Last active
July 20, 2020 22:49
-
-
Save oguna/2299c42cc6acaba35f4fdec13b7e7440 to your computer and use it in GitHub Desktop.
Untitled0.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "name": "Untitled0.ipynb", | |
| "provenance": [], | |
| "collapsed_sections": [], | |
| "authorship_tag": "ABX9TyPc3cGDQh7Wma52AWDZY+tL", | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| } | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/oguna/2299c42cc6acaba35f4fdec13b7e7440/untitled0.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "LzxU9AOUgCsT", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "import math\n", | |
| "import datetime\n", | |
| "import matplotlib\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "import numpy as np\n", | |
| "import pandas as pd" | |
| ], | |
| "execution_count": 3, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "Uw8ELAg0gVJR", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "def get_jd(m: int, d: int) -> int:\n", | |
| " md = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]\n", | |
| " jd = 0.5 + d - 1\n", | |
| " for i in range(m-1):\n", | |
| " jd += md[i]\n", | |
| " return jd\n", | |
| "\n", | |
| "def calcA1(jd: float, h: float, lat: float, lon: float) -> (float,float):\n", | |
| " w = 2 * math.pi / 365\n", | |
| " wj = w * jd\n", | |
| " delta = 0.33281 - 22.984 * math.cos(wj) - 0.34990 * math.cos(2 * wj) - 0.13980 * math.cos(3*wj) + 3.7872 * math.sin(wj) + 0.03250 * math.sin(2*wj) + 0.07187 * math.sin(3*wj)\n", | |
| " ee = 0.0072*math.cos(wj) - 0.0528*math.cos(2*wj) - 0.0012*math.cos(3*wj) - 0.1229*math.sin(wj) - 0.1565*math.sin(2*wj) - 0.0041*math.sin(3*wj)\n", | |
| "\n", | |
| " Ts = h\n", | |
| " T = Ts + (lon - 135)/15. + ee\n", | |
| " tt = 15*T - 180\n", | |
| "\n", | |
| " phi = lat*math.pi/180\n", | |
| " del_ = delta*math.pi/180\n", | |
| " ttt = tt*math.pi/180\n", | |
| "\n", | |
| " angH = math.asin(math.sin(phi)*math.sin(del_) + math.cos(phi)*math.cos(del_)*math.cos(ttt))\n", | |
| " sinA = math.cos(del_)*math.sin(ttt)/math.cos(angH)\n", | |
| " cosA = (math.sin(angH)*math.sin(phi) - math.sin(del_))/math.cos(angH)/math.cos(phi)\n", | |
| " angA = math.atan2(sinA, cosA) + math.pi\n", | |
| "\n", | |
| " return (angH, angA)" | |
| ], | |
| "execution_count": 4, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "D_DJI-FugZpj", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "lon = 135\n", | |
| "lat = 35.681236\n", | |
