUqp8GpWBAvwHVf8975KeFRg73WmDZ6eGILidenoKBmR+GECgUN+wLa7ebgn609bfusZ7bMyQWQOm6ZY9ejVQ4J5MvFuJBOensT7IOAvh4HjC6oHuGPZZ5pGVw+liF4tFtyqWesh4bTasubs0gvyEbTT9yC+/ZyDKQly03rArCVFHtKHHHiVEX+VrqRZYp72SInO9VFO/SksJTsYxr5/Fiw7Shl+P7l7/xR/u0v/jV+e/OAhW25MzN8vImljGVjCrHUjfYYHZjZnpkdqPW45dsQNJ0zWOOzAsZJ4pWLbrtObrsaYl+blpy4pjsIA6y+UaFCBQGGBbx+fMnvn99lu6sZOoO2nn/oC99hbnr6ENPprXIM3mRPwKiQtfHNno48BzmDZlbEWYAboF22sppjKaOEackLKQ8QC9TFzGfxuFxQWete1juSRVcjm+NMM1h3oeLMrVimWIwkSNVJQbQOEbzFqu8KY+HML1mqLu4nkBYTQ9rPVhclGpKhEktm25QkpnncL5D9bPtguGN2tL7KoF/hUqmDmFz2wfYdLruGfmVYVh1nLFHa4wcTn30YY2a+CnzzN95Beah30ZJPxTszdZpUqRN6FQqPW3FQZPFpWgixPs9PSvu8gT4A/4eKPttfTttrPW37rElTSv0S8EsA1epOfqhexmJpeeeDmIC6XIAEcINOfxtGa75QkkiSTwZ2xcQjgGRxpr/tezNWb7UMPm0y7mo6b+NetToWQvMoNr5hF2o0cXLWmc8c648IX4uKjoTwsZpAt2dZSOYmjEHdKOnzdFS53oo0qbUiHfLXL36ai3bOz558xLeu7zEzPR+sIzXiguJ+fcnlMGdnKma2R+uADwFj/ISWscaxsD21iR5ALCwXE2K0CmkPgcRzu5jRGJwaLTGJo/ixnyXQJlm2shDrHn7vdx5gNho394TG88Y7ZzRmGO8ttaVts4dhC128tH3wznLKDO5jlcqxzyXpLG3EXZxPVDIlvw/kc+5z9kKXdcFksN8vaW0SpTQrtPnxubd8OJziQp+2Dvz/2XvzWNuS67zvV1V77zPcc+705rG72QObLZLNmaIoipRnxY4cJZERA5aBOI4TQEEQIH/FCOAghv9LnARxEECBAyOyZcuGLEWwFNGSLdGkxHkS2QN7ev3m4b47nnvO2VNV5Y9VVXufxyZFSc9sS+gC3rv3nvnsXXvVqm9937fkM8bgvamlLjHzw8S86ts2W9XRSSP8I37zoiTvXFQ9eVh5I2U0+jfFwrLsmlqgYGEHxIY9uW4xqmU9LzluCimyKhcK871ifjjkugLTKtAdhJeuwzgvYkIWamsxsMc5/bC1TZ63ePS/n/FR7/2tEMx/XSn14vf6xLAo/AzA+MwlbwtWsfMevq56v69QJEMgfzDAx79XCoFxYoUYYDNWICOXhQwjiH6Ug9E9uP7JR/AfPOLy9j47yzW2BksOmhGbYf97bIcMdMPNZosL+T5jVQWapfT4jC3nhkrRkFHHBS0E976fehwxKAx1k4KKVo7SF+kxCRYKWOmmWbBrJxzaET+y+RIAv7rzLhZtztXDLaom46MXrlAoy6PFfd5W3ONfHz3DveVEMnor9sXeKwaZleLocMF6XuJQZMpJkI9t81qR0teNoW2DUMZqVK1RjUoFtUid1U1va267YO812Fzuz441xZNHbIxLnj1xMxnMxcYxEarJlbSTjLUHKcS29Ju6DHSTPNUj3JCgm1Afidl64w19G4u+3iGOdI5UzN5b+vYFEW5LjbLRoRYDBST7gAi3WK8pkWO4pqsEmxzYEafMETt2nQVdv9d1LbuyHbtOrlrW9ZKxqil9zlSXCb6LNYg1fRSYW4aZGyZ3yyi+GqR2hxLQ48IjczLjZD5L9+cqtBZECtpTXWLR3FmKvcG9aspeORaH1LBzxngpyEIK8L63Q1eCenUEiR4brn9bglt5+OMtZez3OLz3t8LPe0qpX0Q6mX+n9lnf+XU02HGvEBtOctyypdW+j9E9EOTj66he9hgniodUGPRRvUnv9UNNwOUB0qErHJoK7BfXcX/mgIFpaZ1OrQwHSoqaUZ06dwOGplOuQkebjNz0mBXWProVdrS82mcc2hFfO7xM6zU/sv0S2+YYCIVAuqYT/QJulMsXquV8fsBQNVxvtqXXbOhW5TLL+6evY9Ec2WHoxiWZcbREUMB0XDLMG7YGS04NjxlpgU2c1yzagtZplo10uCrrjLY1NGUmTItGoRrRMuhaJbhGWTmu8WeE6QiKWa+gzWHrnfd59tSt9H11j/0SffVz1TUcl9+bdPyP7TA1wIjioIUruFjsMdAqwTgOaELgdy5k6jELVm1wCA3B8IHCarT1jY+NIxVu+8X3sJAIHbKFkOE3vlO26gDXxEBeBOhn08yZ2RELN8CF/q+5sgnSmbsBWns2zRKDY52KGrEnsD1IRuaW7CiHqk51IRMWkJkbkmvLTjvtmDeA9l0P2lxZtJEFcRiw/NvVOtf2tji/eZiU22IzLpm9M0qU0Tm4VkEWFvcQsW2vPpYK9bZL7FzE5NXDL8QSXu6tYuz3MJRSa4D23s/C738G+B/5zu2zvuPwCmzPA8z3bu/X//wDmXwqzvSw9jhRUuYfH+t6j41vEhcP5HcFqxRMQuHXwtXdbd5x5i7jrE4ZX4vgy1FY8qDM3OB7NDvhW3eQkmDzCbrxcLve5Npym0vjfa7Ot/nK0SN8fPNbyZArFnWhCyzxvoUbMNZVwo3HumZoJGhlymF0xr+4924mecXpwYytfMGZ/JDaZnivyDNhTWwMlwyNbMvXTJW8+o+DPXDrNW0IJlH27p3GtxrVSJPv5Fbpu90RrG7ZtZUDEc+XcnD/lRN8U3vefeJWglYiFg8wMUFDoByn8yOmepmgkevNdlow+35BlctYuAETU/ZwaZMWSmHJuJTZ95uNxGPeZ/JEXQSQsv6+CrWvUO5EUG3awZW+K9RGJo5TOsE8UQ17Qs0D3z24X6K5ZA4xeOa+AKQYP3MSsM+aJTMHQ92ycDml1ysNb4aq7gSALry7csmb3gSQ3IWFklDgntlhWlRjzWdNV3xp/7K8btZKxzbTMldFB8UEsoO34AovOL1CGtX0EzErl2E/kHvoanK9ax0egHL/UOMt6OZ7HWeAXwxNJDLg57z3v6aU+iJv0D7ruw1voF3r7Gr7uDp0cEvM6r/jSq++/XbZ+qnEq1e2y+qDDUtXEIpvHyr/ygMt6Azs62sBrzfE7kJRHHXYjrlY7OG8ZtdOOWFmDOk1YvawFho1OER1ZMKLL3qKxUcG97lY7GGU40Kxz9QshR7n1AqTBGCsKxaBRaHxKeAPw4U71Uv+vVPf4H47RSvH1eUJPn3jccoyR2vB4wdFg3MaYxzDrGWU15wdzZjmJWeLI7azYyya2/VmauhStRl1m9G0hqbKcI3BNxodRC+RMpfsJ9peNh8yeVMHRa4PJzLszMxCc+fqNlujBU9M7ktvYGVTqzqjHBeLPW41mzTecKU6zbEdCG4cC590xVmNfM+yZyoXG5Hcrja4ONyncYZb5SYvHp7m/Seui/U1njy0qYwNtC2a+82Uz+49xtC0fGjrChtmiaaDeY7tkNI3bJt5Oi+pVR8q7PRarFdpYW7IKW0OBmZOcTY7ZO4Lni8vkCsrojxdMXcDvlZd5P2D68x9xh27jvWanVagnJkb8mh2QB2glo6RVSTBVawdTM0yQX7ymK5AXPmuD+2hHbORLUImH/D8ADtd39/Ee8VmsZReDqHxvNKS1ZM5WltIsI+qaKcIPsvdcOF6a1Vi1ikfWXUd1r9yzT+k8bB6xn4/xpsW6L33rwHPvsHtu3yH9lnfcRhPuyEGKCkbB1Chj2h/HxeKe4nC1e9jCilDV/E5rYB+KdPXqsMEw0upPp4ffHHi2+mQkepGnnB2eMhGtuhwXzxjUyXoZk1XDFWEFrrCVzSv0qGgGkcUUTXesKAIGDLcrLe4XT7Co6NdXpmfptAtP7rVlUAWwZBqrOt0IYstrlzMV6rTPDG8y9SUXK1P8M39c2TGsjYWjnxhLEXwuFdK3DHPj484NzzkTH7EmfwQg2PXTqhcRmlzjupBMrKqmgxXG1gYTKNQrQR5U4fiW90F91iUFehGjNMiA8cZaRWYVdC0QKt49d5J3rcpQbfxhokpE57+wvI8zivu+XWM8lyZn+DZ9RuczGfJKbRf9Jz2G1wj8M1X9i9xc7bB9ELJWNfs1mucGs3TjiGO6Bmfq5bXy5N8+u7jDEzLU9N7bJhlosui4Fa9xbEd8OhwvvoaKcCvFoil/uIpaEKQdYx1w512I7BxpAWh0Dwb1nTLgc34cnWJU+Yo7Ug2zZzaZxy5EfdsHXYSWfiuWa+1oXw34d975hTJOyfSPBeuWGEuncxmaX5G/cdANXxh9jjeK4ZFwzSruL7YZNlKm8HNtSXWKw6Oxijj8QO5RiN7tx/McQos+FyhXBfJk3tGNNfr784flk2x71TAfxTGm12MfThDgcq76JvW2cjY8CF697P0gAF47cH2l/zuyX1sHwhiK/HQia+v4gRyvcfFj+V6/3rX6VC13G9EXm4JAiUtWdSiLdg087T1j/08H/RMEadB8TGPreb6jR12qgmXRvtcHuzyzaPzbBVz9uwam2aRstuBapIath/cPn34dt49uZ4u8t/ZfZxZOcBozyBrGOcC6/QhiGHWsl3Mg4imTfWAxot0fdEWNM5QWyMiq1ZLJm+VCGJCATYWXXFdkE/H2vsOk/VyLpRT2EGv1qKl7WFs2ZiH7xYzyrGu6bspHlRDnpud58+e+GbYzQgUA7CwAw7tKO2GdKC6HlQjmtZwY7HFY2v32SoWKRgnNTKdIrTxGVfmJ6mt4W0bu7xr7QbR1TEyXKJhV+VyhmYV1+973ziijbTsCuPxnrsBMzdiqGp22mknjOsN6aKWs2cnaOWY2RFrumLTzNOiM3+gD0LcOfbFV+LPIwXW0vdf36a6QqRuDlXDfTtl28zTIvLFncvJ0Gwtq9gsRJ3rvWKYNdzY38RWRhq+h3MamTjpmoPkM++9zJ/UqCA2o4kCLON7upiHFOjfEkx9/4fSnnwkEzVS+1zwpPY9Y6Tw6BT0420qBu5+sHahabX2oYG1ZPdeg7K9LUAs2MYicA+jT7sLD9WZlo18GTDfglxLB6rDdpwYHWMtMvRdO2WsauZuwKYRq+MYqBqETXNkh8FwTJgTUSofR+0M25kE9yenO1wKDUUO7JhjO+R0fpSan0RPl/vtlN/aeZKzI8nE/tdX/iRNa8gzy9ZoydZwyYnBnLWwA4kKx8plrGclJ/NjzuSHbBuBbHaaKfvtGnNbcFgNOa4GlHVGVeW4RqMq3RVfmxDYw09T97QRYYGNWLy2XiCd1tOsKeYXpOjdjjwYz3RUiXIzOCvGHc/9dkrpcv7J5z7M299+k0+ceolnNu7yL154J+dHB1we7HEmk1aBjc9SFt9fQK8utrm7P8W1mq9WF/i6OQ9eFL+ba0s+fPp11rOSrWLOoR2lgq9WPrW1q4OFcL/gvpXP2crnbJhF6BesUhb8oPVxxOPHumLmRsCAoao5nXXq38ZnjHXFo/kepc84oSt27JCb7SY7wYbDKMfMDQXXNyVD1XLaHFNGNpAL8y0U+iWZkMWpCItaqkWE2kGck0Y5NsyCxmdcLPbSgvS/v/4nmJWD1OYT4GNbL3Nshzx3fJ7PXHmbUGyN79TWWhoJpesdaFuNdxoX+yEUcqEJ9CPPdaE5Tj4Qqw4f+g4/rPEWdPN9HlpLI2vvCbJ6LV2Q0kTQqNwKT9srCfCRgxuKqt4qFH7VEld1WQQKfOalkYEmNMYIxSHdBfs4IhUwJsqPPCbWwPcbaWQxCQ6W4+JgpbFIgmF8wVjVie8dg33tDQ1ZKtBGemUT4JwIUdQuSxfd2eIAg5NsUTVsF3Px0okKWG95cXmOT916gkVZcNVv8/V75xkXDdvTBZtFyUaxZJqVnC6O0neM8FPpcqam5GQ241Q2Q+PYayfcbTa4XW1w/XiT/fmYqs5oG4MrM1hqzFKRLcVPPkE0cQfkewun752HuCvzYAeKyV+7wQ9u3uZto52URRaqZapLts0xhbL87P0f4l996+1M15eUv7uF2nC8+Mp5nt28ydnBId4qfvHzH+CxJ2/zwRPX2MqlcbxAPirtTO43U7588xK2MdKmrg3biDBP7i5yPjl/Bz/55FfZb9cY65pNs2DTLDg7PORLi8u8sHuGJ9fusZXNO78ir9k0C/FxD0E+FlD7Fgd1qJ2sm5JNvWDXrrHTTvnY+CXmrmBN16kQ/MXl2xiqhgM7Dpl+g0MxsyPO5IepA1T8brvthNoYdu0ap8wseSSJTYJPFgnQCbOGqqUMBdihbihdzoZZpObmRnkO7Zir1UlO5jN+6daz7M+l9+t4WPPRs1cY65qFK7hZbfL1nfNkucUbla7rPLMUecswa5nXBUa7kHyIfYaLXeO0QIoRVmyc0H2d0wxz+e5v5Lf0Bx1vsW7ehBF7okalmrKeFoMK/F3vQgMLhQTz2KshGpc5OtUrdJh+pGAGrE9ZtVrU6bN4oKN1wgPFXCnsjUzDueERpRPDqOgJsmEWzNwwZW6lyzlyI9DgaJmqkobYSq6bXJ2pVvzZ8UQz1fncVy7nanWSTFueHt1OroNxxIJupErmxrE2qNkeLpjkNdO8ZDufs5EtU4Gx74eSK/HYF6qn4siNudtssNuscViPmNcFVZNJY4nGQKXRjcbUnW948itxXcBfPckkL5PoaeRyRaYduXbst2s0xnAqE3vhmRuy007ZMAsK3aLvDCivDFEOPvT+l/niF57iy3uX+NipV7l8YZdrr53mtStnWDYFP3L2FcaDOnn+7zVisbC0ObbtgoUKbQ/lmCs8UFcZLx2f4c+e+CYvLs9xu97g8eE93je5yv9bP0tZZ3x+71H+o7NfoXQ5NVlQyppvY+DkQBX5+SomARmvVacZ6IZT2RHOa56rzgNCrdxppyt1m/6OJjpcli7nhJnhtDBkhH0zTI6la7oSlheaqSoTFDXW4qBaBkgm2T0oRelGSbsxVE1qifnbh0/wwt5ZjHYcVwVtENQVxjIwLc/PzvHO9Vv8zp3HaFohKngt13SRt2TGMcpDG8dwrvtRS15P2Dv9mlHhNXUrO9ZowWEfZiWWVdvpf9fHH49AH6JqYaxkv0ZRtXJb05ok5NHG0dYZKlBmfIB5PBLgvFX4zHcmSFaJcCPa5dJl6N51wV71stGVwk/cMSh4/ZWzfPTUa8ERUrbM/YswZjansllivhy5EVoveurGPPnWw2rrwVWLXMUPTG8lu9zS5bxz7UYvAGQrjTMqr5m1Q7yH0aDh1NoxJ4dzNvIl61nJ1JRpByLNL3yiAo6pwxbdcGAlwN9vJtwp19mrxuwtxhwcrgnmWhph1VQqeP9L4TVi85HVtKJTgK4rlYUYWX0m988bYYXEZt07reDBubLcaLd5fnGeX/38exgei52Cy+F375zDLBU3PnOJn3/nBv/xE19jfO45fuYrH+POayf4XNbyY+fmiUoZJf0D3bK5vmBvd8JHnnyNH9x8jTzYAfzj1z/AweEaJreJ2355sItFs3ADFm7AcFJTLgr2R2NZ0Am7KrpzF+G3aKYWm4iDsLMqLbu/hSu41WxxaEfcbyaix+gVgxd2wNSUnfAO2TVENs29dj1x6nPVshma4Rjl2bVTTpkjctVw4MacNjM2dSVzRoli1vqMAzcCBNe3XjMNtsd32w22zTG/cP8DvLx/itZpbJNRN1myx7BecdCMOKoH/OqNZ1hWuUA5RnbahbFMB2Ip3Tqh406LCodiGmi/cWTaMclrJllF7Qylzamtoc0aqlZCXIRsHpaHvA9WHn9Uxh+PQK9ktQekqBkq+I0z347Jhb8TGhCx+wDl+FiwcSHI95tcx+FjQFIpE8UHfLmfjYZgH/+OND9RK0rXqdh6LboJ7rVSpBUK25Ait1jmsk0ONLboQAidr4rBJ2y1L0cHOJnPvu2YxSD2pYNHuDnboMhaTk+O2R4s2SrmjEzDVrYg1y1NKBLKIiFeKH0+efTjuVtNOWpGHDcF+8uxtHhb5vjjHBXEUNlCiq6m7MRQkWGT6hz0flqfRGjiGKCEQx8WUOt0qm003lC2EshOZTM+eesdHP7WGQYjEq1WefgrT32Rn9MfwH9+A760zs8e/SA/9b7P8cNPvspeNaa0GcetCIHu1VN+9d4P8NjGHgDPbN/lh9/2GRZuwHEQVW2YBT/9+KeYuWEKmAd2zH67xkA3QSTk+Ovv+G3+jy9/QgrSUVzU01C43s4s7pRitj/WdVKbRmz+0I44mc3Sjkwrl0RfzisWrqBpNhjohqkuAx7f1WUam4lK1pQpeYiCqwM3TnWhO3aDA1czDaKsuRtwtTlJriy3mk2+sP8YP3nmS+y1axzasfRy9ZqX9k4BEoiNgsy45DA6zFrOFEfYiWJ3sSYQTaBYRn+k6I00zGQuRxuN+K+zsXCMs7jIGYamWTFYi/2hnVcpaXgY4y3o5vs8vO8OehsmufX623zQfS9oKwXOxbSblSJsCtQREw4GS5GKKfBCKOQGZk8SX7UPFPbD7/meYWELLJoN3WJRSa3Yh2BkW9yu+K9EBkdkhQDJJiEGguhRblErZlp9Q6zY3ESaSDgaV3D1cIvCWDaKknHWMDSN8Jqjt4oTuKh0snjebyZJyFNZYYpk2jJrhhw1Qw6rIfO6YFEX1IscVxlMpVC1wtQBj+9bDvesDhI7KeyEEssm1j9879iG07Y9XKQdTYSUKpez1064861TjBSoH5jB704TCytXluW8YBQWkMG1guefPMfzd88wKFoObmzwwY9cI8fy6uyxAxT5AAAgAElEQVQk3sPQNDw+3uFkPmOom2AL0DUKieflwI6TgnbDLLnbrLM92MGi+dbiLEpLgLpRb7OVzVOQjzbJD8IB8dwKA8pw7IYBH2/YMEv227WVLDUG+eh3FIVjEe8fKjnHqadrgNsi1CKFXgn4cX527qayMCz8IH22f/b6+/ixi89jvUpJylA1vFyepXGGXItVdWZE8dp32LRoThQLci2F3RjkCyMnJlOONix+w2BzXWhLlgzy5L6+KC6OLAjfdKD+Am/ooPoHHW9h9G/KUGlLWLdZovDFzvLOKXFH7HWH97HxcIQJrPwdBVIJYw/8d9WqXqcaldwrddP9jEXEyLSJ2L+yML4N++0Y5xUb2SLRHG1UIHrHVC85tKOE1y7sgPP5fggCQnObB1pdvxibBwaGFPJksUhNv5VI/KNfuMalesBndx9DKc9aUbFelAxNk7j7S1twHOTGscF46wylzaidke2008GbRbGoC5rWUAdLA7vM0AtDXvZYNdHOIEA1YnEgmOzypGK4D6bxONMVY6MwbQWz9+CNoh0qCmPZqSdMTC3WyD0K4GBP4zLwz02JNWSdwSfvvgNzdYSpBcpRDr781cd573te4/l//QQD4PP3H+HHzj7POGu4Mh+x2CgY6objwHaKcJpANwNKn7GwA3bqCfN2wDQvWc/K1Ems8RmffOkZXKup6owv7j3Cj5/5eurqFReHrlWhSwvzq+XpxLqJmojtYs7pYsbCFuH7dgG+a1Iiu5yKnK2w4F+pTqXkIHbR+uG1l1JGL/NJ6LGlL5i7bncBcL05wdwNqH3G/3fvnSyrnJeOz/DLr7+Lqs74T5/5rBxnxP8IRCRlvMc6CeaAZO264RtHp4W9E4Jxn7KrlafQkukPTZNcRzUSvLVqkgAxDhcWur51c6bFJbWy2UML9PEz/lEZf0wCvRx0Zw1lwAGt1SFjF2dEAr0K38vsQ1D3UXUHgsdDyOZDkO9n+a67v2OFkOAceXx4bK9Ia2p4dXaSx6f3aVyWqI7y2XW6mAR2EdbCRlgMugvYp05T1ivq0OZvoOWiyb1YHvcbYERaW1RUztyIqS5ZuAH7y7FI0LOGLAi0Mi02vkuXU1lRsx7VQxZtjveKss1pYpAPzKbWalG5tlqOT6UxpahdTdWpXONimPjyAZZZbinyBWSlJ9j2r1hMr+gTEuYmK+pxUzDJKjCEIrfw519ZnMYsIVvK8yOmr1u482uXGNVyTqotaDY8rDd89ZuPMa5EVXlvNmV2asg712/x3J2zHLfFSj1kYspkeNZ4w2E7Dsdc+PG1y1haKXReb04ITt7IPLRWs7uUbl+bZs7cDTi0Y2Ij8Zjhxx3dVj4PjK1pKrDP7QCYyUIRhDuiXLXBSEwW9qkpKV3O/WbKUTtkaQs28wUD3VI5gXFeb07ydHEb52SXmYzIaLExm8dQ9H3xcSzanCJvuT7bFCfSVrxs7jZSgDbmadlVe4UN5PfYDHxzIPDO3YXsArKQxUe4JsIzmXYUPRiyn5Ub5SHMV+dXxUsxCNfh2FTBquPB9ox/0PEWj/5NGM4r5lWRAo9SHmfFRyXy6iFk7U6Jr0ofqgFIQVr1grfqZe1qRaHZ58zHTD4F+wegm4g/3/nnj/DITwnX+bnFhaTc1AFyidk8jpThNd5IMUxVlHSZZOzjumKHq1xqxBzhhIFqWDdl4N1niWb3tdklADYHS04OjxmZhqXNmdUDapdx3BRUbcaiKSibjKrJsK0WaqHV+FYKqtigaq0VmaPXnJnU/UdHG4OVnz6pW0f3A1XVeexIky/8SoOIjmrpV3qBmsazbDuVcOsNuW65U23w67/1XrZ2vGT+Y2hH0lrOLKE6IZDQ5HX5rB//oW/wqd95F2vXQxaooPzWBsePDPjXN55kOi55fXebp9fvBjjEs7AFk6zkMNjvtt5w1AxFLGRqGq85aMYMdMuxHfDs2nV+6j2f52e/+mGaKuPQCL6/psVWGIL9BF1hvg6X51jXrOlKupSZhqNmRGlzykHOdjbnkBE5ljJMBYMLvvU2CfO08qxnohCuXJZ2axNT8dLyLFeqU/yZ6TfIQ6E3fh50aG3pcnJtk70BwH95+VM4r/nm8iI/9/wHsLXm7/3ux/nTT4gCe5Q3HC2HKeEy2oNzbI8XvG/jGgtbcFwNEonCOiFNtE5L8qGdwDchWEth1ojzqHJplxmhytZryrYLabWTLL6xJllsP0yK5Vs8+u/zsE5RVZmYYzlSL1JaATw6ClykSKrkWx2plMp2Jy1m9yq0IYOeY2Ivk09QREOS5UeoQbDnTkWrrUctFb/x0tv5c08/z5Oje8zskIUtGJuaxmWpNVvMyMeB7XHkhox1k5gyhbLEDkOxkBsLo4030oPWmyST320nodinVrLeImuZ5DUH9ZgbTcFxLRf/os6pG3GWtI3GVZn0cG0VutYhWAc4Jhyjft/OFQfP8HuHy/uOL+8le44iKIDiOIhkvEoQDpA6gynbraL5HBa/cI4vnTrHxkfvcefuJlSa6YsZJ+577n3Y8ec+/HXODo54aniHxhs55m7Aa8uT/Eb7PibX4Yv/9N1MLF1zeSMW0//y6tPMb09QkwbfGH7j2tuZHw/44GPXeOH+aT5+4VX+5etvp6ky/tST36JyGbnu+vGuZRU79YSRabjdbPITG19m44MLju2Qp4Z3GKqaV+sz3Ky2aLzhPWvXuiAbeOlRNKXxHNsBd5brCX/+3O6jXFw74PzgkMeGO6J6bSfpNSonUEUUxE1D+7/Ylap0OWfyI+4260x0maDEoWq4Z6fJ1EzqP6L4rZ1JmP2QhhfK8/zccx/ELjO8lYx5ZJpEBmitFk5CuLzWipqPnhC20n47xmjHOK8DdVICflRda+UTVBgb14AUd2OmnoWA77wSyNaZFMx9uC32PbBWJzjpDzu8h/atxiPf5+FFvCIYfDj4VqUmFonzHrwxOjOMCBE8wI/vZ+jRCyc9VkYKVr2glbL8/mdTved6j7o9xDwdcMjwSBvgGhsuvtzY1G8zdRYKasram5Xtp5RFHVEckIdFwKGITbAjo2PuBmybY2ZuxGa+ZJQ1lDZjvxqxrHMWtQSIpjHCeW8NvlGiYA0t3XT1QGu/BwzHUkGV3uIYaJPa+nSMwmlDt37VYVSHxiPeo3y/ML5amFUeVOspZiJiu/+106wdwOieJ1847n4E/tJHP8+jw/sYHDut9OfdMIvUDSvCOu0ExnfkdT2yaHkN1Uvr6IHHHeXoWjNrJpiZ4fP2UYrrA/6VfRL3rSnuQiUZfD1iezDHomidoVainXCB/vlifY6b1RYD3XI2O+Cz8ycDvTVPdhQxm8+VZSNfcGjHyXH0+nKLSVaHYqTmlYMTbA+WLPKCV8ozXWOPXnE4vrcNkMhWPmfTLDiw4zDHWjayBcftkGEIzrfaTTSOhRskXn3js2SPEI3dSpXzqXtP0B7nHVnBqOS1A2BbjcmkUfzmcMnj01126imXhnvM24GY22UmWUdkWgJ3hixmsR4EktHX1pB5l25zWoK59Tpl7t7LtRV7Ekd40bY6iNwezngLuvl+Dwd2kYthUcTTI1OmZ2vaUffE0iBy5SNjJgacVHSFleDVXwRi/9J+wAceUMlGlk7IYhVsvQDrf1q8PZpQSFq6QjjpyYhKPvDCFWyaReDCy6lqMJS+SNvpDbNAeoAGn3Aclc8pnTTxrnzXYEQodiMMji/vXhJzr+MJZZ2LYrXR0sqv0tCKXXC21Oi6o0D2A/tKBt9fBJ0EcG27TFxujxG+dy5ihq7kPGnfrZSq9V1RPO4GQoCP75N5RzvQFG8/4ief+Cp3qnVy5fjQ9NVk21v5nOvlCY7bIkEYu9WE8lzLYD9jsCs21/0diKlgfEtx/AhcfOou948m6K9MMQvg9oB2BI9s7/Oy2UDvFYxMwyQXd9LWy0JS2YxCt+TKcbec8jUuc7o44nq5zT/d/dAKRRADN5ptHil22TALbjVbfOX4EY7aIZv5kqXNKbTl9GDG3A7Yr8c8tbXDtdkWrddsFYsum1Y29TxwoZ4jmLs4aN5vpmkxWKhBgmNeb05w1hwmoVnp8lRI1soxcyNpa+l1cj69cu00qlZJIY5WLGzOi/NzHC6GaO35S09+lcYbWm9onGZuB/zDVz/I7HCEKSx1kzEcNKkVZa4dmbGJKq2VT0SLdMl7JZbgCqrW4EIXt7iDiI9xYadua4Ec+72N/zDjLYz+zRhOsk7oZXz9wEPMqFUK1KpVKWP32id2TMLXfUel7GevER+Ot/Vx+siZl4VAXBWV952wKkAc/+gzP8S73nWV92zewHopFMEwedDEoix0YpToTBnZGNLpZ0zl89RcJDZvHuuK3HQt8qzX1MGL/tgO+YWr7wFgNh/SVgFzj1bBDvkZMHYdmn+sBPaGxGWPO58kDkNuM7VfOTY6BGff0xakHRSAd5LNN6xANv16h5iYhcVBdwv4/ILioxdf573jq9QjyTYXbsChF5hhYQcctwVLW1DanP16zF41otjJsIUsYmmhCmSsWCMY31Ls7ZzDxMXNywJvSrj6a49SKDj5J25ze7khDJGQFdc2E9My5QWnbwfcLAWL38qEa79wRTANkyY0MZu/VZ/hWrnNrJEieByxgHpYjyh0y/1yje3hgkWbU9spzismeZ0+Q6Yt61nJ3A7QeLaLOc4rKcJqlXj7zirGpmanXWdTS4Cv/TpPFnc4cOPkaV86UdDG2lHjDdPtBbP5ejrvTsGvfesZXKMZr5f8icde4jM7b+PR6R4vH57ikek+v/38k1BL15i2MbTKU5oCU0iDmORxAyjl5bawKEboJepjkq+VVzgbLE8Cg64zGwy7+0atzKc/7PBvBfrv/+hTaQVb753oyMF+kBXzoAiqx6zpoJseJNPDm3X0p48LR0g+U+BLb6E6rxbkOdNXDC/M3sbk4xVnh0eJyxxFLpH/DMKhd+jUZCJ6kkecdO4GnMpmqZnJWNchkyWwc8Q+NmZlX9h/lNl8iDFOOjs10vBD111R1VTyXbPl6qKmHMlMLGXk/UAfjqO2HQ6Pj2ZkPn3/VLymtyhbL5311KqT7IMYfTp/wZf8+HLG+CP3uTjcl2wTUZeWPmfhCo7bYdrVSPYsH/zx6X1uPLNJ8811mIVgH9sTKqFdeh2+byzAx4XNdcI4l8M7t25zt1x/wwyv9RodFu3jZsAyL5gUImCL7JYq+BJFUdNus8ZOOUnskjbt/Exi9Rw3AxZNIUXLsEplWuCOhS3E9sF7DpoxtTNkyklvVm1Z2q6lZINmoFuiRbN4IGWMVcVr9WnO5/vh2Amun2igXrPfjLm4ecALt6ZEJ1iVO05sHrOzs867ztxh1g45O55x5egEN+9scePWtgR5j1iAhxqZN16uAePQpm8z4VCK5F7prEoBVgcLCheCv7cK3xipycU6W9o5qkSRfljjrWLs93mokIUmOCZuz3QvSvSzzgd42eJ37VeYNfDtMEUKdjGz96tZPb2dhPjWdxCD8h1VsDiWz/A7zz3BT3/kN3lhfpaBbjmRixd5xGSNcgxNG7be8rplD4qJYqjS5RzYsXiTmGVg5EhGGUUsE1PyT258gGu3TqCUp1kOUJXYBKsGETUFlaqu5DObqiui6tb3WEc+ZbYxiMfsPBVNQ/btlXDllfUPZP0+wTbRxMo5JcftgfOrrefgiYKNV+sOutHgMs36T9ziQyevcTo/4oXyPI0zK8XIOJzXZNoyCqwjgB995GUGj7V88+Ac1z59mYGIX7EFjD+xw+ZoyfXfukw+65hDKZa3pALjbjXh1GDGbjVJ1MosFFBlYRb2SO0NB80IrVyylgDBvJc251p9gq1szl69lhSf2nj2qjGbg2UoOGa0QV1athn3FhO2hwtarxmaVnjmystCgAiMpFev4qgZkmnHer5kBCnTd16C/cIVfGr2DqxXPD26LcVb1bDwA0ovkE0V5qZDMTEVT03v8cL4HH6RCTW50ty7tYnScHsx5WOnXuUffe4jck0GaBWr0KEfrNdyQSoFvvZ4o2mNR2kpeKrQK9J7xG64N4ds0sTINYyVHbuJvWZjfS1egwHSfRijL9L8ozD+WAR6vAQlyZ7DxahJJ94bVpWVPaglPd92tEqZECHLoyeGikXH8JxYYIwjZv5SUOxBG2HIohCLj4r153L0Dwl//VuHp/ngiWtJ8BNx00FsAxiEVSBdf0yglJ3ND4OfSsHbCnHIFFMp2YovXIH1mteWJ7n28hkwHl9rsrnuoJg6CJhq+TsWKVOAd73g3QvuugkLWbQk6I34GOW8HG8b6UuxuB0A1j60FXY/PtA05P08unVsvVilY4oSZtXrP675a2e+xZn8kJfLs+zWYxGMWfF0d16lwqV4DPlwLBUazchULG3OJK8580O3uPbaaUbXMlwB68OS43rA2Y/dpGxzdg4m+FsjJtcV5QmoT7eMX89YPlNy1AxSgHWBHqi1tDF0CFQyzmq0zdmrxkkgVAU9RRtgkFvlJou8YJqXrGUVS1skP5XY0hHd4oLD5fZowd5yzEE1YlJUtE7ohrGAGbP/2KDdecXQCBNraQumWcm8HVC5jKUTncDCCtPn5fIsA9Uw0Gc4X+xjvWbPrtF4kxS/MdCdPXPI7ZtbqFqHGpnspq/dPMFvObGjluQqZNkxyPduE+g07Ap6yEtqDhTg1Xjt9XfdOv4drtt+speuZ3r3PZTxcKma/7bHH49ADx3bJS76D0ILEYrpQTJxQXiQTRPVrg+yR1KxLkBCqWgbSTwRc/YdtLGyeITgFjFrUytenJ9jpBuufe0C7/+TN5JAygbrV+cVczfgRHacCqn9nqUQG1ILvNO4LPm+XKtOkGvLyXzGb959Ui6wwJzpF5NXCq3xe4YCclQAq8CY0a0cYFN7CJl9Ctb9XROgm4C1Wiff2wo//tsSoXhcvMcH46y4SETYawX+QpwrpxdmTE3J7WaTg2YkHGsUpc0SROOcBMgoxwdCWzyV6IeFtpwZHWMed1zJzmB2s/CxFJXNMNpxemvGfFxxuD7hxLkjMu3Y3xzz6Il9xlnTE/rI5+sHfhTS7i+Mg2rEdr6QHgR5DQ4qMmoENx/HQqrXtLYIdEqN1pY6qDsj68Qoz7wuGOc1LTrRESPtcKwaMm0pbS7HR1sWrSyE66ok05baZVQ243azzsnimMYb5s2AkZbj8NjgHrfbLZyXdoex9aT1mqUt5Dt6uow9zoNlxo1rJzB9gWLvZ2ogonrXa/CYUhEK8r2LK0J3nm6X3ofVbPfeqQbU36H3rvOHMd7C6L/fw3/7SVSehM0Tk8cUiEOGroBIAaSDZlKXo5TVkrJf5XomW3FCx0n6Rp/ngUUgwRxWsPDP/rNn+Q//yr/BrjluLjd4++QuRpFUl7myVGHb3HjDgRuvfM9vlef41vwMG/mSb8wu8PLBKe7urKMzz1Pn7/LU9B4nsxmXJgfcLs9iqp4dQcTeAwyTxEyNfMcE18QCKOG21ofj0MEvuC4QpwDvQkG6dWAkewcTFmSPz2R/7k1nL42B4KWFbl1YHFT3+kphC40dGWZ3JkyfXvKVo8ssbEFtQ8Nz01IGlkoRdkS5tmShyF3oNmTeIqnfKuYsbcHJIUyeuE75mAQ+6yTwRitcrT0bp4/FxK3JOLd9yPZwyeXxHtcW2/KZAw88Uy5BRLE28Lt3z/O27V0Wbc7zh2fYHizZq9cYGekRQAuj0LQjV5YqFHRvVmPJ5umUo5l2YGFrtODa3haLomBSVMzqAbmxLGzOMGs5qIfcL8cJv4+MoHvlhIEWqGfeFoyKhjVTc9BI8TVaYQxMy912Y2XO7TZridWTFisf8fbwICeZu15k3bXkSXM/wmDe0CVpANonBbsKu79EsOjtutN1FpOteJti5TGJPccb//0HHZ63oJvv+1Ce2HReRmDQeC3/Ii86Pf6BiZeET6lw0/vnCHgyK+yR/mtFXrfXEswiF3yFYaIBpfD0WTieYqb42c/9EB9/7wv8ztXHuPTUflBTSuY0Tv04pRl05Dcb5bjdbvJzz38Af2eEyx3ZyVL0BMc51sGLO5d5qXqEP/2jX2VoGrJlsAaue0E9mrD5foAHXfse711gmlRcDcdE17EgEYK/dH7pBX+H0gFsdeAz3UE4AIlaGbB6rVCNW90VeU+1VZAtHcp5mjUJ5sfnDX/u/V/hucUF6iDljyKaOKInv1E+aA/k/taZJP/PvGYzXzLQsjjEizfXlsYE8U1wXfQe8kzYTNvjBY0Tp8TX5yekEJ4J4yUZauFpvZH6DzC/PeGbswFPX77DQTkSl1UtWP5fvfQqnzt6POH2zx2Lx7xWjmWTo5RnVg9S74X1vEr4+9mNI8o2T0rmDSP03WUju4jcWNbzikxbXj/a5qnNHRZtzs3FBqdHMxZtwZ7yPDO5zfVSuPogTKBci4BvEXaRmbIcWWHerGUVI9Nw92jaCQ7D5FaNwix1R4CIQT4GYhticn+HrUk1mpXrJ8ClcXeZEqke9Kq8sLW07V3rXuay73+0hzU8+If0ekqp/xv4C8A97/07w23/A/CfAzvhYX/Te/+r4b7/DvjPkD3Of+29/+Tv9R5/LAL9Ci/bIX4pYSIk2KVFMvw+pEMIdHQZLfRhjF5G6zpK4coEW4F9QmoS+d6AM73qf39meHk/52B4MyN/r6XZHXbb/YApRf/4sa4oIIlRGm/4pSvvxt8ahYcq2p1R8s/XgXmkrOJuuc56XiZYKlEn2/g5QrYevqupvCxoPQgqZvUqBO1UaLZevq9zKwFe7lQP/B6/ePg7HQ+1ukDE4+XkINpCszidMdyzLE8YRnuO/WdbRgFvFmgiS+ZvEboQXFpjQrRZhkDeN86q24zWGQamZZqXlCGLbp3GaNfZZ4QTGu0qlPLsHE5YH5TU1rA9WAZDLR0k+SbQK11yWtS1wh0WyW63sWLRYb3mRi07gm/MLvDk2r10HFpnGGQtyzbHOi3ujsHBMSpEvVcMTItSnsPFkOOyYFhIn9dRIVYCRdjlHC2H1OuG/eWY6aBk0YoIapqVXC7uc9iO2Mrn3KvXsUqjvRRrDZ5DV7C0OWtZ9LEPx/XeWi8yk7L5FcV5aujdXQIJHu3BLenc9y6zvpaiEx/Sseli0T++d1wEwnWvFN9GuX4Y4yGybv4B8PeA/+eB2/8X7/3/1L9BKfUM8J8APwCcB35DKfWU9/677lXetECvlLqEfLGzyOn/Ge/9//bdVrLvODzJN0UKq/JzxTK4H5TjxEpZevhMEYe2MajRwTf9IN+P10atiH6gy0Tks6z6tnjVBf/4OvW2o7IZjz11m5//xvv5yXd+RTzWvRanSZdxJj9M3YGMcnxjcZH665tkimDY1alI4/vpVo7sfjkSnHrdUxwJZGSq1e8K3TY4Kx2q9eniSLBN41DW9TJ7j2odqgnt35QKuH130NPtyMIZGTZYL4co7IK6c+O789U6lHMMdxtGO57yRM70esOdv17y3jN3GeiWpc3ReCZ5xaItJFB7Re0NbaNpnbBRCt2uNOR2CHa/cBmtLahdxlYxZ2haFm2e3DmBZDDWX5vGWcOz52/x1c88xcln77FeVGzmC4zyjHSDNYrDZpT8WWpnUKcr8isjfvflS5y/uCcCp6zh7GjGlw8us19JI/ILowMeH+9wZEdcX2zhvKKxZmWBOm4GHAXLilhH0HjObx4yrwccHI+EPrvMGJ1ccE1vpc9+dnjE125fYJTXXJttcnI051RxjEPzH2x+mZfrs+w201RfOLSj9L4D3TIxVXJg/Yc3P5y46hig0eg2qKj7jq495tlKwKa7nfAzJlw+Bv+4IPT/jjuEsHjEOd/P2mOCFjP8tEA8hOEfYjHWe/9vlFKPfo8P/4vAP/HeV8AVpdQrwIeAz363J72ZGX0L/Lfe+68opabAl5VSvx7u+7aV7LsN5SEru4QiBagHTurKpIGk3owBXDc+edREeiAgdL64eOsOL/ZGQZDw+7DfFNxRpQklE1gumBTwVf8+WLuq+XT2NB//wAvc/+pFfmPr7Xz8/CsMdCst3LIFO+2UtxX3aJQIVyqXURzKdjVN8jipexeNsnDrcxdY+9gV7FaLeTXHFTDc79ElXa/QCujaJZydeH/I3HVjCZaECaqhdSivV7J0r3XaQSnv8EpBFgK+Fey+g2fCIvCA5kBZi2odxc4x3hjGleXeB9c4tX6fSVYxbwcsXceRL22Wfo8NKzLtQvZruTg8EIaJLTgKjUWkeJuzaHPul6eSd7n3nfV1hEBUoEuasFs4qIdkS5j95mke/4n7HNRSPzluCgptmeS1QGZGsvpnLtzmm/cfZXgjZ/fWGeqLNbv1Jq9OG977yI20AN0uNzg3POR2uS7vobtUtHGGWa1XbHijIVgdmDat04xHNaX21EZM/Y7vj1Aazl3Y46AZUeQthbEcliMujA8Ym4ob9Tbb5pjnFhcAMTyLBnk61A1mwaa5cjl33QZXvngJNZSkQFfIbrJRuIEnm/f0KGH+67pLKHxvx/1t12m8ThyJZJG0FL63gKgHgj6s1OL6u++HPR4WdPNdxn+llPqrwJeQWLkPXAA+13vMjXDbdx1vWqD33t8GboffZ0qpF/gePvAbvxgpaIFMqLR9Cz9jQIliHgjCp8Z3wcz3xEAh2EMvgKpeUfBB+qRCCo6axEaJNEFcMDeLmUjoKR1fW1sY3zB89syj5Bns3V1neSZP/WM3zIK7zQYUpAYUJ/J5qi3EBU6HLazLSTUK5YV6elCNMLsZxUwWI1N3KlPJiqKXjE+BXhYKn7Lr+L1VDPYJxnH4Nnx/AK0lYKeidbzSfbIvSFCODguGUijnOoFbP8P3Ave4QnPw7obTmTBJLKqz6PWSvccgn0Q1eGqbUdqc1wNEs53PqVzG3BaSbYdsOf6L5lgix7c0uvMXikyRss0kAL9rhvn0lONmkJgw/UYXkeoZhz5ZUfsBozua7KWCxbW2FbIAACAASURBVEVLPpDdxlMbO1xfbHJrsS67N5tzWI4Y5f0CFIkqGeddkv4raOIxcAIvKe1pW81wq+SpUzvM6gH3llMurh9Kw+2iZreaMMlqJqak9DnHdsDS5jRZJ6Y6mc9YOGk0kxubfPOVDTtJFSDDUPcxlepIC+GcpkXdyW26t2OOdat4TTzwheUaNKzoWWA1wHcQUGcm6HvwzsMevw/WzUml1Jd6f/+M9/5nfo/n/J/A30a+1d8G/mfgr8Eb4kW/55Lz7wRGH7Yt7wU+D3yUN17JHnzO3wD+BkCxtkW29CtbwH71vQ9ByHYywhYhkDce0wQJfvRREUWEvFmcNKp3jDXQeHymVvBCdO9MGPkQSilpUB4nZ1g0XK9YbGqoX1ujfv+crd9c41ObT/AXH/8GII2uh7rhC/PHeff4GjM34ud/+UeYBOl+KhiHC8kFdZXLuq3w3qfPsnVLgrzLwGWKwUErx6JfALUeXdsuXbE+FLd9F+StS8eEUFxVSgVFImBtWPSCYjH8VK0LDBrJ1iWgv8G89SotInIcDd4Y6s2cMxf2OT+WLiKtk+YZ80Dx65tfZcYmnP6oHtBYw3EmDp2FaXn31i32a1GNtl689WPwLIzFewmUjTMM8wbrdIJPYnNr5xWPnNhjdzbhhU89ztt/5DVm9SAtEl1AHopgyhkundrjyvEZ7EBjh/DY07e5cuM0z/3KUxRHcPSEZ3RbsTO/TLktDp32T+6kXYEB6jYTbD9Y73ovhmBtMO/KjOxCvFdkuaWtM9pa8/zNc6ytlTx1bodZOxDoqi5YFNJ74MnhAQbHiXzOXbfOreUmw8AIOtZDbpWbnBkcsZ3NKX3Gb+89TrvmGF2a0by4kZhckU6seh5IqeVm+FtHGCUUW/s76z6Ob0Iipm2Yz6pLjvpF1gTP2Bjou0RnpQbwkNJwyT++50B/33v/gd/f6/u78Xel1P8F/Ivw5w3gUu+hF4Fbv9frvemBXik1AX4B+G+890dKqe+0kq2MsCL+DMBk65Ivjl06oStbt/57eTBLu4I7CywRCokxkPdwYgCf64C+9F7Qq0Ad7DJUj08CkP4kjFCeMAM6fD7tQMKkHOwqTr9/nzsn11j7lSm/8uM/wIfPX2WalcnnZKddF5/5PcgWPrk/yoXk007GDsQLphlLdr3xGuRzydIXJw3DvVrESJXAI8raFID72Tv9xc06Ka72s3Wt5bYWKbyZKEcP/2ktmXoM9mHBAMJuq3t9n7D8sCBo8BjINHaSc+3HPe+bHuK8Itcd3g5Q2qynLXABxy5oKpOC3oSKzcGSw3rIl+5f5uLkMBVwYxYe2ykeVKMEBeXaMsoa9pfjoMbsFgXnFbvPeraeU7y8c4onT+1w63idZZWzKIrUPKTILEY7jHJMTs05/bYZtc1YNgWnTx8yf+EUpoJznwnwGLDxmny3mx8aszFdYpSntTo1vM4zm9hAWdbNz9gIRmlPlluUdjgrLpKb4yU71YShadirxlJMDruiPbuGUY5zxQHHdsBhMxJ1db3GXr1G6zX79VkybblfrnHrk5c584l73H3pJKNZF8w7GmWY93G+x5pYYHxJnUzqNkmYtyIqJCVmXoHXKokfI/6+wp5ru1241yole/FDPMxAH8/9v62hlDoXUA+AnwC+GX7/ZeDnlFJ/FynGPgl84fd6vTc10CulciTI/yPv/T+H77qSfefXCfS/VYk9PfoeaUKYWoJ6n+ERC4tEzlSED2IQijzw7oPJ2/RZPE4mrHJegnn/4SHjWMlA4v0Bu4w7kStXz2A2PWu3wP3OJnf//B7TaclBM2I9KzE49u1a2CJ7Ue/6DmNP38trXKak4cZIYWpYs4p84ZjcabG5ppjXqNahq0aokK1LGTogAbxfgXQeqaqFgKqVPMbFq613TDMTsPge1NUf/deOxzli9N4HyTxgFD7TtCPDY4/cYxxsegWbFvZK24jEPwbViFP3vclbq5nXRbo4G2s6takRb/FCyy5grxqnxw1MS+MMmXbJ/jYuLo0VRoyyClN7zBenFP/+HXEDtYaqkab1SvmA4Cms0pyeznrsKnFfbD84w/3GFN24RGWN53L4pTXaH6mCXUA3YpA3wfNFI1l+0xi0cXinkw+MazWTSckoExipdoFd5KVv67EtuLo8waIYcNCMU+1j5ZR5nXZALz9/gfUSpoOSwx3pJBY9gGKyBR0sk+pdPUsNoINJw+PidxdTwO5xsoZ7XB7NC+X2+Lj4WslWo9+pLF6bb6Dg/sOMh0iv/MfAJxCI5wbwt4BPKKXeg3zi14H/Qt7TP6eU+qfA80id86d/L8YNvLmsGwX8feAF7/3f7d3+nVay7/xaDrK57STyUU0Z/VZ6WHMqJgI+N7TjnGxWdwGG8HyvOysFr1Yyfq99UsZ6HQKSfPiuOGRWM/uYkbhcHueMZPdRKRon+vQbechmPGu3Pd948TI/8OHb7NVrnB2Is+Uri1MMDj3Z0ic2ULIjCLYBpnS0E8P4L+yw+4UznP/hazTWcOtzF7jwqZpiZ4HPDW5oMIcLWCy7798LvCsjFqJjwAkXEVp190W8PTGZXJflP/h6+I6JEzH6OIzC50a8T9YyDp7Mec90v8ukUTQukyzXd9h4oW3oPCSFSYsExLLO0dqzbPIAzcD9cswkr2m9Zj2vKG1GacWnpnSr/UXvHk+JTa6Vglk1ZGu0YFYPOP2OHeoXTjPa8aHlojynrjOMceiwWyhC0bxssy4TN47WGtZHJfefWWPjNSfn1Mmx063n1Nfgvt3Gf2I/NdlurSbPLIOsDXUKTdMabOispjOH0mJcZ3KH2SmYHeZsvmOZfHQmWc3+csyizTmohjw+3eVutY5DMW+LZCNR2pzWa772+kX8QUGxrxkLVZ+bBxvkMyFDRI57/7qEri4WEx4dd5+h01hicfWer9pYM3OpvoUCV4d5Hu+LyYHrgn8S4b0RKeYhYfUehXt4rJu//AY3//3v8vi/A/yd3897vJkZ/UeBnwK+oZT6WrjtbwJ/+Y1Wsu86nCebh4JVwKuBCKR1tzuBHpQVVaZqLMWy4fjxddauzQV/JmDKSuh/AlGE7JPADEF1mGCAMXwvO3W56gRSSia3K1QqztpcsnhUtw2NhavYNDteJOOrGe5DikVbcKvc5GQ2o3WG/T+/4NzPDqS5dnid5cmMwycUg/fs035ui8u/so/778f4Jx36lzY4+MgG9Qcr7v10yaW/5dGHC1QzgKrCL5fpcKq8l81p3f2sGjAPeBikXU8LOkSyYHmwkrWbnlhKP/B8h5zuTIVjpnCDDFcYXKGp1zPO/sTV1Ekow2KDsrX0HS6vlXDok887PtnYZsaGlnYar8W6eX85DvBJzi23zvZ4kXDX1msyJbTXqs0km3dinIfyTAcly0a80udVweJHl2x/csiV+ydoW81g0EoDl1aTZeCcRzZfIQEIReN4+IrMcuZzClO7TocRYC5TtuhQh5iXRdoleC8tNI2WBU0pL0VYLRm8azWnfqtgcOAoDmuOLxW4pxXLJmcQegW/Y/sOAAf1mO1izljXfH7vUTLt+MKN8wxHNdNhxd6XTzPZ66jI0gvYs/bzU7zpqLhy/cS5HIJyj91FONUJcmxcL9vvESDsakSWYqxC6+iBFJ+kUNb1YL+QxBnfJSF0yd6Dr/uHGQ9xc/BvfbyZrJvPsAJwpPHdOfNvMJTvnfhQPEwB3/WCTgz21iWmh1eK0e2S8vSI0bVDeT2l8NE+DwRGMISsw+MRv3ZvZPJ5pZIgxEWVLCQ+ve95p7sQ4CNd7NvEID2fmVi8enV+CucVs1ZcBKd5yYXtA7w9Hb6/FGB33wU/+LHnuTrb4s46qKrBLGu2viB+9ac/r2lHU6Z/6oDrP3aGS798X47VsuwKz3JywodSneDpwfvi/T6kWiCwTj/LUap7jHvgsogXYYRu+lBZgGt8pnBG0Y6CURjRl1yvqGAj06YIwikQrL0N1rrLJgsfo7Mptk4ysuOqkC5HTcZ8MUApOLkhx0ubSF1UqThrAlwEsqsom5ymNWRFi3JQ3h+hJw0208FGVyVWjI5MoN5rxn6qB4sRp+43Xe0oFr+D58/aLcetgxHmXoF+fEaRtxjtUTb0SA6FWBSYzNI2Bn2Qs/X8ccLB1684SjrWzt3FBKXWeHS6xwc2r3J1eYJ3bNzi69lFrh9toq+MKIsh8+2W6V5HGsBBVnnyuUCFCeXxcb7LT1P1dpn9bN0LhTdaaXTZfF993UvW4rxw3cKY7kcIAqqXaHmlpOYEKatXvWP6UIbvFu0/CuNNL8Y+lOE8atmswi9KQRuVF+F2GzngHZygioJsf062e8zxMyeZvLjb0W/jJDM+sUN8LC6aCETKFtEZ3RWGnIdMd0E+8ed7BaJegZbkJ9Nx+03YoppaUbYZk7xmrxrz1aPLFLrl2e2b/Pp7L3DqK40w2wqNO1tx/XiTu/vrPPn374QAHha6tv3/2XvTWFuy677vt/euqjPde98893s9kc3RlEiJsjVYUSTLpEQbHpTYiRMkcWQ7QJDEQb5YRmAjXwIrRiAkQGJEgiJosiybshMNtqyElmRHJMWQkkiTItkDu/v16zcPdzxDDXuvfNhD7VP3dptQPzXJF27g4Ex16lTt2rWG//qvtTCLJZd/YY+r5SWW716x+r0tlmdKRo9tcHCh4NwvvoDUTS+c41yamIGlewtfqd4yX8Pxrbfso4LIhXzab3jWJuHyEnB/L+A1Ljy6qaadKF740gXe+b7bLF3JvKuIjVlcJjxjDZgquEeVsszbiiI2slC+YXVlOhaNz5K1naGzxgtcUdhOUQfqpIif+84aCmN9c+swYtu6eV0xHTdsb89QAhc/oqn+swdcvXmKctz50+80TnkhpY1XFFFxWKcpjGX6949THqzWYEcg5StsvnTAW368wI5bXvnBgsI4jPaNOuKoVxXaOGynkXsjHv9Vi973VT+l0Ohly4ODKWc3DzhoRoyLlnHRsehG3KqPsd+N+P3FJTTC3ifOUDbQvXeOAcr9kqKWQJ0UipUD66FDO9JrndUSd74LZTQiYSFZ1SHRLnp+1mdWr9Fw8xhaGHny3VpiXptB1Nobaofgx2j0PUya5deQSf9oCHoRVB2hG/GWZRQwUeBEdkgU+Klmdbha4xEbn7nlg4hKgfU+qhQaX0lPB6vd3zQ+qp+1KbR9MDZyeBM/PxR7cpHTS5BzNtzwTohcX51Z9toKx16yvPAvn+Qb/8SzFMpxY75F6wzvOXmD5j1zdg5m6AaWZ2G6WXP/YEazX8F8AV2H2OwmqBuU1jz+ky8i+wfw5GPUJ45z7m+8SLN/nC982xXe/t98CbY24WAe4JiBhZ4/x7mLN2Au7DGsBW7DdVp7Ds1DpPAKRJIlb3ClwlX+gQJz4JVNHTD0Dk+vhB62ARKDZtX5YOOsbBBRNJjgYPhaMdGaju3mlBIEqKa+lEBMlFosK4xxOBXcRK1R4iEdT2W0WKeYzGrqY2M29yw3P3qJyXt26Trje5QGe0Ap8ULYeIqmVsK4atk7mHD6VhMEnEvrKY2whs28QVnBLiqWStBTHy+IXZe0cbTLknLS8vSPPUCtev6+EuONlI+fpPveBaWxnB4veHH3JHfY4MTZOQ/qKbOi4UE9ofBODd/02DU+/rvPMHngPJGh9cJbt54Z1WwV2Eoxvt8lrDz3qBPxIeWkBIZbF7zquD5zyPXQGgmwTMo8z4L21vVGSR4DyoV93N9DznD6WrLoH0404Ss9BL8grPXCqbP9AoBeuMdH/AyClnfe+o0KIv8trAm4hMVnbuihY6F3V9fgGYlYJX0CV0YrM21fZyZupzvh5Ocdi65kvx1xfz7zvGmE2bRm950d2+/tWD1VY63ng49uluCcF/Iu3GQRm9ycce0/eApxjpv/9kn2ntB87vZ5bt087vvnliU3PnAOqvLoG8foPvgaH8O5SvOVsXOG12MY+M32ES23qDCVBbNStKITHNOEYKmvN69CBqxb68MaoZ5p2TCpWqoitvnLYB+r0w1rCseo9Nss25KmNcSEpAj1WKdSJqoVHRgviq1Jze4zfo5Pfc57AzbuO5serSW5/WVhmZQt+ouztKaitUsoLRGFvIoB2pCPIaJoOxOm0NMubeu9yq42qGXj57zrktGjnOPc7/o6NcumTPDX1miFE83xasXSljy5+QDloNqDz9y6yMnPGoqVQ9cO0zoPuwQBfu37hLvv1b7SaOsSGUC3gbbbOVRnUc71n7XWQyv5Nm3nj7fN7t8ueOCdXXuouE0X5qfrDj+c8/d6vL/jPh8SRi/gDYUv4/HVMB4Zi5629Rc4vs/hh9zaXEt60v33eQDSuSywKL0lb0HhgvR2CL4RcUzi8PsMeHus4RLL9VnP3HGFPwYTb1rFIR58amYS3N/x/Y6dH3mcax+AY4/t+kQe0TxxfJtrWphWDQf1iIP5iOmkYXydXmHF8xHxgv/OPS7//ALXdVz42S/4bf6e3066DikKLv6DZ71AN8Y/2nbdss+HGgj69Nr18Ey0/IMFjxO//wSjeQhHjKHdGgWmhU/qisqw2lbJck+0SAjskTowbQxO9VBOoX0SkVPesu+cZhl6sKoMPqkq659L35C6MI6yamhLw/19r1it0yjlu6w21jCtGuh8jRknJcfGS058wyts//YVjj13wM1XNyjOL6FwuDZa9d6dK4xla1KzOVpx7V9e4fKvL1GtF4SE+j5xLpVjfe6tMHm1ZPWEwKjF2p5tU4wsjdW87e8cQITgYls+a8Epqlv7HARv53PXL7AxW1Fox6fuXObEZMHYdDCC+RXh/MeE6c9soLuO4iBPrvOkBNGGY+f2aU8Z9P/plWLE3FNSHHjF5V2PHieP3na8Z/O181r369CgsP08HbLWY1JfhIeGv3+jQ+BwY4Wv3vFoCfpcW0f4JPLj4zBHXBylemz5qGFD4k9YwFJoFB4KksIHZl3ZQzDagcP5+1q0r0cT6Ji+ZLJXLinBSbIa9wH3TIcWbq7xouOtPwv7T5zg+gdrlm3JE8e2qYzl8sYOO9WEl2rfJvDYiw0c20ItV8jBvBfyTpD5Epl7ho0czMOf6HUmTJzTrvNCuCx7CMyJz86J3k++/fD3EPaRKVSn/W8tUBbBQ/C4vFTBgg5caV9BE3ShsJN1PL4LlnWhLZ0zVKGTFBK47kEp+MqNlsYaGjFJ4I/LCNF4a1hrSUJ+ZDpWXYkNbB0g8fEL4ygDfl8amypcLruSkek4uKTZel5x8V/Bnb8ASOhj2gmu8V3PJycbDv7FWcrnLVduHaSSEqpz60IrwBliIuzhoY/Nq8LqCYIC8krLGMdye8xb/r5F7e77NVsUvSelfeF3qQpWrbB3fYvRXYP7Bj8fRjn26zE7ojg5WvDke17l5t3LnP7XHaZ2PrEuK1GhADNv2duecebMLrodBcUdjjXGwzICRBT26Z4Cb8HnxtiQgjs02A4lNcphwkDcf64gj9rmDY6HjAT9oY5HQ9CHRCeR/mIqp9N7dRROPFxQLmAlFi98Ylcko30jBJX9zkGiX4qEnpX+e1FebirncUTdOCgUUhB6nao+PTsK+lhELegk3Tl/SqEloafa+Rt264UDpj9VcfWvTPnsfEyzPWbzraskBJWCO++rcN96DrOCyz/6+f788hlz4hs75HOjlBe64lCRPdO2MJlAXfc3TsLe3Ze32vOSCfLaN5xqLIUIdhpy3QOjx+clQCe+/PDKlqH6pO+OpPFC2oniXj1jGpKCIpcevHKogtB24ouVjQrWoJ64nVJCVXQ0XcG48hZn3fZlkI12vjVh4Meb0iuTuitYXBSk1Exur+hqr7gApNMoI6jKsb8/4fHPNBTzDrXqvODMs5HJMHrrU7Tid+JgdqPl7gAOajvNyd8tqV68GQR7xhpTQbmGoPrerU0u/rpvibh4ly9zbEMZCIC9dux/9v5d1O9O+2BqVDxOocRDIko7Dj52hpNuZ82KXy96l5XNiN/nRIk8cG9CID/G1PwJ9p/lyiCPPx3lDeTfD7d7GOPrgv5NHgKSWwaAYHsO7UAB9HVabG8lxAWnlA/URozaOVRZeNgmuKyqVNBFTj1gFKoO1o5RPllDSIFZ3YIr9FqwyX/eW8mJNx3a50lk6AC67npBAJSt5cpPTNl/rMSOFLeevcLeO1q2zszRSjj53TcZmY55M+K5c+/gmb/92fWbTOleyEeh7cR7O2EO4vwpp3DHZug7dTjwaHFmeGeeLAWHlSj0TKf4XV4/SEINHS10mxXdxFAsLTGEZIF3f8/z7AcBdG81ZWy6VE7C8+d9eeKNokn15Jtk6a+zcYogmGMp4sLYVIo4KolFV7I58rDGsi1hRErMKrVlXHQ01jA2XerRut+MOPfOO9x5/znOfnLuYymlRZRQjDw81L28wRO/XGNWjceqRaD1CvMQrJFbrcZfI1V3TF7ZRe+eppu1jEctk6rlzquneOq3HgSMOxRhD5BY700Jetnyth+dI1pjmgm7jW9WsqxLCuOwTvHig1O859wNCu1YVDOqPZtKRmMFna9jUcxu9MeesqsjbOIcNK1/32YeSyJGuN7jg4CvC7HGhohDmQD/ZVU80zobBm0fIk/+9UdfOO9rYTwagh7Wb4pI/csi9mvDCSLWL6BhxD5SCaNQNMYHgCIdE6AJuGLhk+FVogtqaCyUBh0t6NIvYtO5lPThb5rezQV6zj+QSrNCSvLyb4LFbQyioNoXOBDGz7ZsXC+58T0bnLiwh1bCovWt9Vzl0k2+br2H10Vx2MqJc+cEcR16d94rQa17OCyDGNLxDV3pNXqb9OF/J6FtYExIECgN1f0F5Z6hm5VoFa15x2devcjFU7vJ+rZOM2/xUExIbgISTJMzcTrxHPOcmVNp6/Fo4qV0qfrloitZthXjomXZ+XIGJjTvmBbtGld/txlz/e4JLp3ZZmdvynTSsPH9t9m/e4azZ+6zczDh/Ok9rn/6Ak//whxXLtGrIOCtn6sE2Qwx58RIyYyQ4Nk99uuWV36gZDL2bDMZuSwAmV0frX2ivDFQhOBtUKrjOzXTaUvdGdrWW/YXju9ycbbH2dE+ThTXnym4eGvZ10LqugxSUsw+P2J5Gu5+ywmOP7ekur3vj6Nu+1iMtV5uDy3soVB2vVeuVO+RJ+ZYm7sxqt8uESxU77lqlTx5EdcbIkcZIX/Q8XWL/is89LrVCP2CEIKAh/WgYBRiucKI2yjxlpIxqfep5PhfwCLBhQqNxgdtwRf7CpZ9SoQKN7bqBhl9ucDN2RbS91fFucBgEEzjKW5m1bHxSsfsxRnbepPygkUpfCJPoCUmOCrOi1K+zV8QznKUmxu3XSwOB8WOwkvj69e6oXLlG1z/PN9BKeXxaBPnSoiFr7r7Y+abPrZQhv6n0yDkG2toMFTGUohLFn0shxCVw1q/VektdH9oEi63L33cOk0hmjokW01Ml6CfWEJg0ZWs2hK78nVztPawT2ksB5sanKZZlly7eZ6nfqX2cEaEAHNleNT8rZXDzko1gs+7aAUWhtXMd55CCap5DagiQiLa9GtIBN1q6qbwbK1WUxSOxhbsNWPeOrvDAz3DVSRmDEr1Xod1KAwIjB/A4jyc/Lz0AjWy4OJ52kHV0yDUVUhMjOsvCvgknPO1kz+HdSSJSu3wlN7e+JDoARyVDPhGh+Ah3a+R8WgI+nihjVnT5OubuCRocihHui5s7w7jfzGY5XTvCnce7lFKIGKXPv/cFz9zoLT1lmsopYAVj7tH6y1xiJ2HUGD9xh4mLFmH6uIx+OClqX1XJyU+WIuG85+o4RMwv3Sae9+/oqw6Nl/2x6EAyaAVVZaoqoTZDNmcoG/cRWLgNBvxRkzHFOGufO6PCqANR/QqhtctWfoKWkFReIHYCRqLOI1RMLpbsX9mTFlaVnjmSmMnqXnIpGy9JyMlW1XNoisTO6fDC/vaFhyrVsnqX7RlgnQOWl9iYNFW1J2Hgeq2YNWWqQgZwH47QiPsribsLsacmC154vJd7uxv0K58xUg7rjn2F15l/tOXeMtLK4rd3V5Zh+l14xK9aP16SMIxvg5rucus/DUmimP6wn1Ue9bHCwpLsV3AYpnWcx9nybzaURkENJ5T31qa/QnqwHD+43Dzg4rrByPub8xSzKc8wHseEbqJAhwQVXDukzXFvGHj+piX/vSUpz/cou/vrePuGQw1NCjEZkrMSS+cX2t9RTgI1vsdwGGPQY7A+R/q+Lqgf/NH3oRau0OwTXLxossccWj89opo5bveWo0JQ5Ei2WaCMCa2EHBmLVnSlPOL19peqEdLyob9ZPtYY7Dkxx0FgAlYOoCqknAs9xtU4/F7qQrMskMKxXjbcupXx+w9odh6uUUVhRcAxiDO+Vo2RiPnTvHqB09R7YFuTzDecWx+9MWgMHXPwR5CMsOgWJwzeH33OFlTYX8RjzXe+s0ZUbq1iGgkWPVnPm25OZuhnjygrQtvgY47isKFRGNJzJjaFql+fGTG7K3GtJ1hR0948sQDn6xUdKmBSKx2meOuRgsbYx+bqLTPsrVOs7K+WYk4xaIp2V2MWe6PkUbjRh1NZ9hfjTh5q6XYWYJz2K0Ju2+Zcu8b4S3/aI45qA8Lw1zZ11mzkaGAUgoWS5RTHJ+FGkUvZ4ogrJ3kvcb1nEFAynaIBvOg4PzHHZvP77L7xEkWzzQ4UbyycwKAC584QHUdKnLWrUvrVQGjq/fZ/abzKAfHnxNcVXhdlkNPuYdy1DjquxzWiR7zEBaM3x31GsBav97zYO7DFPZfh26+gsNaUlWleE2jixdHpHklIc5h3H4YoNVB2MpAoElW/EwEIkMnfK8g3CCBhdCFpC4VBOlRAaRBCWU66/HVSP9MpYUDZhq30yGzVEOxFJpTQjczCaoBetjq4lm+8F8dY+vsDg8eTDl7fpd7izHju5cob3mLzJ0+7vH5uu7LR+TCHdYZEXFu4Z+YIAAAIABJREFUjxr5TRipdvn+4txGAVFor8BKH4grlo5jLxgOHleUo466q3wJ3sIhzrNGsL7VXmc1q9Zb9LNR44VzXSL4csXX9o4zKrpEjRwG1ZQSXyFZO9+LVQkrW6SyxyI+IHvxxC6rruTesvK/G1lc5zs9FcZx8FhJsRizuDDm5neAm/YxAYl03VzJy0C45fOZC6gw17oOVrexLGI7yRRjYj0+JQJNQ6CEJQ+1mCtmry7AOU48Z1m8XXBWsXIl7pUperEdvI4YSHW94K5KaFoWZzT1Cdi8JphFs+6FxP/O4j55O8618xQBsu+GhkV8nSvIeHoR6ozNboKAj+8PQbIPY3xd0L/JY5gElV7ni2ZwVeINEReXVt6qH+LOOa0rg1ISP9xlv9HaY/MuO6Y8aSm+to4EFaVibHZwTIPzS/RPi9IKtWjSf0jp09vtyGDHGltpuqkCgZvfAVufHKNY+UzTwHJ46b+r+O7Ln+f37jxGcbfk6bff4+N3nuLqf9nh7DHk9hhzcYF69hJP/uIe+uWbfRZsfnMOA6/xsxzDT4HEvCaJzuiameutNUopaK3PV+giubDjzKeWqG4L+XP3We2MsY2mVVCNWpQSRmWHaxWNNazqEm0c87qiMJa2KbCtxlSWrtRURrE9nzIqO1ptqIqOznpsftX0SVUxHgAwb6pUbsAYx6Rs2avHPru2U8xOLlnsjymNZdmUjH/gHi/vT1Fqieo0ar+kuluArPz+I0MlCk4ZrNU8KLuGb/s1OboPO/MJk1HLyS80MB4FQkATjn+QH9GFokpOpSC8T9bzkOLm87tc/JXj3Pg+zVM/5xi9ejfD2gWc7VkykzEPvuk0Jz9+k7Of2uelP7vJ/mXF6uQJLn3YFwckJzskQZ3FafxRDu6TgZAfepJH3B+SbSsDaHFNAeSe5xsdAl9LCVOPSAmEweJwuUClv4miZfta2v0oimBcING17jq/4OP+42dd52+Iuu3Ts9vOP9ZcXtfDP7lFG4V8/O/obaQywRmck6WJi1JIVeDGJm2nO2H8wPLELzUU+4oX/9Mr2CcvcOcH3sGrf/VdyOMX+Pef+R3urTb4I6dv8uT7r/E7v/4O9HZFd2uCXRmqywceb37rguf+ow2P37tMIMUbMKappwQZt34d4mc2S1nPtw+xiiTwOgtN66mHTYde1ui6xSw6VN1y9l/dZnd/AgKj2yV2u2JjXKMRz44JlRwjJ3y1rDiYjz3NsdWI9VmuO/OJbzeoHVYU+6sRrfNZpkWAew6WI3bmE7bnUw7qEc6FUggSYgIIk7JF7o1QhWOxN2Y8a7izs0ndFNx7sEl3b4y9OYG7I7CKU59z6FWHXtT92gC/Lo6a31SFcRDjcI7z/++K1byCXz7F7fdX7H3jOS/sQ6xqzYvNywFEQ8U5EDh4chOpCugcs+tLzv1Gwejqdo+Hx7hBlny1801nOPmRL0HdoJctx58VHv/lbVbffgCT8fp/ZsI1Kp8YR1OR2vt6GbDx47Y9jMO/jgcpuREy3O9DGLkOe73HV8N4NAT9a41Is4TEQ14Trq+1SF4rmJhfNa167FyExEVPjWEz5RJ/F0sKKO1/W5h1oZ7/t/f/178fJjeF5goS2BAxMKsbRzG3FPsNFz7R0ZxwXP3QJtoKG9cdL//Z40x1w73ljAf1lG85eTXU647n5g0WrQTbGGSzY+dD7zw6kJZb+UNXOwqq+D4Kq5xGGIVPFPjOJiWgYnA7QFWx9outC6qtxjtTnWLRVL4mfFNSd4amM9hlQT2vsK3GLsrEkHCdpmkK2qbAOc/Y8UlQoaWgcRTG0XaGrilSH5u8ZklhLGXg3l+c7fkEuE6jy9BNSvuuVzIv0G1oQ9kqlFVsXFv5aotJCQ5gOnhtCzaHP4Bye4lYzdmPb9NNYPsZg5TFupe15im4XsGGa6A7mJ/TSGlQIhT3Djj5iTuH4ZE1ONNS7cbEpw61qDm4rHj2B49x6cSOP4b8nOJvwz2ThHxQSOkR6yjF8hu5Jx2OQ5xbF+CvoRTWlMu/CVb8gw6nvrzHV8F4NKAbeO0gS3ATlfINJ5QyrCdhqJ5RAxkeP7Ds49C95dx/llvoGZ1xSN+MI76P1nD8LEtoSv+R8/nj8WSwiLKSEm+UdZhl+LxzqLpldBuu/PMx+1c0G6+2VDs1dz5U8LNfej+LL5zg/tMHfOHV87gt63u+Amq3oFYSuhQJJ04dcPdPTRnffyvjT77Qsx0gJaqpqhxY89LPs4j3CPLrEWMa8VxE+qzInN3UWejCfNQ1dJbZ5yvajQoFdCPH/PoGbFiU8cfrtZTAfoFUQrFraGsNlT822/qmHOWW5cGdTQCOnzmg0NCF/2pb4zs01QVSWdrWM2rKwiaa5VblM5JNrTC7JfVZxXK7wpyqcQclehVYV4CrhNlVjdlf9QW88jUaIZEum9wcAssMB7HWM5Ru3+cdf2sPRND2BKt3L3EfGWHuS5pnkUiDzNZgWHNq1XLpN+bc+OMzzwjq7JpQTbVoYhA3rsW6Yfq7V6GziLUs3/c4q7OOE09ts1ePOTUbYR7E69itx2OigZIdy9q9GDPMtetjVfn5x/MaYPIJm287H9SPUJfy26rcY35I41BBw6/i8WgI+lxQA5SFtxrigopMA+UXvFLRslY9jKKzoGV8ZFCP6IwVInKYeTIYiWcfmJvpUKNlohSqKvp9xISUzALKOfapNCukNoUxE1c5hzhSR5+4rYQ5qXYaTj+o0csWMYrN396k/q4OZaGZV6jdApl6gSqFQy8M7JW4qUWs4n69hZ4bXvmA4pmPdetzHY9pVSfIwB+bBPdZ1gPOzoFoxNALoChYcpZTZPzEYR00DWItV/73Z5l/69Nc+5OaYtd3vHInGrRxdPfHUIh/bFgmX6o4/VnLje/UXoaEapPlpOP+rS1Up6DV7DRbVKdWiFM4q+nmBXpkkU5jtfdsynGHtT7Yemq84Fi5ZKQ7Np7ZZnd7RlFZuoMSuyrQC5MaYGsLOMWFj8596WDn1j2/+OxY94biGooCPwg6pTSCRerGK8JRxeZV4e6ZCnP9pu8pENdHUAyJZBChyNkUqUpU67ATeOWDmzz5c/PDXkY8tvhbY7j/3Vdop4rzH34WNRkzelDz9v9pjy/+9fMc/6LGXHshwHBZwbI8S/eoc4tS08Q17z3YVC3WT6VnyqksB4ToGfjELFWV6VgT4yaHQB8qRv9wdvVmjEdD0MO6xs4Fdt40I15wrXrLvOifU0/TiJBki2mt6UHuxr6G9Z/3R1W6v5klg18kE+oKghA67IpKFPwiiRrqz6Xfbq17TlQSRbB2QqmF2CD5zKcXvPpdYKeC3i5xW50/xgZU5ZBGU+wZnIVy17N42mMOzq24/wPvxtTC1vNz9AvX/P/lAeuo1HLIxmawThwxES0fOpvfvBZKfA6WrxiYfux5pu96B80WuJHgdivctMMsNXbssefqZskT/8d91O37bD72DPt/rMF1BrGKdhm6ThWCagGnsMGK95MGIgpxCrEKBIrCegZPW1BpSxmwrvecucmzxVnu72xQbLTYZYFufGnlbhJhl8BIOUqQxmudr6shKSBuo1mzfsV6b+74FxeMdsZIXR+eT7LfiEBZItNR+o/Zdd/PgMJAExWyPSwUjYFRxfyC8vz62QSZTTGv3gNgfNcX8DvSGx5Cn/n9A+tUzARVSlCI2b30WsSLQf4H0YrXum8ylGXbvvGh+FoKxj4agl4pGFX96/hchNPTGRxTmN7aLvyCEqPWFo0U64vGd4kK1oPj8ELO3+c3a/z9EdulHpvRWikHlh303kB4Tl14tLd04vu8f6Yolayi1OLQCq4yYT++VGx9fYacaJg+N2J1tsPtlyir/OEEXHHjJW95d1OoJxbVau58e8foVsn+5U2Kb30nF37m8x5KOCqzdvCZClYWwcJMmH8296ooQGeKI7jg0nbr+3OOy3/vs9z7d95Nc0xx/AVh+tI+7akZ9//IhAv/9HpPC1WKix9+gWefepqtp3fYu7fB2566wcv3T1LfmyBji5kb7MogrkBX1iu+eYECXKGRTrM8GGEqS6MKdpoxl6fbtIG731jDaNxQ1yUsTSizDFJJMvxUHRqBDK35tFAG6yp6o9EaT9g9vmhfVEpNi3nuFTa+MGBAQc+8yfZZv/0CVz9YMb2uuPSR+5z67AE3vmPDs2g+eqOn/cZEQqU8lbIouP0nLqBrsCXsvf8xNj/yBcRoVFHwxI8970tdEwyvaMXHc8v7Dw/PeyjAgzGTWgQmaC8qTrWWTeux/QwCWlt4/bkrGfz3Gxlft+jf5GE0TCf+tVJIYVInqPhZEoKa3lIuDYRG4VKo9ebGqm984ZV3EJoxGzZ8pqwLHahUKnOAiHc9w4h9ZdXgxhZ6Kzt+EGvUr1tDgPMNSdZ+H8ryqqq35tdKM0QUperPLWL5nGwor41ZnnMUVyeMFlCfEGS/RCaW8csa3YLV0LxzSQHYZYHqfFlm3fgG0Xf+4js58zOfXnfTgVQwLR5rvAHDzZg8lxDHiB6ZNM1hCKiT3htzzieABeVy+sOf9UKo7aAsKG/e5cLvB7w2q3GiioK3/Z3nAbh0qqP6sY767tR3eyodZl5iZwpVCrIsoFXoVoMDaUsYOSj76/ZgMeUzchEnvs2hHnuvSJxCrzRSCu3MEevQP/0PBjBGpAHG1zGoPxR6R1nV1hKlTG6lqqLwr4NyTBniA0909KV7zK5fYu89DfXnNqnuLjANtNN1D8Cd2UTf3k5C/853XWD3LcLmyz7GsvWbz68ZMUnwbsz6evi50sqx+Xg88Rof1clMZL0WU25AWeuNgnzkpIZh0mH8/6FyfSPjYTkHb8J4NAS9Uj7Sn0EuLlrrITElLcjYzDsK01AbXoz2deKzfaKCkE6VFv1frAltUb7ZRWC/JMGd/aeHfQIUMDQoVCinEDzB1MAk3g/Sv5ayt/Y9lk/vEUjvScZGy5IgLHyGbrhR7KRkY3PFfDSi2tGYGlQL5YGiPSbIItSFr6CbgdIutMQTqBzOGFwJtvLbxJFKH/s3a5+nkcrYsi7QBzdzDJqnz7QKMYlQ5kIXYEwvzFOxNVLGc847lxgUBFZXjnFjx8DYopYGNZGEIkmjPczSaZQFVwq6UYg1OKuwG1CUlo1RzX49pnWe6y8HpY9zKPGnEAS8V9KK6tr2mqWaBJjqjzFBYENhmISX7jFt41tcRsy+X04aGUJi+dw6H+u49M/vsvvu47zywYK3/pRDd/Dg22vO/YZJSlvvhaxbJ1AZ9p4CwhqN191b7rq3vscjmC/9cz6M7j3s5MkZDxHldZiGv4E+wS6vkloUhxTYGiS7Juhd7108VIz+69DNGx5KqQ8C/zNggB8XkR9+nY2RSdnDMOAFt/GWrC0yq0INBbW3ol2pk7BNlrwJteOz62lV32AkNvqOQlbM4RvUW+fho6FQi8eu/X7EZIJ+aHiEGyz1pJW+fn30QJC+Q1XqXOVAN74zklihOz7h1n9dM78/Y/z4Ac0rG+hWpQqwojwu70pojvn9d7ueA44RRAuuAinAlf6hL5zDXbsO4hA31GTZlARBrLTySiEKJE0KnIm1oS6PL3glOsNa4xhViQmSAtQ5Nh0VSy48EqNJMf7Ul9h//u1wqkVKn/mqG1BOoRcGs1RJ6erGl5lutwTGDqkNdTdmtbFgXLTYpkIqx+hmSSOAEexmR7wAqtW84+/e8sImCb8BbVINAoa5ZT9kwQyZStALNaXWrfnh5yYIyq6jPbPBhV8vuPunl9z6zpOc/syC7W8uQwa28jGS2JhmMuaFv3w+xDMU3SSsjSKwoyZjUvOa3X0YVdgLpzDX7/YYed5pLPf29Gso+/zaxTha/L7IKMrxOpcFMTNc2d7IWiMw5HP8EMYjwbpRSv0z4D8XkZffvMNJ/22A/xX4XuBV4JNKqV8Skc8ftb1ohRv5U5FCJ6gkWdlZ0DK91r2A1Y3DjXQS8klw4oWo5CQTRShLzHrHe+e3c9F6z6zzfB9eaajUVCQ2GInbqSz2JAZf7TLRzNIOwo2ebatVYt1AJuQ7wawUxdKXR375QxPfsk4J1mrKPYWuSYpEtwpXQDkHs4J2C8r7Bd3MoRcad7bGTgxuob0SHcNLf+kCj/8P14NF/2/wZ5XuLf+8eXj0TAY0uFSrJVpwOry2di0Ap6CHjwyhoxaZcOjjNaoscbMAM7QaVwUW0LRD7RtcIRQLFeITgh1BqnnXKc5c2kZEMW8qCuPYOLVgXm9gln4N2a0OVVlYGd7xw9f9cZdlghJ7qE4OB2aPSvs/VKwrE4hFZuVLVrAvF/Iih2CL8sXbTIsLjD89xZZw+5unnP4toTm3SfXyihgTePmvvgVXgJ0IbuSoHvj4w/ge2CfOY67fx545DkZRnxgx/WwD0wm3v22Ti79wzwtlyaxq6M85Jh6SXfP8ePMRIauoiILQXoNpI8Uyeuad6/sPx8qzD8uih8PG2FfxeD2L/ieB/0sp9VPA3xWR9nW2fdjjW4AXRORFAKXUzwN/BjhS0McRhbwL9V6SsI7XVoEE6z4KZARcaRIu7i3zsL8og4xas+qjcPdf9h+66AHo8F/ZWpWgdOJ/osBFAZ/Ltsy6l7ie8UIn/m4dogn7KggNTnplpoIRp1v/m25WYqeO7t4EHNjtEhl7rJ0O37e2815QqHyLbvDbjhV2JNAab7WO+nOXAjAmddnyH76GwA/CPVn3R9GbtT5skarB6yEvOoOQcAGmsr7crQ/wZr/XGirfHUlGCpxKyWJSCGbh4Sw7AjdyKKcQLekQVm1J0xlPw7w9YePKnrf2G+0ZPKJQRjjzsWDxjkd98psctjYPzdWwBd6gvHQ/lxmsk1Mv1zJi3XpwMttHu1Vw6vMd228tcAYmD1xq4xiPQ3TwZpRfG8UcigWg4O77Nmj+rQ3syBsFy0uOtz0/QgrD4nzYR2xDudYNyq0fe/o/089FzCsAUjJiHAMIJgr5nnbsjbzemjcpNjckWvz/ZbymoBeRf6SU+qfA3wY+pZT6GbLwg4j8yB/icV0CrmXvXwX+aL6BUuqvAX8NYDw65heoVv1CVSoJ9QifJFgms4LXoBVDL/CDwB0K7F6w+6coEKNV7jtFxf/KthVQSC8cUWuNxVNmqmZNUMc2ev54+315RdGfFwqKWmhK3181/U8oiaCsZvutBtloMJMO88LUY/M27FP5G1gK/5m2XkEAdGMY31O0M4UcaNzE4SrBNN4bKBegz57G3b2fZb2qNWxeQo2etRELmQW4J3GkRTyTI8JAzvbCLyt5G6+zb6qRLWWliXVZFGQCQ/XMDFG4xvgAqlXUpxxiffJTeeA31x2M7hnaLUFOdJTTlvJEx3w+wu1UzK4a5H1zFs8fg5nDVQ7TavSkY+P3xpz6tRdgNoWy6IWQ9kyWNas+z3hOwdnsHHMlNRxHbKdUwP9jmexcSWYw0MbvXUdmU258+2mqPdi7Yjj5xR7iwlp0C2bpFWF5oCgDmjPaFU7+2vO4i2dpzk4xyw6z3/jWk+OSK7+2graluXQBM28x2we90olsqojNx3s2KoBh0bvoDbgIA4Xtc6tf4k2RfRSNAaNSHow8RIv+kYBuwmiBOTACNnnz4sxHXY21aRWRHwN+DGBr45LoThAD2vm0fDGBAx2NaB3b/mWWer5OFP5sVbS++6MQkykFWGvencM2qYRAtMj1QLHkZxVWSVQoeTA1F+hpMYV1rFy2L+U9EykAB2YlFEawIw+/iAJVgSsVUgvuj+0x/Z0tlucKikjciNBTjI/VYBov5EwjdFOFaXxdcld4K1fXCjsRWqCyimYLbn/gMgeXL3P5IyvK33nOC/YU4XQoXSTIprfmB7kP+bCuDypqhYrt6JTywiT9Tq9bwFqDkcTmoQxUmRDAFK19XZfCQW3AKlTjlZc2sqbgXemhGzECTtHOS8rjnl1T7PuA9VvP3+VqdYK2LWjvj3EjH3u49BOf90yw4FmoGK9BUi+CtRESflJ9mFRjSfrzztsx5nTFfMTs4jW2SzbPedNsJ6wub3H+ty33/ohBDJhl5z2QkMdw4lnL/XcbdEj+siNPtz3//2xDWXLt+4/THINqp+Lxn9/2XkXdYeYtjEbcfe+YvacrNl/a5LFfvInMxqid/fT/PkBs+yCq2D5DWAcsPmWvZ95LjEkRZbxaV56iegqywwfGnXp4GL3AV0t5gy9nvB5G/0HgR4BfAt4nIos37ai8BX85e/8YcOO1Nk6UQaf89S+0F15KekplDNCEQCWsC+E0tPICRjHYTpJHEAV9glAcoZNUvxuxER6SQ0wb5bzQ9G96K0sJqQ/qmqDPvk/7j9abkb6w5dhDPLoLyiLAPTFQvDmpmXdQHOh03nYCxUEm6APMYysP6ZRzaCf+BlcueCsFqURuuwGi/dy2W44X/3zFW5qn0Z9+bnDS2sM04taEvTjxn2fzIBF6STdlSOV3mpgwlCiFTljrJapDQERFN64PXkarzrdt9PAKnYLS+RwCq3EjoZsotI2sIsFNXEpom9+fgiim+z4+sVXWvjyCEs++KQQ5KLNywcGKtSq1o1zLEvYnPLDMMzx9qADzMazIOBRiR3oH66ye+mTB5gtz7Ps36TqYPzaGS2OOf/xVcJqtj77E/Xe/hb/5H/9D/vuf+4u4IqyXW/dgMmbxRAdjy+z6CJmNUI2vtdMeH2Fuweymo9nSHDzuj9NOK9rz55l89tV1FlIcTkI8ZpATkOYjmxtHCDDT3xxZIFut/c5/p75ej/7Q+G+Bf1dEfv/NOphsfBJ4q1LqSeA68O8Bf+k1txZQqw4VAy+tyzj0YZshFSuLxif++8Ctk/y3il5pZBRHCQst4dN5oEyx1hT8KLdxqAR88pYK8EJv6Xt4iB4CUL0Aj8wh5cAUCuU0yips5WWerRS6gzt3t6g2/GcOqHZB73qqnLZ+/85AsfKv2w3l4R280NO1t+aKuaKb+QMrFrA651DOJEv/xT83pfze93L+Ey2TL9zE3boTTs6FJx+ciwydyLQBEiHFu/ChcYTzyTeCJdX9T12Owi9TBnSw4hKU03mrPhMUblyw+a8r9r+hodxoaJclzH1WrMwsbq4pll6GSHT7pyF422iYdSwvKqqzS67unaBdFZjK+iCghrf/0HNZc3kLuujpk7nwiRVNuwwuyeut50IwJPul7+P5FkVfOiKcXxoxiJ2vy/h5UDrHf/sm7tQm7XGLEsPuU5qNa4LMprjNEebaXZSFX7n3jbRvX2DvjTn1Gf/bxbsuMHuxYHyv4Oxv3fFrtq7BOsYvP4Cq5Pin7zG9ucnd906wJ2ccPDFh77Km+/anMCt4/KdfJpXt1sqXWB5VyOYWan8Zzq3s5y2fmzCHKruRkhWvMphGg2q6Q0rujY5HAroRkT/+Zh7I4L87pdR/Afwa3i79iddVOCKhebFKN4dvgMy6C3tUPWqVuXhrQtpvFwU5sF6nJia85BS4uF2+0HJBrvvF6N/3xwDRc8iyZuPpZbTNnqGj+vwAHY9JcJUOcQJfLbHdULgqyMVOY9+y5OzJPbY/ds4rjoJkmejWW+zd1Adhuw1op95ydaVf2KMH0ByH7riFVtFd6FA7Jd2Ghc0OrMJuClfed5cH3zzllb0zqFuXecvf+jSS9TT1Fn3A7XO6XY7Xx+sT0vxTMPMInF6lzEn8gXZBwDvxUE+EcMR3Ajv/8TnzK1OYtCjjEKMpJx0t0F0QumPG8+c1sNmhC+s13krjpl7IN/OKW/PKF1NTgtpqcbVnmUjXBQFU9PBL5M5bSx5HSGtzKIwH69TPj1uHYuJ55wZMviZzxZKvV/DQiNHonTlv+3HHKx86jgu0WbV3gNnzwYonfuJF9v7xSR57uuLeX9ln+pGNFPwc34fVKWBVE2MNz/31xzn7u8LoQcfk6g5iNKaBV797k+VFR7kDzUkfyHr5Lz9BtQsX/+kNn2RVVenYu/PHKe7s+vnKrp8vhdH2sA4kSCqvFaXyeVNq3fN7GONREPRf6SEi/wz4Z1/exoSm3Kp32YC8AUjizksvhKNFrgKks7bDQNFKAtf1gl4RhbWg8nT2gAemImRDODDeaLHiXiao43GLUb11m6yYfkErK0ERhPdISshSQYjpxlGEG7Fz/nTsSHHq/C5tZ5iWDXe2BN32bBNXQNGGmzwGaMXDN0qgHoFZ+u8J+5RKUPPCY9gbnZ+2yndZunrrFMXIooxgx47m299F+ZufYcgwiZRMcfow5dJJUoaHaosPUt1zuMdz8Is++1RlllwQBEqEzZcUe6cMyvgyBc4qynFHuyqQCTgxMLPo0pdEMIWjO7eiGlnaVRHWF77wmYCpLOr+KAjjEGg00QrVwTo1vZBPB/8aEiPi9nEtxM9yo2XIwlmb3CP2O2S7RMOocz4uXvi1cqiS5t4B00/POfZzV9j4/TugNdOXdhjdm3Dr22bY8ycwtzxG/+QvLX2XssCzH93Y5aTb4s57x8hWR+cKirmmm3ovtJ3B7e+5yLlfesHnSATF1W2WSHmC8vp2f+xrpcBdMgzWgrzx9dC4sw9ZMn9d0L/ZQ6CzoVpg75auWeNhyySEwbt00QvIF0R+MxwF+YTEpKQo4gKKjRpEWCu+lO9HqWDFDvYPHj8OdWzS0KAYeA8Db0Gy8zVW0F1k2gjduPA0QQ3zxZjJqGFatHBxhdubJGaNq/w05kFlsyIJ+2Lpn7tp2NYqVOlS6d9q1tIuC8ZTXzmxKi0isHAjurHjlR/sKL/t/Tz5c7fovvTymkCP1n3OG00lJIYldIbaMyoDpbwVHaEK5fpEm5SQlF0LK5z5vSW731AgLTB2lKVFRPkuVHODVN5Sd42hnLZsTGqWumRUdezMfY17VThfJ6KA9qDinf/jVX//tx1iDKqhD6CWpT+hYcPvIksmyj/P10defTFnm+SW/lDo51Uih9vH/cRn5zj1+5ab36loDnSAhAbKSIQY1RxIAAAgAElEQVRjH72afi9VgVk06HaGnRSY4GmUr9zrz6EsoGmpru/w2HWQXx9x9U+foD7jKM8uqVdTDzNO4Np/+BYuf/gVutMbKOu4+56Kc59c+gDu/nL9WKICj/GNTnqYKiqDlKMxKP/9EIaK8bOvkfHwzvwrOZI1Hfi6oftSasYRMiiTRR5fO0gd7q3411b6SpCx6mJ0B+Mj7CPCAL5jT2BLxPrdsWtSfOT7cf1vVGf98TmX/i++jxZ6OrasY5NyLn2nnA9Gq67fXnWCbgVTC8pCtS9Mxw2dNTxYTRMbTYLlruuAMlQ+ScpVsP+2joNvWuGMF/q2AjsWpJA07XG1285DH4VxbIyb1HJPKUEVvoRC/dYVN77/fHbd3JqFv0bHdHLkw9djHijRvLlGPlJFzUxgJUw/PHfKW92AdZp6WWJbA6twa4T69M5qrFOp/2zkykvnWT7SGF/yOK/5Y22oyRNpg/ZwDwKdCdvYgCO31ENp4LXAZXzE3wyhmVzg5z0ChnOUMX+UFTauzin2NdUeveeZPw/2r5e+5PLZT84xi7b/j+i1pI5UGVOotTz+Sw/QtUJ/ceaD3WOHK2B1BmRrRnNyxJ33b1KfgmK/9m0yT2+F65aJLJd5O/maWOu9m0Fig/X2hsfXG4+8yUNYb3AQ06rb7nCGXbZQVdboAOhZEZBZ6UEYxqh9lwXUXCZE0s2mj15MFtaoYvlNF7wKBcmqXSunEOEo6SEnyBJvwv8rFTIEJfRZbWC0awFfm2b+2ZOM37nDQV1x4fQut26M6SY+QarcB9V5AS/as3GmVwtcWdDNPH5fHkBzIsBZAqrVvu67DfV6wiktG59QNK68ldwVxtfKQbH/lOPscH6OsO4Tdj/YZq10QlbJ0F+/XiD6hhsE+qVZE6A+W9o/tr5QMP+jC2xj6GqDdJpq1tBuAk77JCjjsCtDXXmceHVriowcygiq1r68c6dwYwcbM5hnBDUJDViirsmDo7Fkdvw8BmejEB/yyWMzG6VTCWp/XtaXqIi1XnIBmGoL2R7bzxk9GdyhFg1P/fw99t9+kpf+0gVMDZd+c5/FpSkbX9xGLfMyExaWK1RZUtQxIznMf2f7TNxo5GiN25j4oCiBm++g2tGeNFAIiOLa95/iyj++yejuBuq3QkOdumX/yVNs3rjnPQTn178/h/4eOdxuMSu1bB1HGgNvYHwtWfSPhqCH9YuPTZDN2sWOSgDColC91TcUvgP3uS9DkN0cmYWfRo7ZD/cpGTwBmSCTdVzR6FQlU7RO8QLoISigDw53bh2SKjS0vr5NEQRcs6E59Tnh9mNjTGV54vg210926H2f0m6nnjLpCs+qsVNBFyoEZ4XJHf+dqxy60ehOYUfWCzqgW5W++JlTbMxqJsaxrEtfvLFwjKcNi/1xyBEYCPD4rPShpKpExTziu7XtBpz81+Loi1FIqXGlRrTi5Bda2j/e0YhiPGmo6wIdqlAm/rUCjO8utTVZcePGFLNd4C7UyNL4ypatQRWO9sIxzM3b6Voe2dkoh03W1kF4raNVPIBioLfiYR3OUe4wpJPj1FHgR4hnCB9p4xvYoNl8fpditcmDZwqufmiT+qRDfddJznxKcfLT272Sar03KtorHtEaNykxu0vfEMVobn/nGc79xm2ffHWwRMaeQdMed1QPNPVpi5TC7MWCxZMdFz/qz9XsrXCjMp3D5hfu486d8NU0Y6A9KsMIf2WF69a8pvj8kAX91zH6r8TIWQZRyOfFklJbP7d+Y+VBvtjUI3eHnaBCElYK4ua/y63KoxpKxG0OZYUGAbLGNpHeagv7VBKEjuEwbgs9Y4i4Oxc42yDiA7O60pg6JFLVhmracm3vONVmTW3H3kKvNS7Ql2Oyl6siN9wfmhTA1OJKb8kqq4jVGaVTqFCGwFqNEz9PxjjGo5ZSW5qmwLlyTWAPi6CtVcBkHc4BshK/R+DUh+Z9gFHHYG0qfOdZNYVxNEBZWDqrqcqOtiqwrfbtA8cdzmq0dtze3sRNHMVBgW0MjB3qwCtLaoNy3eFjeB2vcj0hKAiuhDXn63UAv+RYew7zSFhrToPNBF9MpIqvh8cTX4ovNzy5ts+F2wVSGa5/15TmmHDvvTC9s4lZdh6Tr62nDweItJsYiqVFiinFnu8FsPlK2xtVgOocdmPM6J6m3QCML5R24bdX3GTMKx+wvOMz/rhV9FrEd3hTnfOsnNkUdveAnHYZ10mmEIelIx6msP86Rv+VGBl+ngTwACOPVnhsQJ3j6PkCWNsuWzThOxXw/4TF5+VQc8WSW/NReMf/jJ933foxxVriw1hDPL6I02fxCDVMiHH4zwJOr6yjmHcUK4dywpmPeyGy/WDGqa05etJB6bM/lQM7cbRbDrvhsBOh2/Cp/YtLgp2A2JBt3HooiUJg4i17sRpxmuWqxGjHqGrDJfENvEUU1QPtBVd4KK3WHq810nepE1GOwwbKZYSycpZNDFRHi7MySKGxY4MrFa7SnJgtcFbRdobCOBbLCpSgjWN2bMWprTll1bF7dxN7e0J1rKY94Y+jmDXoVkHpQAu3vmXqjyEXpmkdZVb60HuMHPmyWMfgYxng2MjjKF583IfOflOYwGDJMP684fZRiUOxdn9jUU2HXtaY/RWXf3WHp/7JnKc/vKDcbbCTgrvvKWmOlbiRZnmupNheIUbx8p8aeaJC3aIay/RLD3qcP5SSNjsLnviHt7nwsY7RrYKzn9CUtw+48iv3Kc+seOk/uUJkAqk6CH0RD/s4i1SG1Tc8vu7dZPGrdA/HkcfIHnbC1Jfz+CoYj45Fn1s40bWEgRB0WXGpfCHQW1ZHdb856n1ZhlT8iHsGqpcKllS+m2FbPDfYV16HXGtoZd21Lwof6IOUxp/2HyGlUFdf5R4NeAggUi5XHpeu5xXHTszZqGpf68X4/++OZTUclID1EI2rBLFCu4VPGAJfGz9OjQrC3vhCYaZwaC3s3J9x7OScwjhso7GN4Zn/7XmcyeYMs2a1r1W/XAvUZtBN3jw9T1SLChaCoDQBn9dIUSClwZUaW2ncSPsCcMFZKip/7qtlhSlsMBIVdV0gAqt5RbXpK3e2q8LDNUbo7k58dzDxwn7+RN+nVEXuN3icPiqjYgArxTUbcW1Rh88lX4d5Z64k6EjbSrHOJ/fpzGGDpu3XeKR/Qj+Pw9IM4pvPExwL1TnMouGxOwopDdvv2ODU7zygPTnl7jcWPPPjd/3PtO6liwNClcn8Wm08+4DZ8zplK4vSmM/NcO854Mb3nef8b+34RMicUTSdgNaMn7/r76usWNxaQloeoLXZXD7MMsUPUWf8YY9HxKIfuLHpomav4/dxHMGkWXepB9sOM2dzvD/HmSMr5LU8hvjbWNPkkCVie4ukC1Z92/bP1nmvwkHO7V8ryRvfQ2+lOdCdoK1gKsuqKdkoGzY2VujCwayj3Kp9p6TKESuuuaL3UX3JZIWMHDJyQbl4yzdh2YDRDhFPuSyMwyjBOUV1dYQ7mGfsksDMyS36zNrvr9sRyzTO8RFegBxVHdEov9p1wOhDRrQYRdMV2W899CQSLqUWrNPowiHiWy2ayoJx/nlqcRMHI+vZN/FQs16lELyMNSt+cI5xvfiND6/lIdyTey1xPsIJqHw9x+/yblNr60QOr8/03eH3Eum/DlRtOf7cgvr8Ju2xkid+4W5PIjBe0UpR+JiRUeuJf2XhlUHpBXX87sqv7nPpRyvKeVhzRyQ5qtYikxGrd14iJn2l7OD0OGIO8zn5KhpKqZ9QSt1RSn0u++ykUur/Vko9H55PZN/9TaXUC0qpZ5VSH/hy/uPRsOgVvQUcWS9pYa+7+P3iN32gdsiGyS2C/AZtuzXsvv//AdNGBaEyTNDILY94PHF/1pFI4/FcUmErHaSsSlaMsj3DRGVWnRT+f3wxJ+Vr8IhCjE8oM0a49HMV2z94wEFb8eSJB0zPNPz+3fN0VmMLR7MsKScWtSU0ixKF8nV4SsGF3rFSOs+jFzClZ6AY42gWJZNxy6iwbI736ayhdZrl7pi3/fCn/TSEVoCqNOtZrrHuDZBKJETlqXxTEg/3hDkZxEVEOQ9bYfq5DV4DkNosisLDNoXH6VdtQdcY3JAKp0K8ofY9Y5UC12kv4J3CxR67WlAHPnFM2Qzv3pj5bkvxesZz7bxSSAHXzPoUrVHRfBYJCj1TAOCFY8Tiw2fD8hypz3D0EozyH6ooFDMBGHMRhrXw817Kua5N6xjMgYd3wMNjUWiLUuy+c4udZzRmAae+2FFtN+jGohe+zaCblBxcmbHx8hy98vkXqrVU9xecviPQ2r5DnMlw/rZDtS3jl7sevqkkg7XifMVjF5IV8lpxtD/IeHi7+kngfwF+Ovvsh4B/ISI/rJT6ofD+byil3okvCfMu4CLwEaXUMyIxWeDo8WgIepS/yCngmllBln5Rd9262y+ZkB9CPRIWx9AiX8PlB/zsWF1wiM3H/cXPh/VM/AakOuJd6K4krbcE9cCq6boMd9VrbdWUdb6tYhHKQBQCTqGVSmvdjhRaO17dPs5jJ3bonObkdMErd06ijWfIlIXFOk1XGlyrcQaYhqbZQYEp7amOxvis1FHV0bWGui3YmqwotaWzhqYtmD5XeSgjBo5jdnDuShuyDFjtC9X5DxPzJo1MgK+NMM8Se4paByZa+F6wi1HYSqUeqYVxuJVBbzi08