| "dt = datetime.datetime.now()\n", | |
| "jd = get_jd(7, 20)\n", | |
| "t = np.arange(4.0, 20.0, 0.1)\n", | |
| "xa = np.arange(len(t))\n", | |
| "ya = np.arange(len(t))\n", | |
| "for i in range(len(t)):\n", | |
| " h,a = calcA1(jd, t[i], lat, lon)\n", | |
| " ya[i] = h * 180 / math.pi\n", | |
| " xa[i] = a * 180 / math.pi" | |
| ], | |
| "execution_count": 7, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "zmEUhgBugk8N", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 279 | |
| }, | |
| "outputId": "d02a622c-1e02-44b7-f4d5-7138843129d6" | |
| }, | |
| "source": [ | |
| "fig, ax = plt.subplots()\n", | |
| "ax.plot(xa, ya)\n", | |
| "ax.set(xlabel=\"azimuth\",ylabel=\"dramatic\")\n", | |
| "ax.grid()\n", | |
| "plt.show()" | |
| ], | |
| "execution_count": 8, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU5dn/8c+VyUZIIJBAgIQkhCwsKkuQHSQKQrXuWrVatyq22lah2sW2z9P1eawoVn+1WrVS2qrgro9VAZWwBNl3kJAEAglbCEsgZM/cvz/mYCNbJiGTMzPner9e88rMmTMz35tDrjm5z33uI8YYlFJKOUeI3QGUUkq1Ly38SinlMFr4lVLKYbTwK6WUw2jhV0ophwm1O4A34uPjTWpqarPrnThxgo4dO/o+kB9xYpvBme12YpvBme1uqzavWbOm3BjT7dTlAVH4U1NTWb16dbPr5ebmMmHCBN8H8iNObDM4s91ObDM4s91t1WYR2XWm5drVo5RSDqOFXymlHEYLv1JKOYwWfqWUchgt/Eop5TBa+JVSymG08CullMMExDh+pezkdhuW7zzEih2Hac005hclxTIhqxuhLt3PUv5BC79SZ1FyuIq315by9tpSSg5XAyDSsvc4+T0RHx3B9UMTuSk7iYyEmDZOqlTLaOFXQWvP0WqOVde3+HX5+4/zxuoSlhUdQgTG9I3nkcuzmDywB5Fhrha9V32jm9z8g7y5uoRXlu7kxcU7GNQ7lpuykxia3KVFXyQlx90Ul58gJS4Kaek3kFJNaOFXQWdV8WH+srCQhfkHW/0evbt2YPqkTK4fmkhSl6hWv0+YK4RJAxKYNCCB8spa3lu3h7fWlPLL9za37g3zcslO6cKDOX3JyequXwCqVbTwq6BgjCF3+0GeX1jEyuLDdO0YzrSJmWT1iG7xe8VHRzA0uQshIW1bVOOjI7h3XBrfHduHLXuPUXqkqkWv37x5C7GJaczKK+aev6+mX48Yvj+hL1de2FOPH6gW0cKvAkJNfSNvry3l9ZW7qaxpoLq6mg6rFn71fHV9IweO1dKzcyT/fdUAbr64N1Hh/vnfW0S4ILEzFyR2btHrIsvzmTAujTtHp/L++r08n1vIQ3PW87sPtxIdcXpbI0JdXDc0kdtGJBMTGdZW8VUQ8M/fDKUslbUNvLZiFy8v2UnZ8VouTOzMoN6xHDhQS0JC7FfrCTA6PZ5rBycSHhrce79hrhBuzE7i+iGJzN+6n/lbDtB4htFG+ypqePzjbfxlYSF3jErl7jGpxEVH2JBY+Rst/MovHTlRx6xlxcxeVkxFdT1j0uN4+ubBjO4bh4hY09YOsTumrUJChCkX9GTKBT3Pus7G0qM8n1vEc7mFvLx0B7dcnMzU8Wn0iu3QjkmVv9HCr/zKvopqXlq8k9dX7qa6vpHLByTwQE46g3vHNv9idZqLkmJ5/vZsCssqeWFREf9avot/Ld/FtUMS+d4lfUnv3vJjICrwaeFX7a68spa9R6u/tqy2wc1bq0t5Z10pbgPXDO7F9y/pq2Pe20h692ievGkQ0yZl8tLiHcxZtZu315YyZWAPbh+ZQkzk10tBfHSE/lUQxLTwq3bT0Ojmb0t38vSn26mpd5/2fERoCN8ensx949POawilOrvE2A78+uqB/PDSdGblFTP7i2I+3rz/tPVcIcK9Y/vw8MRMOoS37NwF5f+08Kt2saHkKD9/ZxNb9x1jYv8Ebr64N01HS4p4uiXi9eBju4iLjuCRyVncf0kaq3cdwe3++sHh+VsO8NfFO/ho8z5+f+2FXJJ52mVbVQDTwq98qrK2