dCT0Q7rNLbzAVmMw9YGHSCe8VbN6qCi2C580DqUnOjhLAXLlYcWyhJ37gS3vm2Li//k5cOWuu47I4VelYfPK4cktQL8PvJm8MTXyQp2CTbp/ytbo/E48tdxGrO6ML6nsiY1qo+khM4hmD7DOwa5w/1mK8Xq8QZdWV55lwYpMPcnPP3zByjnaI+NePAOzcGlTS785k6fTxKVW2py3/+/shbRBZRFX6DMCYzU4cSzdDJmYFA9hNE7um98VyL/Sin1xODjPwN8V3j9U8BvAn8jfP7zIlIDLymlXsD37/j46/3HoyHoFf0iB38zNKFuRsTwYqGroUV+FCMiBT8zzC8fkT+fN0qIGOtwO63WMcI4hs0ldFBKsaqjjsLegaUP7kVlFiGepFT6m1k55w9LeVqob3zufFOR0vca3bm9ybGzB9ze30Qp4dhkhSl8JmhhHIVxdDYIOeixXIUvwWD6OVGh5nnb+fruWgkmYO2NNazqkic/sn94nqPCi88ia4Jf4rw6X/ky1rQfMnP6H/igrIr7T1TC9TICsbmMGJ9+//hsn/vlFkXMjA3HbrRDFeC0YLVGj3zpZaWFquxYyQi7Zf1NvzS4kUM3A0s5wl51y8GVwRrJrOq8/d1afgQDrD4+J6Nh/XNfeiMaMxopVRbHAZSPW6hmYAAO5zMK9FjUjWixk9XWj7X9+/7EsUmPGM3qlKLaaLynV4diSZShWpzfzo1gdZqeKqy198qyJKukdAzJqseAEGIRmXLzTUiy83AB/snLPT+s8eUL+tNKqU9l738slFl/vXFORG4CiMhNpdTZ8Pkl4Lez7V4Nn73ueEQEvfLNHYL7KuMKunFyB737F13huOgFVNHfeLmmj4shx87jyHtdpu01DD2nqHiGOGz8Lg/Ehs9ij9S47drrrBaAil5KFJIiHlYqTDqu5CcUPWarlQI6RPvMzgtbe+zVY7ZGK5ZdiTEOAaqyY1x0FNrhnGZjtqLZLFjujVHGoacWVxfoog+8Wgf1svR4P9Bag9OKUdGxKjv0868GBkjm5USWSD7ncd5VSAyzNln6McEtwTvJWwpQR8ilELzll4LgkZoXBJIrVF9b/zu36URTTZsQW1BBN2iMcclbObm5YF5XTKqW/eWIzmpf10cLiK+CgBKc9eyY1DS7KJDNGfWFTa8EUhvEICS1JEtZgU/Qy0p3pKbo8TUkim8SuGG++pLcQVlEhZHlYcRmPKkQWr5eB16nBOjGC08/b0pIFVltodGtS32Mu4lh/0rJ4k/uc+IXZvCdOxwrWxprmIxalBJWn57iSh9Yl1LTnO6g1diNEXreeCy/KDOvpD8+UQpifFvEv47Z5GKQqug9C5Fk5EgGaamh0fZGxpe/q3si8s0P6V+P0lT/xiN5JAS9GI2b+cbLyRoyyn9mvcYXyUobALEAWSoolu/wKPfuUG9P21sJw1oaikGwMCZpxQMeeAEuKBRle4WU+YW5wE/v41+m30Yry0M10c1XSiG4xNpRSqEbx5VfMTz75y/w1iu3ODlaUE0se6sx7zp9i8/dPY8qhdJYzh7bxyjHtGi5O9mgsYb9gzE0GhkrCuMPpCwsnV6HUgrlKAuL2XBJkR3yevIxFDahNnnKcnXSlxVIk+Mt/kP9ZyVUkAwKUTUdqi29YBJSI5l3n7nFzfkWk3GzhmIUxlv3WgurumTZFjhRNNZwZuuA/4+9N421JMnu+34nIjPv8pbauqqrt+merYfDHm0zlkR7ZJG0aIqEZQkGSEO2ARGWYEKGF33wB0umDBuWBWjxbgs0KPiLDUuUbC3UQkMUJXARpOEyHHKaM8PZume6p/da33pvZkYcfzgRkZG3ajZOcZZGB1D13rs3b97MyIiz/M//nLMZWq4dnPDq3UNiFPpUS1oleV9OTJguF5w/eYEX//XGagd1LWwqRZd+ao2Fp3WpMSm7GovPpbilgv+CKQwBcvY0MEEfuS5/mmNNLQIl6DwDO1u/IsS2SiwEYudKi87Sx0GZrH0n3P62lr3ve40LzcCtf3fg0mrDed/inbJqB0J0+FeU2FohueiBLuIPBz7zHzqe/p/clPld1XzKLCIVmcFa5T4FYuto7m7R1tt+d6n0eOL4qzevNrr7wH2/iSHwW826eU1EHknW/CNAqvX91fXqyONNwrqBuGgKR1pbR1w09vsiv+YL1lgaCbeJFSBGFdOCebppE97Pms9sGvjirmAVYCNXZSzvVayJ/H1N4khXddVnqf27r0nqq1quTeeQU665skNpE1XcEGjOInsf6/j0iw9zY7PH2dhxfLzibLSsp8f2jri4OOfq6pRlM+JEOVhs6Hyw4l9eiVtP25jQHYbkSchUokDEYJzday/zk7nh+V+ZNzfNX8pylWIle6RtJ3iiDpqXxaAT1p+Ug9U+ChULya5rr+mJCKt2pPOBxkdaZ/fknPLw/jHORav62fV0PuAwJTiq42C1IQTHhSsnVhLB6yyYrusFd97dEi+O1of2cDnNQ712HNNu9DtrakfIzz3C6rj0WqnllC1951Lf1AyB2Gux9VYQT6pWe81kwWsjqQezlNiGtq68rm362wvj2nHylMU2nCiXVuc4lFU3sGhsLS6bgdd/b2Tc9ymPweCwthtpl5aElUtu13OSW0vmnhDq3aRsksIZ10aftetJvaNbNz8fD9CiT7bYV/LvNzn+HvBD6fcfAn6iev2Pisgi9et4N/CLX+5kbwqLHhHGdVO0vjqsC1RNP1RS8a+00RP+LmMkSuL4tlbLRlOBMStfLIkKuWNF5sVTZ9/lUW/kDBcVYe2qWiDVpg2hYg7JXMHkEry7tLhdwbmbDDIMgJUh0NbuFUaceqvJ/ouR23eXfOaZx3n/Bz7L267dZIyOt124wwcufJ4bwz6Devb9ls+cXuWw23B9fUy8KHysvc7RzT2Oj1Y0i8DYe3wbCaPDLUbO+pbWBxo3MgY/1aGpIYNaoNdzlOd3937Uet9am8FcGyh5OcNwbywlhITzR6Tvcece3zU0WzUCVQMrNxATLt+IoipElRKjOOkXdG0oCutk09njSjzKS6sz9rqe144OWKwGvI+ldnp45Aqf+k860B6CrUt/63T+jEteRKW4yvwomqW/w+iKCZ6xQndhUg4RzIOPxZsjmjDO5zV+QTJmhNKcR0lLMVGIJagJSTGYBoylpI2U3IO6R/KwFl7/YODKE7dpXWDpR5o20jlThtOSFZ555gVuvXPN5iesH8L+/gZVYbNteeWDax792VOLMWXl46Zm94hDBdyoE36fgtjNJnD65B6r17eljhHJ+8jwUn9xxe2nO6jR8q9lPCCdISJ/HQu8PiQiXwD+K+AvAH9TRP4E8ALwgwCq+jER+ZvAx4ER+I++HOMG3iSCXh3EhZv1ec3rXpQiFHP9GNfnbFMmgR+SQO4m5SD9aAkbNfUyQzj3E7QZPtjBFmcWWrbgYcLXgSnNXeevq86FY53WX0MYM+uwgjBStURJgapSlA1wPVx59pRLn/Q8++gjvOfa69ztlzy5f5tfuvMUj67uENXx5PoGD7XHvLS9xKCeO8OK07MFqOAag2dyEDc2SWj6yGZoiSrcPl1xqTlJTCG5NxBeB5p3S0nUXlSZvyTw0/MwaKct8ZRZ7fo8R6mphWxGyxReO2QUXt8eJFxe2Wt7+uAJaiUc2gRLXVyesw0NITourDccnS9Zdz2LdmQbGpwo+8st25+6yqP/9JYl9YTAjQ8cQOwLvW//RabnmJV6iNBW0ExSAoVRkhLhZhi8pOzkOpaUg7JZyFcKIXZZgWYoRKomNwZxaCO2fEMsVnusWDTqhdDm3IPkXaSYx52nhafe+Roiyn5rXs9hO5UVXriRUSfI5OLinGe/r+PkeMmjqw0hOvYWPa++t4GfZY4zZPZbvnyx77cXSNdgvy/uDKaYkoBXl3o8tI7txZY773I89NGq3/DXOh6Uc6D673yRt/7AFzn+zwN//qv5jjeFoLcm2aSFC3UjbU1ReXVW/8Va8zmz7pUJu3bJnVc1TFMEXTU0cQPjWN6zE0zUr0KpBDKFr4xd2lrGW2eFzSoLTitBVwPG9XF1an1mEdXCvxb4mR9dn786nwQrSOU3I/G5PeJVYeFHHlvdIarw4vklHupOudocwwjb2LDyAws3cuXCKa+dXsQ3kcYH45tnnrMoXhRV6MeG/uU9cDcrwZ6gll3PpyhAKqHvJmhmt8lLOpeoTHsuxjllcyewnuEbv420p46lH1g2hh87URoXaYhm1ScYAmDRjGzHhm1o2Fv0hX658CMiyq27+7z9V85hjAX6k4B1rwoOnNJs5/OvFgwgs1VKzCgxpopXU2rYVGvLMTFQau+nVgr5Z5aVeWl8MbjRMSmD8vn8vJgJebOyLag9HEYuLc85G1uWfqTzBtUs3MjCpd8Z2aZGyXteefulW/QXPGN0piwxNhNOYJy8jdn1VhDWrIqsTNVIJSavPht8jfX/jQ1sL+/EJL7G8a1U6+ZNIehVEpOird08SbXZpRTpckmou0YnKKdE47HaMNECai7VdQ8HHf7coU3yAoaAtI2xXMCssbrbTy6zECrhy3RNwJx5Aum4CK56HLn2ei2cgXu6E8FEA4X58U0zcahVTTCITlh+duFFePInt7z+vn02Q8uLq0v8gUuf4PsufJRPb61+/NXmmHevXuMsLtjGhr1uS7vf0/jIwXLLMHqGoaFtbV6cKH30NBL5tv/5tanaYK34dq33PDf5evM85AJVMdqKVZ3mOMcexDS7aiw4/HyRKGx7xDmakx71jlXr+Llf+HaeeuZlhuiRUVk3g+HwonRuJKpjTBZ+I5FFM9Lk4PT5Hotm5HM3L/P2HwW3HdF1Zx5FhCu/esydf61h7IXF4Zb9L1TCeAxI40uSkUWAJ0E2PaN72TFZKahPkGNMzc1rbDtDHzBBmjmQ6yvhjwlwCWrWsJ+s4QLVOApTyfB6UmYxbC/CH/59v8RpWHB1oQzqWPmBtR9oJLBMnW0cyjY2BByn44KryxOCClEdd/oVTpTttbuMe5dsmYzJaMpCW6R4GcbmNUPFwimKLpMH0rliJOSeyhqtL8O1X+aBCvpvljo2X8l4Uwh6HIyrFKxJFr16UmVHinUfm/y7zJvM5wSgMAn4wgDcxtSfFVDFDTHVjhlN8NQc5cRamGGu9XtaWRSZ4WDffK+gljht8uyOFyHuK454VjK7zJM40Rnz5gZyirhWtMb83o2bB1y4dMad7YpXhovsuS3v6F7n0G041Y4nuxv8+uZx9v2WZTPy8KVjRJRVM3C42nIELLsxYdyBu2dLGm9xAZadMSJ2O3lVVuystSKVhesT/BX9vIaL10khprZ7Uoq+TbtQa09gGJDzhqb1xM5x+NmWp77jFi+fXQBg2Yysfc/CjzjjKwGY1dkqK9+z3/QEFU7Gjs4FHv9fGlQgLBvDjwGiEhce3474w8B61dO9csYUpM+wTcrazT9LMl7thU1rabffsGHrzjyJ9H6JSzkSBz1b4ZOgz7Gs0ikNU/oxwTSTkE9N5p0QW9tfw1oYV3D63p7ved8niuUecTQSWLueNinJhZugksvNCQHHXbfm9rhmjHbPF9szbvT7PHV4i0/+qQb//1zm8PlNoW1mgySP6I0CS+vN4Rkjro/EtVURnVcnnWIS5lA8IEGvfEvVunlTCHoFKggwUcDSppGctTcJEpcFe4LE8VLkalSsl2rG/9ImKwqAdFzCP2UIk+BxOpFrchJQsa6N4mkXmCEVmTZmtuJyZ56cARkrwQaVNZxhkERNUAVppmMqt77mVOvOeYoCENDguLQ6Y0wbtE+T2kpgycCQCOwnYcH50HK42NBILMHM1SJbb7DX9pwtOvYXW6NIJtaTeVgyBcolz1FE6wBL4ybfuHg0Vc39fE8uPXCv0FfzHqbnUtoS5thLjMgQcH1keVP57fsvcadfswkNjUQaF2gk0EpkUMeonoUf6dzIlfaUVgIR4aHFKbe2a9yohIXNTcyMo6jcfN+SRXsH54yNMkvaSTCdOocum+nZJEtbi3CbBFNmCpUEwdpwaKa4jlL3T6jmKp8zMu18YZr3bOVna9hJMo7Mig+tNZo/fQzCYxu++z2f4nJ7Wq7PEfGJBhSTaz2oZ+16PAkG08jSDaxdzxldOlZYeVs7b794i1/5wCUOXsjafxLy9TrOMO245+gPWvZf7NN8Stn75bHXjvKDlHhvWfRf55G0tURKACm2lI2iyUA2DM8YBPdo4yxzFFhiLqFa79XYJmGfWkrQIxIAACAASURBVPW5QZHYGPQzRLPyofB2y2XtVtPL1mikcPtLMbK6/o33U6ZkNrxrJQETrS5biJlj3/iZdwHMM4YbV6hyOZhWC4x3Ht7k5naPqI7Pbh9m6Qb2nHUWOoor7o5rXji7zCN7RwW/vrVdc7jYsGw8Q/Rshpbrq2OuLU84Cx3HB9dTUavkVgsWH2DypuyeUkvH7I3txhZSYFLFJQu/WgKFaZIE6jhWPPMq0zJRY2UI+G2gOw481BxxsTvjTm8lhg+bDQs30kpgUM+gnkvNGUs34CQyqOdkXOJEubw444XDthLCFv+JjTB8z11abwXeTs8XGJE+KVdxxGXHnffuc/GTJxWPfno2toYofYlVsISnHIxVMbilpbSdVCe4PqQGLxSBmNkzmW5Y4BCywpksVGsSLsU6VgfjQjh5Aoa3b/iD3/ZxRvU0Eog4Vq4vym/hBvtdnc1dbBgkgEDLQJdyQto28NpwyOlo+S9BhYUzb+odz7zE8I8fsS5UqSyEJihWc7ygMsyHPeHuOxZ0JxE3mizQBF9lKLZY+Tto6tcy3sLov8wQkb8M/JuYDfZZ4N9X1Tup3sMngE+mQz+kqn/yy58wCXhPgW9iQ1ogJMGS3oMi+DMHF6afEqcF4Qcgpkbb0TaWG0mCntKv1Q1JAQQT/FAZo5nNUwnjXaGttVCuXivHZkhjt/dnhjaylZNrpXif6npVLr+b/27tEV1Rhv1hw7WHb/GZuw/x9IU3WLstd8cVt8Z9LrozznTBJrYcJGF10GxpXGCMnhu6x3dd/RT/7Ma7uLY64YnVbb5j/zP8/PF7+If/4Pfy+IEpiiKwvODGyC7lFfVWgzzPgWpJeLN7rYO1UylezQK+cUaLzSUlYN51CMgZxTIEJET8Vvkvf/oH+FPf9VP8s9vv4lJ3yrXumEE9rQRj4CBFyEd1rF0PDVxdnHAydtx8puXKxwZbX03iqHu4fnjE7fM1QYXD9SbxvH15ThICFz9xkp4hE6xSatnk9Wr9aS1BaYJuYiYfYGtTU+OX2KUOZUXhT8KyCMks7J2UtV8CrzsjtBBW8Oi//BK/4/JLLJwFVlsXWciAlzgT8tNUxyL0I8qAx0u27GHteqIXzkOHF+U8dGxCy/X1MR/9Ewdc+j/28RtjcgFIgpRmQ2F5K3L3HQ7fpw2dFJVNUyq1kENVD1DQv2XRf/nxj4E/o6qjiPxF4M9gBXsAPquqv/OrOZkCmVWQYZuC15MWcN5MacSkFNK6MOsyYfsG2yTLIG2KDPOoU8MII0noU4JbflBctjxIUJGbrArJbIpsxVZYaik7nL2AxJZRZYJhEuNmot4xCTFVC+bVOHeU+XF1UM/JzGoOC8GJcvt8RbwgXPBnHDdLWglstKVXT8ThJNJI5Hhc8HsufI7nzq/iRBliQ+MiD3WnXGjO+fnj9/D69oDHfr4ndi5ZoJRaKNlVkWBJRjOooaoxJDl43EiBwtRZDR6t8PpS9wRrhyd13kLfT/ddz1eC4/y544I/47A95/riiIfbu9wa94v1PsSGgDDElrXruejP2MaWhQwMzjHuUfjqmtegF6MZLjZEhNfvHnDJhdJLoCh7PwVRtTJMYqorU4QwMsUwJH+PlGPKHnCCZuVIUqRxgjPKHCfIcnfk67fPUp5bdCRhbp5O6wMBl6zwLdvY4lF8umAvAYcFW03gj0Vx5nHgN2xjwza5Ei7BZlGFxy/e4fb+IcteJ+E+TlTKOqtXAuy9oolfP7f2s4AvsuGLMY6+2pFkxLfK+IYIelX9qerPDwE/8DWf000LNLtuRdB7yJz6vHAhQT0tEzaZ10CCcIpwb6bPZ+GZrX3fZygCfK/IyuGThT+DJTSfcxL62d3OFykhImPeZfXnEjZdoAhX/lbn7PUdHH/C3lOVwWTtFiETlVwjXIJy9ITjWtuz123ZhobjuOKyP6WVkY22DNpwGhcsxbDqt61u8TM3n+bq8oTjfoGXyPsOX+Yzp9f4+x/6XTz0YcfqZsB1MKymze3CpPysBR2J7ZSFUqriqJigzxa/TB6R4czJ6k/3LGMKwmK5AnXgVxpf8gnqeZIhmGcBtDLygYPP80R3C0fkwG3YaMtpXHDCkpAs1o02tBLY9xuGFMPwGxgXDlGD92IjhIWVS/htl17h5c0FXvz4deLepii6vBbL80oJPqVOfpMT/yYFkKHFgj0Xa37nXN1kpUsdlK4EfYEuK4jIlqFUxzN5yB38jksvF8E+JLB77bcsZaD1IXlBlkUdVXCYJX/gzwnq2KglkhleH9Pn+wKPtRLYBDvmsfVdPv+DxzT/575Z52KeNNgc15a9KDTnOmHztaGX9nZO9HpQQ3gLuvlqxx8H/kb199tF5CPAEfBnVfXn7/chEflh4IcB2v1LRTBqjuGlf9MGSNZKIrJYvRNKENcw/GTRx7RP4nQuN07sxCz8JUBYpkBuhDBUlv2YBNc4CXi7QKYMxGgCzQ0mgFwQpLl39RRhFqIJkkWydoPt9BqiyQyLfD+IIN5qlNBWGzxZ/Zlad/6I0vnAk3u3OWw3XPEnHMclEcfdsOY4rNhok9xw4YXzyxz1C14/2+fR/SNuDPv87Q+/n4PfaLlyx+6xP/CJipe9mXyB2L0GLXNnr2mByYiV8N+FIbKgr6wzaV1SDPaeG1Jd+qwMW2/ln8cJWpAYcdtAcypc9GccxxVrMcF1xZ/w0mgJYk4iQ2w5iw1LN/DacIEL/oxWAj/+iQ9w5VUlttW6w57pZ56/zr/yu5/nRr/H/vOO/rCdCagsuDQJoSzQSqKStzVW1qSbftr7Mt0z8/eme5zw93y+6T2SwaCTYQMVpZJyXbGD3zi6xgcfeg4wBs1GzYoPOFoJeCzQanBXDuSPbGI7u6ZBzUPK1v6F5hwnynloubY45jQscCjvufoGH/n+PR76kKPZpmsOk0DPc1D6C2RvnMnQq4OyD7rgy1uCHhCRnwau3+etH1HVn0jH/AiWxvt/p/deAd6mqjdF5APA3xWRZ1T1aPckqcznjwGsrz2hxeVM1o9SLXqZLKLy+QTnZGu/dvlmrmuyCjLUU5QESc4olgw724iC83ZSN5pVVtzgaHx+4+pTuX8CQ4IqJFv+k7uuDpxzpVridAHp02kDTLzj6n46VyzkGr4qkIEXwr65zE4iv3vvOU7jgqAOh3LgNrzcXyIiM9d73QxsxpbD9pzHFrdZvtTSbGxOo8jkWTWTgMnCOziQzHZKQkbDpHhACuzg3ATfzGAwsndi91tMZUcRNBITlDaCuIjWLe3SaE7h0G3oZGQpA50kHr1YXZsMR7RuZFDPS9uLvH//hL/x+fdz4WfWgE7XnWA+CcqVX2j5Z0+9g88/+xhPfHokrHL2duatTxZ24XxnHnt+K1WeLJBXZanmpKWsLLMl68ZpKkxJaGGbaJPWZ1kvWHkGssLVYhDZ99oxsYUXbl3iO664FGhtinDPQfmMz+efQ2zKeovqCNXiy94QGGSzdgaveQwuG6Onc4Hrb7vF9iPXEuvNnnFRdHmv1x58hl193jskGJQHP94S9KCq3/Ol3heRHwL+EPAHNPEOUzH9bfr9wyLyWeBpvtLqFJX1PlGyqmuqcPmiEIRU25oi8OvMWpgUSB4xvafLJLhC2lghCW9MmEv5fboQN5q1P0vgysHdrrJoMwZbWWwRihUMc7d8uslpDoqwqA6zapdU2Y2AE6SJPLQ85dHFXT6zfZj3rb7AzXGfjbacjR1tynC8ORxw0Gx4bXPIO/ZvEpNl9pGjt7G8ZacbV9Xc15ivQegIghtq+IDkAdkc+iEpwsRJz/kNxVpODJSiIBypEfoEQ9QtFiUYz9oNDunH5K3FFJSNXHguspSBd3Svs+cMSuhSedClGziLI614zmLHJra0zoKM4Scfohkm3DimxeN6E/zL25Ht//4o11rl+NGmwHyZMXPP86rXWCPJ+5PipdaGCzt/z5RfNV+ZaWZe3jSHMWfAujzn1fqpjIWYFIzr4frFu3iJLNxAQFJnxgTTiFn2HsPjl25g6QY2sSXgGIBNtGhxhn0sMGsBbi+RgwoOcxLp3MjBYsPGQejMaCLVIypry9tchQxXJY9PHUYbzZZ95Y0/sPGWoP/SQ0S+Dwu+fqeqnlWvXwVuqWoQkXdgldme+0rOWYR4OVn13s4GqYV2ts5nLm96gKFjwvXD/HNxx0rIi6jkTwUS1GCv5/clCj7FBrNgk5C4/Zox/+Q6kASC7pwHqLN67ZqTVZks97lwrxZ6EYY6w3bdInChPcdL5OnlK7wxHljCUDrg0fYOnzh/FLBSCL/n0vN8/vwKz1x4ldc2B1xuz+z+O0omcrbmy5xmDyiCdNXvIenmaMoxjDZ32RMyRSDVfct0Xy6fY64AC1UWkMHqnWjvcCl9XkYhl0RY3hz4b1/4Q/yvb/9/eSMuuOi2nGrDWrYc6ZKrzTGnsee18RCAx7vXWEpPc5boqc6+r2SOrhIE01qyUWwT9NdKRfud7q02POyNtB7j9HcdP6L6U6v3i7BP8zUxyyS9L8UQyR+WCDSgidUjUYqRE5tkLSdI5PnPXud7r3+CQT1LGfGZNy8m4L3ElGTmiGqWvXORs7jgTLvCrc8jqCseYkRwaUMdNhuOxqVl2DZDMRz81hi2hQtfGXN1jkFWklPQmuLlPzC4RR/gub4O4xuF0f9vwAL4x6kwU6ZR/n7gvxGREau4/idV9dZXdMYKdimWehbqldU0i8rfx+q/53z5585MlTWbN2kRwEnQBZBUJaHG+cvaUKxDoMM22pBhFMqGy4LMVbDHxJyZmD/ZQiwWfFYw+UjRCW7yAjnjsAQ0YW9vy37T87buBksZOEbx6SRncVFolSvXs+8bXtxcppXIE4ubvLI55LA5n2itUDDrAg8wKUx1if2YEBlJFqtYS9gCa8Ucm4igTm0eEiQklRA05o55CfnZzPBycdBH61HQeVzECqOpmEIZAs9+7El4OxxKz0KUTZrnK80JgzYcxyXb2LLvN7y7e41e/dRNiYqvnYKBYWHPMnS2PiRaQHOGt1frLjYp8Fpb9hVjZFp46bhqHRaYRaZnX+JJeY1mCKUKUNb4fxSp/tbCUJnFsTYG2wR1LP1o2DwG+WVhDybAfWIshcynT79n+M/XCzSNbM2P6g0ucwahDYeYcZS9XKHaB9M9F+w+Q09ZGOc2wlkmPKjxlqD/0kNV3/VFXv9bwN/6qk+YH2AWutXiLJukwvBmrvAOvGAXMr1e/503YY2HggkhmDZWST5JZoSroB2SG5ytJkmQhcvl48Vc1Bnsw2T52gchBy93F5sJuIzbZr6/7DB+LDeAFDCOC8cHH3uOK+0xH1x9ns8OFznw59wNlkB0uTnhOCzLRn7X+jWuN3f5yNmT3B3XvGN9g//r534fe8vEYiIpO+6lt0nagEV4BKDL8BZFIY5CiW+Q7slVyrPcb7STS1Qr8uks0JufgxsVHawOUuwcfhNR7/AbAUZkjLg+8MQ/gr/znb+N37H6fGGAXG+O8SgvjYe0ssahfOzkUb5z75P87NFvJywmbykn4WXhHruUxJcU2LikCKC8DqAyJBK9ngSlFGyZaS1kQR7zes/Ksooz1cfXXmA5X/agIinRajpG0lxLlPJ6bEw5qEBz6nhpe5Hr3REbbVgysqFNXHmhpykYuxPFExNjyx52rnUzqmchgx2TqZUogwoh3fSgjlas1HF/MdLdcQbfDJo8PZnvRa3+GfmqKM961Bn0X+u4j676ph3fDKybBzLyhoPqwedRW9/VBis0LM+UfFQJoQI1UAVjnc5hIpk2kbnRkzDNFxULbJOEXXJFZZAiyGbQTDR+vlEP07EJ3qg37iTAs1VPEZQZa3XDxKjI1n9hBFVzcbU7SZRCxxvhkE9trvPOxWsc64o1Pa/0F3lscZvXh0MG9bw6XqCVwO1xTVRh7wuOcT1dR7mewn5Ic5OfSYZf8vVXwipki7PC7fNcFDgHCisqz3dWMgUSyffaTspNHbhBQC3nwTEgQ2Bxq+dH//b38w9/6C9zHBsG9RzHDo9yppa9uXQDv/PgRa66LT/+49+NW1bWdRUYzNZ8WZddtU5k/rxm3mW+73yu6hyzzzhmQqamDMOkYPKaLwwzN81lYZTBxAwb09qpvN7da7653ed6Z9yIgBDUF/YMGjnT5UQ7TU87IGzvYd54WgKDtqXwWVYCYJUvB/U0LtAeOauz4yFIyhOoFViCpWbQ4DDt8XsgsQc03oJuvlEjCds6cFVb3vXCmI1aAXhmSmN3zBdXetg7ln35XUBlwo5r2Cb7kcFTsOlUCsTczGT5SWKsZHgjf77cY7bG4nxB579zbZ/MWLB7tGQTTYrh6G1GG3y0vc0mudmPtHfYastGG477y2y1LZs1quMsWb1elI/efnSCbYSCIyuTgFGnMxhNMCaIBaYFPKWcbFZU2qV7T89EPOhQWfnZPce+M1SskyzsrQCWWYERIXRm1uYa7TJ6JAVlDz4HgwpLCZzGjjPtrM6P9Kyd54I/47vWn+ZYfVlXMeVYZGivjlFMa6E6pvYO8+OK07qDBHvF6bj8TDP0UHuW5b1K6BQKcaUgdlkpOAzSyGslY/WVAJ0RGdL3bYIpQa/RUtMkTgIfg3Zy+YNZlux9cI5QBb2ycggqqfREWz6X5yKvjZgTGGPVUL02vmK1J1yS/w+aeZPn8VtkvLkEfT0qC6reXDAX/mUxV0J0FqWvNmQW3uWcvnrWktgXhf4o9rszYT9xPvN3JqskTLvUDTIF28JEm4Odn5WHkGEAqTyD0E6WrwRjWJhANcZPSJm80QtttB6qrQQO3IZWIpvYctGflQQXgIUM3Bj2CTgu+HPOwoqFG/i1G4/y2U8/QnOxUnKeBBKneUkek+YcgSiJEqeEZpr8GNN1LZg26zBZar43xRezdTvD6Sn4v4RJWUia1wyTqcfa5Tkx+MYJ/mRAG2HvtZEf/uS/x195+q8DcNmf0RFYu8BGjzhYvMxF1/CDn/qBkmgnOiXoFe+QCbIq3kqem0YLHVS9XVOxRINYUNRRFHP2IAssWE4kdq60gHctfBzl/dl7FVYtMl2/CU5rqGYsJibBWXm/v/aZJ3jv+1+FCIP4QosE2CYjYeEGFhJ5dXuBbWx4x+oGrQTOYseoHpfgHY/SJAqrS0phlGmyskeQvZtcPTPvC4lTvCb6+TxnBlyJTeU5+LK9mL6K8Zag/zqPLD8SDbJYL/UhSUAXq5PpmBn9L58vW2G11V5b8uW4aTHOIAiYIKNysFiVRcyqhmRBJUw5NIKMkhanQoJmiNMxdVbvzP2uBHu2HrPwm1z3eXee9kwLQ8FJ5E5cswxWu+SJ9iYvDle47E95LV5g7XvOgtHjbgz7rH3Pi5vLfOqzj9DdbBj3jcniBpswzTX/s4BqprnURk2AdXPmUNk3MSk8FaRNLJsI2mLzky21HKzOQr3CvrMl60aLiWRBHzvB9YJfKM1CplZ7YHx7FV4YL/F0e4NHfIMXx0IWnMWeWzHwQ8/9EZ778BM0GERTs2XMqpy420VJZWWX12G27HUSThkyKSwwn2Ykz18NP2a3FfOMoGKiMD3vvMDqvWDrKV8XlsWSYUkx4a+husZ7PArhPLRspTEh7yjF39au56Mnj/H80RU+99mHcecedUpcB5586g3+4PVPcByWLN3AED2tCwzRp7o5VrveFEAsDUs+futhwnJaA2WdV95KPW8F2krecYEss8X/RTz1r3bI9Ai+JcabQ9DD5KKlv2cB07xZale0suSLIIQiWLNLO8P1ysnTT1drgvR6DsK6nVWQhH353mjHiE+Y/ijQVLVtFMNq8y04swSLQhHJ1X0pMEbtndRfn1kHWUDmtPr0rz+0AlNncQEeHm7usicDrYx4iYU7vYktR8OCQR1nsePmdh9/1FR8/J37rbyjoiTz3HvKve8+HElJT/l+i9IIUkr114Jem6QA/HSamn2SlYFUhgBkj8nheqsWGhYOEWXPbXECr8WRA4GNBCLKc+Mhv/bsUzR5bTFBN3X8ZtcLy2MGB8r8GM2So/Y0i2VfPU+997PllFlxZKt1R6gVnD9/V5DZc5qMl/sYq/kZerPG91NF04UbSpD+0+fX+Ke/9u24TS4wZjfizj0vvHSF8LBj6QZuD2sOG2NxZe49UIqgeYkQzRO9+fwlXDOxuHIcQbORk649e7C+Z87KquYmPkB83ubzW0fSv2kEPTBtiGL1TP/uYeHUEExlGQMzF3B3ZBZLbBUZp3Kvkjb6JGnSB5xO2P1ME6UNp2LZjy0lcVVRgzcy573qTSsKmnzvLATcIGaZCQUrlsisZDuSDOXO+MiiFBaD/447XPRnBBW8RB5r7nAzrgk4bo37BHWchCVRhcPmnP1mwza2/J3feD9NL4R1RFtF+ol1A8xqnucJ1kbNq5F0v0mIW88ULXNWPpg8GZwSB+vzmts/Kkxzm+a9MJxS3KO4+sm6ztZ9cw7jRvBbY+RYViu8/MJDvPrURTzKr5w/xcIN3BgO+AdfeB+vf+5yeeYGI+g9/PfiVSShW5RqhlmKt2d/1zke9wvOFm8zeXD5xnMuQQngFs+uXsjMlL95OGnuqro3Bb/OQeDKyMlTm4Pp164dWVEzCVxoznn25HHe2OzTucCHf/HddOeJ5pr2XGxT85a7LX//xffxgWsv8tLZRZ658Arb2JREqyFMVEwvVhbhH774jF2TV8KeVSmVTFSorHoihMaeqeuZgvhRiZ0UIf9AWTK7xtQ3+XhTCfracgT7WVt490uKKiMv6kKNnFtgmcZnOL1OFLZseSYctbiPeaNkYa62YAse63a+wCULK1v1Tk3Ah1QzPHkJWrh1lCBlxJRB4dRXEAak9xO0ITngOdi9xEb4/ic/zq1xj391/WkCwp244jiueGM8ZO22nKWMxtYFfua1d7NoRl68fRF/szEh3+k0X82U0GTzOSVm1YHwmWfjp9IPYF6OayKampSUMgD5teBsfjM+7bNbJoRk+WuohGrtvSVoLCwdfmNKb1yJWaAKD33I8Zc+8kdBISxhOID+UIn7waC0USbrvbHnlGv5ZCU8BVUVOjvGLHSd1lLC3zMdtii+OnAv098zhlG1drMHWsedbLKnpLmJkXVvYa+YguBIWrM51lArCaa988anr/DPFb7t8uv83Meexh81CRYT2m0Swlm5eVIMygyMN56/zE/d2efxa7eJKqWHbC6hkBXZJlpT+ddfvog4Ja4U6QVW5pLoVmbC3g3TZ2v6amytE1ZzxqzGz4Mab0E336ghc942MBcy9aGV21cHbNnZRHXQr0AGWagJMyuLaAwP+zubZCn1fMdt1zgJsPJ5KEwY1AJzknd8NveLBZvvKXkTTcpizZZh3rT5K0qQd7q8vBnXvuc4LunxHErPq9riqq4eDuM7B3W8fPsC/XkLR62RXppJyE5wyjzrthSbyoHq2VykG5b80AQNEDEYRZwWqCF7TVMykCRabLrJYHXbd78i32+B6CKo2ASVWi45qNdBe2yF6Y6uCsO+mreydUXIA2hLySaF9HtS1GQlk9lGRcml9QDFE7FHlhfa9LykWhOzeyidw7QI0bKWp0/OLP4Z3JUNjgwP5rXkMDitgn3qeFOsYixvPHeFN168hOstH6FQYNO/QhTQ9HiKhS+E05Y3jvY5ubTAY6ydbWxKK0KHwTc3x730mXSRXozlM2IKNnvTrthAJWibR+jg6OnAxY/5WZ7GAxtvCfqv80hCdxY0za/Xrm36/X40RICMixfMMjBlL6a9W4KiTmcuL8m1nZTAZL2jkvqbTuZYaQNaJJAJfq345fl3y/tOF+AnoQa2EWLiiatXZJhSwGvWgfpETUtsEZ/m6ZXvUhaptdudsOJ6t2VI+M9SBgY8y6qhxPe/8+P8xC+/HzdMkA0kZei1CIeyBxSz+CtBU24w3/9MMtsfGgRctEbu1Ty5JPhVwfmIRjtpHB34YJ5AFPs7fw5wzl5H7dzagS4j9I5xnZPUzFLsLwBR2F6O5d5UIK6izbFXNAjSxvKMNWS6agqgh3JDNi/50SeGSBHoQYheJzZVI1OMqJSAmJvx2bss+H2avsygmY6Zj5qtkoVxWevZK3DTkp1py+yNDIIfgW1FOat/1nsp2sfyd8oojMDZzTU/efw+vufbfyMxbiKn44KV77nUbli4gY8fP4I0FmTRvG9yDZ4ECcmYQtFqyiS2hmC6rHAEZBT6Q+iO+JKQ7G9mvGXRf52HSuIvCzMXtgS0clAvbUqBSbgzf2BaWb5FOcAsdd0s+bT43HTeSaPkk+UvYLK80mLVXGZXmTB4lZJIpG5qGFGEAJT3y/nThixWtLdrkAiqE/2s5hRnXFYFvvcDz7J2PZf9CVf8Ka8GSw46jQsrShVa1m5bcNkvnL8LohCXEdkf7HqCmwS519KjvPQ597FYstmqF83CvDIr8zz5WJRcgcDSPKkKvg2MW4+q4HwsXpTLwqiJ0AU0SipBb4LfNdGglZpRsoKw9YQMuWTGjwPtTNBIFxEfadqAT+eIQWiaiHOREF2Km0zPKYRJ0Uy9yadjitJJSsLm0byZTAed8Pls8ScvwGuh396z1PL6ra3XbOzsBijTuqp56veDO8veqVhq2fKPneL6bIQAyXrP31sgzvSo22NH6C1L+Ty07PkeJ8phc8Zji9u0EtjGlpOhwzWR2Ptk5Ngc2ZwY5Ohq4y1TVdP15X3jz4Xx/Sfor+7TX1AWt2rt9TWOtwT913nUbmb1kO/BgysoI1u69zATqsWTRwlQafW5+1zDXMhX1ng9ilyTErzV3Ee1eA87n8mbrIaJ8uuVDCiMimSSaXXOjAzMPB7geFyk6oHKRptUaEpK+vpeEvJ5fOrGVTv/3midoZwF2zTBJiSLdxYgdNPEZbgqBpeuJ997OtgxsW4w4SjVfGgSkqqCjoK0YdY0Kt9i/q6kLuz6HGQ6YvYI8vWpJsux4v87pziv13RTyAAAIABJREFU+CYwbBqcU/aWPcPoCV7wTtlbGI88RIPQ+uCnTo/REZMwj9GV+wjREUZn9xEE63VrjeiFrNxkh8teL1yZwZEZOqkJB5o/UoyQajllJZLW+vScdtZJVhCQhGy2eph+VpdV1ml9DHZtLk/tALmGzqduXeXpy29wIBvuDGsuNOd86vRhnr3xCMenS3se+XyVsZLvoSipeoqqa4oOJAirRc/Rt2146PIxdz98lQcydr77m328KQS9OuM0l8W+K+ArCyMfX6zcile+C68XqqVnEqQJzokpozVmKCViqznBN7leiRbQXKZrSYIkw0Ca+nbq7ALS4XVQMd+D2neXU+5u6B0llTdrxjBjhgYUzsaOgBhdMuxzFhepS1CkJRBUCCo8e/YEv3TzbRzfWls1SMA3SVB6JYhHkmA0PD39nq5ZVVJClNB01oVoHH2xuHPMIgtDEVMGu0pPsPNIYuGod4TSYzbXrk/Hign6qEkJ5dcEwuhwTlkuhuIJgCVt5b+XzUjXjNw82SNGoW2tNeBqf+Bou2QIniurU/bbnlEdffCcDB2dD3Qu0LhIH3xaHtNDiSqcjy0n2wVjcPRDQwgm/ONg/2Rwqf4+M9aVPXu7x4hBTXWcaVaKWyqLOlv6487fSWCpWGC6ZPHmcw6gTaaRSkkCLBBmZsHUNYh0Uj4TfJlsnnIrwu1nr/IvlleIi7TZloHmtY5xP6JdnLzCRAOdZQPvKJL8mstKz9kaGh7t2V/0/N73vMCH33iccf/BmOG7dt03+3hTCHpkEvR1tuTsZ9b0rlqA2Z2tFEA5ZW2tpBLFUh3jM3tF5tYR5OYRBr3M+nxmmCJZ3DmCJFVtmoLH55GTpqpRAsTVYRl3ne5FZ7VwsjKITSL4dCCjcLE75yQsWbuez2yvc8GfcbXZ4jE++RvjIT/63Hdy53TF5rSD0wZ/5oixQx8Z6bqRkKzVmOAKlwR2FrRZIcQohOBwoiy6kUU3EpN1PgaDPxRjYagKPlncCgX2KHAMgu8iGsE1alg9SYmVgKQWjyBfU56zbjGWa1w2I3vdFifK0psSyv9Oho5119P4QOcD3kUO2y1RhTE61s3AutmyCS1jdFxenrP0A41E9ho77mJ7zqies9Cy9kPJDD0dFxyPC476JTfP9zjrW4bR029bwuAMIhvFBF1OGEr3LykPI5fQKNBd7dFmeEeYeOeVF1CMGaUUz2NHt+ZyCtVKK+u90Bt3BLsESq2m/PxyYBZHgVwsXuSQ1GmrfbkhLKA59owHJDYW00nS3siedV7bs2B6AD9O9+Nuthw+teFmv8fNL1y8x8H+moY+yJP91o43haBXIbE/BMkNFGoXsvZ6mf7etYKLBe+qn3ns/k2yhOJkxZMsCSIzCIWq1ncp6yVMMEHewE6ZcAjKor7H9c6nGCsvQSvHIQuC5Hn4HLTbdeMdjElzbWPLcVjyUHOEl8iSgY22bGLLndMV2/MWNh43iFl+jVnc3tmkqUtYdBL4zlttchGlbQIxCo1XhpTirgqdD0QnhOjwPhahD2b1xsRi0oRNFVaRgIhh82FMNWtctO91k3CfhL8kmEZwrratTYF0jUmFLpXFzf/ydSzaEe+Uxtv7o1qZ3pgsbS/KXtPTpVKJrQus3FAaXWfoy9OwkIG17y2btPXcHVcctUsaF7ndrDjvW05FGXxjFr4zga9jwmrysxyzQBdrki7JI8wKMf0fU9A2J9/V60Tyut5VANVP0jGZpCDJa8jGRoll5c/MjI/Jo0RTjkMEco2jXN9ILC8FsdeDIyUUTndi15H3i8wgppwwNct+VdhehOUbwu3zNZ87W0LvZtf3tY63LPqv9xDM/VOjx0mubaLMmAlEJj4yzOGajP0lgQ1Mgju9rolkEXfhniSUzUOwk2d0eGJNcI9ise+dIBwJUr67LKI6apyvXSiWV3ZTa/0xfXbn98p7iQ30B3Bjs8cTK8ty2vcbjuOKx+Q2Lw2X+CvPfTd3z5ac31kig0N6YXHL5nY4gDh4+tHjXSw4fBxdgmpcsqTt+5xTWhfwTov1LgKtRFpnQnsMrjBqIqYAhtHTNiZoQxRidIzBlYYoTTcW5eDc5MNbF6JkxUdHHJ0FitUVD8M7ZZGE/NLbzyzk++DZb7fst8LSj4zqGKMzZYCybiyIuOd7Fs6gLjyl41JO4V9467bUamDrrExvUMcFb/12Fm7gqeUNLrbnvLY94GhYcdQvOOkXnPUtY5jgrQx1xWDwDsGljOkUI8lrUQVSvoBZ2ckSjuD6iQ45i/mkY2eWfn7PWwP0EvTcqSBa9odjiitIpQzyWk9KWtVISa6nlOoY9yO/79/4dY6HJR/6xDuQ7Y5rUVv21ffVBowM9jPXHnriez/PK0eHnA8NZ7dXSKMlMP41j/sYYN/M400i6JW4jCWhpdC1E76ZF2api8LE7b0nkSqfckeAloBntkyyAhhMKE1lEtKGk6qOi0zXU6ySKqOzdEzKdcgrCx0odDs7JkM+WYml3qqjzJRSCdBVeG0+Z76uk3cGPnfzMk8fvEHbmpA8cOccuC0X/Rl/7KkP8Zf++ffjzrwJiXOHP4ewMrYFGB10CM1EDVXQ0RKahhSgjVFomoA20PhI4yPbwZaeiBKiY9mM87Z00dG6aVc2LrJqA60LjOo4HwzmyEI+1Elaap6BpNhHTC6WRpkUsEAULR2OzsaWZTOaMPeB/dagnGylN0RGsfe6pBTOxo4x+mK5m0cQGaNnr9my8kMRhOexYxsb81RUrDaM37KNLUsZeGb1BR5uD7kbVtwe1tzq97i1XbMJDY2LbMfG4gCjzdt537IdmhLTUJUS4EUhjp44GuRj0I+tmbBIAn9Ie2WklCl2MQnebBCl0tgyVvZG9mzzGkvHMi3RaQ1Wa43krMbGjndDUujJIm9OHa+dH/CBSy/wi4sn7ZSJklnqHuV1XJ+zMujcMHkKwwePeefBDT5/8zKb19fQRrSNxkp7QOOtYOzXe2ThWJJJmCyb+rDITPgWC7e2dndcT9HJgs8WSt29Jgdo7wmEFgvETBiBmcA1k4YJLsofS3/PGAY6fXcZkfmb1fXWjIDyGtN7xe1dGQVxEkCOTgJvpKDsP7n5XrMMo3lJuQVibChlDEKCS4pCjM6YJKOAF3QwgR+7lNiVoYV8fMK6Y8bSMeHfNYb9exctYJks2+VyYJUw8K1vGINjiB4RuYehE5L170jYvbPnUaCdLHSDB2+MmegkYfVaON4uJT2sm6EI8gx5bUJDKsHJ6EIS+o44SqrUqKm2umMbG3ppZi31vBi76bJoorGORmV11nT7Tr+icZH91ib/ZOgYEySVlZt3piAbH8o9hTEybhujbCbKi60Ju+/gwKWKj56E+1eB2lklyGoNESmYe9k7OluGVSbuvR5CTswie8hZoYzCqycHPL94qGQ1l8+GaV+XdV1Vdy3B2JQH0F+Atz900xqknHZzb+AB4i1vCfqv91CBQaCN+Lt+quddWx3ZNc2ZoTXcka2S3TWQFMiMr5sTqapj8sYoXONoCzEHxqzcAJOVn6mV2VKvNky+nxIAThuo1GAXq1eyy3W+Z+PViitv1ErRiULzSsf6fSecho5VWPBQe0KvnuOw4qNnT/CrLzxuGaG9lQhozijlYhGM+TI6SwiKBuVognhqVpCKY/QtYxeRNpQkqLYJBZI5H1pW7YBPvHQnkUEFL4rzgT54TrcdQ/S8/eIt6yWaFMSojtOh47TvihD3CYIZomPTt4RgFdE1Vtg/0A+eLmHvANvQcD5aYPWw2zBGf08t9RyIPeoXDHGSiKpC64IprOSdqAqtr+qyJy/hsNuw8gN7fktQx4HbEHCsXc/a9VxqTlnIwMr3jOrZ8+YhbGPD8bjkdNXx6tkBm7Et3x2r7zrZdmwai1vE4Ai9myAep8h+KLTPsHXIxhEWVn00dzibNSmpIMUiXGvyQtoTpaRynLznGjJ0gwn4XLo6JjjHjXDrYw/xs3uXLQib8grypihJXnX1yup3SAbZ77/D77r2Cu/df5VfuPUUnDV2/aOtywc2lMla+RYYbwpBLwGaE29Zop1hf9mCqfHE2irJFnZhHYRKzldWeV3tEcWaM7j5Asu0xVKKNi3iHIwq1k5KkCo1QApOP22GOns0Q841VFSuuTrv/XDVWW2PysUtCkuAt59ycXnOne2Ka4tjBvVstWXQhr/7/G8nHLdpYwuuB7eFcZ8UOFN0dIiPxGSBad6YKSlsYl0k6KB36CiENoJTzjcd3lsC0uDsZ5Ms2dYF2sRymbwAYbNt+cLRBfa6nkUz0rlEZew21qc0+pLAJKKs2oFlM3Lad5xvW2KUgtGrCn3fsEnsnpAs5SFaka3csDqHbxuxaxujYxMa+tBw2nezILJzEZ8YPv3QFH69KnStKZTOB25vVyz8yLXVSbHw137L4Kxj00atdO/CjbRqZXsP/IYLTeSh9oRBPRfac273e9zpl5wOUz2ixkVaFzhrApuhMd5/4xgHb9h+XhNeWay3uMNI3zeMm5ZxFKR3uK2zSpG9QSaunwR/oS/m9VSv4Th/XXZ+lviXkjp/Vet9FOudPFQwXO4bnKz+XeFeqqO28I7v/BxP7t1i4UYrQvfaBfyJM0MrZ6Y/wPFWMPYbMZIwq3pnzwNKUPBvgdmClHgfYz6hETVHF7A+qxlSyZUS83l3IJaa0+9qBkJdRjZ7BDJf9LsVNXcLlZVjXXUdlSDPP+9xL9N76qBpLAja+VBqivfa8Nde/N2cn3YG24z3Nq7IEAgwg0GkUWOHVNUpy3fWI3127L1lODq7kWH00BicMaqjEdPIxuV3JsCBzdASkVLTPAdUwYR15q63LjIGn67PrHmNjhhSslS6vn6wZKjOm5UbomOrwmactkdQx6oZSgwhQz4xCsPozXpPHPy2CSn2YMFjMOZPjA7nIoOza1q2ozGP1BWcP3oL1p7FrmD5fWxoXOAsdASs1O/CDRw2G6Ntji1biURMUWb20DY0NN48pBBTyYggZR4gMo6O9WpEFqPBbg3E1hFah/QObVyCdKaSC7mDl1aWfh0YLQhJxtMzZFhDkVSeZz1yDCvvzRxbqgV85YnnPTUcKI+t7/LE0rJrbx2t4aRJsQhmHvYDG28J+q/vUEmsmxqbz1btjrAHZlmmxdpPx5TgJcmiTm7mzDqvPYSaQy/TeervKtzm3QsXZljoPYuw8jhmMYHacoe5ZfFFcMP6PABnj0eevHDEZmxplmfs+y0X/BlLGTg6XxIHo1LavxToqj0Lp4ifatFIm/Bh76ADDZPlWALPAqhYSQRIiVImhIIoIZiw994s88xbB0qGqUbh7GzBmXSIKE0TDQLycRLAowngLJQbbzh/CIadqzpL7kpUzH7bMI6OxWIKCI/BFWs8v3buWryz+EE/NmyGppx37L09zyDElRRPRDGWjCqE0eN8JPrIMHjOXcdmaLjdDWxCw367ZS8FQk5DRx8sAHtnu8SJsm4GOh9Y+oHL7RmNCzQSuLw4o3GRs7GlkWjHiN3L0XaJl8hJXFgcIyk6HQQNnnF0nASbD3EWtO66AdaWVBbHBP1sHG7jilWNVoHckLp/1bDKkJZaFc8qnH6t1n20c7i0F/wmlQDPe2yc8khmbJ+8lpvUjH0R+aVXn8BdV371xmPoi2u6jcyTtrIn+wDGPfvum3x8QwS9iPzXwH8AvJFe+i9U9SfTe38G+BOY3fufquo/+rLnS1o+5gJbqV7ITCjWUEK2tGscfDpstihyuzWyUI/zY7Kl4ipFMFMuybUsmYazwBDWzaf6rmL1Z2y9VkiVhTMLJlfzsMsimkFHTMK6PXa8cbLPu67c4PH1bQ78BifKgT/nR977//FnP/JHiDdbfCo96zdpQ2+sfG92/Z2PNE1IQhO0Mws/p/xna9+5iZueg4h93xjkkazhzJ0f+oaxG4ntlKUagrOSAlEK3ozA6JStWNmFpk3XQRJSia7Zp+uIgzOrVZUgplzAhPM4NpYXUGAdOAuLUiYB4JyWxkeWnQV5TRm4qYRCsHsZNg2jKE034WdGifRWez09w5Cuc7to6JPnsWoHo3iibMaWPvjyPU4U7yOrduDWcl0YQX30jNGxTUHhRRxZeoO19rstp9LRB28QjotIdLYmR0FUJtsglbRArZ6QTzWKXDdYTaDBMZ43yOggmJWc6ZpjnLB9vwVpp6SpDPW4aToosCiThyBq8R83yKw42y5cUyz5vPzFFMLdNw74qZd+G/7Y0Z6muvjYPgor++m3PJihyluNR76y8T+q6n9XvyAi3w78UeAZ4FHgp0XkaVX90tWkFZpTq4wXFyl5x9uCLXh2Lp+qCVKoLPGyWJK1nqD0WRB2l8ebf88wEPmQ3WefzlcOyAK+gn/s3tPivU+Z5Vrg7973zLrfUQrluu+jgPqHRi4uem5vV8Q9gwgO5JxOAnfiwrJcsycxThaZGwy3nbpgmcXctYmHnr4k49qWNEUJsqpShI7dtwlmTVavOLPaR/EmBFwsGHeeJ5CpsucopkxHtcqF2VuIblb1MEYT8tnji6FiAQkQhDj4e55fDtw6ZzRRAePxpziAJu/RTHebF1WXqeymBILYfEa7rro2TxQYneeUDu8iw2gC3ztlOzQzDn1M93zemgJYtSbJnChD8CUgCzAEz6IZjY0jkUVjHlfp8Fqt56ygiApNNLQl+lI2IgZHtxgs+J6C2oIr3i6ClcnuUgA21+nJxIW8typyQcbWZ/Bqsu7xiUHcTOu6BICzAWSLa/68Nq54oXXZ5Kk+PQ92fOvI+W866OaPAD+uqlvgeRH5DPB7gH/xpT4kWVOLYbnaqHWKT5vc+PT2z/XYQ/dJqHSUsqa58YOmc4acHELl8tWmf60w7ucS1lhjtsjTueqAVln06WNurDyAOAnZ2ffXoxb46dqzl+Ai8xr9CnhoL20JKiz8yKC+VKc8jQv+4se+l3C3o+13GBgBFnfMqnejZxMWDBd7vIvsLSIhSskg7ceG7egtKSmVFQjAEJNlWQVMNQrOK2Fw6JCpgykpKAnLcqu5uiRmxZFLBIh5CrGJpdhaPmfJkk2lhCVYaYEsaaTVwkgJvT2UWfXNNlhYJStfMU9k6BtixrxzfZrMpBKIG1d6A0sUGMyCLiV/FRgcY+8Irk2xjcr9mqLZXL16xBtvXIBTz9gq22ZBsx5KBc08lyLGsfc+4p0loy2bgS7lCLhcz99HaIE+XTdpYfbJ2nfWGU0aBaf00tC0gcVez9g2hFyTZ+Ommk2NEsHKPvfpXypHIMH2nhuZqmRWJIRijOS9WLW+LGs670+pflbsINk46wecukwVyDF5DKkw6wMbb0E3X9n4j0XkjwG/DPxnqnobeAz4UHXMF9Jr9wwR+WHghwHag0tWjzplxdYNE7IAzQsmWwlZ2ANW5S4tusztzRmAuVflPdZHuZD530Xe32cRzHSBVtZ89eY9Vjk7gn53VMfUG6F4G0nYq6usYoX+uMMfnLH0I1faU5xYY5FNbNlu20SRnKwpdZR+pH6A9siCdn3TsknnzfBN2wSG0TOmoOgJCxbtSIhSXgOKAC5lJKp6/DoKqn7qK1vNs+YkoCCJT22fkaQYNJmHuT58SeTKtV90+oxVgozFypZs3fqpdkypameIhSX+RPMKdLDrl1FSeQKpWFZQ1yBySbkUaC1dq4weujhlt1IurSy66/vHbMeGo9NDa4uojnHTENs4VeEUjMXkImCxA21CUcD5GUnKe9BKkZAU4GR1p0JwQa2VX5rHpg1W3sJHBhprAJIvttyXWfcSrbxBvjYJSUeLraWcwZoFMTDRlyuFOVMKVJa9JihyhNhX1NDx3r1auq/xgIZiHtC3yPgtE/Qi8tPA9fu89SPAjwJ/DpuuPwf898Af5/7P4b6zqao/BvwYwPraE+qGCX+TKhhbLOaK/lgzWNRNAr+uQb8bvCzZgBWfuA7s1Bb3LFmpslgU+1muK38+c5JlsubLsWUTTt97Pw9i9v1Mx+bviI0ps9z0wp16tqOnj760dLsxHvBXP/ZBwo0l7amb+m8GSochn9LM3QDdbfDnnrDynF/oLPuwmRqDZJhEgtB3RqnUwVkgV4BUf4ZIgkGSsJEkcCPMmrVEsfMnYe1GmaomKjh1aJ/YFY2m7kRalIKrOzJh50BTMlWjtm4S9iz9Tj2VDGO0jmG0pDDZuqlwXIJusqJ1kSkLM1usmVdOLldg90MENimYm4VbHulan332SdM3o+A3AlGIK0dslNCpNUEBBlF8F/GpvtDWNwkKiiWxKuYM2uCmOFRWmqk+gUvCPgvv2Cix8fRdRLqAbwPNYmSMkhZWWnDZ43IT1TmqWHirY8Ymi61lWIc4JeOpTB5AMVqykQETbBOrv9N+bs6q/bZjGGXP4oHCLQ/wXCLyOeAYkwajqv5LInIZ+BvAU8DngH87GcRf9fgtE/Sq+j1fyXEi8leBf5D+/ALwRPX248DLX8l5XADtmSa/FvRCKbVqlSWTtdFkJaAzKmRhCYwy+3vXjczWz25yVrb+i1tZWRh1mYMZlq5FLk6CobLSy+d3A7C15VILsXzd2HX6dL+ZCtoeO87OF9xtR54/fYiIY4iO/qhjcdf6qbptmqcOvv0Pf4qlH/iln3yG7igZuAHkPG2gaFS82FovVa3gCXee3ussQzgzN+LCjlFv1nLewC5bljFbxAZ3yCiQk16iCadSdRG7FhVJzzpdh5+uo2ZjZbjBjaDn3mCHZnpudZb15NFoUiLO+qX0MlMakjHm9Lma5TFDZEL1nLbJg3Hz4+vvlQic+cmKTYJQz60V4rhS4iLBRK0JzuDshJJYSxlvBywe0ru0rioKrWJ1osbJCs/ryMdcldWhTcO4itBF47znUtrqmHr6pTlrADVPLbZ5bpllf2unaGuxn7COpszObY1oY8aJGzFpldddhnjSnmxOk8LN3oFQhP0uKeNBjd8C6Oa7VfVG9fefBv6Jqv4FEfnT6e///Ddz4m8U6+YRVX0l/flvAb+efv97wF8Tkf8BC8a+G/jFr+ScBeeuA5cOs9CUgr+X4/20uag2l23mVGI4UwfHRO2reMB1IKokisRK8GQM3hl1LHPns8WSmy/vrrv/v703jbUsSc7Dvsg85y5vqaru6ZXTQ80MOVq9UJ6BIEEQbdgULQkQ6AWy6R82BQuiBdg/bMAGaIx/CBIE0LL1xzAsewwIoA1YsgCBoiDAtCgDkgXYhkRaGylxzB4us/X0Wttb7r3nZIZ/ZERk5Hn3VVVXv35V/eYEUHXvO/fec/Lkyfwi4ovISLUirUmqVLxigBtk2bVBPYcAhNGNwkyNUrISDlRWjo4c8PbmGOs4lMUysjhK6wGdfU+p2JhBGI8Y3XlrSSv4ZF0FnBm5F7AYJdtC6hBxxzVYJhU7OZbj3E3cJDjF6CgQyhVU/TOlwlhIcauyWxP7XZNUiUq7TRkzSpxgQC1pgQrONVtLskFkQY8FCPVZeg+OSz8r7kEs08bj2+OdTcfD3oVvCnSEsnceCCkR8pLBSbKfFNhjGbSsNINkB5GWqdBn6EsKOOPF9xXGqkgh3tOFJAWu6y58qjJHyKYj5SZDBiDZcZnYArS5Y/NcrBxUlCqc0l9W2BJ1Dpsn5Q0iuM9cIPiq5Bqybn4EwL8k738KwN/CJwnoAfxZIvoBlGHw6wD+AwBg5l8ior8M4J+gDOH/8LEZNygPMfWwxTy2MEK8yvKletysfLHkKz9YNoLmyIW31YCcBtlU1EUPsBLEtpcrk1lFYYAE/ioIGMgzijKITkkpEPvBOp1I5Aaxehr6USn7eOFzBBZ+lIy+6U6Bs7srjKsdvvXwNk63C3zP7fvoX9ogfOuwpsIxsH6H8It/5/sxHmZ0IyEtoXusVC9JA9cJwEAIRqM5sBeCVktUxA3AHSFHIC8LkKoFazx2BoJm+Lh7U6BXd9yDJgcgaKkGtZid96az3S8A4tyexxSJfj0oEDngd16XPRulHdx3LMXWbQrir6NKoQH9Pd5AQy26a8RN+Tz3hLQmjAdUvKdcT6D3blRTcjnm4h1Zv7oVsKYQ5bjOq7gpNXTyQuaRU2T+Hi1+4pWbjouhnDNrOqWeY5mQMgAEUzzcs9FqeVG2EiSn0MKObK5rwTSiGhOgVAyRK7Po/XN/vLxERD/v/v6KUM/TM/4NKsWa/gf5/FU1iJn5LSJ65Wmb+0yAnpn/3Ud89mcA/JkPdUISoFAunmpkn6gdZBxqfXMtglQUgDw1dWM7FIDsGPFwW7IVUkDaRWAb6qpPW8lHxZWNGbyWglmbCNIg0a5OLLPqNUDcO9DI7tVZiAWwYfuxmnKKzqr0XeIVE6MUtvITMAHrb3Q4ubVCPD7HwWKHh9sVvv/Vd/Hm0SFyJ9k1shCmPwGC1PPmWHLpLbVOAmuWLz26dieZeBE4+/yIo1/p0MnfgNxPRMnn7lCtekf9+BpFBkCA1f/x/eQ9F29Z6t6zugnMVMJuAvLOMjfLMsim6lwBT8+vbTMQRnt971VMy1noeNBrmMKaAj1P7tONjaAlek+AvCAMx1TLA4SiTK1Px2q9T8/rKQ/Lb9fSwwKeHMoeB2YkydaANueyuw+07VTvtxnfoiC5A2goygPLUlrDcuGBmtI7EtKKkRcMXmajB2kkhC1V5Z/E0/T8fMCVCAHFsHoyeY+Zv/SY7/xeZv62gPnPEdEvf6QGTuR5S698OnFgow/Tu2uNpSTAXC2sauFxAHSrNEBBqCxSCYHR9yPGLmIIHXiIYu2L2cAoqWl9BvVl1SivUFaKiqmhdIUFl5ylqFkxfkFUIzpZUEHLqAjLjtM6/HzBRSVJ2m48iw7gt9Y47RMIwK2DDTrKeOWL38G33nwZ/b2I/qQFhGI51jYjcF3cIuBXVtfXtFagABF1GaffN2L9ja4FU/ccLeVRPTDpI1V+9j15XgRUixgVTFV8PMS8uYgKovpFVaLu8zDW36oCsHO4dls64P2FAAAgAElEQVQ7ZTgFT7Fl+Rs1JmQKX6/vqRtV2nJvU2/P0m0nXoQBfgKwA+I5pJxBua8o+aG2WbwuQlIAd96CGg+qPJrkBfU8ZCxSqPcU0PaD3ZMaWlPfXCztoH0ungYyibftSl8TSlYWqHD0uVyEIoMWCSlE0CaW/trVzVZANT6lz/nKJD/+K08qzPxteX2HiH4aJa38baW5ieh1AO887flvBNAzyVaCGtwJFcya1ECRalnv0ciZoAQ6AeBdxHYMCIuEbpnQ9yP644TttkPaRWR1T3dSE2SMwCaA18W6p2UCLxLGIYDGgLQqWRNhV62VBnicdaWUgsUYZPAavaMABlRPgFECbI56aSadnjcWgFi+Txg3xxhuJ9BrZXn/dz64VbI6Foy0IrMguQPSsnDpvviabZ4SIRUHIWAtgVG5x/6tBfKSMRy1zyfHEvAtmTKo9JOCS89IfbHkmuC0e6YXRPvGKSizpp0lPs2WmsZxphlU+nfYue8kd255FgZGzpu0LBJpX9YYD7l2asaVtildVAam1JzVrG9VMYYBYMldt2uGSrUBEzDPDtAb6qXcA0vWFbgqLkiigbbJAsr6Gut9eS/BHpF6e9XZRO4JHAN4lauHLltwpk6+n8v8AQekjtEdJcT1gN22Q95F5LOIsAslVrMlU4YWHL4i+RAW/aPPQ3QIIDDzQ3n/wwD+FErM8scA/KS8/szTXuNmAH1AKX+g/S7WcS0PDOPkjTMcyTJQimWoQw3loCZMy47GvAkY+g7Doke3HrBcjsh9wjb2ZUUlYJkMHKhkScSyeItkEQ9CWbU7hoAgS8R1u0AfbPV51n4SGvA4ZUBq8TlryQz9VL/XyESpxA0ARGzSEb6xOigusFBOChy5A/I6I8sEhJzW02E0ylaO4jWlyGLVl9meexQPoGd4MGEqYM4a/E4lzlFB0ZvPPtOl3ovnhvX5+vvV/vPUhCpQBTFNkVTxG1mYBax0kQ/uuesyKtXj29ek4jJaYBdwt371z19e7ffKZUu7wSWdm6R0tN3LhOqiDGAsQXbb7Fu0gypco4/UC/JZa6pQ9ljlzXMM7pFE1+dekfr3VCm4kEvKLuWA3W2qRkqmMj6WGRkBJPWXKBIwBAznHVZ3zsEoJTESAzkysCBwr2nCxcPMV4V4YlRdkbwK4KeppDl1AP4XZv5ZIvp7AP4yEf0xAF8H8Eee9gI3AuiB1lIrBySCD5g7DgGlxm+XwZTFaigDUWch2hmaShlVTWgJFoAVq3a6uIfVCg12XRJ05FgWk9DIxWISQIXmkTPqtmcTHVTaItfli99RpeHBY+q8GMB4D2hLYOVaJFBdsixKkDovucQhxjCJASiayYukS1rfdKUBuWNAvAHbBkzaTrYRNEuWUKg59Ap0utDHPZM2vVT4kESSF1+bZ1astgcwztfnaFtwnWEbkWcFdqUDuICTBdV9EDK7sdbhglJiEmpL+94ZGwbwdnP1WZmx4j0pZ9mrAtJ7q5lgsHrvBq5jOeZ3Lps+yiZOwO7ep9/bI3bPmguvYO/mhSkTPy7Fso/nQFzW0sIUStaNjU2dvhkIYykvUben5PIMJamilI2QMhauQNpHl6urdcPMvwrgn99z/H0A/8pVXOPGAD0kx9nAJujAppIW5qtEyqpHP5htc24moUEke8ZZ2zpo+SQiL3uMAlwg2UFKAU4BB3KN7AaYW8kJYnBHFTCy/kDxiiqfrit01WL1oKAWlXH1sGyXJpiLqlBsZaKnjXLJXuCuKKy0YnDMBs6UCDiPZeGR9CMYoAhwn0utflF+BZxYPBlG6DJiZCsaRtpngNVn0XIIKQXwUoqEoTyj4GeoAqACteTa285EVLYyvDANVbcouObi4ZlinShNjigljSd10H22zdRjIgbyUCzsSm21z8hn4NRYRwU//Y09G3PRymDUfH5f66Xx9LQtiSxzKEtQ1QKVuZ47y2bdaQkDYgJq7GnShwrQnnJRaSx+45PQKkN3nka5icfUnZXjeUEyTglBvdq+jLHc13RLDGVfAaIyvkIckFNZGJY7RhoJNEg66FXWpJ83HrlmCXXxjVqAOqk5UanpAcCyOfLE/defacqZTErlgoPmcqNyiqXCXjmfB08NIpkFY2hGBvrNzJgCBlMzCTlKzR2dyOpOuzIPZs1pqqZ6N7m6xdMJy1Letbj77PhVoVAIsrBJl/eTudr2fblX6rkUHzOrHLZMPoaMRV83EImUbUMPlSFHmzPDKCtEMxXFIcdDqN/X4l4cCsDnBCtGh0SlnECufWniUYmL1V+3NEQFIrU6NR6yYAsuN56VjpFEe4/7saWXVEu+/u37Hsb7qPVu4xmoXpKlAfn2kljQtS2WIpoB5BLEzC52o22jVGIk5tECTYDXum9f8FE/z8450Laz/Sn5/vUzU2I96p61uo9zAroNkGQdBEnqdFqQeZak5UsWpVGcCHFRSlUvFkOpdMqE7bYTwI9IvbooVyB8SX88p3IzgJ64WJTO1fd8vQX2DDWcMlbw1YHqJ47OGbeattnYJAMs7H5FDKUDuJ2YctznEdd9PFGVi1qOqBNCqR5KZMFKa7taV3BjWL0UYT+aCavNjLWNWt65yVJSBTTZv9PonoWUO5BaK1FeA5WSwLpNYKSyGbiK1nZXYSZklMqWWeq/k3gCzBNX283RtqJleeZWlVQ/V4WpHoMD7ws+vJ//Zolydc7Y9Y3+hEv7kbn9zAOwu9SFIGqABRqZYBu2gMv7ouwr0FtxNzdGWccvpBCbCwBbKm4qnaN1nCBdYjn1SvO49pOrHOkpzsYwAZrxq9JY6VT73K8K1385oiwoHN0aBXank2vZFoV6WFcpLyQGFmCVVLXmT+AS3N0xgbJaAlcos0V/zRIYYZmg/C1NLR7A6qIXOqBYqBi1rgqsUp4NYK6W1TToRpma4KcPpCrHbxsaBwYHqvSPIrILRhWLfKIIlCaQ4K4BM1Plm73l76yx8mGZRLY+ILTfsfPBWY6a8SFWqlmHocY7eJWBRUZcJiyWA5aLsVjtslfpqhuQOCCg1FcJE0DVLfqSWFylaSypHAFAbpSBlun1yiFE1DLFcq/kIqBaOrguluPqsrvyCvZwXbkDf04NDtt5ZSBYtUaenNsa6JDKGx3Rfa5ndaUJSKtXyv0QROnp82F/XZgitJgFywVzuYavk88TT5KkpLKJWP11/Lv+AWoOuwP6qQdc24AmJdN1YdO/qgTGHqZcbdw7isuysfypepZU5ozQ5VrqgWTcycWIgC5mDH1stny8Evnk4PzNAPoQGP1qLHuXoirusgFG3bwihLKLkUrZOLlOAl8ON5sp56wmmWwMsZb85El14igNhIy6tFyDsVoaobFOYFZhhqMIVLlAB79MdOVo5XhyFTkbHlTAynBgQik1IOMDv2q1K00UuIDUOmF5tMXhaodbyw1iyM3WdQbc7v1CNvbWPrVdoBAx5Fjin9ofISOGCuxK0aQcqpUq/V9qxAOABNzUupXPWF0ZvSdMPovl/vSYPQvt7ygxBE+dqEWrClKVOnPT76Zcp6DiQVueAcEBu34O1IqUsmGL1xvWFF0TkmtfKThrDX0rFkdVaVo/cC1trJ/pwkBtr+8f3Smr7lUghpNSoUL1ef1gjZ0KST8pbdXlqrCZpI9LbAcExK5UI42iwGLIYr3X9sfAZTx2IzoqtKHuIbwZO9ks5lE5uR9OKH9yuJsbAfREwGoxgJls9yIV3bNTt5rru4QQsnF4quWLcUZmKRkTI5tl2GYRGRb8U8u8HCejOTg7C961x2f8+BWQJMZs+ZMxXb3ZZEI4C90+c+e54DZT+woXQ9BCV6yTU9ptAKSGaWRgnXD7hVOs+xGrbsBhv7ONvDvnSmTULfyAAu5lX1SxynPJNspMGDmU2yDJuReASSi/ZxLwEW8DAJiltLGAVPPqsnIa8Oa2P80QiFIXpvH80IK7F5KH4L+rv9fn03gFLcIRuedH3FAxJBU9KWQrJUyAbbyiG6D4rQ0R1aEIJYV1ajFLm4JmlMkBIjaKTcEdQLMRe2lv3XBFN04PxLbjFbhsj6jZYVkyX7QrmgVu2je6OpfKfgHa3zHm5p610mYM2TZiURpQ2647cen7lIMZH7qROzDgbOxBxBhDRIqPrajyZMLu/j4BciOAfhFHfPr2fbMcVRp3n4q21/ejG7i60fPIwTbEAIAhBxvgOtjV8mkGNNQ7KNkeeSx+Z7G0KoCSKQlUD8GLBQ+5cuPcfGyTJStnqd4DOZBXa8m/18yZyAh9QuhzpT9UOSknnqXwFQFYlhU766MtupjxudvvYxUHnI1LdCFhIcnXWS6uAK4yWg3o9la7kJFyNtAPABZdKlvzcUZiKpY+Ff5ebyfLptbmnCvuxoQk/U5U7k0tPQKXZ2KDQdujVrs+yGoN76Mdmnr5jrwnfThTs1t+Z0kAvha8jKHQSWxDPgsCrgDkfa2V7ykJ3cGrxDYqQHvKy1vqqvi8FdyHZIqjfJbs3mLIprAH3Wx9ApKDbHOYQeaF6XUNjMFWC1/34C0lkzN68QQXMSGgbjUZqH0PoGyaIkaFzlkf1F/EEQGl+J5+bx136Cljmztsc4dN6jFywM/jowuBr2zB1HXIjQD6PmR8+uA+EhMyV+7Xb2fn/1YZcwH3MQfkOBpA7VJEZsLKAL8MdOWV0x6eb0yqEMqm0jqRswG+0AtZJrl6BSZiXbPsVqTKoH4k3Ku8p2qJso9eiYXkA6scAOqz7LpUsmNilw1wciYp4MYG+gjFQj443uK1Ww/wR9/4vxCJ8ebmVby7O8ZR3GGbOwSx5kchUYccsaBkfRmIrY/1b7XuerH0AQhIkG0Gvhs7A44QUgU2AogISe8fFTQRs4E2B7LgLucCqHq/leORF0fZmUXvxOI7mRA0Uye3x8vN7Zn4bP9VL4OK1arXLla1AnC1rvV9HySw7XhoBe8xRQzOONHPMpc0VfNC5DNvHQMoG4oI7WH9T+XzADLLuwy/kjWlBtNhv8MuFWpkyNEU0cgBHWWztDMTupBtDACF0uuoUn8ZJCBe4zo+MwvRgb4zKjIHdJLTmcUT1PPomFyGEeu4w9BdHW0DwLlyz7/cCKAHGOswYOBQgB6EjhJGjsUylAGigK0DpQsJOREWoQBThzIYdWDvcrygNCKA6LhmlVU3YkgRibObhC3463uji7hQQyYk+4tq4E2tQY0NaPBW8V+A3B+zU+k5lAYgRugE6OVvlrQi3beVJB5BoXz3n/vMt/DG+h5+z603kZjwwXiIgSO6kGyzEu1v378AbMKX71xUjJ7e8fdPAtrFGoRYi0AkNgVbuGe2iZ25KCkiMpomV7YHvtSFbUaumOv6stZfr5b9hc9J8qzEMvcZQnsDsNS+qkWvdE2wZyE/c1SUWvYZhIhCTRAx4kQh+D7V2HCkopB0k3Y9n1rxuodvlKD50hk6qgSIGEkMp6m1nZmwGcuWiiOXa6jlz0xIVDc095a+tnknG5mvusG8bbXWV1H2uhWLvz686Rgq7R1zNIMDAEYEBCYgJAQEDCgZ1hGMtJeTe0qZgf66hTCYBVmJ6uD4VAUJ5YoLfVNAqwyU4maGWGidzGQDbgwtYGUm4wM94JdJVJVKWNSBEClbNsogCsS7uwAsGwWATVJd8Zed+604YvSR8LcQl1lBo+kh57oDqF4H1fiELmLqu4TPv/g+fv9L/wSfiif49vACzvICd8dDnKVe6Jlo/apelOfnp7SZ0mVTa81PZO33DKp596hKITKBQ8YgfW/nBxt9oPc29azq86vej1ryPjZDU6tcOjMKWNaDNZ8fgK149v1tQK2URaxWu3LQdpmJ4slMQApiFZNtB6h9qfdcgtnZQJaoAJoFLilLQkKhS5b9iFcPTvBbj76DhID3dkdCm5SxfJ56nAwrnI09Msi82y5kHHSDWeZqnW8FsDvKOFzurO3b1FnMLIkiOO63OBsW2I6d0TjnQ1+VFjH6WObQMo44ECVw4Z5dv+mY8aKxo0CMRRjFc0iIco4rEfHqPilyI4A+MeHhuALQZnbkiTWi0gwU7spAFws0M2HMwQbLLkV0sshHxfP9GmwEgOzSCVcY63kcqI0ccIidXUuPW3uchZ9kU5BpcFHjCPp7/xuaDGYFQCJulIjoLowpGmiGUPjSH3z9a/hnD76BTe7x1c3rOMsLvLc7skmt59Xra/+oZaV9r1aWTtDOg3Pmhs/3fdGF0ZRp2XBCKTiYpe0tX6CAGwBRAoXbD6HSOmMK5tl5CQb29ZhyzGMKzTV8XIZQ0jybc8m4I1Sg72LCIhbqZdUNeP3wAW735457jnh3e4SvP7hjawm4UQCl7dQVSkItYAA4GxbOigZurTZ44/A+Xl0+wDKM6CnhQVrjN05fRBcSjrst1nGHo7jFUbfBy91D/M6D38C9dIAN98gcMIgC3+QeZ3mBD3aHeHnxEEfdBi/GU9yJZ9hxxC+dv4G3NrcBAK8uH2DgiFcWD3A7nuO94Rjv7o5x2G2xCgOGHHHUbdBTwkla4Z3dMU7HJe7t1tjl2GRt3d2usRs7yZTphbZqvRYVVTp+fij9pHN0g+6Cx3BVMmfdXLNkJpyNC9P6O7XQ1bLkCqb7wFVBy4BLBtboXM/pbwABMCIDMv95ABvIm6U7iRXo9xehctXGh4oV1btraxtzcFaqeAHq1vv71AmiikHdeQBmZfnFTJ+9fRffe/ABvrD6Dh6mFd4ebmPgiAfjCqfjwlzlpg+cElRg9y71hf5Cez8Xz+e8oJAF5FurLRBX61mAX++xPBNIUBZQ67uL2bynuIdLrzSQew08UQDVoyrtaz9XkOm7Au6Hix1iyHhxeY5FHHEoG6Muw2jXiIHxqeUpNocdzoceQ44lyOksVaWuNKNkFUfshBPXuFEXy/E7/RleWTzAigYM3GEVBoTDjIEjekq43Z1jGQYMHJE4oKcRL3cPMHCHnkYMXOMum9zj4XKNiIw78QwAyvk443PLd/H64h62uUegjAjGhjtsc4/PLd/B7e4MPZVxveHeFPFR3CAsGA/iGi8vT3AyLqxPBo5YxREnwwKb1NmYVoWvz0aPlxXVdGFsaIzAe5BXD/Q8UzfXLWMOePf80KL4+s+n/QHVEp+m/+k5psf8ewNz7AH7yfHiUpMNLLVafDs8qOh1/DGjkojFSg7mBexSNI/Dt3MKnqYYZJJMM430Otuxw7IrVvR56vHWcAcnaYX3dwfSNxG73DXeTu3bUPhwuddCl+Uy2QRQd6lrQN4/i8DSZoK11bddezQSGkvXW9oZhKBelVjwSagbnxFCmRpPoABk+Z3u4x0hHg9gXLaKXk/7Xj/TDBX9/KDf4dZii08tTvHi4hQv9Q9xJ57h7eE23huOkJnQU8IyjoiUcZJWODzeYh0HnKe+UagDB9zdHWLkgLOxx1G3QxcSutxhzAF9SHhxeY7vWd/DC30B17O0xBAiDsIOS8r49PIutrlHApnVvpL6wqd5iZXb3eNOPMUB7RAp42FeASNwlpfoaURCwIO0QkbAcdxgxQNOaYmBIwaOxoE/zGu8GE8QibHJPVao59/kHlG2BtzkHre6TfktMY5oi08v7+FhWuHesAYAnKcFzsYFHgxLnI+9GTWD82LHFJBzsAA3UCkwjUkww1Izr0QK33k157oGuRFAnzngZLusE4901/vcgH8XMsZUeHJPdyhQj8Kh698edAyQJ3niAUWhTDlqs96ZLLvAMhBs+WF5UTD359RjSjekBsDLBNdjvVIkkmmwjzdX8NiJla1tWcUBr91+gDFHfHtzGw/HFT6zuosXulMcxQ3e2R1jpIxN6rGZUDeVksrNPQdidMiN9a7KCkCTkVPvqVWo9XfVk4Hj+gHYghjvcQViZACfWp/i3naN3RixE2vfUzBEjF5q8ay6Eb1kfmQmW1TTxdQ8E6AomKN+h5dWJ3hjdQ8vdqd4e7iFb53fMeWuVEYkNhBNHPBCd2r9MLilnksa0MUgWUyMQNXDAwfc7s+RQTiIHb5w+A62ucPbu1tlk5jlQ9zpz7AKA5ZhQE8J0ZHHgyvArtcNHDCgw1leYBlWBtArGnAcN7gTz/BiOMFx2OBBWONhXuODdITjsMGtuMGOY7H8kRGRsRXaJ4FwllY4S0vcD2s77zb31gc9JVMMNga4jO8Qyjh5Y/EB3lgACQFneYGTcYUH4xrv7Q5xNhZrXz2ejYD/mAKQqmer9NkWXZOuSlcF9MDM0V+3MAMpBVtUUraUKRb6IDROH1KlYva46Qq60xTMKcfvA7JAdRW9hayyz3roxNr1aWAeJDVVbOny0wNlLEJtr88emB7rUDINMpUslTFHCdImaVPGmCMWccRxt8E6Dnhl8cBccL3uw7QywDgXkFcgA9CAvLZDP58qOwSluUoA3NNZvt/MA3G/98/DW/mJAwYXDNV+1RWRd5bn6ELG3e0aNLRxjNLPGX1MWHUDvu/4fWSQ3GePMYdGqelzPOgGLMKI426LZRjxYFwhUsZB2OGzB+/jJC1LwI8Yt+M5Ahh9GEtmiwTjvSQB3pEjAnI7HgEMHKHpg2OOWEdRGpJP9P2H7+Ag7ow6AYCIjJ6SfScgG7CWPov2WUTGJvfNWN5wj54SDmiLKEAOADvusOPYgNvAnQH2wNHOlRAQJStryz0GmXeRGFs5gf4uEmObO/SU7HWgSh8dhF3ZpQ1lId0iJGxSX4LFfuxkKgXxIGtCADAHhFi2JCQAHDLoCuvdzHn01ywMssAZIOldoQBdL/nIPjPGA7APEAJt7m4n1cU8pWDfU2Dy1idqkFYpIgVG8w5AlgWg1zCrkTJ691k5lhA1K0JXMBIjoC7+0smYoFZ8cW23uWvSEqNTfNqu2905slibL3UPcRB2+CAdlvMJMC3jWALOqVVepQ9CyWwIySx2tVrV61jI3yXuoKtkhXellmPVPvEWvu/6MQfshL+9vTrHi8szBGK8tDjBp/pCkxyHc/v+/XSAt3Z3kFCtSaCA3EHc4SwtCjChPoeDuLU+P0tLvNidoKeEh3ll4PswrbDNHd7ZHaOnhE/1p/j08i5e7h6WlEShJjbcY8MdhvGooU6GXMBX01QH4bEHoxKjZZJtx/Kdddzh3d0xbnXneGN1F0dx0yj98vsOA3d2rQTCkDsDe6WGkgTPdUwGMAYOeDcc4b3+GG8sPsBx3JiH8EE6xElaFcpJvBTl38/SElu5xjZ3dn7NzqoZb8HGuI6RjLIu5Ry9ea99GNEj4f54gJ4SjuPGrtlTwjZ2uN0HM0ze2R7j3nKNu+cHON0usBPAJ7hAOkoq8xUmV87UzbMQW2koaXkplQUzKZRUvJ7d6kCXJ6xWvufE1TJsKAG0XLI/j0/nUit04fZMyxwsIFys8wLkfdAVgVXZeBqmfCcXaw8BnUy6QNy4wAPHBoBVwfVhh23qbH3B1nj2iNvLc3x+/S6+p79n5zjNS9xPB2JVRSzDUCw0oXhUcXmqSfssEmOp++uJtNlEhTLQyT0CyAK6es5N6horrQvZLGsfnHxpfYrPH72HF7oSIDzLC5ynHnfHAwwccTccIlDGybjCWV4YaPpMl0AZd8cDA0pNtT2Q+1yGESdpifO0wNc3L6KjhFvdBp9e3sWJeDvLMIryDLg7HmCbO5ylpVnxAKxvN7lvQDaCBRxbK1/BcOeeVSDGKg5mBOh9RHDzuwwYwG9yb0rNK//SpoBRlM0uR4w5NllU72+PcG+5xsuLE9zWPk5LUXIlvqDjV70SHVvnadHck8aWzODh4m0ObqsnUzjEOE8LHMUt7ucDjBxxDjhl6OgeqMJgHHdbAMXjerAsXP7ZboHt0Fma8pVDMjOQPjnczTMBeiL6XwH8FvnzDoB7zPwDRPRZAP8UwFfls/+Hmf/Ek5zTMhRyQJR89sbCz2VJPTDlly9SLR7AvRg/TLgQ6AWqN7AIYxNQ0992Idnveme1K/gFsIWttIR+KiuY8EJ3ihe6U/vNgkbcSwe4Oxzi3lgs8IarF+DqQipBSVZLu64d+Nb2BXxr+4KlxUUUD2ZFA054hbvjCsswWs78Qbez/vEZNn1I6KimyDWZM97ilAma3YRVBap0ltbF0dQ57dODbsBBN+AzB3fxqf6hKbr74wE+2B0ig3AYt8XKzL19npkM2BY0SvvUwwBiqMciCmivOy7ccFridFyW50CEgSNO0gpHcWMAV35b7u8sL7DlHiHlev1CpDUAmDlgh2q52ziQMbDLNSCrRsM67nCrq55KoWdaikffe0oIgAP4dkFboIyOCJlqkD8QY8cRgQ7tnJGygbmCbk8JIbMpOjUkbNHixEvzRtM2dUanAgXg9TtdSDhxSiVzQApk6aI5lFIjkRjruMODcWX9uggjjvqSMLCISYqYVc5ea1pdmcwW/aOFmf9tfU9Efw7Afffx15j5Bz7M+UhW96lFn7muht0XgGkyZBwwaTDWc+0GOPL3IqYLfK+eZxTqxAcbF2G09MkMktW2oQmKapvUUu5LNTQMHMxtP4ob3BVAV6Da5B4JwbjbAmoRJ+MKmQOWYcTLi4f43uUHeJhWyCBzgbe5x1laYJs7vD8cI3PAkbjq743HSBwKv8oRizAaMOjkVy7f0wZAUWD70jC9dCGhQzJLcszRnoP29U5qD722foDfdvid6rmgxCNO0gonaYVt6ho66CQtcRS3eJDX2KZCYSh98HBYYRnHpi33hrXRTufSt+dpURbYgCXtL6CnjPPU4z6tkTjUDVQkmDjmSsMoHVHHRh0XuubAB8j39Y8q5pcXp/hUf4otl5xytaYHjiUuBWqUTkaw2EyaKJNlGK2NUwlgrLrR6kU9GJbYpALs67jDWjydzIRt7nDKS2iygAbEL7uvMOmrjJLyrICvYxcAHo4rMZRq7EmzwdS71Wd4FIsl/8FwiJ1kIWlevabH9pQsC4uZm8ytjywz0D+ZUImM/FsA/uWPdh40+eDTJeRtYaUAJipWqOPTKyVR+e2aWjAAABwASURBVGsD+5gt4Kr/tH6L5vhqFb3Ole496rZYSrGlddzZZFQ5HZcYOWARUmPhL4Xz3o4dzlOx7d/fHeHlxUP7joJNpBIw60OyQJtSGgkBCQH30xq347mlyGkWxCuLB82k3OYeZ1hIil7Jb1Ya46AfsKSaJqfWuwb29LsALOOktJNQdpeoK5DNowpCa5VaBxhFAQYwXlk/xBure5a1chB2xoufCCfsyzAMHHAuz+geHaAPCcfdBkPqsQgjTselBVzVI9kIlbKT83Sh1JDelc5zyifa5wpER7HSVGapC8AX0KnP2scvdkLNKEVjq7KpjEEdL11fFI1m1Axj8SbWoaQ+9pSa4KeCfH0+5a+iIIsFfJ77GqBHu+hNn5/OAQ1If+f8uIzlfovDblfmEpWyE2OO2IgFr79XpevnT7Z7VmVQF9MppanXrittk4xhAoTuQgb6UD97kNY4S3pPAXe3a0u/BKrXnDjYOgq/mvkjCaPU2fiEyLPm6H8fgLeZ+Vfcsc8R0d8H8ADAf8HMf2ffD4noxwH8OAD0L99CjLmpp5GzlBEoaxiBnG0Juad1fH47sGdRlExGoPDEIwdbFq651OuYsAgJB93OrPijuDPLQ+vuZCkydZ56s2anue8AcJ57dGKRDwJEJ2mBW7nDUbfBikbjYgFgI0SPLjrR80XJuDhLCww54iDu8EJ3ijMscBB25sr3EvAFCmU0cFEYZ6nkOS/DiOO4sfb5a6s1CQjQIWApFIkHHu1Lf789gK2zds/Gch+vHzzAS4uTsjiHskx2CV5y38QdLJZBGVmAYuSyz8CQD83qNC9L0mgh1vUIVAXkgud6Py3VU9q9yx0eTAAbQAN4i1Brx+i96zl2uRcvrwavVdmXgH4Zk+u4w0HcYkUjQp9LLrzr98tErWqlUsYcG3pkdOBc28fNwkK/xqHET4pSXISxsdyDC6wCLRXlj+dJX/jrNplsJDWTAtAhGR2p1I1KSessCnWUWANQi8GpFU/EoAxbc5DDVVn0DKvP/AmQjw3oiehvAnhtz0dfZuafkff/DoC/6D57C8D3MvP7RPRFAH+ViH4HMz+YnoSZvwLgKwBw+IXXWambWuypfjegrgCNoVjBWj1Pg35AAX2dZH4Vq58Et7otVqvBeGld5QhM8u2ZGkDylTQjMWIcm4JrHaWGqx854jwtbADvcodvbl5AL6WBvXJQasKUh0tL3Lm0SG9hvrZ6ICsoRyzDYAtqztIS7w+HuNVt8Pn1uzgIOxyGLQIyDsMWG14gMeEsL23Z/N4MD0ToXnYxjpbm5zNf7g1rS5ULxLizOMdhtzOuXVM8lbaxYDJHs+qyA9zE9VmVfgkYpTaPct2NcpUu1ACnguy0dIZfBKZ9Ou4xCJqsI7QZV1opVc+7y21pjcNua/EM9eJGycx5fXEfB2GH47CxlEb1bjTI6jNd1MPZ5Q47obY8iJexPmKTeovX6PhvlVMbv9rJPfixHiZGis9GUwXqxSpNOnBvlUDxCAr1FS0A3ZP8C8XbfJAOcDoucTYu8O55idHovNZzK8Wqhdm8tf+RhTEHYwGAmX/oUZ8TUQfg3wDwRfebLYCtvP8FIvoagN8MPLqEdAiMw0VxK6cLaPwGBQCw7odSMySOFhxVEIjE6ChZbvmKRrza38evbV/G/XFtgbXe3MqayRKIjbdugN/RC+U31FAB+jsdyIFYVhlmy0EeuKxMTUwlLS/XbIoLfQFuXhdxNJBfxlEyPwjvbY9wb1iborrVbQxU13FApGwUz1kuHkBGwIoGrMKIW3FjqyRPs1sdGRg9Kg+u96Xn2ebeVt3upMzxncU57vQl0LiMI7apw4NxZbRJN/G61mFoAGpgKVWbIcHscBGw2FvukP5rrcuiGKqnsG9ltRa+89U5VTxtoQqp/M6l2lK1qje5E2AqoLwIo9E+IweMEhf4YHeIZRixDCNudefoQ8JKFkcNHLEkwlleIOXOlL5m7fi+07YpoB/1m3LdONY4yZ4kBaCmBU9LWExjTfreZ2c13tCe9QlWE4naaycJpKdMGBGBuMOD3RoJZHTbyCWr7lBSgNVDX8XB0a3BFln59REfWWaO/onkhwD8MjN/Uw8Q0csAPmDmRESfB/AFAL/6uBMFYqy7Eizy9V2sWBfVAKsuelkEtcazgQwA47vV0lWQ865zqdVdrGYt2qS52Ho9nYSNa6opbqFmoxzEwZSH/k4X1yxRVkyGzFI3pM1P9jLkCipapU+5WZ2829xZ0DeDLD2tBlaDLbYZcrHKvRW+zT1uxzOsQkCPAvaJy4rK99ORpRECJRda+7DUXYnIVFZkKg+7joOlLaqV71f7Bso46GtcQL0WBQZNU9QMmouLqy7SE1OaRcUHhAEUa1esSQW46arpaSDRriH9vTOgqeOgWLptvKdkcSXscofBLP+AHfty2r1RMaqco+O0fcqkAnZd2V3vtXNW++6SwKz3Pv3fU2+xpH2OljE17Qu9d/3tBS/Jvqfty+67NVC/jgMyZSwRLMBcFqPJWpRQPfRFGLGMIw7jtsncWYReDIsrBOcZ6J9IfhQtbQMAPwjgTxHRCCAB+BPM/MHjTrQII77v+D0AMFDSV+WelS8PyLjdneN2LAttVjTgTjzFm9vXjHoAivW54U4WoUh6YdgZuHhJjvfz+dORMg6oZAYMuVAoA9WVhCWroLVmNMCoATYFYn0/teL1HFtuA23nucc6Drg/rHHcFX69AGqQ8ym/yqY4lEryGSORK7V0RglnuQRrD8LWXjMC3huO8SCtJZMiF6+gO8UBtrgTTxGJcS8dCE3UWXD6dneOs9TGDGJkobKoiTn4NkfpFwv6CuVhC7OEf88OLD0YVa/PWfqSDeJBfJP6BpwU7Lw1OqV9ADTWvu51oCCv+xx4z/N0XBYPRqk+97y9Fbwzb67w5T5Nsa7JkHRD6UNbkeziTdp2PZeKgnjNe2+Bu9QwusTTIS2dvN/TnFrsfvy1BlHpYw2aK/Dfk7GcmXDQD9imDq+uHjRxklsy1gMxbtEGx3Fj81rTNq9GeAb6JxFm/qN7jv0VAH/lw54rgM0yDsR4IZw1lrcuYNHBMHDE/XRgAa33wjGO4gbH4RwP89r46hKUJAMhBfkaAEzY5h7t4hi5rl4rd7aRQ2lnOVeP1ATUvLXjxQc1M6MBY8sznqS1qSV/f1gjyMKcW93GVi2qAuxDvQ9byp7r516pDRQwBlkwI8ByFDc4E9rmdneGPowYYrnf++Mab+1u4x26hbQKeK27hzvxDMfhHC93D8rye17g3bH0/UlaIbnVvKrwxhyxjKNx8l6G3DeLoSKxVGAs99+5gKGeywcipzyygZUDHM+zK4ApcJf3Xd3RKIUmsKvplAqAaskvpByH4mFJaSxZTj6W4tuhimHn2uvTgT1NMw0QBzcefQDZB4+nlva+8dhRWZ09NTb8upFAbPEmvV79Xk0zHiXNOHNdeT69pvarLha71W9qHAbFeFvLYkJdKe4Xcw054v64brKS9pWqfiphlIyPT4g866ybK5OyKKRMeJ8rXBZ2LEoGh3M7lW7JLPwmSvGlg7DFQdhiw72dY8OlBoemeQVAVjb2ruZMsKXvWQpHAdUN1bb4wk7RlEHl3JWjB9qMBB3IoGAgr9budBOQjQTzgnDCu9zh3nBgWR1KF6jl7gtfeS/Iey7Famvr3JzlhXD2A+6lssp0C8LJuDalkinjrd0dnOUFXoynOAxb9FQs8bO0kKygpfWBcvoDqnWv1/UlHUqKX1scTVcjBy7F3XSBFrCfprDx4Oa+L2x3mZhnoFSGUBTTFdUrWd8wOh5bUxen59NjI9q9UYE27dF7AgaMrOeoqZr1eq2CXITRrYRtAV0VRWv110Vt+wyRafzEK5DpZ6qkRkczmqLltl8V5DuhIjV11e95UO6veJv9HkPA0iu1aqvEoK5MZov+eiUQYx2HJvukHM94kFbyrVL2tG+sG00pTDgZVzgBEOjQPIG6r2bhllW2qEpAQcFb59FZgepZ6Hn0feHky6RYdoOzxivoJ2g9/Mrv+6Cu3o9mWajF2kx0Z6Fp6uEiJKzjrumnPpQNuZc02vf1HD7GEKhkrpzlYoGeYGX1c7Tkrlpdy7Ar9I7wpR+kQzzMK/MqzvICm9w3Ae3MhC26Qi+hAnlEKR6milCDy6Vfq+JTEFOlZ2Digqd+gZW3PvV5eopjmmvux5xa+6ocmmAlKvBqQNz2TCA2pVSf2UWvoir5VuGCarxB26H9obGZ8gzDhXtRKmr6fLPkq3slZ+VBJgrR01f7LHcd17vUcuIVnGu7VaEtJSOqgHaJjRxJ9pWm1GYmHHZby0pS61wLuQElNlTmRV1Y5j3WR6WlfjjhOevmuiWACxcnADKEaKCvgUYARnPAXFcprkWEHMqkL7mxAQnFYtXBaRkUqJaW1p3RhUt+QvbKg4vC8BNB2wLUSaHegPc0LtwnuRK2Au5KKVgmjwP5KfcZiI23Hd0S+ULvtIFkpUICMrJ4EYkJ53lhFrbGDhICEpdJ1VHCkrQOTJaKiSU+ccbLxjI8iFscuPo4flm/gpSnyny/+aqJfmWoz1Sy30gZh6XrS/VmxhwRpil/IOPbfVE134+1PYQLlA87nporr26lNajWsrFz7AHU6bPbp8B9WzQw61fggis9o+IXc6lcKCSn13eUlQE8pp5GteIBWflMNUi7v9xILcGtacp9yFiHHV7sTpFAOEkrnOcVhlzmbUdcKoaCRamVceaL0CnA69zUe1Kv9cr2jGWA5zz665VSxa5YxSsMVtDJB/LKxM9IwqNDgpJLyWcvqYuyzJorl6+rABXcCh940VXUwaygrty8LvoBYIMxc+FnNQ6gkji0K03dewWmuhqUpLytm5QORPcpitpflf6o4FKV33muJQA8uCjwm+UtbVHloMpOc959xUideKYkXeaM91Js8RblhjrS3w/QQHYLLpFKDZ0y+TOWqIvHsnlGLhOHJHMjZrf4Sq7HEHBvF/YAbXbOvsD4NCvFbxlZFmq5706e2W5C8SidMfVAlXrzqadt0DRYxs+Ubpm22dNP+vdlNM1UqlK6mME0Lb9d+6juGaGGWEnnLdz+cdxgw50VpFNvz+rugHHYbW286XhJICwdhaNJDpHK2Og5XWpAPbXMK2OvVwK45HnLQzyKmyag6kVpA1tEgYCO6sDwchB3FwbqPuvcPpPv9pSwiupC1m3jykALDbgpqCl3b+0EYRArWeuWKLhrAbHgMmImc62xWIGLOcs+KKV0RaFISnv079Jn5dqFKy114LWv+5CN61VPoBxPKJV42Cnd0Gb00ApevBKZAulU6fnPqvIQDwT1OkF4+sQ1h94X3vLe0L5z+nr79e+w9zu1zS0VpCWrp/sEq7eg/XtZMF4Dvjvjmms9/11ux/fjgL35rrfOXaaLtWmP9VtTNmlPH3kgDRhz+Y6mqPqxp2shNCajq7rvj4ViTRI4Va/RvHGUleXn6M34AIB12GHInSVelI1USvp0j4TDUOjDqzLoAcwc/XXLyKUOyDIMBtjH8RzHoeyGUyZ+y5UDMGohg7DjrgFjoOZpK1jrufcFdDyIe/cwcV+5zQm/rpSGVzpTvtoPcEC4X44G8llSx3wGBeBB6CLAB7CtIQBqKeRyvgqSanXpOdQLiI7eUfF942kufz5t3xTEdbJmBPOepusEPLhXBVSzkQDgvMliqrXOPag3Vj3azBU999RKnoKn3wHq4mdtAFSvp7SZPy+Ahtf35/B9NV0Ep++9h3QZoF9s30UjRSkqVTjT9jxKWXhFqe3Ra3ShxM409dRncq2lVlAgtnFfgqeVhusoYdDdqUC2aFClt+uUVep+kV9PCRt0GITOege39gZsn1pK/eOrO9/HLDcC6DMIH0hlRwC2rdpDWuMgbJvdfQ7DFn0YG4oE0LowsosOphZkrRII1OBgCSguGyD2NWB8+zyYK50wTZEsv794rvY8alm3IOaBSvnPhVg35zL4NUVRvzOtH2LWdKgeiHo7Ss9cliNt/cO5lp9lApCQyFl6hAtpbmkCJAnxwsbi5bj0Ua5g7bOoPP1g9YlcgHFqNTdt8vx6ogaw9lI0+87j+rAcbwOVrcXb/nYfYF8A/EfQKZd9drFt+yuv+v5px+DlngZQa0VNr7OQlbw+1bOMudykyvoNX3TO6DjbSubb1hkyQDVWNKiuY9jTZnouT+FOjZOPLLNFf70ycsR7u6MLO9kA7aDoqUTy/Y5CyvMpx68BQB8UNKpnD8hp9gxQLHTlpqdgPk2FBNC091FycWFLFqs6I7haOzqQp+BxR+IQKn6Hqi33NcDMPrgMHNCuuX7xbhL2BbS8t2LBZaswV7hSU67cWvoKytP1AEClWdpr7S/M1fDhl5SS9oB5wdqdLITa9519MgX9i+1tva3poiv73UTZt6tbL1ew+45f2rY91MvjYjueWpr2oQZ+F7YgUedatbajWvRu3AGtAdFkuLEGrxO6mNCHbDumBVQFrwvkTsdlk8ppJcrRPsvHzbMPJwxOV+ghfMxyI4A+M1nGgQ+aAahVVySt7DQtLYXLR+4tY0ezN6Q41xScgcpp6/Vsqz/HFU+t1LJvaKUcpsvTp9kVfrBqXZcuDs35/CpRP4G0DjcAK3yl18gcsH1EwG06oaeWmk7a6fd9oLa0r3VrE9r7bPpTAqvRMlxqyui+9u2jFi6jP/a9vxggvAju00yRKUjrq7Vhj5LaJ/uu749P+2ffClX9fmbaey5tz/R30/dTAPfnbdo1AU49DsiKY/CFcVszfgrnjxyRKaMPMHouI5a69OgM8LVtU2MJKFSNzoAsiRKR0oXa/2Nun9W0T65EGHMw9lmIzx64jLvMTFbDZUsZ57lvtH4FKfdKpVxq+X1NZ8wcL1jJU3Cv171okU5lCjaeovHBwn3gnJiQ0BZzG2kahN5nae73KLRuTOCJxchlsisVdBnI1Hvazwfb+z0Tb+rleIBV2UfrTFew7gOntm0XQVWP75NWuYUGlH2WTdjDw7uzN3/te57T60zPdZmFv08RXN6O9ntTWmiqjKZjc3pcr5O5lkMGYNSNgn3iiCHpnr2tcaSAv4+63OdB+uqlvvTEAEArkuzrv8eN2Q8lc3rl9QqBG8tnr/vpJkj5PDYUj5fGRb3EIrgMJC+ea09q3D6xy3y4lXsfhnPcByxPAgSP+o6/r6d1jR8VSNzHYe9rU+MR7bGML7tmC1Z1SX4LfBn6XJrje4KkAEzRXDZGpqmhbbvChe/5Oj2+/c053O1Os4AeFU+4eP3Lx/U0g2tq0AbKzQrXndTvucxA8V7TNBvsgkd8yThPTIju5r3BVfth708/kjAAni3665XMAWfjoj2Gi27tXtftSnk7bY+/zsXFKfqdR1Enjz7n/ms+alIBF5XNlQam9lznab/rFw49joK48Iwv8PAf3upSYLjMK7T3T0gFTIG92Sf2Ec9VS2eMrkTFoyzS6tVebiy0oP/odj7qt/vb22ZB6XtfsqAebxeVTQ2cR8cMrtageCphni366xbG/kk3rRf+NHKlg8PJ48D4SY4/TRbGPrnM7b8qeVTtmH2feSW9jw+/9Dp7gTk2xx93b+0q3Mc/+8u8wkedd0rhPPa3T0g37PvepdY05b1tfxrF+CSi3tKTf9+/f7o5eKWc/B75JAVjiT9BKUKXCRG9C+A3PqbTvwTgvY/p3E8rc5ueTJ7HNgHPZ7u+m9r0m5j55Y9yAiL6WZT2PYm8x8x/4KNc76PKjQD6j1OI6OeZ+UvPuh1e5jY9mTyPbQKez3bNbbrZcvUE9SyzzDLLLM+VzEA/yyyzzHLDZQb6x8tXnnUD9sjcpieT57FNwPPZrrlNN1hmjn6WWWaZ5YbLbNHPMssss9xwmYF+lllmmeWGywz0IkT0R4jol4goE9GX3PHPEtE5Ef0D+fffu8++SET/mIjeJKL/hoiudIXGZW2Sz/5zue5Xiehfva427WnjnySib7n++UOPa+N1CBH9Abnum0T0E9d57Uk7fl2exz8gop+XYy8S0c8R0a/I6wsfcxv+AhG9Q0S/6I5d2obrem6XtOu5HE+feGHm+V+JU/w2AL8FwN8C8CV3/LMAfvGS3/xdAL8HpdLI/wbgD15Tm347gH8IYAngcwC+BiBeR5v2tPFPAvhP9xy/tI3X8CyjXO/zABbSjt/+jMbVrwN4aXLszwL4CXn/EwD+y4+5DT8I4F/w4/iyNlznc7ukXc/deLoJ/2aLXoSZ/ykzf/VJv09ErwO4xcz/N5eR+D8B+NeuqU0/AuAvMfOWmX8NwJsAftd1tOlDyN42XtO1fxeAN5n5V5l5B+AvSXueF/kRAD8l738KH/MzYub/E8AHT9iGa3tul7TrMnmW4+kTLzPQP5l8joj+PhH9bSL6fXLs0wC+6b7zTTl2HfJpAN/Yc+1n1ab/iIj+kbjiSgFc1sbrkGd57akwgL9BRL9ARD8ux15l5rcAQF5feQbtuqwNz0PfPW/j6RMvN6Ko2ZMKEf1NAK/t+ejLzPwzl/zsLQDfy8zvE9EXAfxVIvod2L/N8IfOVX3KNl127Stp04WLPaKNAP48gD8t1/nTAP4cgH//42rLE8qzvPZUfi8zf5uIXgHwc0T0y8+oHU8qz7rvnsfx9ImX7yqgZ+YfeorfbAFs5f0vENHXAPxmFIviDffVNwB8+zraJNf+zJ5rX0mbpvKkbSSi/xHAX39MG69DnuW1G2Hmb8vrO0T00yh0w9tE9DozvyV02zvPoGmXteGZ9h0zv63vn6Px9ImXmbp5jBDRy0RluyYi+jyALwD4VXF3HxLR75bMln8PwGUW+FXLXwPwo0S0JKLPSZv+7rNok4CEyr8OQDMo9rbx42yLk78H4AtE9DkiWgD4UWnPtQoRHRLRsb4H8MMo/fPXAPyYfO3HcH3jxstlbXiWz+15HU+ffHnW0eDn5R/KoPomivX+NoD/XY7/mwB+CSXi//8C+MPuN19CGYhfA/DfQlYaf9xtks++LNf9Klxmzcfdpj1t/J8B/GMA/whlMr7+uDZe0/P8QwD+P7n+l5/RmPq8jJt/KGPoy3L8UwD+DwC/Iq8vfszt+IsoFOQg4+mPPaoN1/XcLmnXczmePun/5hIIs8wyyyw3XGbqZpZZZpnlhssM9LPMMsssN1xmoJ9llllmueEyA/0ss8wyyw2XGehnmWWWWW64zEA/y40SIvoMEf0aEb0of78gf/+mZ922WWZ5VjID/Sw3Spj5GyjL6H9SDv0kgK8w8288u1bNMsuzlTmPfpYbJ0TUA/gFAH8BwB8H8Du5VLGcZZbvSvmuqnUzy3eHMPNARP8ZgJ8F8MMzyM/y3S4zdTPLTZU/iLK8/p951g2ZZZZnLTPQz3LjhIh+AMDvB/C7Afwnk0JZs8zyXScz0M9yo0Sqdv55AP8xM38dwH8F4L9+tq2aZZZnKzPQz3LT5I8D+Doz/5z8/d8B+K1E9C8+wzbNMsszlTnrZpZZZpnlhsts0c8yyyyz3HCZgX6WWWaZ5YbLDPSzzDLLLDdcZqCfZZZZZrnhMgP9LLPMMssNlxnoZ5llllluuMxAP8sss8xyw+X/B/3mUXoTlpXbAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<Figure size 432x288 with 2 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "needs_background": "light" | |
| }, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "yearly_events_mean.plot()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 30, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.collections.QuadMesh at 0x7f6bfb17c908>" | |
| ] | |
| }, | |
| "execution_count": 30, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9e6xka3Yf9Fvr+769d1Wd06e7b9+5M/bM+BU7yDayw0tIEcKQAAlShMByFBJMIBEBCYSQELKxlPAMchAKQQKhGIECwRCbYIMTBaIkxCIjJwTHCiF2HCs2Hmc8d2Zu3+4+r6raj+9b/LHW+vau06fvq89k7vStJbVOV9WuXfvx7fX4rd9ai0QERznKUY5ylI+u8Ff6AI5ylKMc5ShfWTkagqMc5ShH+YjL0RAc5ShHOcpHXI6G4ChHOcpRPuJyNARHOcpRjvIRl6MhOMpRjnKUj7gcDcFRjnKUo3zE5WgIjvKOQkRXi3+FiHaL17/jDn/ntxLRTxHRloh+8pbPfwsR/XX73Z8iom9dfEZE9B8S0a8S0TkR/SQRfdvi84dE9ONEdE1EnyWi3/4ux/LC7YmoIaI/TkS/TERCRN/1Hs7tNxDRz9u5/Xki+rrFZ/+IvXdORL/8rhfqKEf5MsjREBzlHUVETvwfgF8B8FsW7/3wHf7UEwB/CMAP3vyAiL4ZwA8D+FcA3AfwJwD8BBFF2+R7APwuAP8QgIcA/iKAP7rYxX8BYADwBoDfAeC/XBqKW+Tdtv8MgH8OwBfe7aSI6BGAHwPwe+3YfhrAjyw2uQbw3wD4t95tX0c5ypdLjobgKB8KEZE/KyI/CuDzt3z8TwD4CyLyGRGZAPwBAF8L4B+2z78BwGdE5JdEJAP47wF8KwAQ0QbAdwP4vSJyJSKfAfATAL73tuN4t+1FZBCRP2Tv5/dwav8MgJ8Vkf9JRPYA/l0A30FEf5ft7y+LyB8F8EvvYV9HOcqXRY6G4Ch3KkT0/UT07EX/Puhu7d/N199ur/8YgF9DRN9CRAnA7wTwv9tn3wIgi8gvLL7//wB4UUTwfrd/N/k2+z4AQESuAfziS+zvKEe5c4nvvslRjvLeRUR+ELfAOy8pfwbADxoe/1MAvg9AA2Btn78J4C8A+JtQL/1vA/hH7bMTAOc39ncO4PQFv/V+t383OQHw1h3u7yhHuXM5RgRH+dCLiPw81Mv/z6FK/xGAnwPwOdvk3wHw9wP4FIAOwL8H4P8gojWAKwD3buzyHoBLACCi/+1G8vsdt38nIaJPL5Pr9vYH3t9RjvJ3So6G4Ch3KkT0AzeYRle3KMf3LSLyx0Xk20XkNaji/zoA/7d9/B0AfkREPicik4j8EQAPoHmCXwAQLeGMxfY/a/v9zTeS3++4/bsc46/cSK7Dvvcdvo3lIL7pvezvKEf5OyVHQ3CUOxUR+Y+WyvDmvxd9j4gCEXVQuJKJqDO83z//e22b1wH8YQB/wiIFQA3C9xDRG0TERPS9ABKAv2WY/I8B+PeJaENEvx7AP4VDVtHy+N91eyJq7VgBoLFjpVt2BwA/DuDbiei77Tu/D8Bf82O34+3seMn21bzwAh/lKF8OEZHjv+O/9/QPwC8D+I1fpn3/CwDkxr8/svj8M1A45QnUEGwWn3VQyuebAC4A/AyA37T4/CGA/wVK1fwVAL/9XY7lHbe363DzWL/+Hfb3GwH8PIAdgJ9cbgvgu27Z109+pe/18d9H6x+JHAfTHOUoRznKR1mO0NBRjnKUo3zE5WgIjnKUoxzlIy5HQ3CUoxzlKB9xORqCoxzlKEf5iMsrUVn84OFr8jWf+vRX+jCOcpSjfBXIz/21v/pYRF5/mX18ilayR3lP2z7G8KdF5De9zO99ueWVMASf+NSn8cN/6s/X17ygdL+I3c2L1jUF74855USrm/v2fb6QUX5D8i2MLQbV7y9/R+T2/d7cRWAgl9uP7zZhun1bxns7iQJ51239+t62nV+D93rN3suxLe/nO/3mB5Uiz1/328Tv23Pf/4Dr7b1KWXzBn4XlsbyXdXRT3un+vJ/jG/PdsBTLbc/OjYMML8A7ft0nH3z2ZX9/j4Lvxife07Z/GJ999LK/9+WWV8IQiAj2U0GwhcA0L4K86A+5XDwpUFWYNxdM4NtX/c21d/N19gfclPZtSug2xXnTgNSfX2xGfPsDd/NYCwQxoF6LcOMQxHZ786EBnn+4/BUt/q/bLX7/lnO8eZx+frcpwHrOeP48bhMRYFgcANm9fpGSe6ffdAmLN27bj8jhfgKpsfVt/TORw2t4894srwsRkBfnkV/gXL5Imd3c/qby99c3l3JgAHJ4/28q5yLynLF80f79dSCq3/HPfL9ZBIn5PSnvm+Lnv9zutt+6eWxMhLHc/vldCOH5Z+uF8lXA0H81DIH9XS7ecZKDBTMbCf27NAIviiCeU04kBx47oA934NnjikzVe2fCLWrysImm/7Yv2MT0jgFnIILXfngxq78uN/a/1CEFhwqvbmNvqU4iPWZTdMvP/P2bkYkqv8P9+ed+jQ9/Y1bcY3nxExKIkUXA9bwOFWkRgSz2yRYJLQ1tgczKWp5Xii67XA72fdt1yiIHCu6mI3GbIndF74qpiGAsBYn5HRVtLgsDkOf3bsqLlFx1gt5BES6PCdB7waTXKRdBYKp/mWblq9dmcayL/fu98PNOC005llL3/X7lpkHNRXDo1PHBsfqxLL/mx9/Fu0mLEoDmRQvqpryXZuVfYXklDAGBkPjwBqegStY9c1cKL3IIAtELva9ZsZjiv2E4/AFi1s+K2KKEKmtXaLDX6ZYIpCq0G0pTRFBwqJjJ9j0fAyPQ4cIn0ociF9FjKDcVwuEx+PYH3j497/15ROF//b3lgxeInrvOy9+/6ZXN3uvzMEYWqZ6l72HIUo3glAVZdLvAAMls/JfePWO+91PGwXpgqMX23xqxVG6qvF0512PPqtyYCP0L4I7EXLcfS8GYVYGNOR9c1xSoGofltQhEdbvEh8ZoNrKEPhfkIujtzcSEfCM6YSJ0kZFLMY8fdVs/z8shVy/35ikFUoWrx6X7S4Fw0wkAAF4agHyotH2/eizPXzc/tqW3XbJfJ67frdf4hlu+NKK3ef+3GfkPInSH+/owyCthCIDZwwl8O7TDIFBdIPP7rnTUW5k92iVck9gfWqoqIiyUlosrlmZhlAID6UZc4Ip/uYYDzQo18fxZEfPyokcyYsc4fzndcr7+8EX7jAPVo7ip3JfHVa+Lfy55NmJSAPEExMIUSZlPvn6v1O0ltroPYghx1egkBUIMrvty972AiCFEiERIBBS4QhVE81YFqBGDiL6XBWC7n/Ve3cibcABuxmpZBAF08HAXCHIBUgjVux6L7qifSvWiARwobd/fVsqt92YsUp2Bm8qKiZCiGrP9pL9103tPQdf5OM0QTmBCkjnq1Z8lBCbsJ1X+l/1Ut3UPejuWg2jU10DCYUQDe52hIbAbpaXSds/cf2M/FYxunAIjMVXFzYSDB3GOIvjgt1M4vCf+jNcIKx/CWEsjcdOo3qnQ+4CGvgrklTAETMA6BWSR5zxREYV0AIBFI4Ms/uDORqB6EQsD4NBOFlEPYOHl++8eODUENGEOT5dBdIVX7HsKIc0Qj/8/mJKfilQv3x/OIvNCZwio6IONXFQxl1yVcfCT8IsAgMoECdrHLbjidiUsRTUq8azs63nZvqW4Fn1+G3+/Xv8AkTLvr2QAWSfKSAHyABDr/znW45CQIKzLkm4YK/WMTSEaDFB4NgBE6j02pPDaElZyEy6YIzuPCjyCYRBCMGhMBFMmCC3zEKpscwHWCVUJzYpUz8EVuBsBN0RFpEaqYyk1ekShxZHO5+pwil3wqhzHQlXBuuc/5oJ+KmCm6rUDarB8O5d14qq0l8q8i4wss+PT2kPh68+NBzCv/bT4vxsczdeh/u5SOd+MeJdRgf6+5hNsmT4XGTm05lHaSRMPFT4fOjoHMBvuOkfw6liCV8IQEFQB4xYIiEEH+GciqorfIaPGlIoq6aVX54ku3ZkIMIjA1/VST5EtwqnIAczjv7V0mNUjpGoccikIvGQLqUHLmKElFzcYkQnZb597JyHqA+8PoUcPbIohtBD7LpWsShhQL92UL0x5+2dqANzAADT1QJlA06AnYwZAiIEQgWzGyaMiU/LCUbctmlIn4rot5b1+HwDlAeTfcSMVEgIAJoZQUBgPDtNZ40R73QTClBXLnoocJGVnJSB6zaBKXZU5MMmhd9lPRRW3RwqkD38T9Lfcq/f76oowMIBCVfEDqO+5QXDl6JHKMgcwikJO66TnejnodUr+nRr9EpCLKcpQoZNcBKMpeWaq69eVfGBCGxg9CjpW5T/mUo2Ffzfx7OWnQEiRD58l8/o56G+kRtfCOkndn0NKYy7YjhkYYdsEuz56zG1g+02erxnNOTS/fieNrtN2AY4G4pobygsD4JGU3/tlpP+yoobgTnb1oZBXwxAsQ8cFBAToA9pVWOWQmaPevirJwFSjBH8oO1PW0yJE9mQwoIq6LjZRAxTD7I25YnKvDJj9vrFI9SiCKWr3YsmiBQ/hy2KBu0uVs9ToIjDVY3QJTBWr9cjEDU8/FTQhgNyLN1GPL4BKRgkJnMc5aiia8RKOCtsAoDwp9MNxVvwhQkKjijykgwhDOEA42T1Yq8dvn2mUMGqUI0WNDbF+f9jq/mMHxBaFQvVkRQTLUxeZPdgadfl1XGLVC6gogBDZowTNIRABIYW6zTIJ7t/3e+KRZmAgEQOTGollfkDXixuGmdkClgOl5ftIzOhzrmtHMfXlDX4+nxOIagK+i4rn91M2PJ+rp58Xzkj9rhkZV8zbMWMsgiwF68R1ra4Ta7Lc9tXV780XJwVCDqyKH7ORSYHrs9HFWeG3IaDPGcHIE4n5Oc+eidTPuGWd3zQCRHMUsszhTUUQ70zjfRngpq+gvBKGAJjD7+WNz6acSaiyewD9bOm1C3SR9EXQBF1QkQmlzAuLAUTmOTFcve5ZkQ9ZDpK6sP3652Qh+1Jp58WxkBkDtzSlGOvFIoRAqtDigh2RBQiY8w5TUQPRkMNJBluo/oGQ5gr2U8Fk5+uJYgKwHQsAQgMBUURkYBSAQjyg5vm+I6Eqcx53EOIKWdG0V6NgBofcaIhi/pNBC8IBKACFZDmEUqMHhY4YCE39DeIIjm2lCDI8YTznWFwKNHrAIioDgIZnozzkReJYCDHY6wN2Exntcl5bDEI0WzplXSQMwqYJ1aEoEGAyZWnHlcKLa0XGmhgljEVN+Gnjj6nlDPK8BltTeA7NADPEAwAPVgnBoosljdMhLWdA6X2fowk3Ekykx2TnOY6umA/hsJMmPhd9nbbhAD7z34Ctv7HouhuzVAOWmNCjYJ0CHFid2Upz1HVbktivWxcZGbpOI1HVC41Fd3chBEUXXhV5ZQxBsQc2iyq3CoHT7LmN0yFM4x4UgzBkx1/Vs9uNUhegGxdgxgXHMv9OYKnJX4WHUJV1XHhd7r2nMP9eBKpnC8xYrhsOX7dDFkyiENI4iVH67NyZ5tdmdDyEH7NgHQnlBu21CWRwmhqP3SQLVpR6iKGMyJT02KGfM5HmJ6YesUyquEn5sx4BiClxVLjH8IAyqWInRuivkThAYnMISwH6ehz0/3lSwzINGok0a4ADqEwoFCEiGLJgLObxVcaM3otADmEA4ueAGVsPrNdhKrMyqkYBhEJSFYhHcU2Yk/h6z3TNlBt0WWcxeUR600lxtpIbEwahCfM6PG0i1knqcbai3vg6qcfu+Lnj5YlnGDQxo4uMdQo1x9GwZkqWaz0XNQ5n7cyaWibF3fhvx4L9VA4TygsY58rgq2VNwlJZ56LwjzKN5rofZx+t6ZDqXaOoGxRYtu8s64bWKYDpEFZycXiwsyjjA7BXbxVaPH8vvy/6FID/DsDHodb+h0TkPyOihwB+BMDXQ2dg/FYReWrf+bcB/G4oMPGvi8iffpljeCUMAUEVm9Lm1CsPQRf6jXxjLQTScFKloNT6gCEXjIN6HO4tBVMuADAuuOlDLmgCz8lnSybHOIeNrgTm31ejEQ3O8TyERxIH0cbi/VpAU6QqsiYxijjUQ1hRRggJ/VSwd8+SCerECchgEybCkJ2RAuwm3bYJhCYSVtM1iqxAU48QUZU9SwaV6VCxcwQczuGo0JG/riwhhXoQmpoIljAP4aJpr1rUcwxZf0NC0mjAk9gAMO7VNuYBDUdwew9FSiUKiIidr3r3uQj6SapB9jzPbhRTzILLXiGMFKh61Xrv5tDCPc4dZibLaLmdZaRRIDX34E6IG1yx+54tQexRqic0AwON1U805izovqgWrTVRv+dY+ZjV8123XL3vdQpo7BgL1LtvA9eIJEfgYsiK61tuSo3InDjPwpZjcqVfsE56EfwazRH2MjrQzxzuUdYVVVjMt3XHaXktZ4rrfM0PqaceXczPRGKFoDSqyQgZB/CSQ74FApI70twmdwgNTQD+TRH5GSI6BfBXiOjPQIc1/TkR+UEi+n4A3w/g+4joWwH8NgDfBuBrAPxZIvoWEfnAFQuvhCFwaMfFHWlPyFYsF+oNeUgMLEJrEkhxCqkaAU9uuZfhYbB/xwtYfD2MRUAWJXiV8dUgFf8fsmBlzAguswfuHpqH1s76cCbM5IwTN0gW5q4Tg/OIzEm9WSkIu2dYxQ5rGUwpl6rFJK10ZyLoYgvKA3JsEVjQG9MjMQHjHmF/CUktaNyDl8p/QR91BpJwBEIEDdvq8QNqQAgaEUhq9WvTXr8bW30/tsoUskhiMPyZRWEhmnpI0b8g1ZYSW5T2BEMWDGOpUJ5HUUOWqmCjXUgRwT5LhYGyCLZDViw8C877SXFrnr1Mv+dLOAxAhUpy8byKevOeP/KlKDIri5pXMriSCRhFlVMT5jwVgFqtvTIa6QBBy1wpxrkAbVRHog0MEY3oqFnms4A2AJsUKittLOq8TGWunWiCHndgrckY2atyZXaqWJP7PKn3ftI8X/sx06lDdWhWibEbi+L/jPrcLQkYfi295sLzCst7cDNf4M9hFn1GuxhqMnh5rZdU3pzniP0uhHB3EYGIvAmdrgcRuSSivwHga6EjUr/LNvtvodPtvs/e/2Mi0gP4/4jobwH4BwD8xQ96DK+EIdBQVhfXkGfvz2+WWDLP4SANSaUqe6ejeajqFLUHq1SZI0odVUx4yu6tK1TAUMXfmCJY0hmV7GDJX1NSTMoY1OhkZrawkRw9obeMDhoLySMBq6i5Ck/q5qJeLXcN4qoF5xFCLSQ0yJhzHjzuK27P+3MACv1SbMGkCcEw7UFTr+ydURW7hAYSW81VGO3TGT3CEYiN1QsYzOPGwCODDGUZZYOSmEGj0UbzCISkv4Ng97AgMiMyAzSCmIGQICGidGe4nDSH4dfSldFQlCbqSq0AGEZBn/X6XA6T3c+ZCXM1ZOSiXvTaXOZgcMWySNFxdV8j5/vp4DMAFeZQ6mVAE0kZaVCPeAk3MQhk7CM2o8+LfMHSsfGq2MF0pMOPTm6AwVUOV+YCNEEjmsiE3SS1MNH36pi5O0uBCFd5pn0mNu+FxSArZ+CV6uUXOay2biLVaGgpS86/7luvaxe5Qjzu7dfruNimGHXW93M5TPU+dJGr16/fnaM3LxL156gsnK6XFcL7iggeEdFPL17/kIj80K37Jfp6AL8OwP8F4A0zEhCRN4noY7bZ1wL4S4uvfc7e+8DyShgCJkJn9LPWVnJjnpIWIAFiXpYnswhW0RmCKgfmxeLWBT+W2SsRUVpflhnvTcTmXaqHBrhSoJr8y/ZlxZdnb8uVmO9r0g1n79a8zDlsN/zUjN0qEnjcYWpOcNGXmizejpoeZQrIk2A3ZtzvAuLFF/Q8OAKxU2PQXwFSEHfnuhCsMIx350A0Ivc0AqFRj3wB90hsVaHnCVKmGRbyojOvDxj3Gg2UUg2GGwnqr0AAyuo+JCSE/gooE0JoAASNBoyBVFZndf9NiPX6efK8sYI5xfpVKV6NBZf9hC9eDUiBK47dTwVfe6/DaRNx1qaKRwPAppmZVNcWMbhOdkjEOfzBoJV2Qet0eCWxroOG58pjzzOoQUGNTHy/uSj0o21E5jqH0SIcX+tTATgSwBoJBIsgo0WbgTSaOGmCGQfLW5kjhDBHJqNBjbtJKkzkUWpjoaxHNpMlYDNmpe7H1USPmuec2lgEK2I0MjPt9PotzydUxysZwy6L4GqYkEXQZ81z7O0Z7XNGG0L9zWzwrwC1RmhvSekUCDEwkhmE2yreP6gQvY8WE8BjEfn73n2fdALgfwbwb4jIBb34YG/74KUs3CthCNzzjzfaTMQwV1a6dJGwG6XitYDSBGPw4jKq5fyeOHOmAjD3mVmnADDQBa5GYMgGA5nn6PRFz1VMMucj5kSzeXysxmEVGI0ptixzUtfvfCRY8lQx9JB7vM4jSloBKGhNj/XC2I8Fr7cC2r6ttQFTrwp9uFYPPq2UAloyaNyC+2v10Dno51ZPIBYVOBxEU290z1LzB14nIJRA7ix7wRsxKPeg4RqSVprwLaVmZfn67erxU54gZngktjMkZMef0xqSS2U5RUuA7iapSd/LIePzl32N+M66iIerhMAdAhHe3o64GqYD73YuUpKDRGwXZ+zdk/DOgXfjvGTDOKQHKG10mEJVkoOtqcDaOM8N0NWQcdIEbTNRBNdT1gikzLDIWNST3peMLjLe2g5IzGgj1xyEKzrvV7WfSs1BeW5iKoc4OwkwyKz8XUHXXAaAna3/MQs2TagQ2LLmwtk4F33GKnFd12CBZM09FYvi/DkCZpy/iOB8n2ubDC9eG7Pgsii0dDVMNRdQRNCWGbZzuiwRao4kLii8AO7MCCzv9V0JESWoEfhhEfkxe/uLRPQJiwY+AeBL9v7nAHxq8fVPAvj8y/z+V8wQENGvhWbEXb4RwO8DcB/AvwTgLXv/B0TkT73zvlBxUC/Ack/dxal8/TQzgZxRAABWfV+hoNsKfZjUyyr1gVZPY4YodDvHeh2XVjx0fgiaYJCVeRUFM5ddE1tWzFYEIwEnnCHEmMCYBAghgYgrbi8hgU25gxhTew85F3SRMFJEXD+AcFCPe9yDKl9fVJsSgaZRPW6gKnZJrVYHO53TlDFCQunu1SdLOKLQgnPvF6xEEE9WRUxqTPII3j5Vg1ImiyzmhLTEptJMabieC9emAUgdwrRHQYPWDGVihXcK1Bhsx4LLXr34LjJO24B1CtiYcgCA5rTBVJL1LJqV2MoStW0wL1VpWNUxUPhIz/PxdqhMl94UrjNq1kzGZJmj0MSMUbSoypObXiMwFqmMHFdsnpcai57HSRPRT0WpqSCcNFSV6YwiCVqLHldw46DrNhfBtHggpiI1od1FXXPuDBGpcVsaGHeEhjwnyK+GqUJgblTHUpAKAQaH+TOhzC69Nw7DenI+UJlrLqzmoFg47VEN23XQXIJGW25AHLoF9F4G1md9KgSiOR/h53IXcpc5AlLX/78G8DdE5A8uPvoJAL8TwA/a3/918f7/QER/EJos/mYAf/lljuErZghE5G8C+E4AIKIA4FcB/DiAfxHAfyoi/8l73xdqBS1Dlapj9U55DCxKH108nM648MSiL9AlNU353DNLQxWH4pb6gMy4pPemEcM7fc1tDTqKQRX/UAS7SRXHAPXWIhNWlWaoRq1JqqJGikhlQOSoSnx7pds5syZ1KM0GvD8HDTukcY9ohqIyb0KjydzhGiBGPnkdCAlz+weAt89mNo8UjRA8Ggi6r7J5DeCAzAodea5Er51713E2TGXSqIMYkhplBUkBjTv9nTyqgan5hBFl/QCSVthxh3XYIly8CSFGYUZuTiBWA5HlEEt/e5sr++RBl/BwFWpy9aTh6uWeMFvNh8JH+6mo52+R2yoxNsRoA1WI0Yuw/F5/+qzDl64HIFv1rXnNJQuYuK6r/VTw5tVYFbJHEttR/04LTyNawVUKjNM2gYlwr43m4QvaGGoyeqWlthVGWiWFobSlA9Vo169RLoIYCONYak4APOfThizoouWwMBdFFjMMYxZ0iTFMgr3imPrMUMHjiwkPVwltZBRRA3dVCrbj3AxPczJaYXzaRiMmMFKjboPfg7OuQz8VXA4TTptYo6Yxq7EcSdAaLXap1J3BNT+jVBPhS7KI07RfVuhuC8p+PYDvBfD/EtFftfd+AGoAfpSIfjeAXwHwPQAgIj9LRD8K4OegjKN/9WUYQ8CHBxr6DQB+UUQ++w642AvFk60OBZGxdpRzXzAUqdWitVmWJ5R4Zv8AXGGdvUUG+75UKmlgIGcgeRGRyKwI82FrYk8u+oL1dhbO2Gii46l6vlMRbBKjWdAaHK9lu8e1JUR3qoo0j+qhT72yfEKqhVhh/1ThFY7A7kK598yQZoOyOkO40oCrdKeQtEbZvAZpT4A8QNpTPQA3EsTg/YUmmIlRunsIeVQWkoUAHoZXemCz0cSyNJCox03THmCGcKPwUB7U4y/ZEE43SE8h7YBVaIAyIW9eU0PSbMBQ5tWQC3bj7FE71JKYsUmEs5ZRMBtexblRr6+zjE7bgLe2E4as13/IDuURrkpBMgXknqzbnTGXWq27Tox10sSn55sc4z5tIj5x0qKLjMfbQUkNQb8fimC9UoP6TQ86PXciXA0FBYIn2xFvTUNdf23UhH5ruYB10r+eHxuLttrYT4JcZqfCjeV1r5RRzz/UnNKNPNSQRemqZcb7mQhPtiNOmlg98cL6LK1TwHk/AT3waJ2sZiBgO3pjPl0jXWS8sWkwloI2BG2cd1BwNuuyR+sGV8NUnbInu9EMRdQEssxGDJjvqxvqEPQZ3FnNTRueb/39snKHrKHP4HbcH1DdeNt3fj+A3383R/DhMQS/DcD/uHj9rxHRPw/gp6H82qc3v0BEvwfA7wGAT37qUzVh58kv95wEHi7Oyl+x2FIbgAUiTCJWdOP8aYUHHAoAMCespoI2stYdTDOuer6f6j4BY2IMk2K7k4f7GikkUaMVgBqCu5JhyZjAiFIgDrlYslaazdyyoVOFTf1VZe84lFPoTBO/wxWoXc/JW2Dm9ROD95cotSiMAY6WpE31N2ncK/zTnGh+YNxCYgeaenBICFKQOSnlkw1fsF7ExQYAACAASURBVEiCygSaDHczxY7JisXYf1PhJfKWFiXrb6YVJGxA/aVuXzLAURWuKWxHO7JBB1pF67UdDrEdNgN0CUxgAc7agPM+46JXBpn2K1LnYpgET/cjzvejVefOSvNyGM0QBHRRC7j6ReVru4gMAMWul8VfvrbWSSMXJRGo97y3NQbMjeO2Y65OijoYquT2nryu6w4HbVfcoXDGXCEBC0FI5pyCzIotWnfWKWvCHEDNi3lVtNKs9fi3JddiMX8G9lM5KHoMpI3yzvtJr1+enmt7HWiODDxH10XGdtQoYp3YKLtOpz6sw6jnyWoQJrvvmnQu7ye5+65CdKd1BF9xobsKlT7wARA10ETHt4nIF4noDQCPoTr8PwDwCRH5Xe+0j7/7O/8e+ZN/7v8EoJ7ekOd5Ul5H4NinF5QtqwxvegoMQhvnvkOeXPMEmTMbdP/6d51CpRS2kSs//dSyt94lkYmwippM83bKHtKuImOTGNdjOeCVe98hApDEkrvTHjTuURu/lQxpVtVQCEewwy+OuU97UJ40mlh2HQWq0va20ZKUWURS5rzCtAdfP0G+93FIu0HtI+TJYoOaPNF70D9hec8tt0H91bwP0W6qJa20sIyj1heERo83JJSQsB0LLvpcvfxluw2F1xTKOUii9lcozQYFWhU9Wf6otlGA5nIuhoLdVNBb4vl6KEZPnHvVOD3TFdWXrntrl6Dn6pTI0yagNUy7i4xNEyqjpp+kQljrpMyzt3cj+qkcdNNszbAcDn/x1tiWzE6MLnCtRdD1jLp+PPfguPvNQUhugHzdEwFdOOze6n+9fUmWw7qI66FglTQ68sTy0inylt3LPkGBFb4LjPqsAHNyd0nfXRaiOQFgnUI1lG1U1uCQ584CTtXWdYF6rrkA3/LGvb/yXlg87yTflFbyBx5+43va9nu+9HMv/XtfbvkwRAS/GcDPiMgXAcD/AgAR/VcA/uS77UCTssrG8b9KGT2UKc8UQGdyLHVVs4j1PJGsnoxUTjIKVTobMDcUO99P1WBkW9jLxaxhrCqtC6tkDawFPwLBayulRD7ZzcZE7MFrgjJjmvEaNGyVXTMNmgPgqInWbg3aaY4AUGaRdgRNcwI2rcH9W7PyBUzxdwrbSJlZO8MOsHSBFokReH8JhAQet8jtpkYVkKJGpExqnAD16K2uoKSVfk4M5NFqCQIQG9A0VKMlxAp77S+xTffUUE8CNrZPngqe7DJWUWmb115RbXUVnrRvIqORCciahBZi8HCtLSrSCn3W6+osrz57ixDCWRuQVoTrsZhTMUeSvg78fq4T46RdYchSqabbseDROtX9OetsnQJ2dryaoOVaXHhlMwHOOo12nMKqDglXperMGF9bq+hrS4+vQKMY0WcHpRwmSldWJ+ERidNuVbFL7YW1fG6cFHGQJ/FrZ/DaWRuqkm+M2nmvDXh7Ox93LkBvA3n6aZkcVmiJG0vkh7kq2503JuB6MGhWBCdNrAbaz+cql8rucwjNv0sy99K6K3joLpPFHwb5MBiCfxYLWMjpUvbynwbw19/LTnLRvEC2kDFbTiAxWWWuUdUW3sVNsRwYVomqEhBB7Wx40edawOIPVSdzD3WfQuWJq2VnRg9RgZkr7g8pQbHaNsywhofV6uVoArC2egbUY0+dJl+jFnzJySOtAQCU8tlunmv7ICGBxp0q/3ELAPU79R447dOUeu2+ZvuU2FWDI6lVyMcjg9gc7Atl0sSxF6Fx0IR1aIBSNNKwCIXKpBTT9qRGa73VTIxZKkXUu7I+7KLh/vMTqQyrqP0orSKapCh81t0D5QFtaHA1FisE9PbEc+BCmKMFjyZ1Xcy0SC9Q8oKxbsW430WFjPqp9ubxfj8AqhEINBeJ5XII/eha1vVEpC1F7q9iPZ7IhIF9OJGtfVsvu9q/BweRZhPm8aeJCd2ic6kPsSEikAjEmWCL5LgbAYJGrbupHDRSXC16L2VROmwbGF1iXPYT1knbTSTW9zxvlk1pi8xki8gz02dZHHrSMq56vZ5N0Pvg2wCo3V9LniG0Nmquholw2sSDWd53Ia8SNPQVNQREtAbwjwH4lxdv/8dE9J1Qx+SXb3x2qxQAu1HDU7bKxsrRLvMD1udSsdn9VGqI2ZvH5h78nDDUhy0GpZf6g65N6krlLXseIDFj0xD2o2Kh+6ngdBOxSYw2zFCFtlEA9ll53UMRDIbFriJjKoKTxIjRFY8VwoVUvXDhqNBK6gz26TE1J6BmXRVuiS3Ikr00TOD9Rb1m4fzzur88QqYR1K5R2o0mik15AqhGhMatwTRe5GVYvkUQkKKN4azCmEZrJeH9g2KjyeNSgKSJUWlPIFJAYwH115BmBd4+RTmJWBl7pAlUW0M0i/yLVsWqYkzTDmS9hwRxprl63mPSHAf3VyjtCRJNOGuTFd95pfZh0zOmgkbmXjzOMhKg9opKZpDUKAgaYlDWtdSGgPNe8woefa4iY58LpgzIgrHjlFVAnYQucGWgbaxraLs4dwA1AlLcfMb6gZmSLAKsmrnfpjflY9KKciUxmEUQaGNCzEbEZ3yQaP8mP9fNor1rIoCH6znqg+B002rXVwZOEuOkCQgEnPe5FlQCc8W/t7meilR2lxtaT2a7Q+Y5gSErRBtZm/qNBbgyyO18P1XiwpKKC+CFTuD7FY02jobgTkREtgBeu/He936A/ViBENc6AC+2OVsxNo3itmlSI+AG4DVjbCwLXZaQj3v3RZTl4Zitzm412KgIHnTpAGq61wU8WKm3urIE15AL+qxe1W7yxDThxJgqe4MpGHNVrDeDO2mUVjhSRAOAhq1W6QLqtTdrAEAoRhcVQQ6tVtqCkcqkGH6zVmgpdiibhxoJhASUAtldAhdPgK/5tcoMalYKP3m7CSlATGo0xj1Kd6r0UitSyyevg7BXxT4NqDMMwmKJEQNRq42pTGDbd773CWDzGkpaYYIq5b2dvyMb9xq2KlpU/N9becS0Uq9/dw40K/BuqM3tECIkduDtU4W1+iuU1Rl46nECsaT4HpQHTc43G+TQKhmgqGfZBDbKZ6lrZDcVbE2nnCQ2yq++bgIjs2BdgjHJdEDMPpeDRnNF1BHYNKEWsgGaBPYmdJGBlcGL66ROAmVdZ02Y25kEzLQTh4iyAE92Gaet4vcrU7iVBmsKvgmq7EMZtWWJWTt3dHRYUFO995B7S9wHCEdMzYm1BWkgAJIUgAI2SeEvbwb5cBXV8clzQdsSXvHq+KuhYBU1on7QsuW4tA7EczXeLnuwv7nos5YCoQ2hsrYerRsUETzeamL/7pQ3gV4hbOjDAA29tDjs4yEhWxIN0FD11KohH3TaM/31dVQMlzVxp71YcEBf6yLjXsu4HjLudeG5SWdOG33zsq8JPG8RIAblVF56JDTB+8ETppJrMzmfbNYBtZDMzwnmLbk3vMr9DLHkqTZlKyEavj9Amo0magHwuMcUWmROCHmE9wPi/SVo2KmHn4daR0ApgS+/iHz6xqzMcYOeHBNw+TYCgNKe2DHs58/ryEkrTuMIUEFtKzENh9XIZVK6KDHi9imCNZTrSwsmTwATroyTXoiwIj03loLQrDXS8bwDoInnqVdFBSgM5Qn1kDRZPe41ejEaK1gNxp4aNOaBDsK1I60nYK/HUgu03BlwxQvo64thqo6GJ4e90nUqyvJxZpDea4WC2hCwaVRZ+zY5MBCtt5C1O1/eFW15Pidy9b25WOykmdl0TdBkrkcXYxG0VGZWF6mjo0WZc4GkhAYpDyjcIuQeJbbgYVvvdRFBE3iG1sYRHICMuQYDQK0rWDKaVjboRkezUm2PUednmxEgEWyCYIQxh4RQxoIEo8sajTYwDD6MGPOc52Pywr2XottXIQLCoh3JV7u8IoZAH6TTdmbuXBo08/qmwVRUoT7sAtK0g6QVCvSh4Ai0MeBqKDhtFJ/vnG3ChHsN49EqQIhw2efqvTs17cEq6SJkNRxrY084u4ItYbWhERDBEFq8vg4HjbC6hnHRF2ysd0obA3pb3Aw1LkSE69KAQ4NVbBWW2V8gb16rilCIQftLoFnbMBbtY1lEtD11XKEpA8QKvFAmYGSg3YB2F2pEDKIQg28QImjrCeBefyMmSMlgo5EiK4updGcKDxhsJRyVKhriYQ6BI7C/PGhgJ92pjptMK1yVgMiqxIalkrBunLXTpRSwUVurMTDR1hiaU1GG1c5aaoy19YWkDtRfIZ+8Du61DqObdhDW+ogOE0aKGOxej9DEaJ8FRPOg9lwE5722XN6OuTLFnG2kism6yPqwlaIK6tJgxTZ4fytCmwj37D6MRWoEuaTNOjxDltx156RZ1AN0rHi+0yaf5rygigpWiTEVBocWsb9AaU/RGLPKGVYVOeIItt5PJILSrOtM6Qitkudxr8bXqsbBjR6XwWpNIDSNt+zQQT2JgGjwlmAxmMeOeQSD7HySraEmaEv0TSDrPyV4NhTL6fkaCWg6e44J2KROjfgdDaYB4RgRfNgkMBk2qMngp7sRrfWI+eLVgMSET5+1yo6IK0SiWowUmLAKhPvWY03YqzcFSVQRXE+C6zEb7c88P0tWPVqnSiuNrJXNRTRxB6hRiZExkkI5Te5xhWamhxZZeJdACITr0aqNcYiPX49Fw23O6kWnVtlBnjQGtBGceejSbIzyyCicgCIYuEEbm1phrJU3BWXzUKMK8/B5fwFp1iirM5TTN0D9FdgUvgw2P2CXgX4POr2vlci7pxi6B4iJtc1E8b5BSnXNp29o9fPuHCRFi9g4YoirCmXkSZuknXBGgUJwDTLWw7l1Qo1AHxWeWp0BgEYZ7cms4BeFdXNSe1U/k/akRlCepC7tKQoFXEmLe7au9ojI+TBB7Yp9MGegQIsVvZCtiXPx4N66eHjX02XbCScSnLZh7koKrh1ol0NyukjYTwLhuT+WExeAmUfv7DIA2EQtqGtZi+88n+FJWpF5vnYzXtUokgiAKKXWr08dR1oyCEOtPhfD9RMKeBqt15Rezz01GAzarA3sFs8rmxHZToJVmud9CBw+LZUGypLNYdDpdtc+Rc8KRZgUnpOk0cFgWJnTiJ/tc+1gmusVekmheRTsqyD87pt8FYgllXyod5bDRmDbMWM3Cd7eTbga5tJ3AGitDJ2mHgA0uQrjV1OsvPVn+7xok6v7dfxzn4tNsZoLeZYTwHy9MBFK6ow2aNEAC1YY8ZB7rGSoyS8vitkkxkmjGPSjdVQ8d9pDmtXs1QNqAKSgjsky6GUZsrsiA0ct1jLlWNoTMwo6OIZ357q//aVi6wYpSbQJZDmjXD5FuXwGGfaQ/bXtc63XDdqcTmKnOYjQoKzu12hBmhUktsjdPYAYCQUdC05oxFksWEFpsVMRJEI1HChZ9zkNahAAlNhqhGFGB4COs7T7aY2o5giHWRUcBz0WY0T1ot7zKmk/JxKpjC3vX0SkLZ2vBl1rCt/MHTizqKfuM3R3o1YIO7V402jhWWPtRmKYFb5DGN4WgWmud9GEtr7fLein0bz7sRSrSbF98MwSqsPcZfayveeQ02d9rgQAnVMNTRxLaGq78flZ02jBk+euCmnaY6RY1968uRV+2YbXY6m9mbIoo84rn3dTqbTUYiylYvemgEBlQmTCJjG6OLPuGpnq+j5p9HnpFvDSyozzyR1DOcT8nv59NcgrERF4ub1z/s9aPa0UdH6siHGdRYxix5X+qS0pNNQFMEcDpN1C1RsMOGsVb45M6GRAiW1tzOWJS/9/y0AB15yCVkaGGjrz9ili6iCYqZY+jjF1hBgipsDVC42kRTOcR0Cy4dntXM2bR4ViHJ9Pa21E119ias8QpaCQFuBwHrX9Q2wRrDX1spAMsUXhaI3hLJ+QB5TuTOsISgaf3Ed+/Hnw2WugmGobims06AdVSjuJWCVVVmSJW2WSZJt1sEO8/JIq7DKpgicCjbvqxTfmiUpqFbZqVvrdMoHGESU0um+fjpZWQEjIXgjnfZI41HYbNPYADfqdPGmfptRh1+cKOW3HggJNWnpHTgYhjkpfbCPh2V5V7bP9iNM2ogtc+fzDJDjruBaHfctrKwyG22u/KeXqNEblBBYDYgi1bTVhZu+ILKp0OVQ+f2LCScO16MsdHIeARATJ+igVwEcPVyU5ZMFEagha0nGjl32un0dmpNAilBE+UMjF6zG2BThrNlrsaGwzf9Z8eE40Y7Cypo0CTWQTAY9W0fIcZFCYwllP9rmy6JpAaENEFAFPPQIHIGcM1GBno3waKyrz8aXLrsMXfcbT/fhcdfkHFSK8UhHBK2EIBBqan3Vx5vET4X4Xq0clxtBwhgfg7yuLZ0Pa5XIMrRbQABimgg2GgyZr+nsNqGSsbNhsa3NmfZA75QkUW3RZaY2pPZ07fpapcu1p3KoH7339zctVzyeC+x2o2ajiA6yOwGrp86gJYNsezJDY6fQuCjrQfXUfTX+FklYI1gaapqHi9EKMsnpQqaIupd2A+muACHn9AADA108g0wis7kFig/D6J4Gp1/c29zGkDfI0szkCEca+4FGarB/SAGZGuHwL1F9hevQNKN0ZCgWEMoL6S+s0WmrrjGJtsMvqbE5sW6LZ5xMIB81DMGOSjXZm5VgBgEm0GrukFdj2Rf0lwBFDe4ZotMZcgBSBt7YTclHv9GEX8MYm4q3tBB9g703MVpFxakr6qi/IRdsvTxk460KtbyiGWTcAMqHShQGFdNo4R44ignOrZj7zPAPpuipWy7KfBC1rJNtnHT8qVk1bAGSi2lhNO+MCKPN87SLOZLM1y2SRTkGWYk3mqEJg2aDLdWBI0iFIUyl1TnQXla9fghWVkV7vhglNmYvedpN66ywZ0a7/w9UG16MysMjO9XGfdYaDJbNzyUa/Ng/fI3arPO+svqWQ7jsQYzvNg2wAjUKUTcQHhJCXlWOO4EMmkQmnbUAbtdeJJ+uW/ciHIjhtQmWiEICUtRXCOhLo+hJgRgwJKABNPU73FyjrB6BxB24jhAjskINIJakEoy6Sdc9ESEB7UguzwvXbiq8uZ/map0t5VAqItXn2lhHeolnMSxPHbQ0C4eEp6rAXT9CWCYXXWnnKBC7avprHnbWN0KhHq3lLZdnUQjU7Nt5fYnr4aW1MZ940QqhJYhrNuw4FFBmFozXuU0aIFMEkNhK0bdDuH5s3uUHevAZ59I111kHw2QYezcROseaoBWcSokYwhuNPopECpgEw71Q6NbRZgGEs2MhePVdiyx+pYWjSqnY77dMGF32pxVeAKs1cgGd7nVXw+lofj0CEncEozvwaSCoVcjtm3F/FWr/SSABoHg4PqLPidSmJfYrYTDmuBibpPIpAVuwlGdrvVj16/w5bkng/abNFIjKCgFi+QXHfm0VPXgKwm7znFbBmsh5GGv10gSqkOJElcBdwz1zoZZRnAi77bC01CIUTosNk4iNarU08NFKj/gpNSECy3FkZcCUJXZgj6akI2Cqf+yzYEFAogFIwWEuQilKFiwgKFHIdrPgQMHafeKdgeW64/QcVIjqyhj5skpjxcBW1MAiE6zGjCWwhttTiH0/INoHwZJfxWpsMZthVvnu4+EIttEJIoP0l8smjypDwPj8oBWF/Piuu1Cl7Y/PabBC8BbP16VFYghXfd8UPWH+eefRhbf/AUcdOxhZkSTuPTCitNaKwIi6MfZ3yxWmDuHuiu2o2yp6x45a0hrSn1pqCEC++YINijNppWDpvnx7AAIAqaWk31WDQdtA6gpAUXpNDbvhpow9sVyZMDz6Ni6HgrIlIb/6sevR+7UJUo7ZoQOfD7J3pQ9MefPUYgRhl87B2SBXRPAGFBiwanQmtIORVp6qwr8eCVQw4TRFPpcW0z3Xam7clcY+4S4z7IWJnBUunjbPBgOtRlftuKsblJzxc6ZQzZrIBM3O1MhZJ2jaRMaCA1midfq0666jasSVpp1Idh7y6X3F0bwExZo1KIkuljiaLQIYsmLyVStBiKwa0TbsZPicr5EV9hEOdbtDYnpUUCAX6w2x5jNGoz6PVQ4wFaOwvALRU0JiR7xy+EygJgSP6kzeQyoBm0qryMbSgPCvv3aB5vCHr8Si0FADrmgqo/zQgQbIeg0NCQ/GphADJzKJaNpB8aSG9nq+KvBKGgKCsgd4qLc9axliAZ/uMGDAPLC+Ce8PbkGaNTVpjgs4Arnhys0FpTyEcanKwi9rDfSj64LVpBRq2qkBTq98T1srYdjM3VJv26qXvzmtFbu3BT6Qsm71+Jhy11TLsWBY9fLRoJ2A3eiWzeWGxRY4dGALuL6tyLmmFJvea+LUOovr7CkMRDRBqjSEE9bynAWGnDV5l3NVmcyWuFK+XgtLMTBsae0hqFUIae92HlOrZupKZijZy6x58HWJ/gYfXb6tnb8VoxfofgbhWGWuBW9YZBKGpcJFXa0l3ij01CKaUQu7rOmgAjNxgO8wtEK5HqdWpQ854tkdt47GzwqVVZKXrWuL3os9IHeG+zaBwGrAyuHT4u3/H+fnRWlI7jXNJThnLYnLdApvvDBZKMhnDxWjFQeG+Ka1rVbN/B0BtQngx5MoGIiLIoiVD4HlC3soG3TPB5hBpU8VaM2D5A1+avRU/etVygUYJ16PU2htPbicG+qLHdD0CWRTq2UTGOnVIkdDkedqctCf1uuyQAE5YyQABsI6EoRAiB1whY8A8+tLpssUurQ8Vmiy5rFFAqT2GvK7AR1nqmFk5GEX6ckLgRcv4r3Z5JQwBEywZp2GyDhvRZFFjvIYE817WD7CH5xIEJ02YWzuXjD0S9mM2yhtw0QseNQUpRIWUxn2lVXoVL2WrZPUGbKbgqEyQZmMjGs27JtbWENcjsL5v+FXQ+cEw/j6xVgC3JwpB5RFdTFWRcB6xK0o7bGmGmmBTzJqsypOtu6ekleYE2lWFivjqsUUmEaXbACEinH8BiJ0eN9vYyHYDDEpJ9R5DJEUnxRuLyCmY69SY0p2Vk3qPgrTXVtI07EBWuazna4lgY/xQ1hbVnhMQsvGYUiChhcS2JvwYMkdoodHhPIvZ1CPm5oGuULrqzSqbxCEE7VMjyNkboSl19WooWBvEcXPCF4BaNUu0qOxdUDOd3eIQTa2JsBYSPYAY9THkqVcjR4xo7bZTUGXu+3QFnIssDAPQ8vybIocGwY/aewMNU8GUbWiTSIWVVnFOIvsxJ9YpaU4B1f5A8+CnfdZtaz+jQjhJ4QC6GqjBihicVhrNiJ5DxwVv98A1EjoI9qIJ9K11+XMIbbXIo/h1309qkMciuOgnbeKX2OpPtK04kUcS+l2f7nYnQsccwYdOsj2kMTjTgUyJF/S94H6XMBb1wM4n51egUgObENFO1xjSBrtBW+a+vo741csR9xrGSFalCCBk5VFLbJVS2Wx05i5QcWkBMFBEO+0Vf0+rytuX8y8p3t5tAOv4Wc4+ridSytwAzqOCECHtafUqdTJXMJwWKDFgy2tMFrE0ZTAM9lprAoYtaNyhNBsgNCBkbUvBQaEq2SEMW+TTN5BX98F1lGRUI+YzjDkqqycPCunAlfVOj1kK5MGncb9conRn2E4KK3zpuuDjYV9bYOu0s6ARhw/AIaN0itSaA1mdAcMW0igDSoyZhJIRzCgWEJDWiGY8+gI4FNibh6j3WdCYMmgjYxxKrb59tp/wsY1WAF/2E873WhX8bK8sosg6CvNeG6xpHAHQwi6v7XAa4+VQ6gAjtu/650NWgwKgziRoAuFhF3A96TFvpwigzMVhQbHx5QCWKWs9gRsCV3KXZrB0rOasOAdft+Y115nERnfeZ0HO83Sv/aiQEGM2gkPWiNjprSJaHe1DecSooEU0mvAK4ZHm/IcbtWJGi8oIlIyTpoWI1PYhg1mtxgxYk8jYeIyrIWOsNROMoWS7rgH3O2X2VWYVBUxF8IV9xpuXvTojTPjkve6DqJjnhI6G4MMnQy744vVUG3ZlETzZKa1vPxYMWR/Qxzxz/4kOu1aWtKpl9/4QrCLjyT7jl571eLROCAQ8XJ2ikwHXq0fqXQqQTl4H5RG8O4c0a+T2BEmkKjrvvklyDrr/BnD91Bg+6lGH67d16It58j6nt84D4B2QTmvTsMhUe7HvRq2LWFkrihQipDvT4TwA0J3OLauNIsp5VCrmNABCVjugxWCZIqbVI6xkAO0v9bwGG405aLdSykPNe8g0AqkFXT5Gs7+ENCuEq7ewefBpoADfcL8F/8JfAh59qip6FOPve5A0XOt12j6tCfYiAkktpubEFPmEgbRtxWBDTwD1ZrnTwjLJyvE/bQN2fdYiLJlbiXgh2GAeZ4GOXyyiCVadh0t11gCAOkz9otcB84EFXAj7KWv1aqDquRYpB5PJeqhBeDZOOOvmRy2QDoUBZthJJ6DNMIfvU7cRuyb+fQBMeNQw9jcqcbUQERUr99zYWNQIOjW0iGLsXSDsoYr/YtAfZAJ2o04p8w6pRDqRz42JRgSoxqjPBbvRZkCTvhf9gE1OjKwhAqxEI7mVbJHXD9EFnROxmwQDPB+ihrcAeLrPxmySWrkvou2uCfosn/cZIqgjSs97bUDnOYIigs9d7HFXcoSGPmQiYk3iBuBStGR/zIK3rgcNbwvhrE11KE2xEHQ/aaLttVVAoVAfuLGI8pVJDccTEfzMm5f4Bz95D+d9xpTUKNC4A8UVtpnQxQ5EV6osnTEkRZu/pZUWQRGDc4/y4Gt1TKMljxECeLiqTBoXygNKozTJQIrGDNn6zWfB2rDfLEaFBeYh8s1m5s5Pg/XYGbS9xuoMPo0M3uYhdojQeoP1dAnenWN/9kk0+6fAcKX5hXEHHxjjracJ0NzE/a/ROoOclaa6uoQ0a1CEfnca1PCFcNBrqPY0sl5IKFq8BiJIe6pQCAgj4syLD6oIvPkYmDAJKud+N81KKYtgnAT3zFvsJ21md69hZckQ2TwCvfdvnDT43EWPs1YZNue9GA1T6kAWzQsoDLGbEqGFUwAAIABJREFUUPvz66CZUPtenXXKpmpirJW8AGrFLDB3oh2KtodQOM22dQU8oQ5K0loMHccKwMZ2Si3cEgAJ6jYzeZW7z88mS/AuYa250aEnvwHUKWbebdcNqg/riQF19Go2mMv7Kfl1urLMse+Xx1Ij2dUqKBFgf4nQXyG3J5oIX65/mp/v5Wxq7w78sItIrHDXVAT9pMbr8VbvxVCp5DN70KuxX1aICCEdDcGHSpgV1/Uh2X0ebQSlLsp1Yox5QBsZF703lAtagSlyULgyZMGVtYTemld0v0v4mPUsykXbTg9ZIaVvWu8QYwserjBtHh0kL1EyYtZFzu0JSupQnPrYbmybopPEfIrY/lKTztbUS5k8a227mw/bDTuksIrKhT9pVAkRgEIR3Fhe4fRjoKKFZ5CCbDTS/VTQNSdalCYF4fpt0PqBtpDOA7pnv4J87+Mo0zAnugHr0XNd8w+SdLBNWd/X9x58UqEoAOnp3wbd/9hc+QxoXsIooZI6kDWA88rm0p0qK6hkICTDg9X7T+yeIhBh+RFSN9O57T4LQDvHis0QLnUynCup2sxOFBYCFFa5Gib84tOM7aizhi+HqQ6DOWtT7R56PVizM5tK5h1vH2+HOnzFxy4m5nm4EeY+RH0u2E3eCntOCOcC7I25E5kw9HPHWmCeBeCTycRqHPw+Jw6IIdY14pP1nLXkkQdg1btZcNrqMe4s4roeS+3c2wTNk5xZBZxHWDenm01Wg/F4O+Bq0DV51qY6xwAAIghPRsY6RTQnj7Q5YtEobJ81ImczUgJrgS02RGhSp+9BF20GgyBLOTiOqQAXdj8frRv0U0GXGMM0G/yXFgLoGBF8uCQS4f5KYaCxFKxLqIOv10mZGEUEl1tl9Jy1ivm/edWDibAdM/7JX/MAn7vUIeavrxP6XGor6qV3F8i7i+oieFJaPJy0GZu35/XOjGQYd9hf1OpZV4YaDdA8ZSy1oLFXZQpAunvqcY87UOrAqanQhvO9gYW3RWRtNuZWF1kKOus/U4QxoUEL/fzJbtLEYVHmSRsi4snrCmMB1hZC5x6X9QPwjmeoyqMIO2bhCHgvn9gAeQDvBt1HWoFia8nrS+ST1+GtMSSd1KS4AHV0paQ1fIhOtgIsEWiC1Qq0vLyPyoSJInqDhfZZR01eDaoI2DB9TJYgJi0qcsX4YJXqtm9e9rgacsWzr4aAqwF2/1OFiy77eVSiMnOAbPeDzAtfFjcqbKTOxT2rcfFBLEOtbyoW9R0mgd0AAXMk4YyZhMPEsNYsMBAMcxNfIwZ3GolCZy4X3Gtckakx2dWxlha5RB0ar3OXCddDxmmjRZo674Ntohrjeso1LzJmbf/88RNl3VVn3mmfFlVtx4JOtF5mnPT1s3220ZazIW1slsfVkOuw+8c2/cxbcz/bT3VutBfNeXJbK7yBJsxDhu5CXqXK4lfCpBERHrQ6A+C0jTjrYi3v73PBaIktHZqtivjJbkQugqe7Ed9wf4XLwcNWxTt/9WLA+X7CpWG+5/vJEnTuaQI+SDwbQ8h7tLvHjaSVvjTuLdnKdci8J0dVIeqUr7J+gLJ+UIvKpDtVOmtYtKKwtTdlDYUV85ZaOHPeZ/OSxCpkZ8qhwwSORQPzAshi/WW8sMsreFOnPX6ada0r8HkG0mzmxndR+9LQNMz9jvKi8yigOZM81eprjHutIRj3eh3aEzM+iuEpXIcKOzisoemBUo8zyaQVuExWjEXVwOtMXGffAOf7jE0TtCHh9YCnpugu+2xzJqi2Kv7S9aB97APrGgozvHBz0l1g5fHvx3KA7/v4RJfRmD3etmI5AU3V+Kxcehue5PecjILqay8yVVZQWShZh0W8voBMkftUvH1WrP3JPuN6UuMJWKSFmWWTi+DhKtU2LZ3N4i6ieH8MMKOg66mvuZu5pXvtZyQ+T1zP15+1HZLST7GEsFBhNh/1qlXVZTEDWa9rMMObFj19lk6Stv5QQ9dYfu1OhHQewXv599Ugr0REAKD2i/fKxLNODYLPjH28HfF0NyIFwi893dp3BP/4Nz4EEeGpsUQ++2yHFDzUJ6uY1YW9HKztnsnHNglPdhMedRubu5usGlQLo8L124rVp67y8MHRFL6CwDTsICvriTPulKWTR5ANpEdIKGWugM0yG4AhlwpzAVrE9WyfcT2WCiV42+ImUC0ecn54zlpdOhZBZsLGiuMIAGx4DIhRYouwv9QWFu1JbUM8yutoZLJzXGmB2bhXXd5YjUCz0fOyojWUqX5W0gqF5v4zjUwg0QE7XlV70swtEU4SW6FQQQlJrxFHUJnx5cCw8YjlwIvXjrFc7/GUC57sRjxcJZx1ET/9+XMMk809SIJ1GxTzLzpXV4fQM64HrUtIpPMqgFnhn1dIIqEfxQyIaqbTlmqnWjYIBlA83smnOptC13Abuc7fDWGGBLWYjcBmtH1mhRpNqU3dXAF6/YDTMMMEKxqbayee2VxkhbeofuYGzSE2z3lrdIraVmNvidxn1gZeBzPNFdKRFX5qoxqiN9ZzjUax6GCfSzXiCu1qF1cWwsVer/OmYQARV8OEQFTh2xTI+wvqJLMwt8gQmeHEO6siOEJDH04pMg/A0HDUvBrRxF4gwmkT8Hg74GTd4JtfW2E3Frx5pcbBFX0bWT1InkfcFYFBTBpmpmBeiSWtIhOeDsDDoCMjEVsMoVXPqi0gGydZmjU4pzo9y8cpKmd/gLBSPAEAqavTxFAyVilVnjhQKrNkKpr0vhZ9iHKfa/tfHZBOeLbXoeoPu1CLjLKgctLJ6IK7STBxRJsapPYeGMrkyAL8/+y9SaxmW5Ye9K3dnOZvbxfdi5cvX1YqM0UVpVJJlj0wkkFIeILkEY1HDBA1wEMPMExASJY8QCAkRjVAwMBgTyw8sBAFksXEwq4qbFFVTmcm2ceLF929979/c5p99l4M1tr73MjKrMzyi1Jmht6RQjfixr1/c/5z9l7rW19TQ6yqaRoQvdhYFL8a70GqJZjqDVK1LmZ+Q1J77WYDOxyQXFNssmO9EirilMpNG4zMNvJnmhexQYfikfXcG4uFYdFO8JzLG/PjOfGWyayf16cRF63HwstnjRCxH+XPy+OIF3c9KmcwTgndGHHeetx0oYQdSVXvAUgH8fpuKgVBjkQMiTXJzuK6mzeEDEXJYBuAundWloo1Q94cCHmjmKGgPBe6z3LLHkDWUFEE69wcwOxqetDc5KxDyJ1TVP59vqYNkcKgAT5I/napxpO8tpz5m80Vs4CuakitniU0ZlVJ0ZGN47wRxtLSC121dcCL04TjKOf2ycrfg71SOZ/ZOppJoKizxiudd8LjdYUh21wr9u8tYYQwoWKhpOZ7eA4SeicH4fNh8S/iMSW5geT6pxIUzkwIxDC1YLpXC1lobzqpKHLANTCHYoSY0DhXLpqL1s2BGfcggYWfBSqJRUdg9rfCqiHAcBQ4ZYJAPQzcRQuTJIPWGysqX7VXZiLA1WDrxYzNVoV9ZCAeO9EvwJYQncFuiGVgV3JuFXMOKcEmYbWIMyuUg80l9IYYmMBIkyg383Vd2DhQj3tmDDCojQMcYKce5BuMwL3gGIsRBMSkZmRZcCTdiChpVYldrwu0k4etOQUMSVglnidEcgV+ywezqmgB7INoQ0JkRKWKdjq0JYIugFxmRTmr2luDmy6gcQY/vO3QVhaPNg0SS4e1ahxeH0esFOdvKoPaScRphkuyn1XihCFk0ZksqnkRXle2BNMLti7XyqALVH5fstk4dRDlwnmXh2E43YhCUuqpbuRjFDO77J1lSUz28lA9KZMqMYoWAJhFcOvKISTpbqwBBlWv7/V+8JUpWL2ce8h1rY+Ri4rdMA9rvc5Mcjd93lj0ExddwIWfSRmvjiO8MQoJzRBZntEMg3RiREBtxbrjMMZCxc33pzXAaUhovCtdU/6aGPNcQKG1d3HQ58riX7yDfyRzuGlt4YYTqTyeRS367G4og7xnx14SyZwEbJ9Cwrqy2Dau4JPeihw/i9ByixyTVJ2ZV20t4TQxlotzgTwYOCWBlRpXo09iVTElxlrzdw9s4I1FH5207UnCcJhkUSHf3MtnFTpjCEkXArEOiCxOlAyB5jPN7xQYN91Q5iWtk7b+FGbBEiCtv/DM53Kyolkdm2mNjSWYUczrkvMlPDxBbBwyNJXtlvMC6HTAnRiwziEC6mBpsHazGrcxXCCifOQKMVtVeCNwysLL+btoLN50URhBXjo+ItGAACiVdmbtnIJU36vKIkSBCy+WFQ7DhE9uhRW1V2jj4aYWmMiwDkYBpzOEF8exiMP6KeG8kQ7GG51L0IxxF8aQsp2mJPOmIaYCJ9XasV53sgCeNa50IbPJHClFNc8IUDj22aYCKcK5+l4kJmMIjJNCLl2QwXUesl40Bt+6CQXmbJxskCExHi4rod7q7wg5wuhMzBToKRdcrSPsVahnjZHn0td5CGLD0msX9LC1eLBwqGyrpAXZ1F4cB73HgEEVyz0lbGoHr3TVpbcl5Q2Q71kjfk+52L+/PivJqjxufEcbwefK4l/AgzDL/JeVKYMzhlS9+8DK7Z7KJpBYmA15qLitPdaV3PRb70oV5IxK5kFz6DhYJPPaaubnmxKDUodUr+H1xmWIUKpZXiIkLiwH4btrAHdMMCQ312QsnD535odndeuJMQ+Gs7mXo7JIvDwEyT1QFlWmLoo1BfQ51ZIjZvuD+1U9laFspUNWZ0mVpozRLwvtcNAQkYUXKI0ZBWKKkI1lSoBLDFtZeKNioZhhKyoCuRyGYjnBAojGI5LHGFOhE7b6XhzNoSgvT2LPncDoAmAplccH1HAtGlwtLFpn8KaTRS9E8fVZV4JL7zrGduFxfRCK8cVKusZxmhW3n06yIHW6mTSu0k3eYKcQS8ktVsVtSAm1tahc/jxl+Pv6NL51/VpPeH4YcAqxhK0vvIU1hC5Id7fMhmmK+UcWvDsPXmEdRliMo3j578dUMg5CkoQ9a+Qavj4FhOgwxnnBf3Y3lGHswgv7JnfBtTdvsfDkulQokqmQFnKF3gWGrWQ+0CvDiUjcaSsrqXtCezYal8n43m2H/RixVi+gPLgfpgSu5POv9ZpBUrw/ZznrdZvnTHqaSlGS79Os+H4nx+czgnd3ENF3Aewha8fEzH+OiC4A/B0AHwP4LoB/l5lv/qTHYbDCQCjVknxfRVbIrbpQ36xWeZn3bY0MvZiBU4Cau2FWjTIXoYw1QNAIwsgy6MtpYpGBg9tgmQKMVoCtNxjtpVaDwl03Rha1bS2DXWA20YoRaHXIljeBzKFPKeEYogjmUtIBnS2OkcC9wJFJMNM4iZ8SQdSxlkij/ubnJO0IaouCTUcdVgIi52eShfHUR2wbO8c3KhSRzdfGKEPoKckmlRdH0vc/xIRazcDICu89WT/n4aZJs3KFCjtFVQ9r1WgVemDIJn0KCX2QBbb1dcHXM80yb4BiMWKw8KSmauIWuj9NqJxB6y22C6WrTgltZXHoZ0fYmBi7U8DjbSOVqpIJsnYln/sMPcXE2A8RpiFgMmUzkOGs2KWvKlt+9hRiccfM2cfemLIhZIfUmuYB8DAx4FAsNUIS2I/vhd1kl9RGw2mOYyyfa6YeMxMeLCu8Oo5lyP76FOANYdu4MggOSVh4j1aVqIo5SU6Cvt6QEta1wnkxFRW/Rz5POqQmuTuzSdwhCGMr5aQxlmmMNUBj7NwVQcgPSS02YmFP6RyKpIgZMsyojyHKaAbxu6zg6ZcmfexnOX4ROoJ/g5lf3/v33wDwfzLz3yKiv6H//k/+pAcg7f3mwZ3RdlWqjYyfT3HOfH28qoqa8nLhy8+23iHnuuaqBUCh+fV6Y+UjZxcnnlWZo4Z2VxawwwGWE6Z6c4/dwUVRKjBHKkHtgHQWTLJgHEJSTFbw/qXPCmiDE8+bSIiMs9bhOEYc1JVyVTk8XIqiunIG1/2EXiM915XgMiXuz1CBiMTuQPD27Poovvuiyl3pkLIbU1H7xsQYOHcCAl9QzANPPVckrJ+om2iGwabEsLaWmQoZHTAbWJLnOWSWjg45802+H1KhKebFKSbJCM7D/UyblK6LdIEVGvHCWzxZN/jD53fAAujGiLayZWgMAKvG4duvRFuRv3ftDK5WNfop4qKtsBuChBgpkWDShWhVqlvCmucuMyfonTcya7g/AzGUr6kZelpWZqZ0KtSUu7xJz3emZmazvNw1XbaudHDXfSwbjDdqsWFlM79qHcaJ35qD7McJ37npsK6dbITDhIvWv3UN3XQTDmPEueosXh1H6UST5DGfN04wfmMwQH7vMMq8orGmxICeNx67PihjSM6RISpsIHF4pUJqyB5MTn2HmMVrLHcp2fp7SmKN0YV5+P0uDqLPLSb+rI+/AuBf17//jwD+IX7KRpDb8rerLpSLofakrphcYJnECjckGWbm1LIyfGQZoNqpR3QNjiGBId/PQpUxMmrKVbNcwGJ2Jvi9dwajXwrjYriDqZY4gdS6QvHiIWLlZ0wVQLmh89AwD+LmzUJuiIWvCoafj0xn9JYKFnzbRwwxYVNZ7IcJ69rNVgL3BnuZ8006kMwc7ZwzWysM8roTHDzfgEddyIomQc9/HhpK9ZrKEFMWdsIhWX0OxjGlshklZuRaPKS528tGZ5akIxAYy95ThAvEtK5lJsIstMjjKEHvu37C69NY8PvCCjKETe1QOYPGmsKrbyuLcUo4az1OY8TlskI3RlTO4F98usdC/7/SYkHsDAwCSTfVhYguRBgjwqjXp1DoqFcL2aBfnwJqa1TAFrEb8mDblBnDfhBPpNYZrDQVb0pzmE0OwGmsCLiawwtUq0e4GxJ2x0kKkCRF0jAlLFqLB0tXAuIBeayrhcPLo3TLzw+C1w8xodFN1BsqCmzZTEP5uRATXh5H7XQdto3Hxb1Uvykx7gZJcWudgUmzluCiFbX2R9u2bOz9JJ5ReX5gFHbsYy6i5PW0Tl2F9bqTYB4xIJTuVEPrExBifIfQEMFUv4jL57/c8fPe0hjA/05Ev0dEv6Xfe8TMzwFAvz78cb9IRL9FRL9LRL978+aNVBL3uNj5wTMTJC9MOdy7Udin1U3Akiy0iYGlidimA2w4geIIm0LBzufqVnDJSRfiPBDNM1fBw5MmZDEOdqWvjXA3RFVXSoUckuCZedHL9Dtpd3HvojdvwTZLL0E8WfkJQDHwDHvJgJBIcNvXJ/FhykKmvMEA8rprJ1XX0kviGwMleDxvdPlr1E4gQW9UzHONfP4z7JTho/x7zs7Pn3ieHYzKMipCqHyRsFSvzLN4KQ/+rJHXbYmwrh0erypcta4oZa872Rz2Qyx/B2Z6ZeT8mahHVWI8WdU4a71i6iQdQhZdGcJOFeqnUarnSvOlZeEGWi8Ml9oZOGtQW9mE+ilh18tmYGi2mxhiwmGMOAwT7vpQRFuZolxr4JKl3BHMg1oZ4co5Tfo5pvasdBC1o2I7EhPuwU/i1ZMYaEkWyMvWovFGNn0V0dVWspfvm+ZlqChrJiwB+zHitg9o7lXJkSX0J3fBhkgtWpJmKPNsYc1SvJy3vtzDMUHNADVBLc7MImvmgXku+ry5p4/g+ToU+5mo1/k7GhYrNPR5eP27Of4iM39CRA8B/A4Rff1n/UVm/m0Avw0Av/Ybv8mJZ6/2t34OOjiKjIUXdo1TjrOhmWJnafZ1zykd5iSjCRpPaJaXaCjC1FUJwQiTdBC5mxD4SOyRDyEisgHGhIetxTEBr3tG7SSOMFsbL5xsRm9OXJgo2TJCjLp6BFuXhbcyhKq2uvATKvV8uRujuo8Snm4atM7gGCJeDlGgicoVn5j8vln/HEPCthZ6a20Ju0Fu9IU3SJg3taU3uBsidkPAx2cNXhwntF5gizwjED4/Y+lMwfMzbz1yZi1Jax8T4QQUTPkwynvfVKaY6QGqpuZZ85A7l0phNRUCl/dw3cXiMnkKsVT9iWVIDAi1c+EtcBgQFh67UyhzgGc3HS5WVRGXdWMsg+PMKjpbeLSVfA73hV+wKB5X68qW9+CtwcKj2CDkQfJOH2/XT4VxtNCNJGtWWmcKNGaNLPi5WNiYgLvki/laZQkj1bAArrw+dnQgJ8PXpf4eAwVCHK1BZcRaO88FtrVHAuO2ky5KXr/AbRleG6ZYqNeD6i/a7Tz3EGW0/HyIjEerCsxUNnVpJOecg6xlyBtGMnLyshVHghQcjSMlCUin0U0CUfZRuqJBr4f7/k8mUtF9vJODALKfR1W+k4OZP9GvL4no7wH48wBeENETZn5ORE8AvPxZHit3BFm6n4e7okoFVhUVeMMrrhiZEeNswiWVp2a/qiumGQ8yxByPYNdgabPzJKEyConowprl80HpeoN6Ar3pU+FTN47wndugg2TJWbUx4HLhcRhTcZC0mlUAAD6NmOALtOKMiLUodLhsWwyRcV7LovPRpkKDCdF4fOdWDPiEeipc+ExtBBh3CiMtvcUhxNIxtU42mVNIxX0y769DjNj1E7rAeLbvVTAllM5V5TR0XTbHlXrZ3O+ScgB76Rr088tdRR7C15aQkrT5eT4TwVjp0DMywBkHhsAZt/3sMZSYsdeF7mpRYYgJO80E2Na+6EHOG4/v7zpcNB7P7vqy2Me7AS/3A37t6QZPtg3eHMcySK6cQaWw4vmikgUyd1cJqJ3QU08hYjdMeLKqcd74sojex/mfrOty/e6GCVMUAdijVSWMKpq7z0wTtgQ0PAJRxIgbBCRXowsJI3SQSozIHktHqCBwpXRO5q1OMDKwsoQWAcZ5hGRw2bZK2Y1Y1xaJfXnNQ0zYqvI+q38NEd4MqrtIDGsYV4sauyFoyI+wxmRALktO5ajMsz5Yi/gym0fKwFquzYWfCztvhIKaqbUZ+s1dQC7287ykUgdWiyyapHcmLSbQ56yhd3EQ0RKAYea9/v3fAvBfAvj7AP4DAH9Lv/6vP/WxoOwBC0wRWHipNjKbpnG5TTb3sHG5anL1na0UxAYiiFtmUKRaoyxzXoB3NTqe1ayAVoExK5xzgDjDIs8TEja1easisUSwKQAxIJJT6MXI0FRjJiWs3qMx0hqHBNy7NwS6AHBMOpcwhNe9QWUTHiwsfnjHiPp+czW+qmwJKD+OEfDA0plSYWUcdlJcubJG+e8R69oVYdbDpTg77ocJ/SQ3Ra5eBY4wcAQMurjnIXIesOfM3DEy+pCUISMLGevgb7rHGc/eOpFRNpT7attTiFhVTr1opLpd11JVhwSctx5rrbJDZOyGgGFKuOkDkkJObWWxahy6MeLD8xbWiO3C5bIqn11+3dvWY60ZxVFhQ6dzkYV3OIWEK6VBHsapvCZAcpHzEFtM6eRcbxqvEZFCNqj0Pdd2VroTAEwRlCSSlKYedjyiaS+QE8ROqrq9G6X4IeLiw0RxnpXl99NzhdoSMGbVuti1MAO9CvOKqNIQAgGnexvK43VT9Bb5PS68xbOuxxBFa1GrRxOAwlCSMB0qbqxZIezZYKMdbI49HdM83M6mj6KuRoEo89o8xvnazffj/ZyJz3wQYH5JYJ+f5fh5dgSPAPw9hVUcgL/NzP8bEf0TAH+XiP5DAN8H8O/8tAdiQIdCcpEJpi4XUKvQTfYznxKXyio7RxpwiXqkNIl75nCU4JX8/TAANIKYwc0aG9+CjcWbk1agmBWMmYGUg7O7kHMPXPFbyVhqD4eq8mBdJA1Yn08ETqxqXEoTaic0S+qOJU/AhB7e1WisyPn7aUKn9sHOEH7lvMUn+0GgCJgiHjprHK6zAVtiODX+WnmDuzHhOMai6syL1U0v2Hge/j6763HeetVH2KJnWNcGm8qITTQDhkwRHi01B7ckZOnj5ZueINBd0NmLs4SGZYCb5yOZIlrYMSxBRCFyYbCcNxIonxf+U5DqM8Mh+zHiovXicGkNYMX62CqzaNNI1/C9Nye8uhvwtUdrvNx3pRtYVw6tqpUtid1xZMb3dz12w4R1Jd5EhgQOawCllE5lM7UWsEzFj2ir3194WzQACQASo9ONdF1buQZdDUatbrATYJ3MtKoFGLIp5sS+3FUcgkBdjbqmEgFnlYEZj2KVPg145EQNf4qEVZUZOx5H/d0QWYuAGsCgViwGwxSxbWpc6wD+Rmcd+bwMMSGxiOVeHEY8XtXl88szrPsF9qYR7Yd8Hkn0MpizIICcBa1paGA4K9GY2SRy4S2slzyHXju0s/bdLXmfdwTv4GDmbwP4jR/z/TcA/s0/zWMRoSystaOC+S+8OFMCQPIyhDKhB8OjT9rWcpw3gByQYiRBi2IEqVyXqEeqV8VemtQv6D7bJkKppHh70AlgvqAtYaO0wtYRHMkPVTyhskAGvKNfiJVDDpcZ97C+AYJ8j+KIuH5UupXIhJWXPqQLAq2IujTDVwLVWCJMEfjHnxzw0bYpWobMksoD8Q/WFfZjBBLhup+HrLs+oHayyD3dNCrGc2UOkQeY1hACSEJSMMNmSeG6bmJA6aRSndoCheSNGrgX5mIyDIFitZmzewGpENeVZAccxgmG5PVkFfCcMRGREqP1At/cdEGorJYQRobXCtUYgaYqZ0R9PE4Yp4TzRSW4vbd4sqpLFbysLLqQ8OGmhiHC8/2Ah8u6QGmAxaNVpUwrHaLrMDSkVGibD5eSgZChuCnNsyPSa8gZwjBp4hcAtFuxK+dUaKIhMbZ2NiP0BoiW0CkhodIqe0hAywn2dA0aO8B68HjCst2CyWBpCQEW4RDQ1jNDKyZh+bw4DvDG4IYZuz5grYXFXqmmxahR2UGjbiQC95Eu9lCYVp0B1Coiiwhb7egzNJrnCRkuBOT+Pyqt9aiQVqPMMblPhc76rjKLiQjG/7xHrO/ueG/eiVO4oVajNWtErISkMIsGdsjfJ9SuFjgo35UsCxNlGEjtoWnsJCgmjmIMZysgJs3ureHMPfM1ven4XsucmTPZ+VEYJoyaEiaIN4wMsPU1cgCsVNlOn4+eiLzeAAAgAElEQVSGQ7FzzpsANM2MhoOyRCoEqDmZhrJHZqy8Qa9QzjEkPF56PD8EzS6QQRspOymHuWcR3ba2uLvnz59ZqgITpNIJADPv3RmUSjRvAr2ygojkhszxirWbXTMBgfAyXBaNWAbk4J0xyusbFCMujCHliq9rSQHbDdDFKJXq1JJU41kVvF1UwopJCY/XNf7R927w60824hMUBUpJzPhEB86HYYI1hA/PJXMh49xSe4h1xZQY28bCkORf5CH1wsvwtFb66oNlVcSMRHN+MSDvIdtMN5aKN1BMQhSw6u0fFdaxcRAYEyhOrode5lNVPpcmExmgLDOJcLxsLaJ+nmwciAxAkqdBlIDQSeqdb2GNxbl6K42YaZoAcNH6wojK85naWWxbmRcYkqHxthFfo10/4dGqKjTdu0GsWnJ3/kTN5JK+3iyIy0eCqN6n+PY9NiihIWuJ7v8fADWUnMN4PvNBn88IfuEOAxLIQatNOxyANEkGAKfidikLvNgHkHHlJqLxJNV+TKAcHq9Hhoo4RzsCYg3NCYFnfnxeJEuoiP5+HoJtKqOGYEBNEgn55jSVTSvHJi7Virrxbckh4GaNkvebuxcA1O/lPQ0HtNUC1rc4sOgFvr8b8HRTYUrAWSOioicrqdxXldEMZsWrrdBFY2Kp1oMshs/2AW9OAdvGFUpjhoBOIapHk5yTISbshoCFr9AFUZUOMAWvz1mzOW92TIxahVOJGY4AM+zls2g2IgpMCa33iv3KGc3VYWI559lq+aA+Ts7U8IbwyX5QXygqeoFLHezGxNhNsy3Erz/Z4Ps7geKerGrc9QFfu1ohJcZ1H7BTT6Ivny90cZupndkv6Pu7Ht4Q/sLTFRrD2NZLfP11p3YRpmTn9lOvnYG8j9teBso5ySvTnEel0Ap7SBYcQyhB9Cb0oHCSPOrQSeyj9bhoa7GCcIQhyVA5UKX00SySFJx9o95MyS5ghwOm7ROBHjXJjsYTMI2w9QoLX+OgLqekG7Gcb1tot9mG2wfJALlQKujTTYNdP+H5fsDVosJOQ2S8IcChVP+5a6ys0Luzsy8BZX52DEmYYikbTErXdBylq8oziH5KxSI7RIHDhh+ZKX2mgz6Hhn7hDiKpLmtKMMOhJGjlr5Tx/moJVn98ABoa05WsYOp2xe2TXQMKJ6R6Ca7XEqCSEqC5ArHZIISknv4z/CK45Tw0zapYmgaMqLAa9xirtao3rVzYmqz1aCE21uxqsagGxLvfVqDxJJGWaZJ5BSeYGAFrEasWNJ5QGYtVVUkKlSV0gYsIbVsb7EcdFnuDdlujm+aUKqN0zFNIeN1FHMexxD1aY9SL3hTTroxlZ/bNcBJ7AWAWmmW+ODC7VY5RTPcaJ7YVdjzB6XuTYJte4A4N+UmbxwBQmF15MctiJEsi4ss2xiEJLJI3qIfLGjd9wMIbXHfTW0Pb+8XhReOxGyZ8/eUBT7Yy+PzK5VIS77zQPDOlNrNlslVDhjoSMz45TPjymtA4hy+eyTluvCnDcNESTHiw8OimhG3tC5S0rhxaa0uq15QyBMJoDJd0O05SDFCcJPWtPdfrlmFTwMI5qZwtQIc9fLuFpyTdsW/R6iA7b2pdSAipxSWz5E5Mg2RsGye502mCcY3oZe7BcqOyuawRmOrZXRLKq84NFt5iN8gGkDeKkJLMDdSu+tVuwOXCS1hOyvqA2eqamBGUVnoYY+kmy2xAN4RVLVkRt/0keolaO1QLVMomrMiUTfVdHO+Tsvi9eCe5YsiVDADQ2IHCMOfhGqfJX9IlsJFWl30LOM0AsF46CVULlw6AjOQE+EacQaslTmE2JMtHrkCzVxEwW/4eUQlrp1piiKI3yBVfZam03vKELIEtvpVNy3qBhgCY3LHkbiYMEn4TA0DmLcrhbghq/CWS/u/e9qKr0Jvo8dKjpVhsGMw0vCX+yfi3IeGW187gC5u6sHvyTdurIyiA8t6OQSiLoocwhV2VFdU2Bbj9S5j+TjY9heMoTgXvBmSmUxtxJ5WFfjbjy/MD0SmgmN95Q9jUFh+sBW+vrcGLw4iXR4mirK10jxJuAnyq6titqotTmuEnsVfAWzBYMYUjEZGta4uLVlxej2PEXbS6SUkH9L3bvthItN7gg0IZlYXKG7FHX1a2wGNZRNUqbJLIyuYYAygGUL8HjUdgClIgAAARkp2zHEg3bRqPMN0OZjiUbjKLBAkibBxiwlGtvDFJslxaXorbrG8VipPznPUyM1QoUFiv2QcLL+dDAqFG7AZRNz9dNwVCbL2c37NWNo6VaicqhYgqK9ejGY+lCwJmC+z7gsj7wfY5QKiyRiE1mR9k0zp6Vw0BvTtBGRH990T0koj+4N73Lojod4jom/r1/N7//adE9C0i+hdE9Jffxft5LzqCvPBRHIFpnFtbvejZuHlRNw7R1rAxoGMrdM3KCPZ+L0Cd6yWY1hol2aKD0N+YhUXTaTeQ2808ZgD0JlPaX2UYY8dYcg/ftLgNqVgrXzS2DLWvuwl9JIx2iYWVYeqWT/rarQTYuHoeZAMA3YuWrFrB1QFlC9WqKpbhdKWqzYWXan1TGYAjaBrQ9K8BTjitP0BW02WKZRZArZSFVFnCtrZYVUYZUaKKfbKq4WzuhMTsTAbVpnRIhuZNiMIwb2ZxlOQyZqDfA9vHQBxFXRxO5XMmL8NK2XPmoJbIUG0IFSOybNJWWSpCqMYa7MeIfhpx3np8tG3x7K7H9XFEFyK+dL7AF88X+OarAz4+X+BB7fCt69M9mqMp5oS1o8KAqizhdRfLgsTMoCR6gX/wzdfSlXQBv/l4gWcHsXnuJsmTBiTH+Gox34rZJG9VmUK7dQZwU4/YnsF2twIXdgm8bAFmcLXAaCpYBmy/Qx16UAxI9RKIE1K9AnECkym25jVk8zR6vQodl0GrKwxTQpsmHJPVzOhUuttNJZ+xY8Z1F8sg+FcfrEqHaIiwaiysaUqln2cm0lXKJtRYubbuNKTmvLHoJqEwt4bBJB3YlCTnIjKAe2whYHYmzbBs0SqYbIoIzSJ/h8sdvVOLif8BwH8H4H+6970f67lGRL8K4N8H8GsAPgDwfxDRV5k54jMc78VGQGC48QBzfCPMB+cl2QuYc3a1zYWxMGB0bIv9gyUDbz3i6gEoTYi2xhgTWgRwtURgYAwJY4zCtY/ij290EZ+STHwrI/hp43JVLkwiZ2QOEU0DS4RuijAQBa84doo456KxOIRUWEhIaaaPcgINe7D1AlORkfhLhVNoOMLaCuZ0A1u14HoNVzuBQ9RtdFuLhfCjmgXmShHJtwh+icQCYzEzrlrxoflgU6MPGQtnrCq58/ImsB/mQaeoRXUGUIbPAkudubnSjcyFyUWKQ1PowJMOPacRptvN2cU6LOd2+9ZnnjsQp8P4BhJrCcwLwtO1x+89P+L1acQwJaxqh1UtA+FV5bCqLB6vaqwqi+/ddnh5HHGliuHrLuDRqsJHW7mOTiHiwdJhN0RcNA6HIBDURWPhkHAWD7DHN4jLS/nQ2eG8WePf+7VH+H9fHvFHrw74g1cdHi5F5CVZwTP91WrlaEk0AwBw1ggTqZsY64pkcNvfyfn2LeBbmH5Xru+KBTaksYPdvwCPPeziDOw8OAYhPxgH2FqcScPbtt2s2ozGSQV+EwwAxhR1YVYqdp5pTQqxfbIfSiW+GyYYAp5u6vLYQ0wwaa7WFz5nJ8v/h8Q4DEJIGCtT3j+7GkyyYYgeIOEYpDOpdD5kCJpENtO2rULFMXGhiVsCfBz+9IvLn3C8K/sIZv6/iOjjH/n2T/Jc+ysA/hdmHgB8h4i+BRHi/qPP8hreC2gIwJyHC4FyuERACmQCLzd0NB7gJJjrvV9nMjhFCdPeDYJF9lRhYmG9hCRsl8OYcJykqidlo9Taht7HnLPthPDdCdPyqugZSn6qXszOELZ19l+frRrYOEkt07kGV0vZBADA2hJ5iSSzEZNnHArpZKuDTSUwhjMSCpI1Cr2p8aKT95TDXBJQ6IWNnQVAQLbeZvXBEY/7bGy39HID50Gf0YotJ5/l7t0ZkgU+qie/3kw8dCBfA8tzeV9Rso2zwI+mocwHZDgvFNM+KkTBAtWJPQZwXlt8cgg4jFOBteaKFCVu1FtR9J61vmDOH25b3KlvjpiViRvnfQjiC+sKK2/g4wBzuoHpdvK6c9QoJ9TjHhsb8XRTF0tpundt5MxiQK2SgeJfVSC0e6yfaGu5Jnxb4MuuPgf7BWA9aNgDQRXpKYKcB8URZuzwo5hIfmy69/1sNphY5gaZTOAsFZGYIYhaWbvgtV63OVz+auHxaFkXp9hsVueNKaLP7D2V5027QXQHWTDIUKX/PXqwwQyl5nmRt3PF74xQSzM7zxsx+rOk8ykIqSJDx5/1ICIYa3+mPwCusi+a/vmtn/b4+Mmea08B/ODez/1Qv/eZjveiIwBIQ9GjwEPOg40FVwtwHq6mCbAV3HjA6JdwCuUYZZwAQBcipoRihnWrgfYZAsmLx0ynJPhKKvocmrGwpgTQUIoYWC7cT48Bl0qpy3m12XzNqh1GSDJIHSJjaRl3aLCZBlm4yQibhlmoq5xgj28EXrFe7DC0WjQApuUloCyqpTd4sHCyeYVOZyQONc8VoSW8tSjkDaH1Qndt9AYbI2us5GzxfNZ41HY2xIsQ6GSYUDBuRwClIFBWiuBqCXP7iUBvU0D4wTfhn3wMc/ZAuiAyoGkUvycySNZLyI9uvmNMGtgj8NdlUyGOYi54N0ZU1qkbplgbCIVT5hmDetPkGMtt7RReklmIJcLzfY/WEda1x16jGPtJrDzEnFDgPhgLbtbgNCEtLxHIoR5P8h7rJSh02FRL/MbjNQBJjvNGHucPXp2QWGYTjRXYaelny2k79VIVO1mgX3cRrWvwz54f8fGZwdO1R52ibJZhFIHhoB1CvRJoqFkjrh7obWJA4YSJZLN6tg9onGzkw8Sw6ukTWXIzsstnp4p0ZwTGmTgHC5FSdidsa6eeRDVsRYhJzvVNF9RJVALnIwtbjRuHKQIJCZ/cDbhoPa5ai5WJZc5hYgCRAUW5Xn0ukABUPGGEk80zL/opFLq4GYU0YqslaJD7n2Ios8F3sur87MPi18z8597V0/6Y731mTux7sREwCKleSZscZEgMv5BFRiGiTLuMzQZIjKB87MSzd/ugdEBDhFEzVIcplgzXRo27AFlELM3h4rlazcZwxBK96IyGyvAc3HI3THi09DMf/p7oZphS0SOcQsK6daA4Aa6CGQ6igwgnmWV0e3lrlQ69gQIbgRMmFc2JM6OIzrJNhuluMDTnAFJpsYmA1gi7KEMWgglb3Siyg+uc9FSZuVpkZp2j8AxvQbySoq1hyBQoS3I1pXIdv/67oGYJsz6TLi4PP1ME20ozoGcpUIYnsutqYkjnBIEHusAFXgjqAJs7lNy17VUbIE6uVjMl5kjLL50v0E2MBYlvVTdlszUPZ8Uyux4OiKsHmBjwy0vQeIRrtji2V2ghi5IZDtiuNni09Bi1oOijVOLbWha8kFIxYouJ4ZxoYChNSNSUynnlDV6ehLM/RoYJshERp8KSEzjFwHAC+wZpeSkEA6KyOTWW8KaXwfrdkIfnMgBn5jJrSQBIv64qq4JDoc5GvQ4OIeHJqsZ3b2WWM+hG+2hVFXptSKL8vmh98fuKLErgT/cyM9k0FhsPgTj1+uVqWUgDFEdUcpGV90LOaX7DbNXCvhWyQS8wKsUgNFhmuY7SZ4LS5+PPnj76kzzXfgjgC/d+7kMAn3zWJ3svNgKoLQMbB3I14uJcqjRXCx1Oh8apXpdEMKvVbpiyl33Ea3WgzMMuYTtY8ZPRoWN2i8zJSSGxDEKN4Na5amUiGJ6Hh1NiPNsHPF6KRfJ3bnt89aKFs/QWLzqncL3sMyuChE1zOiJVS2EuZQ+iGAHF1snVSLaWDUIr6pYH1FUDOxzA7LAOJ5h+L4vD/gWueaO8dXlOp/TAnMhWG1NafKuMDl9Jwpk3hBbQilbet/i+c2ntKwAbD0SqxUQPMvylqElUqwewh1eovvqboGaFVLVI3/tD2O0lMAXw0ME4j9RswSnCWYOJcgWbAJPnHgkm9FjXDd6cJjxcin1GbW2JJh1iQuMsagISO9R6Ex/ihC+dtcUgLTuVxiAWyq9OIx4shPd/CopnK4y2chWYCLs+onUWxm9AarN8nQxq67BatJimhCdLhx/sZfORZC7gaiFZ1bsh4aK1OIyyKdeAVK5RLE0yNXaMCWeNxa+ct8UW25xuwK5SMkEDFhtSTMvLsjnaNBXKNADY/QtcLS+x9A43fSziQqvXLREhxtwtSlcgOh1GlSYQiRdTgsCmlRMiwsvjiFOIhTW3ri2+eysivovW62zGF6O4HLP6lcsWjxYORud87BeyiI9HoU5nKNE4WeBdDbgKPo2AqUSdH6NSwG+EMTj1ADeSUugbIVkYh6QQ8Wc//swTyn6S59rfB/C3iei/hgyLvwLgH3/WJ3svNoIEINga2H4gtDKrgyoGhj7CmZUMx8b0VhpUHjIdxoh/9um+VLm1MyV8fV0J97t27o8ZVkVmLNTNNHdsGffPi2dUvL51oqT0UwfA4+OzRkRDBUOdbTGmxIWZQXFQ7JlhxiM4Y5xpAvkK8XALt73UYfgSICND7ziCrZfhYjbMA5AaYUKlxTlaS6idLcIsZmAYYmFb5E6lj4yVVthj5MIAysypbprhpUE7gTGK3TbFEW6SzgVK4+WUYEIn4rHDrfyf6WCmAcnYQuc1yw0QBqCKRRQ4Jo/IsmB2ardwCglN44uR2qvThO/ddniyrvHBusZtP+Fq4QvL6BRS4fOv67rYJAtdVPQR543H9SngwbKCMxJP+mjpcbVwuO6imPj5DcYhimYi8GyjAan8rUk4BYNtLTDhR4sEc7pBWl4iGg8DxmliPFxKZXvWyGdBLFbm7BqYYQ9fLUFxQmPFAv2itQAsPhkSPgSEJMEJcfNEKmky2CvTJySgcRuESTrVVTzIxhEDWoo4Wo9tLXBL7lgytm5JsikAsSpvHKGHw5tuKt5D+yGWuM6UZCMdVGT30bbFqrJF6bvwtnQE1sg9sa4tHrQOLaRyp8M1qJHBdu5sf3QzYNRFZR99JZBsmkDDAWbYI/lFmaGIaaNsAmz9Wyrlz3KQeXesISL6nyGD4Ssi+iGA/xyyAfwxzzVm/kMi+rsA/gjABOCvfVbGEPC+bAQJ2I8JrfNonFQbUktDqXLS8jNnD/TsXimJSftBqpZsJZwU4kjKVV54U6AgozCPGJNZtUmeYyqz22G2io6sQSzK0aaphzdVUY5aIwtqNtKyWpVnsRKNvWgIsrUEAAo9cLxBOt6Bh14rQWFHpXoFJgK7WqCDNIH9oiykbCuZJaSIdnOOetiBXYOAGqecZaww10lDbQwJU8oAZcg96WuMLK6mrSNECEyTRw2JAXa+KGBz5QrrwJNwrM3qbP4c765h12dzpVU8n0Yw12BXo07ymU5JQnGGzDyBMJSOIeHTw4Cnm0b49wyct04rXqPxjoSQpMMrjplK8ToFwbMNARcLX6CHpZeO6aaPRV2bPX0anY9kOA2QuYQhUWwnMFrvUYc92DcwpxuQb3BNS6z83E1VVqAXBlTLIAshyCC5WtLFvFF/qoTdwOB6AXBC8o1srItzROMxlizshENgdTMlmHaFliIOSSix0zihm7Jdu1yv/ZQkT9lwgZFy6MtRH+u2m9TVNRUW1o1Cm+eth7dGfIj0ul54U7IGgnoVWQPl/BPotJ8hQUCul0remz3dFBo3piDMJ07gaoGaEgYYKYzGo143FmyX5dyxb9VR2KLLvhrv4HiHrKG/+hP+68d6rjHz3wTwN9/Jk+vxXmwEDGilbwpOf19JLpGQmRUjldtxlMrl9YlLNZMN2lZZvKULf658ts3MSV94iykCVU0akycLwP1NIIlbizAYammX9/4M6d6CezpFZQzJhtIYwmTEQoCtMJzYL2D6vVRGoQffvkC6uwbHCPfwKdjXUg0SIVqhfC6NLAQ7d4aNiTj5DVoE2L1AjalZo4oSGD/aWis8SZoC5KZPECOwDIE5ZQRlqX/umvLCmP99ClJ9Lr0BxWHWZnix5ojVCrZagoc9jNlpdafW380S3B/BQy+D46otOpDAAmMxZGE5BTnDh8SowxHRLgAAj1c1mGVQzZDupLbiOLrwMmvIubvZMmN3nDSNK3smCQ34GBL2SvPtprkDAYDjKC6v4g8kNgmDXkMXC4/9MGHXT1j6Wjn6FWAsbs262CaPRjsnvVaNKspt6DDUW1RqOULWY/36/xPtiHWI26f4uEm45hYXNbA3C3SccHMXYWnE3TAVJ1UR/NnC4e9Cwh+93KHVa3nbeGxrh8uFK1bO2aWX0oSlF27/q5NcG9++6Yo6+9GqKh3V1aJCrxtBYnEAzSZ0152I9851TpAgENvTtYefOpi8iOtBMYBON3L9jz3S/hZmfQZyXpg4AeDxCLRbtCmJPcndK1DVAH4Bdg6UIlK7QTAV2FTqQ/SnXl5+/EEEeoeD55/38V5sBIAuPha47mOZJ0kFS3hzCqjVnZJZFoG8mL84jsV2IFf8XYho1V44e+pkDnROBstRegUCgeYEI4GCKpz9ogTJGCKsvFScT8YXSOuH+KST5yKyxYHxboziATNOZShMUeT+ZjzIYukrueCnEVhdIq4fyTwEBDce0FQr3AWAWSr2F5M8twjIcgchVdLol7JdMXDQvNjC41aDL5l7EKbIOCYZbmZVae5cmPNGKJ1A6yXecYwOWyd03oG1Io8JLZIM9aF6gqkHfAXuZUGgNtuAKKabJngkWGuLEVlePB8sHCZeIU7SWQ0x4hikMFh4wrqyuO4nMAPfuz2hcaLkdVbedw5PH2Isqt5aWWFLzQYQwZI8X9RzkNPZlj5fFyiLZkiMbe3V/kR+BhNwTLaEJm0qKp1gNe6LtxQATM0Z6vEA6nbCrtLPOjUbxPVD2LtPwa7G2aLG9481gIjne1FPhyRGb1//dI/vvTliu6jwKw+W+MKZEAoOw4SbLuD6MIq7qrqiPl7V+NqVnPfX3YSr1mFK8jlm+K+bkugCiCQHuxavod0QijGhNwaHURLXnqxrfH/X4+m6KfTd7FLbOgNPopYXyDLJPTuKlQoAcH/E9PKZ/D1F6RgBYcoZBxuGeXjcrORx7vlxwVioPRWOid8yq/vMx3u0EbwXOoKMQTZOU8Z4zsDdj5JVKxemsBjE8le6iBATUpqtIYYpaooZlZlB9pHfDzMUl9lCOewm3luYKI4gTsJ9vgcneSv+NMfVEyAGXC0cvDFls8jukJHFbz4PftlWpTJmWwk/3PlyIZrhADMexUStXsGmoHMLFC5/44z8/O4ldiuhHbNx5SbpJvV6oTnLOfO6s4qzyPx/pLvO3Ux/7ya7L1QK5MDGFmZW7YQ9xFaFfzGCpwCqGvDQS1cQxoINc9WC/QITZFFKLJi1IWAVD0XFKxuazAkuWltowPe1G/ezd/Ox8BbtveSyVi0KWkeorcG6nv2YChPKaMIdi7gwv9+kMGGu8be1sG3ccAd2tVBEKWBVGbH3CCeY0CNVS5j+Tiw3wgn9lFQHM4KMwfT6U6R2q0wiYQrZ7gZspIgYJsbzw4DdMOEwTPj6p3t848Uet6eAb7884NuvjvjBbYdTiHh9HDFOCc93Pb75Yo9xSug0rwEQte/SG7zWWYCkjolVSe76Fl6sO44hofVUOquFt1hWouB+uBRL7quFsKMuVNm+rQ2cmbPFQUL/NqETBwDnZVNMUdhyyw2oVoFoUOEhJ7mec1zkcAT7unSdxR1AtThzmP27Okg0MD/Ln1+C473oCPKSczdEdNM88HIW+OHdUEK290PUBLF5CNw4g23j8IOd+MFsG2GUeDvPCBJL27vwFsdROgRYaPWjDqMkilmahuJXZMYjGuvB7JCQLRo0wYkN2t0PsR8v8cWtR9XfAKmC9y2oZCi0ZcG0cUSq1zDDXqr5NsDWjcwNovDz71tvtwZw3sGQdAkJS9B4xPMP/gIunAGjAjhhSNnCgLCpZgGRJZKQHAC1snQy/BWEsIO1KpVHbbkzjTR/HVWRmpC0e0q4aJ04XIZObpIoGyeqFml/Dbh7FD9rRWE8jXBvvovj5VeLWZo3kt3MxoE4IemrXXiDB0Yw8LyR59fUqEgu8kwvzelXrTO47jRH2puysGd3WEDe/5jEOK2yBq1GId7XYuR8itppdrMXBW2q18IkmwbQNMD2exmKqwiSfKM+QiNQLbGyJ5jDK/n8pwD3xX8FrPTQY0g4LD7AxfGHcLfPcLH+APtxxF0fcDdM2J0Cnu96LCqLQz9hmhK+8ckdvvnpHl+8WsIawqEPOI0RT85ayRquLJ7tOvzFj7ZwhrB2BheNfL7XfcR+kM32oIFF4hmUcH0KuLho0TghRxzHiOMonzMg3dDCV9hUBqvKlmQ5ioxzO4H6Tpx1s827a2QTMA5x+1iU0qsL2NOtwEObCyVGtMVEEsbA+Aap3SK2Z5pbPcmAnHP2wdtxlp/5IHyeWfyLdsQksYP9NIdrH0bBIwEUiAeYDcN2wyT8eiuhJZlnPkxpZvEYgxAljSk7bSo8LI6igAZjByy8Bw0nUXZmOl/mzccAbyw4GXgjr9FYj2n7Ab4aCdW4h/30G+DNA5AXG4zUbGDCXlxQIdRXMh04BqGTOg8YhU2MBazXBckApkat0JWPMjC2h1e4a65QK2w2JYBhCqQj3vXydZgSupTULoJUT0DqkQS0ULtvrZCNLqpdkMfKeQREVIRJS0+orPDUwQwKPczpFuxEI8Bjh3S4hd1egscetH1YOqCxWgOLS+xOU8H8IwNPXn8D+8uvCBU0clnAR3IA+C3/mfzerJVsgxz+km0whE6c7QwIGxvRsUVdbAsU3gkJ25WH0dchzC9ZZFpQEbkBEv8ZebYk2XgIhDEc5TMLPWjYgywBxwQAACAASURBVKaAuHkoxcNwRCIjg0+9fvj8qWpiapjTLabqAQ5jwnb9CP7lN9BWLSytimoaALYnr9GbDi81V8EaQjdOeLBuUFmDrzyqYA3hg20j51Ozg5decikWCu9ta4tvXUs3cdF6fLCuVWQmmQ5ZbX5UvyAAuFwIQ2eKwOONk7nd1CPaGo0jbEyAOV6XDQAaAAWbir8WxUlmIn6BtHLA+iGi9UI6AArEyfoz0TXY9bF0t3dDxKrmYj4nKYbvijZEs1nle3D8cvQtP+VgZTqElIolcOYyG5LWP8cUAiiuhdYIFJS1A5nhkIVK4s9/P4QkQyfyj02lsYEkmwGAYlMNYN4MgB8rbZ9gsJruMNUbnH73H+qmIdkHxYmTkwTVMAqdDgDgavAoylOKARQ6dFPCbpAb4ajUWKGhiLiotrIwC3uKi49NzgsA5kU22zRncRggi2ftRBGdVchZ/xCSzEoEmReh2QZ9gZGsDl+dUV1ENpybAjANYjFRNUhHpZoSlfebLQ+M8s8zfMXWoaUIShFt2Evi1pTgaTb+a6wEkmTRVFIld+4qDM2BN4nlPcbEpSthFouJSam+21rsOlaVbBIrbxRK0izlNFuEZC8rQCjOE0xR97I62ZrhKPkWJNAdjzNzRuzQazGOM2pR7mvZhA3QUSXeRpCQ95UG2ywrh8uVLFJR2V0PlUW10uzgh5saq8Zh1Th4Den50nmrkaBGtQs5DhK46wO2ajM+RlHWZ3V91ErbknzPGskIuWwdnq6dPo5QvGNieMIsFEyTaABCp/Yok4oeWVTzLDkcbCtx5F2cSydQi04osLrOOslhiMrG62PCECMOg8Su7scJfUilIPysB+HduY/+IhzvR0fArNQ6iyGmAk3IUBhvWULUzmKYYsHtV1VOUtLwcZvdNm25aM5aVwbQjTdovSwstSVt98Psn6NVHICC4edUNEoTLCWQ9UgsnOpbXuGMGct/7d8Gq08Qrx8h+QZcreDGA3o4NKw86X4vC0cSjJSd3lAQPNqEHiDxTLruI1beI7oznJ2egzUHIVdwIclCnyA38RS5+Mr0UVhUjUJkladS7RlABVbZphpleJujB8UKoBYveN0MqigUWBpPYpSXE9+sh1luRMnqK1C9QPIN4uoBjtRgVCUtlU1FOjt2TcHRU7UsgToTq/cMT2DncFRVsHC4BBbMi7WZBnQQ7LrVHIAlSwBQZSUhq5+yDYiQkr0BbArYmITRVMWML0NpzhH6OA/OTymJeysBR1RoLr8sAjtXIzRfk82h20ml26zLeUnNWmiU9RpTs4W7/SFoGlGPezxZbWS2sH4IJoNqAP7Vh0t89XKBf/LsDl99uMLr04hXdwNianAaIw4aOfrR1QILb/F812N3ku9t1OYCEF1NZalYr4yR8XTT4GpRFXuN7C+0rWW+8vo0CuSmVugXahfRw8EawtoDprtBBcD0e7G9sALr4XQLVI3qXQReZTsA1oKGo+D+xmHaPkEXEgbt/mLMWciYA2siyobvjRAHslocQJlxfOaD5vv7fTjei43AEAo/+Wrhcd2FkqIFoMQFAmIZkY9t40vFuvCmZPFmy+F1ucHF1liqLVtoht5Q6QRI+frZh4GtRyIrmchQ/v54LPx+drVm6SZUww7T+YdiBWCkuslD71ivUAGg7gi7fwmul4jrR7IpuApsK7ypH+DMA+72GdLiHHfcYIyM3SAMqidOFt0qDuhNjaAUx6jVvjczZGIgN9WYGFMEDjE7pLJaSwgcth+UT68nMFtLALLYMoBTlOqwdkbnAqJszpAPnFhMgAxSvSyBNOKvU0tuc2JcpBP2foF+YmxroXQ+XnnE9BhMhLvosDDiiVRZ+Uyy6SATobbzELexspA3PGJMFbytsBiPJQtaNnKSv68eYGU9Fq3AHN0k58IjCZ89TaiMMrH8Qip9J3Obuj3DqJ1EdkrtI+NVN+HpysNY8cMyMSBZDx86JLsGV60sftUKFAYZHmvEKhsHqF7ADUfRg3R3QLOGOfsKjkFgnD//4QYvDwG1Nfj4bIE/+PQOX7hY4OGmxtcerPCXvrjFP31xxMv9gNMY8eltj+pqgcvW4ju3I1aVQa9c/6zTOG+9QGck90NiLp3Q3TCnrIUoflmAkBFqSCG2GG/FFHEa1Q7mDlwtkPwC1t1pBxal0zVO9CcaEMW+Ef+gacAQheLaTUKPzTM/KQazDUie70kXmf2l5Jp/V6sOvVcbwS9H3/JTDgIVN8JG6YylalFBWYipeOQYogIBZM/9nKxUW1MupKhMn9xRZNMrYDY+KwM+4G3Ig5P4n5ABGysbhRquAVAvIC4KVdPt5mHZvQt8jOJtL0E7HVIl+cliqe2wXz6RhzMWXC8xura4ZIrltSSvmeM1zOlGKmEzh59kSKjTGMKoojujFNkMiWWjvPzeZfAnC763ot340ZvMa3dhFLpivxB6ny5qbF2BwmArwXvVYZV9U6A9Gk9YT3fwBtiS8uz7OySyswhOoZ0cxpIphHkxlsG+wjcMBFOJbfM0qGLVKC49Fo8jyUkYYPs7GLB2OxISY4YDaDjK1zCU3ASaemHATANqSsX9MkPTBgJDsZFB7CFZMIv7LaKKppxXvYDg4TQcZTPIi6Rxc8FxvAONx0KNlg2bcNY6PFnLpr9qHI7jhG6M+NrVErtBCA8fnbXoQsSqcfho2+JNJ993JutFlOJpSA0FUYauS53H1Jbw/DCi1s7RGmGpOSOb6T5wochSktAhMxzmc5wmWVBdPftlVS0oTkjNFnF1JdYqurHHJFkOdwqBnoIIGjNk2DhT7llAYL1cjNSarfGujs+hoXdwENEXIEEMjyEQ6m8z839LRP8FgP8IwCv90f+Mmf/Bn/xgM6UxLwgAlwDx2klHEFkCwnNAeXYWBWTRWleuQEgFhiACrFQcm8oWu1sJ4IAuanbG77UbMKET/F6zk5kM4OpionWKAlRMSapVCj3YVYibx2I8hoQxKWOFjNgcV0vY4xupkHyLm+VT8f+BYPXcnMGR6AAOIRV/GOplWGi6HbrFI2G6JOkGDKgE2E9DKgHzfxyKQQlTMTTTNy3lm41glS47TAm9VuDOiPW3tdWs9CQD1EuYcEJq1tJJAUhrdclMSYbJrgfZWjYG12DLAzrT4IM2gqPObggYeb6QEwgBDkhATBaGNITF3k9vU9M8hlgT53wHk+SBUpTFaOyEkugaTDxfY248ADEgrR/iZjIS/HP7AzF9UxU3kQGaNRpb4Thxydx1JuIwJiyVt7viHggQgsDiXCiUh9cgOsJwAnV3ZYGUa93Iz3CSgfLFEyRfY6efHSCLNTPwZFXhauHxqw+X+GhT4TAmfHoMYBD+zv/zCb75Yo8PLxb4YNvg4bLCmy7gV85qnbVwmRPUzsBZKlVjq4E/rTdwSLjuJly0DmeNL7ORYUq4nRxaJ0NimkZ5L1MA+qO46KZJzrGtBPu3Hlyvyhws+gWI5iJlN4gFfDaGzEwmS4QBUJUzF8XzEIGrhccpRKwrUZf/qE3Mv/RB5r0aFv88oaEJwF9n5t8nojWA3yOi39H/+2+Y+b/6WR8okwQzYyhrAJIFFvp/RgdZANQ+4u1oyfIzxpQqOGnLaSCMkVZ/L1fqS0dAQqEw5mqfOAn1Mx/ZHRJAJAnGqQilmv30OGF58UXYwyv84esBv748YWjOy+sw3Q3i+YeI9Qru7lOY4zVSuxWVrWLzBJQM2oUjrOIJqV7je/uAV6uPcbmWTOBOb3AZtio8FOQmWqry1JAIqsYk773SoaeBCMUSA62bN91cbR8DwxIXCmVO8MpBNDIQdaoklk4gLc6FKdNupUKcesAAbBsgazAa4c8H22J5eIFp8xgGgtM31pVMgnyPZ8+jxPK11gFm3hgtkSxOGt1Igwyo0+oBOPRyPseuOLWyX6AKRyTfgjhh9EvU3U4M3/wlXp0mXG4/RHPzXbEGnyQcJqUJXK+wMg5sPO7GiEdLj3/+uhfWT23wbHRYeoMPhz24WsiGr35QTAbxwZcFMoyjLMTaNdpuh7S/BT54iNSscQgR57XV0BixRb8bI65PAdddQBcSfv/5Hf7yly+xHyP+6bff4HQY8R//pS/jyarG69OIj88bfPtWspMBGUBX1ojH0IS3ur7skPt/P++w8AZnjdcMBVm4F97Aktqxh6lkUJMDAI/05hk4RdD6HPHqS4CrEJsNiBlqAoBdNxULl0z9HCZZzBfelCzoU4jYNg6RhRiQmLGuXOkKcsSoSVT0NZ/5eM/ooz+3voWZnzPz7+vf9wD+OT5DwEJm8mRIKLHAQbIBGDXSkiq+XBiEwnKonUHlJDjD3Wvlc5B2FlUZQolslA4gzZtAZn4oHASgdADghATpNDKUlD2KDP3/7L15rGXJfd/3qaqz3PXdt7/ee6aHzRlx03AdSqJkUYpkWrKjyLAcW0lkS0lkw1aQBUgCWMhiBE4M2FGgAIYA2ZaTCLKF2BQSOaIja7HIMCIpUQo9XIbkcLae7un17Xc7W1X+qOXUvf26Z0bsoTQNFXDx3r33nHPPqVPnt35/3x/cKO3Dt9W3dAozx/BpjCG0qYTQc0FO98N5+mYeqRQtWblLToO13o1MKJMuM5d41aalzs6ikJoS9hilQ9X4XgkeSSLwYbG2Zy206JJaW4ieEC3nkI355m2cW2V2jrwn4Ap/RDV11NQ6WIVKWw55ozKbfO1vtFhwVwfRcbBe6VAujSE0ybGejAnsnf6Ycn4ESeY4aOycC9/YxxOWuX7X6vjmwr30hoMRMsBjDbQop5mDh3rDwIMIgGR+wFs3LMLl+tgK6FMdY6tqZ4cW/TI6hx5s0aye4zhZsffSdXMLYIS6wOjGKtNO271NG0cZnUjWO0ng/dnpp/zpyxsYY3jluKDTTTl1ekgqBVcOZxSN5mjeJlYtzQShTiKVMEqsNa6N7QyXoDl2dTU+bCisbcS00guN4n2vbaM1RmtIUmS3j0itl6yzvqOeEKEXSNkYJg4FWNQmFLR1nEK3z5D1AHynvH5maxy84efvlS+GLJoHREP9xwVlD364Nm3vBj4DfBvwE0KIHwE+i/Ua9k/Y58eBHwc4dfacjfk7tICP71tEkHZwP3upfrt+phxtslUGXiB6IWNMiz1PZGsB2ZivE5haL0I6owImoRurDDRhG2kaMDZxPC0X0QvzRlOPznDuxjN8tf9Weqnh8LhivausgKjmiKxnY+p1Rb3+CNOZo4QIcU/bVFwIwUo+RNQFqczZndZkKoWqoahtYxTpkD0+BKSW+l10HAGary8wpi2WAugpq6AK3R7Hd73KlE3oTh1qK1OCDjrAYr3yNFk3eAGinLauti5D/UWTD1reJSSVsHBErSxnzaTUbaGauwSB5cmX2Hvl0VFdoalIrAfQVJjeGswOrfXtcgI0juJAKkvn4aCLltPe3u+EwiK3gP7kJntqk5uTmkeMxlQFstuHagadldATQxbH9LIhWoyYV4ZTg5TjsmGQSuTkDtOtt3LtuOLiMOPpGxOGeUpZN6RK09+4hJzt20R0PbeeSF0hpLLkitrSQUwqjXFVwJsdwX4Jw8waQZ++esS5lQ5XDme8Y2fAxc0+gzyhaDSbvYyLLiTkEVKZFKG6elYb1jI4qhWDzD4D88bQKw85PejxjlV4cWYNsJVMBgXcGEAbUpnYNpm6hrxvvbCsiz68g1kbUg+3OSwaMofM2p83gcxQG8MNR+CnpFXCHqqqMcGoEwIyFHOHHLPJYrseMlf4l+UCVd1HEL2e8ZChhv7Q1ZUQYgB8FPhPjDFHwM8AjwFPAteB//Gk/YwxP2uMeZ8x5n1rG5shUZwrFfhMeqlivZsy6iRkiaCftfS3ljFSMshlgA7a8/HMmsJRLBDcY08n4RvNAG2dgM8TOG9AC5cE9BBSqcLLl7tP3EL345WpRneGXErH3J7UvHQ451NXj2lGZ1AH19yEuSRUU9qmLHYuHHLKCj0loBQJOuuTSMHOwBabFbVtEALWqp+7gijp8gJ51OYvT0TwCCSE+YGWabVyYSHf+1a45PzcUR5DG1f3bUONkBYxZLQNv/heEb01e3nl1FreRgekiE/Ce7qIsmlrIGyvBzsHk8pCPT0vjm9rWTaWjpmmIj96BWSC7m+g9q8Eamw13bdegT8nX0eQOFijZ8Z09AV4I0BYvLwScCU/h964iO6t0qycsvkFr2CMJjU1c2ddG2MYpJKNXoJJMua17X/80mHJasdy9q/kimEmOSo143SVueoyzVbRwx3M2lnk2o5dBwdXGZg56x3FRlcxSCVqsssGE4rGJvYt9YMiTxQ//3vXGLiagKrRnB5mHBYNG92E8yspm92ErnsmOq72RBjNyEwZmSk9ZT3K37ilePszH+WVwq71TNpeEY2rxwDbm6FJOhYEkOQ0w22qrbfYUOCZx2mGO5ayXVg210PnCVivtW0UBTg6lpYi3iexk8g1tbk7a5AMsyQ0U9KuuC2uNv/6hiWdey2vN8P4Q1UEQogUqwR+wRjzSwDGmJvGmMZY4v2/j23MfP/jQOhC5fl8PEIgU5J+qkKPVS/crYBvQz7x8IJOCn/stgG2Nq7ngCBUDgfedJcUjnvbGgO1S96BVTL+exPlG+rGVgI3K6dQhzcAOD/K0cZw1CgbXy2n1iMonZUqWtbT+Br88b2luNVL2Oxa6oReqpg3OhQ/JdLPgfd4RHCj/Tl630U7lFDZ2O5r8Wee8dXv6zuH+QQtRgehL2cHFq3jHxKV2fdxMtkLWt0EArLDogl9n33fAyVFwP/70RhPc2y37bseD6IpHcrHeRgegQPorGuVVN63CWznrQQa6Kzfen5GO2/Bei4eNls2xnaIU1mofg1rwykUH5bLlGCQSVv3oTJWlGuIo4kq23ENkjTjyvaVDpxGeT9wD+FI+xIsFDmtZxiVIKf7rHcUa92EMyu2j/DpQc7jO0MubffpZYqrR3NSKVjLFbmwBVkeKeT7BmdKBkXo5+vA8W7p/VscO+/We4yJtMrXr8lZ7bql9dZs+9i0a8OBaQ5SUThv0hgWGtr79dhLVctLBK5Xsb3HPkflh5KL61cFT6J9/8DGH4eGvv4hbGnqPwSeMcb8VPT5ad+0GfhB4AuvfiwXH3ehjIAgdPfcFpjZxeObrgABC127+HbjMPUWK02okvUVqMohdJQUbfzXPYj+/8pmw8Jve+sltvw9pNXiryuX/LLc+F/Z1ZweXHI8+ZIPPzLiqLA5CHV0g+rFZ2we4i0WxWHA8fn43q0ixPBRCflszyIzRmfZn1ecXbE9eIWATNqCqYGDHvrrVi7X4CuLhWhj8LH15a9FG0Klse9bbIy1fDMlXPW1siiqunDapQ7C30MjgdBq05LROWiuTJiJzBHOeaFDoHLupTYJ3k3aewvWGvUx7kwJjOpQbb3F9gMwmmbllO3r63I7Yn4MNa1HIpNQ7S2aCp31nHdiz4nGJnR7zZSb2irmAzViNOw7Go2pSzZ3EXWBzvqs+HoWLSy89PC2rRvYv8Hw0fewp2zIyVN4aNr7Mq1sh7Iy6ZO5xkMBqdTUyHKCGt+m6VqBqzuwPrnKam+NA9Fnb94w6igub/S4NSm5vN7n+f1p+C0cWs5a4gYpjC1kLCeIcsZ+9xQKwe3jmhf2Z5ac8ZFvsvdDWG/AK8V50/bmrrThOFmh13X1BQbqjvUAa1cJbI00Qgc3ib3o4A2oJISD/EgiYzuVi56BB3k00XP3QDtLCon4Y9TQAxnfBvx7wOeFEJ9zn/0N4C8KIZ7EyrgXgb/yagcStLTB4KpO8fF9ERanCFav29FZjEL4vqdmIS4OVrh6Bk7jLFyPVRdN5YqJug42mgQGPI+3rrSnbfA01wTystR5JFoSujz5Mv7ViCUzU4J6+zLq4BVMOSd927dgdl9ADy6QK8uB7xXWsNjDfOHjyCc+yH73FGW6yiDtMa9tEVZRawaDJLTs9DTLncTPXetl+N8GAruqcVXJ/gH2W/qqW2VabyBTbe9d2VTBmvRaUk52bdxb19YiT3uBpwmfg3FW+7XjGo1xWHGBds1UbAgLV/9gE8VeCXuoaJbakJ4Rlqqb/gaiLlw7Qw2ujaPpjhDT/bYLnDHBI7A1BZbCW86PWs8FG846O+jz0mFlw2PKenIq7dj+AkKCrpEendQZWW9mfNvWMBiNSFOO1YBM6eB9+rmfVZoae739VJLM9kBZwjpL0pbaYsWsZ7vTVfPQzasZnbHcS5Vmo5vwz796hyc2++TKUnG//8yAq8cViRS2N4C0iKrGuGp6V/+xK0ccOvI5gO2+7ez25QsfJhGCkWNobYyt5ahdPUPtoMXaWI/OQpbbvJZ/FiU2nDSpWkUvjAVB+PCO3U4ED93Tm/hcnn0+vYcqAh9YPFK5/MkfcAjeNNb+axl/aIrAGPNJ7r5PAPevGbjP8Fa3Vwi+IEm7n8mkI2JzCcTE5QOmlebRgeCm9oVWdkF7CyMkIUVLpeA/CBzycaLYnYuncygdeqnBIZrwNNaWByY1tolHqmzoJkusYqs1ro+uxiR91rojktOP2qpLx1rpS+xLbdhIJfW//EUAkmqK6ttz2tcpShCE/yCz4YaNnqKOCsX8tcZWtQ/9+LCYiJ5Kg/MI3LbGoTu6qU3OCe81OXphUYzdBElQmWUWBURRW8EmVag8tT9ue+1WIkHJinlpSJW9d91EUtSO5dNYazl3yCZjDOO6pRpRwpBHUL/AVe+goQhJKRLmtWGlt4ac7DrhXdmktpCuZ4Kdc5NklhBNSkRT0/Q3SHWJcAV8K8wh7dFoY/HylWu60tSWVkHXJMJn4G3BmKfpVmGt2ZCMRzr1Uknt4uahLiUfhCS7TrJAceIVrklyJlpRaxtSGnVsF76rRwU7/Yz9eUU2tkVjG13F9XHFVi9h2JRMK8kjQ4UxffZrydwl5qUQ3Jna/FQqLd12poQl1cPlqCTOQ7MeTSKsZyycsG4gWOq+yE8I4VB+9gmyCqANofrpst5R6/VL994bCdLVBsV1QN47EG4NP4ghEA8VfPSPBGroQQwfFzSmtTI8C6ZyrrUQgjTx27fxRSEkN+a2Z6y1eIQLN7njSBvu8BzzgRQLrLVYTqx7rmuktM1IitrSNHja5NpVOHpL2Rf99FLLaeQRTplrYmIVhn0wdnqK/ULzVb3B5Uvv46Ui59xKyvp0j716ELiBilrTGa7Bh/4CUyRKL9JDe3TPjXHN//GlG/zVD5zjsGgYV7DRtc1C6ns8Kf7jGEsuXejCz7mHbVZOufgkb2gVqGwNAXUdhKu3rC2ctGMhm9qyjOp8yFwLx3TZWn6bjuLYs3wWzvps3LlJd63+ekeOTnlmIFOQOMvcJLZWwQgZeIpKkdAxBpMk9nyb2sb769Jh4ZPWGxCSqruOaoowT402mLTLUdnQTSSJKyoMqCOjoaltwr+eI47vQNZl9shTUOngtUphY+t2vdjQXaJsQvV0PUUPd9BCMJU9RocvoDsj6v6mJf+rjkFIDpuETLXPgjZwftTli7eOUQJ+YG0f3dtBp12MlM6DNVCXnB4MKQxkStHFcO3INp45nNeOfNA+HNOqIVMJGpusb9xa0BiEkHSV97pb79sm/O19mkUenIVLEyqUl5Fsy0szibwAb541DjgRb6uiOX1gGQLBQ4UaeigUgaCN6ccWlbf+RWTlCwgLxYcORAR/DA+iO7Zv6p6gbagCh4BxLQVNkoOwJfBapdYLaIzt7Wocs6du2z5ar8XmJSpn4SkhqBwULnUJQ6RNnt2cWm6a29OaZ3cnjM6ucHqguD2tOTM/5rHRkP3aWouTynDzyR+iPKy5PEoQsqVY9nOiBAyyhL/+1DkOC816J+Eff/4GmZJ886khT2x0neVmXXov9L2l7ZPlyoXcPBrvJA+qlBmpjJaYSq1iwEI0Q1iovx5RC7u/aZdpbZPC/t70U8Uol0GZDjPpMOQ2T1DUOrDGNtowdgppXnvPzDAuDaf7a6jxbYw7NSMVmbIeRFJar0U0dagUR0jLhOmQYaKchv7LyeSOVVz5gNsTeGTVJoWPCxuuI5F0ZILprLTsmtUcUVUWW5910Z2hMxjaufMFVJW211A3LaeO7q1xfVKz07eVvNXmYyRHNxiXDRroGs0u/UAZ4kejDY+td/nnX7jBWzcH3Ow/QkcKhsURyIS1vMOarCDthP7F3dkuX5sNyFzo0Ldq9cWZjbaCuGgsZNfX3YBjKZXSJY9b696vEw1kguAhl9o/D7TswbRgBb+/H9oYpDx5u+VtH2SO2B3xoVIED0+QCx9u8RTAhHL3ENaAu6wFIWzStaOs5Rl/7reTpmkhhb6ALEYMQbAqZ+6BtrBGm3w+Kmompe3r2lIa22P7ohdf8ObREr6HsDFw9bhilCvb9u+o4LBoW/rNSdidNnzipQOm7vfnlQ6w1YCWcAnvSsPtae3mC66PK1Y7KbOq4Ve/chspYHVqc/XaJYs9FbXHhvtjNs7bUKJFVfm5AxvW0sLDZi18NCBvXA8F3R1ZJImDF3pGUY0IFaXa2PnyAkYJSxrnW4R6pZRI0cJKIfQR8EV0PodQaND5oOXucaEJIbDhqNTRWsjEJmSFtNW+PiSWuj4Qbi3YZOqUsyv5QkObSlvh2zjPI1y7bqwyqavQVcuvGSFaY8Yq3UXwQ9kYKpmFfgqpANlU7OZbLrlvlWjiEv4iWuNKCs4MbJ+CFw+mHMybUBh5QJc8kbbaupwGSu+it8Egdygilzvza1YKwTtGtoZDG4+Cs2ul0bYgbd60FOf+GmxIqbXUG3ft4IEZYkFwy+hvu8YIz7b39j36TeI/a1/+swcm8IQInQJf7fVmGA+HR+AWhb/hYJO8Pra9uK2NcXvryi+iuLUi2IVZGo8U8oKfgCk3MnG0BzmlSTFNGy+XxjjrxpbEWwHfVqVq04aZ4tzBtLL02GXtm+jYKspU2mTcerfHoYvzb+WGavsy09Kifipt+NizpyRDEAAAIABJREFUt3n/2RGnBxlNBFPVBly4FSVsvFlJwaijGGSSCysbNoTkwgcHvdNujkw8IYD3CgS1i10Lp3ylsDkDgX2YPd2Ft2grJFmSOzRO33IxOboJnfWCsEvmBxT5iMoJb2NsvNn3jBhXhtVcIaf7SCFRWQ+T5IyNVXyHhQ7JRMu51IR762skDosG8i51YxyBmocvGrrKWvqlysmriRXeni8q74fqaHV8y15/PbfUybef5+L6eV6U2+yXsNFLbMFbZah1w0qWIaf72OYzY4xK0NuPobvWuu9LqFyOykMjG2OCom1Y5H8qG2Ohp4A6vsk0OxOMCCESOqqFc3q0nK21MFza7qOE4Mt3xpwdrrIrR8wqzVYvQUxt3cZac4Nn2WLsDBILvzakRi4kb02S0y0OkaKHigS4jM+T1mP0hpj30sF67Zo2nxeVrATUWmx7x9/H+bt2HxfCNYve/wMf4uGxox+KKxG4cIUTSnFIo9IES9bDIaXwYSGbuG1cTBII/PxxAjSwhjZV8ApsL4CcJLZUZUvM5a15JYla+xHK4T35lU9w++28291NJSsdFawmbew+692EtY5CFMfMta3gXe0oNnoZH350g2GesNlLAi1EENLhd2xyMMxdJMh9SMV/7q3RcE3uGFMXC/bFbN4K9ErXKwFfq+AV0pyEGZae2xPymSR3RWiu8rqpAyIECI3qLe2BYL2jGBR7iLqwgrWyyJ/chYimVWP7/br7XTdwMKspa+P6VLd1BdrYPMMr48om3BvDocmpVM5RoamzgesX7Xrfpl10kiOL40ATYm9OQ7N/C/2FTwTKaT98M55CW3qMerhNufM4+yuPcqBGXB3X9FMZwkKNQ9z4uRZuHpW0xV0dJUO47E7tWEqTnNXcisrNboJkEeZrDKHqe1ppOoniW86v8q6dIYPja7alqFO2pjPEyIQ7/+ineEtnbkM/jpPK5ikINQ6JAjXZZZquWISeamsgvFfuc0deUIdcj/TQ2DYUq/xzKeOXWPjMP7v+M+9BxRa/Ej586Y3Edrtlw/APPsRiVOB+rzfBeHOc5WsYXpjFw1sCy55BCPn4sIlzJ4Ww3bdqZ4lKvDXdct8Io1ukkDGuurbl4PHY9raRiXOHVRv+8fHVmAsllZbrSAoRLCefUE6cd2Ow3O7jsuE4XaWjRKiBuLja4fJ6jkRwY1yTS0K81Qv75XEvBEU8jz7s4y6XSvv8i899+Pn3D7nrbNW08NK5Iworah0UdOAfkirQRCMkpjsKysg4y1gIq1g7bt5ETP1dF7bq2NRobB/luMNWngjGZc31ccHBvApx93FpKTC8oilqzbyxcN+9ecPLR4W1sIUInov1Ahvk/Nh6CS7cI4zGVBV6esxGxyJsbk2sQqscVHhcakph+zXLuuC4bNgvmiAo/f0wZtGgsMnTxfszqTTdxDUGckn2bio51U9Dh7SYTwoccZvLSV0YddjqpRwVDWJ+HArAysaEe9BZHWJ+//+2nEMNwdr3fxMn8EVxzKw2Ac3jhS74UGzrqXsBHtaZX2OyXZ+xV++FevzZSeGeew259LL7PzjXIIAcXuX1ZhgPRWjI01DbhWc/8u+XZZ23vHzewBeY+dCSMSbQSKQO5WOERHieHLBJz7rAqJRUtMIwNHCRFk+fK/sgWPdchG18kZC3uPPcL07R9gFwid3aeRye/dOfG8DNqe0Rmwj4zed3+eV5zaPrPb5045hvv7TBuZUOiYKtbhIsKzhZAfgEsR9xHqDUi597116KFo7r56DWhppWAPmiPCk9ZYe9llxaGgx8UjKRTGpNP0lI6wJIw3xV2nBxNWet3A09DACa/kYo6JsZxd6sDlborNYczGv2ZxXHZcPMUZI3A6ugh5ntJ9ZR0gpEYRX4wazmzrREG8N2P6VsBOsdTZ50MY2hI7Gdw6o5ur+BSDvI4gpqtMGdj3+C7dO/Rufyd9tiqvk+q901C59NFcZ5RONSB5BAzN8UW/ExTNffM01bsHdnZteiKOdOGS32420MlE7J+VE0NgT5+GaPcdVY77R/ikzZFpzjSpN3+9TasPrh76f4/KdsdbiyYAdJu4aE+w2T9YOlbUQbGgwhIhaFb/x5XLho97chIG0IoSAporBmtF6Xa4O+4cMZLg/LeDgUgRsnGbheGcSIIbG0faw8fMhD4ZNshhrbdN64/sGiLgJnjsaV0ztB25XCWV42WVZp6x2kvsBFQCpEaFZiDAED3RiLiwf7uZSCTNmHpnES1VfQHpXadhJrNNcn8D2PbfK560d85daYl3YnXNrqo43h7dv9MBexAojhoPd7mJQUlL5pTTRfsVflY7il9r1rW0URx2kNVlFkysJdhfBhBOvpCCwdRyNztNYkSpBoa6WvdRTm//s0am0b+ms0o9M0nRUO5g1HZcNsUvLcnm0O45PYu9OSo6Kmm9r+wuOy5s5UMMxVKDi8Ni64Pi4YuX6/81pz5Lpt7YakumDdLZIKichHkI84LDSdZIX+mXciN47pbPwGL//jX+TUB7/ItQ//BJ8veryruoHuraGTnCtHZSBMs3Nr59ALd49s896rOWlBY9fnZjfhky8f8vjjGyhXn+Hhv55vCgTG9YhYbhxk8f/wbDHgbEagx97qJQwo0evnEd2nubCScm1cBaNF0EK1FUBjw49+zqE1cvx9D3TqLBocftV5r91/thzXPzG+H4VMvWEXX5/fJQY3PNgh3ggo0h/aeGgUwbJwh7sXgaGtCdCm5Q0ytBaOH96NrbRPdFmq4sCHk+QO2dKGMUrdHs8XkUFbPAYtysY3Tw+tIoX1Igw4jh4CUqbRUfUk9kEP7rNDb3QTeMfO0PIIacNaJ+XOtFoIs8QC3z+M2hB67d5rxBTDcSEPLCYAlRDUS78TexaBkwe/vbVifajM0LKGesWYSkEhLMmceuVFkp0L1P0N6nyFSam5Pa25flwwck3YfTMiJYRVpI43B2CtYxEzlUsSa2GrWVMp2J8v0lIWteW53+pb6ohc2VBM4zwHDQGZNq0NqAHz3SOGF3YQ3T6nBgkX+mDqIUjbAjKVFhhg583fBxxtd0vj4WHQDYsC0YeJ/L0fFzWzStPNB649Z/s4x2vZ5708PTimrdx9YX/KY6u2X3SqBEeFpptk9AZbyN4whHxs6K4NWwWBbnRI+vZSydTdP7kU0vH7+ISwf74WEHy0z+JrFd7esPOowJO+j4//oIYByyTwkIyH50polcBy6MOHgTzG/F7Kwi/SVLTJWY9Tn9Te6hDMmxypIVM61AkYYytqLUpk8QTi+CnY4h5vVSVShEScf8gaY2PbPuHsayGWhblP2vmRSMF3PrLG915a5xMvHaCEFaxrHceAalrr0CfQY0SNV2Lx8GGg1hX3c9r2Z/AwUy/A/LZNtK8PEfnQUKMXLblmyfy1YTZohL2uVTNh/4WXyd8+5yvVkPntGS8czFACPvbFm7z74ipX7ky5sNljmCXcGhecX+3SSxXjoubs0DZf72cyNCzpKMHNScm143m4JikEo05C1Vim1s1exvXjksO5DaXcmZZMK82TO33GjnW1owTr4ysMP/KnmH7hs4gktXkRodgrc1SFSwgbctm2y/QKNnHK3tN0SKx3tZz3asOXwqG8JHvzhqzSlkk3JdA5xCG8hZAfrUDMlODcqIOcH1JkIx4fNLxSSsaV4S13fp9i90agco7J2vwa1MD1ZJM12bKUFnVbyNmu/XYfwWK+znvhMcR7eQ3672KvYXl4CPHys/+G2exCPFShoYfnSlh0NaVwApRWMQREzNJ28TBRrNXgEp0uxDNvfPWkCcRudWMpJDxCxvdE8MNXSy40t2HRq/Qoi0zZZHWetFQX/qHx4ZbG2J6tnqXRI4CcbKNsDHvzhkvrPda6qYOuthaif1gMNo5+XDaMq4YVWbE3bwIhXumsZl9HYM+hZSn1Vbz+WHGCExYTgL5gCFpWyZCvwOUV3Fy2SVITKRTDlarL5g/9KPXF93Jc1EyrBt+E6NJW3yKGyoYrd6YczK0nlCtLqSCl4Pyow6OrGY+spJwdZhSOrnq9a8nMZmXbsGSQJeSJZL2b8sLBjMOi5tak4NndCeOyYZQnTGpbPPXM7SljJy33Pv4bZBsbGK1ZnVtWzpVMBqV/ri85V98K1984rzCVlj9JRvcnzuksJ0g9IsZ7nKf0AWuqDvTbfrT723+Gua8tcbUrSvB4esyhWuH2tCY5vMZZDrk4TJl+9rf40j/6VXZd3sWfR6wQfN/rvVlDomwzmTyRES/Q3TkCQyvQvUKEKFTJorKIlYZzSsK1SbE8T2Lh83i7N2T8MWroj+4Q0asxiwvPnLAd0bbhvY+pRmEVsHH6GH3QJk0djwlx6KTtWSBEi35YOFfRutDLbnQsKKGllo4NZ/9geiXiz3Fa2a5RX92d2FxD9Lv+gZvXhsOiYW9WcXZgE7PP7c04KnXA13va4wUorTsBf44+lOURUx6h5B9m45Kifs5a4cBdYzlX4WkJJPZvvX0ZjGarlzHIEltf0Uk4PepwOK04nJVMy4bVTsr2MGfUSVjppJwddhjlyjYgOrgaCrcmledesp28vFfimxvdmZZUjaaoG25NSlIlgxdWNpY9dpgrtno2bKgbTXL6Ucqb11HHt0JPi+2u4rQ4Qs4P0YNN18WtnbuF8EiYq8U5krQxeH8/Tg9dAZuUyPGdu0ItfviWpt7788duDOD4/ZWwyXdZThB1QXFwzPjWNIT8/Po8KW7fdb0rQl7oVQSvuMf/y8+p7yfhIeF3HSdaV/46Y4RcvM+DVwbioVIED1Vo6H7D3ON/aMNDC4piyaWOBbANcbh9HbzRU0NYuKUMAjB27z3qQUfHQbCwjdZtg5e4ZN4LRf9g+iSykjheduMI9GwFcyqhkyi+fGfMRm/UCmN3/dvVbdbXTnFcJDx9a8qpQcazexNuTUqmVcPpYc5vPXuHx08N+a5H11mNwkveyotRKneV9xOR1HFyUtpbew0t7NTP+9xVpyphvalxaXh5CitZwiCzXsJhUfP0K0f8/kv7bAxyrtwcc2FnwJdvHPPS7oQnTq/QaMPbT69wXDZ8+uohm701elUZrOlhnrA3K+kkiu1+zmbPMrRWjUFr+xtr3ZRu6jvaGfJas94VDLoS6cjq8s6Qtfe+B3P5A+S719n95X/Cxrf+CdTmGfa330GjRoxEwYwU266bwOZaay+cIysWArrMz7efTx+6fPtWj3/xtV223rpJt7OGrs3CPPvbYxVz20FOmNbzVce3aQYrSCG4wQrdwSprRy+R/Nh/x6V/V4fkvz+OH402DHPFrLa9Ek4PUnopwVP2hhGAXEL43Cs0G2oOln5recQWv3IGl/VK2xaWcWvSeC4e5HizQENfy3h4ruQ1jpO8gnghLsdlm2BltAgZz6LolYNPAPvkIdg4aTeVAYK6cA4mPn4bDvBhE6+A/G/48Am0RTVeyTTaMpBOKxOK1Ia5opNIvv3iGqNOypduTylqTTeRrDz/SXud179KdvtZBr/+MzwlrvLiwZxeapvXpErwyed2KWvNpKz5wq3xgjCILbFlbqbGtBxL8WjrDdrt49CAF/j2GluB6OPivdTOcdkYnr454XM3jkml5PrhnKNjy/s0n1TcOir4ned2OZhWfPn6Ebvjkud3J+zNKg6LmiuH89DesGgabo5LxvM6dLZ6dnfqqC00iZJs9zOqxnA0r9ifV9wYFyghOC4axpXm1qSyfacnu+z9zmdRR7fInng/0rEbNiunWJlcZ5ApRFNy7bgObVHj8FmzpEkD7Db6LA5zeK8mlZIv35kxrXSg0PDCMF7H3guL13FjoN68xCCTAURRNgaMbYJjTGvdx9a+FD6vYY0dv+/erCGb7y9U6S8LGL8slj0hE33nw2a+r4W/Xhk/g7SeCtH/iWz7EpwEWnig4yHyCN4cZ/kGDR828kmqOJcQewPLw7vgPikXGy++VN6jQXyyzW/vwyi1K17ylpOnu/CC31dEB4hp2LdNzpaNpmh0sMBSJUI7v0RZwXp6kFue99pCTZvHnmJ4+8uY+RQOb7H39Fc4XL/MiwczBlnCqJPy7M0x07JheyXnXadW+OC5FYsGucfD9GpYbn9ty9t7waScwF9i+VgImfmOWWAV34VRh1QJTo86fOsT21za6tPppww6CXmmGHYSulnCxc0eXdfQ/D2nV/jwI6s8NlJcGGWsd21IrKw1F0bdkHcoapsHGGaKcdlQOMoP30DosKj50u0xxlil25vcRBzcQChJ+YX/l+rKV8hW+phyjiiOMUmOagqMykKdQxxqiQVgvJ68bvBx8Bjp5usPlIALo9y2eSya4DGeNOKiLHs8QyUSuq6Pt3Q5qBu9iwu1LieNovY9P7B9l52iSA5eCed/knDxRs9JaymEGc0i8CP2cjynlc1PmVBBLiLl4Y2mNyw3AG4S1Wt7vQnGQxMauld81K8F74LeK4ZaxtbJ0jb1QohoEY9dmRY26VFJ0IZOPCJi2UKWwhaCeespzj2Yu6zpReRNXLLfWkaGVErypI3JS2HRRwOTUDf2t27MBZfWzqFPfRP7pebUXznH3/3sNf78O08xLjWH85rLOwNe2p3yxM6QD50bUP/S36H7HT/I8/kjrHfbhR0UIdAg7goBtNYrd8V4Nbb2YFnhemvQw0eVEDRRaE1J2J9VHM5rirph0Em4ujfjmetHvPORdYadhN99YY9p2fD2syOuH8z55nMjrhzOeNfOkFFHkd58htXeGv/sBcGV3SndzIbQRnnKS4dTPvP8Hplrc6qk4D0XVm0xmjGkRnDlcMbpQU4vlZzPK7Rcw5x7J1vf1/DSz/0c2+99gnRzB/mW91ouIm1ptw9NQiItrDhOonqm12UB6dfEsjD0MNN+KvmuS2soIRiXmmEuFwq+TjJlfMgJ7D3x3EyeoA9ab4RoO4hCRM7q1sbmBxIByd4LbORDGtd7Wp5wnLCGjQk9Qkz0f1gbkZfo30tfD0G77gztc9VoE8J92izxZHHyc//1jocpNPTQKIKAXgnWwqKQiWPabfJzsbBq+Tt73NZSWv49r1iUsNtUMYWCc939bv5/L8BrvRg+WQxPLf4+tB3XKhcPjZ9yIUC6gjVFW/Hrz8VDUY9Ki3TZE326Gp4/KKhWzvGfvr+mUSlfKws2eimdZEgvVcyqhqvjmkfe8UGMkAxzuSBgvBLw824i69FD/uzvywVon6EV+Mvx7NYzMq6IqbXuvCX8fZc3+PKdGb/+7G0GrpPb8bQCK4N4z8U1Rr2U9X7G208NObvS4cww43M3xqx3V/h9fYFPfWk/IIVGvdSFNkqyRHJ6ZNlFD2YVmZR87PPXeeqxDbb6OeOypqMkHzw3Yq2jSF9+GqM1L/7M3+PG713j9PvPM72xy9qjTyDKKTof0Ax3OCo1h4UOMF1oGyQtK86wxvw838c79QpzWjWsd1XwsOJ1FcNIhbAK2xsws1qz2VUM0oS9eXPPEEEc828aa3UPM+nOU3Czd4G13/wZ8vd9D93e6ZBLWr4We6zFroExrDneJs4feGXgjaLGLB6rjp4tf81xrcyDH4KHqUPZQ3MlcYxxYRG47xtnjTQuvFI3bQcxH9OuItcy9BIwBFpdv03l93M4/1rbbQpHFub3r6Pj299vP/fn5GsIfMgHuOv3W4hdbPUsxlmXHwJ77Wbhc/+cHcwbpICv3JkwyiXmt/8ZQlgoaj+V9DPFE5t9GmO4dlTw2dX3IcZ7rKmaQXXAwMzZn7dwS7H015+fH76Ab3mcFFJqiQDbWHcq22SqcNfytq0ulzZt1XTZaHZWO2wMMi7vDDi73uXcapcPXVzjPaeHXFrNKWrD2WGH21MLPZ2VDWWtQzjB/9/NFMfzmmnZ0E0Vh7OKUS8LeQTfSnSQ2ZaR9e4N0A31rGT/+QMOX7hD79QGzeGupdhOcg5KzTBXCzw8Mdb+tQxP8OfvpYruK9gQ1WHRnNiKMYZXLtOINMZw5cj2iFgO3y3fH2Psc3NYWO/IuPs0r23YML3wVia/+dGF31gGEUDMwSXu2ka4++8RarHx4MOq8bpfBHSYkAT3+3oD0Z/rA9MJgocqR/BQeAQxNM4LTZ988+5ovK2HdbbWOwtNsZcTd/H3MhJ3Gr3wvv3cLG3XvvddysCE+L+vOrbn1G6rMQthqswlNP35+ePGz6tvguNHIMCzPnmAm147rnjb1oDjUrPxgT/D52/PURIq7StxJYMs4dndCedHXeiuMP35/4FsdUDy/X8tKJxYKL2e4WPd8TDhc4Ev+4vpDJYVzp956wY3JjVf25pyYWQhotKFSVY7VvD6x3DVdSnLleDK4Zwfe985/tL/9nt86Ilt9sYlZ9e6pFLwpevHZIlNnha1ppsqnjgz5JHVHm9Z71I2hmd3J7YeZH5s+z7ohkd/9N9h812fpvfII6jRBkiJGt+hGWyyJgrk0RFCbtj76ZRytSSVvCcY3/PYEoeTQylKCDa6ycJ8xoaR38/PpzZwevdp6tVzlGqVRmv2Zg3b/YTdab0QsgJr8eMUc0cJDuYVwzyh0bDVs6HCXAmmb/se6if+jcAXFOC44Rz8+cbXYocUi9XnHoot3DNwktFgorUQT+VJ123nchHp9vUN8aYR8q9lPBSKAFovwCNs4gXSWg93C3wv0LwA9t/HD2MsfJVcXEgmCuUsWOxRv1VtDEa45Fw4TtyWr20+YgvDzIJw9995WgrhQj+xElnOf8Tnbznh2wPOa8Mgk5wepLx0WPK1uWK1a4vFzq+kHM4bnrkxoag17z49YqefUPYep3vxIno2QR1dp8rOM600d6Y1j61lCzmAOPm5fI/8WBBapu18Fu6bs/7tbCweL4QFgDODhJ3+ykLIylNBx/HyxsB23y73j7xlg0ob/sTbdnhp1/ITnV/vIaXg2v6Ut58dcXV/hpK2b/C1PZsTuHpU0Eslo07K1eOKywfXmX3lc3S/+99Grp1hWFfoyRHlla+SrG3BqUdQRzdQB9e4uf0kMoJV3pUfiRLo8T2MQ4veol9WBsvzcpeCNW2VssCFJU99E8mLn6V7/oOUjeCobNjo3t3MKA6z1trwtaOCYW5rONa7ylbBq5Y4b9lSX3yO7LErvbheQyI82j7kAZy0j0OzXvxWpoXWxkpl2ZCLodkPMoFs5EMjPh8ORWBMm8RtTGxpcxfdgzaLi7MxreXdsLytCRj99sOllSStv+kXXxMs2cXNPAWwVxQhX2Fa2CewUIgGbf+CkKuQZmEbGQmQOAfh58X/BhKEESTSft5NJN3qGCU6KAmn+ilSQGYsSVsvVdwaF2z1EypteOmw5NFv/4uo3/sVmpXTMLceStE0d1lrce5g+XN/D5bHSUpjWZDHHoGPHwev7j7HgpYDCmDeWCjt87fHnB51uX44Y5gpzo+6XD+/yqiXcjCtKGvNuKjJE1t0dTiv2Bn0yZWxFd1ScfTCdToqoxqdJcmHyGc/g5pP0McH1LdeRvaGyG7/Lks0zg/FMEi4G6zgR4y+imPsy/O5vHuspI2bi706YeP8N7PaHHIkhnQTSefgCrpzNtS7eIEtBZQudLk3q9nopax3EtfG1f5aJ5GUjYWwJicgwFpDbVGBBTTc0kXHHqdXRt77tNxfdsE3xk6YX//L8+zn59XIFV/3EH/sEXxDhhDiI8BPY42nf2CM+dv32tYAk1q3RV3SsnTG1n8sFP02QKgK9sI4VbZTGNzdPMYPeY8FFW+3vI1HMvjkXpxsjpXCvfb3EELfvCZXKsAdG2MceZrl0VGy5UmSoqWFkNImBztK8kvP3OZHrv8SF773rzKvE0Z6jP7tj1J+519mIGveutEFLDLlsGiotOFrY8nld/9JxqLDWm4CzcW0sl3SYuF/Pwd8WSHEses2AX+ysI+FRixsToqN3+s31zsJLx4U1vLfmzHopAGO+LadITfGBb1Msdqz8NKtYc5GL+PcSgchYNSR9FKJPt4nXxtQ/86vkHzozyGrGdMv/2uM1iS9DmY2QW6c4vrWkxaerDWZK3paVtrxOOnzk0TO3TH8u5Pv3kBaFs7rqsJgm+08cvgKz6kddH8DU7v5dzBXJUQQ7vvzmmGmqBt4bn/Ou7Z7aANZeYzO+jRGBNpwX5PjiyDjc1y+SBvXv9uYiK/DD2/sF7VeKMz0SLo49OuOHhlO91uVf4DxgBTL65F1b9S4pyIQQnwM+GvGmBe/cacTflsBfw/4HuAq8LtCiF82xnzppO0Dq2VjAlunxlDWrYCN6QMAaKyw9P2CPREZlcWpL1TNOmvcW3GhInbJFW+iRdhoEywx32YxtuQ9rDTez/PigHVjG7PY0xgsdFIKQS+1isD39E2lYJAlQTkA5IkilXbbxghUZo+92lH86ONd7vzaV/n8f/FtfPdv/jw3+4+w8p1/2br4KkHS8I7tHrNK00tl4B4q0z4rB1e40z/nmFMlR2XDwCFIvDKIHxE/k8teQozu8NDbODlo574N+Z2U/4mHRxnFFrD/r1kSRl++M0FJwcYgI0sk1w5nbPczikbzxWtHbAwynrqwxjBXfOKFPW5lJedHHT53/Yh/8/ENbk9rVh7/EM2/+jVe+Y3f5uLZxxAbZ0nX1ih3d0m2ziLSjOtbT7rfb9Fnfm35cJ2JZixARuN54mR0zUnIm+Xh58J7AmCpvvd1yoqrk1jtrfFoM+ZqNQwxeRz53catpzF1xezC+9ib27W0N6sYdRJUNUWplGTvCs1gk6FMGOfrAGze/By3dp5cQMFZ75vQ8CkecfgqTgYv3GchgtXv+zU02tC461uW8369Wc6sBya326M/AI/g9cq6N2rc70r+F+BfCiF+Ugjxje7A/AHga8aY540xJfCLwA/ca2NDi7rxqJ6yNlRaU2kdiOB8GKZqLO+8ReZoDouawhVnWYoG7eL57SsWsPNaBwEMBHSPdgsz7L+kUFrEkX1fuOMUtUb733LnZ7fVIaRUuXMras322j4PAAAgAElEQVSsatifV67YyW5zWNSMS3cdtXaf2/Mo3N95pVnJFLcmNaKa8/LHv8zTr4zh5ot2LpwirRrDakexluiAblFCsN6xDW5MklM3hqI2rHRUJNAWPYJYAcRhHaL/pTg5iecVQDx8wV3YJvrOs3f6UIBXKh51FUIQ2iqV7X7Ge8+OGDmrf3uYc2mty3Y/Y9hJWB/YgrNLax2++fQKSsBKJjk/6jKuNINMUSVddr/wIvnqkPr2Ner1C8jBKtVkZs/3sXeHTnXx9d3PNtWcrATamox2z3vRd8Sxdz/3y/kWAFVNbUc2upSdNSrt6S6iu6Qb6K6QzfdtUrqXsNVPyROBnB/x8n/57/Ps3/7v0V/4BOK5z1I48sCj3/qV9tzjc7rHdS8jmsJc3ePawvcs3l9tTkav+fDvcqj46xkPqEPZ65J1b9S4p0dgjPnfhRC/AvzXwGeFED9PtEaNMT/1Bp7XWeDl6P1V4Kl4AyHEjwM/DnD67Plg8ZeVh3rqyDqPYuzRYotDP6mSVnBHISS7b7uNbtoY/0LxijYL+YX4u/Z322OGQhkp0NoEHvd0yX0PjJ3ud71ScAe35+c9HW1Y66bcOLZtEH0RW9FIRnnCXMDFjQ4ruWSnK9B6xDt//E+x//w/wZx9ArCU1WkjWMs9kVJDKhWfunpsK23/8x9m/DP/lH6ySWMshLIxNl5+OLdewV3FZP5+3XWLFxP5XhDEic+YysLHrRWt16AiQdgYA1os3Qd/79rf9HH2bz7VZ2/WsNXPOXs651mXNH50tcNHntjmsLDtLbf7KVIItgc5pTZcWuuwObnK/uA8h4XmLT/999Gf+WXSc49RpV2bv5iXqK2z7PXPBZiyt0zjvIcHCsTjXmJDm3vBP1urP46Fx/Po8yPLMvCIDsZo6gZMCo90avZN7lq1Wi1iuivofIjJh5zNkxDqGdUH1L1TPPKTfwuxe4XppW91ndds3Uj/B/5DGilYu/0ldjffRmP0QtHkcg7Af+6v66RrbrRx1BZiYb+FWoOla21DjcIZCveY4D/IeO0ewaYQ4rPR+581xvys+/9VZd03YrxajqACJkAODFk0Vt7IcS+50b6xE/mzAO988j3G5weMwCZw3bKrtHZV3s6ylTIoBuW6gXlhmicyitm7U1Ae7dMqgWFmwzJSCJS0CgQW4/raLHoJNoa9+H3qM3HAIFML+8XDK44WDSMWjl81hjyT9FLFIE+YN9qFlqwnkytJqiQ7z/8W5vzbEeUEUVeob/l+vvtTf57j7jbKsZEOMslRqRFCsCIsIuTJnT4aWP+z38Y1bP7l0ux5PvMj/xGn33+Rjf/qf+Iw6VlGzrJhs6vuSgreyw6L0SPxQx8nd5cFmOckWoA3umFMKxDisFL7ncEIwaRouDEuwvx9y/lVdme2E9eFUc60ynjhYManrh4yLmo+cG6Vo6Lh0dUEuX/MYF1Sa8PMjBg8/j5M3kfODy2cFDi89CG08z78/fIW+vJa8ee2LKRiS3gh/o+Li+tWQC6HhXyexSZ62ySzkiIUk0kB690EiaHQMBYdjG65tQDq1fNgNKIu6IiKMumSCiiTNYw2lB/7X0lXVuhnHSY7T9JVtoHPdHAKtKF6/vOsdUesrJzidiHopZLCV9N7pRjddx2eU8ICWFaAbSc3q/hjwR/n//ycdhN7rzIhFjzKr2cYxF0w3vuMO8aY993ju1eVdd+Icb8cwUeAnwJ+GXiPMWb6DTsrqxXPR+/PAa+8lh1bBIafy1Zr+z6xqYwsaWNIl+7FMlLIUgu4own7EA+yJFj7bVWwWNjHt6w8KZG5LOzjc1yOw7Wdzhb380oGNJ1Esj+rnNKRFNp16YqEkBxtUCcZz+p1HlsTjgenw+7MKoCVrJ2rfiopTU5mahIlOZg3nPuW7wvoKlGMefmZO5jGcNZoVpKGmVF0E3lXzDoW5PfK6Z4UFmiF5qKyCMdxYaCYzaXhBF4jl5z1LJWNMYxyxcuGEHIbOa5+5fIxloaoyxdvj+mlKpCr9Q9eBGMJ2RIpUMWYevMSanzbWoi6Iel1nBJy8XBh8wEnIb3ia4JWyN9rToi+10vv78ePFUj/jA+x2fuT7b3A0cpFppVtt5pIwag+4IARGjgyGZ1EkDUF6vAanaSD6Y5oElvMl59/FPGtfw797KdY18fQaGZiRHe2y6y7gXznd8KNZ6G/AWT0ErEQt19W8lJ4rq92TmwdTMTQy2Llug8x+jfhvcARP7qeHBpK/aBs2cW+I1/H+APLugc57ucR/CTwQ8aYL36jTiYavwtcFkI8ClwD/gLww/faWOAUgPJ4eQuzhBg90Satwn6CBQRHbJWdtD3YMI1vCiIElLVBybbhRzxihFIoAjth8cThqvshlBaKyaL8xEgQhH6e2Ad6WgmXK3BhosbQrJ9Bd9c4lRpeGNesdkbcOK7IlHWZfTLcNzBJ0dwprRLY+ad/E/Nd30fVNQxSCUnOUz/6fs79x38DMz/mhu7xzO0x2hieOjt0bJ64oiwZrPSThhTLVv0i3nt53/jBvzv2LQLuPI5Nt4gS+92zu3Pr1UnbpvLztyY8tzfhqXOrDHPJKTllT3RY76ahEc6ZYYY4Kqm238q8tlDJkUzQaQdlNCbJkaMN+Et/M/BF+bBWg1kwFODu+P/yWKZigCjZGuaKu3D2uGvH5V78WvYKwIeLam3YH16krA2Hheax1ZRbswaVriIMDBJr3acYMBpUBi7unUqBNA2yP0Q+9xnGl7+Dw8ICC7oCinyDotIcp1usf+2jqMeeYpBJXjquuHZUsNXP2OlF4scrdWHDEGWtyZUMz47NJbXX3OAMNClCG07/TEJrfHkl2U8l89rQmHtM9h9gPCCz/XXJujdq3C9H8O3fyBNZ+u1aCPETwK9iDb6fu59CEsJX3baIlYTFeHss2H1FrsYgzaJ15j83SwLE/58nYqHwzIcp/L7L+8RjuVI4fB4pK79dfMx4v2X0ESwW0FRaBKUghaUCmDfawk57a3x1v+SJXsEnd23Cc6uf0U9tV6lSm+BG9yY3bYOS7AyJgpX3fyuzS99KuVuws5pSdR/n7H/237LX2UYIwdduTZhWDY9v9kmVIC+PmX30f6a+vkv6gfdRfJtd2/fyg5fjwu19MwvfQZtg9gihmFNmISYcvAMXH45+c72b2lBapqgaw7isKV2f4u2OoJErdGvnYSnJcVlTNgk3Vt5CWWi2esJ2BEsUsi7QWR+ERG5dcGtAoDBtpy0EdWMWLP5YCZwUu76Xhb9IyXB3ctkPT0sdUDu0YcbKGSipCx+tdxVHpeZg3oSud8elRgg4qmCQ9ZDy0IbApvuYUZd093nqqkIO15nVJtCE70yvoF/8PL2zb+XG6DLy+/46pYGuqbmwkrHZTZhVmvXpK4j9a9w++34yKSgaW3Dpe3nPatvhDelrBBYNglRGHqFsnx/vvRFdr18b/tq+3hGHo76u47xOWfdGjT+ydQTGmI8BH3ut2wvnfsdWgwfm2Q3a7bxVIF1CbJkSQnr/0m3vjxEL+Hj7oERiK1XcbTEIn4Bb+kJEVchhu2goHOsihlRIdGRdGoPLibRnr5WtK9DGMC7tp51EIie7KLHO9aZH1RxR1CL00g05C+wCv5VusTZUjPct/3795Pc7Wm1NUhxRZEOS0WmSyjYm6SSS4UqHza4VrCIbkp+9gOpkyP6QwcufZXrh5DCpIArkicUHLEbGLFvOJ8ElvbfwalQCQsCtScEHzg55+aiEMXzT9pBHVzuku89zvf8os9oirvwYV5quca01ta3O1kohdIMebFI2hn6ah3PQtAyq0ieGI0/hpBGzdi6zd/pxL+82hpl6OK6I17FZTLBKWiSbBG7OahoNx2XjQnx2Ww0clQ10tllnRrNyCiMEzWAL89SfpQQodDhus3qOybsuMnONco4rw7TSnOqAKsZUdC0a7cZzGCx/0cuHJRdHWUD+KQFFY9gvGlaytuJZLSm+QFfR+BCcV6Ai7ONzRYkUC70Svt5xv1Dc6zzO65J1b8T4I6sIXs8QtK6gX9SItnmLdyuN8ZxETvD6h8Tc2z3Xpk0+xf/HnZH8rrFretKIrfq7r6C1MuKv9YI6EeFveyxCPFVjhaWSyvUlEMwdlFQKge6ssGUUzx8UTCvNN20NmNc2Xr7xmV/gzgd+OAioTVVgTE4iBZtdxc1JRa3h9CDjpTLl9sGUCys5O/UdesMdIOd3rx2RKsF6N+HTLxzxg+/+Hprf/AVE1gHd0L/+eaqdx6lkdpdXE0/biffihHxD+9Wi8POfSeMw5i7853c1zjo8N+q4Np+SyxsW8XP1qOTM9gU++dwh+7OKVArWuinP7xXcmpQMsoTHN3pkSpIe30B3V6lUDtpWX19cfQS0icJXLf2BcJ6Mkm2YSgjn0blzali08iOYXvijTZQniMJmGjBOiC7TnvspPCkp7efr0dWcz92YcH1c8O5TgxNbiu7RRVbQTQ1KSI4rCznupTKghu6UNtPrw66+IO12AZXO6aawtf8s1ePfjmgqDseam5OSTipZ7yRh+6qyFeAeLeQLx6LlEK7H3+9YwXq22tAZ0NhE84MYD8oj+KMyHo4aaUHo+tRRbZ9T/9DFi3mZh0XQctzEL/9djMWO0Ts+JGS38d2mCF2lTnoJp5B88/DlV/hd0b58w3jJ4qs91uK2wi3+VNmXD3+MyxqUw8z3U75y85iXDmZOcYD84L9FY2wx3WHR0PzqPyC9/TUuv/Sb7BcNRWMY5va6XzkuOHYIo2awhSwnFLXhy7fGPLc35epRwa1JgR5sota2EVkH0RlQfPHTpDeeCXPvr/v1jNcUT3ef6ei75eEf4hvjmh1HtrY3a7h2POeFiWC7nzGrGgsr1oZBnvDO7SHDTHEwr1G6Qs4OkdN9Um3drkQuGhRh/Yi2V3P8vRSLYT2Pgz/J0DTLBoJplcDy5TXm5PUXjxjj78+r1oazK7Zd5/Lv+t/2XsW8NhTZkLKxXc1ifL7nQ/JrfphJOomwdORYD6B+/mnEpz+KnO4zyCTv3O5zc1xijO0FfXtSM3eQ6kobNo9fbJWjYckQYuG3wznQ1hW8vlX2GoZpa1Re7fVmGA+FIoiFObSLwT9o/iK7iVMWiW04kklrDcbCWEkR0BPgH24RioBshyRB7izJZQUQzkmIu16xQlCi7T3QhpZE+FwuvZYfdq8clFN2cQtLib2GXCnWuwmPrffYGWTMSVgfX2FSaQ6mFV+4eUyuBJvjKyR7VxhkkknVUgpf6V/iXww/SNkYbk8qnt2dk0iLmNoZZByVmuNaQGMF4axsePbOhH/46Su878wIOdlFjjaQ/RWa21dBN1QvPnOX8F9+f6JD8JpXw2LOQSz9jQWacWGI0fgaqWst+u7TlnfnzDDn0bUeG70soMR6qeA9p/usdCzjqFEJRqWIasYzd+asdVRbNex/l1YZnHQ+9ly89byY91kWwm0uyYSXH77YLq7O9sVpMaV0azC0vP6+DkEAo1wxzBK+cGvCuLTJ31zZ2pJGs9AF7MiFg2a1ZlbphXPyv50pEfow9J05XmpDefV5pl/5Evrzv8Uol/z+9WNLB64N692EzV5ik/P+vuXDEN8PNRKREl02EBqzWLfht1mu2/h6Rnwf7vd6M4yHRhFYKoZ20XsOe98bthP1w7XhAEGi7Ha5UxBtgsm+99Az5TyObiLpKHHXAxijQU7icV/+Lt7eK4fQvjDyDmJLJrb8l4f3ErxS8PmSbipZ7aThYS5qzXh0kZvjkqv7U37sPWcY5QqdD7nzSz/P6PAFJmXDpNJ8fP3beOFgTtVoRrlie5Ay6iSsTq8Dtlduow3jsgEh+b3rR5xd6/L41oAPPLrOuWGGkQnisfdi8j6mLpGDVcST3xMK7fzrtYxX22r5gQuJ5Xj+seEzX4WsjeGoqGlWTvHC/szRVgs++qWbfPzFfcZlQy+VKAEvH8741MuHzGvD/qzmlUJxo3eR43wdozKuj4vAwhm8gHvIHJ/4PCm04JlYYz59/4qvyw8bT2+RM57LvzGtMonnx8fQ/TbxfE0rzazWrHcVT2z2eLS8Qq0dj9Wtr3L69ucW+nZ4RtJ46j2NBNhwbSYt39DhvOHOrEYAW72EO08/R+/y49z+f36b5P/8uxSN5qP/+hVyJUPznvjY19U63ac/tvCcwhKa7IRnL25d+SA9A0Or7F7t9WYYD4UiAB+/F8GahjYW7G++Z7C0Vo2PL4oWauYse0u41cbhvTUfx27jashX0/onCYS4ajZg41n0Du62nP2+d/+NN41zInENQ6Xt69xKDsDoa59gUB2g7rzA4XPXkPNjeqniYFZTNZo704pKG754a8LZQWpzInmf9a5iw/HQn+loxskKLx/M+I6L67xje8D3PrZuwwBZD91ZoemukexcIL3wVnaTtbvm4iRlcK8H9iQY6r2UQJwjWvjeqRVfLzLWinMrHfZnNbuzii9eO2J/ar2caWWrzUd5wiBPuD6uePFgxs1JxbwxzGtDmXRZ66Tcmtb3tTjvZSB4+uUWEhqFN06wKmNL3/MrtfxL9vM4We6bMqlorfmcRdwkPg69DDJJvXGJbiJJx7dANyAVZ7qttS2ECP2ylRSUUXI6RtP537PPluCo0PRPrSP6K2w+9R5k1uFtWwMu7wz4v756Z+E8wT4LjTbIC28DYG1yzRl4bZ5FiNYr9us/zilYAsPXH4q834g9tvu93gzjIVEEIhSYSGe9+5yBdzfLpnVpbfjHLtZu0qIrtLGdo+JydB+HtxZXO2H34iw5SSn48/IvPzyjKLQKIc4leA/B7+LDDMsho1hBeM/Ax/6hdYk91nyYKS5tDZh+7re59dP/DbPf+1ekK32QCY8PGl48mHFrUrLZS7k5LkiVpLP3PDfHJTfMgJ1+isS6+L9zq+bauCJzbvsjYp9RbsnMZrJje/YaTTPYot56jF9/fj+E2fwL7rb47/X83E+peviwvw++G1xAloTvbH1D0TRUjWGop7y3/AqdRNJJJB94dJ2ytmER38T+/KjL4bx2lccd+pliWmmOy4ajQrPRS+km8q6q54VrMncXUbXQ17YR+7I1aQn3FpWCjD7z6By/fa1N2GeB48i028UGgo9lx95Dow0HpWZcNrzEGs/3L/Psytu4WQhO9RNKbeingovZjDMv/7aFe1a2cU0/ldSOL2tcWQiq7aMhQvJ49qN/C/3NH0FtnEb9yf+AYSb5wbft8M6dAYdFQzdpz88bCnuDCygBk5VzfOVPf8R6HKo1ouxaiA0k++woKUIfjweoB+7y2O71+v/Ze7NYa7P0vuv3rPVOezrjN9XY1e12d9qxYxsPoCQQK0FOgsKQKEiQmwgQUSQkuITIXCAuuCBXSIghFyEgIZGLCLggEUmElMmJQiM7thO33VN1VVd9Vd90hn323u+01uLiWWu97/mqul2mv8RdH72ko3POPvvs4d1reJ7/8///n0/DeEkOgpRGhhgl3e4JbNDDQUQVhu2Y2kMqrS0toDSp3GyxwURFnLtg+vDRqOc7jflGPY9c5r9PXxLhKMl86FSzsPH2+bNmnrqQN/+EA9cxakpZ0OgDz9qR/+ubF/zCH/wcz77yLf72f/P3uPrae6wenMHYcRFq/sBbJ5wvK5rC8PpRw08+WPH16g32g9OOZ36gLgxvX7T88HnDa+uSP/kj93l40/F3rhb8V7/4Dn//3SstIi7O2C/vEhbHEDx/+IdOP7JA5odB+noeGpuP5xfXvCb0/HB+KmYKsS7g1HojmQc+Y8H+1R/n68/2/JNHN5RW+N0PNiSX13b0/O1vPsWHwDtXBx5uO772dM9Xn+7oXWDbO3a947p3/OPHh/wa568zBRPPb0STUloyVDavYzyvHk4/zyN7mDby9BhJSJYeJ90nBRvzv3+k/hTnWhXplpWd2HC9Czy8GTEITw4O6fd8+ObvA+Dz61gziFnUlG0kY0Z9bWnef3gIvPtDf4j3+qk4fdKUrErD5vAo3z9dH7Uw8Ww7x8/85f+BtQwf/cBnI9F8fZjWtLygED3Ex/wkX5+G8ZIcBDHVD5OIJo35QplH8T6kFHcqOmVoKC4W+Cife/65Jk7yvCCcxvNR+0c3gI9ndcyzkPSVXk/KFuY1BOL39LKmrEjvl/DUQGRWGeFnXjviMHjWr93huCk4/+d/iuN/588RvBb97pcjnzlpWFcFP3y+4jDo7dp8JHAIlhACy3Iyd0iv9e1L3Qjr2O6xHVWktDVL9tXJrcPzu0VLv53l83HXHmZF1lv3JTvSqtOrUhS/daWbSrIBTxvzfnB0znPoVZxXWvV0OgyO40Y3sMe7gW0/8v51x1U75ud6njEyX2y3C4rpdX9n6OJ5vDn9X7I4/9j/ea4OkOZVyjoyDBn/vigk2pabnH0m2qbe77ZXTwjwtL7Looj0USpg2vRzvUtuY/UJMkmve57JGYHH+5Hx6EG+Jum1TxmzcL16hXf/k38/X4eUbUB0ok0KfLjFbAo/gIY+drwUOoLARBNLaXEIz/n9z3adxONOP08TZxJqpYKzC8TpPY25wjEXJWUy/9LM4aPYtE7Yj38Pc4fNEPTNpIVvZdIKpH6wafJ/FKKaNwIJrArDIELv1P2xKQ2njUZXZ3/s3+b3rxb84X/8Bcqv/Sb/wc99nj+6KjDXT3jr+AGFEb511XMzeM4WBfdXJd++7vlgB9+8OHBvVbMfPKY0PDuot9E3Hu84Xpa8slG3zke7kZPGqtNnrCs4//Euo/NhZMoM8jViYgR9p0Mk3Udhgcm3fv4ZZFdXrwfBrz85cLooeGVT82Q/cFxrX4fU86G2hp/9zCl3liVni5KzxvI3v3HBvVXFojA8cp5XNzXfuDhwtpiW1BhP5Vs2ESHE7OB2e8U0cvMirxvp83Mmze3nL9nzmpacVcnU4tQH5dGnzmJzem2ymUoNhqxVpe88K0mYfIpyrQjdGKC4/ZpOG8thDJyPF+ybM3oXuIiNo0J8rdZI9l+69RyicO172yHCvSHXCGxc0KXROXT8X/ylHIz1boLNUl/m1BPEGHKBu3h+Uf5/HOl9vCzjpcgIAjE1htwT2Kdof5aiT3a2E6PIoBNrKhCn7OL5zkrT94+L8v1sQ5tj1mnTfn7xftyFzxmAmdhFKRtItFIrcTFH2CdRYiX+rYrQUvpq4wJpCpN7IYgoo2g8eZXyT/2nPPtwx9OHW/7aP/mQv/XOFre5R71/yjcuegavvQmav/gL1FbrDJftyFU38uZxxW7wfLAb+cqTG/aDw/nAVx5u+cqTHe9e9fgQ+M2nB45r8xH2y/xzef5r3k9g/jnPr9XHjTk5IP2ermNi0jSl1gI2lcUa4Y2jmpvO83DbsSwtpTXUhR4CqccDwJP9EBlHcG9d82Tfc3dpqa3h6X7gc6cLNnWRI9xsb4Cqkp8v9s/HHAZ5/vt83IKN4i9p/s+vl5/dL0EzNm6IKVgCcr1MYuCRHsMFdZ61Qq59pP91fnIvnWd4LtpDtE7rMqbf8d525FtXPe9ddxwGrSOk17iuDNves6nNLZhqnrmkwnQAeuczNDv42/5K6WCbfIem/23HyYjwhfYj+IRfn4bxUhwEaShzaNqs021pc0kbdGmmN/58yp3od4bbdQaZLeL0szKPpuj2+e/Pj7QoE9z0keeezZr5Y6WD4XmGUWJXVDZRRyVT75IUP5lyaXAqeZG9ez1g2i1Fe8mdVzdUdcHVvufRrudpB355Sl0IX3u656QyXL/9kG2vnkVdNAS7bB39GHi063llo0ykfe9yTeXhTcezw8DDbcdu8B+7KL5bUS1d24/7+/O/p9aI8+tnZj9PxVhtWrQsLXVh+KlXNmx73fCXpXZ0q2cNp40o7fbRTcdNN/Jk39OOnjvLktIYLlrHVTfiQ6B/rhFR7rGARuE3vb8FF6ToHn57tMb5AZGy4emaTZuPCynDiO8FctE0vUMrU4Zk43sl3i9BSAl+mdOerUBtTX7uBP2k9+gC+GYDaCMnKwoT+qg47l2ImhTDUWXzmsrX5rn3lIKY3HZVbmcB6X5pzSbILIREHLhNbX0R42UqFr8c0FBIDAnyJAOydmAu059HMKn9Yo4WIpSQnA3TBpvuC7e9ztOY+8FPFhRMGO7M9wRuR7nTAviop/z8QEkbYoIV0m0JDmsKudVMPG0yg1cmR1p43RhYl/C79r+JrxbYD7/Kf/knfoy/+A/fYVFafvW9K37obMF2UdK7wOfPl8hw4PU//z/yf3ztgp9764Qn+54vnK9wIXDVDXzlyQ2vbRo657l3VPO5eyuO64J7q4p3rlpu+pGj6Gg6Xxfp/eTrONsUQ/w+X0nfyf89RX96PQUT4bFk/KZN2AWRcEsrUlaGe90HbOUuP3pvyVXneLTTngT31gsMet32g6OJxnybiKG8eVQpZdIFfu/ruuE9vBnVIPD2y2bwOn9OG4sP0wZmAC8pcFGY5NZ7J82Nj77nBAXx3P0Uj0/XYorws4W5D6xKQykQIrR4E83lQA+s0Qdqk6J91YssS709CQ4Tdn9cG1Wk42ldyGuussI/erbgqut4/ajGinDdOS4PI/fWZcbt7y4L6g+/QnP0eVoX+4wHbhk7ps/LiK6TId48+kBlpjWupnfxWsT/HXzACYif+om8qPESIUMvz0FwGDyjB880OVJKOcfx04eXNs3UnBsSdjlpCLoxsCgSB3l6HCtCIHGmJUf4KdpXbvVH/W9ubVazCCiZZU2W2B9/IMy/C9MGeMtjh+ecWGNGUcfnHDxcdZ7y/hfppaBe3+VLVcNnzpf89Osn3F9X/PrjHcvSclxbVqXhvd7wD77+lF99/5ov3V3zyw+vubuqWZaGe6ua33VnjfOBi3bAGuGVTcOytLx9eWA/OP7g587i9f0orfI7SfDTNZj/3cjcw2e6n3/u80mHQUAPD2tCvs6VlRw4vLIukd3EcLEibKqCq27gveuRO8J+Q6UAACAASURBVMuKh1ttXvPaUaOW2oXh3qqgFo9pL/lgXHN/WSAi7AfHth95sConhpmHm8Fx03nuLCy7wX/EjjrNPbjNoJLn/jb/+/wQTU18no92FXsPmFkkvYiHgPgRcQNlueC4tprNzA6NMUARHEYMVWk4DJ7OT4HU6AM2TOQMD9yvXD6Nno2qDiZeg7Ol4cG64OsXHaObAqAqjIRqwf3+Qx5W93EeUvvwdBg4D5jbNt7pkvQ+5KtSxGzHhYD33Dah5KNw7/cyEj35ZRkvFzQ0iyBuYcvzdDyEPFn0b5MIJkUMY0wrn28Ek+CGFL030dso2U4sCoVhJtxVpsPDTLBOwsAzDh6FXqloliCRObw1HUK3rXXT9/RcYfZa9f7Ta0id0lwIPBsMi2ffYF+sGX3gT//kq3zpzpLTGLmvK8vr/ikiwq892nHVjdw9qvm1RzdYI6wry48/2HDRDrx+VHNnWXHalBwvSg6DYxtDs+P6O8ca302J+V2brNz6bMNHbksjbRsZBpmdILlj2NN38Cgt8apzzFAh3rlqtR9B77hqRwbvue6UQivBg/e8ti5prBbV1XCvzK8pBMW1G2uoCoVaKns7a8vvg4/Hk3+rQ2B++3zMacTCND+cj8wZ7xA/Yvod1g9U8Y03hXpUdS4QjKVyHcYNmUGU5q3k51Ga8nFtsdtHmP0F9up9zkzHurK8uql4ZV2otcvuMa+uy2yr7kLAmZLx5HWY9fRI63G+nueQF0yQVnp/qTY2Z3QnGDTd53kvqO91/AAa+j4cJjIfOhcyp7qPi2iKQDTCqCD6BGkmkT4r4TnIJ4CLysls0YxOupRpJIFaWuAhffhhYiSlDcjoigRm7pBhinR8zCi8kFlO8wI2seBZGI14bx92IQtoXFBjvG70+ffSpF4F2qTD+cD7y8/w6tW3cEevcKCMthyGn//cCZU1hF1BCIHaGn703ob94NjUlj9+78Av7kqe7JVy2bupEJk+i8PgWFeW0wgxpWzgNgWS6X3PIaLZHeYLOzGx0nvKWZGf6jSJMZKvN+BiZBh85LITIm4N4fTVW6+lMMLrRzU3vccaOGsKPnNc8RtPW54dRj5/VqrYsN9h+h11bOO4LB9o8dTILPPT6PayHbSxzbq8xZBJz+s/JlJNrKn58GGK8kOQW4eWMGUGaZdOWZL6aU1unBKj9lAuIHiC0XaVyXrauIGyKPSwcD14gxSrae6E24dMOR6w2w9xm/tIv0c++CrGVhxt7hEKQ3H1ntqNuJ5T9wHHmzu8e1Dh2U3veNY6vn294qdfMTw5uHztgp+IHc5DT8hOw1r3ClO2DtwtPU+CoXP6GIHJbQA083+tdryIEfgBNPR9OVxQ/HeRmTuKF9q4UTSFsItuhipO8Riffg45SplvIlYmZlHC2lNUP8fjk4AteRIlqMmgNDzdhKfXOs7qEjBFtc9DQiHAGDdDD9pmMN5lTvlTmpy5ZcHsfKCOFr4J+lCWh1EYAH1vz9ZvUiCcmZZnvubM9ARbc9k7OjnhgVVNQW3VQqA0wt+5POKqHTgMjh97sOH+suBXHu2xAg/WNYMP3F9VuDBpDVINJ425tffzvjfz4ecFShMXPtM1CEyFYhdDsI/TFNhEBTaSC5+L0PN49SZN76Nlghqo3fSBJ/uBe6sqd1i76fU6fPu64/9+r+Nf++I566sPwI/I0PHaK2+oV8/g9WCMz/vudYsV4cm+Zzc0mQXmQoIi5RarbF5Inh+O6RD4TmP+Jx+mmkASGkqcmwD7MbAoa8zQggjiR92oBWx3Ey/uoFkPEMTQMKptiFFjvc5Nh5e4HvEj9ptfRk7uE+5+BsRQfvDrjKevq7rcOUJRIg+/RnH2Cp/tdjj5LE84RgR+/+tr3t2O8XOdInlMqvfoc40+1i5CyAdcKg5/0Ap1of/Xu4C107V0QQ+6K//iQJCPpz98OsdLAw0lXD/R8JKxnJFkIzF1NHIhZF+USUU8Yc1p0+pdiiBTmp/UgmT83xr5yCaWinRwu9F6KnaJ3N7052wgP9vo5jqIxH6YFxvnI8FMOf1HVZRTRKRjiBmMR+2A+5hBlU++oaZg3Q0ydtn+FzS7MCI8uhmojPDedRf7+lruLwusEa7agf3gc5Ob00WJD3DTu4zLp/cfQtBuXbO38LEsKqZDMvnpOE+G31KzEZgi6HmdIF3PwG3Rng8qeDtIxVnpaZ3PdgypcPvsMHDTj3pAAG8eLyLbyPDmcTMxcfoDFCX2cJkVtSlSXZSG966VknpvVef3oa8h3PrcYIr2p890er3TNQn5+3eCH3QdkEVdpPc/y5pAN3Bf1OAGPQwChEJfpwRPEAPB68+miFDSngKfrdgLPNLt4OoR7vF7hGcP9WAYW4KtMN1OH6/fYfoDbntJePaQ8YN3KK4/YBHrD9shUBdyKyBLmUAIE71bD/SQa2ouBlV2Nl/1PU7KX8PUmexF6QjSdf4kX5+G8VJkBBIj995poTipCVNkvigMh9HjnB4Gu8Frr2GZBDs3vcPI5P3vmVhDCVtP0Rsx2pII0yThSghBqalhitYhLlYUZlqWJjYKhxAkT/Y0cgFYJiaEvkfF9lPzDR/Au5D/53k4pDCCjF1e2EbgMEZWiiijyhvhqnMMvaM7+V3Y3hOaDU+GgjuVY6gMTwbDWWO4GTx/+Zfe40/91Gv8+IMNZ43lyWHkuve5y9krm5pfev+KN04W3PRjjByn5iLzHhGjCzlStaKfT46GZ5Gxg/yLzAR/gw/5cRN7B25HxsluJMRTKE12Z3W+PDk43vr236N57ffx9DAwOD3ElqXlzrLMdFK1IQncWRb4YNn2qp14/f4XsdsPwTvec6tc7E9zcTd4Sit85cmO3//mMX1k1bgw1aPS/6QNPgRwTBj8873W5xvLGIMKna/zbEJPvxDIB3Pa/OsZOaIpUlagk9W6Tp/DFMiwR8QgQ6vQUfDgRzAFOINpr1iIwRyukOtHhGFA6gXj4/co64awu4aiwmxOGD98Rz+PqtHXt9/C2DN++C3uiuHs7E3Gssm07kTySNqHFDO5EKiNyYV/LXLre7nptTf36PRAuelvixYrmQKIFzE06PiU7PKfYLwUB8FcbJU6FentSslzfmISHSL3bDXbqSsrlEZ/X5bCftDWlaODlriRhQmauemd8s0Lk2GNigkWEqZMoHeBZSE0xMMoMi98gKqIG5i5DUs5H/AyFZyNkHH2spBMMSxigawd/S0BkzXKB29shYSJTiuiNZRNZTJclCJHgFfXBR/2ntLAb1x5BufwIbAolP7381+6x1U70o6ef/K454/80CnPWscvf3DDj9xdc3EY+NK9DZ8/W3BvWfDezcDlYZxYVTELw6sFeAgTxbcXiQdsmDIaJlplOqT1+pANBU2E5dI1SSNd50CknYYpcrQ+KVuB+5/llXXB4APvXrVctAOvbRTCqawegKABxHX83PeDZjljAOsdF4sH9J3TOSYpI1Do4rgulF7pApvKZgjxeQqxS7THMN32ncb8PsGDyG3f/QQxpRqWE7A505xOlh2lzv0wImOnDxY8vlFfKIzFtFtMt8VX65wdAPi3f4Xi/mcYT15FTIEZ38YsN9jTu/p/m1PC7hp/9RS/22q9oSjx+y1muUFWR+Ad7C6QR+9QfPH3YuoNrjTIqJqMlJWmgG1RSuwxMJnXpQb2iWmUfl8U2lN68CGec0rseFGCshDUs+plGS8FNKRppEabhzgjeh+yUVuCHOZra/Ahc5kTj9oTGP2M2mY1Oxj9xCxKm2/CHZNniyp+9U6Tw2lkYPgpepiilKT41Ql6m+0w/ZIYRklRnDDfj/NkV12ETlARwaNfqVeDideqc8oT18cnX68F2qz929c9F4eB33iiBmyHMUFECrqWxqhG4Hrg4uBwgWziVhrhM8cVm8MjKit8/qwh+cAkyC5BbyKTIrY0ZG59ipbnUVfCjV2YNv/5AZnaGwoTDDcXIE3Xdnp8D7ijB9Q3H2amWPoMz5ZaFE7zBMg1mFVlVYcQO5MNUWmbNqNkDnjePgKgG92tjT0V/OF5BtTtn38riCFlEmnTn0NMacxva2dQYGraYkQYRBvsIAbEIGOHBI/0O3y5yIVeLRyP2vt6c4JfHBPKpTJ+igqpNeKXGFSFMfo3LVZIUSL1QrMCYzFVgxQVoWux5w+0iVG/46h9wnljpowgzp3Ucz6xiqxMWWHWhphJOZzg1G7UekbqV/wCgaEMPb0MpnMvRUZAhIZGf1swlnxbQtCepyNQWTJ0ZASGEAhem9M0xtCO0weXFpmE6KlCwIjJRlzKlpGI2auZWWmmAqd4hw8mszmcDxSFoTap01mU8heGxga6WJdIxeUQAptao8jeBWo7FbpTZDl4LQDf9C7DT00huZ7QxcJlwsWJTKLOJ/hpcocsHn8dt/5hrrqRRzcdv/r+NZ87W+Zr63zg9eOG49ryi+9e8cZRw7qCz55seBq9hkorPN6PvCKGHxo/xIcN74yrXGgfXeofHHBeaCyZVpli1QpwQW5lMk38u41wj4haGSR4CJleo0cPvbpQdlViGqWhm4I+27Ox4F635bPn93O2sx8cx02BFWHbj5wuCiojiBgaaxDnOWkswRb45Sl2tlHbmBVaA74548dKy99994rD4G8paEcfOIxaWK6LaSObHHNvC6pAIcc5hAQx+4i3lcbQx81zXnh2Hjrv85zzkLPcFDiNUtKUBabfYQ6XIIZQVISqIYwdiMHunjKevUl7+hbVsIPgMYdL7PUHhLGPF7ci9C3SrPC7a8zmBIpyovJuTqbvtowpjSG8/1WEr+Iev0fx4z+HK1/HMFmn93FyJLaf8woDHWLGviwNo1fh22H0k4YgTOt0WeiceRHjZYOGfkcyAhH58yLyFRH5FRH5X0XkJN7+logcROSX49d/90keL8QP2/lANwauOl1g3ah1growWFE4Ylka1qVlUag8vokdkRJ0lDx6FqXkDfImOk+2zrOLUEHKNIaU6vtodSxCUwhm7BA/6uOFkTIW2JrQU44HLbTFKFeCqo9TNDp42JTCceGx3Q11v8VGWKcdfS4A1zMPGGURTf7syZAuLcBEb009EFLEbNBC+v1lgTt7k24M3FtV/KtfPOc3P9wqZbTUR2kKw7o0HNeWH7u34elhyLffWxX8nlPhwbrkFfcMs3uGdDv6+phVaXKU7Jk2/aRqTe8ZyPBNbTW9FyGzbMa4iFOxPMSNLK3tdEDopq3QUTeL0rMT6wwz3w0KhTS7x+wHxzcv9hw3BU/2Pdt+pCkMo5vogje914119JpxVUvOwi6TE5yPfjpeDxmPZlJNpGamrlsi6uWjh5VkIkOqUQGZs5+/wvSzOqfe/toPji4eZL3z0WZ7clo9DJ7eTw3lU7exdoxZFUbrAGIUthGD+BG/PAVj6R98iUtZaRZWrQi2QoYDbn0XWR4Tulavr3P47SVmdUQYB6QoFQ5qlpj1Cfb4HIoa32zwzYZgCuzpPc0cmhXh/a/yFk8pjB5YoyNm5qrLSPUl/cx1PpfRdysEcp+CVGBeFEqlHsOLqxEQyOSF3+rr0zB+p6ChvwH8aAjh9wC/Cfy52d++HkL4ifj1Zz/JgyU4IH34oBFwMWMOdDH6MqIN2o9re0uw1cQUM0EX7RiZQ6Muom3n2HZjjuJAJ2nyZJkLdmwMx2TssH5Q9oUYyjDmBWbcwBDT+SFM1r2Jqy1jh3RbpN/n9zmvIUBkBXU3WUiTi8wz/D9N/DKMLMTlvgylTDUFiAeFKfJBUoWRL71yxKZStshh9NyJ/XsX445lKZwvSm56T+88tXjszWNOjb7fcPEBoay56ib7gtJMNMkU2cN0mCrUQbbNSJ+H9pGYKKaTeZ4u+rSxN3ZqQ5reE0zPlesCcZi4ieD0NX/mpOFLd9dsqoK7K/WcXVeWwk4QFMD72y4HAb0Ludia2qJ6ArsIlW07z2dPFxni8BEiS3WQWwVepp8H7xlcuLWhpN9TUduHeL+02cefB6+HQOf0NfTjR9uCzvsRlPOLkjKBso4/17hySRCDBM0q0qOY9ppg9ToFUyg05B1iLWZzogdA1ejGD0hRIWUFRZXrEdgKihLfbJCqobj3mt7PDTTFVLcrDNGnSOd5Uu9DJGyEyQamijUCwzQflKQgLwwaShnBJ/n6NIzfEWgohPDXZ7/+A+BPfk8PKFOhtjLCAS02rasiM1pA4QXNDjSiW8YVIG7CIzvvM8voWTvQjurDX1tLaUyO3oTobRIm3B60teGKXic5SpsTIFQrXUxxcemFgMYd6IuFbuZ+oMJhtpdT8c4UhLLJRd0Q8eVlIYrZuh47tpS2xsT3Wdop2l2WBjN0EJQuaKuNLuTgWVq4ijDU5p1/yPDWz1AXgXeve15Zr/jjP/oKbxyVvLPzGp2VwoNqJJiatWgXssIIH+5H3lp4cL3CCiGw+8IfUJpop3UDMZopuaARdRMpvXlO5LkxFVKT3qIqtIDfx5PCzg6+IW5opRFCjAyVRZai3unAK43g4qbhY91HAvjlKaa95ofMJZ+7VzAuKp4dRs6aIrKtlBa76xzfvm7xIbDtau4sCq57R10uIBYmR6+mdp1zvLap+NVH1/zG4xv+lS/cy7h8eq/K6IkBy+TOgPOa+XWjVzgvjvmmkoro6Rq62UEyzKhGVoRBQi5g14WhNBPBQUSwdlLcjs0J5fYDQr3WeeoGejyyvqOMKIn0aRFCUWGGQz4MKCoYe4Jz0O6yWjh4jzm5qwduudCDs99huh2+BpwjLNaEakCMxe8+gHf+MffvXPDt0x/JbL3jWNjaR5sODfAUSj2u7a0gDZT2nLKCI1pwpcJRL2CkGsbLMr4fisX/LvDXZr9/VkR+SUT+loj8i9/pn0Tkz4jIl0Xky0+ePImeI2R64qpU4YuKTbRQ1saMYBEPhxA0+l5E6Kh3nipuMpftOC2yWOytC0NdRHWucbfoaYtCnRQBDlLlCR+KBul2WgzbXyBjqzhsv6Put2BLSjx2bDHbRxTPvoW9/gAefwsZupxNKPw00WL3Y+BASahWIELdb/OmkSCQyqiKVFyPDHvNSiJFEDGIG3iwLlkUQvuP/i6t1zT6rZOGTRH44nnNbtBo82bwfHDT815nuXa6wLdRffvmUUXxTBXK79s7vF/cvbUgPXqdC6NWBJUV2nEqqKfetxlmC5PWobJCEzHgxAKzIhmiW5eG2koWQxkC4h1N6HPbRNCMyBBYlKk5ukQ4D/piQajXmoWNPUV/wyJuIu3os3bjm5cHOuf5Vmy+c9E6DPCo1U026SisgXVV8PQw8sq65g9+7g7rymTNQBI8pUYvIaT6gM+QjkIeEySXWG3qzU+EgBJMqfNzP7icSXTxINkPLn/5ADf9qAV+T14zfVwbXco0VueEoiaYAlcuaSLD6zBOtSnxDhl71Qr0N3qCLY5i0XgBxiJliVltpuJxvdbDwVr9LgbTbpF+h715DO0Wv7tGqobQt7hnH/Da9ut5HpVmEgOmoCiRDYru+pYd++Bjh7Ko/TkYzVZeWICesu5P8PVpGP/UMgIR+ZvAg4/50y+EEP73eJ9fAEbgf45/ewi8GUJ4KiI/BfxvIvK7QwjXzz9ICOEvAH8B4Cd+8p8LY+To987fcg1Vi4dJqbgbfMahDVGab4jFYDLkQLx9WZbZfXI+BilmdYHkMOkngVnwSHcDpsAcrsDYWHxbYdrHuNU5oVwi3RaqFfbmsd4PCH0L3uuh0QmuWtBUK3yAfaS/pnqELSrdNEyBGTsao11CKt/jTZUzE9D03ZcN1dhBCLrYg24u5VtfYhShGx2vrEvwjtL3HMYpma6tzbDNk8OYIZ794LFH97kINYfR5XrEYUwwiETPHc2kVqVh9O4ji6SMOH4X8exEs00HQ2WF3aCH+ao0St9N18I7GFpM8BqhBg/GY92AiVGguB5MQWEMWvhXR1IfAD/q9SgqQlGz9j1DWSv33yhZ4OIw0I6OKgYEZwsNNm6GSRGbrmcRMf9XN6qwXpUmHn7EeTa9N3VHVcgn0WQHrxoEZVoZejw1Nkf7qalO0lHk2zKJIMyua3xOHyiN+h4VZsq8TILl4sZaiCqI06bZeQjBZ88igAGDqZbgeoLrkXEHRbzOZU0YOkKnRWOdfFGlXFRgCmTo8NtnmMWK4D3hcAnjgDk+J7Q7MCaugY7T2Ngoqb8LI/h4aIW4ZoOtotofxGiVePCBASiDogHBllj/3dtbftIR+PTAPp9k/FM7CEII//J3+7uI/GngjwF/KES5ZQihA7r48/8jIl8HvgB8+bs+WYzyKyv0XrLfTFoAHo2ORx/YDyEXWJO4p7HqFT8/QE4a5Zb3Y+BkUUReuslWFvNC7Og1AtPoNtJZ3aBCnOEAh2v89hKpGkxZErqWYnOtBbN6BYcrpD/gr54wPn4PMYbgPXbskde/RKhWbIeQC8RzyKB3gbUZwQ1gS0y3BVPgqxUlggwxAzAFMrbYQWsOMnT45Sm9aFovMY0/WxQKtVy8w3D+WUbfsa60wH7VeZ7sR06agg9vek6bkqNKuGgdx/0Fh3oV2SjJeVOvWWJBuRBYG4dYVR3vBp/hkHWlClPQCB+rDKQk2Gt8h7MVvdOsYppHcGwGgtSIH6HtFH4r67zxI1FcVy4w/Y6mqHFFyX7QjSKEoMKpakkoaszuqR6m1YJ70VPfiuVH7q7ZD45Hu57jyObaDZpF7kZPN4a8cSeKb6p1pEJtFSa/qC6KGpMArbSqUUijKUw8HJQR1I5j/uyTtfbgVbQ3uOmAmNstJ0qsWmVo0dqI0Fu9/RA9l/T2GPUbYSFTYJPqa4UV1hFnKwVwPeLUniIsT5GxhaN70O0QMxBMWoBOM4ThoNdYjNYUju8R2i2hO6hyrtAAJAwDYdANe3z0LsVrv4dlqZqd1unrbgpDG/tidKOHSrNfKxO1GFTzs65sZGdZ5AVWb18iGcHvTI1ARP4I8B8DfyCEsJ/dfhd4FkJwIvI54IeBb/xWj2eBVcTMT03gyVhizQSR3Aye1Pqvdcr2OKoshRG2vcty+XIWWaVC5GphsuFVyhz2g+e4sdmQrh+1uKwiM2FVCqGokWGvh0G9xHhHcA538Rh39RS7P8esT5ATA90O9/g9MIbQ7lQcdvc1wqjNY4wYNsev4pFs2bApVdBkRAgIdn+hi6jZ4Oo14h02UfNMoUXnskHarapGndr/Umok1f7GLzP+yM8TQmDpFEa66lRQ1o6BByvdfB/vPXUhfO5UaaSJkhh8Q2kk6zfmbpBJ4QuA181/UQidg+vecbYoMg+/HT0iykwybsBsLyiCx6/OWfmeVS2Y7RNlmhwu8OUSiNYI3mF3TzWyd810e9mAGzHdjmCVyrhotJUmUXvhFyd6kIBuXDMs2d485nhxws/eEa7Cit2wYFEIzyI01M6KuJ1zumnHTfRJr9fwuC4p7BSpzy08JhGUzTz51BXsEGGi3vmodDYZ5umc56odWUao0ycmULyvPjb5dgZHW1qWZeCm8/mgtQbc4HF+OpSseAavG2nS6GgepVn0dggc1RtCNKYLpiCUDzCHC2x/0KBkscpaAilqfLVQVlK50GK0KTCuh7GHsiIMPePj9/Rz218TioryCz8F7TVNteG6mzy6km6nc3p9bkKJjAr9tePEKqusyXMwBLT29gJGKha/LON3SkfwXwM18DdiqvkPIkPoXwL+cxEZUXeBPxtCePZbPlpSOxY14h1V7O9bRmhBzd8MndNNaO6HnhvXE826IrMlLdS0f4no/3Wjp/dG3SlnrCMjEzSgkIcgkVutxeEtUlb4w04LakOvG/flI0L63VjwDnN0jqkaXURiVIDTbZFywboqlVJ5uNReymLU8XE4YNotfmw14ioX6rHjOxUL2dlHbSsYB80c4msvH7zBzgcWlSVIHR0plTXjQqBoLxF7RG1VTHXwPhfJq+5KC9G1pkNW9ECoZpTNQvRzCqbIn42LGojEqU8Yb2MFe7jU6xe8vrfdU/3fskHcoJmPc9jhArc6j/h+m2sfGJPpjQChbAjGqAAqeD0oI2to9IFQ1zgaiv5GYbxqqYfG2Oln0l4TbMHpeM0mNVaPl3MuGiqNyaydVMzd1HoNjwurWWa8Rk1BrhUkcVQKStIcpDARl1e4qItqb527IRMfUl9iI0JdWNpZ5JvAEBMkt91MdQUXAC8ECfQyKdkPY4I8J21OyvJUVKlQI/HzRIQgMQO1lkBFqFeqRHaxlG1n3b/FEKyyhUzwqj2oF3D9DL9TJDj0LdLvQCLVuxDakVxjKuzM6RXdnJMOp42JlTWJEv7d1dq/7ZHX+csxfqdYQ5//Drf/FeCv/LYfUDQb6KTCisEFHzHP2HO1NLl4qQZq8QAwQSPTWB8YYn3BhZA9zkGFSW5QqfrG6GK2TjevTWW5s7C0bvImahKjJxZqQ9kg63Ok31GcP8CvNoTDDre9BKLycrHSDWd9oj8bi9msCBcfaCQ2doSyhVhwC7aKm16P2V/C/pLx4hH2+Jyy3TKev6Ubb9EwmIqyVAYTwesGF71jbCGc+z389B/Ndg8Xo2F19CrWBV5fGez1B0jrOTpacWdZYA18Zm256ANnps0b/BA3/6aQjDd38bqohbSamKUGIXUhWJ/ovxNj5jAG1u0Wc7hiPHoA1QrcoNqM3dPpY+93EUJ7X+dPjDSlPyD9AWy0NPbaSjLtBKFokLFjUSzonUbT131kkbleD9/oqCmdsl+CGMz+Anf8GmZocUWTN/Q0UqF28MpsOW1KykpyrWOIUFlgdg2sZkKpl8W6UvJCCBMUed2pNl5GhXVuehW+HQaXacfrSpeyCZoZ+FhQTXbmJmZng/M8OwycLcrMiGtKw673rCpLO2pPBtWkaG/nFCw4DzsfOKoVfk2ixDJ4xGvtTYkJXaaf+nIZ14KPdZiGUMZsrVpCCPhVgZELQrfHLDf43TV+t8VsTtSewvUEu8x25wIZbqwLSAEpGgAAIABJREFUFSmmwneqCab1nqxgGhM08JIXw4952VhDL4WyOCC0UmEFCjzruPGb+DtW8ecqTor9oArgPk4gn6IvJjfIFOSl6EzFUHrjYfBZ9DP6wFFtWVeS7XAHFyhtQahXaJiVhDprpF5jLj9kuHjMzVd/hXK1oHn9Dezd14AS0+ihIEWpGYEx0G4Ra6OrY6dF38WxvsCYdbiLR/irpzF7aOH4VbAFoahVZDcWHDenNO0Ws3uKr1fI2FM2QhDDTXlCIarETZ3ZNsMlstdIO1QrZDhwd3mkjB0RzooeaffYR1+j++y/QNU7RhdYRaVsEMliOYM2RLHdjqqouQnlrFgf7x+hrsrqawpiVKnqR8zYYdotjB3u6ql62SyOtBazj0X27SV+v6V45S3dcIpSC/Kuz1RGGfv4t5oCZT31Q2AQtdKoQA+d4ZD1AUFKxA3IoNdCxp73RbuNrSOb6eBc5L17bnrHca0HZgoONpXJZnspwACNwFcluebTRZsOzWRDVkznwnKEoZalZToSp1EaofPKcPM+0OIznFTGAnHC1yFSTQf9PvoZMymyhFLNZ1UaDmNqpKT1tZGJCovrsfuLvOmHotHMyymzKNgS014p/Db2E2RpLLgevzhGbAVDjzk+17nsHb7dEYqGBQMUZV6zoNCYxMg/aWiStURS459VliMzIH2XrTJexHjZoKHvB/ro9zySZUTeUFDoQSAvZpFJdCJCpi0WUYiUIImkSixmqaQWaafFWxpd1LXVKKt3t62vm0LFN75aRYih0IVhVKyD9xr9lwVj2zE8+RC/vVSWxEJZFqFvVak5DjBqlCX9IdJJ9bWIH/Xxy5pw2OEPO0LX4vsW016BKbQPbJjgi2CKCDcV4AZl5Gw/zAZuBB8Nu7w6S7pebYjr9SQeips7Iejzdy0mqOnaujLaAYtosYEyXwheI/pIF6ytKr3TZ9ZEhkxW/xY1odnkgw4g7K9wF4+VVTX2egjYEooKv9syfvgO/rBjfPh2bMUYMf/on4MbchYlfkSCz0pyF9Sawy9O9V+6nX71e8z+QqGhZw+xl+8jY5fN6EZPNiCzZqK6lrP3lqQAShPV27IXlZkU4qWZxHPWyKRFiZDj1MBI59uitCxKi/eB0XnG2G4yRaqt87f+Zz84xpniGODZQTuvJcgvwUG3/HJytB24bLU+IcNBD1KRqZ7iej3Aq8X0mdlq+t3OhGQAtsyFY60x1EhZYaJLaYJKQ7nA2TrXKtL+m+Cg0d9mTE3q+hkcFDzS75XW/SJGyrw+wdenYbwUGYH3UwRgRfnqJqpFg1j6yH+GaEw1Tl5DoFDGYfDkPsMijLcEOpG+GIuhm1oX7qo0XHc+L7yaqQNUMAVBBF+tML3CC25xCrbA3hkxTx9SLGr2jy6wZYk8fBu7OcF6hz29Rxh63MUjzOoIipIQqXZm2Gu63e81ag0e6Q+Y43MV9IBmFXHBLcRRlWW2lPCrc+VvH66gXlEKmN0z2sUb9M5xpxGOSmU9pUPUxc2RoLj3sXSY6ytCs1GGzb3P6GPKpPaUsQNjuRliEx9rqPud1ktsRSFwUpms73BhgvCsiL7OfqeZlBv1fVYNMgyMD7+JFBXGpM4jjjD2ehD2T+H4HMaOUC0w/U3cZBYKjcWCsAwtvjmiKgraUehHr/TO0iDLU4XcDld6+BWlQkTnr0G7JazOWETr7Mt2jHPEsxJLWagb7OAiVdNqW0+l0yb1uNZSPFDEGkBtJsXsTe84bSx1YRmcNr1vx8DTw0hVCMem4OG2yx7858uK0mrznMQsK2dZBxBpqWS1uVpS6P214BzwQYvVpZXs1ePyoaLfF+V0UIsbsAxam/GaBYgfdd0VtWav1SLXeny90oJ92SBDm+s3fnMPs7/Qz2Z5gmnWSB1rZN6zGwO1JbKblEKcRuoBXRqhD5P3l4+EhNEFfF0jtiKIsO1eXIeyH7CGvs+GWkIoM2hRGmpQ1kK/ZygWyhqKuH83EvUGyixIEViKIgYvebEO3rPvPOsqWknEgl4SASm2PZmnzZvIGxG8D5R+VGw0NvYIsYhZPHiT2ntsM0VA0qwyjTMNv7vGGIPEqNeA+sSPrS48gKLEPPgs8uQ9/M0lUsYITYw6S8ZIuxZ/K5ug3WJvHhPKBffLUdP34aD6h3iY2d1TjeqKCgmeqt9i9he6oQ+tWgO4EY9eA4UDYh3CjyzLQusEXuEAM+wU6gmeUC5ojGEhWhD21SZ7A3kEKWrM9kqdMK8f4Q87zOaE4pXP4p4+jBDRiWZTY49v9wTnMePA8P7blG9+UWGKeqWHADEjCjEj626QYpG5/fvBcxz2mJvH+MUxfn1Xo0hbwOJUN7b1Ha6qM6rRM3phGyPr1EClLiRTjxMDSnAsSoOPczDVB1IPi7rQLEqtMqDCaPTrHZW1HAYtzC9LZXKp+2vNo13