gafm5zN7WTHx0RG8cPtQJg/soSce+YmYyDBysrqftvyy/glcNzSRx97dxJ2vrOTawb345TcH6BdzkNDCr3zm060H+K/3N7PvWA23j0jh0SlZdNLx5AFjZFocH/1oHH/JLeL53EJytx/ksSv6c1N2kn5xBzgt/KrNlR2r4df/t4WPNu0nMyGat749muyULnbHUq0QGeZi+qRMrrqoJ4+9u4mfvLWRd9aW8j/XXUhaNx0RFKi08Ks243YbXlu5mz9+so3aBjePTs7ivnFpQX9ClRNkJMQwd+oo5q4u4X8++pIpzyzhhznp3H9JX92+AUgLv2oT2w8c5+fvbGLNriOM7hvHH667kD7xHe2OpdpQSIhw6/BkLuvXnd98uJWnFmzngw17efyGC8lO6Wp3PNUC+lWtzktNfSMz5+dz5bNL2HGwkidvGsSr947Qoh/EuneK5LlvD+WVu4ZRVdfIDc9/wS/f28SxmpZPga3soXv8qtW+KDrEL97dxI7yE1w/JJFfXNlf54JxkEv7JTBiWhwzF2xnVt5O5m85wG+uHsiUC3TUlr/TPX7VYsYYHv94G7e+tJwGt+Gf3x3OzJsHa9F3oI4RofzqmwN4/8GxdIuJ4PuvrmXa3PXUNZx+gp7yH7rHr1rE7Tb88v3NvLZiN98ekcyvrhygZ3YqLkzqzPsPjuG5hUU8/el2jtU08Jfbhrb4imWqfegev/JafaOb6W+s57UVu3kwpy9/uPYCLfrqK6GuEB6amMHvr72Ahfll3DVrJWXHa+yOpc5AC7/ySm1DIw+8upb31u/lJ1OyeHRyP+3HVWd0+8gUZn5rEGt3HWXiU4t4feXu06aEUPbSwq+aVVXXwL2zV7Ng6wF+e81AHpiQbnck5eeuG5LExw+Po3/PTvz8nU3c8uJyCssq7Y6lLFr41Tkt3n6QyX9aTF5hOU/eNIg7RqXaHUkFiL7dopkzdSRP3HAR+QeOc+1zeazcedjuWAot/OosyitreXjOOu54ZSVhrhBev28kN2Yn2R1LBRgR4VsX9+aTh8fRvVMEd7yygtz8MrtjOZ4WfnWaNbsOM2nmIv69aR8PXZbBxw+NY0RanN2xVADr2bkDb9w/ij7x0dz3j9V8vGmf3ZEcTQu/+pqlBeXc/vJKYqPC+ehH45g2KZOIUB25o85ffHQEc+4byYWJnXnwtbW8vabU7kiOpYVffWXB1gPc8/dVpMRF8cb9o/Syh6rNdY4K45/fHcHItDh+/OYG/vlFsd2RHEkLvwLg/fV7+N6/1tC/VyfmTB1Jtxg9C1f5RseIUF6562Im9u/Or97fwguLiuyO5Dha+BWvr9zNw3PXc3FqF169dwSxUeF2R1JBLjLMxfO3Z/PNi3ry+MfbeHJePsboWP/2olM2ONzmPRU89u4mLsnsxgu3Z+sp9qrdhLlCeOaWIUSFu/jzwkJy+nXXC/a0E93jd7gZ8/Lp3CGMZ28dokVftTtXiPDYFf0RgSUFB+2O4xg+LfwiEisib4nINhH5UkRGiUhXEVkgIgXWT/2Kt8mKHYdYtP0g37+kr14LV9kmNiqcCxM7k1dYbncUx/D1Hv8zwCfGmH7AIOBL4GfAZ8aYDOAz67FqZ8YYnpiXT0KnCO4cnWp3HOVwo/vGs273UU7UNtgdxRF8VvhFpDMwHvgbgDGmzhhzFLgGmG2tNhu41lcZ1Nl9vq2MNbuO8KPLMrSLR9lubHo8DW6j3T3tRHx1JF1EBgMvAlvx7O2vAR4C9hhjYq11BDhy8vEpr58KTAVISEjInjNnTrOfWVlZSXR0dJu1IRC0ps1uY/jvZTXUNRr+MLYDoSGBN8umbuvgUtdoeGxpNSfqDdOzI8no8p+dkWBu99m0VZtzcnLWGGOGnfaEMcYnN2AY0ACMsB4/A/wOOHrKekeae6/s7GzjjYULF3q1XjBpTZvfW1dqUn76oXlvXWnbB2onuq2DT+mRKjNhxkLT75cfmyXbD361PNjbfSZt1WZgtTlDTfVlH38pUGqMWWE9fgsYChwQkZ4A1k+dsakdrd19hF+9t5kBPTtx1UW97I6j1FcSYz3z+aTERXHP31cxf8t+uyMFLZ8VfmPMfqBERLKsRZfh6fb5ALjTWnYn8L6vMqivW1ZUzu0vr6BLx3BevCObkADs4lHBrVtMBHOmjqR/r058/9W1vL9+j92RgpKvR/X8EHhVRDYCg4H/AR4HJolIATDReqx8bPuB49w9axVJXTrw5v2jSOoSZXckpc4oNiqcV+8dwcWpXXh47no2lzfaHSno+PTMXWPMejx9/ae6zJefq043Y14+4a4QXrtvJPHROg+P8m/REaH8/e7hXP70Yubm1/CA2+hfqG1Iz9x1gC+KDrFg6wGmjk/Toq8CRmSYi+mTMik57uattTqFc1vSwh/kvig6xL2zPVMt3zO2j91xlGqRqwf1IiM2hMfe2cQHG/baHSdoaOEPYgvzy7hr1kp6WaMlOkbonHwqsISECNOHRTI0pQsPzVnH3FW77Y4UFLTwB6lDlbX88LV1pHePZu79o0joFGl3JKVapUOoMPvu4YzL6MbP39nE9gPH7Y4U8LTwB6m/5BZRVdfAM7cMpmtHnV9fBbYO4S7+dPNgosJDeXJevt1xAp4W/iC092g1/1y+ixuGJpHeXS+fqIJD147hTB2fxvytB1i3+4jdcQKaFv4g9MynBWDg4UmZdkdRqk3dM7YPcR3DmaF7/edFC3+QKSyr5M01Jdw2MpnE2A52x1GqTUVHhPJgTjrLig6xtEDn728tLfxBZuaCfCLDXDyYk253FKV84uROzYx52/Q6va2khT+IbCqt4KNN+7l3bB89UUsFrYhQFw9NzGBDaQXzdCK3VtHCH0SemLeN2Kgw7h2fZncUpXzq+iGJ9O3WkSfnb6fRrXv9LaWFP0h8UXSIJQXlPDBBr5+rgl+oK4RHLs+isKySd3Q6hxbTwh8EjDE8MW8bPTpFcseoVLvjKNUuplzQg4uSOvOnTwuobdAZPFtCC38Q+PTLMtbtPspDE/X6uco5RISfTO7HnqPVvLpcp3JoCS38Ac5tDE/Oy6dPfEduyk6yO45S7WpsRjyj+8bx3MJCKmsb7I4TMLTwB7jl+xrJP3Cc6ZMyCXXp5lTO8+jkLA6dqOOVpTvtjhIwtFIEsLoGN+8W1DGgZyeuvLCn3XGUssWQ5C5cPiCBlxbv4MiJOrvjBAQt/AFszqrdHKw2PDolS69OpBztkclZVNY18PyiIrujBAQt/AGqqq6BZz8rJLNLCBMyu9kdRylbZSbEcN2QRGYvK2Z/RY3dcfyeFv4ANSuvmPLKWm7KDEdE9/aVmjYxE7cxPPNZgd1R/J4W/gBUUVXPXxcVcVm/7mR00eGbSgH07hrFbSNSeGN1CTvLT9gdx69p4Q9ALy4p4nhtA49MzrI7ilJ+5cGcdCJCQ/jTp9vtjuLXtPAHoA837uOSzG7079nJ7ihK+ZVuMRHcmJ3EvC379Wzec9DCH2BKDlex61AVl+gBXaXOaHxGN2rq3azdddTuKH5LC3+AWVbkufjEmPR4m5Mo5Z9GpHXFFSJf/a6o02nhDzB5hYfoFhNBRvdou6Mo5ZdiIsO4KKkzSwu18J+NFv4AUl3XyJKCg4zpG6dDOJU6h7Hp8WwoOapj+s9CC38A+fuyYo5U1XPbyBS7oyjl1741rDeuEOHZz3VM/5lo4Q8QFVX1PJ9bSE5WNy5O7Wp3HKX8Wu+uUdw6PJk3VpVQrGP6T6OFP0D8dXERx2p07L5S3vrBpemEuUKYuUDH9J9KC38AKDtew6y8Yq4a1IuBvTrbHUepgNA9JpK7x6TywYa9bN17zO44fkULfwD48+eF1De6+fGkTLujKBVQ7r+kL507hPHk/Hy7o/gVLfx+ruRwFa+v3M23Lu5NanxHu+MoFVA6dwjje5f05fNtZawuPmx3HL+hhd/PPb1gOyEi/OjSDLujKBWQ7hqdSveYCJ74JB9jjN1x/IIWfj+Wv/84767fw12jU+nROdLuOEoFpA7hLn54WQYriw+Tu/2g3XH8ghZ+P/b0gu1Eh4fyvUv62h1FqYB287DeJHeN4sl52tcPWvj9VnVdI59vK+OmYb3p0jHc7jhKBbTw0BDuGZPKlr3H2H2oyu44tvN54RcRl4isE5EPrcd9RGSFiBSKyFwR0ap2BquKD1PX6GZ8pk7GplRbGGfNaKtz+LTPHv9DwJdNHv8ReNoYkw4cAb7bDhkCTl5ROWEuYXgfPUtXqbaQFt+RHp0iydPC713hF5EFIhLb5HEXEZnnxeuSgCuBl63HAlwKvGWtMhu4tqWhnSCvsJwhyV2ICg+1O4pSQUFEGJMez7KictxuZ4/u8XaPP94Y89VVDYwxR4DuXrzuT8BPALf1OA44aoxpsB6XAoleZnCMksNVbNl7jDF9tZtHqbY0NiOOI1X1rHT4mH5vdyfdIpJsjNkNICIpwDm/MkXkm0CZMWaNiExoaTARmQpMBUhISCA3N7fZ11RWVnq1nr97aWMtLoHeDSXk5u4557rB0uaWcmK7ndhmaNt2RzUYOoUL//XmSn4+PNJvpzf3+bY2xjR7A6YAu4F/Av8CdgGTm3nN/+LZoy8G9gNVwKtAORBqrTMKmNfc52dnZxtvLFy40Kv1/Fn+/mMm9Wcfmt9/uMWr9YOhza3hxHY7sc3GtH27Zy/baVJ++qH5fNuBNn3fttRWbQZWmzPUVK+6eowxnwBDgbnAHCDbGHPOPn5jzM+NMUnGmFTgFuBzY8xtwELgRmu1O4H3vcngFE/Oyyc6PJQHJqTbHUWpoHTLxcn07tqBGZ/kO7av/5yFX0T6WT+HAsnAXuuWbC1rjZ8C00WkEE+f/99a+T5BZ93uI8zfeoD7xqfp2H2lfCQ8NIRpEzPZuu8Y/960z+44tmiuj386nn72