HelliRQ+fdVXQjS7bnixjtqCZgb7HdaXzKxecgz5uOyqLaFnazCTSArbNBIrE/jqMgfW41exqaGO21WPabSz6LlUnU2i9xq/vqF2KG5UuHWtKwRSwWOhBbgtkAPaXOp/XJzqXm2XUlOjrHlzIvmLJNymgMFai5KYswES477JVBfxhdDw7jN/TXnNrbb5E0NBLcRCE+DXf1J0PGGOzKlQ7FWkru9GHiJcqBFIEhYeSGjGpjpNVcupulBp8Jzn/GKO6UqaUP0n/IWYHkQ+tTBZVU/pqhV2dUpy3uRYQ2sgm6tW4C++VPrpY6eJK6bItEaf+8WEc8MsT8KN2j1ptIgNpwHQ7pN1ia21O33g1wZN+r4dA8NDeINVigkr8qEXSfqeK5TlyGFsyquPkFYjBLU8JtcJfIlqrQSwBm7OiAk+HZFZTLsKOHaHYq9o0pu3GjzQR03fNkUaMqUtWUeKi0EiaJbI8wt9cMr7/TaRUO2PX9piyIAw9YX+N3z5DrIWbS+ToTozsb9Q+OeoDCpkZkzk/ZQz9gVAbfL3WiDeObnmOG6ZmO5u6YNvp/6RouYiRelVIptTaGD4GJognba5G1KSwtBWLwkTmixDETm1PRT+NykrUW+hcS7oCa1SDUBc20ktV25IgwcFrw53OeWzUKqyTnbYVQOGhJqrsE+mod56VMQyBLJ48jJ6wWEzkAzHYbqfz+OjuBP0ErxnBcNAa0+FK526vuD+pQ5o1yKCHtClK/G6Lb/eY9Qm89RMKm+HpgqFzSiHdx+upxWJ9uutuZBOL5gnqHRIjLa7PVBv5XofCgZ8SR7lPMF6Kg2DO8HFe08VVqdYMtUleMxIbWITMzc6UReDaTf72yQJgPziWpc0HS4L7DJG6Z9SNE6ILYr/HV0tGFygMORsQp5usj9xpTIFfncHqDHt/B4/fxbc7TKObfjjsMMd3KIAw9gqDRCfH0O0j48dp45ZuqxG7GKhWmDtx4bU7TP8tbFljqlW2mNDoqyREoZmMPW5zXyP4fqcU1NW5Sv87pe4pe2bEHK7w1UKjOlBsOBX9ZtHRflTF56KwGAKbMRZzi3oqJpYaCdpn72jLxGajFNDdU6WFhm9HdlQBtiIU0bzMWKSsc53F+7gLeEf79Ir1G/cJfYsfB8aHb+cisW332LuvK5sl1iyk22HGntXqDr1zEcKqsi9UKBf6e7lgiBh9G6EI7Xkg0Y21zht2ZZXx041CYbU+cBgVi7dGDxwh0BTJ6kI31rUx0a22jL0iQq7EJu+oworq8NFotCkM214dR0trKK1hcD4fAkOsGTSFqrBT60ojwuDUomJZGmoxbKqCdW1i8BPy5poyiaNaD76rzqsK2lRUpiMYD2XDWNTRd6hUbcHYYrod7uiBZpNuINgCu9VsSxlDPs8vLeqPemCMA8X9NzCLFd/klNB5PAbD1A/ax4Opjg613aB2GimTr2MGsesdIViKWth2U83kex0/gIa+T8chMl0SZVGLa8riKI1QosKyZOPsvM94YqKaJV55KjKpgtNz3bnc5D55oVdWuGpd9hcSIWPqlTVYP9yKaFWFWeOLBmyJq9faKDwEzMk9CtdrBnB0FusLRtlDvsmaA0B9WMZB1cdWC8/u+K5u1kOrWKuxagvcHxTndorbmn4bm4t4LbYuNuAG9usHNIxarHZ9pF/u4eYpwVjEloRqqbbBq3Ps9UOCGHxzpCwaP4KLm6gIldXPwIWg7Q+j1mFqfNIrLBejb/WrOeAr3XjNsFVMuVpkRXTqRB4OO6hXmNVGD7WYLXljWb/hMKsjxstnmDIW3Icee3xO8E4fMzZSkbHXYmW9pndaIN/2gatQc7Re5NpF3zt6p5Dgea1zJKDQFShjzPlAVRmuoxNrF+eJQTddawIVJhelU6ABimNb0WjYo8aDBI+P9h8ljp2bLKqzdUos5C5LpXjuB58z0dIIgwjGCGXc+NPzNrF+YCUdHIGboKJKQwFGWUl1IbmPg0eznMII9wrDZesog1pyqE5g1IK9MUpqmNmamP1F/EF9txJlVIaWUDYayJhCCQlFpQ3ujcVfPSV8/mfpu8BlO+BCySYqhD1a2O+jPfXTtueqHalnbKirccCaktNFwVXrSL3MV9Vt6PV7GT+Ahr7PRlJjpqKuBPWNV693jaS6SH1rRx+LcaVypiU5kiafEl1kKcJLzT5SeNYOqfmJ2i60kQ54GDyrGH2aFMrNfX7KJb5eZ4aFGaOhnC0Vw249SfojflQxVFkTDluFh6pVTsPFFIT+gIwJo+/p6mNqMdpEJKo9pSgJ8TWYfhcFVq1uoF0LK/WZb4IeNEn8oxTJDt+1SK2ce98cTcK9ap1rAERmTigXdB4at0fKBSFy51UQ1kZNRRcZS5GWaStEDhmKknEgFOCrRdwYGhUqRWGXadbT64RMs7XH53pQjkoTNaVO6zD0qtFYHWkBPm44rl5PEJmxGQbR/geq2E5CxJRFriuD+J6lLeiCySZ5LlI19XNXymwf2TqOCa+2Rr8KlJ+/H/TwSVlmEMHEwyqYIttU+6jnTRYmCToanEI9gws5+jWiSuDGmGg/oXUJ7wPrpuQwxL7cRiD6GxFZU7W1UcswHVLtGFThTaT2Bofpd6yrDT2GUqL/kB8J0kSnXKCPx2S1UDhx7PTAPr6n89f1mnWlQ94UmjlHaq8xJpIrThgPHVftqEK5qHqui9SDQ5lRCfffD56mIF+LwQXOGsvDbU8TTM6sXsQIfHq6j32S8VIcBCF22eqD8sDV9Es/pN6HW12JrtqR++tqUhRH3noS18C8C5bepxsDN/1Iba2m5KWm0CbikLsh9qhtCkqnmYBrjjCRqZIUsdiSFi3eNsZghkNm/vhqoQ3Co+JShoNGw4vNZPMbh1ueKrbfHwi1Yt0lPjI1VF0bikTBK9QKuz9AOWoUdrhCNicacUe4yO6e4ssFvtlgbx6rutOoS2To9oTzFYw95htfhvufVYgl4v34kbA4ARdw0fLBR98XPVmHWChXWCwVbBOziXiohLLO6tMQ6xh+eZ7rEsGWsLkTGUErGC+xd19DrKV48CbjE22XaI/PtU4wDtjjc+ydV7WmsTrTgnV3k11dFWLTjXRTW646x2HUz/bYjvnaN4zYy2/rpnX6Jjd94KgysQgcDfOsmqHdWxVa4I0Z5+jUU39d2axf2dQmZ6N3FlYPSq/9KsQ7Kj89d0fFIrq3qi2XpTTCBzc9x03BcW15tAuYctro0nx2PrBZFuwHx1FTRvsJw7K2U8vOSC3tvaW2yv5KSuXOeZpC570BpN9TWTXmC6I1r1AtYWhVvW4KQrNBDp7gRyQc8IedqoZ3l0iz0bpSUeUOZenQD0Wjh0S7pXjwJjcucNWOXHUqoNMivKdtyWt11ycbFH2/226kjEI4FwJPD47SSuzZ8AKlxeEHyuLvuxFCbFrhoQuqFnYBKhGq2Gns2UGteDdpAZhAVVh2vaMdyVQ8dfKcPN1TZ6na2tiK0mT1sCqMldImxEhr1M3NxIYymVJnSy2GBbDGIH7Qzdn1UWNgCW5EhkPcFBeRSdFNopxYY0gpuW+KuMk67DArMl89UifH2BYQEV18tsqFz7A40ucoKoZioarfslHNw5O3kbJSGCreJ5QLzKAZQghen6daYjpl42ixs84tIH2AqjRI3+tzp6Lv0GqGkDD45Smmv1E1atHk3rkyomyh7ia/B98c4Vdneo3GHhM8pjgQvId6hT17PTJXDki1yO6Wvl7hTl7PG79pr8EYuuacMoysfCxgX99w7l2k2GqBW9yAyGLi9Lse015xVB9TtxdAhS8XDMHkzX9Vmmx/fdE6bnrHfjCcNgobimidqrDqeWV2T6aMzfW6yVbLCNPt2cRMxkdVeb2oqaywKOqsaL+/VvZQ5xRH31RFhkO2nePOsszF5eOmuNXPwAdt8agHk8teUaDr4jB4FkWRdRlpDolIZsNhDDjVtQBR31ErPLk6yiQI6XeEeqW1KFtNjZfEEBbHmOunhGqBP37ATR/pyrW+3se7gatuzGI9I8JVpO+OzuOyf5PCwcnA73RRMDo4X1p+48nhxew5/LM5CETk3wT+M+BLwM+GEL48+9ufA/491I7nPwwh/J/x9p8C/hKwAP4q8B8lY8/vNF6KgwC0WHzwU7/WRKNOknMRaEqDGSX72s8/yGTn60IguKkHgRG9T/LBB6IDqclN7Im0VYk4vvYguFFVbOSwBzGMQdNtK4EVTgU0w346KAr1xlEb5YhTFSVeamXciOCaY2XciGqb50pOc4jKzbJSJpX3sL9EmrVu8NXqFgMmmALfHFMIsQlJj4y9tgtsdYPH6IadhEDh+L7+XlRaAK9Xk94gM1T0+nejZ2EKjfhzvSRo8Xdm6ubLJZKk/2KiAK+K9t1JjWUIRREj0JUW3BfHWD8ihcGX9e3D0lrdgGwV/YWCHqzBa4OUeq09Cm6eTNfDlkr3jJ+dvrYFlZP8eQQxSomsjjV7GVr1qSq0gN5Ehotpr+ia0ywwBM0EChOoRTctI2gtKdovmHiYm3ar9NVyMZEBCnVXDSQFtr7mVWmy7721k7dTUxrayC46W6iVemm18Kx+RAJINlGsZXqNKcMRUUNHH+e/SZlpEjXmLGbUTMnGWlBRRfqxiY6iCsFJpfNIxjYbISp7rJ68sEyBbzYcqmOutsPUVKowsRgMF+2Q3VKTyZ4xwmFwFLFonudWUOj21XWh/TCaF7PlhQD9C2Ig/Rbj14A/Afz38xtF5EeAfwv43cCrwN8UkS+EEBzw3wJ/Bm369VeBP8Ltni8fGS/FQSAQI7FJIdwzGciNTjHe3gWazOQwUU1qsgBoWVqqQtNIHxkW6Xs7ek4WRfbMX5UmO56mwh4o3DCYgrKKkyRuHuOMinkYA03TUIwtfnMfe/0QiCrMegXjoGrMWNzMeHlaeHET9WJUrAaYYQ+7C8X1FytNxROjZuwQW2rUWS6UMeQ9FBVtdJyUZoMvauz+GX55SljfxcRoXIYD5QcfKPV1earQzthTXL2vBeR6Q6iLvImoXXA04isXNL7TzcBWyilP9ME0jFVtQrSBdkaN9fKBWjb4eoO3Jd3oOYyB02qhLpax5630e8LiGB/OlKrreqTe4BcnHKRSoZuH2hT6fO01Plknx+xExph91RtkaHErbbG4Mg453Gj2Ezxus+AwehpbYg5X2Mtv0zz4EvdX2nmuePr1DNkBMXo3HJXglWfL2t3kw1W6LXLzDIk2zNhS6zRGFem+2eTDFolEBCxFsq/OanjhMMLeaUTcQqaHll5u1RV8FF+lAmoyvquiGeBucFHgR9YOVFao13ezEV9mgaGQkcI9sT5T1soCEqNU3WajcyCKxEJZId0W3xzfqjUdjl/nonXsbwae7gcG57O1tg+Bbe8y7JNqMy5M1hqgtE4rhsHBG0cVo4cPdyN3FhMc9r2OwD+bpjMhhF8HslBzNv514H+J1v3fFJGvAT8rIm8DRyGEvx//738C/g3+f3EQiMSmG1r4NaJt+FLnpWRZu65M3o4DHh+0EJiEYO3osd5QWUMiF6ROSHdXZaaaHtexGXn09rfdTcRMFf6wVnRj8SPOlBi0r4GJykhV+QZMvcG0V/jmONsf+HIJTakNa2Kf2BAzA1A9go+PjS0mOMFWSj91jnDYIWevaAR52OK3O8R7ZPtEs4hZs5C6MGw7hzUlvvccw4Sj20I3v2jxnCI+E83DEgOIlRrgLaINx27wlGYyX6uaBuv6DPOoRoH8GoBcSO+lYIgN6Vdlg0kGedluQTeE60Ej1aP6CBMcvloiITAE6EPJqlphDhfxM1S9gIk1Cxm1aJ0ZLYBprzTaHzqK3TPc6Rv52svYKTUyeRqdvclh0INgWa8IT96mePvLlFWTe0zI2ClUM6qIbFEI9uYRpl6r2d/N42n+djtIPYLrVSywDlCRD9oBQxVGpNvG62djZz2N6Asj7AbH6CPNNVpRD95nyqgygVLTG5ut2Z0P/y9779IjWbalCX1r7X3OsYe7R0RGvqpuddGtFiDUCJWqGTBhwoRxT3gMYIBEAWp+ATBAavUE0TBgVkgMQTBpQDwmzBjwUEkgpAYhVAJVV9e9lXkjI8LNzey89l4MvrX2Mc+6r6qMqps3lUcKhbu5m7mdY/vs9foe3kKNisLcAIl9dxPBu7FgyO4BrDuS4aphnwfIvNLhbb609pUUemrAh8JQupGZz5CQukZgDOvWoh3eXles1dzOVPF+cmKc3ZjuFLqvPfl8IJSCifIz7HJClzZ/hayCz465QcI/yPGnmxF8LCK3niq/68Za3+T4AZjxx/GH/tjiX3/98Z95fCcCAbCJxq2VM4Iqm0icYZPTDUP00IqJ55ptYlxBHGP5R2JQNbRK4JBsg02CLRa5vkc5foyqinnxQZ1kVF+8wGaynZXtg5bpp8qM2FFEzdQb4GOamKVGS8hIY6VVYLfpwecdZFggdy8puLb6pp972HQl8WqZgfHMx8tKYkwNuV6/IIUoIi0LA1Qemhok1HWKXMXUul1jGleluf2xU7e4rFsGZpVY8mXkebt8cWy2DYoIb19U99n1KqsvVyKt0JHNbZui585WSFmwpAGlcuNdDOiHe0epwIXcrHEYZLnyPXggBcCgVxYONw8n4PAKYeAOq8AdKwSINhDCPu/YSnPd/Xr6ChiOPB/xAKCKvc3Q6YSimZ/jVz/cWlfrQoRXDNJlaYN6lBVjZaXLLJwBWOEmMjfw57lak1inv4M1Y5swueF618aRWQqrYpLbtnW6654/JrJ5SAfLfpcVqLqt1RgA122zteGurePabwABS5lVaVQ6uUcqE0ql+uroRIbo9b/adehU8DRV5KRtQ/9JpC4GBeDX74fmEx3zm2jTfdPjTzkj+LGZ/ZM/7Ye/iJvjT3raT3lbP+3xn3l8JwJBzEE2iQcOc6cVzYWM8FLiow2k1X9xXhscD/B5ggjOsyMNilFDpu+aDd4+K6RMDfYm84VXvjI7eXNl5jTPpSGLijOQd5U6PpOxVZTVcfXL1QlVMzeojgYe1tFL9zZzbTeaVe/5z2xxTGcifura8P4ynugnmxbg/Ig6+gAbgGpCfvwRZSOGjykkBjQPhRbkhjtm8q8+h40nCDjUrMfXDIYzh28yn9FlZuYAcJ9t89ktC58T5+iBw3LP5+eBvWVVDJrJKobr46wjoYQd2cupEju/VsOQBIMCZtsy7hM1gOg4l5yAZEh1gYpiMsVwfE1f6NyjHF+j/+HfQz19RcJeLT4kP7jH9IQ6HF2r6Oq98Yq7jhm5Xh75Gfq5StejutRymp7wEgBWyllzWD8hXd7Chj2x8h5A9MVr1LtPqI/k1z8Gr9U4DO36HdJywYjczjE2utmDHZkzhseR/sVhUKMi2HXiLGrBWulZcDfon/DxfegVD72iGIfds9UGkAA2lc8W40WxZPpfZBU6xOUBNty12ZuYMbDNZwYAzdDxrXNhfD2nHr9hX2IZPm2Esc/ueqKvVjqxvdp3zZkt2kbhWKYi6MzaNXu9zzgFD8TlOY7dh+ER2AdEDf08N8efcvwhgL908/1vAPgjf/w3fsLjP/P4TgSCkJYAKFz2dqQIRK+bAfpcDAZr5u+jl4yzb/ZLISx0XuGDteTks23BB3ksDE9MM2z3gJJpaBJwwNCSiSol3cgDrHgu/iXQptNeh3uks8vvDvctc667ex+yzT4kLk6y6lzNdOVsQRTzi1/nLEAz0O9R3SJQX34Cu54aiczWpUlZP6TCdklMIlMPSwvs/Rew8QL99b/Km9f7vLU/Ykx7HPKOv6sZ1h0wpwFhTKN1xc4zxcUytOuwpD2GobZztO7AjHw88XOc59avv9aEQ6oMAt5ek3VGb4bc7fg21xFYqg/jSTctxgARc6MIwkXZWusVkGWbwUhdSWSbR2duj8j7I2R+glwfYfOIdP8xyv0nqIeXTVbh1T4hLRx21qd3FAfUDHR7T59nIGUO+YENNbWOlFzWDBmOkPNbmhXtH3w2MDsLncY4NQ/QtWLfKdQcjOBwyUd3kNt1CiiwrGheAq8PGeel4jSteDHQe+DVPjUZ531WDDnhNJFvU8yeJUW3VqhLtdauqUoBOgWcC9EheQVQfXPMzhZeJaMYoAbMFYD02A1MfMQH4/Tr2G8mTh78Xu0ohxFgD8BZ0LsO7ycOkQNRFBLUS+X341rx258fcVkqfu2uw2WpeD8V/ITi4Rsdv2T46H8N4D8Vkf8AHBb/wwD+V3d3PInIPwXgfwHwLwP4j37ei303AgG4h+3dss9AdE7fSzPlDiEtIOjpaBK7pW7qkUm36uB+SG5yL01+ok9MhWz/kpmuG7Kgv0OqxIdPK1/XgRVt2LU4Eik5YsSMrZHir8VNcNeo97bO3FQ0E6cNNIgngIaFl2WEZSAklmu3d3jpC/aijRwD3PWtdhQAVmZm9s4zaAYiMcR8+Rnw7o8J7XSsfzm+5mzCzIlwJw4G6wpJA6bi8N3kfV8zdAKYeOUmIHrHZQggyo1xHXldOxLYDv2R79Iq1ErxtsdoAAAgAElEQVRrhwGAmDvHaQKcAyC1QCVhLlSRDUG3CgbkVDc1WiKWDkRszWeymnO/aTuVAqm1tWc4RCYHg5pRmYEpEDCuCyUde/x194DaH9rsCACfe3nLTV4zZwL+OahLaVju29BUvJWmokhKK0+WcqkNDqvR53heDV2/re/VK9/eReQAbqZPbr4Tukrjath3Lnshm5lLuUEl3SLweF8YVpCkuay8HxYd6AIoTu6sCyufocPq857krSXAW3PzZSNcFgbmCkG6vseSj00F+FoqxD/6uz6jmuHjQ4/344q3HhAPnd+nwvvsr37E6uSHTwteH/IzS9APJTERMh5/3oeI/A1wI/8EwH8rIv+7mf2zZvb3ROS/APB/gsIjf9MRQwDwb2CDj/73+DmDYuC7EgiELRtmJHyMrljbsVbDWokYUuH/e1G8HwvJYpk48GOv6FRRsS2aCsMhpWakLsoW0iIZq98854VqpltGxefSwHzrsZrfWDH0rFCoATV1HHh3e2dcTq3ZV4Y75OmJngAOR9VGiPIWghPRLPWoEJxXGo3XwytCIrsVMKOufh4AZ33KOjaUTIOI9kfqIy1XyN1LPn5+i/rwCer+Bea8Ry8CkyPWHasKWa4oxkFxlOuA9/Dd3wEAFii63QuonjcMuqizUr3iEm1+CigzbP/KA1hpMMpooZlmrAYUUxTX1gE28/LYoELCoVZDZ/xApKzchDRD9kdoGKFcCrK7xEkOrf0FSBnVobR6fcss1vkalnd8j97SK9WA4Q6aB4qtzc2am+eYdwyk6QTZ3VOb5/KW6Ci/ppY6oCzosgLQNkMJ8AOAJq2wVOoexTysVFqrUvuIc4H304IkHVQqzkttaKbQ0tr5/3MxXBcCCY4d7wuy9p/fd+EEts9EMo1Ux+LazAN0vmDXUa4j5mNMAlYGPdFNFTbvkOqCev8pxe3ACryaYXI2sTn8+mle0SXBxwdn6QvbuEjAP/HZAW+uK/7+44xXe7dFVVpb9kmaC9+HOP6CUEN/F8Df/Sk/+9sA/vZPePz3APzjf5q/890IBKBJzBzwN/NWkPcxO/XFULbFnFRQCjOquz5jKgW9C1j1N3OFTmXbkM2wV/ZOp4U0+qlsw+DRBevWm6ZrEKzMuClVEYevMnOOVhL9WI1YeQMkDeiE+j1zMaj78kJT22xQFm9FOL7dWc3oDugULnvhb6QWQBOlIgDKS2vmZqZXXI6fUaHUje3DECRsBcWtMSGKjkhMwCom110Sh3ZGxtjmzt5OiCvCWcQNtNY31tof2/ndYvbhhLyiHTSiSS3OtaiUdFhr81sIIUGz565VoWkPf996fY9gNVvnpifrDM0dUCstElWBWqH3L6HjCaXfNyy/OFsaueNgPq4PKOeR+yNC3A6qdMjKA4OwaEPX2L23qLyFhNyjOs/CNCGNj0ANd7UJWGf0uce+u8PHh4w/eL8NZteKpsWTXF8oLrwI0TchxRKGPCF8t+9T0+G6rhWAukcy13noHIWvNPwzFvCaH3PGANdgMiYGcD2nrHmbVkYCIzRpqsMdA5xDok0z7owtwkUyHoaEp7m2RCpW1riS3BlghGMv+Msvenx5WSEAfnDf4z6bq72i2cnuu69Fsz/j8SFnBN+G48NclV/yEVVzICWSMPJvTkXiWurikLttUScR9J69j0tt0tMi2/A4ud4MwL7o5CYmc3W9GQsTcvjf35BIlLDQRvQpxsWpjs2OpRTvXbD59j7WDquBA1FX+Yy2UWv3xDVYJ3+hrjmw9UkYLOKoBeHvHI5QEMU6PFBSw4lBMp2ciZwbysZcjkLWkSV8mTBKzwrJDKjEnYeax5C1Gf0YGJSKDwBvVSc5m2Cbxbo9Wy/tnDbyG0Ak0GpA7XZNVRTYHKno8xvBFY4q2lqDHCaurQVnuW+9e0sZcnhBRnW3kd0kZMBb+2yBTqethQY4Ln5PjkUgjOJfIxkO22cEIFRba+pugooTtvx112qow30LjHDeSO2PDfr5+X3fdLIqmOjsUuDspREh9zFMbdpCrCCyQ67z/NQUURWC81Lx1bjivBB7F/yZyKpp3eqnbwwAi2GbY3R7cgr88xR4dWy+lsOtTNPWPotKeJ3IXakz7rS4MJ9g8PsoNn/qJrEl/NATAXXX8TzvelZQWpbmABdr40Mdz1zcfsa/X4XjO1ERsMdvDf0Quunwcnetm41k8YFiOJXlBKxFmnAX5SI2C8KxUMtcZTO9mFY+vzoq6brWZvAtYAa6V+K2S2VVsHOMM+DsYvW2hUobdImwwgA2/sJp5rzhrldk77tPxXDoOugyNkmGRcicVGe6dqIw9z+QsjSUU93dox5eIX/5+ySC7V/gaS5IKsjuplbvPoGMJ9QXv95uZPWKAiAb1lKPwSoeK7CYQPy9HTttzlZ3PW/Ap7m266oCnK3D8Ra8UQtMn2+UlnrOMqy61wQAA9654mvSjJyo468AsmZkVTy5V0Bcwy058M8ndQxceQCsp9yEByXT3Hwf5EBhP9ye99OXrqC59yHzETpxmmndjhv73ScU31uvjUtiMVTvD1w0bZbDvzV3R3Sh0OqaVKdVsFb29GfrsS6Gl7s7yll4ts4AqFg7BoH9M2ik4OKQyUPH9uRdr+1eeeXlEWdZhPDm+Qn7fIQZ8DgXWGH2nz0R6j15oqQR9bK4NqwZ26xQBlvAVUl36GzFubKPbyBqTvMevSbUTAnvvs405+l2SM0XY0U5fIS90M+hVMPqASkSuF3iervvCes+Q/DJIUHniwMqeojQ/GgYug8WCP6iCGV/UccvJRCIyL8L4F8FEKyaf8vM/jv/2U/Uz/hZh3qvMtpBWYFOBHvvbwYRDNjMrau3fhSUCQ58cambgxSwyQ6Hh0FSvv7qaIbRcdrMyLbMKRZJPBYyANpaR7TWo5oiCWwKBonob88+eF3AGcRdz6BBJ6aKnAayKn2XnIuhy7umfirRG/OBc/gV1zygfPSbAICrpUaeo4wyN6dPd8C5JnQ5o1+vsH6PdfeSSB0/JlMMGc38Z5+ltegMwGkqCLrG4hj0MPApaaDksjNpTQRrGpC9RbBCkfOANdBVxj7zoVOfx3CTNHRtA8wIBzmS2fYuucwkYTNeVxFoIL9y34KddQfoiE02oRbgQL0mopJcCnw6w7rB3dty41UECqnUhCXvka2i7B68vRNGAhVwqQypBdXNZ7Q7ILnKqoln5j5gv+uVjOqlYt8lJEPT08pOlIz1llWcT8DsuPFW1NxxjLyGCrhXt2CBIHUHLJW6RDkJjllRM9q6fTEkHDpFunzlrOnEzTv1SEmhIJkvC2DiXIn9C0Kj07HZkDLwCHrzmVWhXPSivaO+gF0o7LrPhYBV3wIgCc/h2JHgWc05MElgqrgfv4Kcrwg/ZGCGBJt8vmB3I23yTY6/QImJv5Djl1kR/Idm9u/fPvBz9DN+6hE9zE45rBQR7HST+K1gNmiIDIgfooGbfp+oUxT9UwCtFQQwiNySbRTAVCoypBmSV7HGGE4eFILtvL2HbYAaf4f9bMNc+Dv7LJg8qIls9HnxTcGcCRqtJRVn73q1Y0lcOoCKmYAjVpYrxdTgnYbre9T7TzGv1jaPy1JbP/bli/um5IrUUffGPDt2hJOKtl508uvbp62VRvXN2mYuyW9cFW8h+NDWRNsGHb2yEAEk0GT7GU3faQ96m48VM4gjR5IqqtUWUJMABVtFqFa2XjXQhtUk+HWAJchcGQSscobQSHwj2x6aqf6aqQPUno/NSIYaQmjyFUGii/6/1NKSjqUaNMhkThgTONnPN8+Y+8S6iTVaDC3pCfvGWAPVfTfUJzMVxFn1Kg1eGyikQYHJyZa9bq3KWMNSC4MegD0WXo8yQzLlJHLq3Eye1YM5nFasYq0RlP0Dq4XVklXKnyDaWEDpDvSxAJqF57hyjjaYYplLux+D2wCQr4LUQ+oJWEeympPLlKg2zs2HOLiXfB8I/ryOn6ifAeB/+kWeTHr5Zt4BoBl3jN6+ufrG1yfFXMglqIbmaaygs5QZN7inueBhSFgLUFGx1K3HGoEkhsRAVBocYJpvel8HKgTMDvABMtBgdhfjTRjZTqmGnGjCfTVAxG5ehz1PViv6bBCmAizI6Ndzg2gGJh/w/ntZ8CJ3+GpRfHX1bFeATw4c7j3NLv9gij7FOSb0OaOrM4ZCSKb0B5qIKwleXZ1hKWMh8BYAF1rnveXY7/lzXgszw9uxbOxmFO8Hcy4Q8gIAM9kR1qq8+BzFDB0qYMBRVhgyr7AIsphn9LrJPTuGHVZh4GYmADBfOBMBIIvr43jfnnyPO9ppHl5x8+8PTUXWfJgOAKNlDII2DDfv5atRapozmZ5kKDDIiyb+b9aSlySC3hZgXTDLrhGkMggxLXmHaoa7PjWC2Xmp2CUhgsePh57VVKmGSzX0lRUBkyE0tn2vlNQebngFWb2y9GsXHhHQjtWwgwVEnOTnJkWrcK2sZq7bxfuDntc+KzKDgfdTABEs9W6fWlBNqXfk72/vMvCDL4hdVqQysQXqsFSdzg5osDZPq7uHLfh/08O+W62hX+aw+N8Ukf9DRP4TEYkw/QMAf//md36qToaI/I6I/J6I/N6bH/+4sYsBbrSBhohBYpTaADcOs8hYw81M2owh/pf2+ySdzas1XsDsMLtq2+/HQaiqt4ZusOwiaHovwCY5sZZt4NwUTv2GjvcYGfK0hnn3NgsRsEU1rpQUiIHzWukb3BAtzn5eqjW9HxPF48wgEHOJIBZFIAqY4OrnfV3jdd2q0rh5mBlWQ+u593VmxQNuaHOxtgmWam2AvBHw4N9zjyiG5hRm5te8Gh7nbZgamW9sWAFHDS1/nc8tuwRAZ63UM1t3rwakvhGaYnBsQsRQWwgN7SLtuQC1gMiKzpthjktW9ElgIg6rpCaVwnxQzP44s36KCa7VsGj/rM3TJ3IginaY8x7HtAkohs90Wi4MCr5eq6/nCJ5EEmHLxkE5ivhW/LMJ/kUAKzoNMtdWjaLWTTH3RiDQ70mu8zK7QY/fI3m4AUv463mlGeCFUAM24flWSDMSGnRrKcZ7jvcVVXgTGgyVW1EaHXk1F4KCsnxYGepf5N+vwvHnVhH8LP0MUCb1b4HX828B+DsA/hXgF9fJcNGm3wWA3/7t37bk+MEoeUn+CpEt3yQQxLJtkYavwL4TjGtIQqDpFMXzg59QYdg7NjsnVhjR7ggmMxB9WdL5uUmzbC9VmmFIbOSxGdIhyttI2KQpSjW/McPj1rDaphRZjN4LdFaLdpJjyOHyxf0RRbuGEz94RjraHsdsWNSwuhJpKHzGsFX8pN5P1YfuwLkI+tS37Df5+QLAtZLoVQwYp+rXsa2MNnA8eA97Llt2Hz1fVlR8NNBZ6r81OOw2iSD7PKJP4hDRnl7RTsjyxdKQSuZBqgx3bCVopnigGQBm7rpcne3d+wayuJZTR2htaCW5FlBAclvV4NmsOTeELTtFGe6IBDJgF250QqmRsRI2HJIMkdhUAxYk7JQ/W4ztr6yCRXpAe2Tw3Ka1spUkbJmUiuZX0MfsoLrmll/vtRo6X6NRYaoHDw10XebrDBkcZi8jOSaiqMODs4mBQSoqEuc/ZUGSDPX1FEFm9XlNFLYlUZNpXjaYtQlRTxBBlezova39xUDF58/FUFbDbjqRiX0raAiwHbS75+D6xi/hmx5mt+3jX/3jzy0Q/KL6GSLyHwP4b/zbn6af8XMPtlK4gO58YQuIfgi9ocYwdFioijXj+5CxHkt1iQmSVAYfOO4GxRgWhGY4Zm5iLwZ9RrTpVVyyl9/fDrF3/ovXtTaUU8BYI0AloEFSq23w0tNcGgMU4M/mgtYKKGYo5bZdRI2dF4NyCOnVgPm/9eUPoOuEi99YLNm3wCQCJLCKuSyUIQiNHyo6Uq4ASdCJ39wSkh3b3EJlc8uK935dKhalPHLMSCIgzNUgToRa6xaMCtCY2iF3cNdznpKVHIy1zV4Ud11G51VQE7xzaCf9my+o/WFTo3WmLzSjhm7QMqE8HBEOawCzEnOPBZP4vYvbLLLSCK+FYDuHtIkK7ROLASnTbCUVzg7MwoZR475gBVYM906sqj4LAAgEMJHGbgfQ4LkTo0e7L4q3RJNynTzOlSAJBz8kFdzpdi3Ne/UBtFCV5nugeSBE2YNsnp+w9nf0NfbgEEJ9rcpWoLcVTzU9s+YUBNxUKQiHFQWOdvPPPsTiwlws+7rpPOW6QDCooKZXGzM+PsMQR8w7iLFqw4caFuN7HsE3PkTk126+/Rug+QJA/Yx/QUQGEfkrcP2MX+Q1I0NQvr7jpvlYtDhWbzEEvpdYm1skEdUb4wijaxFmqdG2iewqyGAAPPunL2rgnvdZ26C6wtowLNYP2c/WgkIsrMj8OczDs4rk64fKBp1VoG30Zvz66hvkCvUN/oYXYdxk1LPz4D4kQWOcRuCL7+P8za9ftKWSPzdmFrFxlWroE6Gzs7ev5mI4zeRikLUaipHa5D+mspmxV69+krepBfw8qgesmMMcfJMMPgeARuDiUFoQ0t7w4IiyNEVP1LpVDjd+CdbvneMwIxziLPccQNa1OXfxza6tHSfrxFbYzecV6yMSk5IGVKFsRAyzI2sG0IIvcCuqCG5who1zYGgtwUgklsq2WvUAES3F8B6Y3bcg/JGHtCUlIlt1K8KNlxsy4cgIi1LNSOvYAtptIAS25MtEcaelBZS1GmZxoyERDELORQppdwdFxDWhQu4GhBCr0OmEoxYMCvIRgptQZn4m69y4L8HbiKD5TQ8zw7zWX+jfr8LxyxoW/3si8lvgPvz/AfjXAODn6Gf81CM2c7Y1NqPv0dsbk9PLo+US/WSyjWtrORjoLbvvchO7Emw3rd7c0bNnT9PK19olaVDFyMIajh1sa0R/vVNxVAZfa1oNq/J5qBt0NY61UAvpvNAL4bJWZN0CQEgsRw84ILSR6bONsr1e3Jy52+EylbbBvxhI2LkslQPtRJvCIQneTwVmuKkKzLXw0XTgzQKhwowvZhzJ0SKlshrqlMHlsmybPdsQ1nRwot0W7zVIepHxZkck7USbxehlIh8Cfs5FE44KzGlow2SAAnRRbXXdDVs4UD0eLCy8EABY7lHuP4NMZz7WZgoGWFQd67ZRxkBUFIfsjFu4UJ4INA1NOC2G5SKyQX9FkGDPkDZUF/V+uFUkrG1jywIkl5jIPkuKluEtYCGoBocuPcu4+3RDzPPr/RAii2ZYRdEFzyNkQbzN9ozc6P146jRlDMqNXlbCRfM64aE/uiwIcC5kfKskSJeQpidILVihbQ0Eqm1c0fhAWFyYcZ02Z8DUAbZrlYGUhfwOb9VBtH0OH+L4LlUEv5RAYGb/0s/42U/Uz/hZR2Sm5oPQnARzwEg9AEQbxv8KWxaublhgDUYaw6xYcNWAp6W0Mpo/Uxhq61uXGuV2bfBJM/MNERiSwpQa+kjb5gZwc9x30mSgg58QWRyA5sfcddLaSnFO+SY6JdnE9JYV3p7ie8qZPeQg44Ss9l2fmjAcBdG6dg7Xhb66L3apDWSZqQqeFqo5cghu6NRZvOD1z9h0n1CtVTnFpG1u0Tpg2yKCi2zIl3lrKZlwc8tpU8RUkHQV1Vro0UTAj2olrlGQxqoZMmozRaHmUfGNpDaop6SM6obqcDN5O35ElvHim533q8QqrCxsjQQ5LbgDokhAm0/AiPKCBySFNcbsUrmOtxnShh6KvnnyqmUR3r7EZm2EyjCsic9LdGPZx0cSbTcGSDSobqC29p22hABwLseyuD9Gbuic6pLh4ggy+AAbAGVJrLYN+9b3GT4Uz7qh7zq/RlUSnqbSUEHqFerkSLy5ADuRNixvbHuguepREMxlShzKesvE/6bHbQX/XTi+bfDRP9MhiOyRG1MMEtmSQdMcSj4Ijt+hoPPzD/M2cw7ilhkaPrwCDV/d64Zlj8cIoXSii/ACF293iGc4kQUn5fuL91/sORqibYoQ7DvezFfX1Yn3X80hsxqY8OBVxPnE9WDrJRQTrys5BztlwJqqIknGuhJ2OHpEPHbasOTBdyhm2CXFk+vBA9GOQxM9iyAI8ByrZ+1xA20CaZRIjKH7uBb0ifyEvVcfDPKbzk12NEvIgSw1hABpGLPzAB5zntYmcjnrYq74Ody5Cmpg1tVN4u+JXpm8VRQooWBpF5f9dqlpKawonklLtMWpLljXbW5zLmuRygRx97cMYLVtPtBanYK2YQZyhguaXxYDsvi8wKxtngAcCOFzcIm5Q22B8XYfewZ/vlnPxatAiVlLnGcM4jUBpbbAJ+vcHMkCUtsCaXdoCKzi9wIVYgk5Dee46sCJQI8BQKfWSGm9AlfrsK8j/UACxuwM8Naicl9tC5OfD3zY94Hg23UY0LKZuTj0UlmOd0KNGtgGj7wd+gJoqqPRMkq+qT3N3JRCuvf25oT/zcl74q0X6l8fO23EomCCvhtLK019ztoGyAB/5+obdZsbeHuJ1Yk9u4nNon21oU3WlZv0Bh2sraVitt1MtVpjlc7FcF7YIrrrFI8z9e/3HjADz89BJhFF17USWWXs58+FwS70XIh150Bw573/qdY2+5i8d73L4rwJPuf9hCaGNmRpA2AFxfr2neJprp4lesYI4t77RMhjYNmnyt/XdfKIy+HxThNmy+g9c53T0DZCdba4CDD0R+oq+WA4KgqkfKPWGvjKugnmrTPghitSNpVUwD8r3Xro81qRVNGhIqOiQBs5D169pbQJvZVqmHXw6o9rbjWXKbHtd2KtNrmNam0YfNsajftgWg33Q5jYoPFrALgvcoLWlXOUxOya6KqyBYGZ6CtZJwbKCJ7LlVWEI6nItYhqu24JWhrQ27pBRcvWjo3Heg/uSYVzAZcG15H6WNV9Oew2GNcC63osBgg+zOZtxuTmu3J8ZwJB9KP3KhCfDcCRNFHCzZXw0ujPx0ZLOCf78ICjipQOVEOimqmZocsbWWiqNDkBgKyp6dnwe2meCAHjVBg+3iesBpxmtL52aPAEIzRQR12rKjhQNgNm2yCU+8y+KSufzewm6yaGRT9abtTb4Lc2VdU4Dh3Pk56utVlpQhSSNoP0tRoJST4I/uqyYFwrfu1+aFXOu5Gci7s+43Gi7ecub5yHCqCXDTJ7XqyhukIXJ85LRIg48fcaxLoXQ0J4DbQN3DfGgO3C0SisgLqGca9ulpIA6jMJkL1SCY+BrET0LLZ9pmESxEFzT7XUyESt0rxdlH4RMZDUBJNdqwCkro07UKqhsxXZf3esW9tyrlE5bmvXgDY4DULZXgpQC2YMzzL4aluiEQnC5MGtT0QAwd9DwEZjGN/ZCpMMmGHwZEphkLp4+6U2pzYTbSq2LVL5tcJ0BjQR3ZQ6hJKrlBnIO6TUYbYExfPEapGMXAulwlNu7PmYc5Wv771+bdtM5uZxggCkSbN/qCAQn9Mtd+lX/fhOBII4QuNnnwVPizVXsLP3qCMbBpzE1BAUtSF0uiSAmrOQK4aUGl4/lrpOJ+qsW6bGSQn0zTbsq9gGxwBQLQZxjiv3cr3eZP3RpiK+fuMZrHXzX+Ycw7++nV4DbfC4VKKf2GvmPRpaQMDGUTi4L21wLigpwYx69FlFwB1H5xbEEffALiuGLHia+IAKzVB4zThnaBIFN283Mv1bFnhxtMvt70TrZ5cVq5OeorKT1lp4vkGEXMUtkxUg2zauQWTT+Qapk5XZf7r5OecTmxRF1UQBPjgiyQe31h+4IcUgFYBU5xuUpRnp6HzhBqkZs+TW/oOfg4BrMDb1hhiSTU011lTRDiraWpIAA5wocFnNKzE+/67XBp5orVRfT4GwywInjF3bsFwj23cilrT2F+i+ljgUDtKipY68jO4AmEHnJ7qt5YHBIBRsuz2SAfnmc2PCsQ20A0AQQS2k46N1ZblvHA/cGDrxyTfBySoW02f3wDc+DCi/IoigX+T4TgSC2JS+nj0FlLRPirteG4ROAaffO/onKdYCdAltkDoXw0OvvvlZ0zRpmjG1YKeUcRiSyxtXlhlSVxKF6oqqHJQtrs4Zsr/TWtGp6+5IiNJxY4os//1UnIUcYnrSgkbc4J1ybpHTRpSbVmrSL6uTglxnhi0xZvn7rE2yGwhs/tZ6Oi0cVIbxTmzAQEhzW3OMepo4sA2P4grDeaYaZZ8F56U0wlkSqpESNsob6WHILQMOGeQgQplXChHk+Xc2GKV4bzxQYxFYw4Ak4IZNxA2b9lAQsIBNu6fYlkVHfx4e3nNsLJpQAyLpaqYV0jbZrkxbG8l/P2YFIWgndsUQ0tLhxga2pebCXn8E0NADinMei6E3oCpQKvkwcf46XwBRHDURjlkLardrCVJSSjrIOuGA1QfkvGmkLNDL240H4ZsqB8TOD0heFYmSYLcukFo3q8mOfs/iCqKoFTo9oYoCa2XLyINN7g8QRHuIbb1qrI6ysiqJz2yXFWkdIWloQZuLjfMa80qtIZhE2zymQlr1Pv2JkuLPdhiej4J+1Y/vRiCA98yBRtlXeHnsGu0b2WiDVfbxPKOOEED4qHowiF5p8pK6s7VB02i3d0aXd67b43ry6wwL0xF44Lgh11j0xVMizNWDUdzIcURvnu9JW3ZstmX+lNPmcDp+nlt7BZgBnOfCm0gFHRRjMewArG7JGY5tkfkDhvfTNvNQiS3KHPbJSimqp2p87rIa3q8rDl1yXSdmn0uxZxLcd33CZSlYiuHQJbzY5RaQ4vyAzYhdNHrYtWX21dj7D3lkAYXSblu2Y2EbMB4r1do5BqM8/BKCCMfqwoNjNfTeQmnibl5pLJKRLfrzPngP9zAVIA0oOrTz4Hs25KyAdc8gpjUPDf5YJWGnFVWI5Ar0lAkaJJpLRBprPj47jdUfBi/uXWCaCcns9u17nZ44mHUpDJ2vqP1+40PEkNWzfGoyHVqGLfO5SWw07+f5ykpnvsIOQ3OSAwi91fHRlVq9r+86QoC6zDueBTsAbhyoThgAACAASURBVHvKqkYEqN0OMfLNgQ2LABCKsUEi5OKBCV3pSKADbhgf3/j4vjX0LTyifFw9CFRsqIjYbNum4K2FIHuJ0LYy0EEAN+tqm76+FpdMDohcEJGALTVwFAngCBSHI1LULLkSJxExnVBbXYRD0GXdWkEbWsjfvwKANChg8dmB2E84R7DC6D1zPk1ry9SjVVXBNknMIVqbRCMrrc/0kw6deiDb9JWWWhkAKp2iYuN/P61YSr1pzQhOc2kci9F5BLusrXVBFzPboKL+tyuIzEiyqWbGgDzQUNEbj6NVNgEF9s30WrZWkwqammUM7zu/xhEcktLrwFKP3twhzecOEOek+PdUveVrHL1yJEnRWr9+kEqtflTPqH1TDRXO1FMTyZVHF9OtpaZolUojnhmQUQBJkOS9fROE+dAiGejv0RsVPqskqGhzZpN1pBe1s2+lrMD5LXB4SQvT+Qz0R7Z+SoGUxybPIOsCYKEzm2boctlQOU70srxDsx8VBZS+DOGKF8Eg5QE9Nn2uSLpuuS/qn/WgDLxxUfT6FmFnKosPqOsKpN7JYwlmaD7awPNk6xsd9v2w+Ft3RJ87InQMG29NZaKVEpVhkLCSbL1kyIZHB2JBurJlQNJEaZ/owz/LAwXcaiGUbZ1bttSMz+EwQXTNwGO5eR+DVHSOHgo/gtCKT75x5U6acBu1kCgBEZtF8gCRhSio8EnuVNvmF14LTzM3QfPsnj3XDamUNJ4rTT9prYaxVLy9MqeKTF+FlH+VhLs+42leUZLiaV6btAQAvJ9WVDMMSYmhBzyjFfQ+gQ82dmzEpRqGTtscIGYiKmi8j04dUgs0XHx4IhRvGUVAjWGrqDSBuxiSGuCbdAGsQJYVMp5gu3vIeIJ0VCe13EOtNkG6oa7oux2Oy0hM/ZV+DXuAmepaXeGULaM4QphOyupy1YUyFy6I1+8eGCSsQjWjkwXW99T8URCfL7SeVAhmZPRlbgEmWmnmm38//6g508k6O7ppgiQHBUxPlMYuM+x6Qi0FOJ9QxzPf2+KSEp/+YDPvWUdAzi05stQDuSPHovj5aKZ0d8BmVTmMritkXpGWKzTvkPNA8bk8EDSRolJmoB+kYnIpa4U5aW1z7Au3PVmmbQ6xe8HnJmk2nB8ui7fv4aPftiM2hjhmZytGEBDfBOP3FFuvvZi1DSZcwkiEimGquGJmRUkDipJ8RQelc7N3NFHY7h5w4oyUGVi9d+pM1P1wBwAwobvrTtaW4vTR23QrzdaOdmw1VmLRu5wxlq2f3gTHKnDfB0xUW/uG2VRtG+u4wvv2hnGp2HXPpSTGpeJhl3BdKiYJmQxWAvNqeHtd0CUOFxcnfEUriBLdCnXOQpe0VQAf7SnAVo0toaHJcbitos84ovrpVDD4AD6gsEFyi5lBtJT6JCg3Q2GAbT9+ij5s9jZWaPn0iW5uKHUjJQEtO5blyk3z+t5ZqdI2UZnPbTO1fs8kwCrS4w9bn5pp/Ftmp+OpbVbWHSDTU2MsNztLoV6++O/KMm4CaRkIFu/eCszISSBXI4H0RmAUnvVaDXdlQVquEBeIu/VeIOTSe/oLfZCtFJQv/wHbQl0H3R1htRCb7/9sGrH84e9DcsfB9/4IqELvX0Fyx2s2nYGObSGZHC7aH3jtlkuTe0BdUXcvoPMJ1s3u67CDFiqtJhUcjZz8sQpWhw/HWsipc7hu3chqVpt8OKwiPf4I1u/RdXukbsB1qfhgYcCA8tN0X34Fj+9EIDDgTzhTBcTRYBh0cwDrVXBeKweoHgRC4KtPkanyNaQWZn9+06rxxgjBLcs76PQESxWSephjyi25BeLtTW4Vcn5Dm8PpqcEMWaKPPtQCBqubMqYbwKAujbmq64RhuNtQM0jOmmYbhqQzZ0KnDfkTqKhqhvmmUTo7VLX4QFqFm+1p8tmCb65mwJM/Ub3SiLZOdAWiBVXMcN9n3+A3nkRVw8klr6lFZA2xVAxQw7OWFIeC4dm8md0EaqSdww3X4fZnzSAGDCK9MDNslUHqoJe3DRXzfHNfG0sYAH/uAT+kqqN/3jZbt7UMEpWlnp37G4hj25B9A6u7e6JvAmJaZv6N4C4E0zm8kOHEK/cDEBC9FOJ2AqDvFDI+QRzC2dRSo5cuyl7+/gEoBRhPsOtb6IvXsHVBevGa1WwtsGVmErICsj8C+yMkd6wUAOj+CLuegfB5zj1sukByB6sV0oNQUs/Yo5UDzeQhwIfRZQUSS11VMhPbQL5WBytsUNNn97/bjloe2JZySYma3du6Fp/NbSiqD3F8XxF8y46MivtOsJggF0o5RMYfSATDJup112vLqGNxhZqhzmcSYxZtjFOZL8xYbiByjVTk2SC8JaTje76pQFz4HEHH9z4kpBAW5jN1a8q8ISmmE2/WZXT4Xubj/j7Ub+iQGIhyvHSHBl2toKhZJMedKk7TgqWyb78Uw1Tqs+y8Gge8hy5hKgWdxUyh4v3EGcBpXts8onr7qBPFodvaExWsGgDgspSvteT4t+763GYBMYcx26q1apuUR/T4U94YxgFztJsAFVakBARsm0UEwBhWd2I4amHmUBZImfl5x+arrLzk8Qtg/0DZ4siea4WUM7BODgbg5iVlgc1X2DqjXs8QN6Avl0ekV59CDi83+WqXtAbQAko6v2HvPAzco6IAPMnIDCzrhNrt2b4x+j6ob76UqXA0V11g9SbYTBcGk2ViVdPtIPOV0sxWIbZAugH68W8AufPzdEjs9QQZ9pC7l7BlgqjyHIc98qvPYCPlHPT+2DD78dxIfohKMhK+8gBLtZ1nmNuwIrNNmqPMKGkgTFcUh3LZWkvwtto6u5bQ0O63qOykzJDpDF0udCQTRfZ7J9cPNy7+PhB82w4z6Pgegyh614kn+adsUsF15c6iiYMwUWCKPi0XL8vZ85adRbl5PUF7zy4iK8xbxsYN3hezM0xlnXjzONMRInxZgC2AGxiqXB/d6Ly4ts3SJAyabksIaX1NWwVdJZLCM8ixSPNGKEYdo/ua8NV1ae2fxaUhllKb+BhbO9z0o7fPtgwDyCfHHvNq+PFlxlIqLgBe7bgRzauhS2jyFcc+4dgnKDYkUE6b3HfbvKP9hc05DqBRT3BAoqW1FGuosCIAYG2wu9QNAJB1w+Unoaz3XNytaz4jsP46noh08UOkwjqSv8SzSPbOPVCsCzf/1AGnH/M5+/tW9dXrGagV5c0PYfMI2R1Rz49IuYOUzls/DOh1OLKCdPMcE2UCUcozsoWlTDy+zyOSJySAtxI7chey+0hb3kHmC9Q3VykzcH7H9+rVGs5veW7LAhl2sGWG7I9NUdT6PVAAu564jjtWItLvgXWC3n/k763jYNlbTEi85+r+BasqJ5HJfGV2nl5s90ZZ2FparghZcP5Oj7BCTUJwhvi5qct8Q3Or0gBw+M0T3K5bBNW8Y5UnCmAmqu8Dqo9+Pyz+Nh4O3xSrwHiBVs/mPHPW6UztkzCuiHIdYO/SB4Bx04uq3/ypDcqiVwovmfX+o2cOSO1Yrqind+yxXs/Q+5cI1yxBaRjzdhPlYYPVmfcxPeMB0HDb7SaIaiOGi+vYAtedbAYoq4Pkd1nx0Z6bNnv2irfjAhUhlLOyhROtnS5xADz6xt55JRXtnGLAqz4xeJTQThLsug3p0lzOXHk1KbbWm8IlpTdobsUNUklu5YbRzFwCtbTv1FnX1khXUaUAaGgoFddcErpgYRkpNBeVWfw59yGWMnMzBrahJ4B6fuT/42UblO6Prb9ezyfYPDIYrDOsVtjlhPr0DrYu0B176TLsvZc+MQhFT9sq4G5aOp1hE6WYdTjAyuqwy8zsdp1btSjLhWu2tYweodf3LVOW6Qz0e9jlPXHv0wirhe+p36GeH1FP71CHHfTupV+Ndwy4XQ9bZrZ9AMjAREj8PhDA+/97to6AbZONYFarS3bfs3oudTP5cRe4ViGlDjI9odx9DLWKmjr3NhD6be8eHKY9t8AYiqJsdV1a9dTu1RjDpMxrvs5AOeNDHd/DR79lh9S1tWTaRm/G/u98ZclbfAMOrLQTvwBsiAcANp5hy9JuGNkdgFpQTmeIJtg6wzybqk/vnCWaIP0ONo+weUR5+8X23vod9PLIn48X1OvZe7BeqWhqf0dSAu5e82ZLl+0ES2HGlfrGmJSyQK4jM6nhHojSXzM0dch5wF2443TAdWV/9MH1ZF7sMi5LIbHNMelTIb4fYFvlxS7j0HHwDGO7Jwa9AFtH90OGQpETmh4Q7SQLdkmbMF9gxaM9FwinaM/t3bUN2Mhd1YDTVGir2DZ2acS3gAxrcha3MoBlpWELABiIp5fpDFlHZpDBDK6e6WoGro8cgtYCq2z11VJQL6e20dnk7Nr9ERi5Hur5kWtmXfh8AOnFa9h0ha0L6okZufY7/s79S9j5x6jjBXr/kp91vwdyxyCwTGxL5Q5WihO09k3ZEwBkOkE9cMQ8IjJju55QrmeUNz9qa7mttZSgLz9lsLp5r7LnPRPvv55PDBrrDJtHb0/6vcBPflubtUB2x23YHgH2hlSm09krBa+6SwEu3iLyFpUlsoS7N/8voaHdnhu4O8LFHC3+ZmNxA677ZD7kf8/7Hdh8Icq6JXsR6D/A8T2h7Nt2mPEm6veQ6/uthBTlRn1lRhcDttssxi7vYaUwy4gNYmUgQC3ArLDxAisFdR5bxidjx4HYPDJLzBQZQy3Qwz2zv91miyf9rgUMeLVhV0LzuLF426gUDuB8k2o6LqVA4NmQn5+l3jeCkAfuePONJ6R0RR3uCf0smwZPkNcA4L7POPbs618WnvuhSzh0CR/tE85LbWihaoZX+8777mgtpFKJz1QETHWD6D1OBX3eIK4hYieeqQf3ITZvU2lyGLcM3wzCXI8+j6h4jg1PDhnNwqRALieic5YL0nTeqi/NhHLGXEezt+rGbSnNY8vwbboyq59GrqNhB9kdIZXVYzm/QX3/BuuFAaIuK7TLwB//EPnuji0XLajv30BefYp6eos6j9B+B+l3qKd3rBhffQbrBtTDK/dAvm7s3phTrZNXrUHSip+PLYDU01ukF6+hmvg3H17zPLzCBRgMMNBaU+9fbQNuD3Ix+Zeug60z9O4l0UEAkAfUfs+N/ekdsC7Q+5deTS0MtqKow5GBaTzBzo/kg/z4j1gh5w71fOIaX2cGosMLvn5dt0A8XclY3h8h3UBzIM/26ZWdgKqtsmpMboeQmihEuKZlemLb7wZe+00Ps+8lJr59h/fxcT1BDi9Ybro5xrNNXRfIcOBCma8slyMIAERNjGeHzSlQUwsCADw7CiTFDOyOREmsm5YMAN+oGUDEb3qAmWR9+wU3ldxB7l+yIqh8D3q8ZxY4j9trxSHCQWaQ2TQDTqBpHrmRKWmG9UesoC69JhcjA5rJTqPoG9pANyqDj/bpmRFPnwXnubYgoMLBcJ83nXtKQ298gMV/3uk2C2gIoQp0WTYmuAufqRVUpGdyD4TzMttvgUEFBn7d+eBYamHmN57QnMMcuivryF61VdR+D/QHWJmhPiOwaG3Uwk3f14WtC9uNDp206xl695JJwbsvYNOIMk1Iux7rZcQ6TkilIu0CvMo1kV59yg1znZHu2YKR3bElHsUHmtDE7FYTz8FnRGGQw81ta2ne+jBjd4/kw9z6+BU3U19HLQgcHqCHew8MiedzvH82C7CV1S5q4bqt5EFYVE4ALK/Qo/s0iwLXR6xvv2ASdPeSA+p+h3o9o5zeOZDCIahXIpn0/iXvI028V+PIA4Nf18OuZ9j5ERg82Tn/A8j+CO0GT4KcsHl95BC9Q7serf3q87joO0r9QMNi+35Y/K07rNat/3l6x0Wce0c47DxTr7BSuPBr5aYJAOuC9OoTLtLx/CwwmOOrpet40xzuYfMIvXvJlgGA+v4NX0eV2RaY/SNaAaWQ0OQ3Y0DzbJk9K9r6tQB7sy0I1BWYr0AgPMrcNg9JFZg4J2B76HhTJQwwoUAXN1Uyl+e1NuMagL31p3l16QUidjpHVAHhncxvmkzFTf89+AdhdA64pEIGsjbRgwZrLTe9/utCrkEEklSXxt41SU3a47pa8+kNldIhCVQUqS5eRmn7d2tO3tpD/ZFZ682GI+vCzLIWVnnTSKmSeWQwiOsc5+HriK0ibw8eH5CP/B29r+jXGeV8Qn71iQcQZVIAwBZmvwCA4yvyTrqNjMipevUNq3KmBTDLfvyiVYc2HDck2nLhbEwT7Ksfojy9a0mL5A7wBMTmkUmG3yNRlUrXA3loyB4pM58nHLY2d7brI2HUAGx26WmALdO3X/o945VtrajnR8gyo14enWtwj3o+bfciOHeJhCfdv4TsjlQJ/eIPYOvMlqpXLHb1du06w05zS54k9zBXNeWCZmCJe4nXoUddZ4jzI2LY/s0P+6BQ1F/28Z0IBCgryukd2zSq3lbZsc87ntnCWYlCKJfH1s+VwwMkJdQzN/VWOQDbgLgW2IJWXXDxfwFJCeX0dluUmpiFOQuT5M8KXB5Ra4F0PerpHdLrzyGaoMeH9no2nhlEcs8y+JbF3O0dqgjvkRbevKIslzXDdvdsefAkGAQqmdbXdZNVWCvaAHdcOBuIIXJTWBVKJXQQPPQZb8eC62rYudRGEPBC1C1M0QkhhfvdAkU4IF4dwilCYTzPTZH1Ri/HGHzTypmHiaLvD1gr3MYQjT8gFuxwQ5XcIKo5BvZeIRF66fDE0Ma54YRIXdumVs8nfqa74/aZj+fW7jPfWNbLFdpn5NefQ18ekT/+vGW+WBfUeXT1T58drIszzb1VqOpDTKJzZHEilAfvIEY174L5wuAfa8JtLgXYLBjXM+zdFw3XL4O3nFR5DtGO9MPGC+Su53rThHr6ipt1IrIJZYEN+w1C6q/brls3NFMaqwnp9edtDhLXLgxipN9xI748Qjq2UiWzJWTrAj08QF5+2iDV1u+hL14TpuqfiV3PqJcTdHdAef+GQ/VakF68Rv7sNyFdx+Dtlbvuj9AXr7cqxO9pm8fGkv4Qh+H7iuDbd9SC+viG2czuyBtl9r5vZNeB+Fln70Mm4PIIOMxP+l1bcMDWLojXKad3KOOMOq+QpCjzgrwfIKreGriiLivycQfddbw5NMGU2jGoBTLsYeOFlUDesbWzOlnMN6VbiKho3gZSN5OpgK3CB+GG++3nQnXJkJwANsnmpKDZB8SN4q2RsfgPeJorzkvFx4eMzmUmLmbuc7DZS1Yweb2V41jLZo84uJGPwslcjvUPOCi1cipMEhrdUxMsGLy1oLeKlLsmMwCgSUbftqQA0IXKD1lHzoJSR2KYyw7AKslNAOp05Zwod6wcd0ffHBV25SZiPhMq0wTtMoPAJ5RYaJXdurBdlHro+y+2GcO6cCPsusa8teG46fuUssGA6wpZbiDB8Xmb8XW6oVWDdffQ1ode37MlGlmzzwJaK8jbT9HSBMA5hSPZdHck+qlWiPr6yQODTO7djnMkxNTXVhDTZB2Z/IwzN174MN03akHXMnqN99P1kOHA9ww0lB8lOOwZTFW6DrJ2wP5IN7nxzORpHmHnR5T3b2C1Qg/37d6SYQdbZ6w/+gMO7NfzzeVkgKrTNg/6Rsf3raFv32Ew9ht90BTQT1ucJ5ASy9d1wfz+BCsV3cMB63lEmRdYrUhdh3WcYN7jtVpR5xVp16OMMyQpJCmmt0/QPiN1GeqtoOV8Reo7aJd9tlC34WK/YyZ0fIDkbhu8Xd4xcMVQ0G8Ac60ZlOXZkM9qhbnUrwCEnIoAmtkXH6qTeoAKKi6a6/GEY1ipdERLCowr8Oay3ngH2E3bSDCuhPXsO0V2TZ+nmVIS6sqgixk6oTsYsG3yOfnAWASHTjnEdY17WIWmHpp3lEcIDsdybecuxds2QunhdCP7fLQVsAVSKhEp4+lri6G2qkIdKWTziPL+DTcN+Ib08PGm9zPsidQBml2ijU+Q4QCUBX23Zx96cWLZ/tjM6yV3ZNLuFHL3kud3/8r/zkAuSXYewcxzREpsT/bHhpjR5dIgpFJXzi/Widy3r37EYKKK9P6PeJrziHI+sR0aEE+vgmNA3DJigPdGzELWBdbvUNcFeHrHlmfuGrxVn34M64+spIYDbJlRH7/i34jhbVSzpcCub33Nb22aejkBl5NLVGhrgZY3P4LsDkivPm19/jYE1oyaelZCeUDa38OmC2GuN9W6AtDDPeG8XgEB4HXwzyXyfj3eb+ecOQT/UMf3PIJv2SEiHF55/1P2R9g0cjH6jXL9kgu5jL5QlqV9XUtFetn54yuWs5NYemaBZVlRzyu64w73v/kZ8mHf/oatM+qyEjHS522jv9FokeMD7HpGuZxa31jvX27IJR+a6f4IPd6jTryRA5EUra0IKMjDZsnnptzW7ZtgF7A5VS2VQWB0XZRwOFsr4aG5DV83QMVaga/GFR/t8gb3rETpVMizv1GMVpxxFKPOT1Qk9HsgkS8kOAC0WQAvgDnMb25sXXWJBkog74HdQ+vpp9Mfb164AHvoTvayfu8ELSpgWrenI9bBcfKupmndAJNjQ5oAwSegwYl61l2PH3EDf/FZI0cBIOQTaF65TWsK2PgI3nO3br/55+ZdY8mGaKG4PDT63NpFNj61VojevXTIJ1uHAGDlDKhCMznx9fQOqOMGNIjqN/fQ3QF1DEMcbfBYpD2Hy6e3zM77HXR/JJS50jtArEKPD2w3dR3fB3x2UplciUuu23hpyRfAgFsXb091HawW6MNHDLw+HLe8Ix+h2zmTewC6PdL1LZFyfUXy92XLgvLmh5wrvP41yOWxVfz16R1sYXsOALrdEen15w0NaLl7Nvv5poeZoX6vNfTNDhH5zwH8o/7tSwDvzOy3ROQvA/i/APzf/rP/2cz+9Z/7gpp9AJY25Ecgf5QGGnk/oM4ralJu3DOhfnVZ0d9vA8bUZeRdDysVVivmxwskKe5+4xOkXb9l6NPYSlFJCkWG5q7NFqRDuxnLmx/xsegRgzdu4Lb5+459LsU5DLNnUryx0qtP4g36cK96dul98KcJsn+B2u1RJTXzlti0bzWD5mIY8rahh9HHtHJ2AMArgIK9S1Dvs1cWLsy3+mvEawIhk0wXrbDXhIrLIlQAdSPJrTe48CBJhUyAuO2gGerhlWPIhTLORnN55B5YkrcFjmwNmTG7tIpy/xn76fMZUlbU4Q7B8ObGMDRkTpxAG9wCqAeqdur1PYNJzGIAbvCBSU+Jm0y0TTRx43cMfBtQ3xrVNM8Ap10HKTC4Lpf3KG+/5EZ/99JhqAob7tjiWK7s9efOIc1+TXPHeZMnDuaQY5t1Q66ppwI+NNX9ETZp26xb1RpzqBtGdBtEY0Z1fkKALhiAOICWfrdVr14Vo26KrZI7kuNuSH1NkqKikTshQoY9yDfQ6ewD6dLabuU9W8KBGupef4769I6DcIAzQk1UBtgdt5bxBzi+rwi+4WFm/3x8LSJ/B8D7mx//vpn91p/qBUWek2JqZR908EFr7jEcH9oAsBGDhn1DgKAWDJpQrhfUhS0hK5WbfAzbKjfpGBrWJ7aJrFQPHAXrE8v0tOtRXaStjDPbSQ4r1N3Bb7bOkRSVCIhagPHSkB2BdCAc1eUtnJUJDwLBKLY8AMuINF9oX2gVaf8Cfd+jGHv/l6Xi0cXkYmB88vdYbwhj46p4feia5/HdQJXTvl5xzUeYGUa4wYu7kM2Fxiuh+Q/QVznYxBsiBkRDOcx1Y3dfeU63EgvD0eGfE2Sd0HU8r3p8DT2/aQiQsrvfhqlBGFR13sCOG7wL+NWOn2Wansg0v5UcyNSxl5lkvnJ8zQqjOzRxOYrN3TedKb6YB+awS2zWjWNjBQMc/lKu/NzaV00HqK4cMMMHursD0ovXqIeXwNNXbMWsb3n5rmfI7tA4DjaeufnWus0FbjLzOAIqCnCgHYFEwKrUlgUVZ5Lb7l3kzqsLPd47Ou/aCJXQ1IbO8Psv7qXbKjaChfS7hqxjJZW3ABrXwyuuenjVZma6XIjy6vdsicKBHcce6f5j2Ls/Bt5+CRl20MM95x9eQWBdgF3HClzT88H2NzzsA1UX34bjl9oaEuoG/3MA/plv9EJmjkhwqJ4TVerlEeJtGJuo/2LjuQUCu54923LIWS3oPv6MC97JXtXRINrvsDydWVWUgvKGm3tUDKnjRq8psZ00zlivE/J+QP/yjuiJeYTmrmUrALYbzfHlUdWwwslto7KUUPs7hIJl0POb+uVKBqjlHuIyxjKdkNykY98NzA7vD/iiHmgP2KeGuhkyHb/uesVdp43klcZHyOOJG/DuvsFRd9jYwrMjg6qhkbyqt6ZEuOne3uRNLmMZG+Y/iF4cnrqWvbdSlld/afPu7TsKq+1f+OZPvkirkMIxTrQhqZrpPLb3Ehu2lJEBJSRACs2FLGUGFVEqyTrxKmQ+rNuQOAh5Em8dWeqAvG6OX45lp1jac9kQsYr6/scN3dZIh7U0JI+4DEV9/Gp7H5Fdd73DQDsSybxPrrdry+Wioyqw8QLTworjcM/nOxSU73dBff9jyMtPfU1uRDz11tttdUU/45h1MSABAAIS7byaFjQ0U2wv9ZQOn55g/cFF9W4Qc4nVSO0p30500drmSFgnVtbHB+R/6B9rci/WHYDpCbpcm54SZxrjh6sIzL4PBB/w+KcB/LGZ/T83j/0VEfnfADwC+HfM7H/8SU8Ukd8B8DsA8Juff7I97u2agNPV8yN1UxwBEuJgdR6ZsT89tQog7Q8ctHlWU6YJ8+MZ3XEPYMRyvkJUcf3S4Xmniv7+gOLzAYBzhToTPbQ7eM/18MDNIHDUQXR7egdxdmYj/uSB/WugDdFkHVkJhJSv99GbXo5qc3+KDNt2D01Vs/2eCNK7P8Jn+xdA9wmSCl4MFJ0rLsNNFVDe1hIENaC9dlhGJhVUZwBHEDAL5gD+hNSDzBdWNoGUWUYajocaa1yX0K73bN18DFUciQAAIABJREFU7iEAusrHgm/QhNUcWtt4Ab6pB8xRyrKZrvv1sBA4q2urIsJ393boKcu46eHEIDv0gQBsTG8HP4k4jLVs7a+Qh3Atq6iEBNjIVLXARrp+RUCAMbjYhQWzdB3qdW5SJ18nHbJNmWAr2PNvkhGPTIbmjSwXlbONlzYsFx8627pA74/e/qo+TyEayW4lGsx4rX3Q3kTzagGuj5R6uBlQIxKg+ByCJR3IKReja/La3mpriKIyo3YH6OVtu24y7HjfWG1qsdCEuntAKiSQRoVUn961ZPGbHobvA8EvdIjI/wDg85/wo3/bzP4r//pfBPCf3fzshwB+08zeiMhfB/BfishfM7PHr7+Imf0ugN8FgL/+1/4Ra2Wna//YemmkFVvmrST1m0FU26bd3R9gtbIt9MjFOb09NfTQ+OY9pndPmE9npN2Aux98jOHlPeGih5seKLD1mNcFdVkheSFMFWjIpeXNm4ZIygdHOjjcUF9Qa6iG7Z5nR9Yftx526ulpsHobwgduqAW6XJhphWqms47bhp56pPMbfHZgi+UJPa4LkUB94iygW69I775kK2U4ojx8jskIBxUnk40rDUKe5toqCZWvMX2DixGbqfv0mmYGgVtmbOcWhp5pWh7a8DuE7jQNOC8V+2zMnBdnWHvPvaaOZjPVs0bXoIFVDnJjQ47ZxA0hKFzCAECWrZ/frp0PkLc5hm4w3um0VTvFA0Co1ALbhhgMWDeaQV0bkie0qMik3ZMoBU9sprG9hjis1ZwkZVEhANv/uWcQ9+/1+LDJZKTUEhJi+e9RT28h0xV6/wo2Xdu9wvXStfMwzbD+bhtyh+FN42aMDXWF3R2gV2DYP+PGMPAuW9Wwu+e1W2fnXISeUKXctzlxrrrQXrideZvq/2/v2mJtu8ry9495WWvvffY5Pee0hdoitLGowIPahmCM8CBiIRLwlvAECsFgNF4SDTR9IRISEPVBiRhMiGBUNCEqMXIpJuoLiFS5KkjLtZa09ELPOfuy1pxz/D78lzHm2mufc9ruG3uPLzk5a6+15pxjzTnG+O/fb9a1N8Ahie1QP3PyPtQtMGwp+d9Cxf6TBTPiEvfbdyv2TRAw84sv9zkR1QB+FsBt2TEzADN9fQ8R3Qfg2QA+dYWLiWazZjnFU9RnziM+/gji9obkdSvxW6U+VFo97VaC8f5wGFCtiAbRPu0GN9G7hx5As7aCanqj+/st4DyfXwJwCYO18ptOxLqYTIBpilcAQOzU/znv0W/PQFWQFD793LOJYi9cLZm7gi98G8GoAAD1QRMQt+Rz8xP3nWSSbFwEmzmuLoG4tSELpxWW0+rigzhDAWfynq+26KsWPF3Hd7CCxy4NAAb0qgAJW6jQQlQkvD/TKJbAHOIeMnZKAKCqTj502zCtA1fVYAiNdJ4y4kiNE8yzhvXM7G08BwZqq7ngqGm3DcLQKed9o4Kn1ybpWj+g2iZrw3jb0LBgMfjGZtaKTTMK0q+X+sTvpN93LqOq0eCybFbUbQHdlm98vLUhzV0seweaKKAplgRVGGZbGHTz5u0NtxoB8++3Xl2bF4whDuDWagekmp47tUYBV1qEH0u5skIl6ZVGL6FV0TzfAtU9qEOy2BrdrLUz32gZVvVIuGLtGrlH3Sz1JrBmM/mGb3Tsdg9DDVQVwuwSrOIZQ6epqOoqVVdWdfY6ocOeXRIhNHQ+93P+MGhXtb3KGiquob3DiwF8kZnvtzeI6DoAjzLzQES3ALgVwFeu5mQ830Y0P2iMADS3um4RVtYQAc/4ARrPKoq2GCdT0eaqCkAj2RV1g7i5jdDUmJw7I37YdtODyBb8Ne2eKiP2sgrSCKu0HGYz/6xem/p3Q92MqSmAkX/YKk1peiq5ETIuFf9+3UqRTcaCiRiB6arQblg+dyd0CsHcJ0RC32t+6Ok6ULWYNWuYD4xLs8H7CgzEmA8RA0tf54GFWoIg8YBpTdL3t9cNzGiGlUESlgnVaNFe1WBzIAlyAmi0OsxoLYTPLhXHWYVxHQjU95JBpRlAUcdIzOBQIVIlDXyMqz/Ucm2S5AHqtoXqWAPtDLEKaKatIlWrt/vtMYwwV0tN2WvVOrAGKM79xBE025A019iDH39YA9gaA9HnZtln6OS5xVkiNpQkAs0G0nRoaqcIa+tSlZvPf7MQeqFi8Lz+QTZw99NbSvPEiBJljsbtxKOUZwWlmMQAhChdy1oh3uMaHjOB3j8jw8vTe7lJ3dXcfWkClJP7EYDUb7RTMK14Ex2vqZlqE5ootBrV2euSpd9oSmrVSv/qxx+RSn7tuibtNVMW3l7gIAQBEb0DwMshOtZ9AH6Jmb+jn90J4HUQ5+ivM/NH9P3bAPw5pHX2PwH4Db4CZ/ZhCoJXYewWAoAXAvhdIuohP+4NzPzoFc8U00SKFx5NG2qogCBEWNX5pzuhGDWNu2loewNh9bRQR6vp7Br8prIndj1ity3B4LoRTd+uGwLCFMkXCjgNrhSyKceQLiYTCPWaamiTqVBd2AZhJjw6p6wAAExEe47q4vCgWqjB1fWyyM/NUc0ujqqV40XJNCENGkYlGnPSrqoVN5QGlUGEWE9AmlJ6zaTCbGBsdNJ7uAphZAlIP2BpDXppLt3fGt2Y50NERAtMzuFU3BRm2MkauGrQIzjz6Nyor7UIzhrNNCoAojalsZqHPjIitZgEjUhwFC2Z2TuXAZDObc0KegYaFpeEbd5OcQyoZdBKs2pt5+itDn1iDcmnPVkHt1YVPIw3NnOB6D9vahOHcTGTZtYYERs1qpxUFeJclZOQWSNWqWxZcUqXkLslRRg0iVJF10Bopxo0FSFBoRIyOMCVBqGCkAZM1neBqspbTpp7lUMFMiWr134EUTPCTKHh6Kmh1hkNUItBfpg3BXL+rKpJpI7zbUATNLieiotoAvDWhVEKtvTx1kZTVZO6u1UNqrPXS8LI1oYoiY99G/HCIwinz2MvcIAxgrsB3MnMPRG9HcCdAN5IRM+B7KHPBfA9AD5GRM9m5gHAuyDx009ABMEdAD50uYscmiBg5l9c8t4HAHzgCZ+MyPsBQBkYoRMgrAlRnPnpXWgo9zwAyS6aTBHUXRTqRhbE5kXw6rps4pkmYdXL8ZKmotWtFJj1nQsbM7URKg9MWwFbc3pVLY5WUha3N8RdM1VeFu1rQJpm6sE9QAqlQp34XELwBircTGRxzDYwXHwMvL2pgmoNdM31oqE3K4jNBHEq1L/crqZgMkeApAcyQzqODQzv8zsfGCtVcOK5tko1CHkG0YWeMa1l0x4iY6uPuAQh4psGQjUQhD9Uag8mFWE2sHc4M2I5YNx32FSaiggtd16gJhuvMo7qpjyERhrpQFxNDOVtsgpnS1vUICMNvTZQb2WTsvjMZC21pPQeuoOnf0rqqNQD8GQN0BaJtKXxqbpNiQIQt4+lI1u8KqytS2HX5kV51pY1ZO4Y3SCNBkUozcW1FHST9qItWxLuOkr1KUbGSE2TsoqymJbzZtn4ui5ZLDEm2hWrNdBaCm5X0v2kVFUeZhdHrSTtnpK67KxfAOYXAG3sQ6GSTD5LPzXrGJA4jwmYEIBrbwJCwNCsqtU2kUpzpRFBU8nv7Dsf855t3nwwFgEzfzT78xMAfl5fvwLA+9Wd/lUiuhfA84noawBOM/PHAYCI3gfglTiqgmBPkXVEApCCXZnvNKxK5TGbxpFp8C5EdOEQtFDH/ZjD2OWSHed+W2vW3TQpuGf01npct7GFUFXuSuJ+DmyZj7gaBbStl4EtRPPv88ZFKfyZqj8/D7xtPg7ULeLFx0ZpchwH0MZjwKnzMq5KBJAE6LYlEK2a7BZXIOXz6bLCySGjpfaexYGw1TFOT4J/p62EVmLWRzCLQAgkPYOHCK9iNjfPEFMD+0p7GVt/4ioQyFgxzf8fA4JSUiRaZOXiYXaXVACDggatTWMGRDA3Z1wTFb90EO+E5fSbO06DmKxVsNRtpaIx7zFceyaXNGBvgG3zS6uv3f7vO6Dr0pzRVEvbYIU2QRvOK0WKVQpbfYAJCY6DcPzEYUcNjRUjmkUR59uShx8TIVxaGFWyToAUvF5wIYV2Klp3N/M4lbhidM5W2drgKDc7RhDG9QFWNGeps+CYBPzZ67OMrzkwmezYbKNWOzNp8oQJ4GjCfOLV2mG+BVQNwtmneaopb++Va4iF9uLqcC0R5XHOd2uyyxPFawH8jb6+ESIYDPfre52+Xnz/sjgegoDZqWupbjQn2wJeQitswdxq/RoREOZDRTK7LeXUT6vc6cbiyPPtxEgJOKeMuJnmXlFpZrice+5BYuMjAuBNTOJ8G1XTgDcvYFCKa3ETxHFjG831Dmvr6gfuPC3OAoMAPEuK59si1CYryrvUCSfRdB0UpZVnXD0LhBoXYoN5xxiY0MfBe/6y1gKYm8asgECMmoVkjojw+PaAWimpt4co/QYCRvQUTSC0QTT8yNZOUvz/iOz9lInhvRLI/PDGJa8ZKbaBCDunaupauMVECBo8loB1q2mdKW201wykEMYLWdodNqP4izeEAZI7Drb5aQtES0e14DWRuDNi6pmNYQ60a6D1SluRdiDqQSFKuqfxU2naJ9eNUEtk9OZOkW7zWi3O0E5hPS3MB55v6GG6pi6hkLlNsxTZiRQveiGYZeQYY2o98WwfqrOqdhMqsQfNew/0ustSieuIYrqmft8C6wgBPFlDsGY8QQRBrM7Ifcxoxa1okOZb4JUzUhDYLFq0VoeyKvfA3HPKERUWlLknC2ZGvPp4w8PMfPtuH15NhiUR3QWgB/CXdtiyYV3m/cviWAgCqhtU529wjYmsaQZ0M1897dS3+WYfpmuuJflC0oAxD8oWqma3bbwSwFPOlSGRfLnAAEa51mFlDdRKPEJI6eRa4l7S7I9hEK6kPA0wBNkslKxuFJRr1aQ3f3CjgWJzS6kGSU3jDJM0PeU9C2KzIi4ppXFYrxizKmCzi5j17J3MIsMLuQCxAoyUzmCfDz1ro3vZyBsQtgehrJ7UwdtMVoMQ6zEBNUdwqNAgAjxIANtaUVrfHAqSuGOuGH9Pmu9Y0NUK7fKeA1y16MQMwDAwgAYtCDUxmKABT6F/ptg77QK6rAe1bXruTlJtfr4BygOfgHwO+HmsLoHr1l0kpPUEYpmIK4PqBrBmMGrtuRvGih+d0kSCuE4ZYZ3xAHfrsPrXocWLizEDo2i2okW3gCxoSwFkLSSBMUOo0mJQ7EUgDoNs9MxAJemhxBEUI+LklLeA9Sr4oUtWRFb3Mqye9fnP7aq7kqS1aC/uug2Jd+HUebCO2ddF1HMPc3E9GY12PQGjFSt4tpG4wJ4qmMc1FU/pVFfMsHwNgJ8G8BNZ0Pd+AM/IvnYTgAf0/ZuWvH9ZHAtBAJCatqms3YNOlsZn3ZbUT+pHhir56XMK3yyPG1jI6DFOI60GdV+rbQDBgr5h3DPWPq8bacNnZfqaoYS6lViFBve8SjM3QdUdBIy1f0D4iHh7c0zBHSqh/iXh1YkT6Q1r3DuWr14RsNpIrcBjM91YWOIEq9oicloF1+KtKU2vGn8VpAaB1EdMRGgpqSLdwKAKCLoxmLZPsUcXWlSBvHDMhIAXHs033BJwPzQlzU4EWmId9WbusYdkKafuaQMzBr2GuSy8Cbrx4jdTQIPJ0YKhGui02gTb4GyouRXB7ZrGY3rvMTCqmaiTAPFspJXWA8vGOmuZQyJcEo9VvPCo1xVw2F6oY4nusnRLos/cUSFIZ70sTVaeR0wFeQbjb7LJoL2y/bn0s1Edh9wno6rWzDbNTJPUTr2/ygclG/XU+YSsgI5mQsFB1pxnkE5zfOb6lCnHUXqSbzwibT61+tjaj3rGlP2OOEiF9h7igLKG7gDwRgAvYuaskTk+COCviOgPIcHiWwF8UjMuLxLRCwD8O4BXA/jjK13nmAgCpF60QEr7q1tJvzOf5qlrZAH0MxgDo5nbIjwWKjXNp+rpc6nVHjWtd2SiBS2DtzY8jc61HMscMVrqSTYpjVrAuIcymgFqV+CFR6bJTVZl0Uwa2eS7WZZxFBBOnwMAMe3bFVkozaoH9QAgNlMloIvYHhibXe95+mYJGPUEAATIRn+6IWxHQhfVPFaG0y7KhmFun4rU7x8IW31ERYTNTquSyWzYRvs0M3hIPQds0+4joa0AatdTHEHjBmY5+Hc5YEADhMbjEIZOjx0JGCM3Y3arwNJaJeYk/mnpbZylN6q2agKHLXip7KAeLwgBHCT4bILEWmeaMCeOiJNxpSvFXjiNANl0p+siILqZzld9vsaqmVsB6kp0Kgedf25R5nUSWgNhOfsOy47KUzq9V7BQb1D2WarAnmmMZcv9/NyupOI6S4e2NUESOxkJI5vfJmCM4ZUnPl7rL219iblqgGHQuhsaUX/wZE0q2q0COlReJf6UcXB1BO8EMAFwt9bUfIKZ38DMXyCivwXw3xCX0a9qxhAA/ApS+uiHcIVAMXBcBAFBHky7IpMGkNRApzbuEj1vHNz9AyTf+yjIa6fVAFtQpkMA4NX1UbpqzhoKQDS4LEjtJnyTTPi0OJdUOZrGH4dEsFW14grRTcGDxJqvb9S8ALT2QTj6q8kK4mTNFyXXImS2qcV8HrHVR20Un1hKiYCGCGvakSzAKK0Zl7qIx2fuHdD2lvqTCPp99f0TOQupnCP9n2c0t0pFMWRuqD5vaanv1UEyizBYv2X9rhadWaMaa3rTBOl85q4nEgptSVEVgQIKqJtGYgq15agPAEPrAC7J/bd4AUdPgaTMJSG1EdO00dlmZBtuUO3XUlaNBgNwl4nXJSxukGZ91OZaGnwso83a6BgAFULJbcL5xp3PM8CVJmM/RaiSOygrmIMV0+WwQrqFZApup949z7J5zBJwIZNlbaW03FNSaLgyFWHoFeByHZpvuYstrq76b6BuU2IRUZ9Z1YirCypMVZGikPinnjoORhAw8/dd5rO3Anjrkvc/BeB5T+Q6x0MQGBfJfMsnBztfvHbv0mYfNkHczPVzxFGrQgAeG/B8bg1AwugIzCTm6AtUiqPWkhViizAOMGIuX/xWMGbxB73mqF3l9qWU642ZuIO0wf2INyXzAVdnzoOmp6TK1egnlK10CA3mXUSvFNX2D5CCMACu5Zt1IB3J2AvLbNPXOylFZZSoriUeAOkToa+rIK4kcy1Z2qkJlIrkQLMyKqOq0PNFTm4YVsoJ+4xZMpIqItSu9ksMABGecRR4QFtVkr1E+tyG1BpSpoUKYjaKg+Q3Z32eTtthbp4cVnGbxQ64nqSUU+hmTmoWqRCQuZqlwwJJ6AxZ3YPTPVQpYykbPy9cWyya2s8/qpbWojdPhTUXigoBI3HDgNROMssA4m6mGVdRLFNrumNjqSfpPtm4MuLBvCDP7h23q86tJc+wR5hvJrI+FQbmLiJNDeXJmlpRE1hdg+8HoQa1SZjvBeTR7c25jgKOhyAAjTWkBW0pN3WtOQgAxJUzaSKa5pMtHK+G9OKgfqStmc/a/cMLmwb1WYoiIAJg6MBbF30zd3oLazzTtCNKAM9uyq2H3qo+I8KZ86jO3SAByXYN3K5iAJTJscJWF52WIQ4A94P3MQZEI+90L7I+G5bCGX2TphQoNkbRvHCLhY66CmNhAMBZSCMz5lD3j7KVSkpqcvEMqv3bePWrSm0tLiV73YQkXGzMpNq8wZ6J9wPW5x8opO9Zpo8qEz5ffMOtF9wpyv7KWnyWb6o2d8xS0Dni3zGW05y0zpATBlrtwmj+Mbi1CLo+BJ1rcqNSHACUiNry2Ic/sdySaCZgTHx+A3ChEDa/k5QW+435NafriGYFQFxIpoAhKj26WUfdtlCNWD2Bkv3toPbIaMRt/UiDodVUqOZCJI7dWn4vJT7ggWp9NiPK8aeKJ5Y1dORxTAQBUtcny/Iw/wWR+OuVGXHk4zRTXFkug+aJ24QTHptupEW4/9K09H6uvlOddF46ryX4ABBTTQGqVkzWOrMYzMLwhZwqSj1rRVv6uW9ai5mGqhbfNhGGaoLIqVCLLO2SCBXETx6ZsNLA0zUBeS3UEXBtHJDKYav6Ncy1mnhx/W2r26ZK8sEthdyXHwDY3QyAN7aXY1Og2QRJRUDQ1FUAHrPoI6PrGYBcU+oSpOrZhQKQsny0viB/Rq41Z5lG4sKYYOS/smNs8+UoG6RZcUSpViHUYlVU+uxGz1g3r9z1kysh+d8WWM43yfw1kFhTY+9Kxkghsk03+93ePS1XZkaBeHMZBcQ1iTWZBbRDKAal/w61B9MddY2YVVlLPKWX78UIII6I/mxW0AKNio9zmCvPk1KihBqg7BmasmVVzupy8rqHheD4UwY/oTqCI49jIwh2aBaMNHnNr6r+WdfkNZuCNBWTKcgiNh8mdANBlTYG0/ysmlfPQxYgXFzYRqIV0ni4brwLk1kYo4WoQTAPPvqPlIVtQscrWxUB7JusbaZBm8ZbA3EoWRyQ8vVZc/cnllkTGZtdREXwTKBB3S+t1gGY9s9avWs1B8A4DsCM1JzGxqmbPZAET4C5nMhdQUBed4BRMHlCknqaxzbs9RBZHFkaZyAAHJShlMXFFZU3ugoSYGSGU1uPkG+q9pYVm/l8Y+0ax2nDNx+4PQ/bkE2AVnkcILMaKJtDplQsjgnwgLRlflmglXlBqGTV0BbEXbQm2Ddne0BBY12ryQ2UW8o25lzI5PdIP6NsHXDuxrRxDz0I2T3PFTQ7ZbYuuJmM0qjzeydroU3uL45gTCRZIv9te7R5M7Bn6aNHAcdGEHg6mjUL1wCWNRx3oi9AuimZcLBy+tkGgvn1gbSQd9OcDNWCprkkt9wXnB/T6sJK2lL+GzxDYr41SplM5v7MMy9sUQGyUbb5QsldXLpYKj3OmsGTbpRBA+7giJoCTrcBUQO/wTdtdeWou8j3E83iMXcSgJFlAMDTQ4dM097h1gGPLSoKiZQsV9Btn7NNhgKAlDYa7H5TyjDKFXyJb+ip1MsS2CwI1WIJ6blm1xIXSpc2r8XNEPAWovL5kLRmYGz1mUsqH1jmovLnVqdK3jx9MlLlzyI/BWXn7D2YT6PPmVKviDww7b8xd3Pa/NP7w6Fyt17gFFMAVOCNUlDTevB71m2D2GIFtFxTt/hZflyMACcXn4/d7lOYIeTu2mztjX7nXqCwjx5BEJKmM1lD1A0bw5DyvFVLSEHZ6WiSUIUdC3q0IJA2g1xDY/Obwo6f7Zxw+XWidLCyQN8OwWKm9IJZvONc5vNdHHMWjNuhxap/G3EQDpZcjbaGIn4soaKQiMIs4BhqUWo1xxy+wQQ0JGq7VN+Gsemv/7lHyd0sPH6dfT4K7C0u6AWNWwLLWQAyDrIpkFBS7IDeJ/9sSeBPUpEz7dxcLdkYFp+1FzPZ3yNhhdExo9+3zDpQLdyza7INFwAqCmiypIdl16hyl1aWcTT67pJivBw7hJiel/K4hArI0fjt+GUuuey351lZ/j2/gSEJGaTYy2jNZIIwVX03Xr+TUKXagqeMIgiONmIEucqYTZB6sssBi8cPaXEAbmrvlm2Qvz/yKucLMIMsanZ/p7VqtLG7e2mZOwAYbxiL18u/s7BpLXUv7HZ8Lrj62WjzCaaB5b+7ancs/p3n1yCruSGqzFpZRFxyvxc3CRMGi77phXMsPoHFzBw/lz33RfQxPctcUC1s5rueV8fsrqH8OSw+k/y32bEWq7LrLfu+/bns2sv+3k2JWPYszA2WjZcpCzwPC/dhISBL2X3yzCQ5cVI+FgVqrsQszrPd+spc5vd6y9C9xDELFtMVaKq/K0BE3wbw9X06/bUAHt6ncz9ZlDFdHY7imICjOa6TNKZnMvN1V/7a7iCiD0PGdzV4mJnveCrX228cC0GwnyCiT12OMOowUMZ0dTiKYwKO5rjKmE42rmDPFxQUFBQcdxRBUFBQUHDCUQTBlfFkGkjsN8qYrg5HcUzA0RxXGdMJRokRFBQUFJxwFIugoKCg4ISjCIKCgoKCE44iCBRE9AtE9AUiikR0e/b+s4hoi4g+rf/+NPvsNiL6HBHdS0R/RLSkgmwfxqSf3anX/RIR/dRBjWnJGN9MRP+X3Z+XXWmMBwEiukOvey8Rvekgr70wjq/p8/i0NTAnonNEdDcRfVn/P7vPY3gPET1ERJ/P3tt1DAf13HYZ15GcT8cezFz+SZzkBwF8P4B/AXB79v6zAHx+l2M+CeBHIQWfHwLw0gMa03MAfAbSuehmAPcBqA5iTEvG+GYAv73k/V3HeADPstLr3QKg1XE855Dm1dcAXLvw3u8BeJO+fhOAt+/zGF4I4EfyebzbGA7yue0yriM3n07Cv2IRKJj5f5j5S1f7fSK6AcBpZv44y0x9H4BXHtCYXgHg/cw8Y+avArgXwPMPYkxPAEvHeEDXfj6Ae5n5K8w8B/B+Hc9RwSsAvFdfvxf7/IyY+d8APHqVYziw57bLuHbDYc6nY48iCK4ONxPRfxHRvxLRj+t7NwK4P/vO/freQeBGAN9ccu3DGtOvEdFn1dQ3F8NuYzwIHOa1F8EAPkpE9xDRL+t7T2PmbwGA/n/9IYxrtzEchXt31ObTscfxI527DIjoYwCevuSju5j5H3Y57FsAvpeZHyGi2wD8PRE9F9jBZwYs8M7t45h2u/aejGnHxS4zRgDvAvAWvc5bAPwBgNfu11iuEod57UX8GDM/QETXQxqQf/GQxnG1OOx7dxTn07HHiRIEzPziJ3HMDMBMX99DRPcBeDZEI7kp++pNAB44iDHptZ+x5Np7MqZFXO0YiejPAPzjFcZ4EDjMa4/AzA/o/w8R0d9B3BkPEtENzPwtdec9dAhD220Mh3rvmPlBe32E5tOxR3ENXQFEdB0RVfr6FgC3AviKmtMXiegFmpnzagC7afB7jQ8CeBURTYjoZh3TJw9jTLqJGH4GgGWALB3jfo4lw38AuJWIbiaiFsCrdDwHCiJaI6J1ew3gJZD780EqrtksAAAB2ElEQVQAr9GvvQYHN29y7DaGw3xuR3U+HX8cdrT6qPyDTLr7Idr/gwA+ou//HIAvQDIW/hPAy7NjbodM1PsAvBNaqb3fY9LP7tLrfglZZtB+j2nJGP8CwOcAfBayWG+40hgP6Hm+DMD/6vXvOqQ5dYvOm8/oHLpL3z8P4J8BfFn/P7fP4/hriIuz0/n0usuN4aCe2y7jOpLz6bj/KxQTBQUFBSccxTVUUFBQcMJRBEFBQUHBCUcRBAUFBQUnHEUQFBQUFJxwFEFQUFBQcMJRBEHBsQIRPYOIvkpE5/Tvs/r3Mw97bAUFRxVFEBQcKzDzNyE0BW/Tt94G4N3M/PXDG1VBwdFGqSMoOHYgogbAPQDeA+D1AH6YhYW0oKBgCU4U11DByQAzd0T0OwA+DOAlRQgUFFwexTVUcFzxUgh9wfMOeyAFBUcdRRAUHDsQ0Q8B+EkALwDwWwtEZgUFBQsogqDgWEFZV98F4DeZ+RsA3gHg9w93VAUFRxtFEBQcN7wewDeY+W79+08A/AARvegQx1RQcKRRsoYKCgoKTjiKRVBQUFBwwlEEQUFBQcEJRxEEBQUFBSccRRAUFBQUnHAUQVBQUFBwwlEEQUFBQcEJRxEEBQUFBScc/w8zPEdtAhYQewAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<Figure size 432x288 with 2 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "needs_background": "light" | |
| }, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "yearly_events_anom[0].plot()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 31, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.collections.QuadMesh at 0x7f6bf3c69208>" | |
| ] | |
| }, | |