p87wnMEzQqdZxphcINe6vwMY7nVCB5kxL5+4juHcM7aP3VGUCmrXDE7khUVFzFywnSkX9CDM5axzWc/ZWmPMVOvuN4wxOU1vwBW+j+ccSwvKWVZ0iAdz0omO0CGcSvmSK0R45PIsdpaf4K01pXbHaXfefs0t83KZaqXnFxXSq3Mkt41MtjuKUo4waUACQ5JjeT63yHGzdjbXx99DRLKBDiIyRESGWrcJQFS7JHSAqroGVu48zFWDehER6rI7jlKOICJcPzSJ3YerKHbY/D3N9SlMBu4CkoCZTZYfBx7zUSbHWVV8hPpGw5h0PWFLqfY0pm8c4DlTvo+DLnR0zsJvjJkNzBaRG4wxb7dTJsfJKywn3BXCxak6L49S7alPfEd6dfbM33P7yBS747Qbr44iGmPeFpErgYFAZJPlv/VVMCfJKyxnaEosHcK1m0ep9nRy/p75Ww/Q6Da4QvzzTN625u0kbS8ANwM/BAS4CXDO16OPbT9wnEFJsc2vqJRqc5f2605FdT2fbN5vd5R24+2ontHGmDuAI8aY3+CZaiHTd7GcxRgIdTljT0Mpf3P5wB5kJkTz1IJ8Ghrdzb8gCHhb+Kutn1Ui0guoB3r6JpKzlFfW0mgMoSHOOoFEKX/hChGmTcxkx8ETLClwxlz93p4p9KE1H/8MYC2es3Zf9lkqB3luYSECXDWol91RlHKsjIRoACprG5pZMzh4e3D3d9bdt61LKEYaYyp8F8sZSo9U8ery3dyYnUR692i74yjleA1uZ3T1eFX4RcSF50paqSdfIyIYY2ae63Xq3J75tACAhybq4RKl7JTUJYr46HDmrirh2sGJfjtPf1vxtmP5//CcyBUHxDS5qVYqLDvO22tL+c6oFBJjO9gdRylHiwxz8YOcdJbvOOyIfn5v+/iTjDEX+TSJwzw1fzsdwlw8MKGv3VGUUsCtI5J5aclOZszLZ1xGfFDv9Xu7x/+xiFzu0yQOsrH0KB9v3s+949KIi46wO45SCogIdTFtUiab9lTwcZCP6fe28C8H3hWRahE5JiLHReSYL4MFs78u3kFsVBj3jtN595XyJ9cNSSS9ezR/XVRkdxSf8rbwz8Rz0laUMaaTMSbGGNPJh7mCVqPbsLSgnEn9E4iJDLM7jlKqCVeIcPWgXmzcU8GRE3V2x/EZbwt/CbDZOG3Sah/YuvcYFdX1OhOnUn5qTHocxsAXOw7ZHcVnvD24uwPIFZGPgdqTC3U4Z8stLfSMGBidHmdzEqXUmVyUFEt0RCh5heVccWFwTlDgbeHfad3CrZtqpbzCcrISYugeE9n8ykqpdhfmCmFkWlfyCoN3WKe3Z+7+xtdBnKCwrJJlReXcf4kO4VTKn13aL4FPvyxjaUE5YzOCr1vW22mZu4nIDBH5SEQ+P3nzdbhg8/QCz9j9e8fqaB6l/NkN2YkkxnZgxrxtQXk9Xm8P7r4KbAP6AL8BioFVPsoUlA5V1vLvTfu4c3Sqjt1Xys9FhLp4MCedDaUVbCwNvmnJvC38ccaYvwH1xphFxph7gEt9mCvo1DR4Jn9KjXPOdT2VCmSp8VEAVNc32pyk7Xl7cLfe+rnPugTjXkAvENsCdQ3OmPVPqWATjL+73u7x/15EOgM/Bh7BMxf/NJ+lCkKvLt9FiMDQlC52R1FKeWFAz05ER4Ty2orddkdpc80WfmtK5gxjTIUxZrMxJscYk22M+aAd8gWFvUer+cfyXVw/VOfdVypQxEaFc9+4ND7Zsp/1JUftjtOmmi38xphG4NZ2yBK0nv2sAAw8PDHD7ihKqRb47rg+xHUMZ8a8bXZHaVPedvXkicifRWSciAw9efNpsiCx42Alb64p5dsjkknqEmV3HKVUC0RHhPJATjp5hYeC6oQubw/uDrZ+njyRS/Bcd1dH9jTjlbydhLmEH1yabncUpVQr3DYimZeX7ODFxTuCZo6tcxZ+EZlu3f0QT6FvemWC4DurwQeWFJQzNj2eeB27r1RAigxzMXlgD+as2k1tQyMRoS67I5235rp6Tl5iMRv4PtAT6AXcD2hXTzNKj1Sx61BV0OwlKOVUY9Ljqal3s253cBzkPece/8k5ekRkMTDUGHPcevxr4N8+TxfglhV6pnXVwq9UYBuR1hVXiJBXWM7ItMCfWdfbg7sJQNOrEtRZy9Q5LC0sp1tMBBk6hFOpgNYpMoyLkjoHzYXYvS38/wBWisivrb39FcDffRUqGOyvqGHelv1M7N89qC/arJRTTOyfwPqSo2wsDfzuHq8KvzHmD8DdwBHrdrcx5n99GSzQPfNZAW5jeGCCjuZRKhjcMSqFLlFhzJiXb3eU8+btcE6MMWuBtT7MEjQaGt28ubqEm4Yl0burjt1XKhjERIZx3/g0nvgkn5LDVQH9u+1tV49qAbeBBrfRE7aUCjInf6drA3ziNp8VfhHpLSILRWSriGwRkYes5V1FZIGIFFg/g27WsmCcxlUp9R81Af477ss9/gbgx8aYAcBI4EERGQD8DPjMGJMBfGY9Dir/WFYMwOi+gT/sSyn1H8NSuhDuCuEfXxTbHeW8+KzwG2P2WccFsMb/fwkkAtcAs63VZgPX+iqDHY6cqOPFxTuYNCCBIclB98eMUo7WK7YDt41M5q01pRSWVdodp9WkPa4nKSKpwGLgAmC3MSbWWi7AkZOPT3nNVGAqQEJCQvacOXOa/ZzKykqio+0dMz83v45PdtbzuzEdSIrx/SEUf2izHZzYbie2Gfyv3cdqDY8uruLCeBc/GBLpk89oqzbn5OSsMcYMO+0JY4xPb0A0sAa43np89JTnjzT3HtnZ2cYbCxcu9Go9X9l3tNpk/uIjM23Ounb7TLvbbBcnttuJbTbGP9v91LxtJuWnH5qNJUd98v5t1WZgtTlDTfXpLqmIhAFvA68aY96xFh8QkZ7W8z2BMl9maE+vrdhFg9swbVKm3VGUUj507/g0OkWG8kreTrujtIovR/UI8DfgS2PMzCZPfQDcad2/E3jfVxna25LCcgYldQ7o8b1KqeZ1igxjQlZ3lhSUn+y5CCi+3OMfA3wHuFRE1lu3K4DHgUkiUgBMtB4HvGM19WwoOaoTsinlEGPT4ymvrGX7gcA7yOv1mbstZYxZytfn72/qMl99rl1W7DiM2+hMnEo5xeh0z3DtvMJysnrE2JymZfTM3TaSV1hOZFgIQ5JPG6CklApCSV2iSI2LYmkAXpJRC38b2XXoBOndo4Pi6jxKKe9cPrAHufllFB0MrO4eLfxtKESnX1bKUaaOTyMyzMXM+dvtjtIiWvjbQKPbsOtwFZFhurevlJPER0dw+8gU/r1pHydqG+yO4zUt/G3g/fV72HHwBN8ZmWJ3FKVUO+vRyXP2bkNj4Azr1MJ/nuoa3Dz96XYG9OzElRf2tDuOUqqdnezhPVGne/yOMWfVbkoOV/PolCxCQrSPXymnGZsejwjMCqCzeLXwn4equgae/ayQ4X26MiGzm91xlFI2yEiI4bohicz+Yhf7KqrtjuMVLfznYVZeMeWVtfx0SpZeUF0pB5s2MRNjDM9+VmB3FK9o4W+liqp6/rqoiMv6dSc7pavdcZRSNurdNYrbRqTwxupSdgTAmH4t/K30zrpSjtU0MP1ynYlTKQUP5qQTGiL8c/kuu6M0Swt/Ky0tKCc1LoqBvTrbHUUp5Qe6xUQwvE9X8gJgCgct/K1Q3+hm+Y5DOiGbUuprxqTHs/1AJWXHauyOck5a+FthY+lRTtQ1MlYLv1KqiTF9PTVhWdEhm5Ocmxb+VlhacAgRGNU3zu4oSik/MqBXJ2Kjwvx+xk4t/K1QeqSKHp0iiY0KtzuKUsqPuEKEjO7RlB6psjvKOWnhbyUdta+UOpNAOKdHC38LGWMoKKukY4TPLl6mlApg0RGh7DpURW1Do91RzkoLfwt9vq2M9SVHuWtMqt1RlFJ+6K7RqeyrqGHOyhK7o5yVFv4WcLsNM+blkxoXxbeG9bY7jlLKD43LiGdkWlf+3+eFVPnpjJ1a+Fvg/zbuZdv+40yblEmYS//plFKnExF+MqUf5ZW1zMortjvOGWn18lJ9o5uZC7bTv2cnrrqol91xlFJ+bGhyFyb2T+CFRUUcraqzO85ptPB7ae6qEnYdquLRyZk6775SqlmPTs6israBFxbtsDvKabTwe6G6rpFnPytgWEoXcrK62x1HKRUAsnrEcO3gRGbl7eSAn03hoIXfC7O/KKbseC0//Ua/gBijq5TyD9MmZtLo9r95+rXwN6Oiup7nc4vIyerGxak6775SynvJcVHcOjzZ6io+YXecr2jhb8ZLi3dQUV3PI5Oz7I6ilApAP7w0nVCXMHPBdrujfEUL/zkcPF7LK3k7uWpQL513XynVKt07RXL3mD58sMNIBjQAAAt5SURBVGEvX+47ZnccQAv/Ob2wqIjaBjfTJ+lVtpRSrfe98X2JiQj1m71+LfznsGlPBUOTY+kT39HuKEqpANY5KoyJ/RPYsqfC7iiAFv5muXTMvlKqDfhTLdHCr5RSDqOFXymlHEYL/1kYYzhWXe9Xf54ppQKXK0Q4UddIXYPb7iha+M8md/tBtu0/zpSBPeyOopQKApMv6EFFdT1zV9s/T78W/jNwuw0zPsmnd9cO3Hxxst1xlFJBYEJmN4anduXZzwqorrP36lxa+M/g35v2sXXfMaZPyiQ8VP+JlFLnzzNPfxYHj9cya9lOW7NoVTvFyXn3sxJiuHpQot1xlFJBZFhqVy7t150XcouoqKq3LYcthV9EpohIvogUisjP7MhwNm+tKWVn+QkemZylB3aVUm3ukcuzOFbTwF8XF9mWod0Lv4i4gOeAbwADgFtFZEB75ziV223YV1HNM58WMDQ5lon9dd59pVTbG9CrE1cP6sWsvGIKy45T39j+o3zs2OMfDhQaY3YYY+qAOcA1NuT4