| "execution_count": 31, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9e+xt2ZbX9Rlzrtfe+/c6darqVt3qvs+mBW7bNBEhglGQQMCEgBAIgoBCxICEaIwBOgFfaQJKEAwiYtAgINJqYxODtvhAJcHGbpSGS/e99L19X3XrcepX5/zO77dfa605h3+MOeda+3fOqap7z7l0dd09kqqzf2uvvdZca801Ht/xHWOKqnKUoxzlKEf55hX3kz2AoxzlKEc5yk+uHA3BUY5ylKN8k8vREBzlKEc5yje5HA3BUY5ylKN8k8vREBzlKEc5yje5HA3BUY5ylKN8k8vREBzlKEc5yje5HA3BUd5RRORm9l8Uke3s79/4DM/zR0TkH4jItYj8mIj85lvff5eI/LCIbNK/3zX77jtE5AdE5C0ReaQwRkQ+JiJ/VUTui8jrIvInRKR6h7E8JyJ/WUTWIvJFEfkNs+8aEflvReQLIqIi8gvfw7X94nRNGxH530Xko7PvflHadiUiX3j3O3WUozx7ORqCo7yjqOpJ/g/4EvArZtv+wjM81Rr4FcA58FuAPy4iPx9M+QLfD/x54A7wZ4HvT9sBBuB7gd/2hGP/SeBN4GXgu4B/Gvid7zCW/xjogQ8BvxH4T0TkU7Pv/wbwLwCvv9tFicjzwPcBvx94Dvgh4C/duu7/HPg33+1YRznKN0qOhuAo7wtR1X9LVX9MVaOq/iDwfwH/RPr6FwIV8MdUda+q/xEgwD+TfvsZVf0zwKefcPiPA9+rqjtVfR34n4BPPW5HEVkBvwb4/ap6o6p/A/grwG9K5+pV9Y+l7eE9XNqvBj6tqv+Nqu6Afxv4WSLy09Px/paq/jng8+/hWEc5yjdEjobgKM9UROT3isiDJ/33Ho+xAP5xJsX+KeBH9LAfyo/wBGX+GPnjwK8XkaWIvAL8cswYPE6+HQiq+tnZtr/zNZzrtnwq/R4AVV0Dn3uK4x3lKM9cjobgKM9UVPUPqerFk/57j4f5U5jy/IH09wlwdWufK+D0PR7v/8AU70PgKxg8898/Yd+nPdc3+nhHOcozl6MhOMr7SkTkPwC+A/h1swjgBji7tesZcP0ejucwg/J9wAp4Hssz/OH0/f94K/n9NOf6yDy5/rRjP8pR/mHJ0RAc5ZmKiHz3LabRzWOU45N+++9gsM0vVdWHs68+DXyniMhs23fy5JzAXJ4DvhX4Eym/cAn8F8A/C6Cqv/xW8vuzQCUiP212jJ/1Xs6lql+6lVzPY/9Zs2tcAZ98j2M/ylH+ocjREBzlmYqq/sG5Mrz935N+JyK/D/gNwC9Jynoufx1LzP5uEWlF5Hel7f9b+q2ISAc06e9ORNo0nreAnwB+h4hUInKBsZL+Do+RhOF/H/DvishKRH4B8CuBPzcba5vOB9Ck88ljDgfwl4HvEJFfk37zB7B8x4+lY7m0vU6X0s3YUEc5yj8UORqCo7xf5A8CHwH+wSyC+G4wpg7wq4DfDDwAfivwq9J2gI8CWyYvewt8ZnbsXw38MuAe8OPACPzr7zCW3wksMMrpXwR+h6rOPfjPpHO8gsFO2zSGR0RV72EspO8B7gM/D/j1s13+qfT7v5qufwv8z+8wtqMc5ZmLHBemOcpRjnKUb245RgRHOcpRjvJNLkdDcJSjHOUo3+RyNARHOcpRjvJNLkdDcJSjHOUo3+TyxA6MP5Xk+TsX+rFXXvrJHsZRjnKUnwLyw5/+zFuq+sLTHONbZaE74nva9y36H1DVX/Y05/tGywfCEHzslQ/xg9/7p+yP+GgfMA22Tbx/ZufMxyTOJoNzTzxH2f/WOA6O49x7GqeGcHiMYTjcwblpXOmY8+M/Tt713rh3/16edPx3++2T5DHP8t3GQAzTv++03+PO87WOU9L16mMUgrxDsP1O3wF663t53PHn2x53vPz9fIxheHS/g5+8N8X2kya3n+njnvH8Gc4/z/atPvWLvvi0Q9kR+TW8/J72/U/54vNPe75vtHwgDIGqokM/bXic0ovxvU30d1Mg8+Pm4+XfxICOAxrDOyreJxF2JU1cHYdHzjdX1PlzMSKPO8+tbVLXh9fxJEnfPU6pz+/fY5W+86Z4Hqe4smRFbQd58n7iwM2m5/yY88/z483GX8Yy/81s33KP87W80z15t3G+w/ear0Hjo+PJfz+pFk0VNNoxNCL5c/59HsLsczEit8ckDnnSONPvxR/+/Vi5fb/f63dfj8zeRY3xMXOzfuQnOn8nx0knzB2xZyEC+CeVED4yqGd66m+IfCAMATHCOECVJsbjvOD5trkHmD7rI97Go4pcd+vk+Xo0BqSqD/e7dT659VJoDLYtb39EiT1qZMR7NIRDr39+vtm2YizcrX/fQQ4U+lx53lIac2WUlZiKK0pI3a2p9E5e8lwJ3t7v9vZbf2dlWJSfq8o4DpSgJsWhOinaXDMjAlVn/6pO7+kTlGv5en5P5kp8HoEd/GCmAaq63MPD3+dnOT56zhgBh8SxjE9CX36Xx/PIuB5zfyWOj343+005xnzOvFON0e17qhH8dD1lzO8i+bxlXpUv0ryKEcb+IHJWeOI917Ev7+fBcB+z7WlEgMa9R0vwbG3QN0Q+GIaA5OGNAzr20wTJhmE+AW7DBo9TytmjZwbDFOUbiscf9zsgedv5t2OPVNYhQGfwjDQdrl7dgi7qco4i2Zikia773aORCCkqqBt0v7PzV82k1IshqA6Utv3w0AtVN1MmT1IU2IutUifPeuaBunr6fdn5CV6p3ZTpu5kik9tKQCPqm7Tf7IVLikfieKhYmSnv2wo1X9Ot7VlZqTgkjAee29y4FCMzvx7vD+6ZuMPruH1NKg7JHqpzh8YnRT8xG7isRJ3dp7JvNha3Yb/b54tzBeWme6mR8s3MoJftroLwhGggj+nWe6LjcPhO5Yir/G4+t5PTNQwHka6GcBitPw6qy4o/OTzzY0y/y8ZjFpGXbc8W9rKI4L2GBO9/+YAYAjUDkL3tPDHH2WTJE+I2ns7w6Odbk1dp4FZoKd4XA5EVP2DGJ09Y5ydjBOjQ2yROBuQRcW6CcNI1aJgme35piucfA9J2SNOhvpmU8W2PsJop61sK8REFnLeXF9+upXifrgL/GPjnced+jCFQVx0anHydB4ZEpmegcdIqvrY3UCNatekYfjruuJ/OexuGSdvn3nXxRsNYziehn34/i4Bkdv2iEdWIu2UoCvQighDRqjm431p3kwKeG7F0L2TcTedO4zzwrGM8jGrynPbVowYifxaxe+QcREFJc2fuyc+fYb7mW/cNcSXHoONQnA6pajRGi47nz3kcHlH8B3moZEDmzlLeNl3vo9G6OD/BerfyQRMseytP9DjH72lFvgZo6KeAfEAMAdODj9HyBbc9l1v4dg45wbyFsm0+eYoyDkjdHCREY943hskbrxo7pvP2YlTNwThKZHEAIfkEF6W/q8ZemjzWdN48bsljSmPG38JJRWxbCCCC1otDWAUOvNasyA7wZ1dNn2eKs/x7K2oo3vm7wT23n9ccjrj9G1+j/jHHTGPLnrOM/aSMm0Xy7O3ZzK+zeKpzCCt91mp2T9JXxUjEERmS4XYOQjJa3qN5vwxXxfHQMMwjgGSE1FVT7uN2/sA3dk3z8932ZPOzykZNHDLuD43rePh8LOIZHo28ynd5nIcRVjFY82dGtsXpfm3XyVnKPwnJUMygmLmHfksRm2K/ld+by20Dw3Co2PO4siGvGhtLMhYazFmiGI9nExkcI4L3o6QcgYYwhatp+4GCjwHtd9OkTd617nfobEI+DtsvEwugqk1B30pmye1kZAmb04udJ3XVpFDcTS/MrcmteRzJSEi7SGF4Uup1O1Pct3DdlC/RqjvEnmNEol2HZDhgptSF/aToweAEQJvFoUK4hU2rbwoer74+9ChVzfPz1Qyya6bvZ8cs13PLc799DpwpYbQu3rM6875j1RXFdoBwJ485H1fmDJqZlz6PTIpxqLtp17oqUUIeb5lP9aJEN3PoStIz0Pl13cpBybCfrt97MyxzBZnFeVTTfa9a++24N4M9dxDSvsDkVMwhl5mh0z5BnFU9OT8l6bozr38civd/4ADVtUWtabtFwaR3Lzs+M4ZbDBYRPyk3N4/onS+R+Luy2tL9jNv1tH92qGa64VnJ15Qs/ikgHwxDIM6igDzxm+7goWelqyOTEoohbffmMaR9ivKev6RxNjFziJsm7Pzlycc9mMhjP0UMabv4BBnlfAMz45OTxFVdDIQ4D97bcar6QGmKRghx8npzFACmHDJkME/85ZzB3AjMk74Zl3du8nRn3qtW3UGuwbzcrHwq9DY0lRO6GXbJicvsgcYRwghNVRTmATvG1zNvNiLj/kCpatWVa5A4or6ZGb+Z4q0aNKbci5sU+gHconoAx8yNU0kuPy7Cyc9+FiEU73123wn9BDOGUO5JeR7OJ4PVH8I38/xVgbSGCe5L/8lcX86M3UG062I5llT19L5kA+Ed4tL+ad5Khf0LNi+in1g56dix35V5PM1rV/6WHP2maOoRaCcmY+2SQasmGEppDthyB4ahGK047ZNYhFLb+y4+vUPPTOQYEbz/RMsDLxMseyxzOCZ74lnG/gAiIkaoJ0ORjcZBVHGbL5//noe9s0Qw1coMzcwbK0p/9tKUF6dEDTXCYeRxYASSUdKYsOh54m/YF0VOCObR31aucJgEFSGu7h4a0HlCNo81JR3z9wCxarna2+82QyQm/VU7wYvpeICoNQpENW+qSYXtzhmM7REURVToKnvRhqg4MWMecNRe8OImhRj6iRGTjFiBOjQiYbRoBJDd9SF7RqcIgRCmv2dGLBvC21ALCR667dkXgzVT8iXiyJ52DKZ84TDSmsMgIdh5s0EbtiUxO/f4BQ5yGtrvHp2jUOboAUTaLm3MrjLFP09uz/IAj0TYGf/PjlcNGhxuFplKUe6hGIGDyDdH6Dm/4PwUsUCBQIsDNfaWq5uJQbYzosbt6837DcOjlOunFAHqoyF4n4mIJUzH3l6Murbwc+zNc5mL85M34ReGdw72AspM+R9IDLOJHQ+Upfa74t3n45fzOAdjT5yH3lCMzWOLzKraXoKcTEuhLlUNu7UpkGGfqKvpRWpXaHdKXJxP3iWm6GOzKgqpl4rtEKkS7c07ISSt3aQ4dxRPUNL2mhgNC9WgiAjb3sYcohLUUTsh7gb7N12LFzt27YTKCY23z05NeV8PynaM7EPktPFF0Y9R6YPSx8jlVmm8EJVyHCdQOcGLp/EVvu6QnAuIARk2yNhPUEm6B8RoUJBGdL9Bh564uS74dtxcmweZko3D9QYNkXG3R/yhQtXEqonDaDmb9H1ztqI+WR1EmNJ0BU5xixVUNa7pkMXEHlNxaN1afiD0B4nrNOEO5i5jTwwpFzb2B/UQc3HdqszdiT0Xy9h06O36s7IHpF2UvJM0Cxj3BqWGMM1HmAzf8BhyRSJL5FxBhoH0VlI3K/iS/E3wab6enHPLhkecmxyxtrPootyiUHINUjVmcGZRuVt1xWDLs8oRHJPF70NRCr6vIUyh91ypZ696HiEkKdAQTB7enCI5jy6GHqjL5Mz4acE2oUze2yzs6QVwBzipfYdN8qYz5d50ZBaRDgOZP63bdYoS0gvrYbz4MGFxweVm5LT15oUnrxuFIA1OTKG3lWO+BoV3QisR0cD90aEK93eBVe2KcQgo+1FpvCnlqFBXQutNOQMMEWoHbeUQVVQEVQhqyt0LRByVRk4rOK09+whOSMpf8SJUHq72kaDKENUMiADRjNUYFZywD0qlUDuPj+PktcdgHi6YAQwB6deE+/cY772KbtcMDx+yv39NGEbG9Y7d5RVhGBnWPaEP9GtTRs4J9ck0h3ztcN7hu5rmbIWvK9o7J4hzjNs9GiL16RKpE9ziDM5zaX65boUsVjY/2hPUV8TlHTPevrFrSAlwVJFxZ4Ztf1MUsniP9jukapCqwa3OCgyiu80j8z3u1mYAuqUZpnZpBjERKuJuPcPyE5ngdvFhCBMbLr0jUpuBe4S33wdTxikycYtVmt89OnBoNA7m/6FRUcDdimDs/Qnm6EE571TX0xT2YM6vGZ3cH57jGckRGnq/iYhROGdUzoKvZw8h75on7RzGSVi/3GL55O8LLxmSop4iBPOyDJM/wC5vY59QvKDJy28Oqh+lbg4S0251mrbXaAj2UiUcN6zuEk+e50Zr85yDsh2VH7u84dWHO4YQWdaetpo82ueXDS+dNjROcCKImBe+G5UxKl7MQLSVmHIOyqISfPLqs6cPFGOTowvz3pUQNTGTtEQWgu0L0Eex79EE8wjLWnDjHunXSBi5szrhSltCqgWrnSBAVzmiKrWOEAZkv7Mka2JOSUjQybBFrt4gXj8grh8S7r3K/R/7Aru3r4h9grOSZ68xFi/f156qqzh5+RxXV7jGjuucwzX2qgzrHVXXcPLKC/iuQbzDt+30DFdnSFXjTi/w53fh5C7h5Hnw1dSZRixSnDN43O4hhemUoC1jQGkxKJK5AauJzQZM86/flXkaN9cFrvTnd5Hl+cRw8g1yZnkUZzcB3V4Tt+uiwJkrzRlkVd6fHWWfmCEaKPRsqWt0uy5QbVHoSVHHfjdBuHN2Xq4RiIGYchiW24mH74/zaIru1VnBpUL5fX7HxftD4/CM5Jgsfp+KxoCrzFOYGDsJg266iWMMkxd/u85g7q3Mk8W3jcYsxJ1T34QZ3DPHS0nGIEcM7WJiMcyNT2IRybKbfp8TzeOQePSO8ewltD1hrTU3feSlNiDjnucWJ0CHE/jy1Y4hKpvtgHPCeVtRe/PSt6PiRFn3kc0Q2AwB74QPJe/3ahe56UfuLGoa72nShBcxhezEPjcOXPKKgmr6zgzCGA1KAvPuclSgmHHIBgUMkjOcuoKxx22vODt7iV0yRlWGmfYPDcffJ2ZIHJHQWw1FYtC4zQPYXRMuX0f3W8Ll66y/+iZhNz0n3zVU3lN1Dd3dswLv1KsF7bd+3BRytyrKDEyxDpdvMay3ADQXJynJGouhLnNk3vpAI25/bQnt+TzKtQN5txTFMI4F888UVPUNknI8MmyNEdbvLP+TIK0yh/OcX55O97fpUF+jzZKwvEOmqLrtlX0fBmRxiux3kHIX2XvWEFLka952oWY6N81hN9XGWLSS3sP0maqxZ9xP+5ScU0ikjaqBsJ0KxVK0feCUJccpJ5Vh3k0gKf3camb2ThV5UgX41yFH+uj7UVSLci/shGV3GAlUNVItp6Ks5FE8Up2YJpakqt0it1sxpISfzCYiMFHxms7CcsyQZBZQiTrSbzJUcDDhsyJwFdosCM0K6q4oO4B19DzYB/7B5Za/uRv4yHnHJ+4o563jQVPxYDfQeMPwXznt+Pa7C7wTHGYIfuSNa0LC318+bdmPka8+3DNE5eMXC146WRQopg+G17sUEahaAjcqxPQ5FMV/aATA9nNi/w3RjEhUGIIiPkFGkhLRdUSGHf76DZauYgm4zRbpNylXMx4kxnUczAGoF8j+huErn4MYGN74MuN6x/byCg2R7u4Z7Z0TYog0p0tWn/gE9Se+w2i4VTspidTfRzQyvvFF4s2DMg+q5YLq5OQAOpHFCulWhV4pbWfV3lVjUZxGZHsFcm3XlxPMJFpqdBbR5GR+xRQZgBWLOVcKC3VxlqCazlhSoUd3a6NN5og4M3gSIyiur2F9jdQ1/up1m4tVV/IPOSEuqzMkBuL64aTko9UI6DBMdTfzXlgA43qKequauLku70XcDUg1Yy+Nw1RYmYynhgD7h9M7MaudKcy8GEo04VIElN/LeZGo1E2p+9GhJ653UyTBxCJ6WhH5GlpM/BSQD4QhEF8VSCjT2wqPeSaFUdF24E0JA2nytUWxlEKtOQ00n+sxhWfzZJpbnVoou9/ilqdTqAsFK5bu4qB9QlicE1d36aUynLy/McWXWCvanrBzrSVYR1PM23EgqtJVjpOm4o2bnre3I5ebnstNz9VmYNsHvutbzvnwWcs+KBKVL1/tudoNbIbIsnYsa28RgQjnXcVpUyECfYiA5QlaL4XtAwbzDKOW/ECGfrwoIwYXzfMQbpZYW1QGSwVVhqAFMgoKzrfUvkYyXj72uP21wT9VbV6lb5B+jY63EvCqaIzEh5f0l5f0D9doiPi6wp82LF54Dlmd4bol2u9wd15E1w+R0wtTuokdpcMeXT80jHp5irzySXQciNcPyvOfIruuQI++sIA82nQTRNlvE4Mleb5xRv3dry0qyEYzsbzmCeLSciLPw5CcBG/GT7VF2hXuNCXMk2EoUWt2TJwnbnukSQp+t56i0cWZJYZT8lycN2MXfcklFBpnqQSeFXE1neVk2sVE446TIYnrLeI9cbu2JLt3aIiId7jseLUdsjwrUYBbrJBuOUXq83c5G+08ruYwxyfzeVHe70cb1D2tHKGhZyAi8o8Af2m26RPAHwAugH8ZuJe2f7eq/tV3OdijD/oxbZql6aaIoG5SQq8qFbYA1AvzHMZ9Yi7UE3XwFiOncNn3m4l2moc0o6HKYjV5NUBc3pm8e3HExXnitcMQFe8qyO0IXAUiKXHraJyyT9pzPQSCKve3A7UXbvrA5abnZjfSj5HnThqCwt99/RrnhBiVXcLDP3lnSVBNXj3c9CPsDYfvUl4hqBqVPXnwYBDPwW2eJaYz3JOZSEBJmOdNY1QyEWfOWspw03QDHdqdEhbnyLA1GCPj26GHelESxKWwa7tGuhVwiXhj9IhztHdOkcXKMPuqxt95kdjvCNcPDFJ86eN2yn5rcNLVpY1pdZYGPUxc+6z8FitcSgiXgq3EBsq9n/LzL0VOuSdUhiZjmPjuuTYly5yPnw2Pr0v0or5JzoRYviQZRrSyeT7MKJ4JWpSqOfSIcwFlykm41WkhPrgEP7nlqeH5+13KQQQzNF1OAs+8/T5XRCcm0KxZnO53xGHEt+0E46b8m0t5FXtXLswQdcvST6s4XcnByt4+gDQzuK2qU41O2i/pgDzWZynHHMEzElX9DPBdACLigVeBvwz8S8B/qKp/5D0fTARZnk+QQVYQg/WeyS+s9jukXVpSMSninGjMXPMizkFsjaP/yOAnI6DUaHcKrjIvfrpASlGWbwq8E9oTxjh5w42Xws6p40DlKgZpGaWhckJFZMBxtbEk5xDNEIQIV7uRqLCsHTd9YDdGFrXnoxcL7ixq7m8Hhqgsa48TYT8G7ixq8+gTP/96P7IdAkGN8XO1G1mcNgXX74MZg7aycS4S6yjDPZUTWiePbVQZohZDEXSChqJajsAL1MnoOAySGXA0zhP9ggd9RBXO2zO8q/APX8Ptrg8MM3GEfgtjz3jvVcL9NwuOX68W+K7BJeXvlqcG3QyDzYkE3w0/+rcKuyVcXU6e7M0D3MkF/u5L5u3ut+huUxRipgUTrVpWboyw4LqVJUpTq4VC0Rx7YD0pzBgL9didXFg0kKrCpV1YQnl5bo5Cnq91Vwyf2xmcormGwiUoqW5xqReTbq8N2qpq3GI18fbTPYztanJoQoA21Z+cPIdLkUk1GB03XL5OXD80Q9bviNcPCPs9rq4Q5wl7e980WMt3V1e4uiIONnd92yJthz+5mPJkY2/vZXpHXdOV65c6OUthSC1HGqRdGSTWTFFSyUWARfIaoV2V4kIVsfsSxsOK8qcQORaUfUPkFwOfU9Uvytdzc3NibV5YBMaFnle5Ls6slUS7KvsQR2NnZK9yXkEr7qCqtfS+CUZXjNlI5KKhdjWxi+I4NR3LrRiqljEq2yEWz3o/QpXYM31wjDEU6qQXS5JCYBcib94MDDHy3KJmM5jir71wfzuwHgKr2hMVPv/2Bu+Es7bi537LRWLzmAK+7kc+tLIXbIiR06YiqLIZAle7kTfWPa/d7HGSFLU3+Kh2wgurhg+tbHv24J2YV+9EcCgRKZ5SztBkaAk4KDazvppGNd0Ho4KiSvAt1e4BF905kQSV7W8Sx34kXj9gvPcq8eqS2O/Y378mDiNxGAn9SNU1B0ZA2q545fQ7o3GuzkwBZ5phgkVKkjUGqm/5NptDgG6upkSjc8T19UF+aIoAI3FjDJyDQkByxDAldKVbpiilNYfEObTqSj5ET55DfUNsVwd5ozK/ymerz5DQW1Qz7O1+tytjC128ZJFn/l1McznPeZ/68+SGc+mdUUB216U/kludEtcPGe+9Wl69OIyEXZ9YVlUiZpi3Pm52Bv/UFW6xwp3dpf7oTyd2pykJngoAZ9Xf6isriKxq4rx/VXpX8Y1Vrs9bp6QoHlV0ZuTyNeVzSBiK4/cs5BgRPHv59cBfnP39u0TkNwM/BPwbqnr/9g9E5LcDvx3gI6+8bCGw3uroOJtIU+dNLd0jSY2+5o3ICgulNCRrDn6v4mzizfvczydralkQM6VRY/kMQLTEa5W48H1QhiGyHbVEBx4hYEFFLDRMOO8qYsLWN0Pkaj8yhsguRLZ9KMnhF09agirnbVW8703yyp5fNlQeHIJ3Du8UhzF9zs8XXO0H3lz3jCFS154hRK4Ty2c3RrpqwWnjabwZgDrDQel+xNTf34tQ+1x4RjIeqdI4hQ8qkpRYKioTqy4eolK5Ctev0faE2Kyort+wQjHMax9e/zJxGOkfrhl3PS7DQBcn+KY25ZO7rg4DLjNRMlUxF1M5Z8prVpAk3RI5f9EqsvutQSeJtw+TYtdhmHjy/e5RVko+V04OJ+ORc1PWbsHWKbDE8Yjsru23VQ2uItaLZDwwI5GT5bm6Owy4YXPQHVfqNhkNT/SpWG3eH8kx1S3Meg5l6A0sUpYwmDEZdmjVTFBY0zE+fJgM74Bv6kLDLfU8MVKfmbGVtkO6Ff7uS+W9iu2JnTdBWloZGUKGLdqmpoep8aCMVhApw9YUeWKoGTV1tJYYYbTnBVPlfW4XMm+f8k5rLHwNIvLBYg2JPqMb83UPQKQBvgp8SlXfEJEPAW9hz/nfA15W1d/6Tsf4Od/5M/UHv/LosnkAACAASURBVP/Pm7eT4CCp6qlRGUzeeTmxK/151FU26W/3vc99dOruwJMo+ztPcLXBtNHYMpk734dJec6ldoKIJVPn2HrxohM332AUezZ9UB7sjOZ509u/ISr7ELnajQwxFkpm7Ry70ZTCc4uGmJ7vorZCswwVvXzSlhqDPKG9M4Pz1qZnM4RCBd2NMUUocN7V/Iznl5y1rrSKyBTSbLTynPKp+KzxE3SUo4acLDY2ktU0iKrlZuJoEUBS/LJfow/fYnztC+xf/RKXf+/zVF1b8gAArq5Y3D2nPlumx+uKt9o/XOM7Sxj7F17BnV7Y+hCrs8L2sTliJILYnSP7a1y/PXh2Kg72a6vu3a6tgGveymC/O2i/MG/HoDHiumVJ0LrVGf75D1tBWehx+zWEAa0XViGeu6+6yrqRpkSwnSi1wogR2d+kGzvLiVWdwUntyvYdJ0placiX+lFp1ViEW3ozzZLVuX+VRsvTrN+2wrb9rrDzxsvXbdems5zCYjXh921nMFm0GhhZnE45jhxl3+rEWqKfPAbfmFEa94fQb64Wv0XtLsbOV9O1Z7ZZiiKqj3znD6vqz+Ep5JP1Qv/wc594T/v+2jf//lOf7xst74eI4JcDf1tV3wDI/wKIyH8G/A/veoQY0QdvQl0Tt1YpqbkSMiWRcvsAd3oneSlLC5ebBbSnU5l/WRSkOuizo65CnS8FU1XdmeIPseDlMRmBiCncPhmEDPNkT3iRFPDVLrBqXGqbYAq18cJ2jLy9Hbneh5JY3QzG+b/ZjwxRGULkjes9/Rh56bwjYMVcy1qofcXluufees/FouaV047P399wsx955azjajeyGQIvn7Q8t6zxzozPmAzPSWM1B9f7UAxZVzmcmGG72gdqB4vapd9MdNFceZxZRqrKdjAj2XhJxmGKivI53bAjVB1eo/UEGja43bXBQFeXhMvX2Lz6Gts3H6RHbsVQLlX3Vl1Lfbq0xGO3Il5dorue7eUVzemSxYdewJ3fLVPGrc7QdoV2jlgvD5q/ybCd6JszYyDOEfezv7tlyQPE7dqKuFKTQaIpy1wcZV03t2YA7r6Ee+EjFhFdvY5u18QYcBcvTOSEaCwjdRXqK7Q7m1UaX5tRqirAKpTxjRkQOOwHpRFtJhhUQ40btlPjvnnTvdy0L/dXAggWJcuwJy4vkHqPWyZlK0L9/LegzfKwyV6iw7r128R7X5rossPezicOmgWxPbV7XndT6+0cjc8bIqb2IPNICF8dwFulkeGMWjxHACT0h0VyTynHZPGzl3+eGSwkIi+r6mvpz38O+HvvdgCN1mwr7taEe68S1w9N4WfJbI+qwa2vzTsZelMawx4ZB2J3Cq5Hq6YU/+QweT0qi1T8k5kx+d0Z4uQBZ2hniKbUczGU7TfBKNsx8vZmoK0cXjydl2I0Hva5eZv968S8/KyUsxHIYtFH5KKzvEHtHEOMLBrPtg/EqFxuepwIi8bz9m6g846TpmGIym6I+MYTknLeRqv43YcUqThhCJEYLA/w8mlbrj0zfoJCVYrODHZKjToBMx75PoSoJRIRNQNp5QcRH/bmCTcL/PqSeP0AHXviw0uGBw+I/Zhoh+YF+lQQlvMBmUOvuzVhu0G8Y3H3nGrV4VanBsvUqS1DvThcGwDMY7QJZUojjlNiNfczSnTgqYVBYqS1HbIzRyQXoWVIKPZGmfSNMVj8nRfN8w2pN1aCTwoJIcOT2fudNb5TcVZ4l7rAajNb9S7DoNmDzu9HjoRzYVqKfidv3CAtv50Q2APFWaLmNIbZ4kvqqmmRoLQamkXToHWLv/NiiYqmfkF5YAqkAkG1xYa0am0fXxsUlNefyM8l5fS0aqYcRzZoMEX98yaMo1Vcy7B9dP2Op5APEjT0k2oIRGQJ/BLgX5lt/vdF5Lswp/ILt757/HGcIFXN+OqXGC7fsuTVZioGK5zluqJ2ljRzgHoP2Evr40hsV5ZQyh0ra+uv33pXoJFyzPRv7QBM+Zv3PxmGrAxDNOUY4rQt8/cvtwN3F7WxchwsKp/GJ8UYvLXpOW09+xAZQ2QzmPI/X9Y8f9LSVY62cgRVrvYDtXOEqGz7wFlnLKHaC3cWbWryJqbsx8hPPNhSO+H5ZcPFwuoYYlRq54BI7YQhUI6xHyNdFbm/h5Pas6gksZYitbM1UQBkVh8AZlRy3UGISkW0FgH5ftYL9hHrexRGwuourt8yfv4n2L36VbaXVgXb3jkxpe8c3d1zM+rLM2OfjIOxdWKw59101C99K9J0+PO7uNOLQheGRBet22mRm/zcXQVutGx3VpaJuSINxnZxzqChcSBsH6Cbh+gw0N9/UHjyee75rsG3rY0h5wf2a6uHAIORulUqOLMqaSMqVGXhHTRaG1fnzIiljrNaJygszCrcM2SSEr6lYCwZB63bW7mMCmJPbE+tyni0quWiXMdxYi3lBHkzFaRlhV0orOLQelWgLl3dJXanxvgiMZWSAZN+gzbLg6gbX1u0XZ1MTkMMNjYgprbjWanPFxFi7A0WAgg2bo0jkpvaDZOBfBqRGST69MeSbwX+S+AlIAJ/WlX/uIg8h1HsP4bpwl+X86Ui8vuA34bN0t+tqj/wNGP4STUEqroB7t7a9pu+5uP0e2MyJCx2WG9xQ1U8sWG9o1515jleP0BiRHdrdOxxJxfmYcYRyTBA3UO9LMUpTTXjbOfcQUq2ZdppM7MSu9Gad+1GS+qKGP5eOzMGXVKey9ozRPv+wS6Upms+QUTeeUI0BRwivHzi2HU1L4bI1W7gpg8sas92CNROuNPVeBGu+5HTtuK5RWOQk5OkqM2QLGrPqatwInzkvCt5gHUfUqWwGaEceWRlvhsjdzrz8GvneDuMdN6xHJWTxrEdIy7lRnKlsWqCjaIVmzW5OE08uyGW6uWgsKoEyW0/ohQOfhgGxvWOxYsXtBenxahrjCURrIC/+xI4T7x+YG0RVmeFjuhOnzMF5BtLrsaI1m3KCySFMsPQY3eGZMhD5JB2eBJx2ysiliQW56BbofvL0n8o7HrEOarzxdTxcxwscr26NAjo7PlUE1Enbj6wu0bcpsA982ry0hZ9vy7fA6ZEaQ7bVquChpRcNUhlbE6o+ptEojDDIuPelvhMPZrUN2hzkpRqUuw5MijrNrgJQk2etxs2xGSUStvoqiXk8QdztMzojAa/JeZQXlMDKPU5tTgkQYe12Dlj3SGz++H6NeoqXJwtUepyFDBbzyExhsL9e8TrR3gnX6cI8uywoREjxfxtETkFflhE/hrwLwL/q6r+IRH5vcDvBX6PiPxMjGDzKeDDwP8iIt+uql93j+33AzT09CLOPKr0UmqM9A8NGmAwipuGSOgH4jjgsRA9c5CpGqSbJqEpox4ZNuZBjnuosueY+vunZmAypqZnaUWQbAT6oARVKgdNAvrnrWszTm5JXOG89QzRfmMtGij/mYcfcSIsa3+grDPcBMYIOm0rvnS1JUYFZ0p8NwTayrFPSeTsZT23qAmqnDQVJ40VlV3tRoJaTmAzBNrKM4ZISAymzRCoo3DRVTTiynhbB1QWGeQahdS0GCdTBBWi1SAE0dJ5NPcf2ozQ+JYacDtrEy3e4+uaatWVBLGGSMhFUA3W0qDpSndPchuDBN+41dmsMV3ysJvukB4cRzMMOVk57Irhz2yTomgTju5WZ4T791IXzgFZnVG1vRmnXBCVKcZjbwnVEIpBcONgHjAgz78yW/Dd1pRQKP2lcu5BkyLNldBWy0KBlXKCV11FTBAdwIijQguMI+PejgcpEauz5LCWcUCmqubW7ROLrlQ9iyO2pxalpCSujPupdUd6R6dK+dRMcbR1M2RMq7PFgNbN9E5h+TNSN9sxNTD0TnCZCpoWCsq5CQl9yQ3mvE9OSrvV6UQjfkoRAd/4d9/xPUiCwl9Ln69F5EeBV4BfCfzCtNufBf468HvS9v9aVffAT4jIjwM/F/ibX+8YPhCGQOoGf+cFAKrtGt+tGdY7hgfGYx7XW/qHaxYv3mHxwnPG+rh5gOysnN2f3yXcfzP1jG+QukU2u+QtRgtvm6VhumOfQtxrSP3+6U7xYl7XKnkk2jYMqWp3jJYwDtEKni8ax3q0egIRYTNY22VjH03v4Ws3+wLbrBpj6dxbG6On9o67S2MF1ViY+tamp/aO87YqituJwGjK/7QxOGqIyps3ezZD4KTxB1inEymFZnUyYJV3hNFgos0QeLlr6YPSVlPX0SFd57z9SsSuJ2JFaVNthCWn+5RjmCIgoRnW+Le/RPjqjxPuvcr48IowDJx+5EMHawHkz67Z4ZyznjqbayQZAbc6M2pohoMSPRNAs9JKSrXw6FPrBtevTZnlNYiTx1xWWXMVVJFYt1Qf/w5TdusHhMvXUisKWzfCnd6Z1qqIEf+Rn4E+eAPGAbe6Wwqm1FUFlomL8ynxmcYk/WZKxs6YQ9qsEnbfE+tlqWEs9z/NuZCIC4vK4aXCe8HlhLTGssaAKdFQjp8rkouSbhaH6z/ji6Eqy3l6Vyqd3bAhnLxQVoxTVzF4yzFVThh9S0XM+Cq9VKDgq67M3UwmCCHiU4TgZvkNiywsB+D6jT1X75jyCZbrkGD5v/pbPvm1KZcnifC1RATPi8gPzf7+06r6px97WJGPAT8b+EHgQzlfqqqviciLabdXgP979rOvpG1ft3wgDAFgBSupxH8RA83pivXrl8R+pF523Lx6j3o9NYSjaqyYxzn8+V3i8iJ5YA1xVsUJWM+b3cMCC8V6YS9Jeln91VenDphuKmirfcPe8mbUqf9OiHC5M0jkpHGp4tZ6+myHSB+NZXPdj3z0vKPxUuipToTmrOWmDwxBGaLRR4HSQG6fvHfLJQReOeuonfUR2o+R867mtes999Z7FvuRoMrLJ21hCnknXO9H9iFy4iu8UFpO5OgjRzP7UfG1KfGbPhY4KMzbUQNduk9NgrgiZjQuaovCZNwjN1f49SWlkdzJBf7uy9Trh9T3Xp06V+53pU1BlrC+KZ9l6I22eHqR+t5U5jnGsZAAYmvQR64EN2y+Tjj33mANX5e1hg3KGCcsOi83WbniILhmgX/l26n6tbW/7neWKD170ZKhe6tb0A99MimnnpBai5Sumu3JgRHI+QFtloW4gAhxCdqsiL5GVIlVa9RbmEKv9NGJ/c8r7EfrLyWl+6lMy3qKs/mbDMSc1jlfPzpHICV/EHq0XlqtQc5rDJuywI7s19DateArmkxf9Q3ia0YcAZfmt0GEtk4dpVV51EyxFnxyPBBb6CgbZhk3E7tobkS3Dw+otQcU8qcREdx7NwRvvRf6qIicAP8d8K+p6sN3KK593BdPVQfwATEEavzmYcCf3zWlcf9NuotThvWWcdezuHvOuOvJKycJhu/6uy9ZZWfCN3OFJ4m14XYPjUlUnxyE3tKvTeEPu2nR8pT0spoEh4rgxLilfUiQiCqdN2W57e2zJH6/iLCohJMaFvW0uleIoGIK2ItBTUMwYwBW/etSHcGJ98lztztz3Qe8wE0faGerbZ21Fc4JQ1D2Y6St7KU7aTwvrhpu+pG3NgNd5Uth2BCtSG1Ze9Z9ZNW40l56UVmOoDLGHn20QrVFZde3GSJNWsVs4Zy1p7h6FRl3hK981iifL37UKrZPT8yDA1zdUiduurR2n4cv/KjBMdu1ddn0jrgz3N+tTkvPH7dYGT14Xlg4X4MYkgc5wUMSR6hTdW9eMQymZ5oSrVrVpgx319YWOucZmhXuFPT+PYOD9tY7n4Ux1Bwpueks0tCmmrzvvLRlGI0eWc+aqc2omVoviL4ufaAgwztTQ7jBNYXODOZ0e+dSgnMWDVStKd3QF7YPGqdWDWAGNK8FPTOOkAzCuDND1SyQwdaIsDUUDKpRtZoFt19P92mZit50qsGpnBUTLipX8kYuQ4lAjxYN2HhAvDUo1GjvXr8pMFNe10FT88nS++jrUS9PkNvLgT7VsURqzAj8BVX9vrT5jcyiFJGXgTfT9q8A3zr7+bdgtVhft3wgDMHU63+w5mJ3X8Kd36Xarhle+wL3f/SLxBipuobtvfvUmx312RnuzotIu7RwXKPxyjN11FW49SVad4TFxfRC6UgvFbE5N2+9WRmUsLvG7W+I7QmxXhgjJtEja9FSVbsPhouvx4hDyguQ2zznl/c0UTpzJGEQjBmQrgLvPLWXREG1BK531tp5WZsHVHtXCs1OGs95W/PWpue8q9iNjv0YOWlssRfD/+OUG/Cel08cb6eGdqdtxRCsvUVXOURgP9pLq0xMqT7YamYAi5pSX7CsbZxeLBo4d4myqyv0O38pW6ls7F5x/ZpYPw8ZKkktPWT9NjhP/amfj+xvDJ/vd4T7b07LTl4/wN99uTQas8ruxvI6ISn5rODqjk11wgJbSlGGW3z17D3GMGHiD+8ZDRVL/obL16GqqV54pTCS4voa96GPWb4hGRetOsgQT2bzzBoPHrQ48anVw2D5q9w+QmfRqqiiWKGeS0lhy2EY1j+m565Jcx6u/zDz8IdtKdAi9eQhMadyf57SpmFWAOZmLS4OK+u1tHIPi0ThjpHYneFv7pWop7r3OcLFh6kWFwCcDA9Qt+Tt3pfDWCW7K4sidckD1zSnjFlky83WYY8LV8mgzZ5foulmiu2zShaL8LVEBO9yLBHgzwA/qqp/dPbVXwF+C/CH0r/fP9v+X4nIH8WSxT8N+FtPM4YPhCFAI+Obr07l7FVj3uLNA/b3r3F1RXf3jJOPf8Q6My7PLAl5ftc8mdCjXVI44aYscp89fL97iEtef6g6YrQ1d7djWqDdL+nOVry1DbQ46phe1KTAVQQPVLXQeGsaF7F6AlFJ7aWlFHb5nBhLkFDm4KsqGgxTjwKr2lM7U9zL2rMP1lRuk7qSMsaSA3Ai3PQG+VjCVlMC2ZTiTRxpK8f1XnhuUTPEmKAEX4ra2q5mUbtSK+AFHuxGVo1nUU1RAUwRTe0m1hGpivpkfAhUbJtzW+9gUKJG+hC5FqEPC87FIdIxSkvbCisMOnGb+8i4I56+iKyeQ976MlS1KWQoDdEM7081ISKWfK5adNhZk0AgVi1dDERnEEuBSsYdWnf4m7esx9DqjuHjGnFZGabKdQ8MX/kc/f03S42APPeyKdTQG9c/H7PKTLNm4scnjF59Taxa3LAzb3zYWjI3VdZOrSBC+ZzXgNZb0IeKICUCtc0hmNEeohKlgqqiIid2e9ywTYbZGDdaMRWCVU2CqWrczmi8WiKqziKn2XKhea0DN2wNRvVVuu7anKtkzPzNPTt3ewKuYudaXlpRWq/UiX0WnRijLBX6xcYqppuUxwEsMs+J8H6b7ndXEsa51byvnl0dwTNkDf0C4DcBf1dE/r+07bsxA/C9IvLbgC8BvxZAVT8tIt8L/H2McfSvPg1jCD4ghkDHge1nP414R/vyK7jTOwcLy+wfXDNsdpx88uPUH/l22556psTU00XiSFxcGBSUPThfI9srtDstlZy5OtingrGQEqT3d4ExwnocS/LTAeed9Q6KauW2Y9TSo8dVjl3QUoBllbi2RrCqNaMLaomyTE+t0rKUTgxrrzysxDNGJaop9iFYa+q28uzHSO0dHzqpebAdyz1r/RQJOBEq76i9sxxBP5oxCNbGYlkghSlP4B2cV47rfmTdB+50PkUtxnDK17ILynnrOfnyD0F3SlxeEJd3CL7lejuWnELucupdMoDpuoeotN6zcy2LpEzCyQuF0VONPXr/HuIc/gXLlxlLKEUBiWGj8+aBWekr5BXnonj8jBkkYWT40meQtqNanBITRh8B12+tlkBGWJzhVqdUL30M3Rp7KXRnaLNIFMZ5u4Yq8dw5hKbS9zkPVHj5cSQvyTimRLtVd9h8qubJ61vixKLDnLcxhpaNxXuDZKwbZz9LiueCyhSF6HhAxXTb+6UKWBxp1TyLJtTPDJs4S9w2yxLRqK/R7gy3vbIV27pTg82CJXJl7FkOO8LqLlXlSnt0J7CqHWhgqAxiqgB1Htevp0pu51AcMqRaBxHbpikHktZceHasIXmWrKG/weNxf7CGnI/7zfcA3/NMBsAHxBDEfc+Dz1lHxOpLb5TWt66uGFOCOOz2vP5//j90n/4M3cUpi49+lPr5f7LQ8GwZQGM5uO39lNBL1NJMh/MNTe7Lk17g2ll18XnrU6I3lo6cAbi3GTltfFmmMXff9Il10DBRTWsnxfsH2A6RxluxWIaNXIKbvJ+ihF0yDCKOtzdDKhizBnQ3/YgbY8kPvHzS8vZ2SBFELPvGdP7WO2pvuYOucpy202TvKod3ZgSzt39nUbEfNeUHfMKijS20TRXFi/4KqWqGFz7JV7fQb5TapfVuM402FcSpWrfSXYpmlimKGKNy7Zb45ZKFplBfnEEO3/5zkD55tECU3Fa5Nypwig6oGhh2SBwZG2t65hJN1EvE7R6W1gv+5h7uY59Cq5qQPUuXWjk0lLyD+gb3iZ+NXr1OfPGTU28qV5lHmmsWFudGrcwQU04EpkZv6iqqBGfEZlWgxX2kuPVerP6iDzYvVCZ4yQVj94yG09k2mVqHxKRnVpXVZ/hha4loV0GzLAV1ueirFIv122JQte5wmwStSK4qXtkYkkLHVbj9zTSGm3to1eGyh57yCXFxjq7u2spyw9aMddUicaR3TYFKQ7Rqe5ub0PTX5AprraaGem6/thYcyahp1UxV12BR4faK8dXPfU265YkiIMcVyt5fknFo5yaOue8afFNRdWfsLh/SX6+RznH+bR+l+vDHqF54xZLGMRoOnVhA/uZeqdqUsUdrV0rcQ9XhU5FNHfbUAr1rAQvDaydQO/ajeXa7YJTL/Ri56DyVcNBwLSg4zAg4TLluBnsBrf+/GQBVW5g+V0TDhPmKM2PSeOFqH3jlLHUe7aqSTJ57/lf7KSp4cdVw3lZcpwXdM0x02lSpnUUkjGYQFonil6ErJ0ZJvQO8lVfDUqusNkOV22/Apj6jf+Efpd9bUnAMMCbjJwJjtGvvvCT4CE68LzUXXsCn6MgJ7LRNzfsgnL2MHzaW3M2dKmFiCc3YNmgknLzAoFBrKEpNu1NL/mMYffh//xq6OsN92z92gIMXiCa1cMhUSgkD8e5HD9euyFRPceBI3TGXKTfQTAagapFxn6jGDnA0TowNhOBTfgnMsE505FicA+vo6vFxWkJ0/q/IlIvaR2idM8gGcDlHAFYJnJU6Cf7Jjes0onG0JnmzgrLCoKsaFOtUSk5yZ0ZPgowk9Gh7SmxP8NdvEM5eBmCoFqXBIcl4ZRJCwJaEVMwebuvTUoRYi9FH3f7GKLTLO4+sDS3Dxs69X6NVU6LGpxfBzcgXP9XlA2EINEZrMwyEYVJ0/fUGDZH9g2vai1OqzuoN8iIYEnrUmUciYbAkr6+s/H/cWeGLq3AJHqr6iaZIHIntKeshFsWYJXthlhwVW2/AmSfmgJuBxPMnLQJvnHpVKd60RQmWUG6rlDcI5tnXziCKjKE6jHV0UhuE4xTqRri/Ddz0I21l9QPXqXI4wzv7YHTC87ZO22OpMr7px5SYthXLMvc75y8yg6mtHCeN8vZ2pPUWMWjCprukvLejFtZRH+z4OUdhLbCneyfpns3bfN9eA9knmMM7oRZTJFotaMYtpfiqtB+YFh4Kiwv8/oZWozF6cl2BqjVzG/e49SWxW+HOnkvtodvUimKRlHdl2LlPMFIwKKS0pkgeaan2TQVOt40EqVVyZu7MfcvMBvJhwLnK6jF0Ysy0SREOyfnQdE+adL9rNxkIACdKm/5wAqPaiy/jvhhM6TcJ309delMltc6WpCS3qnYVklt1OFeMr7HruukikhHQelFYTfO+QG5zn3jyPJWrUDHnIM6YQt4JqcoBwdqPjMkVqomoeKgXFgEW521H7M6T8Up9oPZr3NtfRve7kkt6avna6gje9/KBMAQxRFxTMax3jOst4h2bh1u293cs7nQ0Z+b9PPcdP81Wqjq/WyChHMLG7nRiP/ga2d/YmgUZQ02Qgox7o++1J7j9Nc+JY2zOWCdPXpMXdtI4g39mRiKzOk7bju0QuUkL1Kxqh08Uut1oSzk6lbRmgClCnL0MfYiMMcFCPilnd3iem17TSmaB865mSDUFY8KIr1JBWktqZueNDXTW1YQID1OH0/O24sWVKdK8DrEmA1Clnk2bIRqsE+FmCPTBDFJQCAInte23C8pVaqW9GQLeCc8nZe0T+yVXJG/HSOfFDIhqiRbaypX1DQC2vRmyvGJa42vUeYbmlFoTvXHcT1z3zJ/XmGCi3F75clrUpd9RvfQRxDmCWoVvplLKuD/gqs/pxEVyL3yYQVLdFCEURs7UzE6AgEF5fa7ijgAVLhUG5rblmuAiqzi3B94HLUjTPjU6nPpdCauc4B92RNfZlFeb54S+rHQGTF1AsQS2refMxFZKfYyiuPS5MgpsHCcKdr1A+jWS2krI2FtRXG3rKcjmfrkf1VufJ6zuot0pnaus9cho0c5miNb9tnZ0XnD9mu7mHvHEikdjZuwNu8T6S3Df3rrA6uIc/5Ufof/8pwlXl4zrHTev3uNZiBwNwftPnHepl1BH6E9ozpZoiDz47JcJw8j28oaLT57mnafFN+bNr2YvgAxb6/PenuCv76EP3sCfv2gJxmZpGOvD16xCVRyuCZzrlr5ekZqHsqJnJy2qSp/yhQ0zyiCkSk8tPGqYevfnNs25DQNQFn3PkhvhLarc3tmU6KISht487xDV8gXp37c2fVn5bGoiZz2Nbva24tlFV3HRVZw2viiU2sEu2LgyrLPtDdNfVMILqyoxPSwCsPFCrOF6b4vn5BYVuaPp9T5Qe0kN7sx4iBh0ZOs5TNT2HuhDoCq5EcOPc7O7xguDVNSMNMPaPM9UMGZedyxFZOHkhbTugeUZ3M6qxNnaMoxxa83gZNUnxs+Iu37TuOiLM+LyjlWz1tZqJFctly6fSWLdTc3S+o2xoAKILQAAIABJREFUlWb7DGK1HEGV/RBpWlthrh+mhnA58hPMCOS54BN8ktuWiEgxAgap2HGdWoPChQRi3VlFeB5CDIctq8M4W+kvUzWtSCwviqM5Aij1NCkpfGtRe21sHQKrvVgUQ6rtCexv8NurkhB3uytkfWnOVXfKsj3lerAoZlF5OqfIuKN6+0u2utnuGk0NIg+itJR0zpGOe/uLjPffxC1P0e0a14/Uq1ltxlPKERp6n0lZCKVr8N0Ugi9fukvY9WzdFe3FCW51OhXSuMpegrRoRcZM8RX+4evWez305F4p4bXPpTVvF8jqgticpBdgNJwVqGOPr1v2Y0R9SxdHthjWLVAm/n52241eaYBukwpqVBLpQaaCoJn+T+2toXEOEVvoJkMBXoRNNCrmsvZchZEhJYWHEIsRGAxsToltGMQ42/sxsh8puPR568saC16mBWbyuCLKelTOGs9J7bjuo9Fik7O0HcwI9KOWXETOL9hqaxAT8y0nqWtvcFlGh5RpkZ7MMlKltLlwat1f28pA5disUsLfWh3E9hS3vynr/bphS66stRWuPJIWW4nblGMYB6MhViOyX5eaBf+Ch+UdMxApQVsok0mJRtcWLr/gUN9Sr9qyIltMfalQLXTbmO6Vps+ZRQUW+ZV8iZuedV7VLgr0ozHL5nTdzDyT1JLBhYHa1UjYT6ykxJCy86Rup80y4eo3E9STFn0p7SQ0wpAWcxp7q88YNmUhmdyLK1cqx+6swGC5V1M2QHkBIDdsiL7GDzvOq8YWCErNIN360t61zX20XhCqFtGNKf4wIPdtvWpZWmsR8Z44DNbfabsuK6c9qyIwEcHXR0PwvhJxjuZ0VQyBW53R33sTV1fWBdI7dpcPkc98lpN+h7v/JtW3/exSfRhzE6xonh8xIDdv26TxtXWxXKysAnXYw/Ulzj1AKqMy5kSVDDtk1RgFc1DATwk9hzFCnMclZV97YT2YV3faePq0Ylem+W3HWPr154ZbORhVDONfVNM58opnJ7UruYvT1jME5bqfGs65VFdg3U8z3u8Kdp+/342R5zpf1h5e1cIuGLYvwTzNbDBu+siQqojP2xzeCw/7wL11XxLRTuTgc+0FcFyNQymEIzUbc8mwCeYV273R6V4IJXcBxpwBDOpJeLHbr3G7a8bzD5sS606NCpnqEWTYW66o36EhWL8i561orPThqWyZxaoryyHOF2DJcwdIXWodo0ItsI+J2RXBi0VlokqyWWXJxTFHfZhBCMnQnTQudXuV8nz7qGxH0opzdo9CtO6uD/Oqb5CKBRPbCMG5Cj9YlOQSUydHTXYjm8IGkjgSu7RugwiutJBopkV8moV17PW5Onoqipuq653ZAp+io5xnyHx+jehb1kLErU5x6wdlxbhw/mG0WVrUUXXE9ZfNQD/3MtqeIPsb3FtfQIee/Y//CHG3KcuTujsvWi5w7G37YsW42R04ik8lQlkd74MgHxBDILb4SF1ZDUFV033yZxBvHqDrh2j8KtvLh9y8+hb1akETAvrZH7Ze9k2Hq2rit/083INX0YdvEftdWcHKlrgLULXWrrec00Jef3OPcPohUwhVgwxbuu0VzfIOWrWl8dwQrDDGizGGFCDVE0Q1xs4QcydOCntIROkqKQpDgMpNilGxY+dK0tzMbZESsZsBduNY+gXlFtHL2nHSVAwxpjWQDaZpvU8ts23/h33kLK2iVjmBBAtZsZxLTCFTYjd9LD2Ihmj7rPvAfjTFthmmZHXtMyVWuYm26M6yjmmcgaZqIOUOes0sLEuMZyqsSwnSPhUgdVVFd/OG0RHBOnj6Gq07qquvGlf/5HlLCu+ubfWx1QW62SDtstSdxNT1VNrOFqFZnVr1emYg5VYPuU9QrlVIlEZNfP99gu5UpNyjzORyKSLah9xpVooBsF5Nlg/qw7Rs6f/P3pv9WJZl532/PZzpDnEjMnKsrKqunqonDk2TboISaIiQaRi0AMIPNvxiSIBgvdmvlv8DPfnRgPlgmBZMy3qwSJkySIo0KZGSxaGbZLNb3U3W1FWZlWNkDDfuvWfae/thrX1uJMWhqUqim4U+QCIzIiMjI26cs/dea33f73M25zmb5yrFMc8P4n4zqbxV+bGR4bBFgn/gueyCfFJHB+jAZHoTplKPMRaMEXz7FUAeKZJmYth7DtONtEBN6Onw1GnERHFv22EnswS7lk2kXWMPru1VWTGQdhcCgTw/EWx318LYU3z0c+JBqZfY9gJ7+ZSk9IDYbjHWsnvyDOscvutwzYzx8nKCFI7ti8kiyNeLchZ/J1wfio0ADK6qxFVc1vvwDy0Ly+VcaKSblrHtKJGFPO42mG5H8errcPlEE4w0eWrosX4n5a0riOtnQmIcByVayuk1nDzEFs0krZseKgV0Rfz00F72kdo/r5IZYmLUOMvM5+kVKCeqGHn4D0o3fR53ZSHIPeOYpE2TVUTzwhJSoMYyREthLdaMshA52WhmheQKXK1wC4V6bYfAvHTTSTRGURDNC8ugC3JIctLMA+3SmecWMWlHpSlVbQwRa5+vCGJ2j+oQOg+8U4I+RkIyulnmuE9JQ6u9odVZhJ/aJUZOiv1mD0UD2aRV8mi3Z4KbNlYw1/USmgPS5lQODiGnkKlRadCQl3IOzukCNxCL+XNmsYkOOnbYsaWvNDaS/eKfh72SYBen+2CXhQb65Y5BjII2ZrOdfL+9+kVGVdXUTjZHZ/atIxEc6XwAaR8ZA40xeNXpx6KZDjiTM1evaQCu8lbxa0iPLldASfHrJkVCOXsefBd6eb9xWFdiEwymFBdzhtnlHOTQi1nTuX2ryHnsIFTguF0LtrtVae8kt+2lPeUL7OoYt13LBtK1WHdlcB8Dw2ZHipHqUKp+W76gJc+80DyCb/v1odgIjC7eAKmV/FfjC4y12PmScuynMBN/cCDwMsAuD7Gvflb6h0/fg+U1TLOcBl5xtxGQ2eq6sucfE9enk/w0B3akp/fg9scw/VYHzRvly1TUsyOSFyR1jqOEfZBNNmNlFchFF3JGB5ConaXy+8FgVopU3k4DZpCFAkRaeN6J6mLuLYVNFLZQ2aZlO4wTOK5wewObs7IA5YziZSUD5LwA5wwDr4NLgGFM04ITUqIfn98MhhR5vOme8y64KJ9LTsiJCnEzz6wjaOVUeyuyV61O2jHijAOkmpgXMhw3+jp2IelCGfGIt8B2lxAGbHcp7b582vSFGJw2zxgevYvrW9nYgbg+lUyLmbiFGXvswTUZUA6dLkSlDDyHds/eUbxCbI4wY8dYH+JTwBsYVO64HaLMMPTqFTPSjnEarhcql8wS4j/+8b0CAgu9dx4PAWsMc3W4Zpx4HwKzwk7kWshzNEOwhaqzPM4XuJhloh7j+8nVPPXdckxl7utnR3TRTBvXdpTXf0yAFTxLEYd9xCQiQzUqQzW78wn5gZXMaLTqcBcP5bBVz8kY7HF7gV0dEw5uSlU2tJh2TWiO8N1GNm99JqtrgeEyR4UGfFMRezGXlocLkZm+gMt8tzX0nXcZ57CrY+L6VMJJ6vl0ijBljTu+g1v1E+7XLo/wd14DIJ2+PwXehyf35IbSwPu8YcSywYQRd+22tJ6slQWjrIVeCqT1U9KhlNNheXOvkEgJM3ZEW1ErrlnUPpbdKKe5mzP5MYxXNoqYWwQpcdknac+4vcbeGahLOwW9TC0GmNQ2vf7dYe1Yd5FmUU4coaaQ1sEYmRaXQds+N+eFWvylHbHRlsWskP+vdIaZLlLbQSqZIaZp0DxEqTTyBpAX95CuBuoo4iImmsJN7uYhgov7XOOUpE1ljDqbtY2SN4ExirrEGiP970HCibJpKcczxssz2dStg37HePJQIXWnjA/eJmzWkmamqhgJuVnuYx4zfjno73HU6kNR1r6UxCwjX+uYZBaz64N6I5gkskF7/NbsJcFNYYm60e10bpQ35k5JszlL4vqs0HmO/P12CPL6Rjhs/NTW2ylE0JiswjIqHJDZwkCi9gWWBCkK60iHuyYMEw11qFYUSLiNzDKEmjskGPTe6UN8zsjmc5aF0fnJGCehhokjScPrM/p7PbvFdojcvLGYYi9FFpool4ekcWBojsR5XMwpQ4dbP5JkN+dwN+4Szk9gtiSO7+DmUgF4INie0Pb4WfMCFx2+Oyz+jruyiQjk1Le9kH69L4jbtcRRzpeSHKWGsnDyEDtfSjk5PyBuLkiaImVya8laQVRniZ2xUC/FXxCj9I1jlIARjeZLKWL7DeHg9pS0ZFKkZiS4Amdl4TzvNMJSzWbWwHkXrpIHVAVitO0jp8TCX3EVo0jqmJhZhddd0ZSX2tYBkXgOManSxCrXx2iFkYezaWIeWa0+8mAWmBQuz9rAQSnoi6hfR1C3a4iyEcnsQThHziALkDV0Y8BeqWpANpxuDNNmkIejRWmn78Wqkkqw3FlZJWqh0hk52U5oiSTS3qIhrZ/qfREn9zgpkroWU88ZH70rhkRfYHRmZKzFNPN9G2McpkyDPZp5n9SV4xGvKmESspEvK8dlH4ULZaR/b62h1p9XYp/3INnW0uLrB3k9T3dyYi/05xyizJhk7iQ+iiEkhiCbQaFy1DEybZbtmHC60V+VIzubGVcGjIOEZBxYD8FMbc4iiTPYE3Feqo9cjebKbBrYq7hB0sfsHgutiImMqogpSfXRrAirl2CUudXo1QvgK6hX2G5NXFwXj4cxdHgKYybAHIC7cVeTCYMou5aHovCbH2B3G+zlmUhd1QH9Ii7zXWfxd+IlJawpSnIQeLw4wSwO8bdeERVIMxdTyaP3sLOlDIMHecjC+QmpayXHeLcR09nhjcn+nxOQUjaajQOm0nzWMBCePcQdvzS1g2x7vn8AlJ0yqEuo8Yaj0rIe5cG5ip+uvRjL+pAkylFdt0l/WcukE88PXDawhZgmTO8QIZEwTgJJQtwbzibInLqEQTaJymt2cGTiIuX0saaQ02ahi0jjJYegDWH6M6otqr1V/IGE4eTgHGsNtbPg9uqmjBXIb2+HwKrykxKpC4HCeZoyO6sTLXscMcDSi8bcdJeiXjEWuzvF9peE5S3S8jo8fY+4vcDODqbKwC0Pie2G6vUfYHxyH3/ntSn8xlgnGwVgas2hiEF4QcaSyrm0ALUaiOVS2kZG0BC231Iay+CqyVuRdMOfK447/+x3g2yepTMEmxStYHA2cdqKG3wMkcpbKu8IJO5ftAwxcTwrOVVuVOUtq9pPc4f8CoWYmBdG7wm5sjGvnn52UCc5SAVX0UeoYcJrxBzzmRImBrp0hX2l90r+M4Dtt1JFdRs171Xy2gGJkp0pqZpD7NhJHz/JxlJ5y0UfGMMelGfMnGv1iBtawUpYqfz8u78rz/nhbVErdRtJpZsfSFsJsEe3SNtz0tFNaf/G+Fyg0Qe6zHcNZd+Rl/GF/KqaaWDsjm9LfzdF0rMHUu7rxpBviNhu9FRfYJxUBrFvMd0Whg7KZo8IUEa7bdeyoIwDsW+J6zNpGfUb6SU/e4ApZrh2TVhcp/Ilvj7ADi2tqbDDlgNVnbRRcQw2UVSaQaByv0ttK+zGjI6W07DTUrzyFpsCQ7ITT8bA1LfPOvSrGcils8/NBZwOo0NMVM6S7PM4hz6kScHUB/laS7dPGwPpP9cqS81tn5yPMNO2T17cvbNYbQnBnoL6dDtwfVZMHyfQuZLKmwldMV7R1tdOsm6NyiHN2GF3pzK36TZCIx0HUtlM4gFiJLXbqa1nfEmKQfIrmrkMLYeB2G4mCWPqWkxRTBGm4eDOfvgME5JhTHraz9JKV+ARpEIbmOSwBnBxwAw7ZvWBLtxZIZYVZPuZwcsHFQ/WnVQEIXLaDpMXJKY0SYCvl36qDOalpEVfrQhzF8Pr+0KSsCKvxsKWkmbc4ACn31/ysrHmtDnIPCRBPIyaqyAQQpXvJnDrR5NzX8BwnmALnELhGgsEzfwYu6niXXdhUkaBtLIab0nFjFTU1JsnhPmx4KvruYDr1NRnNB409S3m2h1BkxczbHuJXQlyYnz4juRWvIjruzOCF3cZY94B1shxckwp/ZAx5hrwfwKvAe8A/2VK6c9Ok4iCDHDLw0nyZ+dLGQp2G1K3xS4O5ebeKk99t5lOgADGl8TNBXZ+gC3raSEAMdpkN7INGiV45XRhfCEKlPkhsVlhm4s9oz33XjVsu7RGCOIgRhhbyYNmHS4MGFdgwoCLgcpXkwooGUPtzRQnaY3R06ajtEyQrqj683yLZjnisthD3PJCkwFfed2XU5kmoulJvbiymBjDJHm1AFYZOGpKkwXKan5BXvwDlbfMCjepg2KCReUprHgZJE8h7imoGqgDaAtrX9V4a2hMgGGYfACA8KCqOSaEfRJV305JdIyywMsH54zji/29os5YO19OLcLUbidDoQFw5RQ+lFtMpAhhoHBM4oHBN/IzGjsK68FL+2aqZGKcNpLGG0on7aMU0/T9DpHJdV15UW9Fm6ZqwlrDZTeyqDwLDTGqvWzApRry8ut1lWib9OfceMNZG6e/NykRi0bwDOoGzjkHo2IvDEyzJZy0ukiRiHyc6Tei6HGlmMNKeZ1Ccyj3duifc9abMEAchZIbmWZgtYoJLKqGsk4W/RyreTXTGfl7USJ5UYCVjeZAFEoSkGfKlPUkEf7gl3mhCWXf7us7oSL4sZTS0ytv/33gV1JK/8AY8/f17f/+z/wMRUXxyifF7BUDxJbxyX1RCFgBUk03gEZV2vlykolOG4JmFJiqFsXQOGDmB6TFdTl1xFFDOjo5JVqLsU7696eP8Yc3MbaH+REZsGUvn0669jg7IhUNl3YmPoA0UqeenSmUpmhlwzAWYyJ17BhcBVhm3kzJTHZoSa5gjNImKuJIYYtpE6idREJmFETlxDG8rNyEr1iUchPnIWK+5oXFIMPnzRDVUSx/Z4xh1ciGUqSRXXJc9JHtEPEOapc3ATiq80OiCiUr6qdOHcaFFZjd023PrHAcNfsUs5AS1xdizJsVdtp0cvC9GTtp0VWLCRA4ETHbNfiSeH4im/nwGFPV03B4+vlu93yd1LdTwlkKEnGZe8lGq4QUgvS5jZUNaOwnFU02SWV3ulNXdObzFDFQOIi6PVtXMtgSYiaLiuomzzv6kL0CSKJcJY/pdgg0uqFL1kQgxKRSYFF5FVazBoyZlGk59hH9We6GiDOCGK8ZMd12CsZJZa6eAl1yDHE/D1iU+5aSCd3kGvZRCKbTz0JDd+L8muBYOoE1mqHF7s6J9XKfBFgJzLF0s4llVekcyGTDoW6cJkXs2T2tVvYbSvKlQv+U/6TViO03mKIibU4l9rSZS/voBVzGfBcx8Zd9/STwN/TPPw38Gn/eRkAiddspw9aWe56IsWIMIgaZCViHndciEw2DLA7zA/ENwL5PXJRQNbLrxyAuyiyDTJG4WU+nRUb5vCb0MFhBGheN/BvVaWeeTayWlLNj6c06L8O6kBjGhCscNi8symkR3LUhmkpOi3GQdohdMvd+OpG6MGCLhlGHqCTpucZRWDzGiPkrQ9oMMDcDQ1mSUHAZ+0S0rMsv7F6qWukiVblEMlZaSZ30uGeF0U1HYjEbb3i8le/9xqxg3QdxClu0fZS4VOREBtxdRUwsSje1xHZJWxqqqiGJAsUqvIwQRNd9+UxEA9Zhl4dSqcVIeKLO1cWhVAt6KEjj/pQYdpupqkzjALlSqBaKag6QM4eVTCtqGIHSxWohiph+Q6yWBKwQPnOryFicSirbTNnUmU3pzMSWyh6BIcrrcGdZcbobJsbU9VkxhQ3V3rLuRjHl9YFZkSaFVVC5aKFzJabPC6tao0yRNK9kvUSt1ntXcCxqGKNEiyKV5m6QdqSz+4+bNuEkUa85z9uMgyA4fEXS342x2BQl6L6cT3O05CtqI1GsQt3VQ0GeY+XKW5+h8fhjknSmCYKAkIIVDW7GFquVojieHWlzQWw3L64iMObFeRK+A65v93eSgF8yxiTgf04p/RRwK6X0AEBDm2/+Sf/QGPP3gL8H8Oqt62IAsm4/KFocir/Al6AOYTPT1pAaWuJmLZsEsvDbZr7fCFRGmvpWURSZZtnvpalaktqj+TR4nhAE/UYNagVpVj8nQyxCR7DVdPKTBdJMaGVnC6yx4sL01TSss1fS6MzuXHqyaqJKRiIKZRjMhCgorNEHKg+MpQIoncX0A4WaoQb2ILPKG5JGR5ZOEBYLG0hYXKFmon4D1lP5OWBFWqoMIGkrGaVgZg27SmKj/C6LPtrjjns5qZXFrFb0BGj7Ke09FBMfXxHh2dmakJ6+PbolbYGxg9hhZ0sBybUb7PKQuD4TifH2RA4CXloIxrlpczCVJNQJljxI6yjjF3LrKVeJrlDcdHbkDqJsueJEHo3Hq7qo8s+bA42+PgNMmc6Q3eZRQ4sss8JMw2GQ19Cafe5EvrJqKKREqX380snPp0BaPJ44fW1mbCUrQb9eM2yhqBWdnucVeZIhQ+OJ12QlkjMHxGQoo+0V3Jgx1ClKbkC/IS5vYbo1qZzTmpI6dhjnNbkvz6H2VWosZ9h+ix1bbc+tRZp9JXcgVgsJ/ck5FCBtQ2Pl59vMsdYRMxzvA1/fbQ29yOuvp5Te18X+nxtjvv6t/kPdNH4K4Ie+51PJLq/J+60Xd3AQ81DGAsSsTVZjESlil4dyihlleJf6VjwFZU1UeamZrUih1zi9Ya8nz3LDeiELzuKY8fAlKZF9hZk49hWm2+yH1tZjQk/lpLVkTXaCymnNa999SJZgZxSq5yzyY5hVD87LRpNkkG1cyXYQpPFFF+ijmNGWpZys6tRjho5YLYU7kwKhWmDHjjHBzBt5/5U20PWZEEXLNGJ251AtGLEY6xnqI8phQ+NF8JgH1BiRl4YYmBWGO3PPH531E3rCWXj9uGHdRe5dtAwx8qnjGfPCcNFHvnnWcWfhWVYON8iJtL3Czxki5DSrDI4zw47kSsa734s7v0+6eAIzMYml3UaGv2UtC/1OBsFpeyEB91Y9KBtJ5oqbC4qjG2CdqMGu3SbOrwlxU+WnsjmsZf5TzJ7P8bVewlsybVMlqN7AkMBgsUn666OqZTKTSEBz6YoaTCskXXCGIIFDVmcxMSXwUo3lVhsg0adXnpWCiG3XWK1iJC9ZEtCSK6fshiFBmUZStSTENM2dsmQXlIQapDUHiMPXlXISB8VtOMFPK28oJ4gRR6X9jpor3FM3h5g4UsaRVMyfw2fka90FjKk5WL0kG37Ge6g8dXCVbnYFSU2EU4so9FIxjsPkD3ohl1Ej64fk+rZuBCml9/X3x8aYfwJ8AXhkjLmj1cAd4PGf+4msn/IEkq+uhG3vIWOmu9TTm9jYJW+1UEclpG4jp8ZxIG7WEmBTz0lFJS5IRRCnooLFMWblNJCk3J+I8velRjLbrjHbndz81pFMgducEOsDbIo01hOqBbsh0kfh+OcUs15D5nMoy6BDNB93EpdYNHtlRtFADCxsINiCN0871v3Ia4e1kD6NtE9Mv8UUDS5FWlMShkjhSsrYy0A7SdgJiFO5GjbU/ZZYCWm1Vzmk9xafIl0xpw4drqg47yJb1bWXznDSjZTOc9JGXluVXHSRzmp0pbfcKgOrakYEVpWlbE9x9RFpVXG7Cgy6ADXeUoZIq5LCbozEZo7RHnGyXnrBocddPICT+3JaP39M7Fv5ucUobZ6+FX9A1+KO70zzIztfyoJ/eUbcrok7kSK61bHMnWZHhOVq+vmaoRNoXYq4oRNmkZrQUjXfJ59Zj7GO8eD21PJxqt4aYjaTJYKu2rmi2g6C6M6GvFkhDKjLfmRZ+Ek63OoPa1Y4jQ4V9U5eRlNSf4ezFFf4QBIYs0dE54NBYSDLDDxiCCliT8hZBIYJq50JpVeDeKJrZCDsysnBa8IoSjpfQfSycWTaqeYymDgSyzlFisSk6Ja034AqL/dUpBIXu6ukR6/ZCEXs9+0pX5E0YpZRkfPW4bRF61fHf+5y8q1cBvOhUg19274TY8zcGLPMfwb+E+ArwD8F/rZ+2N8Gfu5b+XyTmUcZ67FaPMd/j/PjiZUisYHNdDPLA2undpCpauknW+Wcx0DqduIQLhfE+TVivZLYvXo5nVDl9KenEFU6kE+uKU2lsxm24pocWlx3qY5Zw731IG7NuE/zyqqffIVqQSwaRjQztmgItpCeboo83Y0caA94MwiHPrekQI0+MVA62VjKJGE5bnfGmBeqlChjD0OrLtMeM7YUBhb0jAm6pHp46yhCN5XypfZ1Cyey17M2UCBKlmXpuNk4GVTHwPVG0NUeabtU7Smryk5tnnyqzYPToP30/Ysx7E+dyBzGLg4xRSncoHGQGZFKRckGQG0Hxs1alESaUWGbOW51jClKGSBXC6iXel/pv+13U/QicZRfOaGrb2XDzVA3Y0nlDNdeTAt1SNLyCWru22k40WaQoe+gXo5BWxiVs9PbC+1J54phVrjpfSAKpEI32lXlqJzZY0SyyibPoPJzYwy+v5QKQb/u7P4tNPHNhQ43tpLvPP3DON1/0hbbc4uSHlJSOSfMj4nzayRf7uWeTqpitzmRAPo4yu9G5NBZQpzv/5pRvAnKNAKmjOZ9elrYo7WztNdYqfhBqpCi2rfrPuhlwFr7Lf36q3B9OyuCW8A/Uc26B34mpfQLxpjfBv6xMebvAu8C/8Wf94nygCgVM+nR60k/l96lloOmOcRYj/EaYae6ZjZnkltbNPjlNTGhuHJ/urMOUzWysKdI8g0EQQxgDKGcy+DZOsZipqjfVobL2VJfCCzLrh8TF9clranbkJxnN0aebEdKZ3j/cmDuxReQ1TxzFYEPWiGI4QhalZ4SIzMnZX7jxfB1o/H678epFYaGtaRmNSmPcoQg1lPkymD7TF5Ya0lW1RnWCxPeWgrrcK6Qvc1YTBpYlJZzDZrJa7WogGTzWRYNtt/g3v4K6eCG9Ik3Jyx8idltRbYI+PqILTNm/Zo1Q7r7AAAgAElEQVRYLKdFb16Yyd8QMXjNGM49bs4fM67PSF2L/8hnsLs9b8ZYJwu7AgazIdBdkRObfiOVW6l/bkRdEuvVlGcsubz69+ePMYtDUreVXnVzQLp4CuePsctrunHI/AANqLlUE2HOoA4qpc1guJQEN7EdwuQCzlc3RorSMi8ckTTFm7okm6TVFlrtjKLFtc8epK1o4iiZ23HYz5zCgNueyiD7atawtlzyaT8PhKcsB80ilntKpaOh328OOh9pTUmtrmQByhUTyhojGJCcXAZg23NivZoAhADlIK99V8wlIVRnXDnw3sRRpMPakpsqktCrs/8KIjvFF9ca4rs+ghdypZTeAr7/T3j/CfA3/0KfzBji/BjCiBl7QnM4mWDakGiQ4aZt1/t/ksFwZYMpG7np+50whpol8fQhpiikzWQt6eAmsZxPUYPyxUaCn2FJJFewGyI2RKpyht+eSgvn4j350NufwZ1L4E2ykouc6iWxnLNrI9cbeaBy2EipXKKgao18EjZI/z4jnzO5svZ+yjFwBhZxi9muCQe3aZPD+4YynUprqlpMCO1YLcB6BldRKC6YGHG7U2IxE0fo0OLWj6UnXs2JgK1EdZXRAU+2Iy/PLbY95XpzxJ31m7C+IB5/hMhCMgLe/B3G9Snhq7+Ff+k17GvfSyxu4M7uM9x7E3/7Vap6RWksFLVk1Ear3COuRFIa0aa3F7Lxd5ek3AfOKOX5geRFnIp8FOvwn/gBkeD2T0k7uRfSMGAaS4oDbM/EMe4KwUrUSzkIxIAb+6nlGN5/g+6P/oD6U58XsNnxbYa3vyJKMyC1W9zRDVDFUQSM9SzKmnUnJq7KQ4iiEmpDJARdzMc4MZkqb6f5QKPD+KggQmOgycN9J8Ngp36SEBOFOsVLkYzJaRtRe2WJctKQmZRzCeIolaov5X0pTrMAnH5MUe9DeMaWZOTPGDt5Z5xuCkVdMyRPMe6kenYFtt/KPZjzO3qR7YqUVPASnsjZAIelhON0i1uTmgxUPl00uPP3ZRMoG1FxKZ/IpKTKOkGD2925egrsv5Mi9+97GWOwxbd7xPrirg/HlpZVPVYGeXkTyCoVaW+M+1I+RVD7u+n0tJezBvLJZ76cFEepV4mctZNGGusJxUz6umruSqiDVKsDUsRcv4s5vElwOfN1nP4f02+JxnG9cYoQsJpBLJrynC9wJblwQlBniWfm3FuEIeSMsmviSKqXDEk2wyJJrxbVw5OisOizvFVP2yYM+IuHxHIxRTv6Z98kPr1HXD+TtKh2jV0/lplDkLaTMwa3fiwLTntOePdrmKISH0W/FalhPSO2W/rTM8LpE1H8DK20aC5ORMLbnuM2JxPdMwfRgGxwhdUkr8SehnmldZbVPVn2a8paZj19S2xWbG+8DgsdDntpIY3vvzU509E+eh6qjkevTC0eQScPxPUZ3dma8cl9iIH+ra8SL07ktKknzrjbwO5CFlf9nG77jFkhnpCD0pHX6IwJyT/fbKpyqgIrteXj1LhnzB5QaA2TXDelPUcowwjz4DXYQjZBYwlWK+Sxm3ID5CZQLX4OmPG1qnP0RG/3oTXTbOoKHMuMvUhD/b4FI7OGgl36Y4PVFIU5pMFOGCsHjouHbIOgOGy3FnOlldcj6pAdY3TgLbNBiRPtZKCfEra/lOcsRfzTt4gP34bdBbFcTGloH/gyMiP4Vn79Vbg+HFva0Aucan4sN6deSXvKErAxEJe3sOtHsgCVjZyIstxTb/AwP5Y4vGoh7ZvQE29+fIqlzLOAzViSxsyUF9lbpmCaXnTndncuJ58Y8e2ZoA/KZnJdmn6D34iXri5n2kJa0KQerCEVJW1IXPSRmFRjTpqcv21IdGPixsyyGTW+MlcO/Y7t4jZ16PBVDSFKS6peysktRWkVwNQyIEXMV36FtDrGAf3Xf5u42xA07AfrcIA5gPT0Hu7mR4j1AcSR9y97bhzMSV/6BUxR4l79DOPqDu70HvFLvygKrXEgnJ9QHh2Sdhv6N75MGr/IuNsI5mF5jahB7zh50BtnJhlsDrsRemYi+IaWmsXtQ3y9xBUlzjpSNReVVhxhdjh9n+3BHYYxsvnV/4v6098P1Rx/5zUuf/3/oQoB//HvmxRe+XKXT1Q11EkY+/oZF1/+Mudv3ufsD9/D1RXd2Zph01Mua+78yPdQ3v0IZrfBX7+tjucR21/COFBpFGSsDoT5k+QeyrA4i2Cl91hxq1jvPfrjUsOCcpBRSkmUX9qKK51hN8pGMEapAlwvLaxkPS6OU0swUcqiXTSivlIiaE4lM+PzunvbXkglaN20OU4RltVi2viSr1QObSkRWfQYE836EXF2hG3XhPmx3IcHdyRoZtjxpHmJw8Lizx9gt6fE+TX6kJhtHlGqSs5cPIH5Eamo5fMsb+IuHkJ8Kia2cYCNkIjj+gx76zW5H8ZWxB4v4vouYuI77zLOSbi2csqLxXVMGOiLuVTF281ebmj91Os3SWR1GEtY3pSBU1FJy6aaS5+X+X4W4A6ISYJkLvWYHqJA2VwyWoUkAc+lc/mcxspm0F1KdaF4CpOVRs7LAFL18I2vFKK2IVVzmqKhbCpO28B2iIofkAVjUCTEcOWU2EXh3N9oLygO7nARShZoL19TpMbmmiSC2UQsajGjrR8Tv/IvGc9PiOszxif3if1IipHLr/wRAMW8Zn73BtWnf0iqpN0FLgwMtz7F9rQjlnPSxQn28CZm2OFO75GePWB4+B725AHu+A6b+09wdUl7csHi7g0Aqps3JApSA2Pc7lw2U5Ahrm/Yjc9jjnejvB4fcxckt+KkuU1/+xYHpWU2XhLLOW00zMZL3Ok91v/i56nufpn3/+HPMbu5onl4wo2f+ElwjtD2PP7l/5drD96meO0zuJdfJ8yPBSNSzaVq1AVu86Xf4OKdB2weS2upu+gZdyPVQUl33rH7+d/k0//Ny1IpvPFlqs9+YS9lfvYAU1TE+bFWAlLZrSoxzzkMs0rbH3pvN96wHRKrxk+n/WzuA/ESnLaBeaHkUUVLzAojcmJVWhnXiGs3IzOM+l6yIigH0YRBfDOunPKer4bYTMNWbf/kuMtUzjSWUgfaY0dVLaYBc+G96P9due/XA1NAjbHYseV6/4SUamx/SaqXhMUNmmFD+qPfwt59Xdp3ZU3anGIr2Yjc2X1Rh1mH3Tyj+/oXSUNP9YP/MXZ1XRhS9RJz+WS6r17E9WFyFn84vpM80FIXITFgdudUF++Lfj6Oe2ZMVkZcPpMH3ZUwdorNzSyYkYwtTuVMFDkIhjkrPHI3YnI/so+MzGVr8vJgJVcIrVKD0rFWWeuyEcVmNZljzKCtl2Er8tN2jUUGi3kTkFATebt24h5tvKHS2UKpfYZ2lEQ0GwZRaGxOCNWCjYakD7mVoBuEaebYZk48P6E7XROHkfbknBQjxln53auiZhhImwu6L/86dnMiba3Td0khEE4e0H7xV9n965/n8ov/iv5iw7De0t//JjFEUohTWpyrywkSmKyX4WW/m9p9Rk/MOZgl/zm3RnJfGdAhuiCKByTv4Q/WIh88f+M+b/3M/411llf/zt/h8t1HjA/eIYVA89GPUR7MuHzvEesv/hvYnIk8NCtTUiSVc5Ir6M5kAyjnJfVRw/zmjGJR4EpHGCK705b1175Gajd0j59w+ks/C+1a4hkBM8qmm3TuIRGjWSq7x0KEtMd0e8WR196w9JJjnD0DfUhKNJXXoI+Jyz7K4n9l2DzlOGgmQHKFCCI0YN4MOzF8aZvGdms5XKkKJ28UOYgneZ0VqLKM0EsYkA6YZWEXcq9bP8Kf3RNXd7MiFo22c9ppk7XDjvj+m9jNM7nvuw2m32KHHXZ7ilsdk/HhcXOheBhp5+ZNAGA8eUjabfA3X5aDhSskl7rfiphkeDFxlcaIoexb+fVX4fpQVASAJIzd+jgmjviTdwT+9uw9rNIp/dO36V/+PCbrqRH2DzGI+SgGWbij9j69lMytrdi2AfDEtA9sz7358opKZoKzZbt9irKgn7xDOLwrPdR+J8yhfHLSNo0ZdvIQPntPDE++JpVeBpbdGmfmWOXtOJNUMy7MoDrsSAgy2/tKyu3VHebZDXzxUHqpzUq5MyLOHIJUMySJ4/R3PgY37nL6Sz/L9uEzVh+/y/zuDfzx7YnDlNoN45P7FHdekx45kN78Ip/7/p+AMzsluW3uP8E4S38hr3+/lt9d4RkuthIU34+Mm5bypZpw+gSzWZOu3YFK/R/WCgiNPVc/Xxmklk+0lsiqcRLzaUsKIkclHB0XdP/sF7GlZ3H3OsZZ4uUZtvS88Q9/jk/81z+J/94f5frnfoSLn//fOf3Dd2lu/AbVX/tb2PWj6edJvyH5ksUnP0EKkcVH7k5D6LS54Nm/fYuTr91j3Ek+LsDih/+GyFgPbmJP75FufwzWT2V2kgLOWhaK1cgRoJnuOnGVjKE2MgOyBuzunGZ3TirnuPqAi1ROVdJ5F2SO4o26dBUVopDCIg0EUxCxJCPVrMsUWBCFTRgx3ZqxuSaObnSzyZ4bnaVlRLsddlI9I+ayVDTShi1n0t7JbKFqrgbLmosBjlSSa3fnmHVe3K20T30hb48n+DAQTx8xPHqXuD4jdJ3cM5o2ZlfHogTbXDC894cUr7xO+foPYK7dIVRL/Oabe0Lp2JJWt1/EasN3ERPfgVcaWnm4eVPaLstD3MVDwvoM2xzA5pQ4DLj1Y+n/10vC7U+RiobeeFlcx1b10JqHqijhcTqJpumBckYCZYa4NwDNCkvttToYe7pyKUatekVynr6Y0+wuhFhazSfpW1JZpvzfkfHhu2JwWh1jt2fT97hYLKeowmtzP6koynGH25xMWbOpqOSkNvaiw7deerH6f4Uo8tIalbZuNzIzAfm362fMP/FJlj9wOGEz7HwJMUpUpxJaU5Qs2f7khOb4DvN7XyJu1vgbd4nnJ/TrrUSDNiXrdx9peHhPeTDDFgW+rqiPV8RhpHvvbco7cqrzgDm8iek2+N0545GYoXZRBsWXvaCKt4OcejdjmiqhUXHafRIVzeLx1+h+6xfpnp1z7fs+tcdPf+I/5KP/7as8/Ec/zYNf/nVu9y3Vp3+Qgx/9ceafPyM8uU9Y3MDvLjD3/i2XX/xXzD73eezsAMae45/4zzHVjHjxTBb6esbxD8659RP/GXZ1jCkqxsfvQYz4Ox8jhR7mhzKsV9xJso5KhQaFuo6bwmq1o2H1yQhZNore346daPPL+SRpzYcQq7OBISaZ4xgzGdjy7yJxLvboaI1AdQaCYtIBkitwocPmobGz7GKhaq4Zva1p1FsSqzn+2bsMdz4nVcX2VA5h/Vb+vl7KptFJjnQ0MvSdSKTGCLJF88Dj+pTwztcoX/8PCCfv0/72P2e43OBnkkceztfEEAhtT3d2AvcesNheTAcVQYiXhDd/n+K1z0qlYKwcuIaO+OSPXti681fltP+tXB+K7yT1HeH0Cand7gFzRSOtnaISlnwzn7DQ2QiTF8aocrNYzqeBc7KebTBTK2ZUBECuBCLi4MzmL5DgFhe6qf+ZzS9u/UQcwmUjcsasStHF27ZrscHvLiQXwToJ8xh6bHuBGVsqI22erCyqvVVomMr+4iitrShMFyb9tJtOzck6WpUXSgUyiDwym4zGATs/oPjcj4jzNoYJwhY3F9MmkMvw4fSU4uAAuzgkbtY6V1D3boj06y3DpsXVFdXhkvp4NZ2WXV1iS095fI3i6AhAqJ9X4gyD0lrbKH3v/JrnNhHA3CXlMxnK2Cv5U7OT338Duzrm4Ed/XFhS8wOZJzmpuGY3jzh6/RUJJSrnol46fczZV78hQ8iD24TTxxTLGbaeS/71539MbzrNEChrTNVgZ0tSlLYYYZDwo9V1krHEcrH3upw9hhBUwqkKM9AI0v09bZH+vzfyezcKzjxHnyZf09qKprDTa5LvQ2f2v3KValNQaWcnyIkUpiG8DJxRV75UlL0tGbB0yVJccT6HlKhtmnIg7O58EmjkTGejecT5ebPt+d5wCRyUTto1KRKb1T4nHIjnJ6RxIG3PieszyYuoS9zRTVLfEvqB6miJXywwzuLrShRaIFnTyhrLzLCUOWOhB+cmlMgHvYwxWOe+pV9/Fa4PxUYABlvPsDdfheXeQm5vvIoZBykH54fEeil2/9UdNtHRRdTYA6mYMWCnnujgKsYozs/M/wlJFqDLQZyhpQLjEjxn/gEoRxlKCZzNMhsuGK+9KjkIT+9LX7Rdy4PUS1vI+EIczb4gVtKvZ3MqZq5uLaHgVnTUNgl9M8O/8kMY58fEaiGVSNEw2JIuWV3sA7XTfAFjsZdPhALZ72BzJiYdxWaknThuw7mC2Qp5GO3qGNvMCU/uEweRnvZvfYXu679Df/+bhCf3efpbv8+w2RH7gbGVmczYdsRhoD5esXz1Joevv4KtZ/J5b71KRoIDhCf3GA9uE1Yv0VtRTvVBet/ZYRz152HCILpxYLDSJllWAnXLXKFwKkEm8tqWEo/44E3q1z5O84lPU3//XycVFe7Gy7T33qM7uyS+8UUwFv+JH2DctoTTxzIjiSOmmhFOHkqeQd9qzOmgPJvI+OQ+/RtfZnzw1uRsTZUgLtIoJ+nBeO2hd9j2fAIK5nChDAA0oac5v6eZD0lVAer0toZ1F3RmtA+vb0OiC3v0dGENyTp2xXLaSGy/oQ473NhKxRAHMWAm6I3nvA2ctmGqunajRGQWRg4UxIg7f4hZPxUMtLGcxkLu6X6D25yICKJdExc3RGEE2O6S+v0vTxWNffYej/7xTzM+uS+Hjhixi0PC6RPCyUOC3j9xfcbuySnWOXaPT9nce4ArCqrr1/A37mIXhxSvfoqgQoecQ0AIE++LcZAY2xd0fZjko381vso/5zLOUbz2mUkKGjdrpRAWOnTsicVMPADNasrrzYCvbozEosYA0RVEJ/kAeZMA6UmPavoZomj2JZTcaMqXPIACvRMapesuSa6kv/HJabH2n/oh7Or6JLszoZcSM6MSNNzE7uREZEqRU8ZqOUVMgvatUV5LOVfJpPJwFBeQT2DW7FVDxhiWhSFUC5lZ6JA8rk/p3/k64+P3MN1m2gDs/EBaIvp5UydgvhzkMlxcEFuNbBxGLr7+R4RhxDhHeTDHFZ44DBTzhvrainI5Y3brOu7oJqYoBfyGnuA0KyKcCl4qmT2ALCmHxxiBqll93fPJMwf1bIYoiIxhg1WujD24hj++LXm2q2PMl/4ZUb8//9HvEVmtrxnvv4EtPNZaxsf35ARfzanu3JVEOhDU8W4tLT7r9iKEei4V6NCTdhvGiwvBWiTtg3fracOImwuqS5Ux63DWJBnuNt5OeA1n9JRtLE13KuEwrWjrzdBN7Uqfg4JQTwLS/8/zK4tETNZBiKDPITBcIRuFUkq3Q+SyF9x0Ug8KXGlB9RuJmHR+et7s5pkcSmDKdp7c2NmX012K9r5bT2Y+M+xof/dfsHz1lsyhFscUL72mjCfBVhRHRxJEHwPGWoaNqslCxJZeWnHzA5En9ztSuyGuT4UtleWtIUz5B/l++8CX+XBtBB+KGYEpKsbj16TvvjvH3PoobE9lgZwCMBYkXxFsMemyO6VanrbC3slaZ2eMQs72PelJJYSYXboQ2Q2JWWGmB6h0hk2ScJCVr0VtVC3oxsgsRuzuTBbn/gybImm3Jg7DtJjY5TUJTdmsGU6fTHRD42tBMNQrXBJUgE0BmyV4QCznavRJe+VUHPHZbp8ipr2gsZ5UzihO3hG53e6c9ku/Jvz+ei6D6ounAt07uE46e0xsN4STB5rnYDGVQO6K5Yz+7JIUIq4u6S829BdbyuWMFCLlwYzyYM728Sn14RJXl/jFAnd0A7s8YnzwtrQC+lZ8CqpIsvMD8OXEmskZtqWDNkSchq4YY9mOicJ5dhrrWTsjD//QYu58nPQ9P066fIIZO9zLn8W2FxOt1dz/ukQaLm7gz+8TfIE/OGD1ibvT6zr85s8D0J+cUGwuSLc/Rjr9BjnfwhQFxae/IDvUWjwhYX3G7Pt+WNzNWXo6toTXPo955/cIp09w4wB3PkHyK2mlFA1G/QDOyEFlCIq51j57050Kk0d1+xnMNgTZIUMSL0seOFcmYodziOVEQZUwHwEwdosll30kpqCY6TgN5uX9aVI3raxkFKRQqRNYkQ4KPMRajnYP6Q5eoj59hyk8JiWcegcII/byGSkECXt69DbjtqX59PfB7Y/JPVxUMks5eYBpBNY4PntCHEZcKUa4cSttHz9TZpSGEI3332Q4FeCf71p4/DZUjbjNVzfVKPpigmn4Lob6O/Bybs/C0dNzvgnPZncorGQCb4IhBrHw74ZIYQ27uAeZtaMMznYxTnGOIcJ2GBlC4qgpWCtPJw9rd6Pot6NJ+9O6McSiZjtE5i4Jh76ocSfvyMwig7J8iS1r2bDKRtK1kOGsqWfSdmg3Cnfz0+ndaTqU6LZFrWHGDnf5ROYbig2IKllEQ0TGg9u47TNx7vqC9OwBmy/9BsXREcXLH8fMVhBHxkfv4o7vkM4eE04eEFtR+ZiqZjh5inGX+GuymJdIn3x7/wHFvGHYtIS2l5O1/lp97GVSDIzbFjtfyinOl/L91zIX8DdEhZOOXyX5irZcMoY0ITRyOwj2Sq08IL5Up/FxY1n3kbqS13tYXBemf3WdVGoS2+yWorOhevoOrE/w548lmWy2xL/0UcrXavq3vsr41X/NcHpKipHNgxOqu/cx6zP8Rz5D9zu/TPW9P8L48F363/tVqu/7UVGdjT3u6CbUS1LZEFUmadXBbl76JFZlm9kNK3kXA21yIkvUQW/hDMEUQomOYXLu5isv2Pmy6iU5KMQIx06qlqh8/sGKB6AsRqJVkYSRzeNSn4dF5TjvAhe9HI4O1NxmhlFyEzRyMtYruR/DiDFW7qnzxzS7c8LqtizmcZTv2znc2fvSeiwqeW0evU0ae6o7dwknD0nDQPHyxwmLG6R73yCcPGTc7vCLBaHtCf2Ab6qpVVQuNW1s7OkfPcAfyPxnUvLEoDPDRmjBQwf9GbF/3iD373sZ++JUQ8aY/wX4W8DjlNL36Pv+1MheY8z/APxdJOL3v0sp/eIH/Ro+FFtawkgloMApgFgfsJnfAkRBsg3SOpDUK0EqNJqCBPB0FzhrA5dDFCrkGNmNkXmpebspqbxPnL3tKDJSayDm5CwkgStjEGICf/4+5bBR231BOLij8lDZECSpaa/WiNqbzy0iaS8kMZypzJQkblGU6DjpvAt1S9vnb1Dh5qvjOsqfQ3PEeP9N/MEBxSuvy8Bu7MjE1fDkvlQBOajHOeziEFt6XCPhI8YX0mpxTsLi65JiXlMdLqiOFlRHS2zhp00g9qMoOzbrKSpyqgQmiuQo6AsUk6DfQx4Ol4rYGDXgJm/iuzFyOUSuFVEpsXO2g7KaxsjKR+Y+VxLgxlbcqZ14IuJ2jXFO5iDLQ/ztV4nnJ8RhZPv4lHHTMp48pH3za2x+7Wd59Jt/QP/Gl3n/539Bb8K4R1pYS/LFhEBGcct28wyzfro3aOUWDSrHNGZyTufvy5ImyabdyhxHkrmszIrMHr3hDKzcOCWqGa0cbHsh6hz9v2LREIuajard8kaah82bIU7zhspJpGpScNzkK8hAPWQOZhTjzu4C04uSzXYbaakF9S6U8327UpVocX1Ge/99wqN3Ge69KffqbkN/via0PbEXv4lvVHhRK7piXsuG60vxuPStVLhlLbOnfPKv5jIkruaaXvfilrwX6CP4X4H/9I+9L0f2fhL4FX0bY8xngf8K+Jz+m//JGPOBJ9IfioogY5aTsdhhy7i8yWV0bHo55Vz0sshsBrHmO2u47NNE/AxRF5KcpVtYCfcwMmgr7B7+tSw9T7f9Hu8LV1oVYvCSzGBDO+oCHHpitSDMj/GPviGUy/VTgduVzTRQNGGYesjGuueyc/MDHesD9SfIkDi4CpcEemezO9QYqRDaC4lNtAW+v5z4Q8SA+f1fkhlEVTM+uY/drnE37kK/I65PZQ6Q2zTWEXfyoLvVscwOFoeq0IqEkwc0N65NeGdbesZNi5svGU5PGTY7Zi+/BEC8PMMd35kGfDkg3ngxlpl2TayWFI2jKTxDjKS0901kJHdCWng7rdyGmHi2C5RzT0iOvo2sKst2iKwqRzKyiJUAg+YPlw1GDXRueajYgkpOufWM3aMnNHdusfxrf5Ptl36dx7/zdRZ3bzC2Pf2FYDFC28lm4kqYVwLAK5opJSsHpGQjF74g3v+GzH6u3ZGeuRq36iRObxsGTNdRXjzYO2FVYfP48JMsS0vZryXgqKym0/yssKSoj3TZEIvZnuMDlLFnsKWmhe1YVAsu9RkZouBKzrv90LrxwkUyuzWxXsmpPwwCIkyaCRzHKQmMGEXwoDTQdHJfXl/FwRttkSVfw+UJ7Td+DzdfUL/yCsRA9/Y3qGJg94bkU4VhYPvGfXwj4Mdi3lDMG1xZ4KoKU9YUx7clZKisscsjeV1BFFznJ7gbLzM2R1J9rW7i5kcvaNExou57AVdK6V8aY177Y+/+0yJ7fxL4RymlDnjbGPMGkuPy/32Qr+FDsRGIzX2nACoxvswtGCy93uB52OUV35sXlEzx7MZI5Zye6KU03/QSDjIrLKvaT7myLy0rhigmoEm7bZhAcBFp3xSuJCyuY3QmYZsVcXFdHozV7Ql4l8FvYXEdu34G40DsW1wmaDarqWowvhSHpPb3XdHsWUFjvx8Ag2wemhMby7n0lxHlRlifSismBKL6A8LpYzGNjYO0pYYR07XEvqU7XVMdLeW0O/akcZChXgyiyDm8SWo3FMcS31ncWcrnc5bF93xeZJvdjthu8XdeE8Q3kIoSmoO9z2EpyaSb6EjkgaeZJJJoSkE+aLVjZDsk2kHwzSfbgU9cqzmoJOcgQ/oMg2A+vCCQBYO8xLdrTD2TBURVU7Yjx+YAACAASURBVGzPsPMDmju3IEa6b/wucRixZcHTL7/F0I5UBxXf/N/+D7YnG+of+I+IpXD5oyaj2WFL8rUw+EF+fv0Og6jZSFGS8awDu+fzuN3ZpLk3nZj3jC+wN14lFQ3PdoEhJg7KBbUzPNsFGm9pvKjCpjlRxpiMveAVxo5UNBTjTly2ylOy2hoC8RU23tB4h5t7Hl6OPN0Fbiiuo1rexPZbUtHQRWjsINGT9VKMkzdfJflChA3P3sM0c8JLnxUXcXfJxewWq8v7mJN3Wf/rX5lkof7mXREnWEc4eUh5fI3hTIbz1dHeOV7euiNigvUZcRyksl7dEtno8hB/8xXxMGRfzNFN4ukjnPWCDq8Wz1VhH/j61jeC68aY37ny9k9pwuKfdf1pkb13gX9z5ePu6fs+0PWh2AhEj683s/bLpWzd0xq9M3SdJIGNIU1kR5DTZM6BzeEnQ0wczzzbQU5I3prJsp+TpColPuYIxdLtHa/RV4QxUhiR5DlrSFFlnEOn7QFNb8rhGSkJeO30EbasMUXFlCk7DeUyp0VNMu0aV+/VJMCkpJE3pGVkxg4ztHTlktmTtwi+hL4ltltp2Qzj1PJJatgJbU8K8XnlgxdpqS1rQXZT6HC3mNpFKUZBMo8Dxe1XRMExDtDtZPOontd64wvY7cQ7oUN9GxKDwvWSOrmNARTLIOohuBwi/ZjYDoGQZI7TeMFzF6XFK5p5n8Fpp8EpRUMYO8kl6HdSxqc4xY/6lz5K/9ZXAbCFpztd013sEQWVDsDx1XTqRhEMwJS+NVFS9f+fODuq5BIUiTL+Fath2rVUbBk9Enri7Ai3ke97MwjqRDbHKGE/Kgs2426PkvbIfRPHCRsuNFHBdExVrfppYoK5GSBZbi+8OrUdw5jou8Cymk2o6ylbAIEcJldKetv6RHDe+n2gsZUhJp7NXmK2epn63pvEtSz2aRikIrQWe3ybcPIQP6spFnOGyw3GWvr1ZkKb2Dw/267x7VoUYTHInE3VeKlvMfWCuD6Vr0Fhc9Oz9oEv8xdpMz1NKf3Qi/uP/50r/Qnv+wtdH4qNAAQXkR3Bsaglpk8fOJkLyEK+U85O5vGAtHZCkqjIPsrbVSF8909dbyRnwOzNZSCbQB5kilMTLvp9tm5EpIBtSJIStttAGIlFgz9/nzR0pNVtUoG0jpYyz4hRhm9otSCKmlpkhBm5O2ynBcV2a5KyhGI1n9QZsTnEhJ6tX9AgbYlhcZP5g69AKS7N9p035fuvS0Lb056cU8wbxrYjKRNobDvmr96laWYyaBt7mQkUhfCBRjFPATBbSjrY5gLbzLEH18SF7GvS+WOSzhTS5kwW3Zm0GKKxpOVNYr1kcBX9Fdlu1s833rLu5DQsmb0y8znbjTJUTYlb84rSGc47yTruItSpp4kdCb9/cK0THb8x7BZ3mJWNaN5Dv5cZjh12dkhdzxm++TX6kxPKgznlgW5iIWCc5eCjd6Qa6LfTRm2GTjY3TaXDOoEIPnsAVU3qWuzRLVmcjRW0NxCV8WPbNanbksYed3RDFkxjMf2Gj6yuEXRA/mwnKW9DZMoYkCD3PSgux1Fm/lJpncyYfEU7yDyi8ZZg86wlsRzPSeWM0oNx8jotCwBxdBfOUJsB214SFjdw5/eJZ0/g1muE+jpmMU5qIaMKLttecLw758HBJ3jrbMcXPvY5xkfvyWGiqomXIpWWZLleq82I7TpC24sLfbchDiP+8Bru6OZUwdrloQDouo3Mlk4fS1sVNfyVDWF29Bc5wf/5l+EvO7P4T4vsvQe8cuXjXgbe/6D/2YdmI0i+nJARKGogJOl5irqEaaCbDTvOyu9zbznvZLEvFQCWT0rWwKg91N0oQzTZACR43lujDs6EQwLajQ77kuq8oy1wANbi1k+I9ZL4/lsikfvkF+RUqAPfWM2xoccq893UC5IxMmyLo+CCg57uwigpT2MrQ+IMAnNRUBpFJQtqCnTFnGrzVE5L40A8e0x5fI2wEflnuZLFfGw7jLVy2m1mmELw02Gti7dXY5kOfdPYEzdrGf610lJyxy9pq2SUo0pKmKrBHN4SHf7yiBR6cfM2h5PzOecl5zZQoT+foBgPP6VvJdpRZgLHM5EDX58VEshTOvWHGJr+XD9hlDATX0rr0EjbyMRIbS2224jKqhEfhm3XmGf35F5ZXaf8/I9Rtmuqu1/j4itfZfVDX8Bfv03/1lepPvsFcTwXQr+V3IqcZy0DY7s7l9lAu8HEgL35Eem1Kwp9ouBmR/rlmcRmHgkR1x7eIJM+7diJ69gW9CGy8kYSx/oOikbklgnOe8uq8hRGMOytKenGCEVJOe4YkuRSZ3wKCLBuURqG+qYgV8aOwkpFbLpLSZoDUtnsVVAaABPOTygObxAXN6AbMMOWsHpJJKZjR1Ckyp3Hv8vNO58hfP3J1M+PmwtpDaELtxoLUyfzEVt4GQLPl5jdRmNkHcUrr+8XgDBIxoUaHk2zlJ9n2RCq5RQqNCn2PuhlzH5+95dz5cjef8Dzkb3/FPgZY8z/CLwEfBL4rQ/6n31oNgJSJNgCo+7fTp2oKe1DsEetyJ2VQa5T3bl3hsrLqbIdk0K/xJ4vPX95SFKSQ2WeIzgr8tLCieQvpD03H3K7aM+IkXg9O50Yw5P7uM/NJrdpysM96/dD3yDa/YyjuBqcQgxiod9pG8g68SoUtZTJ1ktLq9uyiQXz8/fl82ZDj3PYwhMZ2T56SnW4ZHdyzvz2Mf5AFkVT1jI09gWmmU8AunB+Mp268mX0Y2KtTPvS7TEWRSUDvPmx6tnnshF4cXBnoFxWZYG87iiHP0aJVc89f2eNGqpgVXi2Q6QprQ45dSNPHtNdSk50u1alVcIOuwl5YKJUaUY31uT8JNGU711bRkVF8Zkf5vi1z/z/7L15jGRJft/3iYh35VVZd1Wf0z2zcyz34B7kLs2VCUrkgqQtUCYkGBBsCwYN039If9ggCNj6xzJoGTYgyTBgyAAF/yHaEm2alAVDByAKpG2uKK7JXXKvGe7Mzs5M9/RV3XVkZWXmy/deRPiPX0Rk9nC0XHLb3tnGBtDo7qqsrMyX8eJ3fQ/s7k38ckr+sUOcKRIiKO7DdD1cB808vBmXtJtS4G8FpeXzEtqlSDhrgxpsiJ2mySHL1vy4O7yWfj3IfOS0y9nyS9qsR2c9lcl4OOvE6zdTSR4icjKcJym6itmNJ1PQALs9OQ4mS8uoKMlMjq4nEoCaWTCdKaBdM6gBcB3N218nu3wT1dbivWAtPmtRy6kkLP0tQaVVI7KHX8NqLfDOkFDEA1pVm2hnhbDYtZjBkOQzrY1Uo2WFrgYy41rWQuJb1gK5Xi5kHhXIbnFOo2wLbpFayN/qUk+QR6CU+iVkMLyrlHob+M+RAPCHLHu9919RSv0y8DLQAX/Ze/8tR7enIxBog6vGweZP+soXjUtSzY31oVUkeuzLYAeZhpFapZaO1QStmigAJod7pxUmFzLZTi9LejaTpQybo26LUjDMV+xQ6z1WF6Im2Z6KptBcer9udk7+xudxz3wYc/S6COEVwQoyQP/WB7/erAadYibSYSb38VkuWeXsRDL+80ciJ93fpF9Kpr/ZW8FK1127VFbQHE8oNwXqObp+gGs62tNTso2NMAso0Bs7ArEMJB8TbmQ93kFdfREQFqzrjVcHFyT/aLQRR6pyhGM1b1mGz2zZyfwGAovbeTIvLSDnpDqIgbVB2ndbvUzsGI2iyozIOntPmYkEMiCti9lxYHxnaTaDC0iedi4sWROuTSPwTDXcEUev6SPxmVgcy8B2uI0vh9gwgFX1VOQ/2oW0MkJVJ9pNSzD+sUy/fOEj2OO7crgVFWr7knym0TiFoNdfFol17IueVBXOsfSaRefIAprteG7xvYzS+KAsC/cuGsZlTqYVM5enCst7T6mEad8LsyMTDnSjxTu7MqJou7Qek5vEVldtLYHIFIL+CfwAFQJafTyhmhyjqxHR6yPORyJyzRgng+VHxwIhvjhLkNuY5dM16K193PRM0GuzJeXNl0R3a7SJygqBHmc5bnq2ap0FX3G/mKEGG7gIdwVp0VnR7eq2n3kyZ47iibWavPd/8V/xrXe17PXe/3Xgrz+RXx7W0xEIQnmdm4ymXZHBFq1LfgEOz6xxbFcmDRszpZi1jmFh2Cg0F41ADvuBXxALv54RaF48tHRQi1x0ns1KTEVkZifZqw9uZYLQ6AKaZynZfvRNDtlE+9YrZJeex48PUa0Ygej2BNU1+EDjj1lNbSTLKUb7KGfJTm9JUHEWigq/OEk+Ct2D25itGnd1b2U+Envg0bx8uInPZvQuacx4B7O1T3d8Hzc9TZfWNzV6ax+ljQyAncVv7KHKJXrQiLRFbywVTzAD6pwXNc1M2jr5xiWMa2lUhg2tiCYE2EXA+scqyntQ+NByU0mzP1ppeg/LThjdAJuVcDyWnSczqzlQbgqULijqU9RyKpl3tAm1Hbo9k5ZVGuaG6suJ77XPcvGsCCQx39T40/v4S8+v2MldA7e/AqMt6XUHrog3xZqBep04Bse/8/vsOEt+5Tns9Aw/OSYD9Eh0sJifoaqg9z85hsEGqhB/a7txKDOiYOzeBUOkwsgetk4x6xwXS8e4zHF40SFyMgAWSDOcNqDMmHFpxKdCKTyaXCkmVuZky6DtVBpPHipQIDD1C2gWAYkkEhz29c/R299KciiJz6N0wO5nZAGxprwTzgr3ZQ5grWT5RYXZOaS792aSk9CjLSE6aS2SJD3hAmR7V+QQDjMqV8+SDIraviQAg/BaVbsU97OLR/IZdU+GUCbD4u8MQblvZj0dhDKlaFWWPIojwkQHfH9Uq4zVQVw2aAbFXr44O+nUfgA59FX8OwwuF62Q0lxUdkSGx1JdSBDIFEFaWgg+Kph5UI2knG1qunmNtxZz8RA73BMZ38XpqnwN5ttxqBiJRvPWJatBICl/RiE0EH0dVQ3Qi4n8aWZr7lIt2aUbkqV3rfRUS8HUZ3tXRMF0sLEyYw9ld3b5WfH7HR0Ia7YareYS3uPyHotOLDRFpC+2JHz6fJyXGcCyE12gNsxyvCdVbeursS5BcyN5KooAxoExEMhYcfAfgoHvQs8+ej+0CV6bjIKQzykhrqKCZiSIaY23kexmV1/vGvSFVF4qtiF0JrOCoLpJQAtFYldXiw6RigfY5Bh3cSbDzWYR9HXWXMCcxdcXQYRwKNfYr1qWkXQGcB4YxrmRtucwBIl4fRzSCuoFqfRFK+iabHmO10bMijxMG0fdiflN7sP1CRwd1QZOg8mT1hXBVyDCipORfRR9i9e3a8RXPNi9ZofXZaAeSV5ay16MlUFYeihVgHBN5Pl8UycCmW9lsKx6A5kp6CjFXmD72wku6npj7GBHODxPaH3XmOYJLKXUNeAXgUNkn/6C9/6/U0r9NeA/BB6Gh/5V7/0/+UbP5YJuUMwqqzBU3OsL/K1BDqVhLj6vMduscrlRCqOxzrNRamELd9KvdUp4BSJo5sg1RPDguNSJqZxrRc9I9uq99Fz1cpqGU97kSQPI9TcxtsEe36PY2UH1N8S6MA6HYz/VCelJNwvpq3uXAg9Ak/Xo206CStdQv/plAIorz8hhDoJgCR685vyeYKyXF7R330TleWIOy2FWiRkIiFhb15AdXF/9vxrhgteBN7kMBSPkURuaIF9gvVwP63yqoBZt7OlLQF03WPesrDeBQBoDHdo8cVgscwSp8CJk1HmB/RotB+PBIEsBo7XCeE0m63G20oXWUMDpp15y0KzX0cHKmBQofT0XR7bCSpspq4QfYhuat18n++CnhBQWHLfcYHs1lAxuddpOOfzTnwoVlyBkpM0mB+Dy5c+islykNgYbSTDPHt+H7WsiQjjcJQ8ubJLEiByEkB7jXgbnPQ9mLaeLlhd3+9yeLPnYpQGF75h0mo1C8w9fPeEjhyOeLRxmecGGzvBZTm1lFhNnZXKDBbZyPORBPntAz09pJ8di8Tnewc/PoOwHLoNd8Ta8g6KPj2KLvQ1MbwO1vKB7eEcO9zgcLira4/uJtOibGj3eEdG+WtBUqqhwR3dQxpBdurEye4oByon4YLP1jCSFwW2uto8nGn/iFZj9T8v6draGOuBnvfefV0qNgM8ppX4tfO+/9d7/jT/Ok8XDpbHS6iF43PZzTS8TqYIooAUwyEXb/6IRX9fY39fNPGisl6hyhHEWG1iiJjiCZVH/Pvzu6AS2RFMZJUGgmaes0w7kphYGphK6u5aDpnt4h+z+6+j9Z9CzE9zRW2IKP9hBzRoZRNbnuP4WvW6Gp2TkluDAlUPMYCSyx9MZ83sn7G5srBAYl54ThFGAKFKO8GcPMFt7dPfelExqsIHZ2seF4a+qBjK/qGeiBT/egd4Grr9FN9pHeY9D4XRBlvfw2gT+kg8ZuxxSdZjLRBMfG6C31q+QVhDJeGqlLBoqsDgn0MjPx+svvA1FL1eJDFVlemW+gvhCFL5O4mw+K9LMANtI9h2Hnc0izVjU9JEMG/NCjGeiJaKzAocNmTyBCex6YzHn+Rf/B8WnfnLFCYnCfxA4LTL4z/auCCFqckx+9Tl47sPymOVMqi4TfldeYk/upwAtfJMa1xvTKMNQW2yW82jRJdP7aFw/WXpe2srJ3/wd7l/6fklgjFQAJ53ioK9pPXzma8dM6o4bH9pNLPVRaVCN2LEmdLVS+LyPi/yI4GCmLk4kQw89frO1L5UCaz8X2pooje8VInURZVWWU/zJPfz+TTKCxWRTo0LwzQ6uYU8fSlt1sBG4EE6QQ/0xvr4Q7sHWIe3OjTSXIPonZ2Vi9wNoZSBwU57I+v8ePvr/6/q2BYLAmovMualS6hX+hAw5j2SXKmRLy24lVBYlp90aeaYLqBPlPVWw9dPIQZ36uuEAULaBGAiUIjdS6jYU0nvNpLWkXEcR7PtUCCZRslR14nqmm4vA+GzpgpaQt+L8pW58RALFYoY6vYvduYk5uyuZ6exM0C/lMPSzxc1LKckm49JFJv3WrBBZ3pQdCdxULyYQcf6jwIANxDWztZeeS5WVXI/BBgw2sb0tCL7NjhUqyqKT80k8OLQKjlrhYFehzeUQUp9ba+UoVgeODQe5VhKQbZAIjwJsUYZ61rr0/egYty49USqH6sSAXdluhUbparn2QUYabYRP0S1BCXtVaS3X29n0GD0YSbtNGxGmKzTeuzTEV9UAvbGzCrhtnXSkkimQWrUHdH8kQ/csl5ZTPcXuPEPurPgva43TGbo3lYxzGXWoMlRX0+/3Ucs5usjwIagWQZK7Q2YnZiYS28NCc+/CcrLoeFB2bJWGo4VlunQ8fzik7iwdmgJhmyvvKLJBAkKo4B2tOiGzqWYmZDWQlk7Ro7v3pgATpqeCIhtK0uPzSshmQQmXANvVbrlCbJU9nM4SQghtUKMt/PRU9nComMxoU5BBoY2kXBcAD0Nsb0xrStkL0YJ2rf2z6MI9vpYoPJn1xyKUvefXe2JYHHQ2Pgp8FvgU8FeUUn8J+F2kajh9l5/5GeBnAK5cvYYDBpnCeRUIZKsecnyT0QM2Zp1eKXIvfWCHQmelmJZ3TRIM8z7DdDU9bdDnD+RrRZ8C6Sfr5bkwd9sFpp7KEK2ZrYKA66TCSFwBiz2+K8OwgBNXeYF58Brd5Q+gbos0cjaRVo7qanQhHsrJv8A75lSMTt9O7ExxAguKnqNN6YmODsQgpGtkQOwsbvsaqhVWpx5tClQxHozBftJvXyWZkJsC19+iRfovCulNR2IeEAKiWvtsVjedCbHCOhnmmijUFxjZ8acyvQoCsCL5RclwkIDfOZ80obzX5Nqn4b/zCNzROXFoCy9GtYvEfHXnJ8J5yErc6QPIcpG66Fpx6rI2DdxVb4BbzJLsBk0N74DMFs9+QA652Sl+fCD4+lARqDhojcNWZ8mvv0AbWLV6LBWh2r5GdyDIK3P6Nso57JUPCCJs+xr65DZ+tItql5jFGT7v0XkYFppReyaDMSM8CNUuYN7CaJdcK+5Ol7z66II75zXP7/T5v14/5s9/6BIXdcf2oKBzHvIBBTA3fWaNw+hwf+gs2E1uoJbT8N7Ce7GW9tIHKLql7C3vcIMdmXXFgaxtpHKqxiKjnlc4Le0lPTuBciDWltNTqXy0oKd010BWkA1GAW0m+18Hv2c72k+SGa6/lbwojMoglwDZCoEGEwQg433fPLHWEE/VsPjbHgiUUkPgV4H/2Ht/rpT6H4CfR+77nwf+JvDT7/y5oNXxCwAf/sjHvFGrwViqAiBJDvswvDTh+Fpaj21d6Cl7Kh1EtGwjyAhtgserCdC9MNQd7Yun61SIfnbjMGGlAVFBPQt+yUUlyA+9hMU5RGSIFpVLOzkmu/IcShsWn/sNeoNNXFHRvvkKRTVAbe7T7T6Lfvg1ee5GoI7YjqqQLMwe38MtZlSbI/KNviCBTBHw6T15fe2CbueGaNg4MY3Rg41kDemtRfcE+x/1+WvTo9RSAYC0fkAyfhvaQG3wEW6dyB1URsn9gWT/UX7DqcDFsCtD9bgiGgikt41fmQbBao7gwuA5qmJuBu0n2UPy871cgyuAMJgMzGsgqL9m6NEm7a1XMTtiYu7rOb7s4dtGBubBa8EvpWetewNc1+IJFZwLLYiAjHH9TbqXf1sIYKOdNM9RtksG72KVKDIK0RxHfvdMwAKzE2w5DIfptuw/77DDXTngt66iT9+WTyIcklz9MP2Hr4k2k7PQLTFtnYbe9zfeh110VJmmyDR1ZzmaNbz/cMSXH0wpMo31ns/fn/EDV0bMTZ/CaG5Plxz0My5ax1YmJjPrB57PSnyxhVaa/PXfwu7eQC8vhLwVqiBXjSUgrymW+qyUiqJZyGMG28IvmUkQUMbAYAvX30QVwoSOn50rpGJzB88TJVZctZGqrdZ55q1L/ssu7EGjV3Lli86HQfk7T5I/6XpyonPvhfVtrW2UUjkSBP6e9/4fAHjvH3jvrZe+xt9BlPW+4YqZYsxEjZKBsSa2hwRbbtTKcSkeRl2A1zll0jAsbmrVzOXGChrs4ulayE0dbCYJhCk9P5WN3i5Eq+fhHfHwnZ6uXLfmZ6IsGlQ6o49uFyz57NuvwjMfEq+AgIrIj16VxzbzoPRYJz/iKA6njBHLvq09UdEMLYmAopWbarFi2TLYkoMwEzioHm5KP7caYYd76cZfriGwSv2HS2utVp640aXNBgJebA3ZRFwK0hs+BmWZ20j75x2fZ0DGhLgQfgY2CtmuO/38MbE/CL9jeZF0fSQb94IC0lmq0CIixzd1IClp/OxcCF8z6WG72TmunsnXulb8rrW03FRyvQstJy/qq95akZAAmROEvSTCby0+qIj6tsFdnOHqGV0Ydtq3XyV7+LWEOopKniD4fdffwi8X2NMjuqM7YsRST2VGoXSSHEly0L0xVSYs980qxyjFIDf0c8Ok7riyUfHhww0u6o7Xjuc0Vob6defY7WXB1xpBehUDWpWtBr5hD/m8h50cJxSVbIJgHONJswFlIwgiOPAF4IQrh3IvlX0R3yuq9LklKfm8jytHaZ7mA3kvaUUpHexm5XUloAEkKDFIAhH3onrnZvtWVkA7/ZF/vgPWtxM1pID/EXjFe/+31r5+KaruAT8FfPmbfc7OBuu+wPTt5Sq1LTItAnSFD4YfztNY0lzBdLVk3LYhOzmWcrSeBiha2KTtAjN9KBBBG6z0jl6Vx+qVAbw9PwFnWbzxdYY7hyy/9C9xnYhlZZdv0t56lezSTfRwk/nv/p8054Kxrv/gC7gvfY7q+g304U2AVdumvyUyEzoTCYS2xk6OpXWhDdnlm0Ku2b0hgaytKdoZ9//rn+Pwz/4Ek9/7HbxzjP6Dv4Y5exvv5X3pdo7NZbjme2NqMnQQdGvD9QRpo2lkGB/RP3FAWwRFV3g8s4g97FhBOFTiYPCOx8HjraHkOUB8XsHJg5ifNzZUIGHQP8gU3obhZWAG+yA0putz+bzmZ6LzM9pEDzZkGOwcrmtlkBv8hwUOKQzWdTSVyvMVPh6IAnblCx+VYH98H7N/czWb8U4O6tkpqjfCLxeCjrFWWi9dK69l7zq+nmKmD1aD1CIEk0B684fPo99+WVRnxzv4eoIvBpjFaZh9TET51LTYagOCY15hFN93ecy8tcxby4PzmnGVcWVU8cPP7vA//+7bfPLqmMJoxqVht3DMnOEi6Gsp26FNKbDb4LaGE/QUe1dwLqDcvMfrYEuJwmYVWRioK9sGi8xWWNzKgcmx48v4/BTV38KFlqdfk6t21XjVijJZEk/0WSnaWWtJiA7trHn4YuwQNGuV5fpe+5aXEun0p2V9O1tDnwL+PeBLSqnfD1/7q8BfVEp9BEkG3wT+oz/qiRSC44+r0GI6AyTryShLMOgW4AzWlCjlU99QL84wF49wpw9oju8Lw3G8g1/MyA6vYyfH+KKSrHD7EgDtrVdx9Zzig58SGeyzhwIPPD2imy+oLh3gJscsHp7QOxBHL7+YCYZ8fi6WhYMhvbJk/uAR529K/FueTdl96RMCQ+xvYc7FArCoZX6hTu9A20hmGA6G7NINuu3rYArMvVdgsElXXefwZ3+e7OQtRv/uD6PqKf/LVyd86OAS3zPqoK3p+lsSyLyjRWNY9VFjG8gqyHBYgpGPE/RFHPRGdE9cRskQJgaLuFJbae2xsSqQ6i0iu3yS9IiEsv2BYd46wFMalVy1QpHAvPMM7TJxLvCh16+UHFIRFqp1YnXHWQDOShCYniWDHJWJxpJv6lXGmrwhVoNCn/fQu1dRCxnAe9sAIrOh56foZiHieq4TAT5jQqXRkF++IbOErsYPNrHjywGxFox/nPTBle3weSm/x3tpn9x7FbV/M8FWu/EVkY5QGt3MWXQF2z2DAnZ6UuEdLyz/+xfvcXlccZq3vHE655M3t3n56IJpY7mx2eOl3T5lJsSy4vQtCaCb1wIpT55H/Ifl1t8M5QAAIABJREFU/evFBDfIUitH2RYd5eAjbHr9Xu2WknwM96TVpbSQ6WyAqEIKoIAM0Anw3hAEvFLUnbQh1418GuuD17IPPBPZBkarx9qVT2QpvmOy/W9mfTtRQ59hNStcX9+QM/Bua33ACILkMfW56Lub4Gy0pjaK0piuptUlhWsYHH2V+vKH0Y/exAXza9/UdKcP0VUfN5/il7Vk3Bdn5Fpj51ORy718E+ZndKdHwm50FjXYIB9soLTGhraPHu8E0k0rwWAZlDzLnqihjgZJ8llpKfP9WPrYrhLj+jR0622g3CnJPD0M1FTXCBxytLvKpHpjltc/LjaD5YgP2aVIa7su8Rc6D9bLpl4fzK4jebwyGMJBrcAon77/znI7ie35x9tH7l1uwngr2RAA4u+W1xJ/Lsh+G41RPqG+rPPoMJcwWiElRGhVxPevM2nrBSasyE8XsJiJpj2C5PFtI7r/Awn+6MCKBWkNhcCAd3idr1pOSsp/lZfJ4N6XAhjwmWgVsThHlX1RnLVW/A+6XGQ+sgrvnSCzvBepi6xYSTrEdkm1IbODNSy/N7kcpMF9bqr7wmi3y4S2KsMFbr0cls/uDThfdvRzwxdvT7g0rnjxYMQPXt/k73/+Dj9w9eaKTHnxSALd4iy9z9i+cdMTmakE4pg3mWglPb4RVp9BsFYF6fk7ZTDdEjvYkbZRYXBaLC9d3ieSAL3S0hbVIqqobAOmkEpeSRtqZRC12kuFXnk3R8SaUYruCUUChfoufPS9tmJG+VgPO9wwGpE7yGOf0uTS8/eOyjvJaMoBxdlt6G/i3nyF7vyc6a0HADTTOfsff1FMWvIz5m/fpWcty6NHlNtjurtvgNZ0928J+mdrX/rF9Yzu+D7drGZwZU9YpE2NrvrMHzxiMNigOT5G5xnN+Yxya8Tg6iVUniefXGwHJkPPTsiGe9hyKFpER7fQ4x3KT/wY7ugtGbbZFtffYuZzrIcNHXqtXog1IAim57ZKPnPrHDVoMBcPcb0xmXJ0XqUDPd4q8XJGuKhWQjSKqKt3rjjgdZBE4pqQlMcgsB401h+/vmIAiPagRsN5Y9kqhbNwurQMMk1hNGUmxD7tfVJe9SYXlvb8VMxuBjsBTtpIEO3EVSzbOZTA3DbSImpqzPYl9JpcdYI+tksRgQOZD2TCYBVDpLFo8BuxGI0Hn904FJLZ7BS/mCY5BTebCpdj+zpdbxuNmNbndinZfzroi4Q8Uu089c5VM5MhdjPDjQ5YZCLrIWJxBlNU+Laj8g2tL1hamYPFNp3Rinlr+bMfPORgWFAawz/+gyNeuXfO//TF+/z59++z052KEc7OS8IyPnkLl/fR7VxejzEw2BSgwXKKU2PJ1nMhHEqvP08+GEBCruEd2eIkEB6DyGJqARWBixG1tmrRfkqVngfvKBV0gbejXEdLhgrqwe36HlZC9ox7LdfvtnP/BOu7qKH33jJAmemEMLHe4/KB+ASgyDSoVqRxfTB017NjybjuvIbevYy7uAMbu7SPHrB4eJrsFrOqQGUFRhuWRw9Znl3QTEVRstgcsnh4SvPaLXo7Y7JBhe6PZIhW9tBVnzJgoOd37tGczyk3hyitqW/fBmB5OuXizkOyqmTvU98n7NK+VAu+HIp14WAbc3ILRvtiTrJ3VQ6LxTl696ro/QSbykG7CCY2MtzT9QTCkK3RBY31fOLKiJka0UMOLTM7pq805BVz008SBuuyGiAMwAS9Df/uIn8jZGdKKbRfZeyRGPaNVmwHQRw2C/msDaXEpO7o5QV1QB31Mk0v1yxax/GikwPOiLMWVnydfd7DjsQ43gcDedWILaY3RRLP8+0sSWmYshIfiCyXANHflOyzq/G9cWLFJr0mnUmve7iHmdwViKl38u+shEJkJlRRySzHGPzmIWrrMjbvcWLGPDxbcnkow2+bVSgzDwejsMKVbVbVXlA59XkpqJvlDHVyi35/i9nggO1KvAmUs4wrg1VZ+gzivfEj79vl1qTmYFBwOCp47XjBeb3g0+/bY39UcmOzx1apUcsWXw6oMoW5eESUynDFUITmTJGw/3a4h54d44PAoeqWUu2Gw9tnRUKsyQfuwOarmQPSYoMIWV1zEYt8EO/wVagStEkgD60UjTdkASSSJEdYJYZagdEa5/1jKLVvbamnKhA8NU0u+bBjiShaP1kYAutuuSIUBeIMIBrwWtPdf5PuwW2Wn/91prceMD86oz2fY9uOcnNId3HB7O4RzfkMbx318TnLswvm94+Z3jrCtR3TWw9Ynk1x9Tz0lRthhmY53fk5tm4oNvpoY+jtbdNMZ+giWz3Xw1O6k4eptaR6o6TV4gY7gurpjZlZFUzmDX60KxIJ9wRe2nqIpirAO9oIq8HWwMhBbV7/LObiIfP+HoveDqqZ4zxsPfjiYxpLUeYBSFo31q2yzHjDJY5GaEtEae74+bzbitWAVitz9Vi9rxujndc2aUZFh6wYsCJnRJ7IpEMl9QyD3pDrjaXtYAyUgySvEZ3VVCVBGmfF9BxI2j+BU+GzKg01QdjdtfUiq72Yra53OVzpQZng4jbaBZ1hRwfM+vtMl/LuTxZ25QsQh9G2S8gY1S0DUTHAfwPPxQczHb2YoJQw5SOfw7zLtVfAc1sV/dwkk6VxmXFjq0frHD94bZO9QcG09SGrb6hmD6V3b5skzieBUF6bHe2Jsc78LHx4K94EAUIb/x+1tyQQBIG/dhmInO1j+1W1C/lcuqXMcLTMISIyyTpBA0bwgvWr5CQOybUSYEhsGcus4AkNCZSSPfNN/PlOWE9FRQCeXIHXilILizR5k7pOjEdCPxXboo++hioquge38IsZzd23mN56QH08oT6eMrq+T30c4JZ7m5y9ehtTFVQ7GzTTeRIhWxydsTg64zx42OoiI6vuoIwmj4PFrEAZzei5Z8j2r0rgufsmzopQVzao2PnATdpZLa5gzlG+9HFQmuzkTbrtGyLlO9hBz44phwd0e89hzu7S7tyk+Ppv44LswfnS8XDuGeSGK6Mcjcf2NlHO4kNwdB5mFkoD58/+qcDODYiL/h6FgrODD6crGw9ao+RGi/1/QqXQrd1XsXpYb/Wst2TXg4Fbqx4sq4pgXYfIOpi3lroTBMuktuTBX3rZGVrnKIwm16LA2e/n+ACDXHRyHYqqJJs94qLcphptoL1FH39dXsRoR+TCszId7Cq0DlnOcIG4BIjRfRg4u4Cwsjpn0Tnq1mN23kcvq1CzY9Cb6NmxKIYGbwmf5eh6iiuHnLiSN04WvH2+5HsPh1waZvLZoNKAVYGgbZpFkrT2vQ05RKePcLvPopcXdLdeAa3pVyMZ2AbkVx4+0yidYqJelhEfh3lr+crRBS/tDmit59G8YaeXU+SKk7oj728zCIFMnd7Bjw+EXewEZOC9A+NYVlsMzr6CLwbJk8H1xgEXrNHTo4T3j9dCt3OxjwSRsm4WIuIVdaG8eGyTFbhsW9pMYWZgdZ4qReAxyRLr5bDPlFQluVLgNV5l8jnGVt+TWuqpyaOfkkDgLHpxKpA771HtHGU7aRGEjMRcPJKys5nRnR6Ju1Y9Y37rNouHZ5y+egfbWBanNc46tNHowjB5/Q69/S2yXsH09hHt+Yz6bE5WZcwezCjHJXmV0S1adJ7R1Uv6B7syD9AaRUNx+RkRD8tydDXANTWb738ferhJcXAJNz3DLpeYXp/80o2g6Jmjm4UMz3pjaWV5UdR01Rh3MML83j+Gqy+g2gavRXztcJgncT2AUomMAE7K4qj941mpV8bBMEirJ2XmrIbHsb2z3ioyWqVZgfXSknvnrRFAO+nvuCKCKAYNz+NS1CDBITeK3Ckumo5ntyqMhuO5ZbJsmS4tVzeqpCwLoL1l2E7o97YkGbBgh7ucTFsK4xjkmq12GVRdZbAce9nxoHLDPTmQ8yr5FIgvgGTqvhwKxHLZcdG49H7KcoBXGjs6EMvJ5TRIgE+TAilK88qjOdc2Kp7dqsQm0kPuO3GxUxqcmBG5vCfs61mAM1vx5Y0wYmXFJtR3LWZ+Srd1lZkz9LOVYB9Iq0gBhTEYJ97Bl0Yl33vQ52jWcdA3/MGJYq8vraVpY3kw77gx3CW//4pInEe+gs7k9weCWKYV3YO3MIc3UytI1+crx7bgA70OuQXwWU7SwAIwgSeQV4nVH602bTlMyrQuJCU2ihQqCXbaW3IcXmVy3U0RvIorlA+CecuLFeP8W17qu4HgPbe8D56z4jAVyVOqXaby001PxEhlMMIe38e3Dc3xCc10jqkK8kHBcjLFFIZ21qKMIrMZy/Mltu1wjWV5vkQXBm0U80cLlNFkVYZtLL3dEcVGn2IkLQUzGGFnU2kJgQSB4K9aXH8h6P1siem2cxQ7ffRoS3rXIZvyebnSCAo3mTl7O+n/62c+KGJgl1/Cm4zKqGCo43j5kWScP/n81mMHK/DYQZ8GiGoVENTaYyIENFtrD8FqIBy9n/27BIG4vtm2rFEKtFQCOrSZrPfBhEasGY1XPJgtWXYiYf366Zzdfo71WfiaQuebzBaW7UokFFRoJw0LmSMl45jAEvY+tCS0EaJTNcIVA+FO2DZAObtw+Eq7Yx7aOUYLe92oQKLSGV4pXDGQYBAUUHEqHHSCYtvpGZrAr8hxodxyadAsEtZO+B7lQIbSkahmCnQ9wRW90KdusQ/fRo32yUsVPjfR0uo8GC3eAyqgni6NSr7P3MM2lygCqq4N0EvbOkaF4bN3ptzoV6mKVssZSmf4arT6wLQYA1389mfY+XPPSCYfWmqqrQMz0ILqAgS2IspW+zIMnpFqKxH9TJGSN6XDNYlBwK+qyne2GtVa+ykJCmZFsgIlsLvjTOJJLP/dQPBeW16wzYHQElUko9KjyguBhDpH/fnbYsd4SWj+1eaI+dEpg8Mdqp0xy9Mptm6Z3rvAW49trGT+GyUbV8WtqT6bU24UaKPp6g6TGzZuXKJ/sJtekR5uoqqBXGBnUVFpFDA7h5i9K7itq5j6HB1M31XZxw73BOq4mEjvVNUQyDXR3EbZDtqFEHkCLO9zJ55+3pBrzZVRxpunC/7pV+7z2sML/vInr6b+vZi9+OSgFoPEOzun65n+kIaJC9ryStBFlSYpOcafdYTD/F0gelFqAv7wt5WSob7Cswz3qZEv4rwIy10dFexlDW3W42jWSJ/bOsaVtApa63n9tGFQ6FR9WOepMk3rXAoojfW4wU4aZur5mZAGfS5f1xku7/HWtGW7yihMRp7licVchB73eeNYtC7xVTKtyM7u0Ow9z7JzOK8YZBW4Y8nig9nNJNvk/bs+BVXrPIUKFzIeWtrgdRieBuRXPHJ8VgmR7MFrMsfoDXD1DPvwDmcvfppNLQY7BjmotJKBplc6BbXv97fg7JjMdiwGz1IYRW4UuplTZuIp8d/8o5eZ/9iL/IUB0pePGXy94hOorqa6eED/L/y0DMrLwUqBtV2mob0K/8Z7GZjnVWC/V/ggH+FNHgb5OV4pPAaUkfamXwlGqiDw6Ey+EjZ0Vu6xOINY33ehLZzkY57U4a34bkXwXlvKOcFqFz0w0nu386ng9Zsad34sEEutcdYyfu4K3jls3ZCP+nT1Em8d1c6Y2f1jwf0XD8kHFYtHU5pZy8bVMWXQ8xleh6wqaGc1wyt72Lqh3N0W7fSFyDcvb79Bee2mGJEPRdzNPrglgSnozZjpAxksOydSz0HmIbk8lYOg9ZKRnd9fsZydFenioGXjxpd5aUfggxetY9Z67pzX7I0qikw/hqhy73JIRz7Au+lxGQW1KjH4xBAWmWkpyWPLKLV4vkFlkD6vtVgRh5pRlrqfkwxtpNoQj4jNyoDV5N2CT17Z4NJgpT3fIu9vsnT0MsWjhUUr0R7qZZqKjulSMVlaIb+VA7arEj25KwiccgRZwSIfMW8d267jmVHBVx7JTODaRi6zFKOYmiGTuWVcGrYqQ6YVR7OO7UrQM9mX/hl5VnD63A+RP/qaMGsn9+mufYTTTtN0LrSDVh7MTueC7kFIfSBS2iuUjV95Voes3p4e4aZnFM9+QNoy2tALg+Koy69cJ9D/drlypVtMpO1YVDiTYZ0EsYNBjl4ek+U9vvBgRrPo+Cdfvs9P/tSHKO59BWw4aJWGrkukL1/0mfT2xS707Ba6XaLmp0SfCuWdmOsUwgHwFPg8W5ncKLHixBS4vMfSa3QAIpRKKrbCu8A8XMlc6DXfZ+UdLu/Jgd8uJOgtJvJ6vRPhxsVEgmr5pIxp1Ddf6n4HrKciEIAPcEuxS/TOidxv0OLxVjJyVVQMXngpmWC053NaK+WpMlqGutcPmN56wPDKHt46TFVSbQ3o7W3hnSOrCqqdMd46+oc7wjjlHN+JpyrO0p2eYqoizQWikJmqBiL2NliV134xEwZzzJACxd4HQ3VvipXvL5KF+WoMdiWSZ73Do9LhVFvP/rDk6w9nDMssBQG1ulpr8FAec7J6txUP+9geEgnv1fwAHoefiVvYH43OiJyCiOoQ00Txko6vTSlBD3XO88aFItcZRokjV/w9Snnuz0Rs7byBphMbx+nSUWhFrTN6eYd1MkiWX5ehhtcptEqevpOLNvzOjItFx9FMAsFuP8N5x24/SxDFYS7XwyPPeTTvuJpnmO1Dmq9+jo0XPiVZruvorn6YhTfpmlSZYtGuYI42zG8cBmvFfMcrJZluOPhhhfzyWSFErvl5Yhbr8Q5FGJR0HrI4/F7rz8c9BARIakubyevYrAy0kJ29Td1t8OOfvEavMCwd5MnKsxH4aKiKfFbRlRtsnL7Fo8FV+otJItXp4WaYd3QiuR08HOJrSnMAWB3wSpjtiai4zh1QSob48ed1hlKSMLly7X7KSlGbjUGgXaZ5BLACkXyLy8NqfvQUrKfmnaiiwp0/Qo22xenIOdmMINR+K+YivqllY/RHVMbgFjOKnW3MWMzZdX/E5mAldAUk5yQAO7vAlKVIOBcVzd23xAcgShWD/F8bgYFmuYi6NTX5jfdDb0MGac0Cbwx6K1uJh7lOBm3lUKR/uzoMjgMEz9mUPeEdanacUCVG5RRGjM0HueZwWLI/KvlTz2zJ6w54/yQBvUYKW3aOMhNPZvWO1k6cGcCKJfxOxvA7lxzOq2AQ1SDfuf4wpFRh8ag0kxBYqEYlK8ZRYci1BK84qAWf7BfHlWGQiyva4TAjx7H0iu2QvU8bzXbWgRMUyf2l2DR2TsxdCqO4f9Eyb216f6d1x7CQx92eNOwPck5qi1GKWWu5d7FkUPQwR1/G7jxDdnCd7jd/ifaH/h2cMpzWNrl9+VDtNNYnW1S5/mu2kp6kra9CsI8Zto/zg2c/hpocix5WOcDuPosL7a+kthK0ikSozWDqc2kzNQtBIZVDCiMVzc3uLvXmdXpvfpZPXLnMr/zeHe6dLfiZ77uyGuQmaXYnHh1KUZzdpt1+hq1mTrv3PtTRb4hT2XIuZjtlJcJyMZjl4kXg1zPzgBZStkGbkty3UiV7j7JLcUOLIn6tGA4ppWWek/dWGkWRxBYQSqqrhfTnOpkL+eB78CSW+u6w+L23nEuaMG7ySNAGWQ7B6Shqz+utg2RJGOVs/XKelA9RGnf6AO+cOEiB3Ehti8pz3GJG1tTBNcrhpqdk23u0Dx+QH+wkNU9VVMmKUIUBMTrDDnfpNg5FJtsKLhznBJ0SpRB0Rpv1Qisix5kc5T0+K2RO4AIayhSiSx8Ev6pM4UPb5rR1PLfdo3VbvG+rTEFgfWVaWiUa2GqOWQ72WHSeTJMO8Bg4YgURcdoRw/9uaz0AxH/H2yX+HfWF4nq34kGHVpENmvK5VrwwsLSZDIBnrQw3J0vLwSDjdGkpgszwvYuGzSonV3C08Cy7jnGp6SnL5md+ETs7J7v+AtneFS6PL3M+2GWytFzNFjz0A+at5dZE2LBbVc4kBII3z5bkWnM0a6lyjVPw4KLh+rji2WLO8ZXvZ1gYyv0L8t6AznWcB7TionNURnHt+AucX/4oo9KkgACEQbdUC7mSi6Rss/IA0FmSmFDNHJ8V5Fefw+4/hy9HtCpLKK8kp6I0CsHim+VFahfhHWQlannBcFOzzQI1X9B787PYy99D6+Bn//RzvPJwxrA9S3vNmyCpkYnMOW2NahcsWkc/76GbmdhM3npVbE61xs3OMdVQ9mxvQ95HZA7bMNDNgkGQ68jC31FigtD+8UVP5hNmhctXzVy0iFSsfFQSttPewVInv2W5yLOV1/KTWE9RIHg63okCe/pQso/AGFXRczbgkvXWAa7oSfad96Q3XI0ES573sIMdus3LIuC2dwX6m/jNS/jNQ3BW/AUGG+hqgB4Ju9ds7Yui6HAo1UDXoHoD8hvvF3cvbRJhSYzepbRvrMOaEl8MBKES+puuHAn8Lg41TS7tAe8EKdKISmk04Hb9LZpyLO/Xdelg8aG0Pp43CQ76mL6/X+m3bzXH6NkJ1Su/zrZeMm0EDdM6uAj/hhV6KOL/o2orrFo860EgioG9m+zvOwPD+kPEuEatyGxBkbTuHG3WewzNFF3LFq3j4axJcFgbHNIeLSwPLlq+frrga6c1D5cKs3ModpBFhetv4cohp7XlfGl56AfcnTY8uGhwzifiVes8F42od4Kw2DcKw0YhMN2jWUNTjnm0sNyZttjelshWIK9DK9jvGXbOv44vh1gPF43De5/c9N5pmBTZuX6trRMZtlGm2u3eoKm2qMlYWh+umQocDL9C0ngnh7j3KdmIMua9TCdMf/2FzzA1Q85qy14/40dubkogUlp+3kXZh2alJtrfwmjF3VlgCHftY/LoShvWPQ28zkTDKcinEJRGE8M4K+X3dE2ogruAnuuCD0QbIKahVeo6SajsKtOPrSefB/RRdFoLLaUns1RKHv/IP98B66moCLxzZAfXZPMVPVRe4hdTGd4WvQQhXf9QVLvE9YO4leuSZIDrb6HyXtBLL0Fr9AFoU0BXo8u+mI8ojdYZ/uEdsss3gtF2D3ob8jPLWjTtx/vYcoTrbWKzKllmOu9pyOVAhSSHofKKNkgpSG9fXnNh8sfYwQQj7rbzkAkhyXbiFTwsNIXWvLg74KJxbJuWJsAEYyY/Wp6gym1stcPFr/xtRj/ww7hf/7vsHIvf8Vs/8XMczRo+uN9n1kq76Z0aQzqc1jE4GAUEhnBkHgNJbmI9KOh3lAFGPf5vCSrh606MhB7OOwqj6WWK09qyUWj2BwJhnLeOows5DHKjuLqRc2fa8gePZpwsGj6wP2JfzzGHN/Ef/BHuNFlS5dxWniujnC88mLPsHDe3ekzqjjLToQJYMl1a+rmhCH2Xwih2l0fc3NzhC/fPmf/t/5IXPv1vYp/7JNSgxvvk919hv2uhGtF9/Ytw+SZu+1oyS4nLehgIiYDcd3gX9mlWiJib61bAASfMXQXgfVKkdb1NzruCKpNgXREE6xBfjVgNuLyP0g3eO7SXlpgvetBcUP3Av0E5eYOXm0Pet6HEOCZk58p2uGpDfIfD7xY5jftU2wV1l/HZc8Unn/8EevbPMVt7cp/1RinokFl0cxGE5roUgLzJpV3aNSueQtEPh/g8kcD8ejXQiYGUVxqCQ6DXPaIjXWSTJ5Y5YAc7mMldntT6Lnz0vbZygdT5wbZs8GYR6Pw6oGy6IOAVsgytRcslDJpippFUH7XA+GRzZdKTD6sbX07fwxj0aJPs8EZyM3NxA29fwiBKixE/bexSAgoiB5G0/sNz2+DEEoe360qgWV6u6asI7nsZTvVpI1mrdaLRv1EYnPd8dMdQKw0YclxiV3pTYB69wb3xBu+fvQw3n8VffpGsqUVldeeQ7+E+L1y5yusTyy9/8S7/yaeup0GxD5huF4d64TVGRyitxDQmIYrWAkUcWkdCUAwIUd7arf0bJW2kKB+hQ8UR2cSvn9a8sNPj7lR6+h89HLK0jp1eRn96F632+P4rGxilOBxmzP7ufwFA75lnuDTaojt6m+J9H6a8/BJquuCju5fxSpNN7nK6d4WH844qU+wNBqJvFIJA5zw9ZVFvvcaNl/8ez/1bP0sx+Ld5sP8RdpoJt/yYa9t9spNbKMAVPbKbH8Sf3MNd3cJ5cXaLgdIjrGKjVoE/CrcBCSYsiUwYlAZkmXr7ZXmSl36Io/OOzUrQQ95Izzz6ZghHYiAHqBL/bF8OJCC1Lnlu6OWMj18eoGaPwLZyfwSZB70IMhJhVqWXUqHq+SmHg0u8ePJ5XHMNHdzfolifX8zQG9tSmcbKBtLcIBo6xefyRR9XylDaF/3VY20XKoCFSHqE60AbW70+ScjEQOJNhleDYG1Z0u09900cKN/k+m4geI+tCEFTgkN2QRdGuS5ppujFRBQko/qkWUlA0Mwl+w+ENAgbtp3LcWUbMUS3DVFmKhJ8zNa+tJtijz8TEhhxI+ZlynKwMvB1RT8N9Drn00G6nm3HFks8TBcBtB8f91hQcD60IFTKNDNEbbW/PKUdHZI1oUe8vGBa7TKuRkyWgivP3/9JmvElspuKcv+6iNj1t5hZxeunc5rO8YUHcz6030+vd33Qu24tqQMcNM0J1h4bB8x+7WvRNUpBEqhzay0l7X16kizIYWQ4dnqGh3PFFx/MyMN73s07bFWK/sxon7v3avYGBbVznC81u+//EMs3vkr99m2KnZl8djc+RpMPUvCqfIfdOOTWScNk2TIuc6pMM28d+32pPnq5FoLVxi7Fj/4l/OwY7xy7X/01Tl/6NI+mS671c6mO8l4Sj3PO0uqCLlikxmtitKLuhJPgEfLXiuDh0r5WkCpYD3I471xhsf8i5cUDYFtgqUoFe8wG1dZyb4SevteZQCyNJD115+nV04Sxt8M9irPbAg3NSgkma8JwKuh2+QhtDb/r9dMlz177BOPpbWnLZmXY4I2g5JROPcAk57GOIgotJ5+JQOJjaKeYxIFUDkGsLklbR1HB8Jy+6IdqKJ4NFeTVEyWTieTx0yM693TTxUJAAAAgAElEQVQEAnyg4Ev/EEjlZDa5K5C20bZoms9OBdKpNDgjmwowi9MkKpbgbKZIG0ow/PkKveBnqHaJ3X+fyOR2NV4FVqV3uHwNFeE66YkCymSYOvR6vUMHJUsfGKmRCLXeVokY/zZIO8f2zvphXBiVNFcEBQM7OFxPkFMxQClnGd/5HH58yPzC0e0/j897/IvbU/YHW7hik1tnNd9b9jnMWj64P+BL9875337/Llv/2jNcHQUhvLWKJs4CdCCrKUhQxjZwDxJfgMcDWYSkxgCX/q/8So9IQakjIQ6UtyytPP/VjYrJsiXXilcmniprePV4zgs7fT6412ecOdGncZ7F9/0Uve5/pX1wGzu7oHzxo5yoPsfTVnxtW89mZVh0jqPZkkujEq0Ub5/XnNYtu/2Cjx0OhAkces1mchc32KF59fdQ1YBffeUhP/TMtnzW0U3LNqFtKXIYMaC1biXTMdAWhxbJ8FBd4h1dtYnpalxWSq3gbELFYDrs+FBab6MDfvflR/zos9sSZLrYTsmSf7NIQxSiDe46fFYwbk5w1eixLF0O1xxMhorewzoLCZTsVd1cpOdvtp7hw12NyzXd1nXM7Vcw1SB5MtO1UMisTFBLswCLLlZBTWf4jKSr5KoNuc9cJwE1K1cHezVKirIUA7nvA4zWF30iMc+bAtXMpUOgjbTZ7JMLBt9tDb3XlvdJl0QFRcakYQLo0Ta+vhAlwN6GlKhFGCIvJsGj2ImetTaBBRmJK2LFl4ZT4XldbxysHhe4iKIIZasKN5nP+wnJIE8WhnRrGc56ealti9V5arNECWEfDlfzr8Dnx4Gq9T4og0pF4UJ/NiouuqIPJqf9zK9S/OCf49q4xJU5//zNc8ZlhvMi1Pb9l0fsdKdM/s7fZP67r/Jzf+WnufeRHxPdf7XW0ggw0dgi0qwsKeM4oDAq+CF4lF6XPRAuglaAFU2hdm0wHYNa53yqckyoChqn2Coce/kRdnCA6nv+1hsXPLfd52snC/q5wSjFpp9h3vgSeu9ZmsEBPd+QXb6JPb5P+amfwA532bq4zUVxmQezltZ6bk0WPLPZ49Ko5GTRst3Lcd7z8UsbnNUdvVyj5yf4ckS3/3xqH+bf92N82R/wU8OczUKT3/uKAATynhiwnB7BB/9Mem8eyDSpMpxZw8DVSXZakpqekO9Mjm7muKKPti1d3kfjk2UjwB+cLBkWhkGuyF2TkHGqa0I/P2j3BIkMnwn2XtdTcB23qutcc8fCUegaSahc95jaalLtXUyw40N0PZX3fnGEWk75tekuP9G/Dwc30oBYvJ5zvHdyz8VbNi/xeiAAixh88gq1mAQmdp2SMpeVgpyLXJrg0QBI0FyrNgCZPQSJDd1cSILnsyc/LH6KHMqenncSN8aaDK7q6vR/VQ0FMpdIKuHxxqwYnBD6qWvEmwAJjYiJaEzu+lvh+0FZ0RREw3FAhmG2WWmnIBmEz3u0plwNseLmDK+nsS4diCa0StYrABPUJFVso4f9nzoJXghYZablQI5BaO36lB//UVQ95Ubfc1w7wZ9r2O1lXN3IBWf/1d/iy7/4W3z2n77Oy3/jFzgsOs6XlkcLy9lSss117Zf0XkJQUt4nQxyHekylNGb/Zi2oxArDsxoc57HKCX8kKIYWEprF1g3arMdby5JxLxjaW5fsRxf5SIaVQL+7kKywFWSX643R9US8nz3kWjNZdsxbQczkWgbF96ZL6s7xcN5wsmg5nndM801qMk47zSIf8eWJ5nZxme1eFiQ2hE0rxEA5zPyyxpbDVaWnFBku7c/cqHBAl6ktEw+tFh2QYRavRFffRz2qIB2xVWV8YH8Y5is2oeUEXhnhpCr1+yVxifdJy04vCyYyS9lEYXALrJR7kX5+t31dZnKBaKZnJ/is4gN7fe5vvA8ujsOGNUmGWbkuJEihRRMc3nw1klZOOcQVA9xwF5/3UxBIB3eoaOLcIyZSqqtDG6x9/L4OUhQiLNiluZ6yT4pHwHdRQ++1pZyVzAZSBh6VJMnyIHylpGy0axtcZ7iiF+jobUJooPRjLaKVEqUM8LrxJcnWy5EoHQat9DiMdr1xIsFEHHOy8bMtOeKUFucUkQmqmhlltcE0SCE4oAtRIAuno2bl4AWrAOAk6SZI35BrydBbU0rF4D2L1lGYAl2N0Gd3aXXB10/n3Dmv2e3njEpDfnobrzNu/fI/4LU3J7w5bxn+5m2e/0f/PR/69L9P09+h9+AV/J1HdC/868lA3HoCrDFKWcjXtVrNQEQ8bDULiQzSqIYKrOYA8X0EPXmlVhVTZOJqBA45KjN+7H07XKkc29UGjxaWF7rbcCYB25cDkT+eHqE2Dyh7A/xiwvz//ocMfvDHybVib5DxaN6wPSqpMsWo1Dyae+rO8aEDUb8clcL6vWgcm5Whs57jtmNQaA4GOY8WHaNcYaZHuL1nwwXIhJtSz9KcR9RG2zTElc9Lrw431+GyksaK726mFVaVGCeyCjL/WXkitCpjpwdaSVUXfQxkgzghJ4a96fO+IH/Cwep6Y4xtqJzoWLkoKhf3a9QVcoLyUd7RhYTKVyPM+T3J7oseV7tj9KPbQq7MS5hPJOhXA3zRw5UCoVbtXDgIWq8CQtAYUvF3uvD3+sEdnAVVW8t7z4rHkHQq3K8xAVS2C8EtzES8W3lXf8tLfccc8t/MeioCQcoCYhsmVgGuwzsjGzVm5r2xZDt5lfrmrq9XUg7BTSnZ6sXBVTOHvMKVo9Xg1miy3qa0L2JJH7MSnUk24yy6C6SgUGYDOKVF+95ZjJZBZaFXw8hZK0Jjgr4B43ySYoh6QdFtqcwUnRXDd+sla24dAiXNxcqxNDk54mfrBjsclYdMzltyo3hxd8B2L6fyjahHfvVf8vV/9honjWW3MHzPj9zgtV/5TTb+n5e59p/9V4K+uPcm2e41zN3XmH/PpxPxLK71SiF+fV3sLj5m/WcUghBy3pN7qdKszhNjFi/VS+6alU+AztjSnu28g7Zj0zs2S41HhM1ctSGfa+h7240DsDvot75AcfVZ6s/9Bp99/3Wujyu+eP+ca5s9PpEfMRteZ29QcH1ccqmvccqQNRdkx6/RHrwIdDy0ojx6pVjiySVguY7l8ADrobILUY7VhuzgegqQuSKIaUjPvNWFiAGa1WG/brbjvVw7ZfIVYcxLxWdcK/LLOkOe1YUe/kz2eRZlKVaJjB3uoRen6NkJdri7kn+YHMHoIB2uenYs2lddI14DSozmletYkDM6v5Uy/IggoreBO3uA1oZucgzOkV0eQbC09F2BLwYrI/pM4+JcD2h1Ie0ypRPKTa8d5l6veTq3AqN15RBdnwv6yDvU4lyqv3oG/fE3e4r8sdeTazN9+9fTEdKiHovWicKO0hL9I8EpK8EEXHFg8qb+Yvi+N5kc4NVISCtlHEQFPHegt8ceviIwQq0XHfugLQOhT+lXpb9IFK8pQYbesjc5y07IXT7vyWGooqGIogqpcYDop1ZJNHtXiiRepiA5XTXW0VlpK3nvadHCWNUGm1VMljb13qtMCxw0E5JbtncFkxvGueHD18fkg4LxzX0mbzyi/Y1fWskdvP3V9BGYmM3xOPopvfa11xiKlxVBjVgJrGYBVgurOklne7nxMiJZqJeGgqqroa3l/zYM5uNBAhJAVFC9tB3m4hF2ciwD3N6Ae9Ma5z1FpunnQkKcLC2L1pFrxVsXlvPGMtV92v3nuXAGrzOWneestqL108zYqgytypg2jslS8PvKNrh6Rv3+PyMQXy+kv/V2pFYBLeWFRJjaMO+8kPF6RpIhiArn2oEkffBApAxqvFIhqABiqEKVMMZPjtBvfUH248VDGO6sfJG7WgJo3hPil9LYjX2iHPpFI3INPrZbwz535VCkXOoZKitEXmUxTbBPcSiTSk6Flo3ulqmVKFalCp8UToN7WZwPLC/Q9VRaRMG5TS8vZIOE5EvaYRpGu0FUcLA6F56U4XyUmHhKWkPv2VeplPpxpdRXlVJfU0r9p9/osV4pYYkWQ3xWBb3+Hn60ixtsS6vGZHIY+5VSoRz++f/L3nvH2Jbk932fqjrxhr7dr8OLk9PuzuZdBpPiiqQYJJIiLYiSKEuyIAumJZp/2IIBmqBlW5Zsw7IcYMOCQNCUBZuCJNuiRCUwwgJNckmuyOWSuzO7k9+8/F6/DrdvOKGq/Mevqu7tt29mZ823q50BC7jodPuGc8+pX/qGkK0XoTdZppv0WAX944uhlNiupzRKCDtI5m09TDuf9GEkKIVNP69x1SSV67Gcn5sBTVBUNFoxNB7VNxTdDDO9ycgvKYxiFEhTZ+pMTFUqw9m859IoY1SYhBZa9i6Zw7TOM20dJ4E9HPWB4gVbHLzGM91rFEbxiWtHTBvLVmVof+KvoboFbnbMmae2+PY/92He/cc/zKN//A+z8eg5bGtp7h5JtZXltC//jmgoraX/63tXHHDHDT62dOLftFpBSrXt0N6m+QKEll/QzrHey2a+xlB1sU/NWuuikU0iEp/0/EAMVNoTuSjzCjvawZ0c8ut/5e/w/I//UzYr6WMPc8PRsufn7tb0VgKt9ZL1bxaCHjvxOS/cXaKbKU9uSAvJ5wNUO8cEff1r0068Cmb7qG6JevKrWPRS1WhkgO51RmdKXFYGievAqA72jLmTNpGxDdpbsjA4N1r6/AnS6QntEHETcyZPctMp+VgDGOheiJVmto+7+B78pffgRjtSuYTzVgXejRtsSWCK7U6lpb2jM375ynHSyBKodYCm3nkV7xwMt3CLmaCcwpzmFLonyEqo5XSlp+RlvqPx6FgxBOQP0ZIzDJaTwmj4f31wBW6/loKE7xqRZSnHAtowBW6wKdfig1pxWPeFbl/wYd76XvelWm8YCJRS/1wp9eiX76Wcem4D/C/AHwLeA/xJpdR73vgfQiUQ5Bpi/92VYRBVDJMsAxBMRmRDccpIdhQVFsOF4nUmm385FhOY+YFkMX1D0U5Dr99RZYphrhkV+nSFEXgFQLAcnEmP2gpKoqaj1KS+aCIIBeq+8o5SOXkO+uTDasMQTPWN2EYG7sBWZQJ+X2YIgyDBXBgJMvVin05lvPQDfxp9cgd37SUuTl9iUuZc2qjItKL6vh9C9S328a/m2f/432f3Q09z9ru+m/72VQaXLmA7x/P/569w9JM/Ds4GPRlD+crHP/8jCV+d96ekryO89F7ehMhp9OhuiY+EtHB6Ng4K16bHUX0jWWO80AIsMsok68VRQr1Iv9mhFkfi8hY+Q7O1x/JwyY1P3uShScXRsufiRsWoMBwsBE467yxL67g4ewX9yX/OwHg2D1/iw+Ml5spvk916gX91bZoqUmVbMgVnhxmPcIC/c4W7W09xWIpPhVYSBFyYp6S5SRioaHyYT5VYU4bM36dBa+FaGRgH8EFEg/VoASCENgrOBpe+duWbHFZErDXDXYGH9kvUckq39zTdC79JduuF4A0g76m4/hnM0Q3xyGgXgscHPnRuLJtu38imbjsxmgnOYv3uE+QXHoVsLeHSJlUCiVNgcunlB/mU1P6MiKhwTeq1Clt3c7H9PLhJ/9pztL/8T2g/95u4+ZT+1uv4+ZGIPTYzAXtoI/vCA10PpiL4ove6L9F6s1f5vwE/o5T6EaXUl9uB+auBF733L3vvW+DvAd/zhveOBzwRX0ImpEMGHjcipVZD5Ph/9351vVxIYeCs1n6mb9MtIhWSYUaAr9KvBn6qb9HLozC76FctrMD2PIVWWn8fSAm8nvlF3L3zAb+sTcLYx1UERFGuFblWjAtN3c/QjVj21a/+KsVGTXfhvfQf+IO4aoP3nR3houxzt8AOt+XCfezD1N/yJ/HOYpct2fnH2Hxsi9HZIcev3hAV1z64XtUbicgEq9nFm637tpHCcF05Sx5aYF3slTtL7vu0ETovTOrI/I46PCp+Ns1shRnXQjiUob7wNszWLkpr6p0BTS+uXXvDkse2ajKjGZfSJnosOxFz9iBM6O9el2B5tI8/vsPve3gido5h6cWBfC7zA9TOJTkfvT8l8+29J4hE4PxKctsrRedPw299SGrivCm2U4jIobAiDDW1idbQNvJEYt4ivsih/dMt5X6h9ePbJfbGK6vHCOKNq6q4Rs8PcCgmpeZk9xn+VbPFp9otXD2h23lSNJYGm1yeyzmqhxtExi8gswRrT5E6fTFA2T5paaXrIgRCVw5R3RIdr4lmBvNDvLP4+TF2IUqnbnqImwr72WcVLhkCFaEtXCW9rwexYmXyhW5fYH1xe92XaL3hq/Te/wPgQ8AG8Aml1H+klPpL8fYlfl0XgdfXfr4SfpeWUur7lVKfUEp94vb+fhCSW/X/XTlaQT6zUnrOWcnSKRonTN3GCVxz1nu6rMaZXMzebSvDJ9vSacmgXJC7BeSkCsxj05xgXBcuTmkxRUhoVGvUi6Nk4iH6J4E27yy6b6TvHSGDgRXpqo0Vc9HZNDcwCrqsplOZYPSBRb/ueCWbSpRUjoFvqgfY/Rtc+u5v57/6petcOe7Yr/bYHeQ8vFEwyOX59VIMPfrhjgiKbV9g9DXfBI+8j1d+/hVObs7IhxWqGlI8+i703sP4akwe2jew+goSFEzo/5u1OUBckWXcO0+nMvpilIJhFMjrnKfNauFYaNHIj+839afhlBSIzAuC6bmTAOHGe2mAbA9u88LVKddeO+Jbpr9KrjWXjxZslIadQc4ZP2OrzrCDMxz9zD+ku/4qyrYcPf77+MkbBerpr2X51Ddw+ajlb97a5cdeBluLymxrReJguv3UqvWlSDOczgnpTyEaSp0j9cgL36O9xcaKSMlQ2CEs5dVsS6VWpNEreG50ODuFfAsaPVGrxwc9qOXorOj+tOLtnX/omzHnn0gVp/JOJCaCCZJeTnH1hGXvKIyibo/4SH3MB8xNqR6u/TbKGFw94VF/BzfYwm6cQ/WySdv9G7jp3cR41vMDqYRbaanRt2gvAcs0J8FLehmg2OLjrJdT+ttXJagd7YvAnXX0Jye4g1tCYuu6NDgWLwORr1ZRyO5BrbdeEezEvSrcvn/tUb7gXvflWF9o7N0BM6AExsADPIpvuu6XUp5iUnnvfxT4UYCPfOiDPmbvscUj2UzYGLxDK536+W3vgt6LDxIHAZ1jfSByDRhUI3IdNOKLMXnWwhpSBcDnA5a6xHuRRG7JKDOB5XUqS33eSCKLQSlmfNp2SWZauV4ucNsGy0SzqkhCtq6zEoc+ZXOYG4XtPSetSxtOxNH3zlOagjxTHMx6xlnO4dd8Hx98/ZhRoZPXboZDdV1QgQx466yEvqXfuoQa73En3+aRjz3E7c/cod7dlDL85utis7mt6TxUx9fw9YR2jVXtfMDHBB0lsxYIhDOwss70ECoLMK5DKw169X41HtW3lKbAxwFrVqJVkBRpTlBZudKrMXlimrpw3E03R88P+J3/7sdZWMcoU9z+6X/B6C9+M9/xSA1Y9ouMI11yfbrAes+5IqP4wMeY64Jfee2Yd+8OcTXcmvd85vYJHz6/wblRONf6liobclxeTLDdOpPhftSGUoj7WmtXch3LxB2JXAS/cmoL+YCAhQzkNV4pTHOCzjW9lzmTchar8wQgiJVjZCor16ONxqPIkQG6si3z0TlGNz8rBLhiiJ7dTTMBsiJ4Js+COFzNQAn4QHVL9N3XubzzQUaF4UyAZidrTl0L38Z7/M3L6EeehZuvimtfPRReT/R0VhqySj674NKn21liRfu8FIayd5iJXB96Inaz2WIm769cUxWI3g1KSZXuLL4aPLDhrQ/B+S2uO977j77B377gXvflWG8YCJRSfxD474GfAj7svZ9/2V6VRMWH1n6+BLypbGBso0QijcwNJMsH2TRnnQvQytBb7VdKlxG1sQwyzq2zjHKNg2AiUlBU5SnP1EXnOFr0kum2gjGfA4URPdE+mMWorBRrvSAjMWtd6BdnGA8osSuMPrNokwIEa1mNU+JylYeWSXxf3nuW1mGdkMkk67RURtBAbUCr2JuXWTwluPjSyHv++LUTPnRuyCRbyW1gO3QhBu92sIWrDKa17Lz/CbKqoNgQZJFbzOj3b5CfEV6FvvMqbu8JfB5kGJROmWq0XnQ6J6jABCa0P9Um8kA04dGuQRcjjCb1viW7W0Bei2yF84Ifz0JwDo/llcbXk6TTT0BZZQH/DtJK2ztTs/nuJ5jlGj0/YDk+x+WjAwa54ajpqTLNEx/9GLaOYnGK27OWnXoAOB7drBkVGXuDjNZ6qnJE5lcS3ZFJbIO0RB9aXet/jwRC5wkOXT5JckhgD20kwK197mUhuv4mBBUd2qBd78Vr2fcJAk0kY3ULqVyU2GXm3ZKi3sQNgqPYOtDB5KDH2GKImd7CjnYlwekX5GETt2ef4lK3z9ycDcNpGRxHdn473KV2PWb3IjQzXJajJnv4AO9WUf4hD1aWebkih9kAf10G9FcM+KWco+L1EYid7RI93hI3wlIQfwL7nsn5AaKP9MAgn6dnX7+L9UXvdV+K9WZH5UeAP+a9//SX68WsrV8HnlJKPQZcBb4P+Lfe8N7rrOIIrQv9OeW9tH6iTk/4lyRboBTzTszNIwnKeg9OidlJaGcse9kUCqOwTmM7y6KPbGAf3PTkwj1pV2ABo4QnUBkNCIrHEUzLjU5tFA0sLWhlsA7qrA+vMUvBqG+6JOdQZTptLMeto+k9ZSYcgmUf7A69+OPGyiZ/7Fl2Bhn/6Pl9/si7trkx69kZFCytZ1zmaG04+b//FuPv/rOioVOJMmt14zkOtt7Nzoc+yplv/S789sNybF/4dSgEpbXoPYML7wbnqGa3A9Jkk1wbvFoR+OJyawEgrtyHig6dhsDGNgluGGczrt6UTcTkoaIwGNcRzZBdOYJg6tN0Lkl1VJmgXvTiANtaHh0WfPNP/OfM3v0tHM4t//g1zVZ9wMGi48685V07Ax6bvwyl2IZa53loUvGzL91hZ1Bwa9YybXqMhhcPhP+xWxeJ1Bc9nnsnnszxc1sflkcfAeeFPBePSTwvjF5VTDmOaGOfZkNKo5ylch02k4zYZCocPo3L8kS8c8UQ3UwlqAKF0tjxWXQ752a2w4WDz8iMqBZD+cjGbYoxg3ZOdudldC0IOFdvok7u0p55HF9OqJsjUebtm4DUWuDqCfXhZexoF7txjuz1T4p51GCTn96v+bZzXmY5rheG93CbJKpnCvEip5ch9OxQru0QsHw5QmsjarVFJdVA0BdjtC0tr1AJnBK10w+uqfGA0vYvbq/7Eq03DATe+2/4cr6Qe567V0r9IPDTSJL0428akMKQUf55NReILRijPBbJ/MtIuAwtIRuw+IVSqQWR6zisCyYfYdOKUs8Rwx9XHPbFLK/Qp20crfOcrKmMglz4MZCszbKTkuis98xW3uVrgUX6u9GmUSloAjQx6IxhtGLWWpz37A6KELw8avMsR0vL5YM5v/BqxqTMODPIqYwEEFdvkg2rlHnNi00G/Zzu5d9m8nXPwke+k7u+ED39n/obmIl4NneTi8xOOopqkxEt/ld/Ut7jco7Z2iW78CTzs+9OGvpvtKzOExIm9XaDQcu6HaFeHOKzAhPLfNvj64m0IALDW/VN2DJNmE1IX36cK3COD/ztH+Pwm/847Yuf4sbD30hhFK/uz9m4OOGl2zOOm55Jtc3V8ROcfekfkucli2KPSWk4Oyr5rRtTTtoe6z2/ff2YW8cNP/D1j3Jl2vHIpDhlzJOvbebSCpIPs7UuVaQRghvPNRfRRFpR+VaMjJRJ6ret9TilBHIb+AE6DKEjKS2a16+jiXA9ykYrR6ms2qxmF9m43WiHE58zok0krsK1NHvPCDw2oILwjv7Cs9SXP8HhxY9QtQu0ElXWl/Uuo81z7OQ9+U3hmrhiiNt+BD08guuf4/yZr+bnbzb8/kcu0v3dv8b493+XXMONqJ26aizEsXYuw2Ut8i4+y1FNUCI1hXiAVGPhBxzdQtVjfOQK+DW+RiDTPSgSWOTB/K4f54vd675E6yuWR+C9/+fe+6e990947//LL/gPSktZGiCDPlwkTciOo3RBzKScX2Xy6SHWYL+atQ2a1cUbZRGii1YkUolWfnjs8FgxC9RKJZy4Cbc4+DVK2jlBrDP9XbO6rffVV5mi3NYHs0qBIzqUiYjb0jq6wFZuf+tfspu1fODChM/cnDLvpH1U51oyyKzE1AO8Keg2znN7bvE6Y/naS5Sz2yy1yC+cdI7p5Zv0d2+T7V5M3gMnrUMvj7EHt/HO0d2+idk+z+0zzwiZ7c0+PkJwDS2DiPACkia9tBLmAR7ZCI68W678IcL/tjoM7JVOcM34uTlEakS5nlu3Zhw8/5ocn0zz+O6Q42VH0zuO5h03T1oOl1YYqkqTa9hrbrAzKHjx9gmv3J5xsux5bHvINz29w6IT7+HV56HS5xI/2yiNIfpOqxZR/BwVUkH4EDggbHgqINOQrxFK3KNPbW7GdakdCpLVx7ZkvEZWJ7ucdBH5ZkdiJlMahWpOwlxLqiztLTYfSHAI+loADDc5auyKj6MUD40Ldpmi5wfY8d5K6+fKZ6DvsE/+G7xvOOfWrGXRO9rjGTf+3t9ZeRl7l+S73XBbeAflSOYCzUwQYCZ4MuRlktBW1TDwS0ZES8wkDZ+O3QNUH/X+Ld3ewuN8cXvdl2C9MzjSAaWTROYg6LQYCkMiW/XOp80+8nVtyMDd2kYlG2q83xqU756gkacLPfR7175fXwnat46nR/5/vVCNUgLrPZP4H2btl1HszXl5fYWRAACgfXAMy8Xy8vaspTLSMigef5ZeaTrreP76lK9+SCSqb897Oud5tHaYP/Tv4bsF+cktzo12k4uUuvY8+qldOus5b+8y255Q/4E/gSvHVK7hsZHBPP8v8X3H0YuvMXlaUz35HtzmBTYKQ3b3FXQ55jDfYlSYzzumscLq0WQqHoI1TXqlhbQ7YaAAACAASURBVGRkMsGUn+xLxugsfvO8DDcJ7SdPEvWLx8o6n8h1w3wAY8Mf+51/Rrdxnjt3l8Icbnra3nHpTM0PfPQC5uQ27tM/i+slw170nnrjAssDIatFm8knztT8+tUjXjtc8O9+5IJs5p5kogOkYW6PluqUFX9gnVUdzycZ4ksAa5xUtaDpe0em5Wt6b0qlgXKUqY5KmxHm7LNSQADdUvrx3SK0YSwtGXk+wLiO7PZLqNefRz/5EWwxALViJWugrzYFAJBVUo20C/a2M2gy9GwfN9oln944lX0r71DLI9TGGbw25Dc/ix3v8V1P7zB2c9Sf/g9Z/NMfg8/+Mv793yb/0zf0k/OUVz650j9KF4CTcUbk/oSZgqvGq+7AcipdgXKcYLfCoXgwonMPqiL4SllfsRXBF7uSQmJQ8sy1ZF5dEEGLLSCQN73+IZq1368fENnYZbNab9+sLxfuJ8Joq6rjfrfo9bt6bJWeMz6XjlljDDJrt/S61OqrChVFrB5UfD4URq9aUBoFkz18VrIzEITLnXlHmSlGuWZSBukJm9H/wv8Br36S4ZXfILt7mfL8RdRkj2XvGc9vcvz3/2cW+0eSrXmHnh+Q33gOe3CL/uZl8mHFySuv09+6gl5OKfZfQgfj8Dr//FMuvm95T0qG4mHwmVyogi2h8g5/dAs3m+KmB6hqtMpQwwVv7hOMCcdbJB5CS66omXWOwmiGmeZbHt/h6x/Z4gffP8Ec34CXf4Pj3/wEy6vX8HevMyo0Lx1If3267LHOc+u4wTo4P65EB0itlFJNOAd1t5Tn00Z8JeyqGsi0MKdjIIwVQjQkEtLg6vcuoI9SEAgD7JRj+JU3rwo6Ri4YykTHriR9Eolq4QJwJsdu7NHfuhLacKEFs87eXvusANxgi/L4Gub4ZoLv+mKQCGS+qKXSsDZt6D4v8XnFwVJkOwAGH/y6FQdAi69xdnhVfs4q7OYlVBfkJhbHMjMA4QbEZCFqJsXrpJ2tZEZ4sNUAocp8K7e3w3pnBIJQ5rpiGKQh/Fo5LhlXoVdtGZDNM9ckxm5hTm/SsNrk1/cVvfZ7efzTAeDN1v0CQvw+BoVYsdwbFGIr6t5bDGJGn65g5P1pJmXG0TIIuG2c5+bccm5UcGZY8HWXNhjlmq3mNodLy1Ejg22ztcfyud+g+cyv4fOa/OGn6c88zI1Zx2t/9Ye49kufZu/7/jyLfMys3kF1c9zxXbqbr3P8/At0syX13hZ6uIF9/Xn0/BA/Fy5F2RwBq8CqveV+K+Hh11mxWYnLB6Jl07eY7Qu4ok5WoHKnoPCpV+2RdY/gqObaadm0Jr/1U9yetWRGcflowbSxvNKIvIJ3ltmNuyijUaVs9M/fmVFlmnElm2OZiXz1laMFe6MyvbdMkYTy4hBXeU/lW4H8RjaxUixDYNDeom2XztkYKNbXeiYav7bWrTSZgox13PRy34uuVcyOk5ZQK0J0YdjcOeEx+HJM/vV/BHX9BdTnPk52cBnz6Z/HHF1DLadJCsTYBqcMduMcbrhNv/N4In4ReTDeyTC4X/X0XT3BDrf5f+8oXj1c8pnbMpu49c/+Mb5d4n7+b6ObE+GzuOAFEolso51E+KQaJ3+D2E4yM5G/Vu1c2kmmSIHRVeN0e1DrQbWGvhLWO6M1hEqsRBeUDRPTF8mY4sC0tR4d+QGsDGCMUqBlnOcDjC9JKd/TrllvAd1v819ve9ybnHp///9Jblyn+k8r4ob8n7ovZC3OKMTJLPS5FKA9VcjA9xcdhamw3nO47PnzX/0wZ+1dZsUOXmc8OsyZ9579haX98B/ljP5HmK1d7JXPEr2Y80XL5ImLFONDurPP0FupuEY6o795mTufeomsKsiHFeVT7yM7+wg+L2m3Hye/+Vmy4xt4na3aCyi8MqfgF+nYRZaxbWUYXI1RQZbBbpzDlKMkUayXU2xUlw2fucZLtaJ0+qyqTLShlFIU833MbJ9udsxHzg/pneep7YFg+nuR7+7f94e49PB7cPWEpj7Dy7fmPHVmyO/cmvLItmSy1nlO2p7vfGaXG9M29eg9SiCryqSq0gTJ8jy0cZRtcVkpwXd5nFjpeTXGGoEcW5WlDDxT4IOBTxyAC3xWsejFwKcKHgdxE9TNdOUd4IOkemRYawM+CLxZMQzSOmc2PI9/8jx1pilf+3X8co45uYMqFjjbCfzWtphyBTf1OoN8gC8U2Z1XRNdnuE30Ou72npJrVGlcXnO0PCY3mq+7NCZ75eO8+E9+i2eKjM2/+Ffh8HV0M5PhdTEEU2DrLea9Z2QyqQz6JapbJptY3UxFOVdn+LJMlprASl7iAaqFer58pKovx3pnBIK1rDFqmUhmJFeg8wHeCSkbi6W2YuUYJUFAPHPjhq0UWCdtluj89QVfjj89eI5LhyeMJLb1h0pDbO7vQvZWVtLiWXtsoxS5UWgnOvrbA8NvHi14dHNAv7VH21iGoXwe+iXDYc5zhx17exdxs2NwDjc9RLdzRnnBmW/9Lvo7N5hZ4TJs6Q5XDJm9+AKLWwcMz21jtgvMeFMysOG2qGFWY/ytV9CjzfQ675XT1iq6ma0fSC2aOFFe3AR4YV6tbElhDVXUknULkRjIKwgoL0Hl+FTJicFJhx5uUO+/CNZS7zyGOb6BnVyAfsHcl1ytHiJTinbWkWudkEKD3PDM3ohX7s7FEEad5nbAmsscoJPuVLsSjNNZYhNHaCzO4t0Aqz0ucCCs92RK5CcEdhzVZ+OcaP151yqswKXxgZ2sYZUlhx6+C3MyrQKkVa1e93FryS9+hNGFZ7HNCW6wJbMF24qsR98QXfkkwMjRdYPN8PlJkHCDrZV1ZND5es/ekMfVId0//Z/ody/y9X//b9I9/2vktz6HHW6vPifX4wPTucoqvB7TVFtUJzdBZyuHQZ2h2rkMnHUGxq+qApAgsOZF8iDW2yTZf0vrnREIIosweghAMoxRawQzIKBKsgAX9afIPFqRjFaMWrWA/FpgiBu1OS1hlNb9qoC47m013e9+0npa/UEggetopvs/eAoCxNcpA2alPAWaFse0lQ3o5btzyszwwt0Z3/DwJm68R/7SL/Pb/9lfZ7g3xvyn/yt+chamhxIMtGFpambLjv7Rj+Ifz+i7oJg5PwBgcVt6ttX2BpOv+QZRnwyZqO6W0pq4fVXYyBfefwpOuV7lRDvLpDKalUEIUK0w4cUAV20E+eGopRNkEWwrxDil0dqgVBZkKkI7LVROPi/x8yP0YIwrRjQ/979TfdOfwI52+cVrS77qwojtO5/DlSPceI9XTjzzzjIq5JL53K0T6sLwbU/t4j0cLHquTxtuNzWbq/iUXNcUCMKpFa/rpH1Ui/aUr8YQtXa8owicCocSZE0gpEUEVAwIhMogHsPWlBSB0d44MFHfP6zeQ2sVdV4laDScJraBJEyR19BSQ1YLZFWPsEoQYqNCg4Y2l0C4XWmmnWeruYod7SY9IZGKaJJYnnKWRweeqd9hMN5E5Tl28wJ87E/RuR5rSrG/DBUEtodMEFFeZ1jruWZ2OJ8d44fbgYhWobJSJOOzSo5p8BJRrofOraTkH9B6Jw2L3xmBwLlgC7mmjRcYurqZSnm5NkTLlBCxYoXgfNhwYyuI1dd7yz8JAKFUD4SuN8sM7jeEWf9dbFvEKsApYeGuWkLi7RuXRwLDvQEnBohk4hLuRwhgudYsccw7y9c+tMUvvXaXZ3ZHbJSiRf87/8XfoJ11tK/c5YlRjjrsoRqANhSPvouXjjvGpUYv7uKqDcqslCHm9CY4y5n3P4PSmo33Pot/+mvh8JooVWqDOb6Bv/Ic/e2r5N/xFyQghkAcN8m4olS1MGi1nKAh0PvA0I7EwSQgFsT+lGpJXrlBFjk3knlnWqGUY2YDX8QUMNqmv/Jr6Ec+QPnk+1lsPszn9hu0slw57tjbekpaaScW62BcGq5PG0ZFRpFpvvGxbS6MC6at5deuHGM9HDSWSWWComwIzt0iCOFNpa3heuiUePSe3JZ2hu1XhKiuwQ9k2KtNkTSlrEc8k9s5C10lG1OzPntiVe1UWYnTwfwoSFRb66kynfgwEd5sU5VGaqNmioDIM8JkNiq1J0e5ThIhUXsou/sqm3mNy2tRelUaijCYz+ugDqvSdTjAw8f+FHQLaem6niObMVEd85/6Uer3fAhz6WmRjna9sJG9Y9AtKIebeDuWAJPXRPvN6PEBpCG9bqZhYN0/MNE5709Dt9/u650RCIJ8732XWplupyGa0mTaoAIBRwxeJO1/I4P4uKyLcETQ+s1PhDeaxN8PYqrC864/v0YCg1lr9ThkjuDUvf8fn1OdYu2KD5YPqqSaxlq+ZqujsZt86NyQanYb+8mfZ/vdl+hmS+yy4fXjls3pPqqsKR59F77v2BuKe5rLN7BZhe0do7sv4I72cfMpqqzJ6kKMyoshBLkKH2QLfN9hly0+H6b3GVcMBverEHoPWYIhhoGoKVBukRBi3hTyfoPiqy9Hwm41GV5p8iwod9qO0khPnh78wQ1UUUnr6eJT3DgRlrBRijpfZeI3T1omVYbRsunlWjGqMl46mPPB8pDfvDvg5rRhVGWByBeOfQQEFAPZlHQGBFno2PZyvWxyqkYplyJ8spYMrY15J5tt03vqwKhe9jKMzDItkiWuFehslEAPHAIIw/O1+ZQMp0ky4bHSKOI8Q6/8jZXJ0d7J3CK4oKkQWLyHIS1qfiLDaK3XhsM5ql0kBdB7HfxSpb7WKtsoQDUzyvMXMZeeTh4iiQvgPb4YYuZ3ucEG5+0cN9pF98GqNra9os6U64VXEHSrsA+SR/DAHupf+3qHBALkpA9ZSCIgtTP6+kxiX8b7eZML/jxkOvHisKwgeelh174/hd+/537rffk3aw/du04Njtd6RrEKMIRqIV7AoT0VfYvvDVpOrYLBeovIeR+qH81VO2RnYBkajz65gx+OOfuDf5lZvcPo8BX+rzszhuc/wsNDyK9/GlWVbDaiJnniCsrw2O1v/Uvyh57GW4s92mf8yAUOf+M32Prod+KbBaqdo72TbC/L0X/ih9NceD0DXT8W6+8mHprIEFfer0EFS9lAI1FKKdSyFbJYULPUiyOpirRBBV/qoqgDWelENq1aBoyqaxiNNJmGs8OcTEsgyLXiyTM1i15kPEBkIt61M2LeWZrxObrbh3z44oQ78y45yuVaYfplQLEB4TiYbonXa9r4YUPU3UJ62lpc8tT8IAEfOooAfRWTHB8CfWEUudaCNuoWa+3Rbq1lJgJs8RowIMFCabwyovoakhuzdi76GFCcTWS9LHyVE7GQIGNybFZhAuNYevpOPqtiQHbnZfqNc2B7FBIU7GhXeBZoirXHlCTH4vMa/XV/lD64q+n5gRgmBU8R0RQbcM4t8apIQQ/bo4xLHBJpK5K0pYDVPvC7XJ7TCcvbfb1jAoHqWzF/mR/ixnvJYcx0c1AaGwgw+OB+pDOB6gVPXOtXm1DUwV/nEcjvT6N+7jcbWA8C66fcG1UHbv3x1u+vVlkySp3mPSDVSBCZOGVmH6uF2CpSeKSTpQJ7WXN3YTlYdtyqM85tXeL58gl+5eVDrh1e5syo5oPnSo4byytec+nCByiWByjb06mMm7OOhzZyarcke/L9qCzHzY9xbS+y1NduYW58FiZ7dOM9po3lzPI2s0/9GvrZb02DVHVP5aXueY/xGMgxCggjFKhgYaiNKGACeajyotIovRjUKKWlH58P0oBWdUtpERQDzPgM9vZVrnUlk513cXvasVkZSiN9/ab3nKkNzkOVyfNOyjFHjQzd60zaI+/ZG3Jj2rI3FDMbo0jaRyK5LJvdLb3JuXyWdHjkTYo6qA5OWzgHw+CkpSXARaXSxDFAfKiH2kIvJjRxcAqsJBqURi2P8OVIEnGl6RGlUt03OK0pM03XylQqCeERvQ6kvepNnkyXlG3TUFYBNFOyhNgSNrgymcxCXI9fnmDmn8Veeh+uHJPdfRXVjcjyms6DeeUTqMkednAGPHRoCSplLkNyrfCjXfGMbo5FSDIr0e2cJh9S9IsVkABSNaK7ZbhYBYKsF0cP1IsATictb/f1zuAReB/gYl3oF/bJC2DdDSnODZJO+Fp2EIXJ4PMzI/j8Tf5+RLM3ShDuPcj34ovvN3Rab5XEAfC95LRofbjOYVjnI9y7cq0oMwkIW5UYod9wAzrruXks/dQqM4yKjM6JNMXl447Ldkw32qM8vsZObVh0juzap2G4BSanv3GZfHsHN5tSbo7xixkohe6WLHqPzwfUT783vb57DXXWj8n6LaJiInKG8NV5vyJcxf8P2bA3ebAlLdNnnOTJQ0tG2S61I/JH381RY5m2Ljm6DcJ01eGDDIlnkGtGqmOnUjyxmTPMNXU3Jcdx0jhyo2isY1RICyn6QLj4OpTm5qxPWa0QINVKKnpd9TPwDpIEBKJW670o6C76lfyE6Cq16Nm+GLcElzbxYGiSPwa2SwN4G+S748afa5mVFUbIbV4JhNorJa+fgMoKMhLpWMZjn0xwfGpnuXqCmd6kffFTEkzyWmYl7UIEAQNaiZ2HEnHNpc981a7yfpXF+1x8OOL3Kh6joCqqApoMwlymmxMNedL85QGihuL5+YVub4f1DgkEgbgSshBuvYa58TnMweupTWBclySRISBzvGioRNMU72UgBrJp3iv/EL/eGxTgfpv96ub4/Jvc53RAuPecUfd8r9Z+dzogrDSL4u+E7Rz5BSv4q6iRat67CWfqjAvLq2zVhu9933l2N0pevTPj+knD0bLn5knLonM8f2fOSWvRd15l586nmegO3yyk79vMUcbgu5bs7ENUT78XVQ8FoeF6ztYKb3L6j/6biQBnwkC8MPoUoW69KpBN4HRA6O7Z/ONx6VRGhxZjG7RYjA63RQsf2ajcYCsJ0kUWenf5s/RnHmanzhgVmu3aMMw1s142/mGmqTPF1uKG4Oi7BWa2z9J6cmTD0/MDHt0s0GolHKeCE5iybfLeVc2M9+xWIUjl6FZsFOMm5wZb8ho39sL5LD3vThfMrVrTxpIgaJ0PRj1i1u7KsbxfpYVQFXSZvBGrxjarmQcP67ji95WJdqmnz8Aky6FzcL0gxJRGdwuium+E6SYfEJOT33gOV01wN15BZTnNc5/AHF4RYMHsgFaJeY9SYrZjN84Jsiw+r2cl120bkXzvHe0ap6IPM43WlFIlFEOixWxMAHy5Rh7TRgb17YNT01+/xt/s9nZY74jWkPIOllPcYhYsFFvZmIdb6NldQZgUNXkwp9ezfTItWZrqlyhTYAIpxikRYCt0zEZXn6Rd2/yVikqg6+2Nz//wBed9z+tVpx8LH2WsQ2l+7yD43v9f+14r1npRfm24HDSHWHEoYmurzBSvLw2P2Gu4esL5OueFuw0PT2peuHHC60cLHt8a8DPP3+LPfPQS335mjpodYqeHqJ1HUc0J9vZV7IufksyzrMgvPsHBL/wLBue2MZeeEVep5gQT7AUZ7qyGp4qU+cWZi/drLmv3fF3foLw6PWzXKrK7V/j9aM7S5kPy0CJUa6ZCvhiQHbyOq4ccmAnGryow5wUNNu8c49LIsSzF81r1Da6qqOnQsyOZQW09zGLpuDVr2apktiC+CxqtJUA5D9V4D7M4FOOVyDTuVxIOenmUUC/CnZDhqtGKvnMpUK70sgJaJ5P7qLyWDdp2KGelFVIMEpbeqcBWViGgBPnrlpXBkeoWdFktGkm+J+sW9OUGpl+KXWd7snbmTbD5QCDYnShdjbQmvy7CmdnnfhHvHHprD/Q+/W//It2ta1Tf/mcBaUOdtI7h659m9slfwVtH9Wf+MsvA8cmMluBgcvoAlRUI7SrB8UiSsFQFVb+gGe6KB4N36fNS/VICVl6JRtUDWnK+vk12+bew3iEVgUdpkQHQ400hsSxn+LvXYXaAXk5F66Y5EfXEYMQd+8UqwBFV32D6JRW99J516F2Hp1khc+LT+ntfRlpvVhKuVxfxq7vP46X7v8HvPq+CUCvtovXXul65OO+TP0G0HzRLcSy7OK7Y2yi5erBgf95ybrNimGv0wRVUu8Bs7Ynip3e0116jPz5GT7Yx2+fkb3mGygrxA9A6IXVUtwx9ftnEogmQDhXA5w287ymp/dptvVJYf0+RJJhaRX6F2pEDYULPXQv/wFm8syytZP+5kbnQvJNP2ygolROXuUhWa07IDl9Hz+6KzHUzw8z2+dWrx+wNC6pMszuQ3Cr3EZ0mlo7m6FqqVHw5TK5f+GBO34c5QWDD+lykUmLLcj058OEYmKBT5D3S7uqWSX2XaHIfKoTKt2kDbd1Kq6h3qwoDk8vfrU9oL9PNV2qwRvSeXC4D+RUhMJx/zVRasyZHjzYxu5cwW3uY7XPo4QbZxgT33C+fUqLVm7voPKN69AmR0NbxnCC1ymx4fYNcp/cQq8M8QLhjpp9QajGostZqC/pKD2r9XmvoK255qQa6Ft+1YmXXd7gTyWI52UftX8ZMbwXTjJkgCZxFL4/QJ7fDxbhEdXNUtyB3LbWyDHPNKJcLOg96RSoM8FRoKa0Hi7jWheHiuvfEcJ419I8EAxsufvnb2vf+9Ib4Rmtdt0gryIyiMorC6MSgjto719Ums41L6Nc+yd4g45ntku993zke3R5w46ThO5/Z5ZKZ4Y72sVc/h8py+t0nmA92GXz1H8A7h1/O5Hgrzeb3/NsUjz+LmR+AXbML1DqRmkRLRwVXLUcf2g+dI73n9eF5PGbxOHhIrNp7j02sCLpAlGqtW6GMTJFEyVS3EIz+I+/lbNZSGEXZTtksRHyv7qYURrPfgDUlrt5C2U70c2aH2PEeXmlsaD/tDAoemZR8WF1h6/iV1EPXiwNu/5W/iDm+Gbx7G7JbLwQHr+Xq9YRhp28XqJO7Emxtj14eU8z3qTLN0IjlZWmCUF08SN6RLe5ijq+H9tUyMG3DsXc95uQO5uga5clNsvaEzUIHORKSIqtSKukzide1kddnW4iieVm5artVG+S+TyS9kRYlUp+LUZHvGtEVOv9u9N4j6MEYc/Zh7M3L7P/1/4BqdptRobGjXcrv/gFeeN/3Ul371Fp1GIKRkoF2FoiGuW2SPlVnJaHItGJRb4v/M4FNXY1FoqIUTSJXjQWttPP4F9pM3tLy/F5r6CtwKelTN0v0eBO3mKGKCpXlAR5oBM4IstkHSVrdSRbhsioxDlXfgG2Tcbcf7WK8Q2eh3WBX2agntBR8QBjpQJIKbZ9ISFtH9XjvE3PYe39fToGDU5pD8X6nsuS1/43tlXv/FjffXJNmBFarU5vtSeuYP/L17L36q/jN83hznj/27B5Xpx2PDhX66AguPYNpZvj5EfnNz3J3+1kG0wPy0ZDi/R9boVS8E9LY9kXs1iWy2y/ilzPc3hP0nmSdqAN0MbZ+IkprdQDk+3atYhKOnBzx+P5yvdr8dZBdEPKcPJ4MbfXqc1U6DTH9/Ij2/HvJlofoTjZM3UwlgM72ccWYYUhdvVI0uqTupvSX3i8kpnrC1a6kaDUfODtgdPQa/eZDASnUoWxL/7N/h/3nrnLRi4pqducV3PCMvN5mmjDyUQXUO4sqKjFWcRZXT0QyoznG6wxTDKiUCiJzks1XdIKMyioJdvUkYei9KUQQMDjN+SDDoLslw2DjGecATe8weZAA1yKZ7cPwPUlJNLOEhPKmANuxwGC9p/YLYUsD5ugGlEPJvrulBLqywgw3hHw43IBXP0n5xEfR7QnNxnmqtmP5iZ/Hfsd75TFARO28J/eWDFBdbO8Z8vD+Pau2YjqFnGWpS/JcZhbx9evlMRxc+bzr7f/vcm+akr291jukIkDKyCzHOwe9+Jmq4YYQhvoWVdaJTCYOXLn0TvNBgvgJfK9PujV6cZR6y8Z1aNsF9zJ1itEZq4K44gkZM3M4jeqJ635BID3GPT/fT9EwsZHvOR/j497LOJW/rRBH0RMXwC9m+KzkTGXQCkaFTpunnVwINoIGV0+YlAaljQzg+qW0MZSGW68xe/GF8ICB/WsFh260WrlmdQvBp4fXlGl1yggoSfi61WuOLa90XONsIfwuejcrSO8rVg0RLaOcaPp4ncFkT2wwg4+F6hrUcioJgV8zMwozllKvvae8Zm4GXDluGeZSbblyjOrm4ZwJjNbxJlmdwXJKdnRNsmsddJP6Llk6Ku9wh7cTsiVqJql+uRr+Jp8N8daI7F+XV5LxDs/gRjv0xUjaInkdPmxx9nJ5La0x7wLpq0nnbRYAEvPO0fnVTMZrI5txPkhSEXifdJGUd4kc6ArhYyRiZybVheob/PIE38gxMZNtdDXAzaaYWy/B7JDypV/iTG1o7h6tjHqcCBrOOodTgvRT3uGKwcqgZ+3cj8i6SFRM1aHKkrKA3TgL9QYPav1eRfCVtrSRjb8c4BdTqQD6FtXnkJeoaphgYz6vU7bkA6xOtYvV4wRooa8n+LzCnNyWIfJwG5SQhLTJKfJIRlsNKhvr6e/ZwR2SkUeExjp+PvZD00buT7eSxF7z80+mU/EjViP3VAfrhLd4UZRRWkAFOGZ47ipTHD39TYzdnInuUM2SYb5Bn43Qec3MKkajHRm62pbyzgu0V1+iPznB9x1uMkFde57+5mUGDz8kAbVvIStRkyEuq9DtXMhOUbDMdknvpknHRmSiHesXNMnMXbgVq/cbg3Ee2iUxQ1wfHlsPkQCuwmyAgHbxpuBOl3F2IVmiahdihegd2fQWphhgy5FUkpEhWwzpPCx6z24gnt2cdTzUhXMoBYsS/bXfw/x/+Ae0L36K7KsuCYQzaidpA90Cuob+xmWUMbCcoa2F2TF6fCZATcWjuTMlfe+o6Tj2eTp/mt5hygmtlYGqcz4orgo5rtOF9NALsWlVfYPqBIOfhxOrCC1D56XdYhV0TjHMV63KWhtxCQvBCdfjiyGFV6ny8qbAHF1dwVddi14c0d26Kp7Cyxl6NHgOrAAAIABJREFUtEl27mFJKqYH+OWc5pXnGd24zLKQCkWF97bs5bNe9k4gvbZFt3PRrfIy4I7XVBO0mKz3gdxGkr5wKFx9JlhtPpjcV47X22SXfwvrHREIfMhaVd+gmjnqzI64VzWzU8MhV9S4ejPBB8XgukF3c9TiGLIyaKo3gYhUCrIjK1BBI52g3uhNga4ngbfgyJTGG5U8aCGalocNS6+y1nU/A72GdgFSv3b15lb3idlSPP/ihk/Y2CN8MZLR1klpsTooco0PveEgmSQXkPOY4+upvz0xU+zGOY6t4fJRy9lhxu5oR4aeOpMB8e5F/OiMBAhjyN73DajpHdkw8or+zMPicKYUujmRnm8g9SjXo5zFeulXi/+utHx06BGvB7h1VFFmZOCpARvkXBUry0VtO/lcTU4OWMqEMVfNjGiF2IfPxQ23MdefE/4DQD0USWWdYZoTbDmSBMI7Ft4kZc7DZc8T7HPR5HLexGojyCz4ckS5UVA8/ize9bjxnpyjy6m0V/oOe3ALd3IoWXZRidLrcEOOZzhn+zOToAyqaFXBhurBWqwWvac+zEqi5ERhFJX2gKZ3nlrZhL8H8OU4yFF4cr0iWVknEu1xLXvHvHMMcs0CQ2V0EHiraVWGUYoCBFW0DLBMneEzJNgvp/i+w2ztigxJVqDyAsbb4BymHNDfep3i4afw7ZLqsadBW1qVsejExKizEhR6D1k1SQ5jGU6gwoSEqvfJ49nrjCE9x9aQ20aYz64LUNXzb7yRfBHL+9MifW/39Q5pDfkkSqZiSep6vMllcJVVybHJm5weLWzP0CZyxQiyMpGAUAqfRd32IqCOpgmHLK0kMb/QzTRgqqX9UmZ61TIKbaNcE0TPpAyPw1K4P6rgfsSqeN97u0nrPyf54/C7aMYCEToYn9PL3ECt7mM9yQdYtyIPoRZH4lHc9iytFzOXNV9os7Un+Pd6U/xio0NVXtHmQ1w5pt+8KL8zoSJbIyMp7yiVQCOLkNVHNMx6AC1MOG56dfziiRuPdToezibEiLhyCVdkhSApk0hZsTygMoqpHuAn5wR1NtmRqiEKGAa9HuX69LpB+BhPbFVihmIidl08EJLSbXNCvT1ElYOUkLhymFppUdkVZ7Ez2TQF9aax00Pc9C7q8AZmeovCNhTBiyC+l37t5BG5CYL/tEqvIQbHjODrvDYUVs0JlVF0Ts7b5FQWHnbRe2a9ow2VVcTpnzhhW2eLu2TtSTgfstTDj+2stHrZvFVRSavWuUT41INx+psP93N+xXKugo6SBxovCgGsMaQLL8PweCysE1a01bmcF9pIJRBQgQ9uSbLyVm5vh/WOqAiioJRqFrjBZsjoF7jhdjLkVq6X0rJbkAc259J6qqxkPjpHXQ4xh9dkgKw1qg+0dWulfRSkg3Uzw2VDgRDG3wVNdB21UbxAM3PtUd7S6SwYpAflS31aXE4FOGccLq9HZ1EQDRs8q8GpZrWJx1LahtbIeu88at+ABIDMO7K1/216R67FmJ2+wQ3PoJsZaI1uZywLGW7emrXUmWY+uECZaUZW2h/TfJORttj9G7BxDjc9QNcblLPb9OM92ZjzKnxGyAYRKiyfldL/DQEvopzygHd3XiUMOZxueTnUKW2iPlRMykdjlrCRh3Zf7M+jM3wYYJrZPnUx5PWlZlyN0bEicFbQOPuvCtQzDEndYIuaDrRmWEug6W++BluX5HGLGr2c4rMCV2/S/uT/SFYXNJ/+ONnZh+GR90kAGGzhswptCrrP/AqqGqJmx7S3b1FWQxmoT7Zxx3fT564ne7hyzFgJ0mahChatwwSIKgjJqvB9EJizOGUomkOBSGuNL8ergGgK/GALvGPDOGiXlMUA6zyHS3Esy7Wit9H/W+GVos9qtm58WpKsaiOZ6figNIsVuKbqGlgcy+zJWXQ1RG+cEfMYpeUcA1RZp4rBtzJHGB5fYTG5JFVqTFTcqvXjwvke1UXJCsaFTtyEpneBZ+Epy4xci2CeiVpOD2D9XmvoASyl1H8L/GGEz/IS8Oe894dKqUeB54DPhrt+3Hv/F97Sg5oClzu0d/gyw2VnSAzDvMZSCY69b+hMpM3Lv1Z2IaV/Xq4eLyA6FHKis5yijJEsbX4E9Rh/fAecQ483Uc0MO9pJA1ZfiNKiXhyhqjEFMp9oTQGBXm+9Sk5oo1xcpnLFKYx0EbLdAG8PUsCrTTFmTya0fWJfPEIrc6QnPu+9ZIudKDMaLWV9az2LXvD9o8GmDNALR7/9OHjHdG4pM43znv1Fz0nb8/hWRb/9tLBvvWfWGzYuPgVXn0+sYjfYwnsw3UolVI5rQdQFsjpn2btgHEMSVWt6R4f0+jMtw9jWuuTKpfxqJmNCD6w0K9/eKPssP0ibxtWT0B8XgpFeHgvhzdxgNLzEIpswPP8k6uQObrYMEM4WNZ0Jc7WeiJZVM8MNtmjzjNK24mcQgk/c5LGttBLzDNf2fPpv/WM++F//0AqAYFtJMEBsQO/cwGzt0R6+zOxzz1OfP0sUi1NFhT3aD8GAlE3XxZA693S6xCNtit55MIbMezqv0XhMGJQCRLkNdE7nobOKOtc4b9A6w3upHOpc44La6aTUZGYFNihPbuLKYXAf6+V45HVAEQmc1Exv4vtOlGizHFqL71vRK4rKqMGER2kNeSHD5L4lu/MyPivIfuHHsd/456T5o0RB1xN9GHRoY5kkO537noNGkp5Fu5opWQ85yNB/Xab+d7vWwAzvhPWvqyL4WeCHvfe9Uuq/AX4Y+KHwt5e89x/8oh4tIRUKnMkkKysGabiJyVEmp3eQR5JKQF6obgkmp1MZarAlg+PE1JWWglkco/ISugbKWk5e2+HmU3RRYQ9uoeshOstTu4lOynPVzNCxLTDKyIKmvjdZ8qqNdoNaycZm4ZRfrSB/VgglvzYoq5RkgtHdK+Yo0YnNabFKNOEQ3e9icB58CD6xtTHtVlLRw8LQ9gIx7Kyn6T1Ww0h3HFth37pqgmpfQG+cwQ63Oeo1E9MIBj21TsKGGeYskVlsfZhTWH+qzbP+3uOsINNrNqNrM46Um9kuZalRkVOkJbrgXJXJ3OeebK4wCnV4HdcIM11Baicq76RSXE4lIVCaPK/T86TPPGgaKaXRywOy3YtU26/w0Pd8m7ye5XESPlOuF97AYIIZL7HO4kJwoO9w00PUcEOCQT3Edx3KBcRP16RzXkcxRaNp11pFbTiWuRHpjcLGtohD45n1nmFIHDykc155h/Pm1HGJhDbvkeottFp1t5SgFzSIMFkaliutU6tHZYUMacO555WGkP3HVq4ejumP96WVN7uLynLKTGYcWknrqumdBIGADnMmD/Le8nrzcC0VZoWKM3FIFuSp431/t+v3KoIHsLz3P7P248eB7/3dPJ4NvUvVC0nHDosEETXTW2B7dDGgz2qWZJQ4Wqc4sZ4NYwTeWG1IVRArAe9QiyMRMitHwaKvg3oD7yz+7nVR3myXuOkh7mgff+Ul9HADspxs+5y8177DTw/R5x5DLY7IYu/UOwZ5lSRzW7UyICkzLSe1F4y3Asa56MN7laN8z5pgEVlW4pCAoAibmvfkWgbCvfOUmnBRGTRifei89JRb6znp/GqDHmwJqSiQdS6McjrnuXrcoZWU3+dHGXc7zXZ/V1BY1TjZU6puyWahYdmKCXkYvPt8IFVXCA6577Eqk9eJvPbox2utuMBZv9LiNyq+r9NM23isjG0SzNLM9k9p+XiAciTfZwV2ck7w7rdfoykvYgiIIq0xW3tyf22QySdwdEs25XKAme2jbIudXEDXQ7p6E+V9mhep0PbInvwQ20f7wmeZ7MmwulviTYavxtICDGJzfjkjq0va4xmHL1zGFBk6v0W9t0WuNXYxQ7dLYek6h5rt48ohedD6V+WEjcKsKYdKRTi3wXQmK8mRzXAehsqtdXQBlVVoFRzPcvpOApK0YlafwaRSZEHUT9k2zM8EQkoQu/OmkOulbyCv0dkKkedKEdxDaVQ1gr4RuLc2UkEUQmDzxRCztYd67v9h8eTHKAxohBjZe6maex/0iExO43Wonj25Ebhw7zzLUBR6UySNqe4BjUU9nOa+vM3XV8KM4N8B/v7az48ppX4TOAb+E+/9L97vn5RS3w98P8BDDz2Emd4UuF2uMCf7uLxGmSzwC+REyIJPQWM1RkPTOdosw2YjatuBs7RZLR6y7Szg5JtA169StuPqCSq7Q//6q5jtc5LVRDKQtbj969j9G8K4BXzXou5cQW9fFMPyQL5StsN3S9xwm8L3YqDinQyrFWRKCbpDaeilb63nB5LZKLXW780xrpcZhdKhkjH0XgSTrPM4pQIHQtpMWagwImJoUmr8QuNGuyI9EdBLW5WhtZ5JaZiWjmGhU3sq0xKczMkd3GATPzkrPIGTO0RFSCAxRIU0FQXXZGhbGpj14EIGG03YIyy0s+stIATCaxu0KchNVBI1OJWlYabS+tSmK5tWKWqUSos5idHYjT3McipVWDnCaIOuhmnm5LMKF31xFzPJbOsN/N3ruEcugLP0O49hmhNpj2QlqlvQb14U/R7bUD77NUwvfYTR0WsrSWo9xMc5hrPY/evo8Rb1ZJvs8uc4fvU67fGcem8TXVQ0r78i57zR5OceQtdDVDXATLal5eI9Zb2QIBuqhkmQhu5UllBFDZo8q7BBwbRzQXk0QG91hBWHQ33U2OT3rBQcN47dvCIaAIlhTBXeh0P5PngD+PR5RxAGJnA5bBu8EDQqK6XyWp6kgbK9ewM93kKffRSflwxVh1cFenkoASIcs9z1zHyOMjLkVs6CMjROY5yncC1lP0PNFxJodAahRftAlj+N9nu7ry8Zakgp9XNKqd+5z+171u7zI0AP/ET41XXgYe/9h4C/BPxdpdR9GSDe+x/13n/Ue//R3e0tUR+Nm7bSkrW0QYSrmQnyp29oercSJ3PivRpbMC4ECmfyU+U+i2Mh92Q5vqgxJ7eFEDQYC7EqStzGpQ32aF+ggWEA6eZT3O3L+MU0SQgkp6oQhHQ7E3SS6zFBsC0dq6Ammd5/aFugdWJKx0FpXEad5ilEar7za6Sh8LXOtbQ/vGNpo76NZOGDXATAxqXGOkShs/OMcyWZXrWufLnAHd2RSig5i62koKP2EBD0eqaUgRXcWs8yuILFSigyRpfWs+ikneSyco0cGCSfEbG5iCrxgUClvEvibsqGDSzAO5XtcdMDMhP0asqBVIWmkI0tSI74vERpg5sfo7oFevP/Y+/dYizL0juv37rs29nnEhEnIzLyWjd3tdvdtsdjyzMeJAaJYTwIJC4SEk+DBAKBQLzwNPCCGM0bFwmQRvgJ8YSQrBFIDBoxCCEB9ng8Ymi73d3VXd1VmZWVGREZGXEu+5x9W2vx8K29T9ZMX6myu13qLYWUeSLixDn77L3W9/2//+X08PdNKh1OZA0R/Ai3OJvjTx6RGwUvvhOf18m1MyS45TPs+WNUPsGePpCvPCWdT0hnpXg55Sm+63F1K9z7Zi/JcJtbmYe4FrO5kPfke9kMopXGoC4f3DwHr6fOf9LK43XluvOBNr4HraCOYLgL4WBFbQ5FCMaCTaUzeZ1dFbvysWh5bVA7WoP7XjqBPN578b5RUaegIhV4KHB0f2AmBUStruP5N30tQrv4Psz6En37Mbp6JZ1pvM8+i0MM7360rz8Nxx9bRxBC+Es/6PtKqX8N+OeBfzrE1SiE0ABN/Pc/UEq9D7wL/P4P+3u+PDnYDttsZHGovpUqPinE6yVNsXi80qKeVYrEt3Q6xQ3CJu+ku8hmEqLRNYTdrSiWyyP5maIkOTodKxhfrfHbW/Rkhp6IJ39/+wqdrGMFV6K1xrU1qtqg8glqcSapTa7Fp+XBgbKpRp95tH5N/dyMWG5IJ4dW2zuCjTOJwXArMGLwg3bAY+hcIFNeugUYvXr2nacwKS6ZML19yn7xUMRmvkHXa/GW0YrzqWWqOkKaSh50PpcupZcIxv7yKXiHOT6Pg/o4mO8atHMjrVfvbvFKZi0pkNiMbUjIrR5b7m3ncX6g0ypUnAWIKM6KrXZcGFJEPLXvA3m2INMVIQbCKPq4QIoLrXI9QWnMy+/SXjzl5N09LaV49AxD5oGC6lrc7C7apNjtFcGk9N/9Q9Svvh1FYTv85JhNF5imOTp4EtfQmgwTlcb68n3UYgm7GxHZDX8jspPC8jG63uDKE2xSsChK3PUL9HyJynK6F0/RiaW53aDMLaGthZOfFfi2xt59Q85xG1lPySS6kPYEm2F1Shox86r11FH12PkgBIPX2Fi7zstMBka4bugYhtfs84VAb1EzMRZNERpSfTd2O8BIFR3M4FTXjOc22Fzs422KXizHmZu/uUDXW1Sa051/aVg0GLKJO2VJDajdCl2vDp1suyMHKdaMkTlO36KLGap7gp/e+WFLyY98fI5kBD8x1tBfQYbDfzGEsHvt8VPgVQjBKaXeBr4AfOeHPl+sGlS9kQqwrQhxgVCDl0uEBdJoUasBqzVJ6Ol0StpV+LSk8VB74VaXiSIZqvLZUhbiRkzYBgm939weLvh9Rbe5xZQz9GIJq2vM8jyKaRLcjdgIhK5Fz45RN1eoLMfMjrBpLsM0pfGbV+Pv6KJER2x6zHoFaHeo2H67aY52nXQyQTQNBEZIpXNS3Q1ZC03cBAadQ9tKpX2iNLZ6OVJuMw2q2Y0VXmkVtQtipRzzYM1+NVICw0ffRGmDvvcOIStx01NR8xorXvbaijKVuDHUK3wyEW+fYkFZHDNJ5LWtGsc00dzWTjIcvDCb9p3MEKaqw9iMVs1G0ZTFj6lhQVuZV7QDa2lYyHyEi3rC7A7Jg3cI3/g/2f38P0OazySCcXvFGGLUe1lUgheKcPUKe/4YFzxm9bEYsCnDNAWzv0V1tRiptRt5HoDFGWFzLUE+3kGSxe4gJqspHdXLVYSODOb0ATrNhXqZWPa3N9g8QyeWbrMjO58TnIOuJbR7yGeovkP1dYznjJqYICH0KsJpAwFAK2FoOS90zKYP1LETK+xgTig/WztPqhVlosfgm5BE65YhaKYQsZcvl+ihMx0SwaJlhs9m472iuuaA3fexI07FJdQcn+FW16i2xl09wxw9lLmD68T1VGm0zQUibKtPdNdj56w09J0M2bMI61Y3mM/IffRnw+LP5vivgQz4XyMbZKCJ/pPAf6KU6hHyzL8dQnj1Q58ttsJmf4NPpzHcvD9AEM1Whr7aotJS8H6jxdNcWYk6jPCFUZZdLywe0+0Etgke1cWQ8Vp40YrXKh7v0dHcztUVOu1A17imwdgUPV9KTkKzH1+v39zIZmAMvtqgBsaI9/jdIDTyhKbG1xV6MpcL2jtUMRthD3mDeoze7JQsegLryLeHymVg2wyMoz6ylYyCe7oi+CRi4xn71mMzI3BD30gV23kKHXn/NkPV7VhFB5uhtBbc2hyYGW56R2iJY0KYDJOVSSO0kryWMqYEDvM9qZ2T+JZJkoirZFQSC402sDcJ5jXrDFzM5DVGOrokl8/PJATXCcSTzSIkkUqValLM/AT38mOxIkiPR+UsQ1avfMCymfhenm8vFhrBZqJNCe4Ti5GuV/LZpSV6c4l7+bHoMsrjcWguQSn70R2VpkI1Fb7ZE6q1nLt9hcpy+l1NcB4S0IklOI/KS/z6Gj09kpkIEW6xuVA6hzmU78GpUWCX24ze608IGY1S9MTuMTrVDkpu0bcI3LJqPItJIZ3HAPO5VlLMhnvBZvGa8IfhuWsFanPdaBM9JrING+5gCxM3A1WU+JtLfLXGug6arcBPqcSOmk6EnWNkZmQI6upafr8X48jgHaGpUflUrGaiMvlTH5+zGcFPijX0c9/n8d8GfvvHfz4PV09RizsobWWh9/048BtCtVX0FhouFmMSYXCk4pSoty9JJscsrFj4qkjeV74ndA0qyfDVRgZ0AGmOWSzxbS2wUZZjcqEfiuGap33yLZTRmHKGSlL621eYcoqvd3FAdgbVWl7jZE7YrcXeudmLUV6a0189w9Ut6emZJIGdPcScPkBFaEgn61G0lXrhvRMCRfDsdT5aVDgORnMmMkKsEgKSvfmIfn5OSCY0HqapwdSCiftiId0WMuzzk2PpoowV/cT8HHv9HdzmFn3noWxmw2uL3jCjkEcbyeNF+P5blY+CsSRuMJBhUNSk9M5L52LUyG/f97JIZQZK7QjBUnlDqR3KOza9+OQQue0jvXhw1EwmY5fT2/voYkG5f0k/ZF1PjgXq6mpZOOJ1Aghunc9oJ0vSnVxHEgjTCu4fu08VB6k+n+FW14Tdmmx5X0RYRLgkZFHxWsvQeHWNu3omsOJuT/CertqjtCadl/i2R2lDcnyMnh0RbCKEhCF5LS1GxpJQqAu8NpBOUKrDpyWpawFLalQUOMbBvNasGs+gPxwmTTaqlSEWEiFINzXMUNo9TCSylLbCmyk6JoMF30t3ri2q38v7fH1OELPDVVociqQ4NA5NTfAes7wXr6MKr/W4oSht8NkURYU7eoDar+T9ry5Q+VSgqb6RjirLCbuVbJ6DaPBTHj9jDf00Ht7ja6metO8JWS8XlBUPGNPuIp88GaGi0YHU5pI8VRyj9UasaiO+6tNyzFMNzV5a4XyCYoIu54LjljPsYilagskMX61RaY4u5+j+BX0lXUlf1Zg8xdUtffUSW+YE7eivnqG0RhdykaqswG9u6Hc1vpWfc3VLcNIdoDVudY3fVySP35UNI8lGmAWTyEanLb5YkNssWmtodk7iIYchYWkCOyeMgWASdLOhKpYSzLPfjEpcgNHJUgmskfj24H0fvISqnEVWVLoQk7aIxet6PSaDqU7M6PR+JQE2wE3tmKeaVLmRmVW4SqCECF8MBn3A6McvgyVPUIqSBqfz6Ll0uEGD0pCmB22IeX0hamUDDV6q+NmZQCNOFk09/HzEvtEGvX6B6lvSTsgJIStlMRu0IpNjgZJghLySx+/KkDfJxsp16FAwUs3TxYG2TWhWG5rbDf2+JZ1PsHlGV+0JzqO3FbppwL7A3n0kXSLINbuPi+hQSJgNZtKICnhyTMimdDql846j3KBdh1Ua5Tq0zVFKvIWyaOdx2ChEu9H7MFb8er+KflE9ut7g48anuxofzQRTbaXzc60M3LsGpaMp36vncHJPui6ToMs5vu/Goiq0tWQYLM+jQK9CDdeiSdDblxFKawhxfqaqa3FMXb1ElzPZSBZL6bgz8XHy29tPu9rIOeZn0NBP3xGCXFwxnEZHr5gw8ogtut0TSGRDyKI/e5LHRTKyHXw/VoCDR/wIu8xOBItt1iL0AQYnw9DWqOi9M/ChQ12h01yMw9qe5nYj7T3gncPVLe1auONKa3wXw9TLOa6WRaGvG1zXYfMMW+YHaMgmB0+lrJAbJ4lVIUjModICwUSdggISY0eG1OjjH5XMQ2dkFNLddA2E6DkU82hDZGIJRVBuaFNdS1BLW+P3FSYvZXFoKjnX+SzaTwt0I/GJjTxXX6MS6QgKJVDMwa9IXE9LC71SccBvMIlm03oSYcbibSYQl8lG3UPdB6rOcSdJDtYSIYyLNnGGIrYIsmHqpkJ3NZnNhFgQ/DjAd8URut3R6VSU4MVi5M2/jn8HKzYLPhVls9qv5bH5GSYt8HEzUU3cgKJLqfIOlaTCmFldY8tcOoG2pzg7xtUtJklwdDQ3G5TRTI9O8NUGv7pGL5ZSfBRlFE8iHcbNJXZw3vXSLfkgxAEdGTQqdDKXiiZ/IBTe3II3aszgaOOcoPEI1RoiLVTsqZXrQfexo4teQVrH77Xx+2ac1aiiHDcBCeWJ4TexYg87Ed/ZsweEqOuRJ04OLKLgD/ki7R7f7MXULorZQteCEcjJb28JzhHqz6YjIAT856gj+HyYznmHrza4m0vczRX99Ys40Mow60tCMhldRSVlaSILUruLXGjhfwebi/10OpFBZ2RhuOOHAnV4J6Zg3snA2HvRDVRrfFuLFcDxmYTh2BRdzkjuPsLkKUlZoKK816SJLPJ1S3OziV1CLZvD84/oqj39viGdl+wvb2luN+PmELpORGuRtupPHgnubPMxki/YbLwhVb35hNHbrhMvFoCegTGiZOE2Vmibro2eQ9uRaROy6YjnhiEHOHLhVd8cnDu9kwXwNQ2BbrbyeVgRrKl2F9lcnpKWaaJHBs2gBN+GROiiKKEINhtsuyUJPceZpFaZyGYZqlUfxDtp0zoa54UJNhGvJF8sxsr9E34zr5nB6f3teF7G7GBtI0ddk+6ucfNzutm5+PYMilqlCdrQmoyLRnGTixlfKOb0i3u46SmuXMbhaCebAAijaHcjn+XkSMRis2O0TciXCxbvPEDbBJ1Y6lhIBO+xeSbQSV3ht7djpStzKBmUhvkp9t7b8rend8QWu16Rh5az0h5mX2GghsIk0SwLOwb77DvpEPpo59F6ifIcgm9eP68jM8g7zE7Gej5fMBrxaYn6lES2CJ22NYMFjMpkbhLaWr6cIzR7wfejq2vISnw+jxGcKm4u9sBQGobOsVDrPvwG3ZP38BvZBMzsSDyfPoMj8Fpuxg/5+jSHUupfUUp9TSnllVK/9o98768ppb6tlPqmUuo3X3v8V5VSfxC/91+qHxR8Eo/PR0cwHDbFHJ+ip0f4tECtpUU3vpcLNp8J5XFgM4QgLWfMdjXbqxHPVslhYTWbC7mojx+gqmtUHl1OtcGvroXKl+b0N5eCyXqHXZ7jY4yjnh2jr55B39JcXmHylPzNd+ivnrF7fk1fNyRlIa1/aUkoRHEJLN55gJ1O2V9c0V5dSi7w9XOSN75EWNxF71fSmUT/FhU83shm1tqCxDWxau3wKqXuxRExj9YBitgRpAUYyd2lFybWEH6O6yMv/+CyGZIJoWtws7uY1ceock44fkio1/K7g92GNgQrVaMrjiRYXWn6VGAhH2SRSZSSbsP3hK5mMjsbh92AVOVnzODMAAAgAElEQVRdLbYCrkMB+16jkYp1lkmgzqrxQot8jWo6dkUhZg8HH3H/BNVWEkXpe1AVt62XaE8X4cQ4ZDWVxJ3evvEbTJRoTYxNR/hHwlI0TS+b0iJPcPN73NYOpTKOp3dk3jLASEpDEUkKnYSsDwJEX23g4okEK2lNv3tOfjQb5wWu69hfXDHJctRk6E7NGP4Smhq9uCOwaHU9OuqK31IrHZ7WspB6J0KrJEfTsw+G04kZz2O8UUa4SClGPYTPZui2ws3ORCQYWWyq3WPUrbDLTCobYCt+XlQ3MvR1Dl2U43MFk6KSCBHtKymoshzO38ab6AC8XxFsHTvHOAschs/ZdJyL0O7pP/i6dOZtDXUlswabfGbQ0HDt/gkcfwj8y8B/8/qDSqlfAP5V4MvAfeDvKqXeDSE44G8iYtvfBf428FeA/+UH/ZHPR0dAEKplORMWTlaOi9AobQ9eBnr1BrN6LhtAt4t20rFTiBel8r1UaiaRx2M16+OCEpQmDElHA0RjYjiOMWP7GTrxNtEzYXaY5T1smWNPTuX15hN0aumqGtd2eCcD5q7ax8Ggli5Ca7QxJPM5ymj0VKyKdb2JYSteYKDXzcXandy4A8TFwZtHNAVy6Kgw9kOFi8AyuBbV7mSG8ho17/Wh75DDa7ZXhPmZDCcnx/i0EPwbxi5AhG9DKExG1R0WGgWfEIfhOlRkrWgCqtlghmpypIE6mj6MTKgBFioSsRvIrR7jHHdO0QQ9GpQd+OyiM+hCFBHGc5PGzk318ZwOork7bzKlZd9Fa+pa4iZDItWxzC6E4rr2CbcU+Mi82XrDSk+pTTHaioxXbz4TiKraCMQ4OxIygNaoyRyTpzIr6vqxYEjKQqplm6CyXDYBmwgkMpAZtBWSQ1+Pltzi/LmRwXZk/QxCRW+SMQ+jsIrCHobEAaGbhiCEATUo4wd790RceIfOcyBk6G43+nepLlb4SSb3iY8doDYyv5sswCbyvpMUZVMhckT4TTWV+BD1rbgDD9dwdxBa6npDuHkhENu9N2VDyUtCW9M/e1/uyc/gkDwC/yN9fbq/E74eQvjm9/jWvwD89yGEJoTwXeDbwK8rpe4B8xDC70R91n8H/Is/7O98bjoCc3w2Utj07lZuqtnRWI0o10or3dSCqSb5aN41wCchLUQZm8/l5nGReZRM5CKHSD01+HQ6xicOTov2/LEMfLuW/uqZdAuJyO8BVJqTvftncFfPBMaqttg8w7c97WaHq1sZDHs/Vn6+7TF5hUklfzlZnqOSlNDWuJcfS/X0hT8bqyMlC69JRzrpABH16RQbHPPsMHwdHEqniSb4nMG7X0XbbZ9NUb4XO+kQRANOHCzvbgiTY8z6Od1H76O+8hflNbgeIl98sFv2uY9KXdF2uGRCEjxFX6HaHUmxICg7MmowCcr3TJVHtZ2cPx0XmEhJ9GlJ5kVwlmhRHtdOtAdHmRGldC9c9Zd7J+JB7wTuCx6lJcd2CGlZ9wmzfEHaB5L1c9kwknyMNK1VyqSr2ZKKctgOUMWCl3vHwmhchNwmiWLXeVzcnLatZ9t6Ei1uniaxJKpD9+1IxcT34wJuFkuhPWbi3a9nx/hXVySldKjlw3uoopSCwDuUjfOFCIvo2XEMVYodQl0Rju8TslIG/OUSXV0fmE3FQmYGwWN1yq4T0VnvZRPYdY6j3PKq7nkwTdDrl1G8tcXN70VYNcI1kVY7YPeDQju0NWFyhD4SAoceaJxxfqNbodLqNMdF+qw5PiVcfygdw2turEGJCE2DwJavnmOKku7jD2SDcU4S387eQvcd/cUTUfZvblCfIWvox4B97iilXhfF/lYI4bc+5Ut4gFT8w/FRfKyL//5HH/+Bx+diIwg+0F89k3/v1uijM+z5Y7n4ujX0Ha6t0XlJ8E5SoOKQEBAMe6gUo310sDm6vgKfHqqc7UuwmeDKyQSfTAizu6imEqaINgIFxZBuHr97ENDkE4GQjs8J9Q6/uR2HxSYXqKpYyuvp6yZCAjXZ0QzXduQPH4nuIIqMzGKJL0+wvkdVr0Yb7ZDkBywcRgzfKYvShrYT0VX24d/H3XmLV8kxRwno1YZ+cQg511Fb4YsFTe+Fq28SgRoG58vdDf3X/m/s3Ufo249wM/EaGrOJV5HSNyhIN5cCz6kb0uBlA04yceuMyt8BStL7FSiNm58LLFNd4/P54TOrVxxlM64bobqCQFyJb0ldg9rvCNqSrF9wd3oHny0Pc4iuIaQRGukbgtKUSYZu1sy7WuYj+xX65iM5By8/onz4JdzsjCkdurmhTu7i0wVZtOTodr1ERzqBUZSS/avpxTxvsEXe94HWOYokZ1qY0QhP726EbJAU+JcfCY00sl6U1gIJao13jn67JUkSgT28w8fzNjhrhmZP2Nyg7zxE2YT++jlmcSabTTpBNVt8FA0ycPHj55FO79A6xa4Tu4+Xu5Y7k1QMAJ2IFJPZGXr7ku7Oz9EHsXkYgp5Ut8dPT/E2xb56Ms5aVJoTtteQSgEW+k4grLls+qHeSudVV4S2FlHZ0QPCN38XtMbeeztu3DLrczdXhPap3FtpTkhSuSd2a5RNMHcf4z/4Kvb0Ae69/0dmA5+RvcRw/BjQ0MsQwq99v28qpf4ucP49vvUfhRD+x+/3a9/jsfADHv+Bx+diIyB4YRl0EhpC5PHLl1BLQ1Pjh+qprqSSGhgk+zUqDr+Ctuh+PQpfBjhEFtqINbs2uhmKOlS3W2nBbSKc7jhMlaFqIKwuZbDct+hIR1VZTlIWog+Yl5i7p6gkoV+v0Il8LCZNSGYTbHRoHA6lzcHSV1tIS7FHRhYUXyzk5oNIkRXnycbJAl73nnR2B5I8CoZq+TltULGVFehEWu4uMkWCtrLID34v2sjGW5SisJ6fj1U2IZHFvEXmBcNgMr7OAbrTUQ0eovMpQSpEyQeeSMWsJL/AT46pom3YJJeoSRecwEeuxYQgA8mYCaxilatffkBIJ/TZHCMnFlVvxvMEiHNpV49CMlcuUR9/QyC/+18QaMhmYvUdrxWAyh2cUNvo0bTtPLnR+Hj/5UZTO6mwMyPdizUKl2asnRMvorN30ftbQjrB9g3q5lKsmrWmv7kStbrZYvJ0dOxUWgttOs6rQl1BUY4MnIGVYxbLSJMWw7fRj0sbsBk7pyiSBJ1OuNr1Y/jRkAtcJJpJovFBfKBqbQnlXerWi9p4yHmw6TiDUa1sxMEekt5UZLoq38MwHE4jTLZbyTUEn1AkE7USPovsJyd+Sn7Q3mTFoVsoYlxo34308ZCVmOU9sYyfzPC7zY+3tnyfI/DZpY/9MDue73N8BDx67f8PgY/j4w+/x+M/8Ph8bARKidzeO7r1GmUM/YsnBz/0NNL6qg1msRyHcmyvYXaHMD0Z8XExzQqYVuyTxVY5CoTymeCpDhl+FWlMpMpF3NXtpcKMttWq2Qp2WpR0N1eY2RHdh98YX1NyepcEaYGHwZaazOWGHqoXbfDVWuiZ2sBeBtC4Dl3LRe3zGaE8iZnNFUwiddR1UBzUx7nNUL5hoyfsj9/k1d5xWXXcPRZ1pl2/OMwAImwAYoFN72RjyWeYmxvc7C725Xdwk7kIemYdZnMpi6uxBNePi7vavoJ8Rtit5IaNG+ZgRKa6ZqTADnMcbCKOnnEoHbISZ3OaxgnuHpXGZaLxKJTNMLtX2FcfElKJg5S5Rwo6npdsTmsy6pAym5dCAiiXBwWx64TuqqMlxp1HI+UTbYUNY9KxILjeC1bW+UBuNAGZWTgfcDqMj4svvhojH3snFhqbxmM0bFu4W2ao6V20UvT3f4lkdiafn2sxN0J6yB89Et+c+VISvbwX48OihGil4Pdy7fj1NaGtsedvwuJM5luxWyR4GbzmM5qkFDO5IJBdU3fMMs2qkYVukhiMhMtxOrGiOPYyEC8TPZafIWaEDxYXwab0JxJSr6tX6HaLTzL5bF1HKOaE2yuYnsj909T0V89Iv/wbmL0s8vrmKX4yE4EYwlBSXY2/fiYzhDQXK/j6wFgzJ+e4Vy9kLtC3uCdfJ7n/Jt3HH8g5iwP1T3385JXF/xNiyvmfI8PiLwC/F+15NkqpPw/8PeCvAv/VD3uyz8VGIHF3Z4KFrjaS/zoMz2J1ZJb3xjzYsK/Qx3djtSw3top4uopQwYjrN5V0Bc0OpQ1hX4mCOd5MqpN4zJCVBzOxEOgvnsjv21QUo9fPMbNfkSSq7/yh+NXcXI0ZruJflEo3o43c7NHETqW5CNXyUqwN2lp+N5/I+3skG4NPCtRr5l7hdctgpeNg2THXW7rZOYVVfOEkQ1cX6N0Nbia0R91sYKj6XY+OuHrQBWZziSuXIyMkefgOLskx6xfxho7CH6VlowWYLuXf8f2FPvavfi9D90ExGqM/sUkUoq0IQ5iI77H7VxwXxzRerBAGLnwgw6xe4GZn9KfvSGUfraSVa2mfvIedn2F8x7bXvKodrTNMy7s4HygHi4SBMKBkyO6OpLBqlSUNPV1SYpVU9Kva0brASW7YRgX6UWZwATatRD3OU7HwNtHGY6C5KgXbRvyd8kRjYsYDHCJETXEkw/F6Q/rl34Am2lrEBb/76H05tzYVmwljJOd4fY05fUC4eiZFxO0V+ugUbXO8GQa7E5mbNVuStCQLO3wouGnlNT5dtUwSw90yYdXIUH6FZwakWuYf+z5w0zgezVL6dCoB9vG8625Pv7hPj8YqZINvt6hevIgGFbY6vht9kYyo8pfnhPVL6cKiHbguSvzqJeokQW+vpNso5+iZxF6qdo+N3XlIMnF2LedCqd3ciDBtekT69pclqfDJ1z+TNWdgpP1xH0qpfwlZyE+B/1kp9Q9DCL8ZQviaUup/AP4Imd79u5ExBPDvAP8tUCBsoR/IGILPy0agrVRF3mHyFBWFXq4SwzidiKDGb25lAOUdfvMKPT2KytJDILj4yURL3cHBMS2g2R38VIZ82t3N8AJGqEhcQ+Xi8+tXwu6ZHclF2XfoxRx7/y2ZV+yrqKA8p99XaGMI2kDfYWZHomRO0oOQLM2FpaQFc1VZISwpbWRTqq6lO6CQ1x03gsEgbjhCNsN0OzJbiFo0yYS5Yix99KwHYWAQZw3S+scBZFLI+Vq/RJdzzO3HhLpCFfqgX3AtqpjhXr3AFDOp6DY3mJNzqfDjQHywwZbkrT20sfKLojWxgZ4I40gb9P6GrDiOGoeDFfVoIaJt/OzExthnJbqcjWLB2qW82ndMYiCPVrANCVMtlFlVXceshJx9MORGQnLwHYkBAuRa01rFtoWF7nA2wWolqXC9wENV50m1ZCsMzKbWeTaNI7dashb6gfEUKbwRkpmnhhCiRiEtCL0IFofrER+pl81e3hugiplkWjfys/r4TGwYWvF18kkhn2E6oTMZyeR4HCbjWpTNSI1hkWk6L0FA09Twau+ovUMpsB1MJ5beS6wqQBV1BrM0w87uiglcs6VDS8hQouP9lKP8LtpSi+DL5zO5d/oGNVlg81K6+FyuF9VW+H2FLmf4SBdV+xV+IrbzKC25yNpAVorpXlvhu1Z8i8r5CDP1yzeFMXh8+pmsOSFA2//xZ1WGEP4W8Le+z/f+BvA3vsfjvw985cf5O5+LjWCchWiDyTKhNu531NerEYdX6VqoZBFrV8aMbbLQ68RAbYBD0BafleP/9SQykmyFt4nYVMeFR7U7gYGKOT4RYzOKBXZ2gr+5AC2eKXqxxB8/xHgnJliJOJLqxRITaX8ql3QmPTtCLR8IRm4SuPf2iLmqtQymKY8iB73BFwtMtD8wG3E5ZXeLm8osYLRJiJh4SAqCE9ZQsLlYQitxY5UTpA+uokpDOsGsX8g5aCv07obmw2+g50vM7EgojFEVPCziYb+RmcztFW5zi0oSuqffkpvRezHom8xkUfNeqINB3D59GUN9lB49akIUvo2q0lYgHdNdEGyOuXky0grDzQv0/S/ip6fot38lDs1rWpfQucC+99y1LcHKrCEQIZN6Q0ha3PwehXLgPOX2JSEtcOmE5OYpBM/StazzN1n5RLyQFFxUPUbBnYmIskBEWvves2kk5jMxiklicCEwSy3WSPbtpvFM04PzamYUpTYEXYASO47B+VM1ldBL00KuLy/nmvKYpJjJv9/4RczuRrIh0mLcRLy2klEwDJaVkrxvk1C3DqUUX1zmkS0U7apdoO68JKApxTzVeODZugN6jjMzBgql2RQdA2daHxiIsj4rUVHMqZrtgfUT9SbDpjAo+oPSsK0jY8zIIu/6cahN8LC+FGFd30pmkU3wsbgS2CgV+29t0NW1UFGP738WC47MCD5HyuLPx0YQvGDMQ8rRfodOLNnRDGXEvkEZGSYBAgtF8RK+x6dTBsuE8SmVhoHv7R3u+CGq3ojwQlupfPoWkMyAUMzjRSsdg89mhKTABPHot3fOhT/d11DMcZdPMMtzzDH4ai1Rlq6jv/hQfFKSQmh3qfjk63ot3jxKw+IuavNSZhhpITeRSenOv3ToUhCqpW4rMeULXsLFg5cMgb7B6Ylk0dqYrhU8nbIkSB6DbiuCSdH728gRD5LbOz2h/gf/u1RcfSuW2Y9/kZDk2OsPCLcXMpzL5Xy7m8sI74hyVM3vEF49R+dlHPZ5mRsoLTOWvkNl9Zj/O/hC9fNz9GAa6F3kwMtmMLi3qr6Wuc7RGXz8TdTZG7KJpBOadMbjrqI4KWic56JPKRDbZTlhhn75pmwaQdLgzM1T2m9/FbO8x/ZLf5nZ4j7qd38bs1jy4MtfQIXApgt843pPZgznU+kOln4lm1bVkx0/ZteJS+oXp45gDbcdbFs/LqpDGI/rZHHpvIIkkYSumKUxUD1VscCsLwghiPlcW4uhWpKBM7CQa8eVS5gcEwZLjI7oBTWJ1OIcHYsYsimFFf2F84FV49h1XjYuDKlVZFaxbmW24QnkVo8+REYLjXffSRxq1Xpyq0ZBn9IWn4ufVbCpFE3ZLBIDonldnMMFiIPiFJqa7sl72PtvEWZ3RpGj6prxfvWVFBxqdiSWK97jt7e4jcBj5s/+Zcker64/Mej/dGvOT3xG8JkenwtBWXDi8Q8Ifpgc9jdTTLATGRbTd8LPHuIMm93IDgrRsG0QPA1WFINV8kAhHSsXiOyUWGHbXGT2kWEkVfoRbnaGvfuG3Kiv/a5ZnguUlJeCaRYLiZycHYkWIcrwId682XRMzFLdwdJB9Z0s0tFye7R2sGn0DKpHb5ax0lKKYDPqXmwEugCDp1LvAz7JxbwrLcfKUXXRPycO/F787h9QP30qMaC5+Afp3Q395VPc9QuxUvZutNtAC7/bHJ/Kc509Rs9PxEdfa5nvDJBRGmcNXTOmy4lVQThYP4B8P/r3jxGfSSFdgTYiMIwhKLq6JmtWqGbLndTL4DvANBXrCLO5FOqtSfDKRCrxRKpImxL6lmjCifnSb6CPTklunkredXTvPCkEWrGbS+yrJ+jNpShi6xU+MPo8mfULjnWHUQKtaIReOqi993EzKBItNhnlUiC/1wR/Pp/D7laq5clCri1tRysLBv+s+LmOnkDtftSXqODRzTYmi7mYBnfQmNS92JE0zpFoxapxrBoXB+KQWYk/rXpJ+auj8CyPkNgwSFa+pzMRMozWIj6ZRIZWtBtRCppqFPypTmzb3c2lsIG03Kc+KaRw8710A20tamHvDk7DiXQGajIXokWSR8vs7hOF0qc5xoCkH+HrT8PxuegIhothcOfsNjuC8/R1g53PJSHMJmLCdfcx4eYFJIn4+m9fyaIwPyMEKxvAwBwZhqTZVPjWaTHi5iiNLxbRobQbB8VBW3xxJItpADc7FxuG7dXoEBoiBh5sjp/eGS9Ot7gn1d7tM2EOze6MatDB/lmqmgJOH0l1rq1gpoNlMoyiMnfyWOx5bSZMnlQqdNWKs6dUcVIBKi2VXesDSkmKmb15Ijfpfi2GXka46s3Xfo/NsxuWX3mb5PEXZYHZiM+TnswgLyVD4fguIcmw5+CungkTaHNLqHeYh+9GRlaD39ziNrfYO+dyc8chv54dR9//FOMvAPDliQySg4+wwvQwu4mzENXux8AU2RwyEcHVG7rjR5jtS964/Yj2O1+TudKXfwNXHGNuP0ZNjqnLu+TRb78/eYz55QUose3W3V5M9qLiXLU7JmXBnyk26M1L1Ks9zR/9Hm4yx/zSP4WfHHMTMm62LWdlIhuVv0L5novK82xd85W7U+5OLPse6k7w+dzIUPbZpuPtoxSdH43xkmkf84nL40O8alYyWDS7+bl0M7fPxDZ7sH8ecjci558BwotWDYWVBa7pPanRGO3RSpGhx6H3cAzZBb0PlFaPXk8Q6I2GmG+glcLbDBuCVPEI80zfShqfPBAXy/JIOp9n35IZQT6RGM80FyjT5uISi3TR/cUTBhNGfXRKqDdyLd1c4je3ZH/+n0X/wj8hnfwmxsb6zwbXD5+zjuDzsRFE47f2dot3juZ2SzqPQfWXL0nmE6g2mFJsoomhMCbNCdUat7nF7Cv0kbBm1E7okZIDXInwKaoyca343PseXj7FnNyTBcH1uNmp+Na4VlSsSrOLQ7VpOhlT03y5jFbENXr7Uv6m79HbK9zsLizCmKg2hKRgc6H8xVDykC2li1FKbuTYsYR8Ft09Y/U4OZZUp2yGVwZNgGgb0TtFCFBY8ZExAY6sksXCdbijh9jLb0mITjkndC3NH/wO26cXTJYlzc2GydVHMX9BbCTCWthaYiq2h1qYSub0gQz0XEt/8YT2//0/MHcfo7QRC+/FcoQCQr0bKbPKpvRXz0Sot7pGe4c+fSzv1yZjaphyLV5bwuRYNtZhthA30lDMCH0jUEjskNz1c3Yvrjl580uofCHQ2v6GSbcWle3tx4R2j7v3JV5RsEg05uIZz2fvkGV3MAomJmC++nfoPvq2WIi89RVMFC/pesNNcc6qcZyViXDxUVSLx7Qu8HDmOcrtuA62LvB807LILZNEIjs/uN1zXsr/E61EA6INIZng5nfZpwsSrbD7V+MiiV+M7K/w8pkM4o0ZCwuzuZCKXJuDAy+STdEH0Y3kVnGnsOxfG4hmRtNGPYQLh2p33Xq5jhKFDYodns5D70Ep6Q50W0FXSycTHYDlOhMbbt3u8WkBVx/Kwj47ksX/9lLuz8USXpvh6axA5SXu+jl6dkz/4gMR30WbjfTnfumgZr/4Ls3T9xiMGj+r42cbwU/h0W12tJuKft+i05jiZDR93dBVe9J5SXCebHkPv7kR3BpGt0O/W6O1RmtDSCfinxO96gfoYcBpQ8yd1YuzMYOV7TXaptGCIhk7BK0SGciaZEyNAqLjaS2t/WvxerrZHqCqaBmhm2iL0LdSpc5LYYGYRAJj+gMsNIio5IEgVfEQ4h5Tz+R7nkmSSEVXXRDSgiQ/IijQffSg2UX4KRqa6cUd+l3N9tkV2+drFu88GIU98mYP7pFD0tTA21ZJijl9gDt+iPWO7sl7hCfviQI0xn3qyIoKu40If9bXJI/eledxbhRNhdWl2A3Plq/97SiAU4oxAQsO+POYYV3jY0WfPH6XafEs6kgsfYCsb9HVK2gq2ifvCby0fIMkn2BXz1GuY5pKiMt50mIvn9BePSN5+HPos8ewX2PuvUNYXeInR8Im0oo6BuwkWtTFs1Sz8DuOZjMaF5i4HWuVs2rkujkr5dbMjORq65iYl9oCrzNMvUbvVxTa0iQlJi1R0d8n2EzgrePHGJOKyLBao7wTK26bHYR6I2FCxJUJ0CgZgGdGyawCqf4TrWicnGKrpHgIAYyW+YYP8rMyM4gGdUHErj4p0K4dWWVD1rVsBgJZhqRAn9yDzfVBQOkdoVoT4rxpFApG5pTPov9X19G/FDJD2FeoozPc/C7m9mPcTiwrQrXGNc2Pv7h8j8OHMLr4fh6Oz8VGEJynuRVxVXO7ISkLtNG4qmd/dYNve5J5iasbTp2n3VT4tmf6xq34DmktvOPVNermStrRrIzKxwk42QR8hFYwln56Bx2rG12LrF35Hrt6hk+nuNkZyvfkRrDTKiSYNJWW2rfsSZjEgdgtBWkxoQyXqGZzsJNOoho06h1UnGEM0ZHBpJI+NdhCDJbGEHHiBL25lJ91PWRTfMwD6EzBvvHMM43aCV/danuwmO5q8XHpa3HBtJL4tHlygckzHv+lX6Z8+22BcMo5/cffRRWlKLjbOtpmPxkzGADsk/dI7r1JyHLM8h7Ve98g2e2Z/NKfo/3O10Ybb4GQbsje/RX08V149r64ysZhv8oK3N0vQPCY1QvCq+f0cTNJHr8brUVaSFLJCQb05kLEabnQLffFkvyXfxPTymyiL07Ytg5X3iVMzijosPMz8Z7yjkmipSPbraIpnae1BXYrudS8+csSzvLxt1FfeERYyAxoYgI7rXBe5hGFcth0mONk0on5gMumbG5aHi9yHswS5vVLgk1583jCNNXY22dSXCzui1+Ok0Q9dfsc89af58lOs5i/LZ1D6LHdHp+WbOePyI8fY6+/g2pFMR2UxnR71OoCU8iMxZVL+vIOpttRJim7XobBLhr35UahlGIaabceCbWXjGNNbqRL6H1gErURuVWkoZcY0f1K7qXghVpKymR2JoQG36ObrUBWfSfQzkr0EIAIwdqaJMtReZwPRP8huXcFWtWzY+zyHHv2ADc7w2yvDkZ3NsH13Seux097/Kwj+Ck7Qgg0N1u896Npm04s3a4Wz566xTuPNpr91Q39viUpc3bPL8j2O0yWSb5wMcGkOd13/pD0i78aWRgSbDKE1wwVlKnX4Hua/BhVnmKnp1FD0MgwTxm00ei2Ik8KejS7iP+unKXqHK9YyGZAtB2Y3iW/+eATdhLBStxisDkhm4kNcxwAq24/injC5JiqvEuuA7qt6GwhMZSTyLmH0ZZCuRZnilElul88xMWbvQuQtavoTNmhq1f0N5ci89/cUpwekR3PMLMj8YvZ3x4w+kw7cYAAACAASURBVH0lFb3z9PsGbQyu63Dx/PdPLkifXTF/921ctaF8+22SL/05mSPsNvSXH+G3t2S/8OuyMbc1qpbXHuqdiI+idYhZX4g25PLJwXNne0v77a/KW12ew51Ho4pW+Z6+XMrn5x15iGwc09FPTiCIu+aLqmORGdbOkJcPOfEfoLodu87zYfE2b5z/PDoE7ukttBrKY0x5TLuQSMXkrV5w+0gyCNqQWY+PcEmWJiTtDpdMaHWK6z0Tt2OvSmaZprCa+f4SXxzxtDY4H3i+7Tib3ydxDU4ntMmcrBAXUdU1uCDMp4XpMatLWQSffx2bZOjlm4QgnWoYwnYGNlgmC7N/dYm6/JDk8S9GBfCEcnKM3m45ChLgRN0TsilJmtPFIWhiFF2kmfrYJQzsE6MgUVAHS6ZBxQwGgARPHZRcw9Foz83PpfB69k3c9QvxSLp4Kp9jvB/c9QvR5UyPotdQja82otNZXZN88deiXUwRh/8ZodqI48DLC4LzY67Hp19zfrYR/NQdvpMEMNf1pLMJ6VwqR5NYfPtJ29nd5e0YEJOlU+prwVWTssDOF9J65lEjEC0SfFqCsdH7Pxp8+T0hF+fKISXLmhRvM2FV9F7ydGOb3juPilQ7FyTBadU40midrJDKy09PR2hDdfUYCDOEhA82zAdvntf49FpReygiV1y5FpdMDrz+uOkMsIk1Mf4xWh94lLBGqmsxJitPDhmvMVy8OD3BPn5XcnUvngg1t/SjiluRYLIMW/S06wrf9bi2Hyux/fWa6DEqNgAxVAeb0N3eYidRRW0TYXk1tfytq2ciBuw6dN+hiznh9nKEoLAJpijFrK1rRWmellL9bl+KUjoyi4a5QR8ga3cYH8VnylJGq+V5qrFa4Y4fozeXoyisj4EtRyp2CNHiXHf1yFoaw2qUZh9dSAdbhtYFCt+Pj/mAOKkiFg7OCzNq5RP2fT8qjfd9YE8KsZgY3Dt9vAanaYLevZTCBeHUE1kyPp+Jp1O8Dlw2xUbv/qAteh7hynot7C+AHSM9V8wMJ6jqGrd4gFGQqw6nMmwiA+PaHRLOhplHHa91rRQkJWno6dFopQjBSXqYsej1FcxPZRg8O0ZdPRMh2exYYLampn3yLdLJXFwBousqfYsuZ2NYFCFAeTRmPuimoru5pLt4+omEwM/q+Ky8hn4ajs/FRkCAvm7RicXmGYt3HnD73lO6aj9WAPXtHm0Utm5xrSMpM+pXK/KTBcH7Q1TkvhJvoI/ex57VMFuiXAp9M5rN4b1U6p1w3U29Rg+OnyYlsxm9UngtGHwXscTCCsba9bIIaEShWSSCwe77wM5M8CFisjGEfqA0uhBwLqB0Ru4bMIlsDtH2WRmLUgqXTHAh0IaEMjh8vhhzCQZrYBDu8GCYNkn0SHcbYhR1U+H7bhzo4j3dtsI0AgepNCc5ForewChSJqpZtRbn1LqNc5oat+vp1hVXf++rHH/pDVGXPv3G6AprJ7nAQUVJc/FEnj+foBdL+usX1E+foowmXZ6Q5pMY4C4ZEETKqDl/C//yI/GcAVTwuOkdTKVG6qJyHShFGuE0NzvF3H6E7VvScokvltjbjwRGSSRjYR8tIMrnf0B25202ZspcV1IcGDOmm4nqvIw6h47c5tB79jBW0k06wyiFI9IsI1VYtztUucRN7zDxgUcz6eByHQ6beQyqV5EBNOD9kyjm87kkhrnZ3Zg0txRrhr6m++Dr2GLB/ugx7fScol2h2j3t/TfHW8lsoxhRKZn2wjiv0vsNqfuuMJGaDUm7p7vzNpktMFpcVyFuWn2QjAijyIySwqTdkwbPKz2TFDSdkmTSVRHDZyjkutLaYJfnUuhkuVTzV89EhBntM9RkLnqBwaple004OpfPubqhe/GE5sNvS/5z3dLcbv+xwvD//5Lzp4ca+qMcP5GNQCn1HwP/JnAVH/oPQwh/O37vrwH/BuCAfz+E8Hd+hCcctQOu67n+2nfZPX9FUma4uMBn84xm3dBWHb51BB/GFDCTxwGW8wTnxd9SX+OLEqI3ui7nMDkSymKay4C222MjU8OVS9zkRDoDpUh8B53DJjk+tpH7PmDUQL3TuFiZb1uPSjWJRhbyGAmYmgSlFWnkdVed+O/nFjqTERD+OcrQYSWVy0u+7L4/3JiDLQHa4HSC1RWZ8mxcYNt5Fpm03lZBojoxlGs/gG4vOGw+QXmPW12TPXgsWL3W2LOHuNX1uAnoCBepNMfdbkmPpgLVOY9JLcVyzuLNexTvfEFYIFpL7m50iU0evyszgb6hvd3iuhtKYzDLeyR5ic6f016/wlVbuqffIn3z51ETi7cJJBlcPRXPmuMzed/dfrStloCcgO6i7/1eLLCFcuolbSusMPsb7PoF9A2uXNIFyOs1D23KJjvCdyVqv2JlM6YTmT8MGLtXhtZ5jFLUQXyGQtczTYXxM0kOsh1NxN2dEACC0vjJscCOTYXWlnTIRfa96CGi0C2YBFwrds/D3EppsfPer9D1atwo9PZKciGSAnu/Fp7/9oJudo7PF+ioL3E6QRPkPCktYq94DlW7w64+Forq8NhASFDy3lKjxojKnVlEozoZKO/7IMaFUd2+SIx0UL3HvnoC22vU4gx3/BCzfo794q8RLp/QPf8Ann+Anh6RPXoLlRXSDcjNim9rTHKKu5HNq3/5Al2JYWF/8UQKgzxl+tZjbv7wPZJJDpMDRPVpjj8pi4k/qeMn2RH8FyGE//T1B35I/Nr3PbTRkRXksHlKH7uAZr3HpAbXOsREUtHve5RRmMREn3epunwbU7zylG6zI5sdC21ysZToQO8xNkG14Kd38MlEBlxDSlPXoIK0+ioEqdZMgu4bjE5l9Y/wwOA/o5XYC7RONokykQU/NWpsr4efl2pd5iE+HPxrOgSrDSEQImtDGBuiCdBKkZoE4zoIwuToixN0kLCWYdg3GLgN6WYhLfBXT1A2HTsIc3yKu5YhnV2ei79QmtNfPBHK32IpN2XfCWNrV6OMJikL+rqhvC/WGfbuI1Eja41ZLEU0lMjf8TcXhL7Dljl+7YRSahPs6QPB9ouS7uUFfnMj+LA2oj7er+mvn0tgS4xvVCaVmMoBQotKcgWyoQ+22rFDCDZHdTuhMabFYfAeh/Y2k5/RzRZlz1iHlGmcDYQoxlJKBqROGymolcBvQ8YyiOHeaJUd5zxhcjzqVobXqgY79aiHUH1D0OIsO3jo6GYjHUh4LUM6qnR1U8UsZtGShPkp+B7dtNh0IjCW0pIAN0CITmYBXRBriSKdCJOuEgGat3mknRZoVijXUpNitKLwHt3tOZqkNEmJjayiuvefEDMCQrDoxd1XB38QicWcEPVwSqIN3bP3CXUlHWg+Qc9PcC8/lmFxtRYBaT4RIeJwL0dn1rCX39PTI4rlgvq17O9Pe4ig7GcbwR/XMcavAd9VSn0b+HXgd37QL5k85eidByTzCWax5Pn/9n+hjKI4jgyRlxt2L/fUNzWTOwWLt85YfvktLn7vj+irPbYsaKs9Js9oNxU2z+iuLrDTaTSKW4qHiXfijWMzCVQZqJpKKjuzuaCIFdUolvEOY6VSR4sVsY+qzTZ6/WgF286x6yQicGBkGCUpSJ13aIR62HnFvvdj0InVYnQG0DonN1/8/X3nqTy44Mni8Fi7DrVf0U6WVJ2nsIrWSfehY3yjrleSGFXOhf7pHaHvMMtzacNtIrTR1/2RFkv0+Vvylm3C5P5b6MlstP0wd+4LI2m/JlRr4XxHfF+d3IPNS7EK3kimbXLnLtk7S4GN+o6wr7BnDw4zCyspbX5zi54codJcWCbejyZ9/uIDzHGFn53B9TPU0V1RCw+e+X2N8l4GjFroi748GRd+1VZkPiqD84VAKb7Hv/gu97/yNheNHzfqAc7TCggw6bcU0aLEm2Tc2G0jGgUdU/GU70VY1zeCeQ9pX8HHDmaHZyKYd73BD5tZkNS3kE5kiD74XvWNRDd6f7BWb/ejuhjAR3GZ3lyKnuToIbUL5GlCyOeigUGUza0LZHFx1rtbyIxsPkrTHz3CbC6YpgJB2VcfxkKgZbJYCkzTNWTDhmpTuuVbQjndXIot+dG5dELaHNTkiYg3efDzpHce4D9+X+YAgF+/OrDCAL+6lnt0eoSezHGra/ztpdi5x2vF7zbk9+6S3TkZN4tPfYSfQUOf1fHvKaX+KvD7wH8QQrjh+8ev/WOHUurfQgKaeXQyl1jHmw1FPiEpxZXT5umY/lXfXKEiVDI5OyJZ3pENYF0RnKNd75mUBTbPyO4/gL6lu7lB7XdMHr6DOi3FOqGtCbuVqJKDF3z86G5UbaYjC2LMctV2HAomWtFHmMdohe/FcdK+1gFsOy+GY4lk7hrizwYidHRIvQJiVyGVKBDhIkaKnw6BzksVaq3CmwTre1x8vj4OilPDWFUq18sioo3cOFqEd6GuxAKjreXmGxZyrWWBfvFdlE3F3C9+T89KgdTqDTS7Q8B610Ixj17/kX1zXAkzpG/Rx2cjUyl4R9iJaeCYMWETgaxSiej05VLsKgadhtKi80A0HDqJYSe+h7TEK41pdyjX4Zu9MM1mZuzwBt2GbjZCfwxeKLivRUoOlhADeybTHBTmMf8apaRDHD6fgebre6nAh+u53Y3zIKL1djBJ7FjakVI8OIgOS1DQFtVUonrfrw6Oolof7DiMEbhncIaNm8jAguuDQJJBi0LYaoOOnW1qFHjpinw+ExsO14nRou9R60sJ+9FabLy9G71/woMvo598NVpAeMzDd0luno7vCyA8f1+iNacnMovY3UrU7MmjMUfcnIodeIikCGInOeQzhy669WqNyvIx26PfbrHeSdcwPRL3AffZCMr+pGyo/6SOP7aN4AfFrwF/E/jryPn868B/Bvzr8KPHrMXMz98C+KX7p6Fd7/Bdz/7qluA85fmJMIHKnKTMSSYFymh2lzd0Vc32/e8SnGN3uWXxVs6b/9xfYHfxkur5NSZPKX75L5A86qj+4e/Qv3yBffPLAEJbq3eEly+i8jXBAHp2Eul509jau2gSp0jbTaSUSjVSdSLdL6yi93ExjoSW1KjYBUjwh/Oi9BxyeY1SI5NERZ97tKKOXYGNgiURL8kGEmLX0XgIwRNm5+R9TatSjILCKHRE39R+JQtYc6i8yWcYm9Bfv5DuoKlRSSoBJI3AFO7qGRyfHuylX8tptmfQffB1/L7C3n8Lc//notjNCPaNnBddzkclMX2H39yi8gm0NX5Tjd0JgJ4dyWKQlqMzZ0gm0O3EqTJ0MSQnkVyD+eloU413KOVx87vixZQWsvlpHaGTzWGoHoIIARF7CdV36De+zP/H3pvFWpdt50HfmM1auznN39Rf/e2v2+vcOLaxEiEbAZEwCOSAaMIDvWSMQPCChK3wECHlgSB4AATISIhEApxIkQChOMQ80DzEWDdK4w7Ht3Ncdcuu7m/O2c1q5hw8jDHmnOv8p7pb/636XfdMqeqcf5+915577bVG841vfGPyEadeMiyGQyLSsY25GPQiGZ12ZfYxnBeJkcs3Fvo/dZaFwg1pBGnhmaaDTMEz1pdpCOnxaDzC7fbSLazZTu5Oand5d6/KeuvkN2M2EWes3v66nMftXST2MumOCKxOzGYbW5abbMwlZ/DJHdCD3weNB+yf/xLC8z+A8PY3ARdw353i/It/AuHtb2L6rV8Ff+PXQbGD25wifeEfgOu3oDd+FzwcgOFV8Kd+SIT/fv/vI2gXcLr/OujFL0rh+9aLoPMM9/o3pGbnQp2bAWB+6/elmaxbAeMR8bZmGkFUfqdHjzDtDteZkw+8WPsrPinrO+YI3u/4NSL6bwH8b/rPdxq/9u7vlRJ2r75RaKHbl+5h2h1xfOsR5uOA8y+8hLPPvYA0Tjj/wkvoP/U5GfoSg+jlnGwRXvwcwsMLXO7fxOWrb6B78VWE5z+N7t6zyA9eB/YvwT/zIvy9lzXN9pJyH2QIDh8v5cZyxyL3TMOlNDCRk6lMLqpeDCGxabNIB+de9egHlfO9GHIZaJKYMc8S6QNSAxiTWnjUeoGjGqlMkOldohcvr1vrt32YM05YOl03raREWME7LwYz9nXCWBqF533nM6Cv6QzunEVYznmVlU7l8by/wPzgbbgYEF/+IvLuEcJLX6ive/OVErnBR9h4yHzYSaax3ooBWG0RVhsdTvIW5jdeBXUrkQ9QwyoQ3Sjd3WrYOPYirna8ECOeEgipFo5jD5tLzd0WWN+SSDrNdQYFOXAMMOXTojvVychSf3yEuT9DVmO7Ii5wDlm0r7MtkMZSF2CVLS9jFyGNZWRiaCGqps6FOI+V1Dty3MBlHcOZk8p4zCJPAoF/6O3XRH1zfSZOwIcygEYaI8dGMHEs2YZ0tF+A4wobF8BZz6P93QWVQO/LPGrkpJ9zRn7ue5C2d/FQJ67F888JUyhxGfTUffGPSkS/vQXsHsDffwXT8z8g3c/W+BVWSM99D9zdzyDFFcKbXxcF22En/QPHC+TNLeC5L2DWIVJuuAR290H9pkCYmGum5c7u1j6Tccb+tbffy5y8r3WTETyBRUQvMPNr+s9/GsCv6+/Xjl97HwdEf+sUrguYdkfJAJ5d4/7f+z1MuyN2r74J1wWRpta6gTu5hc3LqJgzUJlHR5kShpO7CC98VuQQBpGPzpvbYgy0sEino+Cd06Ap91wjv24j0aFKKRNVuVeCGHgHrRtAfgdQDPvlmHDe+9K8konQ+SpZbBpg0UGic67t/Z3CQ0ZT1PNeuOzwovEyMdApw8QnFQVT4ywnxWuUfInsvLCIQic1gtCJoF/sZH6C4vYJQDjTJrPhAJtA5s7vimz17oj08C3El78gjXqjaMjn8ajZRpReDkBood6LgRsOcrPHWsiFQiM2lY1GFVQLUWm+PfLawV++Ab97SwrBzis7hoosB4cViEaBkrp1cQrSIyBduobfZx047/OE5KJ8D+pM2UeRuvBaZHeaGY17HZgjkTnUiDJQVG8pjWDI3ASOdcBPKXQ7V5g75bOPB3C3Req2cN1atIWGA1xcFezd3p+mgzgnm/HbyHhnY0CpcwIAhFVR0pW9dYB3pQ+DQy8QlArfnfcCLa0pAfOEEHpg1s8Ze9HYmo9wURhvlGccEaQgrXpRbn8f6ewFEfk7fQ5ulD4Szgnudi8Ow+ThIRc99RvpmViJ8F56KPRl2pxJvWgekecJftXBdU/G5DHzDWvoCaw/T0Q/DHGs3wTwbwLAe4xfe8flu1gi/v7WjLDq0d17FndjwLw7Yv/6fcTtCpsX7mLeHREBhO/5EWB3H+PXf0MKwF/8UWw+/0ex/sHfBs8jwgufl6EdCnGkh28hnt4Cd2uMvUaWvpfibLepcs+ARKtBOpHT6gxv7EVqYp0Z6+iQkfFwkGJxdJAZvDMjs0JGUebc7ieAkQocNOpAFWn3RzHqAgGJA7AiM1Blj6MjTFkyhk10IGTkuMJJmjAhIIcefrgEphF5daaUwUMdPJ4TaLiEu3gTOL8LnkaE7SnKPOVpBL34PdKtqlOg8sUDIES47RmG3/xVwfd3j0SW2jmR4c4ZuHwLaXehfQoKT53fRXz5CwoNvCFQz2pTG4mAYqRzf1IH2qh2DYgk+teolfstkrJuRFrbgbstDuyRZkbiHp0jkdju5Ly56ai6+FQyuuwlQ8jdRuc5SIYHAL1zZdQpzaOophoEA61Z7N4qcJAEC1aLGKS5ivrSD8Gh0yxHDCmSQEfkUAIL5BkujcjuFNxtMG9uA7c+VWAmOjwsg+QpyUzoIkNODuh02HuUOQdukIwjx7UENT4DKS+aF20ZPXU+fwk0HxHvv4KoPP68vSvUVJ3ZkbZ3iywKXEA6e17grss3sdU6CXdrhPuvYPr6rxW9qvhH/kHML3w//B/8jsyE2F8gvPh5GaIU7GRknQw4SUE5xDK/3OpJeX8B163gVg53fujkfZin97duMoIPuZj5X3qXv107fu3dFjkngnK3T+HUePE0SofrnXs4/fGfkDb03QWmV78mjJPQgZ/5LPpuJSnp+lwinPMXRVbBR9A8wN97WTpaOxv8McsUL8VYMUvUeYinwhtnxknnEXZvCtPDd+h8xJgYU86lG9FB2vHtWhq0iHWcM/aTwyo49MHh/iFjyhlnfVCDLkPFOyd6755QjJEHlLInheKTIBmAqUlaw1hUieNNjAjMGBKjVwqiG3T607ATqWcXwA9elyaxbgVgEk2hs2clgtvcAjhjvCuMIZcmuMs34UOPfPE2QA7d9/4xgXruvCBpvPNCF9U1v/YNpJ3crP7u8zKDN0Tk3VF7DR7J8zuNrgGkzW1trppkwpYL4LVEtSZKJiqXgpXnbluK9wAKPTKxONLE0kfhieDmQZlgJuvdq5R3lAwAQPI9sjJHVkFkl4sT2twWUTc1UoDQJTnqUBVo1jUexTGoUYd3ors/TwLpcAYNI3jYy+eyLup+K8e15sYokXspModedIiagnTut8LIQQKgc6WB+lqSyJ69zi5QQ5+7bTXixrRKc+k3MFE/fvi6NBNu7yL3pwgPXgENO6SzZ5HXtxHe/qY03wGa0blybqwGk7staPu7uPjNX8ebf/dr+IzzCH/8WfDpM0I53l1g/NqvIX76e0HrM2F36TwK7nRm+KzjaFV+Yv7WN5B2l5h3R3S3npwTuJGYeBoXM+LZBuH2PRn0ftzLPOLjTsY+3ronfGonvQPUrwqem1WEq03tOfaw2bfJR+m0hTA0rCkrMSMSZHzidEQXCMOccTllHBPjuf4EdHgAt7+Pk9PncQmR6jWhLiIZ7OEIZXC5Iyqa74kZkzqP/ZSULkroAoFT1XQpign68zBnrIODBzBojwCR9jdozUFVJbCfMk4wgqlDhhOVUdU0Is7g3QOQpvE8ilEGAMoruMs3pW4QVYqAGRlUzhH7CDp7Bml7B27/AK57JBmSDdQB5NjzCNqcISqrw7qTiyrs7qKOHhwOklEYTj2rkbaiqEI2KIqjYhTZBS2UEzpIYdyTR3SMCGH+WN1mcVlpxI6cMGs2kHQmQHAEB0L0mjQoxFKckxV29doqy0Z/ArWPwYyrD1LPsFnMGoXzNJbMlFYnUr8gB5cELipZRRrB3RZuf1/gKaAM5sn9KUgzNpongOS1UgvRwU3qWPJK4SDbt48iFT1c6n4F9zfID+SEmuvFnNjraNzJ/Iym0MzHHXDcAefPlvoTpVnUSI+PkL/0D+M8RBxel/kipqcEpRun+28gvfUawj07h14if3Wo7vSWEBa8l5nNlw8wv/5m/U6fIPefbxzB07UoBPjtqWCCMaJ7/tNyoZmcbZqkuWZzG+HLPynibd2mTPUCUApiOfSAagdlBnx3qnop8rSoxdvDlHEkwjpIdHg5JAwz46it9XP2OOnvITjCBhm3IgRWgPQBZGSJ0LURyaZBbaJguvspAQoLZQYuxhmr4JDZqdGiMgVqTkAGA8HBkwwWMRngcOVilfKyyF0wgBE9AoBweLtoKwnkcgp0J/C7t+BOb8Gd3dEUXFP5aYB/9PtF9Cv+wW9jfP77SzNTOr0nUe10kJv9/K7UIXR4vUXs+ZnPItz9NJBnxMNDYQwBoPUpXOhkbOc0CfVvGktnqUX4ZFGwGlTWQelFwVWdhiORWSYCMjx8GrAmV4q9xAzPs0Az5MQhzYJHM0kzmEFxzIw+uMLK2k8ZXVijmw9wOvSnypfL+c+rM92fwFhIU4mEuVtXOmfvKoavA2SonTcRYpGwkOepMfaQaxyQx996VWZBxzU49vCH+1ocXwtffx4F/+cE//A16UdYnwM6zUvmYMzVqKexGP8cZQYy5jpaMp2/IFlNmuWzbW4LFJZkpGjWjJvWIsthekDIci7YR0wnz2LKjNX3/ySe//QfgX/4LRmKpMHA/MarcJtT+PPnkbd3JBOZJ1DskV7/++LYmnnF+bhDfOGzhcVGzmH8AytNfrjFDOQbR/B0LepXiJ/7UuEKQ8c0AijYs7/7AqgbZZZw6ATy2N4VKCTPOtx8EI1/zug4I/kek978nmQYd3QkCpGdA6scRGKgcwQfxThPmfHGbsajISE6hz5IJL4KNXK3NWeJ/KNz8FE46b338M7jzb2MMzzpvM6SFQjpOGec97FoxL9+OWLKGfe2HVZehqU7As57X/YXnfDeh4ySFQQnWcyUgdTfxnreFZEyVkgAF38g4nK7C4TnPgV+9nNIZ8+LVMXxAfBMlpt62MFfvlmw+/DgWxLNHi6A1RZ83MkNPY9wmzP5uT4TA+M7IK4xb+8iuIB88bYMAvId+OHr2rS2KcNtuNfCrQvI2zt6ESgvXYfcE3P5fkBShg+EYmQtMnfzIIyp/mRp9NAVlkwpEiOAtXt4P+VSiwGAEQDCGsERSLuBadwVhwRACtI6QL6daEdJJLOt5wE51b3Mg5IThOmU+5OSdXC/LcJ61uTlL2SOhtuelcyJS4S+LwbfYCMalKmln5F9UBaSMKemsEZABuIabn4IzAILcTzVjvp9nSOsU+FYp5+lk3vyPqrJxaGrrCPO6qTW8nrOyHByflVLKd16CXl9CzRcyrX1UOctDEe4YSfZzO4R6NY9gRL3F8UG0EZkT/L+QvoNhiPiF7+M+OnvhTDWP+xinbXwyVifDEfgA+jOC0hxA08O86tfRXjpi6IJFCJ4lgakHFZww0XtxNTZvXSULlLuTyufG6IHY8NEMoshzdoyvwmCJbucEEIPjr70A2AGznqvTV1iiJlFbRQQHPoqDOEdsPFBBoI7kZ4Q7Frxf21ZTZNg21npp4eJNXuQMYfrIIXmMYnWUOdFrA5ZnFTvuDoDtoKydsfSGlifA2lG8j3ge/gg0VV47lNw6y3muMYRAT1YCoJHmZqGlZMhOdNeqI9hJaM0AeTdI9EnOuxUskKYRzg8AnTuQ16dyc1/8gycceS1Y5QPF+Lc+20ZOwlyyKszsO+QQTJ5DZDfNdsgLaDXtNjJjAAAIABJREFUU63sKZt9bFG2CgcWCMeyCx1DKk5CYCRrCOxUTO1izKVOU4v0HmAHWCSvjgcAsjJe2Hj8eQbGfZGJKJlS6OGM4QPB8q1gPMNJ54V2giOIgquxqQTi7FSSeVUwfTftgOOFKJPaGYlr2adJqPtQaKbEGdH5guWzDzIkCZpp6R5gP52oiZZ6gtVkVOMJw1wyNnd4iFn7ETj0SC5iTlk7nLcilGf3aLdBOnkG3We/v7D8cicFbXfrXqmh+Nv3ZDb4/pEY/90jYZtp02KhLD+JxUC6YQ09XYt9h/n8JeEUz4PAGKrRT+tzELSt3hgGk0AWPA2SDjtXoKGiAaPjDIMLCJ6UnuiLUXkwJgABniJ8AqKqEfZBxOSCE3mIrFpCnRejezkmmBqudQebIb8YRrxw2iMQIYNx0gWso0oZZ0bnHVZBWSo6J3Y/JcTGQbFKHcALLTVlxkl0CmtkJAa2nsFKK/RE6KYdMIm2Te5PcIhnOI5JGtrOnoU/XoC6tUAZocOKR2TqJfIF4B+9JvLZANz+gabnAlvkaZL5xest3DMvS6SfRjEQ81gyAuHWC16dN7fFEPdbMLbg7d2i7GrUXTgvGYFKZ2eImY8kn830noghdZ0sc5lndiCWegzIw2Ouzt+KthZBa5RsneBggdUk61teg14lxnOSRkACABUGFKqwOHYHqaVkOEQ9DzaYHTlJP4PvSl+DnFQxxnktsFjU4m3qT4ocNTuHCQ55+xxW6QCfZzH4CsNRnsV4JhkUw71mElpLYMh7OnMCeZbmSN9JYdx1iJGRdfwjDbvKbgLKbGmTsShT9bQOkOMG0KJ07jZCw1ZnAwjc2nmHw5xwfwTunL9U6hyA1H/m574P/v4rAKSvgo6PML/+e8Wx8WEH53yRJQnPf1oeTwnzxX1Mr3xNM4IPvxjL0s8f9vWJcASURsTf/y0g9MjbO3ChR16dipGfRxXjCoKLalpOkxT33PFRLeBxRgorgTzI6Q2UCp5j4mQ59DiJysNXzfVxynAQXZ+kEBID2jsg2LRo0AOX44yTLpRisODNDn3IeHicET1hFRxeOovwJJnE/cOMzosDgL7v+crDE+HWKuCN3YTMjG9dDLiziYVymliKxhbFyvzYS7DvkMJKC517YZmkEc53WD/zeaxixMXMwOo2upe/LOMbOevc5AivjtKic7d7q94Z29vCsAJAcQ2vc2ShtMccN7UhLPSA1+jcC2SHNCOdPitRJCDGeRZqq1E0rdnJ5wSn0gkztHCKpkBLMl8gEIRUoAV+g47KuMbCt9/VwqbRNIEyVMgRihMYEheWFjMXnadJezla6MiT6AxxXMNzFlkGa4DrtipJwvK7DkEyUTZpDVfFTjOc/YnMRphd0aYiHRg/hjW60+ekaNxkPvCdUmKNpaSRvgvg/lS4/EEKw6XmMkX40MMZ7bSTKW/Se9HjwB59cCKhbbTV4VIK1zobG1mzA3bSvQ2htqLfYl7dQtbo6jjnwsTJq5XcT74HBcAPlxjjFt2tF+VzpRG4eFO6z+36mkeRt+hXqm7rkW+9CH/7xaIM8CSt9w009NQtkgvgmTMpSvlOONHkNKpEZQWFDowg0Yktbb2nOMPnQbKDpqmK0iysCyuUMhTukRvPEYAsBmHKMqAjeBGPs2jQFQG5jPNVKNTFKclov1VwwAxMSQrE1j28DoSVJ9xeC330ctRBJ8xILPWHw5wRPcl5YMY4M85XroihjeoIgiN01kTVQGCFxaLLP3oNeX2O09U5AC40ShNqM7ojh1XJnMww55NnlswYKDbu51KLMUqnvRZAGagCQDjxcAidZA/wEXl1rt/FKEVfZX3JY1JsdESgnIsBn1kucIvCHWs3LDNyXIkA3zwUZpFAI3USneHyoiwKHCYZLmR1glbjqfyEwHidl1rBwA6OhGRgEEhm6S6X16mdh+xpTIxer0nTCmIvdQ+ntQORr0gYkyp5QqCplZfrhqCQj7+shl/fjJQMQOMB5PScezlfvDrVZrZGgiLP4DTBzcdagNfO+XL3FfhK2UbzUKEidjIrWZ2rfFfV8fo0ILkOUxJl3gzJrubMMIKx047sANmTfS90chcUXpVmRmUUmahcuv+6NJjdelF0qDhLkby5zj7UuikWP32LQ4f8mS+XiJNDj7Q6BfsOk+9FdXPcIUcZCt9KBgConYo2/YtcrehqxChGQvRjfBrgXEB2XhhA9lQirPT+eDTWzKDTC3sC46wPGJM0jll0Dwg8NOVc4CJAqKDC95cRht4BhxmlcPzWfsJpH+BAOO0CvKvdxCedQErOAcGLU5i1B8FbJA9hGG3zXGYsi579hZ6XpiGq34o+zjzBj2/JeVHKo51TXp2qcqYW/CZxGuwjwFJE5P4EKayQmEFdVxyei1txgLOM3gwkXH9ynRh4FdeLTVGYADBJcZ9YMrLsY4GFosJJGXpcoDhAP1xKVGzaQ5BCLTup9UQCZoaVFYojt65vQJ1xzoiOEDwKaWAuFFMPpxfHkIGZI7IWmVnrT0mdjCPAk9Y0SIz56HtRNdUMpmRwLHUeajrGHUtmSrq9yLPUFajOuM4rIUoAACmDSAIkea7MZphrvQKQc6OwHWlfATjLyNQ0YWXFJmXn2RB6Gi5AkzLQNrclm9D9sO8wr24hsbDsVip+aFPODnMGM2MTO6z0HkRW6Y/QS52FHDh08N/XC0y2vQv3osxxxuGRNDQ6D/f27wHrM6TTZ8vo0Cez+IY++tStnIRrbE1egMAYu7dAJ/cwxC06jSIm34thiWvBgDU9FoNvPPnahi/HQnlO8j3GlEFM4Cw3NUEYRRKZCSTQecLA8nhmuek9EbwHVsGXXoLgAuYsxnvKhDf3EzYROB6qU5hyEEegxwUcdmPGibbL90GKysPMhYL64CgD162W4ElHWc6MIzq4DHjOWFNCXp0hdxscpozt+hbc4YE06+QZmI4lIwA56bFg1X3vToocA0LXKG66GmVbU5rCMCMF5Mw6V6FCap0nud/1+0nMJbo2nxxVAgNEjb69K3IFZFIM9nVpp3cwHN0yl+Y5dq0AHplEcC0oLfRgE7o0AygFe20mKjAGJFuIrkboSR2XGXkTEnQARv089tOi+RBcyd6IOpjJYhanlNlmWPDieI7knABiUAnA0QX0/SkoziUjtu9wooDUAz1pLaQpmrcrg+BpKhG1Tcnz5AEGdtnDA+hJr41gstpndWylOpc2SDsi4PJYBQNGzY4BG2/JGLNQn31mkUe33oycQDpvmn2HdOtlgfOSXA/p9FnQ5jbo7J48f5LmQDdcLLKYD7uYgfSER19+nOuT4QhsmeEmGbbBYQX2EcERphzgYtTCX8VFJ43Ieic3W6AabebQCyzgWG8mFLaOpxrJGa00ZYNsZBv2HDHgwua5HLPNqEFUHSDhtkv9oPdSL3AkRl1ukBnr0BXxuM4TurUviqXSPcxKBc1I7OBBGGYGsxwjOMKaqPQYdF5gJnQeXZRu2egJiVaAct4Ftxft+nbQOHs5d2zYflwJrz+NgGt0iiBwiPwikE1Exqx485ylQ5oh5yNpoZt0/sKs5iQzayV4pV2/WgMwAoDh+3mumZwtHbYDoGjo2J7oeCHH8BHZy7WREmPlGEwejoDjrNG9vjjrXjPkOzUFSq/dyZ4B0t+TQh3Wheqd9PW2kJJcJ6TPE6bXmBhdY7OO+p1ZBnFMjDnJGEgbdgPUa02yC8movEJR0M9g13vKjMFJcMEkkucRtZkxaHE8+yi1CQDeZcBFOE5g57HlI9itkeGlhgDB9B24KMLK9dKB47qo586JS6e7nR+AMKhhdSD03hXtLIDQdRt5nr6/jV1lLyJ98LlAU7CRrGmsMinWvHc1CPgQ6yYjeNqW86UBh+Na6gD+ttzkTRTgwFhhRuIoRt8RskZ2+yxGSCISgqcI6PAYu2mLLpDil4NG9RUuqHZo19BKRLI2K4wk+PCUGA9SgiMqUE9mxpDEmJ/3EQMEGhrmjIshYUgZvXe4s46FLdR7MYKvXQ6YkhiMlFEa054/ifBqPIY5IamxOe0CxkTYTYxjSrgVgUhSeBRcvgOp9ozNac79SaF6WnQ3KwMnMwNOi5E+lOlUZlSIl+foOFe6pUX+gMAe1iQWkcHZIRqOD4/ke/hcZwZk8siZRTXV+kG009YMPquksWHe7WhIdh77KYNyxlrZPjME7rAMzDXfsRl0O8+hMcQzcyEFmNO2aNdqRfYYkTgYAjSTkJGOln7OWWpHngDvSfBxAME5dL1fSCBb5mH9IUZe8FpAtuPZ+1sAQxrAlP3nynyzLNVmKYxO2EEBlXGWu01x2vLdZXirbfiIHNfIkMFHeZZgalK5dNO9sn2JA3NKxYWOupR7jvV8lnPNgPUhIE1lHxkkQ6M4Ip+vRevoqJkAkdqFKm3yYdeNI3jqFleM0x7RYt/M8oXZdzZmj5TyIsW2guphtjGRIuPMmn5LJylhnFA4/olqQ1Z0EuWY6bdI5jDlMrTEO2GTOCJMGqFGJ1nCxSD1gVVwmJTiOcyDSk7IMafMmDRiuhjnIjlh8NEmOkyO8HCY8drlgE+fr7CJHpdKTV15hykzchYHdjHmUowmIlzMMpymdywFU4XZOK6lAWk8CNYfhOkj0AwpU4pLlMmQm9oMZtBMCRCHYefTKVTVNrexpl3GDAIAQiqduACEW88MIlUbVYiamKt2jfPS0KWyFw4M4qHCSUBxChPE+Jgyq6c6m4GdQ3ByvqbMpdvcKfxin8n2IPAcSj2DodeKOgjWn9aRbDMkRsfoMqHzrnyfVo8wOYsJDtEcZxaJDAdlPkF0pghSGxgpoC2JHmYJMAzJsD0QVUirU3JDp9d04oI2IeUA5rTIPoyBRnDFkIMcEuR+m7JHZHFsU0bRvzJp9VGzWOhjAHDaiWPogx6beTHiUmovhJGdjH8FkHxQD+vgwJgYgLqm2J8hd9K9HZCVwfSEBtMw3xSLn75FRfrZNISgESJIPqLhtOvoMGiB14xX1r+bQ7DnAyhCb1eXRWSJgZTEgQSSeQKG5UYvN9VxzipMJmvKWQfOyMwBKRQz7h+mYiwBFLkIQAq+noCHR0lte++wiR4PjzMc1Zv3tPMlQpc0XGAn6y71rhqBdRA+/Dqg7I/SILCQptIIwvHnfluZH3kusJmDWIzMrMylx6GPOn9Bo2Ai5fLLDTpDmr8Imo007Bi0jBOr3ZDTRiqpY0Qn3KCS9lt3cZ5lOLsyZewY3NAmI7L0O+j1EBzAJBFv0uvE6gGZzYiLkR8Tw75WR7VRMKXqHM1BeHXazFVbKjMvrgunDsUut71G9ZtYAwImQmI5EKmTbS9PpqANhxW2tIzEut4TMzjpZwWEWDDLZ3SQ76d3KJkQEzBmlO9s0ve8HHMjhV4n79k9tdfPLrUM+fyZUabv2fVon63cU5kl0EIuE9Q8EQLqvTpf+dzWPZ8ZKsUi11tJ1slJj8ETrRPcOIKnarFRyppisXn/yMJ3nuEWF5BEa21GkMtFYx297Y1/qTITnR6nVR60zlJRE5Wh8aSwgidfDKQoi6bSJxCZiqGfUlYHUNUwAWAdvRoDj0nZRpvo0XuH4yyviQ54ZlNT3lVUvJbFQa29U80iLlGnNUCtA2lDGhccnKPMyEXoBPuPa9jYRUAMaKFekoOLa+lZaLIAy6ZSluP6PCKHvvD3Q05F2KwDqu5T6LQmMQKxagbRtC/frYmYFW1/M+yaqdB0ANnIR7su7O/ToXS+moCgTtQtgUB0QsldFGXVkA9zhX9aZ25MsMxVLNARITqhBk854+GQsIm+SIVYLUiK/dZ4WNVjO0/oXC0Cs0KZliXYtWPZrGUmnmrR9SR6REc461zpc7h/TOX67ZwEA5voSp3MUW18AzI672otSvd4nAXyayGq4CVDPGo2ZM5oGxyICHpZamc/tA9CCuVAbZIkMhiNEJ1cs8SsezOHXQcyJXU4nGxok2Y0ui+bK00E+CfpCD45teJPhiPIkAs4GWcbWeSCm6HhBcfUq+MwZWSgpPw2SB5Yjo4scABJNMYQnL6dNHZMXN7Hop+6NzGOuzGV+oCk6FoYU8O+iV6hhVyE6AwKclThFYu4BkhK36thN2XS9r29R4l0CXJzzln2ul05nYEsz5eGK82miLD3G/kbC3ZLPtTuWJYCLPsoeDsgHa6NgBtxhicRa7Oo3s2DRLKN/ABbFzeEY06jShg4aQAsjCSN/gHUubz2nY6qtGkGPs1AXC0mclknMvenYCKtCwjzw+ZC2Ll4OCRERzjOlkXVDMugm6vqAgabeDX+id3CKeynJJpSvcNJR3DksdGu8csp47yvxdHCMNP9DHPWOgtqTwJE8mRmgX7WgbBTmGfM0t3cq9y4UXRLfcsTfJDv3+AnZsbE8n67KWMdCAEJK6+NZdphbQGKZQaHOZegYhMdRpbr3UEMe2W61YL7TutDlnVfThLQnGTJkMbExclJ0JJLYGWwmtVXrPdAIMpKnx1T7emxWR7iCPBEFvNHIzFBRP8JgH8KImf1NQD/GjM/0L/9PIB/A0AC8O8y8/+uj/8ogP8ewBrAXwXw7/F7pC9Pzj1+nEujC7s4MvmFPDORNuywGPzjLLjlrAbchOUsjc8sBnxUI2GnMEPZOWqgJ3UY7bIuYu+s4CXGeRUcTpTrD6A0FJXXqQGJXiLITWwhHhQnYsU9YyjZay0yzYVbjpLRsEZ5BDkO6Y3beVcgDVs5rpBDj8sx4+3DjIshlYloTveRSYq2yfdI/QkyCMmJ02UW2qExfkqzkckkxFURcwOwaFazITBFyjpUam95vHzn2hhlYwlDtwjR5BhaUNbPNLMEDBdDKgZ4r0X9wywBgUWPo9ZzVsFVaXCtIWS9rszAOQLWwQn8QVUfakpSeDUJkfNVQFBB0rUet/MOK70ozEgZeyo6qIosYUhidKckkbGcuxGBBFs/6TzOe4/gCaedx1qtrgw5kud7RziJThrPtCgbtD5g18SkjmjOvCBa0DwgOMIqUIFEPIne0nlf+1Qc5LNZDcGyYQawnxkPxlwMOSD30G7M2EanDleu2U10OOkcOoPiuNbdBs2ErdBsc72ByqDL5VqU7Ogw6z2OJ7RYaiHv578PuX4ZwA8x85cB/D0APw8ARPSDAP40gC8B+CkA/xURGeP4vwbwM5AJj9+jf3/X9YnICBi1gQtAiUgsVbVCIJEY/7YbNKsB7Yx5yqTptURWk9IvPRFWUW52KQyzTgOT/2auGUUp+Cn7QeihhKMOrYerfP9NpMIYSsyI3mOyO7fXISpJegamnJFZnEEsRsgcSN13qQNgWYg12qiyCTEmjTRJCpcr77CfMnZTxrcuRqyCw511wGESRk3bTJW5MmpS5nIjmry1GU/KuWL+asgzeZDRAQH4aQ/4INr55CSzsMheRdBKtE+uFK4pTToLIYPzujQswYdS55DegoRMHgzBtcfE2E25OOpjynCovQul+AlxEAK/URkv6kkK/bspl89pg4dWagTXwSGsg8AzXYXmEkskb49Fl9F5j5POOpi5Zl467GblM8Yg38OosAsSw1PEChUaAQTqiZ5wUEmMY1pmkjPku1+pOKFljEY5lbqHOIZJr5Pk+mq4k7KmgBJMEIkc+zGZ1haXojNZ3SRX+NWcLSC/n/W+GG6n90sk+1wKzzb3e9bvca1Qkk3nMwqq3YcW2BFZox9wac0bH3pxkcb4Ti5m/uvNP38FwD+rv/80gF9k5gHAN4joqwB+nIi+CeCMmf8GABDRXwTwpwD80ru9zyfCEQhdT25ip5ENM+BLBJeLczAc3oqyVqA7zhXjbbHfpAU9R4p7l2OJAScvBQdLOy0jqE0yhvNKMbUnKVb3pbBao337LIUJ5FzJOGw/q2DQA2MTfckC1sGpsV9G+MYQsbTeAYBGfN4RppnhlcpoHHNPhOe2EYeZcTGIQbmcZmyiK47E8GFzNpbqV4qi4rcUQD5ITSa17Jma3ZjhZwCmyy/jGxk2dasVgrP5vm3jmgkH5m6LIaNMYjMDbMqWEtVLgRRQcoBlglm+j5Vi9gbRTKjNbSvNFhJDcHfDxZW54olw1rtF1Gu1E+tJAFDkqldOKKFWSyEFwU3N1JGH54wuDZhchyExvvlAsqCXzmLpvwBqsXXQ2o/VHew6AFCgkqNKlcs1J9/7MAtcGhkILOfBom67osp50RcTBG6yZX0q+8mi9nqPkt4fdt4tu7LmZNvjWmc9mIruQZsOR83A+0BFZRf6uMui82X3rJ1/u06HJPd9e298mMX4QPTRZ4joK82/f4GZf+HbeNt/HcBf0t9fgjgGW6/oY5P+fvXxd12fCEcARtH+F5VPwLna4QtQocOZVsyoWHlGVT4cr+A8U87ovV/owtiF3A6bbx/L4AK1e3UeQ+FOSyG1X3nMhVkisgmFWqqMoswSXcExTrzH5ZiwClT24smGrNS0WRYhBHtvwU9T1uYjrjd9LBBVdQpJ4R/rXh5Swpglel5HMXKW5cyZC6+bNSKTe63qGlnkZ9Go0AizOgH5tyfA5yTdp4AY9MRVCM4GsDSwD6mgmb65PDaPSKtzTFxnOTsSDv7BaJrqCMQ9C85/mCv+LPCOYs0QI+adRLc2Pe4wmzQE47wXwTWJjLlE021vwWgRtEbNiSvbpNRJCvQoUhGOBJ8f2AFgeHWGArkwtlr4Peu80HGzwJ0WBBjbxxw/EZVM2Ov3sSKU+kKhdqoTsvOUtGYQrxSFQTXatwK3Zc1z5uLw631UMwD7rDIVTvbmSOTUvRMncJCmgZKlnPa+ZCvmDNpj209zHnbsSe9xg4kzL0keH2rxB3IEbzLzj73TH4no/wDw/DV/+jPM/L/oc/4MZI77/2Avu35X7/j4u65PhiMglJQ8KU++F3nH0hBmOjx2Y0ijjrzcbpzoXKP34wr3f5g15c31pp4VNiJyMiRKHcNUHIxEmnYhGmXzKh211AH0vYxJkg0myEAMUhSeEiN6xWYtAyBC1gqZ3WQpc7nhSQ2P7cN43Ba9Z3UiSQuOhgMLTi5ptkV1g0JJSrMv/PvW2CeFoBi12xbqBCR7F4ObmUUPh8Tg5/5UZAAA8EomfNF0rNr2OgoS3ot6KTmpI3QbkaP2Ebsk+QlBIKpjYjwc5kLzdEQFKrPC45ikoGnG2xxc4loQXSmGbteKnWNACuM9ZYCAzvuSCRnLpeDt6ngtMAFQxP+M78UQqqtRHO2aOfo15szYMiMg47OnIodhPRmZ5fM2/gcJ9TPZXu06mBJAnhrKpV3P1bAeE8MnKrLmxgoDFD7y4rS8U8ZOCS5qQR1XoFmgkinMlts1s4k1Iz7RusaY6ndJzIguYR2rRtZBG8k5AUzyHXdNXWPSrn2LIRwBy1Dvw60n1UfAzH/y3f5ORP8KgH8SwD/aFH1fAfCp5mkvA/iWPv7yNY+/6/pkOAKWlP7SDBUDM8kf5KKUgS6lwMe10Ao0NwwJXx+oEYQjZX4kid6NSWL878OUkZStk5GxUimJQMLhN2djUUrK8hrrLfCOEMmooPUyTVn6EKIW/QyeMr7+oIqjlqWY0fBUIzj5W2XDpFz3s5u4pN6SOTnF+dlOKbZR9OGJZM+deFcRByP5GTUC9s5qJij0XIONrPhpjBdAx0I2GjeUZ+kUZa40YJ0VjZzA6076CpxD2tyBG/fIWmcwdkjvawdtZsXLO2rOfaUOWw3gpFvCOF6f61nO40meNCOBTimrNFyiWuzOXgQaPJGqbXo99+USLdem41Sbm4iQfI8wPIIpdmaVhTAYC9Bi9PAIudvimCVzZK0nWMRb4DoSQ+uYSw2orY0NSaASU6et9wBjTDV8tIBm0gzVgiDXXlfMi+DmKvmAraai13HHSvtsggYTZQxWc3MEztIBz3qPyfUvSqaUJqx8ROiWnclTrpP49jMjzFQo1JYJXtcT9O0sZkb+CLSGiOinAPwHAP4hZt43f/pfAfyPRPSfAXgRUhT+VWZORHRBRH8cwP8L4F8G8F+81/t8LI6AiP4SgO/Tf94C8ICZf5iIPgvgtwD8tv7tV5j5Z9/H8eSmBApOTpq+d+RKxJ1yhWnkdTViI6Do90+ltiAXpzkBoDYN2bIiLTnAQ/D6bLZMDT+RNpopjLOfBMZKBcvW5rOExdAau6EcES5HaRzbT0JD3USPmEnnGDiMSvOXJrGmbb9xCnZuZr1hnBaerckIAFIC1hrlPxxSyTJOtFHN2FmAnF/H0DBrqb8PoHDJ5TPI7ypfVzVw7O9OIj2fJyCpeJxpG/VVo5+NEuy8GAUA6/kgcgbkS9OURco21zkgo6OMUQvWkSCZhlJhxXO5OuoyJ1DOmChIpJtl9q5zAWhYaclFUaNNUxmUQ+SKNIMV6QEIfbY9P0q39W2PhO9Kk16AFLkNsvRxjX1Sh+pQvnMzztWAy28ZUpfxru7BoCqi6kANniEibOOyCO40W3C+ZsJyH8g3bJlg6xgManJAkeOw16TEC+cTy96o1EVa/SZmIAZ5r0VD4TwAYV2a3xLLKFjrlWCIntGY5HNulexwHW7y7a6PqLP4vwTQA/hldeS/wsw/y8y/QUR/GcBvQiCjf5vZcnX8W6j00V/CexSKgY/JETDzv2C/E9F/CuBh8+evMfMPf5DjOZLCneHhUVkPFgVCozgzkoYzJrY0dQmtdJ5KASxrVmHyx7XoRsXh2DHmJIPkLbI/qrbQXvndjhphLcpFY2gaBIKxhjFp8CIc57l0Hu+nVNRGn932BSdOLMU0k7HYjVze/7QPZVrWrEZjGmvkZvIPiSX6D42xGOaMk+jQe4GEDhNjdlzOD+k5kNPEpf4wJpQO2t4bxFTxc0KVZVjy5I1NEgE1rmwzIMjBJI5pOiDMAzCPcJZR+ACXRlC3BZjh2wayLKqVNnjIaiPgpihtUtk5wc0DclyLng5L6232ccGz9nnSQe46sU73R5zVUTTUWZ2O5o2VYAqpnGVojG1Hqa40HQD/vTxCAAAgAElEQVTnEdKEMcrnsexzN2vHszr5FsJKjfMHasBiTXB27Xa+9ieMWkTwMCcgcCCRxzBn7LRHIJAGC3pdEYlDdwRQlpqGXBMSxfumpkBooCndp9WOWix/5aV+YYbcDLbDFWOr5x3w6MaLoijQTQeAc5G37jyV5jcjZhARwhNk+vATkqt41/dg/uK7/O3PAfhz1zz+FQA/9EHe52OFhkhc3D8P4B/5sMeSFFO6LrxGuYZt90EijkIpnRlJi5UpS9RDJFF5bi48wxelCL2MnDOEZRIdYWIunaXWCGPCclPOmJLMfpXHgfM+SqfpcS6MIXEKpF2oIhA3ZY38vcPtIGJz0TmsYzWuSVP2VZAbfPIiwGY1Aet1aIu7570vkdhRi4V2PIMArABtPRbGfzcnMGc5Bx2Jgwtan4kOqimjzWuozT9SpAeAZRGZ9BhWUMzMgO81IwsiHjbu60AdM6habCU1whh2MtHLcOIZokiZRpl2ZjLGJqGhLCNKU9GgYdPvBwAfEQFwbnoY7D116H25UHQucZG5MMosuYUTEUhIn6Pifkgj3LgXVdewEigs9AjImOAWcIZ8NxW+MydARPCoelfQ77SB6wtzzpxh2yMhip4Za2SsiYHe49Yq4kJ5/0b9NAhypdmzGfOWxZM1CLD7YFTGljWeAbZnbYRssgYT17MmQ5sfbXMTjDWW4xpwDn5/X75zF6TOxEkCgZzQATgq9TWzZCNPbDF/JI7go1ofd43gJwD8ATP/TvPY54jobwF4BOA/ZOb/57oXEtHPQJom8NLLn4InYUBYlNt2ILYGypZFp3M5nlEgXWniYr3wzQkAlSEkRWXCxZCqtEDW7lGNRkRKIuC8rwnplKnIC2yiL9F7H5x2Ytbj76eMi2EuUNDFkLCJgFdYKYNxnPLiddFJptI5KZYa3bPVXbmcEk60kzk6CDtEjUkLZSTNnuxzB2/GR/DkJRZci3FmJNrl1BDlxKVuwArJCe22RssUerg0wZuBN+qo1Q5UhlhqCgJCWIReeg2mo9QYzAHocdx4EMgmQCAcnUsMpgo5oEboAOq4UnMWoZdsoJUzsaXzgcs+gMefl1t11LGMUK2D4OvM7KyF4lLgz1ycgXwL9fsqXYRQBU8lSQRAWUs12g6ESsE1Lad5EOfkApCk8Hren+AwSwG7hf7M8VidotXHsmvOHIPJSxgsZR3GDpVwYPAdpQkm/0Hjrhh/mYqmkVmeZbayC6DxIPfs+lzIBi6UjnIOK7mPUWsVVxs5v93FuHEE72u9H0oUgH8RwP/U/O01AJ9m5re0Tfp/JqIvMfOjqwdRHu4vAMAf+5EfYRsa3ymsYkqPALAN1SlMWfq0zMhnNogIiwiVNdUW0SwRALNGr23nhC1EwHodSsQLoDTMWH2g7T6VqJvKcWy2ASBicqIp5NB7j5Mu4NaKgNNe8VvrB6hOq/MOZ51fMF68ZgGjGQ8AIOGqAyi1kv2UpVAKOVZW2KrXIqhl0HdWAZ7k+Rk1IjRYqi1GW7YAWGG0GiUAIEZphJtSZTa5NCFRRIZDcAH+8EAMOVBmS8s/qtFinSxmmYFF12X0JDnQsINrFUf1GMgJbtghr0M1+AWjF4ioDE5vZ/66ULXu8yyftT12cVQSvYIzuNs0Dqw6Ne63Mi7yuEfRSsrSC2FOgDhjhRlHHV5kht/kogtjS0+6wW+ADivSjMxgGGLWuRLHul+dvQFyKtlMAMZynkMaceq7Ml6SySFrA6tls3afWRc5TaoUG3pMXOc5271QZLObgKMPBJon0HxUaZEJbtrLwKl5QD7sQFEHHxmt+OQu8uaWnNt5BJwOHvIqlOg7Yaa5gGA6RnhCixl5ekJjL5+C9R1zBO+DEhUA/DMAfrR5zQBg0N//JhF9DcD3AvjKtQfR5SAUPq8qilYkteUdIQDlpnBci3BGjzzMjHHOpbP0KpS4Dg4nXY18OlepdWYKzPh6L1BHclyYIp6sJZ+xn6oomZX4otcOYe0SNlkCALVz2FdcvQ+1scschWHJd4Jb8LhTNhhJ9ts74KyvxbPEwFkvksItfbLzlS9+Zx2KzK/xzK3QHGnJjhkT45gEX95G62bWpjWNCqNmDeOUcTLvEOexYuRmNJvFYVWNPuelgBwgVe40g0MHmjSz0FGaZBIVvtMehB7MavhWp/oNpAZqGqsDMDlui9bDSj4sret+y4XW1ee5cWn8TUiPWbqiTWTPd+U4lCbwPEqHtC4aLrAGZByoymRYtmVwWwKVXg7oY44kyQEqf75kAeaYcgalYymEF2eo7BwxuAAmhcpINP1do+kvc5WbzNB3pQhuyrAhuOokOIN17CV06hjNR2CqciE07sQpmO7UPIF6ET6kbiV1l/uvA7sLUIiguy+BQwR3WzkGyRhLgQsvQLpfZ70pT2LdQENPbP1JAP8fM5cuOCK6B+BtpUB9HkKJ+voHOahh38XguGUMkJiR4EqBbEy5pLGtXO6YK/RhzTIACj1Ubgw7pu4fFYc1h1EKhfbe2SQoHKLPuBwrtGP860GLzNJTQIUmmjIwQeQQTDs/K33P8H7hhSuvmwCb3RvBOPpe5vGqzn6n0dLUOD0TKIte3mPlSSNgO78BPjhkzmUP5owyK/7sCFtX9WwERkKBhay2cRIdVqqczxoBc1E6dWWIPIDlZClyFUIAgFydwzK6D8VxZFNUVaMuMtd9MfzsO9mDDTe3KBMQyQqL5Mv/Uo30dbELZRSq8xE0D3DjvhSSczvc3ZbNTSYHG+lI46EYLI7qAKc9aD6igzpFovo5XQAgs45TluKQIxn9aV9toOYcWmaTpqL3z6EvA3ustlGiIc7lHNE8ynlpp8QB0gjom4gdUAcziSNWuKcMB5p1tGyaK/yXE9y0rxmcKchqUyEn+UmrLXiewLtHiJ/9AbD3sNnTokuFJUT0BBVH23XjCJ7M+tNYwkIA8JMA/iMimiE9MT/LzG+/14ESCAO7UvRMmhVYGm1xt8FAxj2v7AnJBM46X7TUCUtnYOm3yVKYVLQZepsyBchjpkxqhs+Kt0TAqLOFrXs4Oqf6QNXw9ybaRktetldHVRvDaKG6mBh4OOSiN7SJXm+8IzbzI+TVGRi9DKjPM8h36HQADSDdpuvoylAQqFaQbEYMsCeHM4LQTVTV00ZGujSBxgu4YSeRITnk1RkO1OFyrGMyz2gC7S9FLM6MQTuHgHlhmB9zCIoBl+Kt4fLmHDQDsBGZBZ9vsgoABSYx41fx8qPoHJkRU4Ndi8GacYQaHVMaEZvfRaFVnQ67OndXDavtB1BHaK/NczHgNOweg67ceF9otJ001lkhnEk094XFlBDSqIXtY4GqKNXpbjQf5VxowZrmsUInzWenNAPOiRNwel7zXKC4kjX5DqSwDfu4KOwbnEPzUWs4g86/1lqKOV3n6mft1sAcREV42MOtT8HTAD7u4DanoNvPlnPE6yDXNGedoy3d2Pb9tD0nT2Ld1Aie0GLmf/Wax/4KgL/yQY/lUelzU0YRnjLjbcVck3hoOfqpSakLxqoNQ7GhS7Z4ZoY06ADiYGxwidFWAYFsvOKgREbJZO0zsCEuDpt1TVVrao+yz0JT1feyCNzweQCFKmv9Aw5C41x5gh8uJTKCRJc07eW/8QDu1stZDgBimoCEEim2c2eLAbNI0IypC+XGN2OX1+fSGTzu4KcDti5g67xEuEk1groN3PFRje71v1agzlZbkKU0yt6MpRNWQJ4XUtUW9RcjmmoUS8NFweXBLMeL6yXe76Tg3O6D5rEWfi1baRwP8izzfZsid8k+7NiNU6JJMwPOYO2Wrn/T3gL7foBFFuSGC+D4sBpRM7hANYBN1M52rIbZxEGlum2vPojRB0DztPycOdcMIc+FpSXUH3E85Edgnup5vHwLZYyscxXbB8A5S8G3ZHWp7J2a52AekVP9G3ICQge3WZdz1zoOtuxKMyaOG9B8hN+Lw39iBo9vMoKncDE2gQrEMaTqBIShIn8weiRSzRAcodDXyhhFYCGgZssTEIJkHtlJr8HcXAuh1As0Si/Ow4y7/I2VImpF41bLHpD7ygprhOrIOnU0zHXWbFsLsEKugziSNY/VQKu2f7nZG4OGGcq44YoVs0g8WIRmBVIAynrZg/sTOce+DqzPcS2Kn9NBcForTirsgZwk5deIujUuC+di76VMotaQFgPsgtAIuZlupovsmI3ho2b/NrOAlUYq2chUIRmEapg1W5F/V0NH6jStiGoRsNFTYXvirPuT8w/7PfZlT27aAymVYeut82ihpPJ1L+oPafH5GBB4iZxg5wb36HGh2ZMzh2tZkhl770smyIbhl2zJV6fcMKnKddHURBgAhVggIR72oG4FnidgHsHzWBwFgArF2WPzCB6OyOMRrluBTu/U64izwHkh1uyPXOk+ByAZS/ud+8Zxf+jFyDeO4GlbMqDDDPtJdEVpUv4KbfFf0seMtTNmgZPK0QhlLm3nXenQlBZ4a7UHzoJIQzw2HIPqMIwijU0oLA9G1q7KKhFBBKVzKgPHUZnxOl/JNjKkq9ErJmzF6KDNQqYNg6Q0RBfApMawiULd8UJ49D4DuabkNi1MIIog7+ikuAhA4AGEamibSJWOCkMoo0dkpbuaRagzIM5SDNRItUToFoG3+LfOny7ic2YEzTg5ByQvkbjBHeVLVujFNwwh72pht8HagUo/ldc2kag9hbHMWjjL6Zl3cr6KGF4uTqhAU8wN1JSENdTWPtIEmmvUjHkCKzPFbc/qa21vxo7ijNytwZDMwY0HgV3mCW7YSeRu57SB1pAmUOirE7bOXVuaiVhXN6URPOzEuC9qAXIszrkad0CM+GEncBE0gr54IK8HkMcjyPny7xrxRykOh04cwKwOuqnxlKjfhZKtLmpGOulOGtACuNsuP9uHXMyMPI/v/cQ/JOuT4QjyjG7/Vhmszl2HUzWgrTGecq0ReALIVyjGe5Roum2JNwPfhWqIvWYLBisZR94YOIBE5+ug9Qeqgl1zlklOAt/wQsK305GSiU0vhzFyHYwTHBfNGqBmOue904ItaWPQBM5BbvThUl58tWDmRJ/fsPWrOLqdmGLkydXIV+EDTEc5eWYQTDLaIjNAjPR4KJGizCReZgMce4FhvBr9pjuXbTZBA3uYI0EaHz+eRbf2WoMt5qkILXGBhbKGz/I6Dr30HhiUxL48r9QO9PQxWTWgHpPDasE4KhCWOUbnxfgXgzUvnQ1QoZN5EkZMiGpgJ1Ds63PMMKoRdPsH5XWshVXq16qc4QrMwimJg2mMIoVuCc3EKM+DOpCckedRDHqI4OFQHew8SiYQIhDi4tg8HsHTBPJevocrRt9tTgsllDp1oKFH7tbIBvNNR6CT6Cp3m0rfTalmsMCyhkSujj7VHhAaLlEKdU9iMes5+mSsT4YjYIY7PhQjEtelQ7Mjhw4AQXDO3K9KZ6N1ABvU0g5br7WFmmUURgzq34BaLK7KpMutdcoycr4qoUYSgzJloHNYvLc5Kqtp2PuYUyrFa93LylMVQDOeeJ5Bsyp5utAYngohFJlnZoATCBpt22NW2ZZPWz9Q6MBtxG1OwYcqEmdOp5kZUGihEGyaA6oxz1qMTE3BV3FtUrXAFmsnOfElwi1OgKTuUmAak7CGOBuLDuVczKCWIuoCMA8S2aoTs/cvRU9rsOAsp+Rq5tB+dn39YhmrRc8/kQMgkT2skc0G+YQoEIotJxmPfAc1ii9Oz55bnHKqhj9qn0Iy7H0J57AZeScGm7UPgMcjOCeQ8/IapzBUlgzRnFWBYuYJ1K9kEt5hJw7Ce3FKujeeJyCoQ7XXOQ/4KDCdfk8FimyMNw27WgcIqzLEiK1gbrWO5ry3Tle0qmpx/8OumxrBU7g4rAo2jdzBHR4uuODsOzgfpZ+AHDaGGytlDj5W/vbVm5m8GMupRs5mSDuSqFIiEl5iynos56No1+iaEusMAACwzl9FLGD9CW7BcgrqZIyhZBRW7whuOiq98ApdzrkCBdG0L+wPpFQFwlqM1ZwAIMVGu2laSmWLTet7FMwd1cksC7VTdQaKl8trQy1kcrbguhy/RHec4Qz/NmNue7HXX20MAyr0o92+JdNQpkwdblN7FBgQo9JCKIBElXOF1TBXiKqwh4pjmIUHb+fN5jm3eL5lT86Dj5cVE7coU6N6Ho/FyBuMwjnJY01zlduc1ZshJ3lOzmKs1HhzSiDvlYvvqvFvXzdKJM0NXl8MXgMP2vOQraYi+8uHmkVYlE9q8HmeCkxE/QoIHSgKhTebo26vLXLiGNrrpZHncFZzCTr+VKfcUfMc7k+LA36STuCmj+BpXEQL5osZfgB6Axq3Um4+Aiq23BrOFvNzVkzVIhOwLDyy4urW6k5ViEywpliPRULHDE5GCDqqgmEmkGUIkaOqCwMA0aIhi3CZgFmE1SrVMiu3vFL8aBpA06zdolb8PZTIC5BC4gKKIVexj5wBsmi/hVKabKAUbVGjRC/74Pa5XlknoV9G1m0Ls36Pjy19Hrf/tufa38zxNIaRDEKwfQOLpik0f6PG8LQ7WOD3JXCYH9v7QryuLcKX8+SLE2ATbtOIetEpGzoQxBnwcCyGpuDoDeuGnBj0PB7FWJsBbyEffR05Mcg8T9UB2L7UqTxm1Ow8Ol9w/zZDodCVrEDOj2YMzi2hphAFGoLUDGi9VfipL+ccQGEpGQuJgZK9FeaWOnzKM2jYNef4WM+vj0IfBSrLy7vl9/FE1o0jePoWOSB0yIaXDpfC7lDowZZEfgxAo9JZWR4OjROxm/xKI0qJgPWUtdFkc/OzYcaWOZCrjT5cdYi808EeTMX4W9u91SCkO1QkkRf7MzjAhdrZak4gJxFp099tXxX20SKrOYHQRFzlPDWG3wqMLZ3TYJvGgII0K3AQdpJJK5TzBjAHfY4Z4/x4XcLgE9uvfebyXdPSeSsThDPkhteaRnHKVk+wfTZ7Ko8bht8UoReLSOSqjSo5TyhwGVGhZlKzZw5RcewrjsZDuPDN7ImFM7BABeqHG+Pf/t0idakjNIY3N7BIE83bc6GvXSznKlRjeD9QX9c1nc7Na+2YrUOjbiWGP2zrnu2127Nar2jqSeV7bU+53rttw1/bwyFsqKUzKRpN8yABT7epQaEyn54Ua0g4A0+KgfTxr0+GI8gz3P4+jFHA/bZ0ZBb8F01k0RqYxrAUw9UUHQ1vZt9V6p05AGumUmNParCysoDADjMDs9YjbIyhzatl70HMyCDR4ScUXLpraJwSzUththU0AyDUvpQWN0lrqNlHsIs1pQ9dNeqs4mcl4mKFQGq3L6AMDKCcX7tpGb7R/tGU3xyVZgWlt8CWD7WuYO9hTUTGtJlHFH2ERtytOBBIZM763OV3V408Zyy7fxsjsKCu+sYwejlXpcu27UvIGZybY111NHo+26CBXVgU5eU0tjWXWDOFpphKer7BudAtoQafJy3Q4spyHtQ4FDgHyvoTseD1ALSAq99ZY6wrNGV79QVqulpUhj5GbVNdv9bspam/tJGzObKmDgP7zFM9d3Zfke5l0XDW9jRYBtFm6/MoMJFOvCtQ4tWM9sOsG9bQ07fImoIsbZz2hRfNbXcoILRBrQnU6LirbfD6OltOL+RFVGlRG7l6UzdMF9fADh0gowgb41uOo/82Xf22+7PO8A1aDNujpUIuPhNRZeloyi2zcLOk3A3ts+0HMGy9OLjSeKQOQVNtwcRVB6Z9b3IgDMsIuinOyc8rN54P1aCTE6fQfJaSzpuDUMjp6nFKP4Sdr6tRPJqI3/a16Equzq3AW4r3F/5843SFnaRQyXisUE1zDKs12Htb7aM4I6rXCrf/bs5b4fq3zj7E8r2CM6jfLA1aAzm1jz32b+fFaDcUTwClOEyxZgLUrxqHItf7woEZVNQ6Bs1CeQbI6Z4ammlxEFcDM21C49gvv+ec6pxUdWzye1sHu2LCOMt32wZy03Gxjyey+KaP4KlbDNSCIyAXFQCEJioBSrGJgOXj2gm6UKK8ekOXN8uwMWJEDsjKQ5+bgurVqIMZoPr3NnppIYmFIJgZEBX84hArVQioGjHk6udsi2lmWNpimxmfJnouBc2cwb4ZltJi3RrQs8FE133G5hw9hpO356/pzoUJGBXn0RTjqTH+V34uMgyiRZG7NoT5+twr0JDVUcox29/tGMwVjrDvRM8/9RspgJcirgQWRdXzus9/xVEtYLP2HFx9/tVsJidwbnD5q6vF/5viM3nNFBqYqfytX5VspIjNtTDZdd+7C6DolhH/atvUKvLS4TQOwv5u5618vhyW33/7vTKLLIWdW/2Mbc/nkj2GheOAaxoRn8Bi4IY++rQtAtdGKWB50xGVbs5yMevvy2afvOiqbdPJkoK/i/F77O9NcapEJm22YTDPda+/ahQ4127V9rjX7cWi01Isb1khuabRi71Kqi0Fu8bI2qHtPNlnaQvhQD2/7U16jfG7uu/rxMCKAigUk7+uqMzX1BbeKfUvmca0/FsjqLbI+OyxheFdRrYLgwpoYfMK1dPWlT6BNqouxrBdloHZZ7Kf+nuBKK9bV89Jwf6v2Q/wOLTUPrc4W2UotT0AwOI6bI9t2QrPU1EKleOuF+efvL5H69QbaqpAUs3nN9jH/q17sCL94jQ02dyi+A88nkF8u+uGNfT0LZ5n8IPXr/9jCy9cfZ3+NFbD1aae6493/XMW2Gr7XrmZeRbj4qbk69LVtjio73MVty2MptbIuyu/T8PjRkYXAR+o0GVNSeX1RqM04zbh8XP2ftLw6xzFe2G5HyTFb414a7gn49w3Rvmx116BKIB3vvGVpkktfHH1WO/yOL3X57HzrNdP2es1+3m3KLWtC9jrr7tuF9dV+1w7j+/i6NAUjlsK6mP7DddTOVuq6dXawmPv+S736WPfJ5rv/YmsG0fw9K0mPb1Knysr1wjvsZfP118ghb63uGjf5WLSFPSxx+x4KQmTpN2Pa1L3d9hf+ZvR8KwxqEn7+ZohGdfdDIvjPbb/pTO5iglfxaJLZN9QIssq38cHT8ULs6Q5znJd+Q7ej+NuPhv1fmnAriuWLj67BBN01Ri1x7zuvc14moG9xumzFWKvcvqv+Xw8AcDS0NI7GNTrlpzT6gTJ++W19V4O6RoDbL0Jj11/jUO69ty8Q6HVrtnrHBpduf6Xe3sf19mTNNyfsGIxMb+TufjDs4joDQC/+x06/DMA3vwOHfvbXTd7en/radwT8HTu67tpT59h5nsf5gBE9Ncg+3s/601m/qkP837f6fWJcATfyUVEX2HmH/u499Gumz29v/U07gl4Ovd1s6fv7nU9iHyzbtbNulk367tm3TiCm3WzbtbN+i5fN47gvdcvfNwbuGbd7On9radxT8DTua+bPX0Xr5sawc26WTfrZn2Xr5uM4GbdrJt1s77L140juFk362bdrO/ydeMIdBHRP0dEv0FEmYh+rHn8s0R0IKK/rf/9N83ffpSIfo2IvkpE/znRdYL6T35P+ref1/f9bSL6xz6qPV2zxz9LRK825+efeK89fhSLiH5K3/erRPRzH+V7X9nHN/X7+NtE9BV97A4R/TIR/Y7+vP0d3sN/R0SvE9GvN4+94x4+qu/tHfb1VF5Pn/jFzDf/SZ3kBwB8H4D/E8CPNY9/FsCvv8NrfhXAn4A0T/4SgH/8I9rTDwL4OwB6AJ8D8DUA/qPY0zV7/LMA/v1rHn/HPX4E36XX9/s8RPz17wD4wY/puvomgGeuPPbnAfyc/v5zAP7j7/AefhLAj7TX8Tvt4aP83t5hX0/d9fTd8N9NRqCLmX+LmX/7/T6fiF4AcMbMf4PlSv2LAP7UR7Snnwbwi8w8MPM3AHwVwI9/FHv6AOvaPX5E7/3jAL7KzF9n5hHAL+p+npb10wD+gv7+F/Ad/o6Y+f8G8Pb73MNH9r29w77eaX2c19Mnft04gve3PkdEf4uI/i8i+gl97CUArzTPeUUf+yjWSwB+75r3/rj29O8Q0d/VVN8ghnfa40exPs73vroYwF8nor9JRD/z/7dz965RRGEUh38HUQuxMOJHIFESiAhaKFoELGw0oGAhNqkMKOm1sEppI6idKCjYWFiqwUKJ/gNKBBXBD6IYJSGClVVI8VrMDaxxN4mS3RnmngeWnZnd4R5mbvadndy9aduOiJgFSM/bS8jVKkMVjl3V+lPt1WPSuVWS9AzY2eSlsYh41GK3WWBXRPyUdAh4KGkfzefS+uexuP+ZqVXba5Lpr8aWyQjcAi6ndi4D14Fz7cqySmW2vdSRiJiRtB2YkPS+pByrVfaxq2J/qr2sCkFEHPuPfeaB+bQ8KWkK2ENxRdLT8NYeYKYTmVLbvU3aXpNMS602o6Q7wOMVMnZCmW3/ISJm0vMPSQ8obmfMSeqOiNl0O6/FHOpt1SpDqccuIuYWlyvUn2rPt4ZWIGmbpHVpuR8YAD6nr9O/JA2mkTlngVZX8GttHBiWtFFSX8r0ooxM6UNk0WlgcQRI04ztzNLgJTAgqU/SBmA45ekoSZskbV5cBoYojs84MJLeNkLn+k2jVhnKPG9V7U/1V/Z/q6vyoOh03ymu/ueAp2n7GeAdxYiFV8Cphn0OU3TUKeAG6Zfa7c6UXhtL7X6gYWRQuzM1yXgPeAu8ofhj7V4pY4fO50ngY2p/rKQ+1Z/6zevUh8bS9q3Ac+BTeu5qc477FLc4F1J/Or9chk6dtxa5Ktmf6v7wFBNmZpnzrSEzs8y5EJiZZc6FwMwscy4EZmaZcyEwM8ucC4HViqReSV8kdaX1LWl9d9nZzKrKhcBqJSK+UUxTcCVtugLcjoiv5aUyqzb/jsBqR9J6YBK4C4wCB6OYhdTMmshqriHLQ0QsSLoEPAGGXATMludbQ1ZXJyimL9hfdhCzqnMhsNqRdAA4DgwCF5dMZGZmS7gQWK2kWVdvARciYhq4ClwrN5VZtbkQWN2MAtMRMZHWbwJ7JR0tMQB+/CoAAAA1SURBVJNZpXnUkJlZ5vyNwMwscy4EZmaZcyEwM8ucC4GZWeZcCMzMMudCYGaWORcCM7PM/Qa5jfNt+SlMewAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<Figure size 432x288 with 2 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "needs_background": "light" | |
| }, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "yearly_events_anom[-1].plot()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.7.3" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 4 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Typo in this bit Ryan "## Compute the climatology and anomalies as 2D maps\n",
"\n",
"The advantage of the
map_blocksapproach is that it doesn't create too many chuncks. That way we can lazily build more operations on top of the anomaly dataset.\n",