mh/NWceo//2c/cdqeHSyzruvlPKd6ZMyqW90M3HmYm564QvcbtOuny/GtPMHitwITDHG3Gs9/g4wwhjzg1PWmwpMBUhISMieM2dOs+9dWVlJdHR0izPtqGjkt1/UMKqXi2EJoWQnhLb4PezS2jYHOie224lthuBt99ZDjawra2DBrgYeGBzB8B7/qTtt1eacnJw1xphhpy732wpnjHkReBFg2LBhZsKECc2+Jjc3F2/WO9VLLy8nrqObl+7PITrCb/9Jzqi1bQ50Tmy3E9sMwdvuCUCj2/CNZxbzyR7D9JvGE+rydML4us12dPXsAXo3eZxkLbNFXmE5eYWHeCAnPeCKvlIqsLlChEcuz2LHwRO8vba03T7XjsK/CsgQkT4iEg7cAnxgQw6MMTwxL59enSO5bYSeqKWUan+TBiQwJDmWP31aQE19+5zY1e6F3xjTAPwAmAd8CbxhjNnS3jkA5m05wIaSozw8MZPIMJcdEZRSDiciPDo5i30VNfxr+a52+UxbxvEbYz4yxmQaY/oaY/5gR4ZGt+Gp+fn07daR64fqiVpKKfuM7hvPuIx4/pJbRGVtg88/z7Fn7i4uOEhBWSXTJmV+dUBFKaXs8sjlWRw+Uce77dDX79iKd7zG863ar0cnm5MopRT07+mpRcdqdI/fZxrd9s+JrZRSp2po9P25VY4t/G+v2UOXqDASYzvYHUUppQhzCZkJ0by/YQ+NPj6T15GFf1lhOUsLy3kwJ50O4TqaRyllPxFh+iTPmP6le33b3eO4wm+M4Y/W2P3bR6bYHUcppb4yeWACg3rH8n5hvU/H9Duu8M/f6hm7/9DEDB27r5TyKyLCTydncbjG+HRMv6MKf6Pb8OS8fNK6deSGoUl2x1FKqdOMTo9nYFyIT8f0O6rwv7duDwVllfx4UpaO3VdK+a0bMsM5fKKOl5fs8Mn7O6b61TW4efrT7VyQ2IlvXNDD7jhKKXVWaZ1dTBnYg5eX7OTwibo2f3/HTEf5+srdlB6p5g/XXUiIXlJRKeXnHpmcSWVtA8dr6unaMbxN39sRhb+qroH/93khI/p0ZXxGvN1xlFKqWendY/jXvSN88t6O6OqZlVdMeWUtP5mil1RUSqmgL/xHq+p4YVERE/snkJ3Sxe44Sillu6Av/C8s2kFlbQOPTs6yO4pSSvmFoC78Zcdq+PuynVw7OJGsHjF2x1FKKb8Q1IX/2c8LaGg0TJuYaXcUpZTyG0Fd+Ht3iWLq+DSS46LsjqKUUn4jqIdz3n9JX7sjKKWU3wnqPX6llFKn08KvlFIOo4VfKaUcRgu/Uko5jBZ+pZRyGC38SinlMFr4lVLKYbTwK6WUw4gxxu4MzRKRg4A3Vx6OB8p9HMffOLHN4Mx2O7HN4Mx2t1WbU4wx3U5dGBCF31sistoYM8zuHO3JiW0GZ7bbiW0GZ7bb123Wrh6llHIYLfxKKeUwwVb4X7Q7gA2c2GZwZrud2GZwZrt92uag6uNXSinVvGDb41dKKdUMLfxKKeUwAV34RaRYRDaJyHoRWW0t6yoiC0SkwPrZxe6c50NEXhGRMhHZ3GTZGdsoHs+KSKGIbBSRofYlb72ztPnXIrLH2tbrReSKJs/93GpzvohMtif1+ROR3iKyUES2isgWEXnIWh602/scbQ7a7S0ikSKyUkQ2WG3+jbW8j4issNo2V0TCreUR1uNC6/nU8w5hjAnYG1AMxJ+y7AngZ9b9nwF/tDvnebZxPDAU2NxcG4ErgI8BAUYCK+zO34Zt/jXwyBnWHQBsACKAPkAR4LK7Da1sd09gqHU/BthutS9ot/c52hy029vaXtHW/TBghbX93gBusZa/AHzfuv8A8IJ1/xZg7vlmCOg9/rO4Bpht3Z8NXGtjlvNmjFkMHD5l8dnaeA3wD+OxHIgVkZ7tk7TtnKXNZ3MNMMcYU2uM2QkUAsN9Fs6HjDH7jDFrrfvHgS+BRIJ4e5+jzWcT8Nvb2l6V1sMw62aAS4G3rOWnbueT2/8t4DIRkfPJEOiF3wDzRWSNiEy1liUYY/ZZ9/cDCfZE86mztTERKGmyXinn/iUKND+wujReadKFF5Rttv6cH4Jnb9AR2/uUNkMQb28RcYnIeqAMWIDnL5ejxpgGa5Wm7fqqzdbzFUDc+Xx+oBf+scaYocA3gAdFZHzTJ43nb6OgHq/qhDZangf6AoOBfcBT9sbxHRGJBt4GHjbGHGv6XLBu7zO0Oai3tzGm0RgzGEjC8xdLv/b8/IAu/MaYPdbPMuBdPP+AB07+uWv9LLMvoc+crY17gN5N1kuylgU8Y8wB65fFDbzEf/68D6o2i0gYngL4qjHmHWtxUG/vM7XZKdvbGHMUWAiMwtNVF2o91bRdX7XZer4zcOh8PjdgC7+IdBSRmJP3gcuBzcAHwJ3WancC79uT0KfO1sYPgDus0R4jgYomXQQB7ZS+6+vwbGvwtPkWa+RDHyADWNne+dqC1W/7N+BLY8zMJk8F7fY+W5uDeXuLSDcRibXudwAm4Tm2sRC40Vrt1O18cvvfCHxu/eXXenYf4T6PI+NpeI7ubwC2AL+wlscBnwEFwKdAV7uznmc7X8fzp249nn6/756tjXhGCzyHp79wEzDM7vxt2OZ/Wm3aaP0i9Gyy/i+sNucD37A7/3m0eyyebpyNwHrrdkUwb+9ztDlotzdwEbDOattm4L+s5Wl4vsQKgTeBCGt5pPW40Ho+7Xwz6JQNSinlMAHb1aOUUqp1tPArpZTDaOFXSimH0cKvlFIOo4VfKaUcRgu/UucgIi+LyIA2eq/HmtxPbTr7qFLtSYdzKtVORKTSGBNt3U8FPjTGXGBrKOVIusevHElE3rMm99siIlNF5Oomc7/ni8hOa71cERlm3a8UkRnWaz4VkeHW8ztE5GprnbtE5M9NPudDEZkgIo8DHaz3f9V62iUiL1nvN986i1Mpn9PCr5zqHmNMNjAM+BGQZ4wZbDwTZ20AnjzDazriOV1+IHAc+D2e0+2vA357rg8zxvwMqLY+4zZrcQbwnPV+R4Eb2qBdSjUrtPlVlApKPxKR66z7vfEU4UMi8hM8Bfq5M7ymDvjEur8JqDXG1IvIJiC1FRl2GmPWW/fXtPI9lGoxLfzKcURkAjARGGWMqRKRXCBSRCYCN+G5AtiZ1Jv/HBRzA7UAxhh3k1kVG/j6X9KR54hS2+R+I6BdPapdaFePcqLOwBGr6PfDc9m7FDwTnt1kjKk+j/cuBgaLSIiI9ObrV4eqt6YgVspWWviVE30ChIrIl8DjwHI83SxxwHvWAdiPWvneecBOYCvwLLC2yXMvAhubHNxVyhY6nFMppRxG9/iVUsphtPArpZTDaOFXSimH0cKvlFIOo4VfKaUcRgu/Uko5jBZ+pZRymP8PJcrGcwhXYxcAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<Figure size 432x288 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [], | |
| "needs_background": "light" | |
| } | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "0iM9zrH5SXzL", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "- $H$ 水平面全天日射量\n", | |
| "- $Hb$ 水平面直達日射量\n", | |
| "- $Hd$ 水平面散乱日射量\n", | |
| "- $H0$ 大気外水平面日射量\n", | |
| "- $\\alpha$ 太陽高度角\n", | |
| "- $\\theta_a$ パネルの傾斜角\n", | |
| "- $\\theta_z$ 天頂角\n", | |
| "- $\\theta$ パネルへの入射角\n", | |
| "- $p$ アルベド(地表への反射率=0.2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "66lr6DEUifGd", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "# 大気外水平面日射量[kW/m2]\n", | |
| "_, alpha = calcA1(jd, 12, lat, lon)\n", | |
| "wj = 2 * math.pi / 365 * (jd+0.5)\n", | |
| "rr = 1/math.sqrt(1.000110 + 0.034221*math.cos(wj) + 0.001280*math.sin(wj) + 0.000719*math.cos(2*wj) + 0.000077*math.sin(2*wj))\n", | |
| "h0 = 1.367 * rr * rr * math.sin(alpha)" | |
| ], | |
| "execution_count": 10, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "nzR8gEfjWcBm", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 35 | |
| }, | |
| "outputId": "ec6788af-9356-45b9-8095-699da14c1303" | |
| }, | |
| "source": [ | |
| "print(h0)" | |
| ], | |
| "execution_count": 11, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "0.13329926077442636\n" | |
| ], | |
| "name": "stdout" | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "g1-n48-AXFeH", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment