Created
August 4, 2020 15:08
-
-
Save mmajewsk/6f18d8c969bb36eedcbe824d88bd6b99 to your computer and use it in GitHub Desktop.
Why i hate matplotlib
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import numpy" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "%load_ext autoreload\n", | |
| "%autoreload 2 " | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div class=\"bk-root\">\n", | |
| " <a href=\"https://bokeh.pydata.org\" target=\"_blank\" class=\"bk-logo bk-logo-small bk-logo-notebook\"></a>\n", | |
| " <span id=\"ac45a737-7590-457b-a825-ee61e9fac41a\">Loading BokehJS ...</span>\n", | |
| " </div>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "application/javascript": [ | |
| "\n", | |
| "(function(root) {\n", | |
| " function now() {\n", | |
| " return new Date();\n", | |
| " }\n", | |
| "\n", | |
| " var force = true;\n", | |
| "\n", | |
| " if (typeof (root._bokeh_onload_callbacks) === \"undefined\" || force === true) {\n", | |
| " root._bokeh_onload_callbacks = [];\n", | |
| " root._bokeh_is_loading = undefined;\n", | |
| " }\n", | |
| "\n", | |
| " var JS_MIME_TYPE = 'application/javascript';\n", | |
| " var HTML_MIME_TYPE = 'text/html';\n", | |
| " var EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", | |
| " var CLASS_NAME = 'output_bokeh rendered_html';\n", | |
| "\n", | |
| " /**\n", | |
| " * Render data to the DOM node\n", | |
| " */\n", | |
| " function render(props, node) {\n", | |
| " var script = document.createElement(\"script\");\n", | |
| " node.appendChild(script);\n", | |
| " }\n", | |
| "\n", | |
| " /**\n", | |
| " * Handle when an output is cleared or removed\n", | |
| " */\n", | |
| " function handleClearOutput(event, handle) {\n", | |
| " var cell = handle.cell;\n", | |
| "\n", | |
| " var id = cell.output_area._bokeh_element_id;\n", | |
| " var server_id = cell.output_area._bokeh_server_id;\n", | |
| " // Clean up Bokeh references\n", | |
| " if (id !== undefined) {\n", | |
| " Bokeh.index[id].model.document.clear();\n", | |
| " delete Bokeh.index[id];\n", | |
| " }\n", | |
| "\n", | |
| " if (server_id !== undefined) {\n", | |
| " // Clean up Bokeh references\n", | |
| " var cmd = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", | |
| " cell.notebook.kernel.execute(cmd, {\n", | |
| " iopub: {\n", | |
| " output: function(msg) {\n", | |
| " var element_id = msg.content.text.trim();\n", | |
| " Bokeh.index[element_id].model.document.clear();\n", | |
| " delete Bokeh.index[element_id];\n", | |
| " }\n", | |
| " }\n", | |
| " });\n", | |
| " // Destroy server and session\n", | |
| " var cmd = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", | |
| " cell.notebook.kernel.execute(cmd);\n", | |
| " }\n", | |
| " }\n", | |
| "\n", | |
| " /**\n", | |
| " * Handle when a new output is added\n", | |
| " */\n", | |
| " function handleAddOutput(event, handle) {\n", | |
| " var output_area = handle.output_area;\n", | |
| " var output = handle.output;\n", | |
| "\n", | |
| " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", | |
| " if ((output.output_type != \"display_data\") || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", | |
| " return\n", | |
| " }\n", | |
| "\n", | |
| " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", | |
| "\n", | |
| " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", | |
| " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", | |
| " // store reference to embed id on output_area\n", | |
| " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", | |
| " }\n", | |
| " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", | |
| " var bk_div = document.createElement(\"div\");\n", | |
| " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", | |
| " var script_attrs = bk_div.children[0].attributes;\n", | |
| " for (var i = 0; i < script_attrs.length; i++) {\n", | |
| " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", | |
| " }\n", | |
| " // store reference to server id on output_area\n", | |
| " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", | |
| " }\n", | |
| " }\n", | |
| "\n", | |
| " function register_renderer(events, OutputArea) {\n", | |
| "\n", | |
| " function append_mime(data, metadata, element) {\n", | |
| " // create a DOM node to render to\n", | |
| " var toinsert = this.create_output_subarea(\n", | |
| " metadata,\n", | |
| " CLASS_NAME,\n", | |
| " EXEC_MIME_TYPE\n", | |
| " );\n", | |
| " this.keyboard_manager.register_events(toinsert);\n", | |
| " // Render to node\n", | |
| " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", | |
| " render(props, toinsert[toinsert.length - 1]);\n", | |
| " element.append(toinsert);\n", | |
| " return toinsert\n", | |
| " }\n", | |
| "\n", | |
| " /* Handle when an output is cleared or removed */\n", | |
| " events.on('clear_output.CodeCell', handleClearOutput);\n", | |
| " events.on('delete.Cell', handleClearOutput);\n", | |
| "\n", | |
| " /* Handle when a new output is added */\n", | |
| " events.on('output_added.OutputArea', handleAddOutput);\n", | |
| "\n", | |
| " /**\n", | |
| " * Register the mime type and append_mime function with output_area\n", | |
| " */\n", | |
| " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", | |
| " /* Is output safe? */\n", | |
| " safe: true,\n", | |
| " /* Index of renderer in `output_area.display_order` */\n", | |
| " index: 0\n", | |
| " });\n", | |
| " }\n", | |
| "\n", | |
| " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", | |
| " if (root.Jupyter !== undefined) {\n", | |
| " var events = require('base/js/events');\n", | |
| " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", | |
| "\n", | |
| " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", | |
| " register_renderer(events, OutputArea);\n", | |
| " }\n", | |
| " }\n", | |
| "\n", | |
| " \n", | |
| " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", | |
| " root._bokeh_timeout = Date.now() + 5000;\n", | |
| " root._bokeh_failed_load = false;\n", | |
| " }\n", | |
| "\n", | |
| " var NB_LOAD_WARNING = {'data': {'text/html':\n", | |
| " \"<div style='background-color: #fdd'>\\n\"+\n", | |
| " \"<p>\\n\"+\n", | |
| " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", | |
| " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", | |
| " \"</p>\\n\"+\n", | |
| " \"<ul>\\n\"+\n", | |
| " \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n", | |
| " \"<li>use INLINE resources instead, as so:</li>\\n\"+\n", | |
| " \"</ul>\\n\"+\n", | |
| " \"<code>\\n\"+\n", | |
| " \"from bokeh.resources import INLINE\\n\"+\n", | |
| " \"output_notebook(resources=INLINE)\\n\"+\n", | |
| " \"</code>\\n\"+\n", | |
| " \"</div>\"}};\n", | |
| "\n", | |
| " function display_loaded() {\n", | |
| " var el = document.getElementById(\"ac45a737-7590-457b-a825-ee61e9fac41a\");\n", | |
| " if (el != null) {\n", | |
| " el.textContent = \"BokehJS is loading...\";\n", | |
| " }\n", | |
| " if (root.Bokeh !== undefined) {\n", | |
| " if (el != null) {\n", | |
| " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", | |
| " }\n", | |
| " } else if (Date.now() < root._bokeh_timeout) {\n", | |
| " setTimeout(display_loaded, 100)\n", | |
| " }\n", | |
| " }\n", | |
| "\n", | |
| "\n", | |
| " function run_callbacks() {\n", | |
| " try {\n", | |
| " root._bokeh_onload_callbacks.forEach(function(callback) { callback() });\n", | |
| " }\n", | |
| " finally {\n", | |
| " delete root._bokeh_onload_callbacks\n", | |
| " }\n", | |
| " console.info(\"Bokeh: all callbacks have finished\");\n", | |
| " }\n", | |
| "\n", | |
| " function load_libs(js_urls, callback) {\n", | |
| " root._bokeh_onload_callbacks.push(callback);\n", | |
| " if (root._bokeh_is_loading > 0) {\n", | |
| " console.log(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", | |
| " return null;\n", | |
| " }\n", | |
| " if (js_urls == null || js_urls.length === 0) {\n", | |
| " run_callbacks();\n", | |
| " return null;\n", | |
| " }\n", | |
| " console.log(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", | |
| " root._bokeh_is_loading = js_urls.length;\n", | |
| " for (var i = 0; i < js_urls.length; i++) {\n", | |
| " var url = js_urls[i];\n", | |
| " var s = document.createElement('script');\n", | |
| " s.src = url;\n", | |
| " s.async = false;\n", | |
| " s.onreadystatechange = s.onload = function() {\n", | |
| " root._bokeh_is_loading--;\n", | |
| " if (root._bokeh_is_loading === 0) {\n", | |
| " console.log(\"Bokeh: all BokehJS libraries loaded\");\n", | |
| " run_callbacks()\n", | |
| " }\n", | |
| " };\n", | |
| " s.onerror = function() {\n", | |
| " console.warn(\"failed to load library \" + url);\n", | |
| " };\n", | |
| " console.log(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", | |
| " document.getElementsByTagName(\"head\")[0].appendChild(s);\n", | |
| " }\n", | |
| " };var element = document.getElementById(\"ac45a737-7590-457b-a825-ee61e9fac41a\");\n", | |
| " if (element == null) {\n", | |
| " console.log(\"Bokeh: ERROR: autoload.js configured with elementid 'ac45a737-7590-457b-a825-ee61e9fac41a' but no matching script tag was found. \")\n", | |
| " return false;\n", | |
| " }\n", | |
| "\n", | |
| " var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.16.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.16.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.16.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-gl-0.12.16.min.js\"];\n", | |
| "\n", | |
| " var inline_js = [\n", | |
| " function(Bokeh) {\n", | |
| " Bokeh.set_log_level(\"info\");\n", | |
| " },\n", | |
| " \n", | |
| " function(Bokeh) {\n", | |
| " \n", | |
| " },\n", | |
| " function(Bokeh) {\n", | |
| " console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-0.12.16.min.css\");\n", | |
| " Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.16.min.css\");\n", | |
| " console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.16.min.css\");\n", | |
| " Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.16.min.css\");\n", | |
| " console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.16.min.css\");\n", | |
| " Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.16.min.css\");\n", | |
| " }\n", | |
| " ];\n", | |
| "\n", | |
| " function run_inline_js() {\n", | |
| " \n", | |
| " if ((root.Bokeh !== undefined) || (force === true)) {\n", | |
| " for (var i = 0; i < inline_js.length; i++) {\n", | |
| " inline_js[i].call(root, root.Bokeh);\n", | |
| " }if (force === true) {\n", | |
| " display_loaded();\n", | |
| " }} else if (Date.now() < root._bokeh_timeout) {\n", | |
| " setTimeout(run_inline_js, 100);\n", | |
| " } else if (!root._bokeh_failed_load) {\n", | |
| " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", | |
| " root._bokeh_failed_load = true;\n", | |
| " } else if (force !== true) {\n", | |
| " var cell = $(document.getElementById(\"ac45a737-7590-457b-a825-ee61e9fac41a\")).parents('.cell').data().cell;\n", | |
| " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", | |
| " }\n", | |
| "\n", | |
| " }\n", | |
| "\n", | |
| " if (root._bokeh_is_loading === 0) {\n", | |
| " console.log(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", | |
| " run_inline_js();\n", | |
| " } else {\n", | |
| " load_libs(js_urls, function() {\n", | |
| " console.log(\"Bokeh: BokehJS plotting callback run at\", now());\n", | |
| " run_inline_js();\n", | |
| " });\n", | |
| " }\n", | |
| "}(window));" | |
| ], | |
| "application/vnd.bokehjs_load.v0+json": "\n(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n\n if (typeof (root._bokeh_onload_callbacks) === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n \n\n \n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n var NB_LOAD_WARNING = {'data': {'text/html':\n \"<div style='background-color: #fdd'>\\n\"+\n \"<p>\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"</p>\\n\"+\n \"<ul>\\n\"+\n \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n \"<li>use INLINE resources instead, as so:</li>\\n\"+\n \"</ul>\\n\"+\n \"<code>\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"</code>\\n\"+\n \"</div>\"}};\n\n function display_loaded() {\n var el = document.getElementById(\"ac45a737-7590-457b-a825-ee61e9fac41a\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) { callback() });\n }\n finally {\n delete root._bokeh_onload_callbacks\n }\n console.info(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(js_urls, callback) {\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.log(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.log(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = js_urls.length;\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n var s = document.createElement('script');\n s.src = url;\n s.async = false;\n s.onreadystatechange = s.onload = function() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.log(\"Bokeh: all BokehJS libraries loaded\");\n run_callbacks()\n }\n };\n s.onerror = function() {\n console.warn(\"failed to load library \" + url);\n };\n console.log(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.getElementsByTagName(\"head\")[0].appendChild(s);\n }\n };var element = document.getElementById(\"ac45a737-7590-457b-a825-ee61e9fac41a\");\n if (element == null) {\n console.log(\"Bokeh: ERROR: autoload.js configured with elementid 'ac45a737-7590-457b-a825-ee61e9fac41a' but no matching script tag was found. \")\n return false;\n }\n\n var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.16.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.16.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.16.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-gl-0.12.16.min.js\"];\n\n var inline_js = [\n function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\n \n function(Bokeh) {\n \n },\n function(Bokeh) {\n console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-0.12.16.min.css\");\n Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.16.min.css\");\n console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.16.min.css\");\n Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.16.min.css\");\n console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.16.min.css\");\n Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.16.min.css\");\n }\n ];\n\n function run_inline_js() {\n \n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }if (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n var cell = $(document.getElementById(\"ac45a737-7590-457b-a825-ee61e9fac41a\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n\n }\n\n if (root._bokeh_is_loading === 0) {\n console.log(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(js_urls, function() {\n console.log(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "import sys\n", | |
| "sys.path.append('../src')\n", | |
| "\n", | |
| "from dataset import Tell1Dataset, DatasetTree\n", | |
| "import dataset as DS\n", | |
| "\n", | |
| "import numpy as np\n", | |
| "import pandas as pd\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "%matplotlib inline\n", | |
| "from ipywidgets import interact\n", | |
| "import numpy as np\n", | |
| "\n", | |
| "from bokeh.io import push_notebook, show, output_notebook\n", | |
| "from bokeh.plotting import figure\n", | |
| "output_notebook()\n", | |
| "import matplotlib\n", | |
| "matplotlib.rcParams['image.cmap'] = 'rainbow'" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Read dataset:" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "dataset = Tell1Dataset(r'../data/calibrations')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def sensor_histogram(data):\n", | |
| " x_data_list = []\n", | |
| " y_data_list = []\n", | |
| " for i,column in enumerate(data):\n", | |
| " y_data = list(data[column].values)\n", | |
| " y_data_list += y_data\n", | |
| " x_data_list += [i]*len(y_data)\n", | |
| " return x_data_list, y_data_list" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# so heres the code" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": { | |
| "scrolled": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "figsize = (15,3)\n", | |
| "\n", | |
| "def foo(figsize):\n", | |
| " data = dataset.dfh.df.iloc[:,9:]\n", | |
| " px, py = sensor_histogram(data)\n", | |
| " fig, axe = plt.subplots(1,1,figsize=figsize)\n", | |
| " _ = plt.hist2d(px, py, bins=[2048,30], range=[[0,2048],[0,30]], cmin=1)\n", | |
| " axe.set_title('All module data, high threshold distribution per channel', fontsize=15)\n", | |
| " axe.set_xlabel('Channel number', fontsize=15)\n", | |
| " axe.set_ylabel('ADC', fontsize=15)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# notice the channel number arround 2000 (no vertical lines)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": { | |
| "scrolled": true | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAADnCAYAAACqnz8BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXl8XFXd/9/fmclkaZqGNE230JZKsVD2TZBFVkEUZRHcFR8B9XlAUX7CI2KpitujqI87CAr4qIgIyiaCLCIKaNmhlLbUtoQ2Tds0TdJJMpm55/fHuTdz5s6dJWmalvB9v155zdxzz/I9557lntz7/YwYY1AURVEURVEURVHGJ7EdbYCiKIqiKIqiKIqy/dBNn6IoiqIoiqIoyjhGN32KoiiKoiiKoijjGN30KYqiKIqiKIqijGN006coiqIoiqIoijKO0U2foiiKoiiKoijKOEY3fYryOkYs/xYRIyK7R5w/xz9X7x/P8Y/fMfbWlkZEFovI9cNMs13rIyIXiMiwfhdHRJIiskhE9t8eNvll5F3XEvEeEpFbRpD/KhH59gjSvVVELooIv15EFg83v9FkNG2opF1FpN6/RueMIP9bROQh53iRiGwcRvpDRWTRMOIf49u6txNmROSCSvMok/8lInJMRPiolfFa5rXcDjvD2FaU1wu66VOU1zeHA3P87+/dgXYoOZLAFcB22/QNg/8EPj+G5b0VKNj0KdvMtcBJw4h/KLYPVsqT2Lnk5eEYNQwuAY6JCD8c+N12KlNRFGVcoZs+RXl98z5gK/C4/11RhjDGLDHGLN/RdowUEand0TbsDBhj2owxT4x2vv6bAjXGmG5jzGPGmL7RLqMUfpnrx7LM7YX2VUVRtje66VOU1ykiEgfOAm4Hfg7sJSL7jkK+wSuT7xWRX4hIt4i0icgH/fOXiMhaEdkgIt8UkVgo/XEi8riI9IvIehH5cfg1RBHZW0T+7sd5UUTeGWFHwSt0Ua+hFanDuSLygogMiMhqEbmkgnpXi8gPRaRLRDpF5LtAVSjOBD/OSyKS8l+t/ZGINDjRevzPX/i2GhGZ46f/hog8JyK9fpv+SkSmlbOtBLuJyH0islVElorIGSF7o9rwLBFZLiJ9IvKgiBxQ7DVEEfmMb+dmEblJRBqLGeK/TngxMNup9/WhOCeKyLO+vY+IyILQeSMinxWR74nIBuA559y7xL4C3C8i7SLyPyJS5ZxvFZGbRaTDr9vLIvKVCDvL2VAnIt/3y+gXkX+JyFuL1dtJd6aILPPLfhiYXy6Nn25XEbnbT7dKRM6NiJP3eqeIVInIt0Vkjd/H14rIbWJfLT4H+IHTnkb8V0WDfETkSBH5F9APnFViXCVF5H/98dAlIj8QkWQxu5zwodcVRWQVMBm4wrHnmHA8J+0Ffv8cEJEVIvKZqLbw++1j/jh8SkSOKtPOwbz2fhH5pYj0+H2l4Imo2PnpLj9Oj4j8zh2nTnudJCK3i0gv8MMSZU8WkatFZJ3fp16Swteg4yLyNbHzaofYeaXayWO6iPxcRFb6fWWZiFwZuh5BHc/2y9sidvx+SZx5ejhtKCOYSxVF2T7opk9RXr8cB0wFbgJuAQYZ3ad93wTWAWcCfwNuEJGrsK+O/QfwPexrW2cHCURkL+AeYKOf7grg/b59QZxa4M9AvX/uSj+vWaNhtIh8DvgJ8AfgHf73r4RvLiP4BnAu8BXgA8Bs7CbGpQ6IA18A3gZ8EXsd3FfUjvM/r8S+vnY4th0BWoCvAW/HvgY5F3hA7AZ+JPwau+k/HVgO3CQircUii8jB2P7ypJ/mduC3RaKfDRwPnA9cim3Lr5Ww5VrfnnZy9XY3XbOAbwFfxfbTFuBmEZFQPp8DpgMfAj7l2302cCvwT+CdwJd8u77upLsR2NUPf5tfTjX5VGLDz4CP+nFOB14B7hKRI4tVXEQOxLbjM8AZ2Ha9uVh8J50AfwT2Bj4GfBb4NLbtSvF5bB/9InAiti9twfbNu4Cr/HjBdfhPJ20dcAP2ep2MbdNiXAy0+mVdiW3br5arV4jTfduuc+x5MiqiiJyH3bDeDpyKHVdXich/h6IGdbgaO88MALeJSF0F9nwLSAHvxl7rK0Tkvxwbdgf+DtRg++A5wALgjoi+eh32mr/T/x5Vp1rgIeA07Hg4BXt9ZoSiXuyHfdC38ePYvhDQDHRi+8jJfpyP4m/wQ/wP0OvX8f+Ahf53l7JtuA1zqaIo2wNjjP7pn/69Dv+wT/c2A0n/+C7g34A4cc4BDFDvH8/xj99RIt8gzi+csAbspnI5EHfC/wn81jm+KSLO2X5+h/vH/+nn1erEOcKPc70T9hBwS8i2Y/x4e0fVx7ezF7gilO7L2M1IvEidJwN9wKVOWAxYaqfZom2VcGyf5YfV+8fnlLl+cWCmH/foYV774Lr+R6gOGeATxdoQexP9fKiPXBK2F1iF9e9KOGHfA9rL2PVtYFVE+PW+bfOcsNP8cuc7YQZ4KpRWgNVuf/TD/8O/ZpP9417g1BK2lbUB2BPwgI+E+sHzwJ9LtOvNwJJQu36hXD/AbgAM8CYnbLZv50NO2CJgo3N8J3BViXwviOq3fj4GeFepceVci6VALFSnFNAUZVco7QXO8UZgUal4fju/GnGdf4zdNNaE6nCcE2d/P+zkEm0yx49zbyj8Z365Mf/4l8BL+POqHzYPyAJvD7XXdysYqx/3+9T+JeIY4OFQ2B+Ax0qkSWD/adZPbg0I6nhjKO7TwE0R/aBoG1LhXIodV4vLtYP+6Z/+bfufPulTlNch/ms/pwO3GWPSfvBvsIv+YaNUzP3BF2NMN7AB+KsxJuvEWYHduAQc6tvkxvk99ib2SCfOE8aYNif/vwMdo2Dz4cAE4Hcikgj+gAewT0WLPQXbB/uf/T86NnnucYCIfMh/FaoXu3l9xD+1RznjRORtIvIPEdmCbZOgDcqmLcK9jr2bsG1Y9EkfcAhwhzHGVSS9vUjcB40xGed4CdDivk42TFaZfP/CJf5n2N67Qsd7YJ/Q3RxxTWuwT8nA3th+XayyabGnxuVsOAS7yRx6cuv3g9+R679RHArcHmrXW0vEd9OtN8Y87pS3Gijnv/c0cI7YV633jXgCVQoD/KnCuH/06x9wK1BLrs1Hk1bsk66wsMtvsRuQfZywQezGO6BYX4rittDxrX65QdoT/Die09f+jf1HyMGhtOG+GsVx2H9kPF0m3r2h4yWOTYH/5UUiskRE+rBt8Cvs0+xwfy+Zl0+5NhzpXKooynZCN32K8vrkbUAjcLeINIr1tXoI+4rOaL3i2RU6ThcJq3GOpwN5wgz+BnAT0OQHTSN6gzcam75m//MF7E1N8PegH75rkXSBv07YhrxjETkd+xrho1h/ysOwm2/Ib4cCROQQ7AarDfva2OHkNugl05ag3PUIMw27eXcJH5fKW7DqpCMhKj8otDcs7BFc07vJv6b/9sODa/oeYDHwXWC1iDwtIscP04bpQK8xJhVhU53rYxUiqk9X0p9HOhauBH6EfWr+DPCKiHy6dJIhNjv/KCpHsTpNrzD9cAjyDF//4LjJCet2N6NOfSoZR+Xq1Ix9nXkw9DeXwvmjEhGayeRe7y5FubF8Efa10NuAd2H/YRC8lhqudyXzQrk2HOlcqijKdiKxow1QFGWHEGzsouTOzxaRz4Seto0V67B+UkP4/mqTsf4oYF8NihK5aAkd91O4wWiiNEEZ7yD6huylIunaHRs6nfCwTWcBjxtjhnykROQtZWwKOB27wXpP8ERIRGZXmHa0aAemhMLCxzua8O8iBtfjfOCpiPj/BjDGvIp9+hXD3hAvAm4XkVn+U9BKWAfUi0hdaOM3FUgZYwaKpGunsK+EjytNF6QtqqRpjOnH+mktFJF5wCeA74nIS8aYe8qUOZzfnSxWp2ATUzBGRWSXYeTv4vq9ukz1PzsZHcrVqRO7sbo2Im1YtKaSttwEFPyG6gg4C/idMeYLQYDvQ729GOlcqijKdkKf9CnK6wyxSpjvwL7OeWzo77PYm6Rjd5B5jwOnh4RJzsD+gyp4DfJfwEGu4IiIHEHhzVgbhZvDE8uU/yj2ZnmGMWZxxF9PkXTPYW9g3+XYFHOPfWqxT1NdPhA6LvbUoRYYDL0CGE67vfkXcGrodcAC5dRtoNyTxpHwEtbnak6Ra5q3oTPGeMaYx7BiL3VYH7lK+Rf2Rn5I9MJvq3eT67/F0r0z1K5nFIscSjdVRN7klDcLOLBSg/3XVf8ftl8Gm4C0n9e2Xot3Sb467xnY8fW8f9wGTBQR9xXvKKXTSvpFG7AWu7lxORvoxlFy3UZODx2fgd3wBa9a3499ffWJiL62agTl3Q8cINuurFzJ3DOajHQuVRRlO6FP+hTl9ce7sDez/+v6AgGIyN+xYgvvA/6yA2y7Evs05g8i8hOs38c3sSIYj/pxfgFcjlVEXIS9mfkKhf9Fvw34mNifTrgLu5Et+QPVxpguP8//9Z+iPYz959gewLHGmPANX5Buk4hcA3xJRDLYV5rOw4qyuNwH/EhEvoDd4J6CVbh080qLyL+xT1yfx24mn/XTXiQi3wPuAN6MVerLw7f/CmPMcPy0KuWbvt03icgvsMIl5/nnvKKpKmcpdhNzDnZjsHGEN8pDGGM8EbkY+KXYn8b4E3YTMRcrxPJu7E9r/Bn76u0yrJ/TxdgnaS8Oo6wXReQ3wA/9slZg22c+8MkSSYN2vVlEriOnxlmOu7GvZ/5ORC7F9pUvU+b1ThG5Dev39xT2xvzd2PuBh/0oS/3PT4vIA9hX+UbyZGaib9vPsAqWC4EfGmOCp0D3+OX/3Ff23Q371DHMUuDtInIPVhzkpfCmwb/Oi4CrRWQTdry8Bdvul/lPN0eDBSJyNdbX+Gjsdfq086rjIqxA1V0i8nPsvDQT+w+n640xDw2zvBuxr2He69fvJWw77WGMCauSluI+4FMi8jhWZOkDjM4TxEhGOpcqirL90Cd9ivL6433A8vCGD8AYM4hVEjyjhP/RdsMY8wLW37AFK5BwJfaJ5LudOCns5m0rVu3zCuwN+upQXncBl/lpb8M+sQn/tlWUDf9DTrb/j375H8D+7EQpLsEqoi7006wFvhOKczXWr+bTfv1mYxX0wnwC6xPzF+zTnBnGmLuxvkJnYn373oJ9YhumjuJ+dtuEMWYxtv8chFUHPJPcZqZ7FIq4Gavm9z/Yei8ahTwxxvwW+8+O/bGvNN+K9Wd7ErsB7Mc+Cfo0tm1vwKpMvtUM/wfHz/PTfxHbf2Zj1WGLPunz2/W9wAHYdj0N62NYrl4G+6R1CbbvfQ/7e2+PlkoH/MMv49e+jQcBZ/p2gO3r38K2x+PYfjsSrsI+BfsNdlxcix2Tgf3BT7O0Yuv9QaLHw+ew4/0u/Cf9UYUZY36G/ZmO07EKpe8DLjbGfGOE9kdxCVYY5vdYZc2v4PzGnjFmGdbXNgVcg/0nw5ewT9lWDLcwf7N6HPYfPV/287sEO78Mhy9jr0Mwp6bxf9Jke7ENc6miKNsByX9TSFEURXktIyJ/BR4wxnxpjMr7IFamfq4x5t/l4ivKaxERmYP1/zzVGHPnjrVGURRl+OjrnYqiKOMEXxJ9bwp/SHk0y/gJ9lWxzVjfscuBu3TDpyiKoig7L2O66fOdwh/G+ksksD9Oe4WI7IZ9TasJ+7rNh4YhCa0oiqIA/u/iTd7OxUzG/uD1ZKyy4G+xr5spiqIoirKTMqavd/rKZBOMMb0iUoVVM/s0VjHwVmPMTSLyU+AZY8xPxswwRVEURVEURVGUccqYCrkYS69/WOX/GayT8i1++A1YB3NFURRFURRFURRlGxlz9U4RiYvI01hJ6fuw0sFd/mtJYH/rZmax9EqORZL7YVf3+87AwsTOqxC0I9vqsrqxaZfLq6PLCeo+Wm2wM/W7ncmWseK1Vudi/bIUI6njWKXZmdF2U8aakaz7I5kTRkIl/XRH9uUdNfYqyWMk12hnvgd8PTPmQi7GmCywv4g0YmXU94yKFpVWRM7Hyv8yYcKEg+bPD//u8uuLtcCdB9u2cr/vDKzNwt07kT0uO7KtXu2He8eg7FcH4Z6IcoK6j1Yb7Ez9bmeyZax4rdW5WL8sxUjqOFZpdma03ZSxZiTr/kjmhJFQST/dkX15R429SvIY0by9E98DjkeeeOKJjcaYKWUjGmN22B/297U+h/3x0oQfdjj2h5hLpj3ooIPM650riP6+M/DFuLejTSjKjmyrz9eOTbt8IRldTlD30WqDnanf7Uy2jBWvtToX65elGEkdxyrNzoy2mzLWjGTdH8mcMBIq6ac7si/vqLFXSR4juUY78z3geARYbCrYd43p650iMsV/woeI1AInAC8CD5KTGP8I9kc8FUVRFEVRFEVRlG1krF/vnA7cICJxrD/hzcaYO0VkCXCTiFwJPAVcN8Z2KYqiKIqiKIqijEvGWr3zWWPMAcaYfY0xextjvuyHrzTGHGqM2d0Yc5YxZmAs7SrF5dU77yvJi0z0952BWFaGnWbR8JOMKM3rgUQ6umGCfrKz9ZcdxfbqP6+HfjlWdfTi46uzjlW7jWSMj7e2VsaWkaz7sWz5OKMxZnb2NW9ntq+Sa6S8Nhhz9U5FURRFURRFURRl7NBNn6IoiqIoiqIoyjhGN32KoiiKoiiKoijjGN30KYqiKIqiKIqijGN006coiqIoiqIoijKO0U1fGcIqiK8HVb4wI6lzJjk2UlQjUbwaK9vGiqjrszOr8G2vMbQz11mxePHhp8kkR9+OKMaq/4xkzhorZeORqC8q45OxutcZyfgej2vIiMb4Trzk6Vyyc6KbPkVRFEVRFEVRlHGMbvoURVEURVEURVHGMbrpUxRFURRFURRFGcfopk9RFEVRFEVRFGUcMy43fZdXV+bdujOJsoyWLTtTnUoxWuIjIxOZGX6a0aK/fvTzjHLmHm/iF5UwEpGQ7cXO1C5hduQcMZJ+OZLrOpL2D8rZ3u0zVu2vIldKwM56X7BIIJEefrpKxne4zpW0wc60hlTCWAk8jSS/dK3OJdvCcK7TwkTlbT0uN32KoiiKoiiKoiiKRTd9iqIoiqIoiqIo4xjd9CmKoiiKoiiKooxjdNOnKIqiKIqiKIoyjtFNn6IoiqIoiqIoyjgmsaMN2B4k0pXJ3lgFqOFJGVl1s9GXwlpkrFrPSBTXwvmMNiNpp87W0uej7Ixlx0ZirH/imBQTSbou9z3qeo+kD4TTLBJITS+M4+LFDV/O7KSSbiMkXTv8NCPp25UwVn15RzKStutuGUk5Y5Mmli0MC8ZWMH6CceaOp+0x5xbYMYIyFiaGP8aj2mBbGY117bVc/muBStqokjiZpGGR2D7njpsovLghhoxI0Xck8+v2mutLMV76XiYZfZ9RitFQQh3JHLa9GOm1HG67Qen4UWsQw2hrfdKnKIqiKIqiKIoyjhnTTZ+I7CoiD4rIiyLygoh82g9fJCKvisjT/t8pY2mXoiiKoiiKoijKeGWsX+/MABcbY54UkYnAEyJyn3/uu8aYb4+xPYqiKIqiKIqiKOOaMd30GWPWAev87z0i8iIwcyxtUBRFURRFURRFeT2xw4RcRGQOcADwOHAEcIGIfBhYjH0auHmkeVfqbNk+r3ycsPNvx9yR2VQJ2yzisg1Ow6XSjsQht5SoRpRj6yID6dqxEdYp5Theyul2W65PkE//gnxRiHD+kU66FeZv+yoQh42zDQvd0V3BNRxJ/xkNZ+3RItU4/DT99aNvB4ydaIDb/18LogE1vfYzLIwS4NYhiJNMFsYplXaRAMmIsDKk65283XHpf/fiVqTCi5uh8TRWIgMjubYjEbsYiahGOXaEgIZLVLu5/SJqLdoudmxj3qOVvpgoUZTYVyDKEoiuRMXJI27npFgWLq9maBxGYdcOMyIBru1FalJ0+EjbPpifKxXBccfJWM3npe6hcvdm8LVU8fuhKFtH494gPIeNZpsE90zhMqLCIF+kqCCvEmuMF4++FwvaJxDPco8XiZBJ+uni9lwsaz8XJvy4yVz4cAS4doiQi4jUA78HLjLGdAM/Ad4A7I99EnhVkXTni8hiEVm8YcOGMbNXURRFURRFURTltcqYb/pEpAq74fuVMeZWAGPMemNM1hjjAT8DDo1Ka4y5xhhzsDHm4ClTpoyd0YqiKIqiKIqiKK9Rxlq9U4DrgBeNMd9xwt1fFTsdeH4s7VIURVEURVEURRmvjLVP3xHAh4DnRORpP+wy4H0isj9ggFXAx8fYLkVRFEVRFEVRlHHJWKt3PkK0x+jdY2mHoiiKoiiKoijK64Udpt65PViYMMNSU+udXF5VrLsl/7hrukdFUogjtGtb1InStVZdqFz64SqXdbYWTxtWogw+vX0L2zasiBcuq3dy+TqGKaZaFKUCGNjpxUur+ZU7N5zrE84rXZevtuiyMGFVo1x1QMhXbgoIH7vxos7HsvnKfMNReyrFSBS6tpeaX2/T8PNNpEfdDGB0lMtK9bXg3EiuYzk1w3DcYmqZI63jwkSufy8Mr0BxJ8xXLbOKZSY3DpL2c0jFLCBpFQO92lw5XjKnIhg1jtwxk66FRNrkhYfHULrW5IW/FhRTh8NI1Dvd8RzMYW6bjEThNKpdKw1zw4spVZb6PlKi8nDXxUAN07V3YSJ34CoGFqhiApla2+cLFA2LKAe64elaQ7JPhhQLvdA4i8L2BdcOkzdeXILxkEnm5tSoNSqcttL5K7xmVLKGFKYpX07dlujwkY7xKwekIH2x+8GwcqjbZ6P6ffh7sfm7WB7h/IqpVi4SSBVRrS81htLTR2ZPQZqI4+Heg0W1TW4uz+/X9ruJ7LvhcRncrwUqm1EE+RQbO5lkfngw7oLxE6Trr8+NrXBeXhyocCztEPVORVEURVEURVEUZWzQTZ+iKIqiKIqiKMo4Rjd9iqIoiqIoiqIo4xjd9CmKoiiKoiiKooxjxpWQS5QTail6mzzK7XtjmfzjxnXD3ycPR/CglHBCOXonQ+M66yxe3BZDDBkSUwg7cxcIKwC9B5q8eIvEOq9eXg0x39E0+L4wYYUWUo35jrNBuXn1C4mteLMrc8APWGSsc2vgDD8kguLbGQg9xOK5vrFIoOsIQ/PqcLvg55F/nFee5Jx288oil38mafKdcmtz+XpxqOkRMslcukKxleiL7gpLhEVZouqRSRYXrHDrmZ92+EIo6dphRR+ybXvQP3F08gk72keNx3LCD5n60s7xEC3WEPSr4LPUWF4kdqwFtrh9s9Ly3DKDsev2MzcsbEt/U/F2KFZW54GGmp5yAgz5/bN3MtR1BbZGO8SHRSP6J0IyVRgv2jnffk+kAzGXwriuQ32Qzs17OOIC20vIaLhECUps6xhy+1Kl63F4Hg2ErNz+NrR+SC6+O0aCsKFrFKxtcTvfRI2jYJy5eboCJ2H7w+UG593xmotrPy+rg1gytxYNjTNnHg/6W7G5383PxjdD/RHyxYuCPGNZ+O+JQH0uj9SkaCGWYsIsQR93x0ixcRfUwR0/YL8XimTkfw+L5Y0GwdwYrlM5otamkd6PhfMYbvqhfuncc7njI5aVofuNoN96yfC8lIvv3sO593mpJqjvDPp/8fsPV4Arls3dQ0b1/ZwISX5+7jgMRJ/C5brXrZj4SZBP1NwRztNLEim0Er7XC659lIBXEK9QPM/krQWlhIuK5RseX8VE+5J90WmHiz7pUxRFURRFURRFGcfopk9RFEVRFEVRFGUco5s+RVEURVEURVGUcYxu+hRFURRFURRFUcYxuulTFEVRFEVRFEUZx4wr9c7hqiPVd5bf83qhFuqfWF55LazUlJo0PLu2lVIqYFBcoakYvU0GLx5SUssWKge5CkTtb8iyx99lKDxQpnRVlDJJq27m1eeU89K1hsvqAF+N7LI6P+/6/PK8uD2XbnTVwnIKbIEdQTmxrBkK6683ZJK5+oTVMF3lMle1L2hXG+5+t2WHVZei2mbVARma2nKdyk1TSuXMDSulyhnQuC5KrS76e8BI+mmqcXTSjETdrCDfSeXVeMNsnB0dfnl17vriKtQG1ySk8hZW4Mokc0quxcZjnsqrr+Lnpoll7XgoRdD33LLTtSav/1aS3lUDC8aCOybcPj9kc3XOvqi+mcs/v56lFDTDx64aoXu+WPrgXKDcWUztMyqvdC3UbYlus3BeUUpulTKSdNtD8TNKXXMkanD9jkKkVV62qoLBOgGV1Tk8Vgr6mzP/uv3ci5uC+dItLxhX0Yp8heMrl76YkmEQXtzW8NjOLzO/TwZjwu1fbr8P4tf02s/UpMK1sFyZiXR5xVuXQHXTzT8qTbFx79oRlcb9bq9reUXfUsdRuP0ysKUcvZPLx9lWwoq5Aa7qKeQrgefUZfP7nFVOlaFxkEhHK87a79HzYe9kqO/MHbtqnMXnu9yYC69vQVz3Lwh31xp3jEX15yA8fG+WSNt7ODdd/ngtHIuFa1lhW4RtiJq7wv05rPQcbtsgfiVqm8Xup4sdu3UZDvqkT1EURVEURVEUZRyjmz5FURRFURRFUZRxjG76FEVRFEVRFEVRxjG66VMURVEURVEURRnHjCshl+FS05P7vsj3fw2LSbQt8BhSHgG6pxQXVri82nDlQOAEm3OoTdcNzy7rDD+8NC6lBFbsp+Q5+IaPw+lcp+4gvJRDaiYJDRulwPk3yjHctSvs0B3lQB7lYBt2ri3mgBuuW9gJPcrZNnDCdcsPOzeHz4XzcI8b22N5jr3FRGNcB+FkX3kn3nB5qUmG5tUSil+6U41ElGUkRAnGjIZQxdo9sgx3SqvbEh1e7Pq5x257uk70XtzQ3QL1nTIUN5O054uJKAXXO9wHw/0k0gl/U+7YFT1xv7v9pBJhoCgBlrA96VpIDBTmGyZcZiBI4doVFjFw07XP82hZGSvqLO/a5eK2abE0gYCOF7fCNMXycm114wRz1nBEiMo53keJGpUbuyMhyubepuHnE8wbwfq3yGAFu0JErUtR/TN87PaRQPSk2HpkhUFy8SG/74b73XBEEMqNnWIE/cvth+H+HiVkEYyTqPUonKYcUX23XB6ZZKENUYIz7vlUY/6cWmycDqf9wvaXszsYP5/aNT984+zCNSY81tbOz7/fG4odw0N1AAAgAElEQVS3jSJjlRC+T+yvz7VleK0JsPNXKUEhGRJ8secL2zJ8f+cKyARp+idaMb9S92RRIibhdaNY3yvWD6Kue7icqONiQiyBXUHfDdfdLSOct9vfwwIuxcZkWASnlGBN1P1ouXttdxxWij7pUxRFURRFURRFGcfopk9RFEVRFEVRFGUcM6abPhHZVUQeFJEXReQFEfm0H94kIveJyHL/c5extEtRFEVRFEVRFGW8MtZP+jLAxcaYPYHDgP8Skb2A/wbuN8bMA+73jxVFURRFURRFUZRtZEw3fcaYdcaYJ/3vPcCLwEzgXcANfrQbgNPG0i5FURRFURRFUZTxyg5T7xSROcABwOPAVGPMOrAbQxFpKZLmfOB8gFmzZuWdW5gwfDkzPIUzVxGpmGJmalK+GlJNb/EyAvW+sFJk1/ThKxPackunCZSnArtXnZpl/3XxSOUzcNUuTeicGTofpRrYPcVEKgkVU0cCaF4dK6qY6ZblKg22z/NoXh0vUPgKf3fr1jXNMG25RCpiumW6ikvhz2J5u3UMVONKqY+5SlDF2qapLVag4hZWMHTzKKV+FlXWkL3VhepQVmnQjZffv6IUFMvR2ZrfT6OUB8O0zytU2dwe6oTlWCTgtea+D1FG/SsgXWsr6io5Btess9UbGgNBWLrWROYVVm1N1zKUb/Dn5hP0RWtD/pgK+nkpxbDg2FUVjLInPD7C8dK10LguerwUUwu0SnI5VdPwGIqaZ5rapKhCXLFyM0mreuuqrRVTcQvCu6cYGjry1YPdNgravlg9K6U7cnUbfUaiiDscFbiAdK0dPwmk6Pgvds3c6xWe/1yiVAfdceOuNe6cDfkqnuXUJN10UeMiCA+vk+X6ZljxMmxDeB1xz7nq2sVUL8upW6Zrc0qQxeJGhadro+vkqt7m2xo99t02DSsaBvdNpeidnH9cbNwtEjsPLxIhtaBstnnpFhmo21Joy2grdxYbI71N+fd06VY7hwHEsibyvqa7JbpP5fqeKVgX0rW5fN3xU+y+0S3PjZOuzSnqhtcpLw6pRjM0d4f7bfieJ6rcYnNRqb4eHmPFxmWxvN104Tkpau4vps5ZST2ixk84j1JzYsG4rHDu3iFCLiJSD/weuMgY011pOmPMNcaYg40xB0+ZMmX7GagoiqIoiqIoijJOGPNNn4hUYTd8vzLG3OoHrxeR6f756UDHWNulKIqiKIqiKIoyHhlr9U4BrgNeNMZ8xzl1O/AR//tHgD+OpV2KoiiKoiiKoijjlbH26TsC+BDwnIg87YddBnwDuFlEPgasAc4aY7sURVEURVEURVHGJWO66TPGPEJxz/LjtyXvkQhBBM6sUNy5tr4zP9+WlRGOvoHzrZ++Y+6wTckTklhkCh2Xo+J6ceuwnEkaEmmhqS2W5yhbzNk6OF/MqT3svF3TK0NOrK4zq/s9LAITFl+IcmoP8nPTRTnhhr+79qfrSjvpRom11HXJULhrXykRgyhn6fB51/E3qvzgM+q7e1yqHFecICxi4H6v6ZGCdGFH4ag6DIdFAt1negz3hYFYVgpEiEbDWT7ZJ0N2BflFjWt3rK2d77EwEYOhfiZDbRUW7wmIckIPO33XbZG8Ng+LGoVx44X7f5SoTHDcX2/FOgIRmCBOKVGFcJxwvl7czo3FBIaCeOk644tMFNoa1WaxLDSuixWEhR38o8Z6VN3D393jrumGui1SkF+ptMFcElzLKBGAUo71lZJIl++jYawI0/DWuHJ9LsAtv7PVY2gwEG1nWPAss6+1zYvb/rAwYSoqOyy+UkrwIer6uflEXdfwWufGCa5xIGoRJZ4QJWgRHkOuaFKxtTYg6nyUQI0rjGHX8XzBqKg2KLXOQ76wV7E2dr8HQh2B+IubbzDXRIlXBO0QiM8EZbn3WuE6WEGs4vdVQd5u/+ucGy28Z9vCll3Tm7++ZKqj4w/FEahZMPz7SLeMYutZcK8WTuOej82znwsTQBx6mwz1m3LigOExkkhDTW+hcBe4fceeD+IEfd5duzbOtgJWwZxfrJ+Ex1BwTcPCeEHcxnVSEB5QTLQuKK+UqFzUnOCuVVHrUbH44TZz56TwmIpaF4vdH1RyL1XqvtyLQ9d0aGortDmqnOGsRztEyEVRFEVRFEVRFEUZG3TTpyiKoiiKoiiKMo7RTZ+iKIqiKIqiKMo4Rjd9iqIoiqIoiqIo4xjd9CmKoiiKoiiKooxjxvonG7YbgVrS5dWGKwcqU2Cq6QmpZkaoqAXqScH5xJRCFTMvnq8+1Ts5X6kpdkhxpanIughsPNZjkRRK8nhx44qrDSl7WRvyVXwS6XxlxyF7iqgXuefd+E1tMnTsqiqVUgDtr7fKUmElpqC8/onQ0GG/p2tzcQN1pHx7Zah+rkprEJbsiz7v4raPq8Aa2BPkUUyx0Kpllb6IgXqdW17OHpt347rcdSmnCBou3/10v4dVs2x9SisVBrj9MjW/MrU+l+Y1sbzzYZWyKJr2zalsFiN8rpwdAPXvkzwltoCFidCgdvp+oPgZHEeNoyjVLFfZKypuYiD6+kZdh2j1O9tHwqp3Nn6uv6frbJxi6qyF5Qcqi9H55Y8fkxfHPQZIpiRPca1Ufw4U9YK6FWuD8HEsm6+069rrKp2FlTbDqr7B2E3XmqLKcJ0zPWLZBP31hvrOYnblt19/ffl+6Y4ngMzs/OPwd3c9CcZgurYwXjk8x7Zy42doLTspYuxJbt25vBpiIaXAjbM9ZizNn/cqIUq51VUZDIdXMpYKy8j1lSilwHSdVagMxk+qMbculSsjqt+Xjm/HUFR/Ddvm2uuuRVEKhMG5KLXZsCpgrgyJvFbh9SsYN6XmhyDM5m+cY/FtKrUuQneLV7RvBuFrT/JoXh0fOg7GQzG8uB2bbj4186VoOYGNqcby61cxwqrqbvtaldj89i52DQISaYnsV+61d5XWKxkfUSqzgapp+J7E/d7QIQXzZhA/kYbulvxxA1Z9NFDwDNtUbr3It7dwbimWttRYjGrDYkqhbh5BW/VOzlfTjCoDrL1hxd1idSu+7hXOecXW7KDMStEnfYqiKIqiKIqiKOMY3fQpiqIoiqIoiqKMY4pu+kSkSkQuFJHDSsQ5zI9T4c/AKoqiKIqiKIqiKGNJKZ++c4AvAPNLxHkRuBXrgPD90TNLURRFURRFURRFGQ1KbfrOA35gjOkqFsEYs0VEfgh8gDHe9K19IlpoIoEMOZ5HiX64pOZCw4b8MNcZN5YVYgvynX/TdfZzYcI6tltn5VycTNKQ3C8/z1imdF3Ctnlx66AbOIMGYUP5RTiHZpKw4tAMs56tygsPC0EUcx7PszfkxFrfKb5Tab7gQ/i72941vSbSATcQdKjryjmUd7YaanphxtJ4Xpwgb/fTDY9lhfbdM+zx91jIwbwQV4Ahk7TCMVH1KGzb0gIx4fq55YWPXaf24LqUc3LPXav8eO73KIdk2775+brO/lBc2CEQPokhQ/08bFcmafzrlN8OOVEeU7TNXPGUgHIO9q4d+efz6+SOmWK4YyCZKhQ7yhcAiR4zYVxRHc+fF9yxFx4jpdonwIoaGcIO327aWDYQXCh07i52XEy4JarPhuO7uIIj7lgP52PrYMPrukrXO0pwxArA5L+U8uVMbs6Num6ZZHQ5OVGYwnON7baM/okMCbkEcXNjKL8deidbIZCgzCiHenc82XgFUfLy7ZruiA/FYWECYrU2LMgjnDaqPv0Tc/NcePwUu6Y1vfkiBOF1J5PMCQwE57qbC+O74yZPNCKZE+ty8w1/uoIMYTGHcuPGjZfr54XjOj9/a5vnzHWViNJECf2Ujp8TRAraxtat8H6lsC/lh1UiiOTmF7bty5lCQa2c6JDQ3WKG7o+i6hU1zjvmekxbHi8aL7xuVSLGA4ViG7aPFm9ruzZ5eXG6pnvMWBrPa4v+ekOyLxCeM0NrdGBrsfU5ag0Ot0WuzoXjxoYZ3PGRrs3VyYvjt2X0y3jl7uGi1ilXEMhtz5qeQpGW/LKErulenqBflA1ufMjNPUFYuE2KEdxDZJJ2fm3oyN23hYWWcnWrbLy6pCbZObKprXCOCs9JmSQsOSbDkf+XKDLu8teI8L1vlNBSWIQsiGfrUyjc5OYT7jte3ECJa5hna4lzC4BHK8jjMT+uoiiKoiiKoiiKspNRatM3vG2zoiiKoiiKoiiKstNRatO3DDiigjyO8OMqiqIoiqIoiqIoOxmlNn2/Bj4jInsWi+Cfuwj4v9E2TFEURVEURVEURdl2Sgm5fB94F/BPEfkJ8GdgDfa1z1nAScAngaeAH2xnOxVFURRFURRFUZQRUHTTZ4xJi8iJwFexm7uLndMCbAWuBi43xgxuVyuj7BPwYoaFCQrUBaMV5ChQw6rpDatmuqp40cpQdV2UPB/Lwqr9Msz9V06irX9ifpwotU73u6sg5ebrKgmF1chiWWham//gNqwYFJSTmmQV5ypRPIplrcKha3cx9T83r2Rfft5h1aHA9v76XJzm1bl8gjKiynTLqu8cvmpToB7ntnPOrqDcfNWt4Lxb53JtEMvmK+EFCp5uXkHZQRyr7JdTfHJVtdx46VrXHvuZrs0dJ9L5bQs5hbpyimmlFB2DOgZjqaEj/3yq0SpvhdskXwkyutwoZcmovhalAhbLQsOGUi8u5OK59U/X5ZQvo2xwywh/DyhUmzX+NY7lKXoVU7/N5V1Yv+j8C/tZsb5Y6jq4+RTLt1jeYOeQKMXPcHn5qr42PKyQFpRzeTXgqFsGSqiZZL7a3+XVEAspnrlzXE0PRVUobT65/ILP5tVCutYUqEu6Smnh6x+MOShcX6LaBKB3soHlxdvNKuXl9+VUo6Gmt7L8h65XJnQccY3DbVDXJXnncmXY41LKm8EaG+QffHfbLFC0Da55Oftc1ePgOMr+cHu467g7V4I7p9u1za1PahI0rstfDyql0nXIHYOpSYa6LYXjMdd2ufqmayHZl4sbpXRbjNSknMpzcK0WBnd/Tv3dsGWHD9Kysiqv7aLGWhAey9p13113Sq01wXpXt6V8JRo6CsdDFMHckkgXjscgD/eadrZC/SbobrGKvfWb8uerYsqj7idE30u51y5TDV5f4fpj49nPdF1+m5ZS1LTlQ3eLoWVlTvGzUAm3cM3pbIUZS3P16m7xmLa8+DXw4oamNns+XZu7v4DcWAruEYP4gT0B4XueUnUK+tbG2bZ+yZRVwm7b2+br3nO494lhteli92UBz56UoWN2hoPvqB5aYzLVQb6QTMnQfVT/RHj+iD4Ou3li5PULq4a7a0b4/jtowyBtOE6g7lzXlWtfN02ujNxnLEvF6p2lnvRhjOkHLhaRy4GDgRn+qVeBxf55RVEURVEURVEUZSel5KYvwBjTB/xtWwsTkZ8D7wA6jDF7+2GLsL8JGPxi3mXGmLu3tSxFURRFURRFURSlgk2fiMwFzgUOA6b6weuBfwA/N8asHEZ51wM/BG4MhX/XGPPtYeSjKIqiKIqiKIqiVEBJJxgR+SiwBKvQmQCeAZ71v38WWCIi51RamDHmYaBzpMYqiqIoiqIoiqIow6Pokz4R2Rcr1PIr4DPGmK7Q+Ubge8DVIvKEMea5bbDjAhH5MLAYuNgYs7mITecD5wNMYtawnKyjnOzrN+WLG2SSOUfzIDwsLmId2YsLIcSyQmIw36G0oaPQ+Tzqe+AgGzjEF3N8DeIEgixBOXs9GHccWwudRYPPui02PBBHCJxyA1uiBG+KCUQUE3lI15ohO/Mdem15XdNt+yf77GfgSOu2v0uUI64XhxlL43l1DQsTuGXmHLzz62vtZejauvm3z7OO0q4jbiyb76gcHAdl2TCAfLEIV6AlcOiOapuAoP1c+9xzAR1z4eEP9PHur9T65wJBimjhkP56m64+9O+X/okGq9EU2GMK+kJUmNte3VMMjetKC47kRDny+2q+mAU0rit0ji5FQ0fxMVPM3s6ZHl48nmdHKUGG8DWzuMI/xrm2xQUnoq5LVLn5467QmduOLzM0flw7w3kGcQObg7Agnls32xeL93OwfbKYWEq4nkE+QT/OjbfcWAmEHTLJQPDFpssXXsqvu1vfwKHdi1uhBy+eG7dR4iMBufnUUL9JSKbs3Jqu88v3RQoy1fnzTGerITXJMG15zM+nsvUoNSlfkCq4xmHBEfd8Z6sVUygm/tNfnxN6CcI2zvGo73Tbzp2n3H6aq1NNb/F2CuK45704dM7I4MUTvghBodhWEDeY33J5mFCfCUS17JGNWziGwnNZfWe0AFKwpofXh2CdD/qFKyqUrrP9JjUJv+0KRSnCa03wvWs6NHTkt2vUOuTa99hZgxz5q6qCNQWML+CQ6xNLjs2y14PxobF6WR1Qm39dio3DNftmaV6dyBMSyV+rCuvU3ezlhbn9JJwuJ0KRWx/C9xbFBGG6p3iUef5Ad4sHL+QqZq9reH3IzR1g17NcOdGiHl3TPTbOtgI0XdMNc/8VyxuT/fUmUlAlfG2Dvgt2bgsEq4I6piYF95uFYisByVS+IEz9Jolsa/f6bpyVZc6T+dc1P05uTMWytt90tximLS+8/sFYce8zgjjJVP59VTB/1/Ra4Z6OuYY5T8X8+uf3ZXcMBqJpXdONf9+Xb28g4JJIQ9uCrN+HYjR0CJ0zPfrrDa3PJxwhGTN0HxyMi0zS0F+fL9QY7sOxLDz07m5q+mKsnTtIYlCo64nRX2f7fHJASFcb6npibJwxSCwr7P9QnV3zqq3ISrH12KW/Htr3yAnhuGtccBzcqwXp07V2LrdrmO0HXdMNNT22n6ZrreBMMmVFwVKT/DFXoVNcqZF2AVas5aPhDR+AH/ZR4Ak/7kj5CfAGYH9gHXBVsYjGmGuMMQcbYw6uY8o2FKkoiqIoiqIoivL6oNSm7yjgF6USG2OMH+fokRpgjFlvjMkaYzzgZ8ChI81LURRFURRFURRFyafUpm8msLyCPJYBrSM1QESmO4enA8+PNC9FURRFURRFURQln1LqnfVAqsT5gH6grpLCROQ3wDFAs4i0AVcAx4jI/tiXj1cBH68kL0VRFEVRFEVRFKU85X6yYTcR6S0TZ26lhRlj3hcRfF2l6cNEiSHY8JxTpxvmOvsHBA6uNp+cg3uQv+sAHzhV5wsiFKZr+Xd8KN/AuTmTzDlqug7drk2ug29vk4cXz38QG3Ycv/5bPZx/wcQ8W/rrrR2pRkgMWGfbWNY6lFqBA2hZGcS1TqkNHbYNU5OML7KQc15OTco5mw455lZDXVe+KEgsa9NmkrBxthlyjK7fJGyc7fkCKkJTm5BJWmfiZ0/McPDtVfQ2WafrwM4hR2w/b7cOQf2DsMCBvq7Ltml3C9T05JxtM0lbZ4C18z1aX4hRvwke+cAgLaviNHTY67Li0AzTXo7TvDpGutY6jndPMTzw3m4OfHACz53RxXnvbyExkLMvcOZ2HZ+DsECIItVobajrsjYlBqB3so1bv8l+drfknJy7WwwPfDjFgffWkElCY3uMZAqeP26QRBrmP1KFl4ClRwySqTK0zUsz/cQOJsQ9vrPHFJIDQuuKappfSdDdnCXmCZkqQ/3mGCsOGKBjRpqzTniZzv4aDp+yT57dYef4cL8GWHq0x/yHY0Npanry+0bOITlf3CYQBQGo25ITrkikYcmxHns9GMMVdrjmu5u54OO7+I7f5QU8MtXWqbyUOEGhkAQ8fGYP+9/dOJTGjRs45IdFQvrrA8dxV4DGkK4NrqP4/VOGnNqfPSnLgXfEnTiBEJN1RLftYj8DEZG6LitIUtdl+3gsC01tNr/O1lz7B9ct6OurDsiy/93xgv7Z5b9TkUzlygrmBXfMuUJDruN5IPyT9sUj1s7P0rIyPhQnKCsQbAkIyg/i3HPBAOveu5EF351KfWeMdK1hzlNx+usNXdMN957TzcnXNdC2Z4Z/ntjLf3y+iadPybLskAGOu76O/omGxIDtR5lkbs7z4nb8xLLw9An91HXVkuwTEmkbJ1OdE0dw4ybSEMvY6/bAuWkSaaGrJUu6xiPZHyNd41HXEyNTBekaj3SNIdkvxDxhxvIqYtlYhIhJrh+GxQruu2wDez041RFFyNmfaqRA+CuTNLTtmWXOk/nCNIHQiReHFYcFYyjHI2f3MW1Z3dC8HLYrPFZcsQP3fHAuPHaCa7pxRiYvPBhngYBFLJubr4PzqUY7/1mxklwfDNKma+2fKwbW2WrHSzKVs+0Pl6Q44+u2jrm51gz197Xzs3RN9ZjzTIKaHqF9XpbUJEPrEjs+lh4xyO7/qhrqt63PC+3z4N7ztvLhSyYM2RuM/8DGoH8H6fonwp/vWc3x75xt54yMtSeWtWM0ls3N+7EsLHlLhr0fSND3hVX8IzuH5lfi1PQKa/fIMuv5uJ/eCjQEwj+rv7+KJb+dzsk/qaOmJ9fG4fEXCG0Ea2CqEVbul2b+3xJ5YnX99fZ7MgVeIje3BTxzZC9N6+J4MWhamxPp6JzhMWNZfGjeSU0yrNlrkBV79/H+r+3CT3/SgxcztK5I0rg+PnRNk/3CigMHmLEiycp9B5j4lk10diV54y+bh+bJUsIv7vhacuQAe/zdmWSAtXsa6rqE/on2uHuKIV0rpBqhpsewZt8MdVsSQ6IkAI+8O0VDZ5zeRivgMeuZCXS35MbVY+9O0/pigsZ1Qk1vbvwFa14guBHL+PcoE+Huj3dzzqWTqHOUMNoWZGlqixfMBe6YyVTbeSroI13TrQBI0O+CdMG9XSJtxXbcvjgkSOSPqbot9vvaPQ01PUJTGzx5cj9znqylY64VDGlcJ/59m23j5tWSt2Z0Tbdhna2w5JgM9Z3C/Ifjfl8x/OO9g0x7OU5vk53H1u5pWHaYHVdraqF9nkd9p9D+hiwH314FGNbO92hcZ+/FvIS9VqlGaNszQ8sqOzbv/dAW6nrjnHJNA20Lstx1bhdV6Riznm1kxtJAaAd+ftUWLjh3Ut588+SpGQ67OTHUFsE8D3YcenFobk9y6F213P2xLUydnWJ9V5KqV6pJ9sfYsHs/e7yhm6XLG6jtSlAzGGPu4gS/uGsdqVScY3882b8uMrQOWVEZQ7rW0N3skewTXv6v9cyf1cXL/VV0bK6lYcIg6UyMmmSWRNwjJv7eIhMnmbAXLzVQxcbN1Uy4bxfW7pYmXe1x6gmruPXe3fBihmzCUN0XY6DWIxY3JJMesRgVC7mU2/T9uoI87B2PoiiKoiiKoiiKstNRatN37DDySZaPoiiKoiiKoiiKoow1RTd9xpi/lkooIoLdGL4POAOYPLqmKYqiKIqiKIqiKNtKudc7CxCRN2E3emcDU4FO4KZRtktRFEVRFEVRFEUZBSra9InI3tiN3nuBOUAa+0rnZ4EfGWMy28tARVEURVEURVEUZeSI/X31iBMic7GbvPcBewEZ4D7gN8BfgTXAMcaYh8fG1HwadznIvL9pMZCv7Jjsg9QkqwI3bblVnOqdbOic6dG7i6FlVYyOOR5Na2M0rhOeP26Qui0xvLhVZJu2Ik5dl1WczCQNcxfHWbOvR/cUj7W7Z5j7dBXdzR71m2OsnZehtzHL/Meqh9SnMkmYtiJO50yrBpXsg94mQ90WoXOGR81W4Z8n93Lg/RNon5vBixn6Tupk63MTmftcDY0dcRJphpQbN+6aJdkvZKqgZqvQPtfur184toc5s7bS95dm0tUenS2DtK6sJlXvkRgUDvnwctZ0TuSlx5qp642z32mr2b1hM3vH2rn0lhPJVBn2O3QDp814id8sOhEvBgd9/mk6UhN47te7kRgUthzUwyVH/Iuv//Yo3njEBgD2mLKZI6tW8dWrT6GrOcN3z/gTz8oM6mKDXP+vvdh/3iaubfs1hw5cyOZXakkMCge8pZ1kIktqIMELD08FYPKCHr78xoc47653sO/fJ5D91Bqmfm43Xv5SGwN/bqYmFWPyOWtomZji8V/NI5aFCcdtomWXPuqrB3l6xWR6VtYxf3EtTx5+PocfdhltGyZw09SbeLhlD1oHN/PZp09kr926uKzqAW6fuA+92ST92QRT9jyECf++j26veqg//eT31/Cls97H4t6ZzJ2wmb28djrjE7jyr4dxwsGv8sjz0/jawQ9xz8Ab+dtv5zFnSTUvn9FJ6/QU8WtmWhWziR5v/9zj7J99lYseP4E5rVu5veda/rn7G7h+8BDS2RiJmOG0CS+QjiV4bHAWnhHeGl9G0stwu7eA1ppu2tP1nOY9RzKb5Z7aPUmIx15mPUkvw/Px6aS8Kg6kjT22rOf2Xfblz195MydcW0PVmvuZRg8P9exGQ3KAk2MvkYonmbV1E7+uPojFq6dy9rwX+cZ9h7DgwYns8XiVVZ/qskpYbQuyzFgaH1K5ap/n0dQWI11n1RLXzvcY+PFSpp6x15AiYEOH8PTJaZrWWvXFhg0xmlfHfAVZQ3+94c9f3MBB108mMRiMUaG72WNja5bmtjgTr1pC36cWWPW6eRlSDR5y5no2PWIVsuYsqSbV4OHF7Bjw4rBxph07XhyyB3Qzt7WHww9+I9+/upPWldXMfaaa/nqroBWk6Z9gaFobo2uqR9fULKmJHhPft5ZNt01nwz5b2WVpHd1NGQ6+t56nj91Kqt7j6FutFNxfP9RFdiDGoffVk710FS/8vYWqGf0Mrq3hyD/Uk0gL/3hXL4O7DnD4dU10N3s0ro/x4DldTJvWz96zO3nx529g0unttG+sZZd7dmHV/H72f3gCfZ99hVjMMHhdK+kaQ/V71/GOOSu4dfkenLL7Su5ZuRsnz/03HsIP792HZNLjlMNeISEeD70wk4b6QTwDH57/PDOyW1jMrvzjlZnMmtxDY3U/d9wyn0yV4UNnPEfKq8Izwh8e3Y2GhkEW7fswdV6aC/55EhOeref4c5+nKdFHjWS44ZrDqUkJH7voQVqyPXzhxncQy4LZr4dUKsF+v9uF7uYsdd0xVu01QIHo8XMAACAASURBVE0qRuuyJJmk4emjt5KtzVLblSAxaPvXm05dw/Jr38CCjy/jrodmcduxvyPhZfFEeGDCG+k3Cb72+O/Z5YU2LvzYhbQP1DO3ZjM3XHM4x5/zAu1bJ7B34wYuWPYAqZpqftz6FjyE929ZzKqGZpYkptHrJYlh6M0meX/qCR6eNI+UqeKdm59l2uYuvjPnBOpjaRLi8d+P38nS3Vq5acrB1EiG3/zocD7/ybu47NGjaWkeoGNjNZcd8TgrspN5ZNVMUn0Jjpv/Cs2JFH94aR6p/jiTb2mmf4JVrZv/aDVLDx9g3weqSfYJ/fVWza2mV2joEDrmerTPzfC2bz7EL79/JL2Tssx6qZr1Z21k8OkGmtcmSNcYWtYkaH4lTrrWkGowdE3NcuEXb+Pqy86gaV2cVIPhyWN7mf9EHcl+27cP+eZjvPLuI0ikhUzSjosTb/4D3/zZScx/vIbUJM9Xd5Qhhb8VBwwwbVUVG2dmSFd7DOy5lbmzeln3p2ns9WgNmSpbduP6+NCal+y3yqbJfiGWFdbsmaareZBZL9WQGLQKqB2zMsx4uYqulizrj9pCQ0OGqTe24MXsGrn+/RtYtPfDfOIvb2XK6hrecFobbR0TmHjLFLqbsjR0xol/9FXSmRivPt4EwD4nrGNR8l5+nDySB56awckHvcKqzQ0cM30N37rzIBo3JTj27OXUJQb5x8vT6R+Ic+5+z7Lwz7fx2be+n6tv3Z+YJ0xd0E0sZlj/zCTqeuIMLtjKnNZe1nbUMeGhRnZ/Msmk654mIR5/v3oBqYke1Qdu4c1vbKejt46n7p1Jpspw6qnL8RBu/escZszo56dzbuewJcvIJOKcP/+DrN0ygcsnPUjDQB+X9J9Cfc0gP930W26cdwTtmXoyJkZCPJ675BDO/M6fWOM1kvKq+MXPv83Xzz+HJYMt1MUGAdhf1rIxNoHHz3gbW65exk1rf8Ff9tqHS549nv7+GAPt1Rx01HoOnNLONQ8sIJEw/GG/m1g6aTo/XHEIR+72KhvOPIzP/OIHrK1v5E6zF93pai7KWg+eGyccSk0sQ8bEOJqV7LXhVX497VBufnoPFsf+l5UzpvLryYeQMTE+se5hElmPTDzGT6cfTUI8PvXvB0gOZjgu83HOPH5X3vbS99lYO5G3Pv0MFx34XtLZOP+v83666uq4MnMCDTVpjqxfzSpvF/q9BMsvPIRlB/Vz4F/qhtRswSojWvVSj3QNPH+klZTsmdXPCYeu5fFb5tK4wSo9djVnGJzbR0PDIGtfrSVRZdjz4XoGz1lHb6oKz4OmSWliYujqSdK5OckJB71KMpZlr5oOnu+fSktyKz+9bwFz52wFINUfZ6/Zm5k2YSsb++po31JH88Q+PCNMm7CVtBenJp6hOZEi5VXRHE/RnqknJoaaWIZf//ON9PYmmLyslgM++DIvXLc7ibTQ2+jRNXmQaa8kyVTB2tkDLNi7i0NO240bvrmJhoYMfWvtvcn73vUia3oaWPeD3UnY7sAhVzxB2sS5/Z9zyLbVcOKpK5lT28Ud3zpsSK37qE89Q2tVN7+56ii8uOHST93JxtgEvvXro0gOxNg0Nc2PT/4LHsIXf3kyzeuq+PQld9A0uJULf/1uO86bM1x92h85cvlLXHrhlUz886P898v3sGrqFD7R/i6aJ/XTvqmOixb8k7Uyib+8Mof0YIwXllwJmSznX3YD6//1FH+889u8ePA8mrp6OKbxAnpTVVy24O+0xyZyZ9s80pk4l8z8G4etXEHblMl8I348iZjHmk0T6e6tYo/WLrr7kvT2VZGIG77W9Gc+csuHSFd7zHxTJ7Oae1myZhc6O5M0Tx6grjbDRXMe48I7TiaTMBxy0AYa69I89vwUGicN8v8WPEaH1PPtBw/ik+9toWu64U+/WMvGjdW85wrrpXbXVes59/Dnefltx9HUFiORhp9/czNfP+1B/vu+o3n30Su58eFrWfaGmXx/9nF0Z6qJieE/u/7G2oZGrh88hETMY1pNL4vXTaPv57vSsesg9Vti7HPucmoSGV766t4k0sKCK5+idzDJy1/fi2S/vXd6z3fu5KHeudz58K7UTchy7WF38Wz1TL5934GYvhhS6/HeY1aQlCz3/3B/vBi8ctHEJ4wxB5fbO5V60rcCq8r5OPa3835vjNkMICKTymWsKIqiKIqiKIqi7HhiJc6txv4cw97YH1R/s4gM2wdQURRFURRFURRF2XEU3fQZY3YDjgBuAI4H7gDWi8jP/GP9bT5FURRFURRFUZSdnFJP+jDGPGqMuRCYCZwE/BE4E7jFj3KeiJR9h1RRFEVRFEVRFEXZMVT0uqYxxsOKuNwnIp8ATsGKvJwOvF9Elhlj9tx+Zhaye/xFfvyFs3jpSFvsHstfRbYOwGAWOnqgfxAOTsPWNKzaDCs3Q2cfvHM+PPoKrOzk85v/yFee+QteTNjY2EBzVze7Ln3Vpu/qg64+ai/6PX1XHw+L18P9/Xzp1d9wRfPZkM7CHdYj/qnli9hj5VraZkymrXkyb/vrh0lvPh+efhVWbeaqX3yVi7/4A7j/ZVjdBS81wswGuGkTxGPQPodN7zmEyeuXQUc7pNN85Vff4Iuf/ho88DL0pqG1AT5yMEyqhRfWwT/jHLHf9/m/Y7/Kbg++AEvTHHvut0nEPGoSWb63+ne0vrqRo4+6mETc4w/P/5QVc6bzw+nH8PZTV7AxVcsDj32Hm5uO4Igv/gsP4aLV99O6bhPnfOQc6hKDLF49lb23rmX6/lt44fFmAG7a+0bunbcPx5/7PG09E/Ekxgc7HicTj3NjbC+eum0OHz71Q/Q8WMebjllHTAyLYveSzGTwEsJlx51CffUgn4g/yrUDb2LSzD5eOGWQ3iXf5L3Xf5zlf/wubzvnUhqSA9z0wE9pn97Eh8/+MImY4U93fp3BKRPpbJrI/rHPst9R62k6uZ8FG65g+WO7MGlmHzdNOZjjUstYVTuZmhqPAye38xeZzwmpl7jjzeex7tAMLSsfIm3iVO96NJ2t9oF1y3kH8AXzZ8yH92F9Z4z6h+4lTZz/Oq2FTLKFeVlgPXxv5e/48KkfovUDPSz+wZfgDVM4a+GFJMRjY18t72//J/+YtjvNkwd4aXETF5z0Hg6sWcsLP92dZH+Mmq3Cmq+so440L33hAGJZWPmdTXjEWHf+/lQ/k2DJLS/D1H3oGqxh1z33Y/Nkwz33PU0ynmXCmw4iloV7H32Sb7QfwcF1HZzy/Rq8ODzZOY3+dCtH7P1Gkn3wf6/WUp8cZFXXQRx/wO68PQ4PPd/HKW9+hZmfPIAfz9sDznyDHVATkvzokx/gvz71Hdh3BqzqhD8sgbe/EarikPXg9y9wvyzk+N0+BA01sGwjn/zrtTz2k6vg6ElsnrELa2ZMYb+v/tGOw/1mwMMrGew/kqon7oB5k+HxNr615no+N+scaKqFtm7+fdGn2W2/Z2HOZO5/y4F0V9fyna1H8cjeVzBlVQfs1QdtXdCThs4UdA/AUg9mNEAyDlUzGOiezNfXXY3Xfh68ugHm1cKmFKzaCFv6oasfTtwdDqqGR9fAKg+aajn/+ue45tKzYWs9bFgDizfzueu+yUMfuBgaavjk9d+iRjL85cLLAPjY967ihrv35JCj1vPodRfCum4u/dVX8BDu/uglML2Bz914OTUMkiHOvZdeCbvUctojf2Kfm57ljr98F5Z18NFLv8hzD17PZ7/3fr7/p18ifYOc98XzSWWruPHBa7m7+UB+3LEvt931JvqO2sJxW1+it6qGVUc20puu4mttf6RzYj3LWs5gybJJDPbF2X/XNlbVTaZ69lG88ONOHp78v2xsaqD/9AQbt9byHx3/IGYMjT1beWzquaT6EvTHquiO17L77B7mH7Kay9bcw/9v787j46rq/4+/PjOTyWSyNk3Thu77Aq0tlELZlUVAsD8RFEREVCoKIm5fUBArIoIofBUUKFIFURC/gKLIJvsOpSwtULrRJd3SNs3WTDKZmfP7485MJ0OSJiVN0vB+Ph7zyNw75957zj3n3HtP5t7P1OSHaQoGWXFWKeFACzPr1rAhXMLkkyoBePbfl0NBLj+48cusbioh7G/hlfMvhLomzrnzFqIJP69cdzls9wIvHHTRrQD8turvfPGMLzJ24nS+3wg3r5lNSW4TjbEcCg+dTsIPM28dyYF3jqDoOqOiARa9tZjhJ20gf/pBTI7A5pGOL961D0OKGnGnTMMXN/50v5+yQCPbp3+CUIMR98P2SXEW/C3AgIkH0jDQceczuVT6ixh41H5E4hBshEP+Po4pBdUMmDGDlohR8eQynoqO4eQfDCYWhIbSBE9NHc2Ewm3M+PIoAEJPv09lcxFHf3okgSgUv/8IP59/C1TvgNql8McGr88E/fDSWtgWg9P2g4313nnotrWc8lY9a0+YA9sd/OZR2DETDhsD4xzkBtj4iXIqfvwAHDEetu2AfyzlyAseZ1HiGFhbCYs2wpIKeHU9lISgsYXHf3Q1R4+9FGaNZNuIMkpqdjBlxaVsyv0KHJcDldvhxhdhZAkUBL0+v6wF8nJgVRDGDIREKaFNt9H0532hINdL92YNrK6B8nzv1RCF9SFYvg3iDl4t4Iv+ddw5ejqU5UNdE2xM8PU/3kBjIoc///GXkBvg3KsvJJrwA7Doj9dy/bQzmTCunlGzN/DAyzeSs6OZM354PnXRXApyotz57K3kVO/g6BN+SHVDiEffvYHvHnY6K+dNIXzKNq5a/U9GrKvia2XncOABWyjNb+aKjf+mKZjDfZu/hs/nGNOyjZLwlVxuL3L40ZWEc2L8qvI+GsIhvn/cHMryIhwfeI/9169mSvVaxhx3OS/OyuGZLY9w9/BZVJ+9iqYWP0//9WLWM5khm7Zz1LHfpanFz6+W/x++hGPVvueScMbCwpH87cJvsPGRJbx32xg2jGpm4adHUBcO8fq/yghFfHz3xM/ypabXWPz5s5nwvJ93Ph5nxt0vsMEVkVtxJC0DYchFd3Cpewj/wQfhIkYgCsuWP0GABNMe8RObMJmvrD6LT/vfpbHRT0FBjEmHVPHUm9fxwoxJPDxsNJOGbucf4Y+xn9vEqtUFDL3qIKa85eeOolmUBRpZPG8aCR/847Iaghbn/W8eQCBqBFpg1R21PFE2jsgnZ1F8ZDOzTrqQMdQz9sBJ+OLwzYcGUb0jxJDSRup/PIaC7T4+fdFI1q4P8/VzBhHLhS+uPJXSkmbO3DKHufuVMiACX3isnDH5dcz42BR8MXh0aYAN1fmMGlRPaIdRdec0r89E416brNoBA/NgWwQaglz81HyeOudi7/P8IP7YQ8T/dZA3vWUHFIfgSzO9dgtQ3czPf3Yml159o3f+Agpn/ZFK388prtzmnc9q8zjrk3N5o7GCgpwo1S15jBvTwN2hv1CTn8+i0hH8Y8tkfHjB14pym2gI5LL/xtWsDg2ibEc9TTlBQi1RVpQMJhE3Rtk2lvgqmJLYxLbVt7J53BDKR9awIO8TPOi7DDZVwz7D4e2tUN/s5bUmj/riCUz58yVsbbiWplCQktIGLjziTL6/6lFGVG7hoku/QDAZgem895+moLGJ/Q49mBsXH8BvV/6NFUMrWPutYmIJHz5z/M+6R1lbVsbaC4uZlLOFTRQyKlbNuV9YyJtfOpKB85fS4MslnIhy+KkrOSx/DTHnY2HuCOac9RZBX5zGeA5rc0r5cvkX2XhsM5F3R/Jfm8u0wDaOm7CGVfUDOHjIBt6I7UNdSy5TBm+juimPwRVXEn+rkLIzI9SvGEQw90YOyK9i2dYignVegMNVvoFMj1byzvKZJBLG0lFDuLHoYAIxx/GlKyhwzTzqxtOQn8MxJasYFt7O/LpZNEYD/Dt/PyafVEks7uPFZ3/G9047h6eqhjBkcBNr3r4E8nM5d9RXGDu1BoBn3rmeuqIwkwI/YNPmEKHJLQyjhkDA0TAwGViuLof9JtUQaB5IIGoMKY9QO+UYRtR6AetC9VAxroFfvX4Q3/hqGVtHDqToilFMy9vOoNPG4YtDwg+X3FJEMBJn+DH70lQIL/zpfaprg8y5I0TCH8IXhydPLqa6JpczFoSIBeHW48ZSVtbMZ2/3ruMSfrj4qKMYO7mOr17sBbN7On4Oj9y/lm98tYxYEAJRePrZWmrqg3z2F/lUD3Pc3smxU4ff9LXFORd1zv3DOXc63u/0fQkv6IuIiIiIiIj0MV0e9GVyzu1wzv3FOXdyd2VIREREREREus+HGvSJiIiIiIhI36ZBn4iIiIiISD+mQZ+IiIiIiEg/Zs7tnT+3Fxq2v5v95h0cVboagIUNQ2lsCeAzx9othdQ15FA2oJnGJj+r1+Qz9elCSjf6eeYzdUx/toBgxBizKMDK+5ZRlBelJLeJrZE8ojE/DU05VG4KU1eXw7ChjWxcXMyUV8JMeSaHIcuMJcfEieY5xiwMEIzAjuUvsKy6lLL8CMPy6nhu3TCq63LZvDKf0qocvnRxATfcV8WMewdQts7HmIV+Hv5mhP0fDgGwz7vGzb+rIVzvp6jaizR14o1h5l+/nSPuKyQQNRoGJHj58zW0RPzs93KYaY/ncv8vtlBQEGPoPQMpq/Qz/T8B1m16hWjCz/BxB9BUANveXEjCGWP38aI+Lj0igd3zBkFfnJEVB+KLw8qqhYT9LVQMnE3CD/XbnqEpESBocQYWHU4gCotrF9EQzeGgIVO9NA1PkXBG/sAjCXpB+li87XXKQzsYVHQYgSj86dc7iOU4Tvx9AQXVUD3M8Y9v1xFq9HHiTQWUrTFuuX8z4XCcs4/Zh1gQfHG46d4qRgzbwZwZowF48r33qGsMcvJMbzrhh3fff5NNtWGOnjqecK2xseUZos7PyOChxIJem97Y8Dx3Pj2Bi48fRE0FvHRqlCEr/ZRW+ghGjGWzY8SCjkDUOOTuAAk/zL+hjqZwgou+XEJTAdx0dxUAw/aJcMZ+I4kF4d43VhMKxvnk9LFeZKVl71EQilIebmR86GAAXq9fRMgfY3J4FrGgY1vjM2yNhtk3fCANpY5AFB5avJJwboyPj52ILw6Pr36PYSX1bL7wYxxxRw4AT697l1BOjNmDpgLw4pbFBHyOAwdOS++LR1Yto3JzPmd9YiihBvjL4jWcNWUUCb8jFvTSPPjWKuoacjhn2ggSfsdr1W/y2l1jKf74VgryWgDIvXoUa87dzLihdWzaHib/DxVsPH0rAMGcBINuH0y41njpxAbyBjVj7+cx89F8nj6rhglj6wj4HZWbwsRiRiJhDClvYuMbxZRXBilbH6BqRAvjFuUy6dkAa6fFCUaMpgLHmIV+brptK/tNqmHcoBoCluDvj4wjb0AL/jUhdgxuYfhbYYJNRrDJCNf5GLIyQN2gBNGQo2Szj6ItPiY87+Pf32vGF4dFRzUwbnEeBTVefwrXGitmNLNpeJT9ny5gyEo/sSAcfE+A+b+rZ59VQXxxGPdqDjlPvETx2NmE6uHeF9cwpDTC4eMmEc2DlateB2DVlmI+OXMMjSXw/OMrWbshn7NPHUKoHv7+yho+f8BIXq5cwozx+xGuhcfXL2VrbYjTpo4CYH3DC6w5dxaDb17E2OJZ6bquqsnjMweMIhCF16re4ulHRhBoMb72nWISAZj/vzW0lMT43me9KF6hBvj1Q1WEw3HOP6zCiwb21Aaqq4NcfIoXcXdj7Qts2FHIQWVT05G/7n1vFUXhFo6cMBGA+pqniTkfAwZ4/d0Xh3WRFwAYGTwUgPsujVCw3c/0h3OoGpOgfJWP585oIuGHI+70IpPNv347RdsDnHJtISUboWEg3PTbbQzaEOSUawspWwP3v7OKgN9xwtSxBCNe+/zzwnWUlTRx8ogJADxf/RYAswdNxRc3/rV2GWWFTVTV5TFn5HhiQceDy1cQzo1x9NBJ1JXD4iVLqIsEKS+McGDxdBqLHS8ue5e6xiCfGT2OhN/x5IZ3icV9bK0NccZ+IwG4f/kqQsEYJ4z0tv3qtreoqsvjmGGryQkdC8Dtr1bS2Ojn65+owBeHW57dQDgvTt4/y6geHKNsQw7heh/THw5y2zXbyIn6GLU0RFllgHfP3EZdXYDh7+ZxzG35DHvbWPC/DRRV+zn43hAF1XDnlfVUD2oh2Gzs91I+leOjxGfUUbs+j2P+UsTMf/i5+aZ6SrYGmPZELmVrfDQMdNQMSRCuNcrW+Ljtli1Mm7ydsoImahpzOXrURObfWI/NqKd2dR4n/qGYrcPjNBY7oqEEB98bYvWMGOFaHw2lCUrX+5jypJ+10xIsPLmZaMgx5TkvGmKowdgwIU6gBQqqfQSi3jG/bI2PIcuNp85pSR93h6z0s+3ud9lal8cJM8bgi3vHn7KiCFvr8vjUtDEEovDg8hUkEsanpowl4YfHly6jIZJDaWEzs6dMIhiB59e8Q8Cf4KBh+xGIwl1L1lBa1MSxo712G4gaL9e8SSxhHDBiKsEIPL3xHTZtD/P5KaPwxY2E3/Grv9YQbDa+dlExgSj8/uZaorkJLjpnAMmgovz5ifUEcxKcNXM4sSDc9cI6ampz+PpJQwg1JM9xtYvYUJvPJ0d423964zuMKK5jbO7s9LVJfeK/NCZyGJR7BL64tZqO5sED329i7cQmCmoDfO7KAsI18I+LI7w3o5GfnFRGNM9x/b+raKkPMHBoE+ceug/RPLjt4Y1E1ubxP58f4J0Xq94mHIxRGoowNv8gonnw+rrFlId3pPPzev0iYgkfQX+cqcX744sb2+JP0pQIMDTn8HRfKwi2UN0YYvaYKYQajNfrFzF14AwCUQPg3cZXKMlpYmDR4QQjlj6HhHNaGD9wJsGIsbzpJQr8USpyjkjvi3cbX6EpHuBjJTPwxY0Xt7/F6qrCdN0ALDs0QSzoeOPYZqIhL7pj0TY/W/eJEWw2irb5mfJsLlWj4wSiULrez4TnjSXHJGgoTVC0xZfMEyT8jsrJccJ1xoQXAkTzIBZ0NBXChOeNF86IARANOaY9lkPJRtIRE1MRGBdcV0/dgBj7HrSVDVvC1K7wruOqhkYJN/iY9kwYX9woW+ejqcAx7mU/iz7VQslmb3rKUwFeOjXqXWPMbCbhc3zt24X8+7tNDFuaw4bxMYYtDVAzOIEvDiWbffjixmM/2MqAJfkEm7z98rmfhkkG7GRL3XOU+JtoTOQwIHwkvjj87Z3VjP3RcKY86ccXh9qtz1Lqj1Adz6O47HASfti+6XlqWkKM3ecAAN6rfJ3GlgDhnBiTK2YAXnTKNZULGT9wJtE8WL/+FUL+GNGEn5EDDiIYMa55fDOBgOM7nxhMwg/XPriFYDBBIOD49qEVNBU47n9tNeUlET6+jxdR/6E1y2hsCvDZiWPS+/fNmtcJ+BLsW3QA0Tx4dc0SEs6YPXxfYkEIRmDTeIiGHWNe9ZHwO9ZOcyQCMOJNS7fH3/6xFoC53yqiqRD+cF0NRdUBTv1FAb44FFV510HV23P56slD8MXh1v9sIhyOcfYhw6geBuWr4MkN3vlhzjjvGPTk2qU0RHKYM24svrjXpqMJP40tOUwd+rF03xgSaqAi5wiieY5X1y+muiFEMJDg8MkTiYa9c1FTS4DDx3lRbxdvfgOfecfHfctneNewG18n6I8zscT71bv3615ORy8eWzyLxmKoXf88myIFHFg8nVjQ8ermxUTjPsrCESYXevW1eP2bFOREuSd80GvOuV3+hJ6+6RMREREREenHenTQZ2YLzKzKzJZkzCs1s8fMbHny74CezJOIiIiIiEh/1tPf9P0JOD5r3iXA48658cDjyWkRERERERHpBj066HPOPQNUZ82eA+kfk78d+H89mScREREREZH+LNDbGQAGO+c2AjjnNppZeXsJzWwuMBeg0D+C2cP3xUX2A+CAjHSHdrCxI24fCMC8ZPyaeTap1eep4BdeMAPvgeXUA8cps+4NMM/B5QHHFTHjstxDGBm19IPsJ+M9tJpaHuDiowen139FzJhn4Vb58JWUEIh6270iZsy7BC45rTT9OcDlgUH44kY0zwsE8oOPD84qC2w+b3+iIcfUjcY8B4ed9zGieY57a7wyXFLoo/KYGVQP9QIAzHNw3Bem01Lr4/Z6Y57B1v0PZ8dAxw7glkZvuSPOnUrDgASBqLd9/7CjqB3m+F2Nt8w8BwdfuC95b+YwNOIts3FyhHA4xh+WFKZqkNz/RokkjD8tKgLg9lfi1NTk8MvkemJBRzCYYPNzA7m63lvPiN8Mo6E43irNtssms2VsS3rejsMPo7HYJfeFt9ypx87mB8/4uCJmXB5wVPzs7fQDuACRNxfS0BIk6IsT/OMs5jl4ZG0VVdUhrmocwOUBLy8+H2x/oZQrYt565y/w2lBq2+vvGUbZ+gA7dvgYj5e/2gunEmkinZ8vzTqcbVPizHMwz7z9ft8v9iHeZFyV3Mf/d+UIBr+Yy2FP+riy2bgs17H5tlGUbvTji6fqcxLRvFS7c1zZbPzflcOxUm//AMy/ZWBGO/PycPf1g9k8PJpst9By3r58+V8BAtGC9LYCUYPfD0+3+Wiew/eboYAXMMHLOxxxx4D0A+beNgaR8Jd9oJ9kiwW9YClXxIwfhf3pPjbPQUG4jEC0jGiel/ayBsta1stf6/7ob5VmngPMCzxx4v/mkvA7Ev6deYcg82zn+q5sNubdA3PPLySa5whGvHQnnjqL29d5Ca99sID4w2Xptjjz+/tStNXHxiMi/GqbN69sQTlNoyKUJPvcjXcXE4wYW64bR0G1N+/uX4xkw+jmdF4+94mDmfWqjyW1B6T3yfQfjqF+eEs6MFLzt6cQPHoHzUObua7Kq8toboJgTYCrk30VIBRK0NAQwBc3rmqEax8NUloa5apGr937ZxxC/ZEt6X5wRcz4/YJBxDd4h/9Qg1E34UjieaTLCfCFw2bv3K/A89uXU5Qbpfz3LvrwTAAAGJNJREFUMylf5Weeg2O3L8dnUPbzqVwRM/751g7KSpoo/0YhVzZ76/rnGxHKp25nyNwi5jmYf+sgAi1GqMHbF5flOja/V4BbX5puY/U/mUgsSLrPLfjNPuQuC1I7uoWE36u7O35TQaTel27ntVdNoGZQjJy1Oel2vu2m0dQNjKf74bhrRuJLGFuGRdPt9w+/LyfU6Eu3+e0/nsT2ETFq549nSLK+rrungOaiWLqv/uLhIG5DLmfP8xpsZtv/yUllxIIuHRjiuN9XtGpfAFhBq30bDhcSTB43vWWD+OKFrdL4rKh1e19mgC/dx8utHChv1UfO+0YhUJgu62W53v95r2w2LrvWsc9SL2BUwu8jFvTWu+BNH+CVK9VeLg84xrwaIJA8z6Xq9vKAS9ZZTvpcB/Dva8axozxOMOJt6+7rB+OvClA7JJZuY3+6sYJAC+l2uuWeoTQWJHCbA+l+c/CF46jNd+ngIdtfKMVt8ae3D3D85/elJd+l13vI+ePZMTmase+Mm2/10xROEGrw8nPzn6F8fZBA1KujqxqNXz+cS06Dt+55BhtXFJAzoCV9XAU47LypbJ4YTbfL/f9nLMX35LY6T18w6mh2lDtuSrbLyLijcclgIcEIVHxrBS1VhRTlR/nt15PBg6pXEllfnM7vLS/FKRjUzKbNoXQQjKYmPxVTa5nnvCdg7rxmFKWbAtg6fzo/M78/kRm3BNPHy8hcLwCYv8HSbcI/7Cjig1w6z7O+MxHb7GP7mBih5HG3/oKprfbxSZ/ZH6v2URGx9Dls/KSPEWgm3a4//emZ2BZfq31x0mf2p64skbymctRePpHNB0Za9ZcJz/uS/TUvXQ4g3a5T56ZJz7Re9zzzM8/tPAd46XyMe8mXzpN3jLR0W5hn3rHhR+GdbSoVHAQgmuf45lyvnyX8A/DFLd2XffGCVudVIKMveJ3n8oCXweN+H8QXNz7xh2C67590nVeX0x7xE4xALLgz7wk/THnSu/T1xaGxmPTxEeD0Iw8lp9JoLHb8LlkvsfAoYGf/WXrKIdRX+6gblGBwg9ffTz12NqMX+dKBiEZPmEHdIK/Mmcf6Swpnpo9tF4yahS8O0TzS82r2KadmyM6yn/ZjL+BQUZV3PAk1GHNmjUoG4/P265HTJtCUvPRLnfdOP3I6TQU712PfnkRLvnc921ad+eLGqNctuY9c+rq74vCt+HxwdX0xAI+s2E44N8Zvvzkhfcz61T3FxEtb0seSG57wUb8lzFWNO6+LZn5/LM0l8XS7O+y8sbRUxNPHvPrTZhILkrz2JXkNth8DXgmQ8DuuajSO+spkaidGKajx88sab7nIjycSzXOEGrx9ET9nKhb19mkqCNaOb0zF1Vr6WqrlhANpHpIgd4sPXxwKqmHroYdgQxPpeqq/dBIJvyOyzp9e146L9mXQG62vhTqyVwVycc7Nd87NdM7NzPMN6u3siIiIiIiI9Hl9YdC32cwqAJJ/q3o5PyIiIiIiIv1GXxj0PQCcnXx/NvDPXsyLiIiIiIhIv9LTP9lwF/AiMNHMKs3sq8DVwLFmthw4NjktIiIiIiIi3aBHA7k4585o56OjezIfIiIiIiIiHxXmnNt1qj6owjfTfd0tbBXNaVfmGTQVuFaR71LRgjIjYGbPa08qSlBKKppi9jYz153aZnaaD+TVtf35zuhGbefv8oBLR0TsbB6yy5ydn8zPUtGpUlERvfetI0WmI0F2UJbs7WVGQ83OY3vT7e2D7DJnzkvlNTW9MzKXN6+pwLWKmtXW/kqVLzUve5+npqN5rlWkqLbaWXZ5MsvVVn2korJla2tbmWlT5czcv21tK3t/ZZe9o35xWW7rD9raXmr/Z+6zttpEdt/qitSylxQ6ghFa1c2Pwu3XSVva+zy7/rLbVTpdVprsfpOKzJfaT6l5QKu6u7LZ0hHnUuu9POClTUUb7Eqf/kB52miX2eVNtafWEYV3RopM5SmzXjO3nbmPUstmt4/s40dbx+V05NVdHMtSUSx3dRzPjMTX2eNWdvpU5MrUvmgsdoRrd0Z0TtVxW+eItvKSmYf22mpH54FsbR1bs/ul95c2jy+pNKlohm2VIbPPZtZ5W3XQ3jkp+31m1N7MPtJRX0u1wcx8ttUfMttaZpvJPJe1p71zcnvlSB2fs8ueOZ3Zd1LvU/sv+1jR1j7PXF9mBNdU9MjM99lRyTO32ZlyZe7vjs7P2evOPL61dX5oaxu76jOZ5U5pq4125jqvrf2ZeZxt77yUfX3kle+D594fhb3PU5Gr2ypzal5mmdq7Hmxv+ezPs4/THdVZW/2mzfVmfJa5X7Kv/7Lzn729XbWr9ua1Nb+jZVPXJ5lla+tcktlWU2VK1VuqD6fK3FbE8szzQuZxDGh1rZkdXfyyXJeO5JmZJhakVf/dmYb0cS4WhGsafK8552Z+IENZ+sIzfSIiIiIiIrKHaNAnIiIiIiLSj2nQJyIiIiIi0o9p0CciIiIiItKP7bWBXPaxmW4uCz8wv6OgE7t6ALazAQ+6Englc5mOlu0obx2tuyvr6exyHyaf7QUE6SiQSXa5OlOO9h7I3tUDvR09cA/tB5PJXFdHDw+3V85dBW7pqOydLU/mvMzAEh0FRdjVftxV/rpStq6so6MHtzvKW/p9O0EZOvtgfHv56Eyb7ajNZD/on1lPqfeZn2cHDsl8CD17vZkPhbdVrvbyuqtADG2VqaN6bytgRmce1O/q8XlX+e0ofx1tf1eBFdr6PPvh/VbLdqJPdLSdjtpTR9vZVZnggwFo2tvHnd3O7mjvnNDWNjvbBnan7XRmf2Uu257OBL/o6LyVOna1FRCps+fq7EAt2Z91FLCnvXLuqi121DYzz6uZx7lUUK/MwDztbaMz1zEfmNeJNpCprSAknZG97swgIB0FomkvP7u6PspM05nrjc4ep9vbduZ0WwEMU0FFsttvW/smuwzZZc/cTiqATva2O7u+zh4TO7t8R8t1tM/aS5O5vl2di3d1jvwppkAuIiIiIiIiH3Ua9ImIiIiIiPRjGvSJiIiIiIj0Yxr0iYiIiIiI9GMa9ImIiIiIiPRnzrm98nXAAQe4tvyEna/2ptvT0We7kr2dPWF31r+r8rb1+e6WoaN1ZX6W/T57uc7kqTPLdaYcu0rT2e10Ns/dqb123d689vLYHfnsjrbfVr9tK83urKMr5cxOu7vtqKP931EdZX/W1fa3O/nvSrqu5K29ZXe3z+9qPbtaR2fSddRPOkqXmaa9vHdXf+suP/Yn3I/9CfcTvPfdpaN23ZV17G4d7865YU/0k46W353jSmfbTna9/gTnLg0m3KXBnfM7yk93tsn22kJvtvueklnWzDrJ1h19rzvrcXfrp7fqdXfPKbu7rZ52afCD7eOHea3nAQtdJ8ZO+qZPRERERESkH9OgT0REREREpB/ToE9ERERERKQf06BPRERERESkHzPv+b+9z8yZM93ChQt7OxsiIiIiIiK9wsxec87N3FU6fdMnIiIiIiLSjwV6OwMpZrYaqAfiQKwzI1YRERERERHpWJ8Z9CV93Dm3tbczISIiIiIi0l/o9k4REREREZF+rC8N+hzwqJm9ZmZzezszIiIiIiIi/UFfur3zUOfcBjMrBx4zs6XOuWcyEyQHg3MBRowY0Rt5FBERERER2av0mW/6nHMbkn+rgPuBWW2kme+cm+mcmzlo0KCezqKIiIiIiMhep08M+sws38wKU++B44AlvZsrERERERGRvV9fub1zMHC/mYGXp7865x7u3SyJiIiIiIjs/frEoM85twr4WG/nQ0REREREpL/pE7d3ioiIiIiIyJ6hQZ+IiIiIiEg/pkGfiIiIiIhIP6ZBn4iIiIiISD+mQZ+IiIiIiEg/pkGfiIiIiIhIP6ZBn4iIiIiISD+mQZ+IiIiIiEg/pkGfiIiIiIhIP6ZBn4iIiIiISD+mQZ+IiIiIiEg/pkGfiIiIiIhIP6ZBn4iIiIiISD+mQZ+IiIiIiEg/pkGfiIiIiIhIP6ZBn4iIiIiISD+mQZ+IiIiIiEg/pkGfiIiIiIhIP9ZnBn1mdryZvWdmK8zskt7Oj4iIiIiISH/QJwZ9ZuYHfgecAEwBzjCzKb2bKxERERERkb1fnxj0AbOAFc65Vc65KHA3MKeX8yQiIiIiIrLX6yuDvqHAuozpyuQ8ERERERER+RACvZ2BJGtjnvtAIrO5wNzkZLOZLdmjuZLdUQZs7e1MyAeoXvom1Uvfpbrpm1QvfZPqpW9SvfRN3V0vIzuTqK8M+iqB4RnTw4AN2Ymcc/OB+QBmttA5N7NnsiedpXrpm1QvfZPqpe9S3fRNqpe+SfXSN6le+qbeqpe+cnvnq8B4MxttZkHgdOCBXs6TiIiIiIjIXq9PfNPnnIuZ2QXAI4AfWOCce7uXsyUiIiIiIrLX6xODPgDn3H+A/3Rhkfl7Ki/yoahe+ibVS9+keum7VDd9k+qlb1K99E2ql76pV+rFnPtAvBQRERERERHpJ/rKM30iIiIiIiKyB+x1gz4zO97M3jOzFWZ2SW/n56PEzIab2ZNm9q6ZvW1m307On2dm683sjeTrxIxlfpisq/fM7JO9l/v+z8xWm9niZB0sTM4rNbPHzGx58u+A5Hwzs98m6+YtM9u/d3PfP5nZxIx+8YaZ1ZnZReozPc/MFphZVeZP/exO/zCzs5Ppl5vZ2b1Rlv6knXq51syWJvf9/WZWkpw/yswiGf3m5oxlDkge/1Yk666tn4KSTmqnXrp83NI1W/drp27+llEvq83sjeR89Zke0sE1ct85zzjn9poXXpCXlcAYIAi8CUzp7Xx9VF5ABbB/8n0hsAyYAswDvt9G+inJOsoFRifrzt/b5eivL2A1UJY175fAJcn3lwDXJN+fCDyE9xuZBwMv93b++/srefzahPd7OuozPb//jwD2B5ZkzOtS/wBKgVXJvwOS7wf0dtn25lc79XIcEEi+vyajXkZlpstazyvA7GSdPQSc0Ntl25tf7dRLl45bumbrubrJ+vzXwOXJ9+ozPVcv7V0j95nzzN72Td8sYIVzbpVzLgrcDczp5Tx9ZDjnNjrnFiXf1wPvAkM7WGQOcLdzrtk59z6wAq8OpefMAW5Pvr8d+H8Z8+9wnpeAEjOr6I0MfoQcDax0zq3pII36zB7inHsGqM6a3dX+8UngMedctXNuO/AYcPyez33/1Va9OOcedc7FkpMv4f12b7uSdVPknHvReVdNd7CzLmU3tNNf2tPecUvXbHtAR3WT/Lbuc8BdHa1Dfab7dXCN3GfOM3vboG8osC5jupKOBx2yh5jZKGAG8HJy1gXJr6cXpL66RvXV0xzwqJm9ZmZzk/MGO+c2gndAAsqT81U3Pe90Wp+I1Wd6X1f7h+qn530F77/hKaPN7HUze9rMDk/OG4pXFymqlz2nK8ct9Zeedziw2Tm3PGOe+kwPy7pG7jPnmb1t0NfW/cYKP9rDzKwAuBe4yDlXB9wEjAWmAxvxbi0A1VdPO9Q5tz9wAnC+mR3RQVrVTQ8ysyDwaeDvyVnqM31be/Wg+ulBZnYpEAP+kpy1ERjhnJsBfBf4q5kVoXrpKV09bqleet4ZtP7novpMD2vjGrndpG3M26P9Zm8b9FUCwzOmhwEbeikvH0lmloPXmP/inLsPwDm32TkXd84lgFvZeTua6qsHOec2JP9WAffj1cPm1G2byb9VyeSqm551ArDIObcZ1Gf6kK72D9VPD0kGLzgJODN5+xnJ2we3Jd+/hve82AS8esm8BVT1sgfsxnFL/aUHmVkAOAX4W2qe+kzPausamT50ntnbBn2vAuPNbHTyP+enAw/0cp4+MpL3it8GvOucuy5jfuazYJ8BUhGlHgBON7NcMxsNjMd7cFi6mZnlm1lh6j1eIIQleHWQivx0NvDP5PsHgC8lo0cdDNSmbj+QPaLVf1/VZ/qMrvaPR4DjzGxA8ta245LzpBuZ2fHAxcCnnXONGfMHmZk/+X4MXv9YlaybejM7OHme+hI761K6yW4ct3TN1rOOAZY659K3barP9Jz2rpHpQ+eZQHespKc452JmdgFe4f3AAufc272crY+SQ4GzgMWWDAcM/Ag4w8ym4339vBr4OoBz7m0zuwd4B+8WnfOdc/Eez/VHw2Dgfu+YQwD4q3PuYTN7FbjHzL4KrAVOS6b/D17kqBVAI3BOz2f5o8HMwsCxJPtF0i/VZ3qWmd0FHAWUmVkl8BPgarrQP5xz1Wb2M7yLWYArnHOdDXYhbWinXn6IFwnyseQx7SXn3Hl4UQuvMLMYEAfOy9j/3wD+BOThPQOY+RygdFE79XJUV49bumbrfm3VjXPuNj743Dioz/Sk9q6R+8x5xpJ3TYiIiIiIiEg/tLfd3ikiIiIiIiJdoEGfiIiIiIhIP6ZBn4iIiIiISD+mQZ+IiIiIiEg/pkGfiIiIiIhIP6ZBn4iIdBszO8XMnjCzGjNrNrNlZnalmZUlPx9lZs7MTurtvO4OM3vKzP6vt/PRGcn9fEFv50NERHqfBn0iItItzOzXwN+BVXi/V3QccD1wMnBrL2ZNRETkI22v+nF2ERHpm8zsZOC7wFedcwsyPnrazObjDQClnzCzPOdcpLfzISIinaNv+kREpDt8B1iUNeADwDkXd849lDU7bGa3mFmtmVWa2U/NLH1OMrNJZna3ma0zs0Yze9vMLspKc1TyFsajzOzvZtZgZqvM7JuZGzKzP5nZQjM71szeMrMdZvacme2blc5nZpeY2YqMW1PP7uqOSN0CamZfSK6rzsweMrNhbeR9v7aWbSPvnzKzd5L74kEzKzWzcWb2ZLI8C81sWhvZCZrZb8ysOnnL7Q1mFsza5ojkvq5Orv8RM5uY8XnqltwzzewOM6sB/tXV/SIiIr1Hgz4REflQzCwHOAR4uAuL/RJoAE4F7gQuT75PGQq8B3wTOBHv9tCfAhe3sa5bgTeBzwBPAb8zs1lZaUYA1wI/B84AyoF7zMwy0twAXAbMBz4F3A8s2M3nDw8CLgC+B8wF9k+ud3eMAK5I5m0u3r6eD9ydfJ2Kd+fO3VnlIbn9YcCZwJXJ5X+e+tDMSoHngInAecDngHzgv2aWl7WuXwH1wGnAVbtZFhER6QW6vVNERD6sgUAusLYLyzzjnPte8v1jZnY8cApwD4Bz7nHgcYDkQOY5IAycC/wia113OeeuTKZ9Cu8ZwlOAVzLSlAKHOueWJ9P58AZ1E4GlZjYO+AZwjnPu9uQy/zWzCuAnwL+7UDaAIuBTzrntye0NAa7fzdsiS4HZzrmVyXVNA34AnO2cuyM5z4AHgUnAuxnL1gOnOecSwENmlgtcama/cM5V431Dmw9MT05jZs8Dq4GvAL/LWNdLzrnzu5h3ERHpA/RNn4iIdBfXhbSPZk2/g/eNFABmFkre8rkCaAZa8L6hGm1m2f+wTK/LOdcCLM9cV9Lq1IAvY3tkpDsaSAD3m1kg9cIbeE43M38XygbwamrAl7W9oV1cD3h5X5kxvSL594k25mWv/5/JAV/KfUAekLqt9BjgMaAuo8z1wGvAzKx1PbgbeRcRkT5A3/SJiMiHtQ1vYDaiC8vUZE1HgVDG9DXA1/Bu6VyUTD8H7xbHEN6toZ1dV3tpyEhXBviB2nbyWwFUtvNZW3a1va5ob101bczLXn9VO9MVyb9lwMHA59vY7uNZ05s7zqaIiPRVGvSJiMiH4pxrSd4S+Em8QVl3OA24wTn3y9QMM/tUN627LdVADDgU7xu/bNmDpw+rKfk3mDW/FNjajdspb2d6Y/JvNfAA8LM2lq3Pmu7KN7kiItKHaNAnIiLd4X+BB8zs7Ixn4oD083PHOee6EuglD+/bw9Q6/MDp3ZLTtj2B901fsXPusT24nZTUt4aT8b7JxMyG4z1juKwbtzPHzH6YcYvnKUAEWJKcfhwveMvb+gkGEZH+S4M+ERH50Jxz/zKz64DbzOxQ4J94t2BOwosKuZquRfd8DDg/+UxfNXA+XrCYPcI5956Z3YwXAfOXwEK8WyX3BSY4577WzdurNLNXgZ+ZWSPeM/Y/witrdyoE/m5mt+KV5XLgxlTQFuA64IvAE2Z2A7AeGAwcCTznnLurm/MjIiK9QIM+ERHpFs6575nZC3g/VfBXvG/rVuPdPvirLq7uW8DNeNEjI8DteNE2d/dnDzrjfLxv2c7F+4mEOrwALLftoe19AfgD3k9WVAL/gxdNszv9GhgD3IU3sPwD3uASAOfcVjM7GC9IzvVACd6tn88Bb3VzXkREpJeYc7pFX0REREREpL/STzaIiIiIiIj0Yxr0iYiIiIiI9GMa9ImIiIiIiPRjGvSJiIiIiIj0Yxr0iYiIiIiI9GMa9ImIiIiIiPRjGvSJiIiIiIj0Yxr0iYiIiIiI9GMa9ImIiIiIiPRj/x8hE+YbNnl0xwAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<Figure size 1080x216 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "figsize = (15,3)\n", | |
| "\n", | |
| "foo(figsize)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# now only changing the figsize, the lines appear" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": { | |
| "scrolled": true | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABJQAAADnCAYAAABIUww5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXmcXFWZ//95qqqrqyuVTtNJmiQ0SQghhn0REMRd1HFXXBk3HJVZvs64MDojYojKqDOOozOj489dccYFHVAURkUFERUUWQKEQCCEGJLQSTqdTqW6urrqnt8f55665546t5ZOb8Dn/Xr1q+ree5bnnHu2e/rW5xGlFAghhBBCCCGEEEIIaZfUbBtACCGEEEIIIYQQQh5bcEOJEEIIIYQQQgghhHQEN5QIIYQQQgghhBBCSEdwQ4kQQgghhBBCCCGEdAQ3lAghhBBCCCGEEEJIR3BDiRBCCCGEEEIIIYR0BDeUCCGEtEQ0D4mIEpHVnusXhNcK4fHK8PglM29tc0TkVhH5eodxprU8IvJOEVEdxsmKyHoROWU6bArziN3XJuFuEJHvTyL9rSLyr5OI93wRebfn/NdF5NZO05tKptKGdupVRArhPbpgEul/X0RusI7Xi8ieDuKfKSLrOwj/rNDWE6xzSkTe2W4aLdJ/v4g8y3N+yvJ4LPNYroe50LcJIYQ0wg0lQggh7XA2gJXh99fPoh0kIgvgUgDTtqHUAX8D4AMzmN/zATRsKJFD5ssAXtBB+DOh22C73AY9ljzYiVEd8H4Az/KcPxvA96YpT0IIIeQJCzeUCCGEtMP5AA4CuCX8TkgdpdRGpdTm2bZjsohIz2zbMBdQSm1XSv1xqtMN33DMKaVGlVI3K6XGpjqPZoR5PjqTeU4XbKuEEELmEtxQIoQQ0hQRSQN4DYCrAXwVwHEictIUpGt+RvZ6EfmaiIyKyHYReWN4/f0iskNEdovIP4tIyon/HBG5RUTKIvKoiPyX+9MsETlBRH4ThrlXRF7msaPhZ0W+n+YklOHtInKPiIyLyMMi8v42yt0tIp8VkRERGRaRTwPocsLMC8PcJyKl8OeGnxORXivYgfDza6GtSkRWhvE/ISJ3iUgxrNP/EZElrWxrwlEicp2IHBSRTSJynmOvrw5fIyKbRWRMRK4XkVOTfpolIu8J7dwnIt8Rkb4kQ8KfWF0EYIVV7q87YZ4nIhtCe28SkeOd60pE3isinxGR3QDusq69XPTPIssisktE/kVEuqzrgyJyhYgMhWV7UEQ+6rGzlQ15EfmPMI+yiPxBRJ6fVG4r3qtE5P4w7xsBrG0VJ4x3pIhcG8bbKiJv94SJ/eRNRLpE5F9FZFvYxneIyFWif255AYD/tOpTSfjzOZOOiDxNRP4AoAzgNU36VVZE/j3sDyMi8p8ikk2yyzpf/wmXiGwFsBDApZY9z3LDWXHfGbbPcRF5QETe46uLsN3eHPbD20Xk6S3q2Yxrfy4i3xSRA2FbaXiTS/T4dE0Y5oCIfM/up1Z9vUBErhaRIoDPNsl7oYh8QUR2hm3qPmn8aWhaRD4melwdEj2udFtpLBWRr4rIlrCt3C8ilzn3w5TxtWF++0X33w+LNU53UocyibGUEELI7MMNJUIIIa14DoDDAXwHwPcBTGBq31L6ZwA7AbwKwK8BfENEPgX9c5q/APAZ6J+yvNZEEJHjAPwEwJ4w3qUA/jy0z4TpAfBTAIXw2mVhWsunwmgReR+AzwP4AYCXhN8/6j64evgEgLcD+CiANwBYAb1BYpMHkAbwQQAvBPAh6Ptg/2znOeHnZdA/6Tkbuh4BYADAxwC8GPqnYasA/FL05uBk+Bb0huIrAWwG8B0RGUwKLCKnQ7eX28I4VwP4bkLw1wJ4LoALAfwDdF1+rIktXw7t2YWo3PaGznIAnwTwT9DtdADAFSIiTjrvA7AUwJsA/F1o92sBXAng9wBeBuDDoV0ft+JdDuDI8PwLw3y6EacdG74E4K1hmFcC+BOAa0TkaUkFF5HToOvxTgDnQdfrFUnhrXgC4IcATgDwNgDvBfAu6Lprxgeg2+iHADwPui3th26b1wD4VBjO3Ie/seLmAXwD+n79GXSdJnERgMEwr8ug6/afWpXL4ZWhbV+x7LnNF1BE3gG9GXY1gJdC96tPicg/OkFNGb4APc6MA7hKRPJt2PNJACUAr4a+15eKyP+zbFgN4DcActBt8AIAxwP4kaetfgX6nr8s/O4rUw+AGwC8Aro/vAj6/ixzgl4UnntjaONfQrcFwyIAw9Bt5M/CMG9FuHno8C8AimEZ/xvAuvC7Tcs6PISxlBBCyGyjlOIf//jHP/7xL/EP+q2kfQCy4fE1AB4CIFaYCwAoAIXweGV4/JIm6ZowX7PO9UJvWG0GkLbO/x7Ad63j73jCvDZM7+zw+G/CtAatMOeEYb5unbsBwPcd254VhjvBV57QziKAS514H4He6EgnlHkhgDEA/2CdSwHYpKfkxLrKWLYvD88VwuMLWty/NIAjwrDP6PDem/v6F04ZqgD+KqkOoR/Q73bayPtdewFshdbTyVjnPgNgVwu7/hXAVs/5r4e2HWOde0WY71rrnAJwuxNXADxst8fw/F+E92xheFwE8NImtrW0AcCxAAIAb3Hawd0AftqkXq8AsNGp1w+2agfQmwsKwFOscytCO2+wzq0HsMc6/jGATzVJ952+dhumowC8vFm/su7FJgApp0wlAP0+u5y477SO9wBY3yxcWM+PeO7zf0FvSOWcMjzHCnNKeO7PmtTJyjDMz5zzXwrzTYXH3wRwH8JxNTx3DIAagBc79fXpNvrqX4Zt6pQmYRSAG51zPwBwc5M4GegN+TKiOcCU8XIn7B0AvuNpB4l1iDbHUuh+dWureuAf//jHP/7N7B/fUCKEEJJI+FOIVwK4SilVCU9/G/qB4qwpyuYX5otSahTAbgC/UkrVrDAPQG+KGM4MbbLD/C/0A/LTrDB/VEptt9L/DYChKbD5bADzAHxPRDLmD8Avod/mSnp750ToNxJ+aNkU2McGEXlT+POQIvTG2E3hpTWtjBORF4rIb0VkP3SdmDpoGTeBn1n27oWuw8Q3lACcAeBHSinbc93VCWGvV0pVreONAAbsn9h0yFYV13PaGH669l7jHK+BfrPoCs89zUG/3QPoh+aPi/aAl/S2WysbzoDewKq/cRa2g+8har8+zgRwtVOvVzYJb8d7VCl1i5XfwwBa6SXdAeAC0T8/Pcnz5kwzFID/azPsD8PyG64E0IOozqeSQeg3dFyR7u9Cb26caJ2bgN7UMyS1JR9XOcdXhvmauOeGYQKrrT0Evcl6uhPXbas+ngO9SXpHi3A/c443WjYZvat3i8hGERmDroP/gX4Lz23vTdMKaVWHkx1LCSGEzAG4oUQIIaQZLwTQB+BaEekTrW1zA/TPFqbqZ28jznEl4VzOOl4KICayG24u7QXQH55aAv/m0VRsKC0KP++BfmAyf9eH549MiGf0UVwbYsci8kron1b9Dlq/6izojT0gXg8NiMgZ0Js326F/SnM2os2/pnGb0Op+uCyB3hi0cY+bpS3QXuwmgy89oNFeV6TZ3NNrEb+nD4XnzT19HYBbAXwawMMicoeIPLdDG5YCKCqlSh6b8ramjYOvTbfTnifbFy4D8Dnot/3uBPAnEXlX8yh19lmb0K1IKtPSNuN3gknTvf/muN86N2pvdFnlaacftSrTIuifeE44f6vQOH60Iyi+ENFPXpvRqi+/G/qnclcBeDn0ZqT5qZ5b7nbGhVZ1ONmxlBBCyBwgM9sGEEIImdOYTSOfy+3Xish7nLeEZoqd0Lo0dUJ9oIXQ+h+A/rmET7B4wDkuo3Hzoh/NMXm8BP6HvfsS4u2ybBi2zrs2vQbALUqpuiaNiDyzhU2GV0Jv3rzOvMkiIivajDtV7AKw2DnnHs82yjk29+NCALd7wj8EAEqpR6Df2klBP2yvB3C1iCwP395qh50ACiKSdzaVDgdQUkqNJ8Tbhca24h63G8/ETfS4ppQqQ+virBORYwD8FYDPiMh9SqmftMjTrd9mJJXJbJA09FEROayD9G1snTGbw8PPYUwNrco0DL1p82VPXFeAvJ263AtgddvWJfMaAN9TSn3QnAg166aLyY6lhBBC5gB8Q4kQQogX0R7TXgL9E7dnO3/vhX4Ae/YsmXcLgFc6ItPnQf+jxPw07A8AnmyLR4vIOWh80NuOxo2n57XI/3fQD+LLlFK3ev4OJMS7C/rh+OWWTSn7OKQH+i0wmzc4x0lvS/QAmHB+FuXGnW7+AOClzk+kGjzsHQKt3pCaDPdBa9ysTLinsc0ipVSglLoZWrg7D61J1C5/gN4kqAsYh3X1akTtNyney5x6PS8psBPvcBF5ipXfcgCntWtw+BO+v4dul2aDoRKmdaj34uUS9+J4HnT/ujs83g5gvojYP3v1ecRrp11sB7ADeuPE5rUARmF5/DtEXukcnwe9mWR+fvoL6J/0/dHT1rZOIr9fADhVDt0DZztjz1Qy2bGUEELIHIBvKBFCCEni5dAPyv9ua68AgIj8Blo493wAP58F2y6DfovkByLyeWidjX+GFjT+XRjmawAugfactR76QemjaPzv/1UA3iYin4bWKnk2gBc0y1wpNRKm+e/h2z83Qv+TZg2AZyul3IdJE2+viHwRwIdFpAr9M493QAts21wH4HMi8kHozbMXQXtCs9OqiMhD0G+K3Q29UbUhjPtuEfkMgB8BeCq0R6cYof2XKqU60cVpl38O7f6OiHwNWoT6HeG1IDFW+2yC3iC5AHrTYc8kH8LrKKUCEbkIwDdFpBda/6cC/ROkV0Bv9nRBew68HMD90LoyF0G/AXRvB3ndKyLfBvDZMK8HoOtnLYC/bhLV1OsVIvIVRF7bWnEt9E/Wvici/wDdVj6CFj95E5GroHWWbod+6H819NrxxjDIpvDzXSLyS+ifN03mjZL5oW1fgvZ0tg7AZ5VS5u2Vn4T5fzX0AHkU9NtSLpsAvFhEfgIt9HyfuyER3uf1AL4gInuh+8szoev94vCtrKngeBH5ArS22zOg79O7rJ9/rYd2NnCNiHwVelw6Anoz++tKqRs6zO9y6J+m/Sws333Q9bRGKeV6r2vGdQD+TkRugRbMfwOm5s0nL5MdSwkhhMwN+IYSIYSQJM4HsNndTAIApdQEtMep85rovUwbSql7oPWdBqDFbi+DfpPq1VaYEvTG0EFor3CXQj/8P+ykdQ2Ai8O4V0G/afLuNmz4F0Su438Y5v8GAL9uEfX90J7z1oVxdgD4NyfMF6B1TN4Vlm8FtKcll7+C1iD5OfRbKMuUUtdCa7O8ClpL6ZnQb5q55JGsa3RIKKVuhW4/T4b2IvUqRBslo1OQxRXQXp/+Bbrc66cgTSilvgu9kXoK9M88r4TWD7oNenOpDP0Gy7ug6/Yb0N7Inq+USvzpWALvCON/CLr9rID2Ipj4hlJYr68HcCp0vb4CWtOpVbkU9BtiG6Hb3mcAfBb67ZBm/DbM41uhjU8G8KrQDkC39U9C18ct0O12MnwK+u2db0P3iy9D90lj/x7oNjQIXe43wt8f3gfd369B+IaiLzOl1JcA/B30W0Q/hm6rFymlPjFJ+328H1rk+3+hPbB9FLrOjQ33Q2ublQB8EXoD88PQbwc90Glm4UbYc6A3kT8Spvd+6PGlEz4CfR/MmFqBrqtp4xDGUkIIIbOMxN+IJ4QQQsgTARH5FYBfKqU+PEP5vRHaVfoqpdRDrcIT8lhERFZC6229VCn149m1hhBCCJle+JM3Qggh5AlG6Jb7BFhvdE1DHp+H/vnMPmitnksAXMPNJEIIIYSQxwczuqEUijbeCK05kAHwfaXUpSJyFPTPEfqhXyt/UweuZgkhhBDSAUqpKrRHvOlkIYD/Cj/3Avgu9E9wCCGEEELI44AZ/clb6JVknlKqKCJd0J5M3gXtLehKpdR3ROT/A3CnUurzM2YYIYQQQgghhBBCCGmbGRXlVppieNgV/iloEcHvh+e/AS0ASQghhBBCCCGEEELmIDPu5U1E0iJyB7Sr2uugXZKOhK/fA8B2aLep0856wYwrks9Gnp1i27heoOy/yaRBppakup1L7fni/Myr/SfleUm3Pt9Ovc2G3Y8Fpqptzea4MB15r8vMnfYyl8Zc0+fmAnOlXqZqbJkr5Zkq5lJ55pItU8HjrTyPR6ZiDrmkW3W0Pp9OkuxIKud02v14WLdMB0+U+bnTtKdzPddp2nOlXjqxe8ZFuZVSNQCniEgftHvmY33BfHFF5EJot6KYN2/ek9euXXtItuwA8OPTZ3agmI08O8W20fU1267tj4VyPlZJqtu51J4fKQM/m2FbkvJ8ZAL4yelQ7dTbbNj9WGCq2tZsjgvTkfeOGnDtHGkvc2nMNX1utu0A5k69TNXYMlfKM1XMpfLMJVumgsdbeR6PTMUc8sgEIJgb9zpxnZVQzulso4+Hdct08ESZnztNezrXc52mPVfqZUcN+Kj8cbdSanHLwEqpWfsDcCmA9wHYAyATnjsbwE9bxX3yk5+sDpVL0TrMVDMbeXaKbeOliP9NJg0ytSTV7Vxqzx/oCWbWkCZ5fjCrz7dTb7Nh92OBqWpbszkuTEfeH0rPnfYyl8Zc0+fmAnOlXqZqbJkr5Zkq5lJ55pItU8HjrTyPR6ZiDvlgNpgz9zrJjqRyTqfdj4d1y3TwRJmfO017OtdznaY9V+rlQ+lAAbhVtbGnM6M/eRORxeGbSRCRHgDnArgXwPWIXBe/BcAPZ9IuQgghhBBCCCGEENI+M/2Tt6UAviEiaWj9piuUUj8WkY0AviMilwG4HcBXZtguQgghhBBCCCGEENImM+3lbYNS6lSl1ElKqROUUh8Jz29RSp2plFqtlHqNUmp8Ju0icdaHv6xcL/q7+Xsis15m24LHB9NZj5Ue//lMRWea1Ibt80F6io0is84Tpe8+0cfomeBQ2lJ2bGoaYif3+bHQ9oM0G+4TgcdCW5wNUrVDr5hUrbN+NJ33Iml8mopydspUjS2Pt7k1VZttCyIeb3U7VcyVeumk3864lzdCCCGEEEIIIYQQ8tiGG0qEEEIIIYQQQgghpCO4oUQIIYQQQgghhBBCOoIbSoQQQgghhBBCCCGkI7ihRAghhBBCCCGEEEI64gmxoZTk0aCanT4Z9aQ8i/1zRLq9DVyV+U7q64niuWU2PJdMZ7udatz6mS7PBesFyFT81zppi6W+KTJoCkhqW7PR5h4P/Xk62t5c8go4l7wozaV6IY3MRltJynM2vD8R8niimp1tC1qTNP9O59piquahuTS3znUey3U1neuWTue5qa7HyabXSf98QmwoEUIIIYQQQgghhJCpgxtKhBBCCCGEEEIIIaQjuKFECCGEEEIIIYQQQjqCG0qEEEIIIYQQQgghpCOeEBtKSaJSsyFk91gQ/U0iVWs/bGlBZ2nPdeaSKHFSu50NG5MEwssF/TldItwu61Vy++yknxf2To09U81sCx1OlVjhbLTRpDynok6HBw89jU6Y7XbQLnNJJHaq29xs34PZzt9mKmyZS04m5tI8T6aPudSHDgVTjkxl7ojbJ9Xtuoy/b9GBQ2c8XtquYS6VZzrb4mzOLZOp48nEeUJsKBFCCCGEEEIIIYSQqYMbSoQQQgghhBBCCCGkI7ihRAghhBBCCCGEEEI6ghtKhBBCCCGEEEIIIaQjuKFECCGEEEIIIYQQQjoiM9sGzAQjS/3nO/Fa1inac0mjTPrwoP/8bKBV59u3pRMvEtXuSRg0y6yXZK9kSWXvtA6ngvL8Gc2uKUl9qJKPHzer26RrzeL4whYTPG4Zz4omPeO9wKRtezMYXdFefjPBbLStJCo9U5PObHh0mU7vNzPtzWymvCYeKqMD8eNO+vJUM1Vtzuf1xB1L3HN2HHN8qPUwFePCVN2LqUhnOtdhPprdg7nkcWo2+8x0MJfms07o9D50um4xzwru+qQdgrTCuoyehz5WOjRbpoqk+zw7c3/0vZ26eLz1uSSq2cay+tbHk6mPqejn6zIKH6k2pmHbMxfvlW89YOi0/fvqcVLe2lSU3nrRCVR6ojHHDuOmv16AVCd7BJ2bRwghhBBCCCGEEEKeyMzohpKIHCki14vIvSJyj4i8Kzy/XkQeEZE7wr8XzaRdhBBCCCGEEEIIIaR9Zvonb1UAFymlbhOR+QD+KCLXhdc+rZT61xm2hxBCCCGEEEIIIYR0yIxuKCmldgLYGX4/ICL3AjhiJm0ghBBCCCGEEEIIIYfGrIlyi8hKAKcCuAXAOQDeKSJvBnAr9FtM+5rF3/HH9vNKEsMqF9pPo1OGVvnPT7cAZZLQmo/pFMlLVZtfP1RBtakWZEsSOzP5GBGzuUCSEHA7AsGuSOyh4vYhk375+PixT/Stfi5BEC7pXBKji7VApSFVEwRphT1nhOfTqH8CiMJa/WB0wH+fZ0MA0L6fsy0+aITND5XZEOY04obTcQ+zY5OPOxl7msVJcgQxG+SK+rOd/usTo/UJgjYIRiYI+dvxAQCecXEy4paAbkupmnjFK3U7Q3x8sdr7ugzwETU37s9cEuudaWH7ZqKxM21LM9oREE4KO5uCtdOZ93Ss+3xjj7lmhzPX2h3TzHhgnEKYsaM+TgDWWKEQZKMxw8yTqVr0PUhHzw/uPJrkNGO21w3tUFowfWkX+6Pv9vyY6AjmMTC3TgWVnkjEPUmEe7Jz5FQ4QTFzbLP2Ox1tO1Xz910b0499BGmFIA2sF2kYK4Kwj7Yrvq/HA6eQVr8340HSuGDOrRdBNauQqqH+WS4Al3QrpMKxZl0mjJuNp11Pp819i1kR5RaRAoD/BfBupdQogM8DOBrAKdBvMH0qId6FInKriNxawu4Zs5cQQgghhBBCCCGERMz4hpKIdEFvJv2PUupKAFBKPaqUqimlAgBfAnCmL65S6otKqdOVUqfnsXjmjCaEEEIIIYQQQgghdWbay5sA+AqAe5VS/2adX2oFeyWAu2fSLkIIIYQQQgghhBDSPjOtoXQOgDcBuEtE7gjPXQzgfBE5BYACsBXAX86wXYQQQgghhBBCCCGkTWbay9tN8CubXTuTdhBCCCGEEEIIIYSQyTNrXt6mg3UZhY9Upf5pKC1I8C7SPX22jCwNEJNkD9HewqYPWz1+vWquhN+px6Ugrerq9a2o5EMbJO49oJly/2Q8kPk8/7Tr6a4TLwbFhe2HbUar8jez2xxrLwKN8UdXROGmE9uuPSt0m3Cp5LVntSALZCqRVyTbQ8K6jIp5QPF0lzquJwPb+0k9TDiaVbPmuvHU0BjWnHPP73hSDbPkq6CB0YHou13nzbwUTRfF/qnJcza8KJl7bOrPzA8zVY9T6ZmomTcn46HEnQNMuFZpTTXGc5Hpt8aros/TkesR7ZJuANkoTpAGUo63I+OZJObhJBvFD3qifr4uo+J93WmHDWNJutEja6qGuqeUZh6XXO8r5nquODWeBqfCi85U0Ul5ktYb0zEmuGtAm6TzndjSyTzebjo+T2JJ65ZO1zPt2NTO2qzZ2GKuJa0Tk9Yt0fVkA+t9KQvvesO2pWEN7PGqVOmJ1i3rMnrtYcYln/dXY4M9TqVq0rCe93teUg3fbS9ulR4gU2kss7lme1vyrWOakXRPp3PuS+rntic6u3/m9zdPb6rmz8vGo/ImrbOT8kryRNfOc40bPnbcxNuXr0039XrmrLGbeSMrrfLY4vFqmHTczF6fXc2uVbP+Zwg7X3ts6aTd2uF99eg+c5YWAPn9KhbfXQvoY9Uwv8fnfNWwpqn0RGONey3ZfjvP5tfdcNFcFh9zgnS092HPd0l5dMLceHIihBBCCCGEEEIIIY8ZuKFECCGEEEIIIYQQQjqCG0qEEEIIIYQQQgghpCO4oUQIIYQQQgghhBBCOuIxK8pd81he7Nef7YpW7lkxfcJ0fTv9e3WFvTMgAttEuNWm1NdZuqZe2xFo2/KqGtZl0jEBMu+nlbYtypgk4GpsqGZVXbjVFhzzpg1psDlIK6SMWJtqLUgXrPALU6KF0GQ9Dav+12USFOrSWnDSCMHBI0C5XoCRcxQWPdwYPVOJhHABv4hjPC2JCfglERPOhhbGvCQUdcsvjQtTmjxzB6SedzUbxktHorYRjfkmiU9Ws43fbTLjjSJ1JqydnpuWzaJt/gqbDSHsbCn6bref2RC2Ls+fmnRsoXEbI9DeTIQ2SUyxFdVCPHwKUu+DvnQiMXdpOFdPI7xWWdtm/08S3mwR1yes6RO0TtUEpX4tKGkLPtoCs24fMPEOBdsWW9Rx+DRVHwPsPmaL5cfTiYdpds0nfJtsn267dl9qFNhsjGfGCDufajYunhuk4+d84pzm2Ix7mUpcIHQydDIW6bF2boh4J92rqRpb4nlFZbadPxiSBGszzliROC+m/eLQdp6uPfa6oT7GQHBJdyja7Kxhqs78b9vsXaNYc3kQ2ldaoOrzvNvffeuqJGFfE/aSbi2OH6SjNUDsOBvFjwnq14BKAQBUrJ80w+73rsi161Djku4wTBa4OA8gFIA23/9xPoBCPP1ywb8usfttc9tUvW/7+rzB/p6p6HD2mBGkgeyYr5z6fDvjVdK8Ol00G7+S1pz284bdDqdzPZPkTMe2/1DGSFt82fSvJFFs2/GM/bxiO66wsedu37NTQ/+M9Zfm63rd7vzXXMFoM37YcZvZawvnm+csezx07db3v1HcXofVn/aznu9Zzpduqiao9lhjcTqqb5/w/roMEAxEc7rdjqvZxn7o2mmvS3x9wKwX7HI1ez6zx4lmgvzuuGOOm+WRGY+n0ex7J/ANJUIIIYQQQgghhBDSEdxQIoQQQgghhBBCCCEdwQ0lQgghhBBCCCGEENIR3FAihBBCCCGEEEIIIR3BDSVCCCGEEEIIIYQQ0hGPWS9vXuXyUBHd9T6QpKS+9eQq6m4pppjyfL/ngEreH97nyehQaZVWuZB8LSl+3ENXMtkxaVDGb0ayNwJX/b+ZNzITpjENn3egalbVvR3B8brgevap9KDuzcx4Domuq5Zq/RfnwzR7ksPoMsTLZ3tIM5QLCtVsvG2lasDwoPaslOQRwPZMYLwt2d5K3PqJ0lDeNN10bTu3nloUDm16AAAgAElEQVTFooczDWklpREvc+O9dL0puGmlatpbkM8bQ99OiR27nlRsbI91NqUF3tPTStJY0al3xqmgtCCA7/8PnY5XuWLyNdczUJ1s5OXD9iQCtPZkaPqoO26lanr8y475vQwae9y2Yr6b9HLFxjbTjk2NY1Sjp44I1RDGjmfCGM8kSR5G7LQjL2aNtrs2NY4HyekbjGfFTCXuxScpDV++tqc1twxuHDsdt56ypUavJyac7bXNTSc7luy5yWDHd7092fk1y6tTKglzSCdMldfKTvp+0npjsh5lmmHbZXs0it+TRuMrPXo+b4fGtYm//aVqeoy4OK+9kNlhzRrE1871ukM5fTY+FzeOB5FN1azSHg7HFCo9uj0nrd/8XpxUwzWzHnLHA98Y6a43fN783HHJjBe+PmfSKS3wj4PNbHDTsvMx46bxtNZqrDPxW3l1svP0jaVu2exx2Y3rltW1s1NPZa3K56PVXG+uJ3lts/O000nyxDYVlPpa14vxvAkkj4u+sXu9IOYlLIrf+GkwXt/sNYbJv9KjEucIX/s2abveCW1bkjy9Ja3Hfd7KzBrB195Nn7XbZKUnPk6lau46ytgThalm42X09atoXIw/b9np2vVi0nfnS7uPueXefnyANb9JNTxHJI3rbj2aeN5nGGu3xS2Xbw5M8urm4p53xxVfWkl52GmYMnQyP/MNJUIIIYQQQgghhBDSEdxQIoQQQgghhBBCCCEdwQ0lQgghhBBCCCGEENIR3FAihBBCCCGEEEIIIR3xuBLl3rUmSVDNL8q2/O72ir8+jN6JAOXoYn/gJIErIwbXqbheM1rZW1zYeV7J9seva7G5pDQaheJ8QoP2eTesLYCaJDxmi1v6hGGT8rEFVM2n774EaWBolcLAlsY69IkuNsszEvuNx6s64sNJgpdBGsiM+4V9zTlbSNIVpnPtc++Hr26DNLBnhcLykbjQIAD07Uo15J1UN64Ip0/Y1ocrfFvYK3VhTTuf0gKFRQ833iPTDo1QIgD0Dvn7w1QIYV/SrXDZePv9bc8Kf/+cDYHwHWtq8E0XWpB66sVAWwkB6nvf2O4a81MYHQAKw74+qgUxI8HexnEpfr3RvuFBVW8zPtHGeH5+wVf3vG/scPuFL43iQqB3KLku4iKuRqQ3im/O+8K740GSULY5Z4vcZseai9M2s9OIuPtELJPELJPEs+35ICmcOe8K47p5J+ETT20UgpZDcrwxFaLc9ph3KHQiyu8TZQaAYv+UmFLHtcnfHqJ+bYSmAe0IIb/fP3e3aq/mftuCz0nCsj6BZt/c7wvnptdsTDXpumugpPIkrVsMRqjexPfFdftmfS017hc3dsuWK/r7kfluz/FJ/d8dx1yS0vHd61ZiuPbY4pbHtd9eg5mwpb54m2tn7nPTTSLpeaLdedjG9KmkPm/ySlq3JOW5Y22ABnVrT76TodjfOnI76fscpKxXkZMQQ9K4miTSbZ/TYvfihLfDoeGce83t00Yc2w6XqmmnUZUe/z1yRbbtsc0eo3zjignra+eGpPHFN8a5Y5/v+catm1brJLcuTFnstM045drnjhNumZqtLcrz/euWZs/UzcYVtxy+T3cuShqHfHlPxokI31AihBBCCCGEEEIIIR3BDSVCCCGEEEIIIYQQ0hEzuqEkIkeKyPUicq+I3CMi7wrP94vIdSKyOfw8bCbtIoQQQgghhBBCCCHtM9NvKFUBXKSUOhbAWQD+n4gcB+AfAfxCKXUMgF+Ex4QQQgghhBBCCCFkDjKjG0pKqZ1KqdvC7wcA3AvgCAAvB/CNMNg3ALxiJu0ihBBCCCGEEEIIIe0za17eRGQlgFMB3ALgcKXUTkBvOonIQEKcCwFcCADzsssbrmfGgXUZhY9UtXq98UYwPOj3IpA70J6t61Xk6a1dckV/hIEH/eeNUn6SR7p2cT0wrBft5crndSHJA4Kdhl3uIK1aeoeIvPNIzDtAPF6yBzxbkd4+n+RNyL6eFC9IN/dI4CtDpSee165jAix6ON2Qf7W7tWp/kncYW2nf5xHIxLUV+231/UYPQo3xkrxH+byg+Lw3ubaaa8aG0oK4lzRD//ZUUy8wNrbnGNt21+uNm7dNqgaMDkQe9+xyuPfIfNceyoBULWrXPm9gpvyHSice3gBgZEkA357/rmNqmCsOOjutl3JBf9qeM9cLGoZnX5tt9ECkYv3HFydV0+P/oofj9WjaRblgj0XJHliSvKhUehSqWWmwQbeveFrmnM/joRmj2hnrfP0iqY6ajY1mjDNeTZI8orh5uR5C3O/6enzO6cQzjX2umdcld0xqVl+2p7lW+OrXh8+rlVsPvjiHSrt9br0A1cKh59cM9z43o5W3rEPFrFuCtMJ6sWzy1Ln2SNV4/0oLFPq3i+MpKe4tx3y6c2XkEdbfHk1cex3iem6y27wvz076fpDWa2J7HWbjrj3s+rDLmORdyE3L9Q7lhi/1AYVhf/6ud6Sk9ZQ9LvjscdecSTZXeiIPkja+fJPWbyY/10OU714a7LC+McM3hiXNB/Z9SnpuSPIIWVzoP9+K9aL7znpp9FTZan0zOhCNFfb8n98/NR4nXdYLkHtGZ2m798uMKbYnSnNuvQBB1p2jVOw+uvOT75nFptKj6utht3+YuJWeuIdCk57vXvvmfTM+NVsX+LycuZ4r3TLU7cvH4yeNCUnPRK797mezMdB3bH9vtnZxj5PWJG45kp7B3OvDgwqFvZFHYF98+1x5fuMY5Vun+erIfPo8vJm8fGnZ8aNw7fehWRHlFpECgP8F8G6l1Gi78ZRSX1RKna6UOr07s3j6DCSEEEIIIYQQQgghicz4hpKIdEFvJv2PUurK8PSjIrI0vL4UwNBM20UIIYQQQgghhBBC2mOmvbwJgK8AuFcp9W/WpasBvCX8/hYAP5xJuwghhBBCCCGEEEJI+8y0EMc5AN4E4C4RuSM8dzGATwC4QkTeBmAbgNfMsF2EEEIIIYQQQgghpE1mdENJKXUTkhUcn9tJWoHH8qFVAZZviC4Y0bjJCOq6orGuAF0rjDiwS5ItQ6ui/CaLLRZn0lqvgL852h/etsUV3zailkFaiy674rQ2PtHC7Jg0CLe1EoZ0hXXt64ZyQdttn/MJebu2uQJlrtChK6Zoi0TaQmyuGFu2JDFRaVeULancttieT2TOJ9ht4uVHJHbdhKl2N4rpJYlJ+u6LLy/zacRE7fOAFrF2RYZ9+foEAA1JIqc+QU1XWN3GFiq073XuQFwIzyfqab4X9vrTPlThWJ9Yfqu+niTsn6pJQ18HDm3saEV2zG9LkG4U8fcJ+htSx2jHCUYod10GSEEaRGqTxBt9fdfE9Qm6Bmkt+ukK5aZqeizJlpqX2xWNbRSwlQabktpvkI4E6F0R3CCtBRiT+ondN1zxWzuMnb4t7ms+W4lOJh0n9Rf3vMmjb6f/5Wdf2XzzhItPxNL+nqlEc5QbZmSpqgu/thLrte+1r3yjA3qMsOegpHHaHdeb5dsJvvpJGk9Kff40tCj1oYvhJs0v/jzjx2Z8GD630WmKb7xsbUu4bklHx758XZvi91ehsqWxrfhEtFu1Y9exhwnvE3Fu1bfcT9cOIzrv2lBcCCx6uPk6IGmete121yO+dOx4vrHFrUO3Tmx7ksaAJHtdO+zvvvGu2g0gQZTbtiVpbLfDNxtLfOu6KK4es3zlcschO7yvbNrBSGMnKc/Xn/Z6QQvXt56rG8ujkILUx1ojzO3GrZ7hjz+wRRrCrhcgd3xy5q7dza4DjWuivp1J6xZdX649lQWN5VmXUdG6BQDSet3icyRi9xG3n5tPd+1vY/ddXx8EItFst3351g/NnqdMHu41s45OemZx7XTLmS35+4VvDrfjt/uc7j6HNHvOtAXMfeNB0rztltm20zevu+W0n0VM/NwBidW3G6edtUHSs2WzOgCAkaV63WLs8gl++2zRaSmgzXXLrIhyE0IIIYQQQgghhJDHLtxQIoQQQgghhBBCCCEdwQ0lQgghhBBCCCGEENIR3FAihBBCCCGEEEIIIR3BDSVCCCGEEEIIIYQQ0hEz6uVtKpGg8Vz/I6m6J4BLuhUyFe2FIMnjTP/2Rg8APi8E5jPJi5LPI0lmsd/zQD7Bs0pxod/rQCsaPD15vu95doD10igtnz1HYp4LbKpZZanhK6+6fBQ2Om/o2yleDwc+LxlJ6v8AGlTxc8VkTyC2B4IkLwQubjkyFSC/P7pWLuhjW7k/7ilJ37fI84D2gJGq+b3kmTA2zbwbVLOq4brxIGjqxpQhPxKlq70QRTa45dXeHOI2NiPyLhIPly25ZTVenuLxzT1p5snA50HCdz2pvhZt9bc5nwcc937VyzMGL6UF/vOuF5Jm/TdpbEki9QJ/mP6TpK34zfLpxLsLABTO949NpcVA726PB5TwO+B63Yi80UT90++dy/VYYnvdcceFZh5FMuONbc+MC+14FvG1W2PLoocl0VuGPy3d3ty8k7w5NY4d/uupmiBVUzFvZ+Z7fEyy+3Hj2JTU75L6btI51xNnqzi+sjXmHy+Pfa1ZGSr5xntvk+TB0q4jMx9WevScUBhubbevzZUL7fc5oNF74noBKoMJfdodXxTw5jMb1xXrlS5HUrxOKPe3H7+y1h/WeJxyMeeCtPJ6VPIRtYvmLi99a5JqFij2q4b1A+D3rOh6K7O9Kfo87lSzfu8/fvsiD2B2WHf8C9K6fef3x72llvqA3iG9rlz0cOP6JAm3jG5duddse3X8+Dhj2z2yNMDAllTieGrCJ91bn6fN5t7rpOXc4itHpuKP4x4nrZlcT2zNwrtjcjSW+9cT7v0zY9fogPL2oeqq+DNMNau9s+14QYBFD6cn3fdN/fni5w741wqVVXb8qMylvsirtA/b/mbX7e8m/VxRn3PbfKUn7m3WEF/Xt0fS3JLU1+0wnXggt9e/Po+LSZ7c3DwBoHdI6uOUuWbakv28ZM750rHHRv2p22Z5fvTMZI9/SX2p0hM9c9llsdc48WvKa0eztYgPXzzbO7RbvmbrFvs+FBcC/dvt/hwP50vH9VIbpPVc5NujaFaGpPvklsF/PxrnhlbPhQ32dBSaEEIIIYQQQgghhDzh4YYSIYQQQgghhBBCCOmIxA0lEekSkb8VkbOahDkrDJOdHvMIIYQQQgghhBBCyFyjmYbSBQA+CGBtkzD3ArgSWhTjP6bOLEIIIYQQQgghhBAyV2m2ofQOAP+plBpJCqCU2i8inwXwBszwhpIEjaLXwVnRuQwi4dpej3BkkFZILbDEZA3pZCEqOw1XpNhNv5KPvtvib6lao2BdNauQPbk9cUtXQNkWofOJagVpLXpmixMacgf8wtau4KFPnLKVmJwrymzScMV0gWTB27iAWKMgqyuQ2CgurY+zY8kie3bavjoYWaoF45Ztioy2BdR0XTSK37rto1NxMzcvO341q0Jx8riw7uiAwrJN8ZcOfXXSiT1JYuKReKQ0XDciue5989tjpxX/7rtu22SnGaS1AKNP9C4/YuzTn3bbNWK7keBhgjD+Wr+4oxGhTkEL3Kfgv1+ZSnJ9J4mibzuhipN+mm4IY8TUXVqNH3YaSWL8UdhGsUHfGLLt5ABrb2z9y2kj3D86oFDdHLUTW0jWxh6D7PvVTIjbJi7gKg1i61qwNUB2LLI9SXg+iVRNi9JH+TTm0co+N3zSON4snMlnZKkWcYwEfSOBYnccShIv9onO+urZZ59d3vxIa6F/15GFi+k3Jn89z+uAH6kmC9M3im43t8WI8CaL5kbf8yNadNSIcvvuRTNR3uJC1SBA2gzTT+3xZdcxAfq3N3Zc956sywCpk6Jxy9i2LgOkeuJpu+m0Pz80xvPNGW5btOfPXFFiTkB86btjkXucFMY+b1+3Ba5tEe7e3Y2OHYBGQW33um8dYMb8aN5RTnvyldffhuzPSo/Oq1zQ64Dy/Eah7vp8Nh63rX2x8uS1jM/mKL673onK0b89lTh32Wn55kq7DyeJIPtImnebtfFmY4vNeqX7UP0ZIHwOSdWkpYMO246hVQGWbNY3zLe2t8OaMHb7SBImB7Qou3HiAkT14Zt/Oun3zdYzI0uD+nrZTlMLPut+XuxHfV1u1n2GJHHgZuvIRicNoZ3j8XWL6ce+/hyktaCy7qfxeq30KATpxr7bqv21EqROiuPiroFaCUW3YmSpFut383Cfu0YHgEUPx+P6nP3Yx66TplY27lqjMHi3xNbwxYX6Wu4AkCvG722r9JqND80cIQDA4D0plAvaqUFhb9RWTLlMu/CtSYO0DrPxWVU87b8zDeuC8vwgNj7a192xNlMR7FlRw+A9ZlxItt03R/rmSvtcudAYN+6IyznXZjtr9iRwPIDftZHGzWFYQgghhBBCCCGEEPIEoNmGUvt+EwkhhBBCCCGEEELIE4ZmG0r3AzinjTTOCcMSQgghhBBCCCGEkCcAzTaUvgXgPSJybFKA8Nq7Afz3VBtGCCGEEEIIIYQQQuYmzUS5/wPAywH8XkQ+D+CnALZB/xRuOYAXAPhrALcD+M9ptpMQQgghhBBCCCGEzBESN5SUUhUReR6Af4LeOLrIuiwADgL4AoBLlFIT02qlB+29TCFT0d5MUFf3b/RUkN+PBsX1IK3Pd+LtyufRKom85RuvmXcM471q68lVrPpDtqUdzTwAGW8GkceqKJ/GvIHCcNzbUqbiV5E3KvHGM0KS0rzrRcU+H3kZabzmL6ebvt9LjHtPfJ4HfPVv22s8TZT69H2z7SsuVACk7ulAly+yYXgwwMrbU17bbLsPFbvutHcMbYedh/ba15if7cnMeCgw54yntmQveM29k+X3x71oRGlGYexPY088HV2WxjhRmm4edvmjfKN2ap/X5Y3y8nn7addbRrP6SPLo18wjCqC9yvg8wvTviF4gjXs0SU7L9YRix3fP+7z2JXkX6t3tf5m1XEj2nmhj+n9hr4TjTLO8m3nKsr83b7emX+u2nvL2SzOH+NL0eZFJKqfvHvvHg0ZvUHZe7XhF9IUHgGwpiusf8xo95yTZ7Mvb5y0OgNejUa6o69b2ihL3ICO4pNuyx5n6jHdS28PLxXkgFYa7pDtMK53cp0283AHdBtx+7nrGStVU4vxl1htBxh5/o3E0mntVQ1mj+tZl6oRO1hzu9aFVCtXu+DXzWepTyBX96bUa8+1wowNA7+7ktmG3x1JfACC+DkjVgPyIaW/JZfPd22YefLQXx2hOifqcXc5Gj0DDRwTIVOKGBGnV4BHKLafrHc3E85eluQdH82nGJrdejHcsM25lS/aaT8crLQD6twvK81Xds1q7a13blna9TraThu5fzddDrldbd90QpONeTu2xp13PagBQWmDaYOP4vM48FTVpj4AOV+nR40aqpscn9KD+PWWNac28KWfH9D1zryW1c3fdAwD5/f6CVxMeKXqHGufzdtuHaZdJ4e207TCVHu1dKkhrL2NmnVjY2zhfmfZvnh3stJr1L7c/m2cac59NPzbjYqNXM4W+nY3eBG2v3c3vTaM99v1s1+tY49wRtdPhQWDZpsY+Welp9FyXRP92seaw+PrZPA8GabO+a/QCajDPjTalvsY4bhlsth9bxfI7uzC0KvLqOjqgQm/WguV36jWj8Uxme0lNWuua4/J888wa97yZtOYs7AU2PSPAllMrWLIlg9W3ZOpe0k0bMHWVGY/GonJBXx8+IsDd54zhrCvmh9ZEXgxT1chue71g12s0TsQ9Dbqe5Ox75ftuwm07OcDqm1PIj+hjc1+LCxWCLQJ3XKr0xNc+przt0uwNJSilygAuEpFLAJwOYFl46REAt4bXCSGEEEIIIYQQQsgTiKYbSgal1BiAXx9qZiLyVQAvATCklDohPLcewDsA7A6DXayUuvZQ8yKEEEIIIYQQQggh00PLDSURWQXg7QDOAnB4ePpRAL8F8FWl1JYO8vs6gM8CuNw5/2ml1L92kA4hhBBCCCGEEEIImSWaeXmDiLwVwEZoT24ZAHcC2BB+fy+AjSJyQbuZKaVuBDA8WWMJIYQQQgghhBBCyOyT+IaSiJwELbr9PwDeo5Qaca73AfgMgC+IyB+VUncdgh3vFJE3A7gVwEVKqX0JNl0I4EIAKKSXI+sIuRX7A6RqjXtkRggViES8jPhfM2zhLiNI7V5Lwggn2nkaUUEjaGcLFmYmGsXC/CLT8XyMgJorFGcLbRuhM2NLJFYbpWMLq5UWxIXPTJquQJgrgBf/lHp5o3I1xnHFM6Nruj52HaOwZHOjKNzoANA7lCw8bMIBut7t+1d1xBLNPSn2A4W9cYHy3iGp25gds8XF9f3p3+4X+3VxhfkORRw6EluPny8Mx0XWXAF0QNfnwBax8mvVvuICfG56mXHf+bjApCmfqfdmQsu+8z6xQVf4dtcxqAunm/rx9YkobVs8VQv+6TRVTPTTUJ7vFxpMopqNBAAN7phhwqzLqNCpQLzt+kRz9VgUCYqac/F7Hb+nI0uBvp0+Yf74OVcs3Ub3g8Y2ao8tzTA2ZscERgg/yWZXJNUdM2zhQjdcJCoZjSl1UURHwLG40H+PdJzWgrSugHZSuW10X4mnO7IU6B2Kj4G++vAJRtvsWRFgyeYUANVQH+7YrdNpLJfua5Egup23K45vsAVoTfqmzz5wlsLg3XHnD5q4owAzPtvikj+/cBwv+vduy5a4/b6xLhLYjq6X+hSCdCT8bOfhjkk+pxFBWgt1Lt+QwtAqXZ7SAi3UmjsQCn+WdJzyfB0nW9LXywU9lw4PKmRLCiNLVXiPmgu5N8MV2nXXDEbMtrhQodgfCSHbYYYHFfp2Ngql+tq7Fkf3Czvff/YElm3qahj34/aGTi8W6DHUFYPNFU3eyWV276l7LbLT3GPltAW7TfvzSNXM+OR3HuK2t0wlea7fswIY2BKvT9940bi+M2uWuACra7vtZCIeTtteyevPYn+AIC1trzuMjW7dmTHKnnd9/c/Y5c7PQVph1zEBeodSDSK+cVt0Hkak2uQzOgD07TTCstFYaYSw7e/2WJfUpradVMOSzRnYa2F7zWyTlIYWlwb6t/vrwoyBvjo3aY4ONK4VzD0oLYj3Dbs8xs7SAp3H6OIAvvcDcgdcm3X7Gx0IgHsaO4ItuG2P/WaNbDux8K3b/f1Tp1PqUxge1Gvx/H5BpSfArqNrOOt7XQ39olxQ2HqawuqbpT7nuPNYs/tr6n9kqV4Xuk4+Sgv0Wt+Nb/c3m2zJ/+xixlpjk9t2XLvt+cYN7445pl/r+xE9O44OKCzZbKcvKBcUhlbF1/ZA47q5Lk5e0nOTPbZUeqLnnlwx/vxmymozOqCdGNkC7bb4tIlbXKjr2r0H5vrWEypYs6ILO9bWYITa9VpRt+veoQxSNd1n+3alsPI2ey4P25b1zGr6tFnX23nH1zNxEWzDtW/fj+y4YNOTFe4/I4tyXiF/IIVqVzg2dymkAkHuoKA8TyF3ULBn2QQq3QqpADjzJ4V637efXcrzG9uX21/cNjA8GH+eASJxbdMvMhVpaEdBWvfVa9btwZsuHECpT/e73AG9LhhaGSBbStefdSo92oFHZhz1tUOmIhhZEui0f4S2aPaG0juhhbff6m4mAUB47q0A/hiGnSyfB3A0gFMA7ATwqaSASqkvKqVOV0qd3pNefAhZEkIIIYQQQgghhJDJ0mxD6ekAvtYsslJKhWGeMVkDlFKPKqVqSqkAwJcAnDnZtAghhBBCCCGEEELI9NNsQ+kIAJubXDfcD2BwsgaIyFLr8JUA7p5sWoQQQgghhBBCCCFk+mnm5a0AoNRGGmUA+XYyE5FvA3gWgEUish3ApQCeJSKnQP+IcSuAv2wnLUIIIYQQQgghhBAyOzTbUAKAo0Sk2CLMqnYzU0qd7zn9lXbj29hCi/pYsOY3cYFkI4BmhBZtIqE5lSjEZoStcsW4IGkkjqUahNVMvnGxbB1veFALC5q4tmDhwENpS2zXiIUpJ50ofTtPE8YWG7XLoIUZU/W8DPmRKIxt+9c/eQAXvnN+g9Dpra+o4rQfZZCpaIGxwt4ovi0aqAXSFIoLo3Qz41o0zRWmNGU2AnHl+dqualahPB+456Z70bvm2LpIGwCU+oAvfWsIb3vTALKlyP78fhWrIwDYs0KhkteCoPpeSkysfGCL1EXOSn0KxYWCSo8RgtQChMODoW0FIFeMi+WW+rTQqLHf3CtzD4zInamfPSsiccm6mGgo7lrtju6J24ZKfcCW02tY89s08iPATW+YwMBWnUDvUCRSV+kRZMegxVgzCMuiMLpYl/+mlx/AadfPw13njeBdLxqoC/EZe8x9Nfc8Z/V+u81VerTdgLbb1GHvEOribkasNshEx5WeqM2a8pfnK/zyzSWc+WN9MTsmYX1rgewHzphApgKs/kMXRpYE6H8khT3LtVjc3c8YR2EkBXn7I3jxcUfj23/Yhkfv6UV2XLDk4Szyoyn07kkjd1Dq93/k8ACpGrD9SRX86dgxqIkUXnPug9i6rxdPP/FJXrFVXT+N532i8kbEd+2Nqdg5HT4UTe2Ji0cbQXCbPUcG9et2H8vvj4T0TNva+OwAJ/00XRfNtPvBFz+9D+/8y8MaxMp9Qq2VfCRAafpQtVuLNJYLug/a4+XoYj22+ARD7bqzhRZdYUrz3T5XLuhjVwTW9EPXaYARsLQF9csFLVSfHWsUE65mga0nV7HmN9lY+tmxaPzS6erPPSt036wLrub1vdz4rCrW/jpTv2aLsO5ZERdYzI4BDzylhlOuTcfEIa/52cN40ocGsfbGtNUWonimDxrhyXq/KcTr5qcX7cHK2wfqYqOuUKxdP7aTAtvma99Vxnn/lKu3UV97cecegwlv8vv+h8aw4M1/wq8enYezL9YvIheG9X0o7BXsOiao2/KzC0Zx7jd7sf3YKjIVID+awsTbH8EPcsuw8q4u3H/GOE77aQ6AbouZ8Xhepk9o4fHE00gAACAASURBVGc9dqdqug9tf1IF+ZEePR6FZc4dkIa2ZeZ7I6xtj4t3fvpP2PXZZRi8N42b3lDFyEANlVyg66+cQiUXIDOhnWsU+7S4aN9QWs+/fTWkAsGepRM46cY8UrVUXVDUJ8Rq5n2feKeZz8uFVMz+So8KRal1mqU+YOBBwfbjagBS9XR121fYfmwNg3dnkKnExdHtsc/k+cBZAY67PlU/Z9t7y+tG8NTvLA4Fe+Ptxf6sZiMb7TDu2saXhz2u2LgCvTe8tYJzv5Ctp++bj027NvfWhAVCEdhFAarZdKwPmrHaXl+546dt/54VwD03bMJTTlwLW+zViN0bBx+2aK1dpmoW2LG2hpHDAwxsTSO/X5A7oOcZI46+9dQaCsOCTEXPj6v/0IXsGJAtCcrztXB8sV/3B9Pv7fZkjvXYGBfLN9fN/F3tBn76k4fx3JetqIdPVa2yZ6LxulyIbDRr443PrOKEX+pHjZ+8s4xVt2dR7NfzOAAMrQyw/G7dVzLjeh2WqWih4XJBt897LnsE8789gL2v3oNXvmIQuQPxOcO9P6Y89Xm2W9ucK4ZrqZMrOO6GTL0slbyOf/dzJrD2pq6YA5dI6D1+jyo9CrWbb8H9F56OIAX0PaqfPzIVQXZMsOvoGnIHBX27UvVyDC8LkJkAth03gUouwFFv3oojXnIcPnfTTsz/XS+CFLD83ixSNeDXrxjF03/Qq9tOWa9bckUtsL7h6QeRmRA8/RUPYdve+Zj3yeX19YD9TKJtbRR+N+ftvrdnBbDheRN4xuVdcB1e7Fqj0L9dkKrqujTn8yPRfTDtZdtJVeT3Z5A7EO+/mXHg/udOoDwvwK4VFQQp4EBfFaf/cCFGB7Rdpm/e/OoKut+3BYXnrq2vk7SQdzTe6TlVwvWxQu6AhGsYhaGjAlR6FFbfkkFxYbSuNmw/voaBLenYfJiq6fVMNZuOlT1I6zKbNh6NJ9o5kFkv6XkoimePIaUFkQD7oocjJxX2p93Gqln97GL6V+6AXr8u2Sy47c/KWHlbT0wc/YGzAtz+H3/Cs1+zol5f2TFB71BcmLu0QNXX7T9/exnLN3ah0qNQGNb9rTCcwuqbU/X737tbwnWGwoYXVJHfn0JhWHD/WRM4+uN34MqvHofnf3kesmPROmV0QGF0QI8/+jhA385UvZ7z+6N+WVqgsPfkgxge7MEvXzdatzNfTOu5dEENuWIvsmOC0UUqXD+b9W9UX1/91H78xUULkKlE/RXQ4tL926Pw7twEROLZQRooDANr7ujBqtu7cP+ZFTzyjFH09k7g0ZEsKpUUggBY+KduFBdUMTavBgkE0hWgZySDzIRg0c4urLo1g69dsxPzbunFn1aX8cKv9eln5oICkK6vgY2zKD0v6voeWlFDJadQnhdg1Z1Z3H7Dffr8vh70zptAtquG4lgXctkacl01ZNIBAiUYLWWREoVMOkAmrdclpfEuLPi/AfzwO49g3nWHoTQ/wK4jK8iOC3qWjePmHd11ofFaRqF7LIVabw3VCUEqrZDLBQgCIJcL2hblbrWh9K020hAkufcghBBCCCGEEEIIIY87mm0oPbuDdLKtgxBCCCGEEEIIIYSQxwOJG0pKqV81iygiAr3pdD6A8wAsbBaeEEIIIYQQQgghhDw+aPWTtwZE5CnQm0ivBXA4gGEA35liuwghhBBCCCGEEELIHKWtDSUROQF6E+n1AFYCqED/zO29AD6nlKpOl4GEEEIIIYQQQgghZG4hSvn1tEVkFfQG0vkAjgNQBXAdgG8D+BWAbQCepZS6cWZMjbMkc7p60fG/r3uUMF5Ziv2R94pKj1ZQ798uqOQjzwzVbmD4iABrb0zj1pdXMbA1haGVAZY8mMbWkydCJXpBflQr048uCpAtCwbvSYeeuAR7VgTIjgl+9tYDOO7mHiz6U7rupWDbcRNYdUcXsmOCPUfWUNiXwo5jqjj4ll049W+ORLFfoZrV3iCM0vuSB9K4/6wJLLs/jUoP6p66smO6fKOLAvQ9mkLxsAC3PfcgTvvFvFA1HhheUsXuc0bxjJN34dc/OApLHs5i2QNdugz7BXuWB+jbpT1qVHpUPZ7xLrDjmCoyFcHwkioePb6E5YMljP18EYKUQnFBDaVCDUEK+NyLrsO1pSdhx8g8DB5WxO1fWYPR/ioq3Qr5YhrVrgBBCjj/dRtw/SdPx0Xv+wGuLh2H1YVh/HbnEdh51RFYsrUL5Xk6XP5ACvn9gp5PbsLywn5UgjTWdO1BCVnkUcEd5aV48NITIX+7DQBw9319yOVq+NjZN2KDWorTsB0PpBdjdW03NsgyfOWqk9C9ZBzZbIBTjtEu6I5bsAeX33wsLjhrI+4vLtSK+OUsspkaSuMZ3Hv9krrHpWrGlEPh8CePoL+3jH3fWI55b3gEh7/vKDz44e3o+e/DMbK4hlwphVQN4XfB8W97APfv6MPg4iK27y5g4LAxFLoncP31gzjsyDEc2JLH4ceP4oLj7sLV29fg7xffhIyqYbhrHk7Y+whuHFiDwYl9+MeNz0WlksJxR41guJjDssMOolJL4aTDhpCCQlllkD76GZj30HW6XQTd9T6RgkIp6EIKCmszu5FRNZSlC/21gxhOz0MGAdb/6qk49/RHcNPdS1CtCoJAsGBDAYtfthPVWgqrFu/HjRuWYnBpCTse7cGRP+zX3uzma88Bw4dXkQoEL33TXViSKeIrXz4bfzjrY/j96qMxODKMy+a9AJVaCpmUQi5TRUoUUqKQTdXw1MzDyKoqMipANqiinOrCqtHd+HH/idhVKaA3dN2UkQBVlcJ7N1+H21YcheHsPGSDKs7ddDc2rFyOH/ecoNuySmPr6ALku6p46NNPwqLtaRz26buxet4wluAAllVGkKtN4Pupk1HIVFCsZtGbGcfQ+DzkMxM4JbsTGyaWYGXXPnziujOw9phRdH3+CKy+tQuA9kSVqmkvYdtOqmHwnnTMg0ppQeQ1sJpVobcbheEjAtQ+cx+OeMlx9X5mvIrlDgpKvQEK+3RfzhVTKC0IcNJ12cjD2XzdRzc+rYJF29NI1QSZCZ3Ob19WxLO+Ox+ji4KYR535n9qIrvNPRKVHodSrMHK4Hnce+dudyHYF2HvTQqRqQL6YwsC2LpR6A/Q9msaO1RPIH0ghOyYYGahh4vnDqN3UhyAN1E4dxQlH70NpPIOzT38SvvvjR7Di64tR6g3qXtO2HlfGSTfmkTsoYd0IiocF6N+RQrFf96uRgRqGl1ax74wDePl7D8cNbyhh94kHcdimPHKlFIYGKzj9Z9qFSioIy/nSImSgAtmVxXh/FbXxFBYvLeOoyxeh9g9bcc9vBnDWtQVUuxQyE4LfvXkYANDfX8HBu+Zj4shxjB3I4DlX9NbHzlRNMLpIe/j73Sv2Y/7uLvQcX8RAfxm79vQg111Dzw8XYevaMk65cR4qucgr05MvvQ0/v3c51gyOYGh/Hi9Z+QBGghyu3XgUzjt+M36y5SisPnw/br53ALlcgB07cnjjczZjV6mAQraCjAQY6D6I1+++FRfsew0CBRw3uA8A8OsfHIXXnb8BS9IH0IsyfnngaPR1l3H3zkU4a3AHvnnliZCBCnK5GkqlNGr7u9B12ATe+LT70J8ew8raXuSDCm5Or8Sq1F586vPPRzkfoHdfGpmKIH8ghaEjq3j2WzZidfdeZFHDQO0A3n/zs3Fwbxb9Q13ae1hvFSc/dQj33Hg4Vt6bw5bjy8gXtee5XCmF4gLtrWzVXd0o9QbIVASVnELuoGDLiWXMO/EATjpqGIESbP7y0fjri36Gy7eehHvu7sPbXrgRlSCNbKqGSpBGf2YM5xY3oZpK4xkbNuKwe7bjwacdi01HLMPXu85ENlVD95ln4pFf3Y1FPSXsOjgP/3LwagBA78ExlHLduPWIozBQ1p5hrs0fj4wEyCBARgIUgyxSUDirthU/xxr8eemP6CsdxND8XhQq47j6sJNQUWnkUxMYqeVQSOl79FebbkDf/iI2HTWISiaDwd17sW1gET7w0b9G9wcexO9+dzjmLaxgYNE4hvZ047ynbMHazG48UFuIRekShms9WJneh8/eeRoK+SrK42lkuwKUymmMjnbhqJ8tQHme9q605vdZlAsK/Y9odzPG+2k1q1BaoOreoXqHBEOr9Ph746sP4KlXF/DHv9uNw361ACOLaxjcnMWjr9mD8Q3zkQoEi3ZkwvuSQjWrsGxzV71fDS+todKj8Lcfugof+O8XY+XGbvTvTKPUq7DpjDGc9os8Sr0KQVqheFiAcj7A8/7+Vvzp1ec0eCMaXlZD754Ubn1+CSfdmEdpQVAf67Jj2itRJRegd08aI4fXMDQ4gcHNWexaOYFql0I5H+Dk5+1AsdyFnf+3BL3DaRT2pep/2guVoDxPr5dKvQFyB1Moz9PrsVJvgGJfgEpOYcELH0VvfgLq40fV63d4aRXjzxzBkd9cjJGBGvqG9Ny++427kRKFXHcN23fkccKafdg+NA+1W/qwfFMWf3zBKBY/nEM5X8OyLd04eN5uFA9m0Dt/AgOHjWHTlgVYOXgQta8dgWqXwo6j9IQwsVSvPb5//BV444OvxoVPvhOjKodd4wVs3deLO387gP6hLuw6soK+vRmkAsHIwgmc/8L7sbJrH7ZOHIZzsRlbuhZi3U+vwnuf/+f4wpWnhOOiIDsu9XF38VOH0Tuvgny2ig2b+7FysIgdQ3nM/4Ueu1fflsWd7x3Cq163DFe/5yAOe/Gj2L4zj4FFZRRLGTz1SbswVMzjN79dUl/zZMcF1S6Fsb4qXvb0bTgtvwPban14RWkDztp4P6qZNF5/1F+gt7uCHfvnobengl378ljWfxD/NnIVHhhYgqfdswnDfQVcfsw5GFXdKNW6UFUpZCSAnHoOHrrxbiyfP4qBzEEsUaMoSRYf/OLX8PELL0BBjeP31SORT03odgapjxk3PHAk/mzNQ7ht9xJcsfOr+PlxJ+KXWI2fbFiBcjmF8V3dmCjUkM0GqFZTeMk52zDQfRBnqYcxWBzGpgVLkVIK//HgmXjaUY9g96vOgnxrA3LpKipBGpft+hHuGFyBN1zxE1z3kqcCAIbyvegbL+EH+ZNQVSmkoJCRABWVRm96HBff9mP89tgn4czND2DLssOxZtsOPHDkUnx94VnISIBtBxegPzeGXEr/v/2/fnk5usYmcO/xK5CdqGLD8uW4LX8kDh7+Qnzp+4/iuNUjyKQVlsw/iHxmAt/87mdw19OOQzmbxUg+j2I2h4HiKD6RPxf37+zT7eDfjsCmM8tY+/schpfqNt67R69Nc0XBbS8Yw+rbulHVS5q6Z7dUTbDnyCrK+QAji2s4sLyMP3/mZmSlhv+9/BQU9qewbfU48gdTWHHGMLY9Mg+plMKBfVmolEKmSyEI9Hy7qH8c1WoKA4eNIZupYc9oD1KisGtPD3oLE9g1lMO5/397dx4fV1X/f/x17iyZmSxN0zRt04W2dKNAaaHssiO4A35RwQW/XxVQQUXcUEERFAUFF1xR+QkuoCirCsheEVnagkAX2hLSNk3TNM0ymUwms9zz++POpNPpTJLB0vX9fDz6yMydc+8998655945vffzOWwD9zw6lc+9YylVDLC0rxG/4xIdCPLoMxOYPrXPu+aKpGjvDDF3vy42XT+TaZetwLWGtOvQ1hPB73OpCScZX9lH0vXR2R+isSpGvT/OqtgY/I7LjMpOQqSpYoD7Ln4rh934L/7w7GxiMT+VLRWE4g4LPvgqr/xspne9mTIkKl2SFRbfm7rxPTKadABa9xvAnzbMnt/F4WdO45ZrtzBlcpyNK6qpaw+QiLhc9OF/0ZIexbreGhqrYiz59nz8qey+DkD32DT+lOH8Tz/Gxf9+iFuPOo7H+6czNdzNyt56Vv98Bo7rHXfpgCUUd0hEXBZ8dBXHV75GN2Ea3SgdTiUzBjZz4V/eTXDAYcu4JGNbgziuoarb4auX3skPNhzNxZOeIWn81KX6aKqo5/v/70QvQ2B9mnTAUj0hgd9vOeGL47nl8otYPnMyNX39NI8bC8CamnH8ZtN82rZEcBxLVSRNR1cF4+v7uaHyrxz06jrGbuqGdIafvettfOKvD3DGKZ/GtYbufu+3SFVFiubN1Xxy+mLaTRWNbpQ2p5rxbi9J4+NXaw+lKpTCcSw1oSRLV9czf8YWWrZU0lDbT0c0TDQWwLWGYCBD/agEjoGpo3vo6A/z3F+n4E85VB/ZRbzfT13tAFPqYzRW9rJozUTaNoWJ9/kYsymIOaiX/qYIyQrLtAN7aBzTR3zAT20kSXs0zLzxm3n8lUlMGRejJpTkkPGHDGbuu/F3HWQGHMZN7KejowK/38V2Bjj7+trBLNS5bJR1LQ5/+Fo3piFJqivAt898zOu3reXZ5GRCvjQ1vgE6UhGqfEmi6QocYzmv/zmqBhK01tQSzGTorKikNhnne7HjsVftT7Te++3dPjlFVY/DKRe/QHuikpA/zfLWOqrCKZJpH/23ThzM2BbpdQgmvD7g+bdG+c6bF/F4bDqHVrWSxM94G+WGZUfStsnLmuu6BtvvYMIuF5yyjGimgqDJ0BqvJuRPE/KluT181BJr7UKGMdQdSmvwsrc9A1wI/MVa2wVgjBk13IJFRERERERERGTv5Azx2VrAAAcBJwLHGGPKjrkkIiIiIiIiIiJ7l5IDStbaacCxwC3AKcB9wCZjzC+z74s/KyciIiIiIiIiInu1oe5Qwlr7b2vtp4CJwOnAPcD/AH/OFjnfGDPsc3UiIiIiIiIiIrL3KBmUu+QMxgSBt+EF7H4HEAZWWWsP2PHVK80/dYHd/IfjSISCRKvCAFwy7mz+/uQPMX0DkMrAms2QynDWl6/nx6tvJx6qYOajL8FDq6CpiwX3/ZPnj10I75oD/14PKzfDmAjr/3Yh3dWVuMYhmE6TCAao744SiQ8wZl0HtPdCdz+09MCEaniiCc5dALEBWNMBdy3nGxtu4+vHfAJWbYFkxvv3rTfz7c99nEseux/XcXjhgGmkHYe0z8dbnziPTeOupCYax/f3ZdDcBXVhb74NUe/vjDp4pQN8DkysgbAfOvthYwyOngynzoYXWryyG6MwrQ5CAa7+4kVc8ZlrIOiDzjg82gRVQS76z5/4yeVf98ruNxrqIjCuhmNPuoLfddxKbU8fkfgAFUvWguvynku+xXVNdzJl/WbWTR7LxZPfR2wgQDLtw+9zca3BMZYfJe7k81VncPaoZZy6+mXaR4/imMUreO/Jn2B8RYyk68PF4DcutU6Cy/71V1ZNa6SqP8HLEydRH48RrQhzxXc+zKk3hfjpT73gtTMP66KzJ8hXDn6KP3cfyNm1y5jTs5FVo8Yzv30tXwm+nea2auL9fjIvVuNPGY74W5hNP1/DBWMXUz8QoyqZwLGWYDqNawxX+k8nmfZRVZFiXUcVrjW0tEZY57+GdY1jCSWTzGjayDknXMgd93yf95zxWWLJIDXBAdLWGQwY+Jtlv2HMS+vpmzmeyg2dpMZW01lXzWn1n6S9M8TUCTGaN1bxkQUvc8NjC/jOiYtIGj9+m6GJMZzcv4rm8BiuWXw0oZDL2Qet4od/m8+s/4RJVLr88Pzf8WhkFif2r+bR8Cz8uLgYzKST6JzkHcPxUdYL6lxlefOf7iZugsQJApDERzRTwaj640gHvQCtf1m0jnTGYe6ULh785/ehP8lrB05h2v0vwP5jYVU77/n01fiNS0d/mLpQgvZ4BMdYftBzJyvHN/K9ruNoqO7n0KpWmlOjeeIn8wgmHEJ9hlCfMxh43vXBW7/7CEn8BEnj4uAnQ3NqNPZNR/HSn1/lyFNnbHOMP/PwGo6a2EprfzVBX4Z1XdVMqo0x6uhDqd1oiNdCpBtcP/gH4NV1S1nXWU1NJEki6T2dGx/w8/a5+5MMb11uLvj16rXP43dc2mMR6iIJ0q5DPOXnsQ+cBRnXO8YyLtRX8pPvfYaL7rgHOmIQ8EFzp/fZwY3wnw3Qk4COPljZAau38Ej7DZxy84PQOwBd/bCqAzb2wldP8fqPjAtT66E9Cqs3e2WOngqbohAKwKImLv3Xcm644CS4b6W3/GQG5o3nu/dfxxem/C8c2ABru6G9j9cWfYZgKk1HbQ2uY5jV1Eo8UsED8w/hpu4juLP5l4xtbmfjjAlMWNIELd0wqwEqAvDqZrhvOWQsHLsf9Ke8vuLgRh458028aekKvv3mX3DWa1dzyK8egen10NoDW/r46g1f41tnXOLVrzsBk2rggAaorvC245V2r7/q6ofDJ3P6hdfx4N1Xw5gqWLoOasPwn1a+8OtrveMJQ9o6/OT8S2H6GG/+Gi94IBNq+OiXvs4tfz+Aw4/YzFHjNuBiqDJJvnXFdyCR9uZ5dh1MqIG+JF/44VWESJHGh4MlaitIuj5+8ZkvcMa1P+OeX38NptTBqnYI+fm/T36Zmx77DZee+n6Sro+k9QImf7J9EYf/9Vn6Zk8glEjy92MPZXy0h09deylt01L0H9dD1/owC45sxzHQUB3n8p4HqemLA9BZXYXrOFxVcTqPLx5Pqt/HvKe8wN/v+H6IRDWcvuynxANBTn3+JTrqapi5Yh3PHDmXLwbeSVtXhI7OCurrBqitGqCjJ8Sd4d/SNLaBdeE6ksbPazPO5OgVt/CAnUM0WUFN0AtyX+VL0pGMcE3LPTQ3NOAaQ2uklo9+71YI+DjuvOtJpr2+7LCTZrHksVVMrYtyxxWfhTERaOqEaAJGR6Cmgg9c/V1iqSAhX5q0dQg6GZo6R/HMI19nw8FTiEVCfLDyg4yvidPeG+aEubOJjYHOSbmAsN7XmXp0MSFfmidfbeTwj09h9e/WEApmOGzhnMEyyXAuyDOsfuEl0q4hlggwvibOnMoOoq73fXa982icDNRudHB9XrB61wcblryA+cDBhP+4lM5EiBk1XXSnQgSOP5z4KEukxwz2h8E4vPrwCtq6Isyd2EnEn6K5exSTanqZsP/hxEd5QW1zCT5idS4z//IEK3vrmVW9hWimgipfkpe7xg4G5AcvuL8/6fXPE174B9+66RfQ2Qdb4t75uC4Cf3sFxoS9PmdDFOJpmFAFb5rq9RvNXbB6CwR9HPfQo/zz71+H+1d4x+lflsPHFsLEUTBtDLgWKvysndHIrw46nqt/9gvY1Av/WA2HT4InXuOEhx/hiUvfD+Oq4bkWWLoRZo7x1jEm7F1ThP0QCfDIy1dzyjV/9vqfrjhbLjqR2u4+fP/vaSZ/9X6eND9hv2Xr4JFVUBWEu5bDfrVe+YGMtx0tUT73wu+4/uKvQkOVd6w2bYH/OYSQcyOJH8yHcMDrR6bUev3j2h7vL3h1auqCeAoOGe/VE7y+ZUwYPrCAT33qc9x4yVegpsK7Nosl4cBxXHjFlcTdAFW+JGnr8Mvf/ci7PqwOQUeM/rmNhFdv4qwPXs7GLx9Ez6c3MHVsL4m0j/GVfdx2/0+8fr++ilRlBYFVm0jNGsdlb34fDpalXePpjIWI9gVwXcNps9fSnQrx/sxS6uIxGrd0MWV9O0cd8AUaa/to7w1TVzmAaw2xgQA/St5JU30Dsza18af9DmdWqp2Lnz6Nrx33b/7eORO/4xIJpIn4U4R8aWLpINesvYfu6krSjsPK+kYO3dDM3FXrOGLOF+noDtHd7dXlU+9s4JnmZTz22LWwsg0aR0Fvgg0nHMD4ti6Omfd5gn6XRMpHTThJfCBALBHgH10/46k5s5izsZU/T1/Iq0e+jY0Pvsx//jyVUNyhdeoAkZiP/rEpRq+t4MhzXmVOVQcPNE9nyphezgssIZRJ8ev3f4xZ//Kx/KQMh97nIx2ERDVUbngQBy+I/s9uOoGvnn8/cRNkxWHvIthvBhNfRLq9c3XXhqeo98dpTVbT0R/hXdUrOPm15RzR+gmqqtJMGR+joydEYsBHJJThydiPaJo4jsXjprHSNnAQbSSNj88/fCLH/aGWuY/7efLcgcEkGdMuW8G8yjZ+edNx/M/HlhA0GepNH51EWPLREwaTYjgZL9h83QaH9bes5uDTZnP/71qY3thLW2eEGRN6mHD8wSQjXn8CkK6AF09JsvadXaTWhZgwv4d1LRHmzuph/cPjeP/Xq/EPQLzWW0e0wVK1xQv2+9wdr5FM+Zg+Pkp7NIzf53LcglmkK7Yu3/XBi6eneThzGLzW5R2DyQxMGcUv/t+XuPCIz4PfQG8SfAb603xpze1ce86lW4+hyiCvXno6T+4/mw+/79teHzS73lvOMVOhrtK77tkU9c6XsQFo6fKO45AfHMe7nshYqhu+S4vzLRzXxZ/OEN7YDTVhzjjpU4wPxWgfqPT2i+sQTQRp64pwe+j3dFdW8lTd/oRIcffmA2jdEuEds5uImBST3G5ObF5B89ixjO/ppnnMWOr7ekn6/bjGIZRKsm7UGBxraQmOxsXQTZiOdIQjzDou/PNf2TRjPHWdvfhTGW4+7WQ++ss7sieiDLT1Ql+Sb//wMr78he9602vDMG0MvZPHMLf2Mm6d6N1HMb6rmwMeeB4iQf529knMaGtjSstmmqeM4wdTTyGYPXklXD/RlBd8+Zz089zQfxzvrXuZdy1bwpqJE5i3upkL5n2ItOvgGItrDcmMD9caftN0K39YcDS16X7W+UczNd3JKn8DSXz857wTGHPT89QH49Q4AyTxkbYO6/pHcWiklRqbYJ0ZTQMxVqXrCTqZweD4a7bUctqEJv74nROJjcow9m2b6O4NMm/qFmLJAPNHb2J5dCxzajroTodYtHoix8/cQNo6tPVV0tJRRXc0SObFauY/FqZjUobN79tMIuFjxhQvQUYi6ae9M8Rl8/9NbbqflwMTmJ9soS1Yg2Mtlz16PLbXTyTm3c9y/B1VHH7P/TzcMZ1k2kdtZIDYQIC6SIJkxscHQ0txrGVRYH8anBgPbNyfoN/lnw9d5X13EqEbFgAAIABJREFUkSCfe8//cXbbEo5evJL9pn6DSDhNbWWSQxvaeLZtArH+AC+vuYbOumpqonGiNRGqYv0snzmZY145n7ErI1R1O8xYEqShyfvd8sida6mpTLGqqYZZ06N09lRQFUlx9BnTSQctiWqoa/GS9qSDsOTfr9DREyKZckimHBbO3MzyltEcef4UQr1ev9cxJUOw3wz+Bhm4eTmJlJ+gP0My7cMxlmh/kOqr92Pzl1o49sxpBPu9sk4Gfn9LG43j++nsrmDSuD7au8LUVic54KNTqV/rDF5f5RJn3HXHBjavD7P/AVFaWiPU1SVpWR/m/M+PGUxeBl79/Um474F11FSm6O4NMn5MnDXraojF/CTfPG5EQbmHvEOpGGtt0lp7t7X2HGAccB5eAG8REREREREREdkHlD2glM9a22et/b219p07qkIiIiIiIiIiIrJ7+68GlEREREREREREZN+jASURERERERERESmLBpRERERERERERKQsZWd5211UHDTPvuXp3zAl0kO96QPgFz87gcM+tIZ4yo9jLOs2V5MY8GEfreOsTz1L0GR4eP1UXlxey8FPVPPyUX0cf1cNi86KMv+fVTgZGP+qj65frWJ8dR8hX5pkxsvy09Efpi6coK23klgiQEtbhI7NFRz+cDXxGpeBczcRi/vpWVPJ2d8bxfhVhj9fHmfO0xUkw5bpi/3UbvQiqf9r7XLSrsPCsRtJWi/70JPrJ+E4lmTKYfWLo6lrD+A63ndT3xqgtt1Hy6wkk1YFOeKuAA98sh9/ylDV5TB9aYCGJkMwDstPytA6M010TIamuQkqR6X4vw+M46bvd5GssNS3BVj4YASAOYt83P3FOJNeCdA9zstMUNfq57nzOqmqSmOf9zKlHfRkiJrNDo0rncGMOP4kbHz1OQBcDK41hHxposkKDmycT7Dfy9CTi07v+mDDpmfwG5d4JkDElxrMEDR27DG4Pm+Zuew+AGu7nqEzESbkTxNLBphSFaU9UcnB4+YPls9l7wr2w9rep73MKakgDaE+2hOVTI908eOH5/GFM+vpnuAtP1EFVZ1e1qE7L+3ByRhCcYeaTh8bj4xRU5PijHMmUrWFwWwaue3+7YOtxGJ+pkzqY01TNZ99bz1PLH+Fk2bPHqy369v69/5nm5g6tpe2ngjT63tInX0oE+59kjGR4wf3Sy4TGsD63n/jNy6/e2IWHzlpBcs+fjQ1HQ7TF/toOdClpt1kt9fQOcmlY7JLOmjxJw1v+r2fG37bTTpgufS80TgZb/8E+71t9ifhxjvbAZjU2M+JM9bT3DuKdZurOeuwqYMR/xNVW7/jR5pfoSqUpCESJ+hkvO/MZJgYPpZk2CuTq78/adiUfoKOZIQDI4fzt5ZXSKZ8tHeGaKhL8NaD9x/8frduO6zoXcymTx+CuWY1iZSPoN/L7HPKuLm4vq39k5MxuD7Lc1teJDYQIBoP4jiWeMJPTWWSt+43i3TQ+65Csa3fgT9peKx9Gd19FUT7Avh9llBFhv+Zvj+JqlxGKDtY9uc/7yURyWCneTukfswA437cyOhvL6ezL0TQn6GtK0JiwMeMiT0sbx5NPO4j2hNg5osRZj0bJFrvsukLG4gn/ESjfsxrYQ59pJINX2mhqbkKx7HU1KRIJHyEX4kwcEAf82Z10RENkU47bHxhFJd+sJZr/tLJoY9XEYp53/vU//ipaTesm5ehbX8vY0TtJq99bFr1HImMn4g/xbOvjaOhNkHL5ko2vhYhPDqFb22I6kN6aWsLMfnFCFuOitLbFaShNcj8R8M0vOYwfpVh8ZlpkiFL7SaHpvkp5j9Uwax/Ofz4114Wj+4xKRqbKwjFHd7x/TCLzvNS8kR6DG3T08RGZWibnCQ4YGjYEKR+g58pywKEYoanz4yTrLA0NgVxMtDdkGHh30IEHn2a5p5RtG6pJBjI8NYjpg8e37m+JBSDZe3PA9C0eRSdPUHqawdobqnk/DPG40963326AkK93vd/x7Nred9h+/FMy8tE+4NE+4L4fS7vnD99MJNQvg2xp1h7/hGM+/lS4ukAnXHv+z624aDBvizX7nNZf677Yxf+lCFWk6G+LUBnQ4rggMMl/1tLbIyXqSgdhEiPV/7aRzYRiWTo2lzBqDFJgkEX14ULj2vEyXhlc23XycCS1pdo646QTHvZYIIBl2TK4X9mTx88VgFCMS8D0ZboPwk6mW2yzIR8aSaHj8HJmMFtjY+ydE+Al09OAZAMW2K1GYIJr8zxvwvRsZ+lrsUMZg+J1Vnu/UyMWE2aSMxHMuQSTDh0jU1x0UVjiHRDtAHq13r9SCgG973yKp3RCvw+l2hvgEnj43T3Bjn3mMmD9fa21zvW/735JZJpH6FAhtauSoL+DPXVCY4ePY9k2BLs9/qb/H370ItriFSkSSR91FYOEO0P0lDdzwHTDqGq0xAfZQf7NIAn1q+gIxqisa6PZNpHOuPQ0RPiAwdMHaxHbv8DPLJhJcm0QyLpZ1JdjPZomFMnNeOrfHORPs3w2+XNtG0KE4mkvWMjnKGxPk7Xr6fQOS5NfWuAlYfGmdRUwZZD+pj8ZDXxaq/fC8Ud6lv8vHxMHN+0fqJRP5NXhJmxtIJ5D/r581f7mLW4AoCazQ51LQ5VnfDsWSlWHZagc2yK4IAhOODw/m+M4rab2+jtCjJnaYTusWnmPxpm4d0+lr4zw7Nvi1Pb4WfeoxXUtTg0L0jjZAy1bQ417Vuzbf36F5tJpw0VUT8nnL6O7ngFW34zhc0n9BAMevWufLyWeLXLMXdF6JicwZ8yRHoM6w5MMWNxkDmLHO7+UoJIr0PtJocpL/qo6jTUtRjWzXPp2M8lGYbmg5MkKl3GvxbItg/v/z0bV/kG260/CfVrt/5/aE073HptjKpuB8c1NKz107jKx6SXHZ5fsYyOaJiaSJK2zjDvOWK/we8rd14HeKZ5GdNOnsvz972K6xriCT/1oxKcMGv2NtcZybA3z5a2p7y+qLsWv8+lMxYaPC5znMzWc/sT61fQWB0jmqzIZiv0+qKTGg/IZjL0yub6FddnufqeLYT7fAQHDK4DfWO8Y/Vz59QPtlF/cus1xx3/WkdiwEcw4NKxpYL6MQPE+vxcePKEwfacf358vusF/I5La08ltZEkHb0haiJJjm08ENfn1SnfpvQTRJwUcTdA0vURctK4GMZEjh/so72+xPv3wEUJ1s1OUNXjJzo6TcOGAImI5YNfqRpcZlWn12/5k/Ddf7ST6vUzZmKCvjUR7Pgk/b1+Lj+rbrBfzNXJ9Vme2LicSDBNXaifNVtqSaZ9TKnr5ZDaBYPHYr7ne5eSdh2CvgyJtB+/4xL0ZTi4ciGuz3JV2nBldhbXZ3Eyhv/EltAZD1EbHiCe8lMXSpDI+FlQfehgmXwbU4uIpr1+N+JLkXD9dCbCHFZ3yHbbkA5aNvf9k4Tr3yY7WDLjY3b14YPtINeO/EnDba+8Rl31AK6FmnCSRMrP5HfPofmQNMmwJTomQzLk0jJ9gNN+O4qWOSnvGrfPEIl6x0zDaz5WHpMkmPCuH+o2+Khr8TLLdU/wvotcHUO9htgYS8cUr37xGkskaqjb4BDpNoP72LsWhLoWeOrcNK0z0tRscQj2G+Y9FKCmfev5PNdX5trjzTf0Eh2dZtzsGPW1CVo3R4hGA8T7fDg+y6i2IJPWBInVukx6JYCTMdSvd2hakKJxtZ8Zz/h44JPe9VrjmgD16xxCMcP4VYZF5yUJ9htWLRwgWeHiTxk+9plqbr/KS5MXTBjqW/zUdDjMWeTj2XenvIyhmxzap2YY/6qfh77QQTDoknktTLLCZcZLYcY3+TniL/7B7z0dhK6OJ6n1JYi7gcGstQATA8cNft+5c7brg95N/6TO109nJoyLIeKkcLAE6k7e7tgGeKXleeIpP5FAmpAvjWMsfsdlQsNRg9c/uesmJwPr2571fse6PoJOBgfLwyun0L65gi+dMm6wv8kdK8mw5cYHNuH3WxIJh8DGCsYd1o3j2G1+I+S4PrhreRP1NdksyQN+jjx1BhuXPs+BDQsG20WuPskwLFm1jMYqr6NIZPzMHHcYHfvBpGUmb7lbj6umw73zy/hVhvbplluu7mT05gD/+8Ua0hXeNUCi2psvUQX3XhKjuz5NIuwy76lKtpy7mWAgw+nv2I9QL4PXMvFa7zrxtkdaSCYd5kztYVJNL219laQzDidMzvXLW7OmuT64/6VXqatO0N4d5qgpG73j1fVxYOTwbB22/qZwMoaNqUV0psIcUL2Q57a8SNo1dMZCBP0uhx09m0g3JCNb92moF55b+zKj3zcXe8/zJDNe9jeAg8csGKxH7nsDWNb6AjXBAeLpABF/imiygqpAkplVR+D6ID7K65tz34Pr87Jix1PeOTaZcaiP9DNtwsLBcq7P269OBn640XljsryJiIiIiIiIiMi+bacOKBljbjbGtBtjXs6bVmeMecgYszr7d/TOrJOIiIiIiIiIiJRnZ9+h9BvgLQXTLgMesdbOBB7JvhcRERERERERkd3UTh1QstYuAjoLJp8B3JJ9fQtw5s6sk4iIiIiIiIiIlGenB+U2xkwF/mqtPSj7vttaW5v3eZe1tuhjb8aYC4ALAKp9Uw77eFXzNsHjSrnSwtf82wfPu9IyGICvWLlccM7c+1zgwFzgs60BqrcG2IPtAwHmLzd/na7PDgZ4zc2XC7xXLNhfblr+Mq7Mfn1f83sBBb8SsYNBx/ID+eVv75UWLq+wfHPAcHmFHQzGBnBN3GyzT/LnK9wf//hkMvve2zeRHodofYal14W2zmu2zr/4zDT+pCE+yiXS45CostRsNsx9zLfNtuS846w0bftniPQYYqNdpj8fYN1BaU79RZBgv9mm/JUGXjw9Q6zOJVrvMvU/Adr2zzDvIT//uLCfc67YGvUsf76Kh70g1a5rGNVSQf/0fvx+l88eN2EwSGNu+emg5fr72wmFXMyqCL65MS46ciI3/yDGus9sDTKZX/7Hv+phznNhWvdPMe/xEIfe56NtJty0wltu7nvIede70gT7DXMWOaw83sV37xJqAwnGhY7brj2kg5a1vU8TSwUJOhkOiBzBb5c3kxjwcf6Cydt8p1/ze69/+HgbjgO+lZWceFslTQtSNM8d4OKP1Qxua/73NuWHMeo3+An1OUxa4SNR5bWXOx/wDZbJd94RLi1zMzz6mwDTv9dHOmDpmJBi0qsVnHNFmGQYvtO77Xac+fYMcx9zeODiARKVFn8KEpWWVV+ObFOX3Ou/XzJAMuQFEA7FHe9vn8PKyyN8JWK5Jr51+ZdXeMfD3Zcl6Gj0AkbXdvhxXGj+7NbvLLd/nIwZDKpX2D/A9sdA4TGff7wVzlMY8LNY0NB8xdafm/6ViNcX5ZaZ62NidV7A+ZxcsNdC+cFf87fjmwPbHv/5fU6uryjcztzrwuOxcB/kt99ccOXcPG87O03T/CRNBya8wPln1213bAAs/PwANR0OLx7fz5ZxSca1VLB5vwRXvHXsNm0k97rq9i4+f+5o7vxqP7Fal2hdBicD7efXcFm1HQwqnyv/3pMzTH/O4eVTM8RHWdr38/qsM78T2qavBQaPl9rfdjMwcQDbGcBXn6KiOUR0dJr0GWO22x9XWhj91EbicR91dUm6uwMkkw6OA6nTxg6Wz63D9cGjH0vROiNJvMrFcQ2huCE2yqXjIzVcXmGzQXa39vEfO8ibN1FtiY51cTJecOTpz5nt9ufX/JZl0SVesoR0gFgyQNDn4lp4aPS87bb1a37LfU1rSCS94PnxhJ9QRYbOniAb5k/ebv8DNP60l44JKeraA2zeL8Ho1gpiNWkSZ9dts39y8yz8/ADJkEtVl4+2aSnSAcukVUGe+klwsA75fRV4/VRVt494TYb6DQG6x6ZpWBcoOc/cb/TTPjnFpNVBYrUZHNfQPilJ94dqiy5/zjfjJEOWeLXL1GVB2qekOe2mCD9fZbbrnwCu+2MXqdo0tt/BVriMbq2gsSnAmd/xzo2FfXnuu8sd1/l9Q+5YSYbtNufn/GMTvHlh2+M91y/kL6/UcZp/ns8FA87116X6hMK65JaTO3YL20J++fz+MP/aJL9s7n2u78lfdu57ym+j+X1hbhv+eukA3Q0Zqrod2vZL0X5+zeA68vuYYy5KctpPg/zqxhj+FMSrXGo7/JxzRXhwPfl1bptpCfbDs2clSVTmgiFbPnJJ5Tblcw76ej9zngoSq7Ne+XrvvJVro7nvMNevA8z6dtwLMBtxCQ441G3ykw5Ymj5fuc02uD7vPF91exf9tWkCMR8V4wdItYaw9Un6Tx5HMUd9egB/0tAyO8n41wK07p+idrOPF78ZLlr+I4e4RHoM0YbseW/Amz7lRWew/eauP69KG07pfIl17dXUVCaJ9QeoH5UgPuDnndNncFXabNfHj3m6larKNG2bQkyZFKc7GiAYdDl/weSi55kZ1/ZR1+anfr2PlUcNEK92mf5iBU/9JDi4//PPW0+d6wU1D8UM3eNcQn1eUOkj/uLf7lom57T3p2ibnqa+xU9stEtDs4/4KMvxt3gBbQvnO+cEl/goF9cHVZ0OsTqXGc/4qNrCdsfElQbWHOUSHetS1bn1//ejY10W3u3frk/45oCh9rfdTFpTQffYDJNWBUhU2sF+Jdf284+F3HoKj+/CY67YfPm/E3LXC7n+qPBaCNimj8od41+JbD3X5/cj6aC37NznsO31Ve4aJX8dhf1G4XJy6y7sA/Kvc3LB5nPB/b3lbk1Ekw7mL3trEOet2+gFau6eAD99ddt+/JwTXOpavGXHa731OhmYutRsc12a29fveleaqk6H6FiXUMxkk3cY/vCkU7R/u6TREh3rtWcnA1VbvCQYud8T+S5ptIP1T4a9ssmIl8AgNgZqN277uzBn+UkZatodEtWWUPZava4Fruve+lso/3vq2C8bxD2bvKhms2Hl8S63P+Fscx7IfQ8PX5hk6n/8JKos9Wsdxq8e+vd7Ptdn+fXiFmqrkyzbf//tPr/SwH3rVtEdC5JOO7znxMn86Fde0pQvvm/rsEL+Nn/z7i24Dhz0TISTbw6x9O0p4qMs77i+YrA9w9Z+9u4vJWhY6ydR5TLjuQDRsS7pIIN9SH6fdqWB5gUubTNdHvijn1M/lCIdgJbZSaq6fYPXlYXnsOYFLpOWGVYd6xKrs4OBzRfe7Rtsi/nBudcc5c0fH+W1o+7xLjWbHeYscrY5hvKTHL14uktnY4Z00Nuv9et9zP+7b3B8IycdhGtje2FQbmvtTdbahdbahWFn7PAziIiIiIiIiIjIDrc7DChtMsZMAMj+bd/F9RERERERERERkSHsDgNK9wIfzr7+MHDPLqyLiIiIiIiIiIgMY6cOKBljbgP+Dcw2xrQYYz4KfAd4szFmNfDm7HsREREREREREdlN+Xfmyqy155b46JSdWQ8REREREREREXn9dnqWtx1lgrPQnu88t102llLys+bkZ5W40kCiym6XySRffhaEwuwm+Z+PZP3D1bdYpoVcPXPZDPKnFdYtV6ZY/QqnXV6xfWan/HVeVu1lMSlV52LZbQqXkZ/ppFhGmWKv85edP70wa0N+pqnCTFqF9Sr1HZXKolU471DbUUqpbHn58+RnJStW1+Gy4MDWjF2FWcRyGTnys0sU2+dDbUd+mx9KsYwiuflz++2yajuYjaroMoq0iVKZznJyGUfy3+dn+ijMMFLY7gvrX7i9xTLZFdv2/IyAI5kvvy5OxuuXYGs2kcJlDb4u0hcV1r/weC02baTblj9v/utcJotcBprCNpLL9pOf7aLYugozYuRv41D1K5ZFrtQ25iuWza4wM18uA5/3mZflKj8LYG4Z+cdcfnbOXLli/WB+my6WtahUvQenD3E8FC6nWEaf/GXkZ+4rzMKX25/52bVGUrf8bS1Wl/w+NH+Zhe2g8DxWLEPpUOefws/KPT6Lbl+R/rzw8/w+JL8uhduTq09h9tn4KEukZ+t5PNc/5LIl5TJ2Fmb/KdymkZxbS73OX35hOy41b7F9VapdF2aiKjwOip0H8/dT/r7JtZmh+rjB10XaSmGmvGJ1LZVVr/AYKlxGLrteYWbFoa5JCucZ6nxYLANesax7+fOXWm+x7S3V1xS7dsjP1FWqveS2z6sf2/Q7hee1YlmOc9tV6vxW6njILTM/W2J+VrH8dlUs62qp64JS+6jYtVr+PMWWD9v3xYV/C9t97rdL/jVVYTspdd1Yqo6FCjMbFp678utf7PdFsUyPubL5fWCxYzeXVSv/OqJY5tdi8+XXrbCPzc9wm59JLnfOH2re/O0b6rdD4bYWm3e4ZQx3LBeeTwvlX+vkyhTro4qdq3PbnlOY7bowc3jhduXKFju+hvttNlz/WLgvis2b//lw/V7u90Dh9VxO4bUhFP9NnJ9pPf833UiunfLbZP73662TwfoVa4u5+fPl/44odm2UDG/b7nOvC/vk3LzfwOx9Wd5ERERERERERGTX04CSiIiIiIiIiIiURQNKIiIiIiIiIiJSFg0oiYiIiIiIiIhIWfb4oNzDBR4sFSgz91kxpYIil5pnqMCgpcoNFYisVIDR4YImDhdEsVhgvlJB58AL3JULuDuUoQLF/jflSwUOzf9ssGyJ/ZALXFcquOVwAdOK7ePCOpWat3CeUvUtVq7U91U4b6mgc4UB8WDooO7DHQvDHQeljr18pQJtDtceCvd5qeOg1LTCQJ/5QTnzA+ANVbeRBtgcbptGsp9KlR0uEOh285foC4fqX4bbnsJy+cdXYZli+3SkwSxH0jfvqPK54Ic5ubaSe50fiDQXvDD3WW4d+W1tqECZ+cFnk2G2SXpQbpsaKgDrUIFZix0rw+2jYttQTvlSfdRIypfT942kDy9Wj3L6wXKO7fxl5n9eLKhtYV2Gqk+p7Sqsb7E6D9UOhjs3DtcPDaVY+WJJREayPSNZ9uupY7F5S7X37coPcU7Mn5YrW8510HDXfsPVe7g2Xupaq9R5Zahr5MJphecE2LZfLbxeKxYkvXDeYttbuB05pc7t+UoF5C61nsLtLazrSM/RhXUt9t3lzimFQbsLz0vFzsPF1pFfl5EeGyOt+3Dry8kPrp0fRHtHKLzmLwzknlv3UEkHSh3LhdeTxQJaF1NqHcNdf43kumio/mmk/VepZC65gM2F1zrDBf0far3DlSuVzKDYdo30GMtf73bTR9huy+mzc/L301Dn+VJKHc/FyuXXudS13UivzwvLKCi3iIiIiIiIiIi8ITSgJCIiIiIiIiIiZdGAkoiIiIiIiIiIlEUDSiIiIiIiIiIiUhYNKImIiIiIiIiISHmstXvkv8MOO8wO5et4//LfX+Fz7RU+t+hnxeYtLFNYrlTZkcifb7i6DPX+jTTSdQ1XrtQ+Kne/vZ76lNq//81+LVxGuds/VPli5YZqH8U+H+ny34jy5dbn9Rrp/ixWr6HmHcm++G+2543cN0P1KcNt739zrJdqr8O11cKyr6cu5ZYdSXsfrvx/ex4o1h/s6Hbw38yzo/vlcvv9kbSbYp+/nnPw6ylbTn8/3Hc80rb439Zpd/HV4LbXYDuj3uX28eUu+7857ke6jtdTPn+d5cyzI430GqbYfCPdt8Ntb+66P9fuCttf7v1I6lNqHTvDSM6vUlphmyp1rVToCp9b9H3h9Ndbp1LrLXcZQ31ezvE00vXtqvNPOdub/36k5Xek3fkYLdXvfTnsblPGWmuBxXYE4zK6Q0lERERERERERMqiASURERERERERESmLBpRERERERERERKQsGlASEREREREREZGyGC/e0p5n4cKFdvHixbu6GiIiIiIiIiIiew1jzBJr7cLhyukOJRERERERERERKYt/V1cgxxjTDPQCGSA9ktEwERERERERERHZ+XabAaWsk6y1Hbu6EiIiIiIiIiIiUpoeeRMRERERERERkbLsTgNKFviHMWaJMeaCXV0ZEREREREREREpbnd65O1Ya22rMaYBeMgYs9Jauyi/QHag6QKAKVOm7Io6ioiIiIiIiIjs83abO5Ssta3Zv+3AXcARRcrcZK1daK1dOHbs2J1dRRERERERERERYTcZUDLGVBpjqnOvgdOAl3dtrUREREREREREpJjd5ZG3ccBdxhjw6vQHa+0Du7ZKIiIiIiIiIiJSzG4xoGStbQIO2dX1EBERERERERGR4e0Wj7yJiIiIiIiIiMieQwNKIiIiIiIiIiJSFg0oiYiIiIiIiIhIWTSgJCIiIiIiIiIiZdGAkoiIiIiIiIiIlEUDSiIiIiIiIiIiUhYNKImIiIiIiIiISFk0oCQiIiIiIiIiImXRgJKIiIiIiIiIiJRFA0oiIiIiIiIiIlIWDSiJiIiIiIiIiEhZNKAkIiIiIiIiIiJl0YCSiIiIiIiIiIiURQNKIiIiIiIiIiJSFg0oiYiIiIiIiIhIWTSgJCIiIiIiIiIiZdGAkoiIiIiIiIiIlEUDSiIiIiIiIiIiUpbdZkDJGPMWY8wrxpg1xpjLdnV9RERERERERESkuN1iQMkY4wN+ArwVmAuca4yZu2trJSIiIiIiIiIixewWA0rAEcAaa22TtTYJ3A6csYvrJCIiIiIiIiIiRewuA0oTgfV571uy00REREREREREZDfj39UVyDJFptntChlzAXBB9u2AMeblN7RWsierBzp2dSVkt6X2IcNRG5GhqH3IUNQ+ZChqHzIctREZys5qH/uNpNDuMqDUAkzOez8JaC0sZK29CbgJwBiz2Fq7cOdUT/Y0ah8yFLUPGY7aiAxF7UOGovYhQ1H7kOGojchQdrf2sbs88vYcMNMYM80YEwTOAe7dxXUSEREREREREZEidos7lKy1aWPMxcCDgA+42Vq7bBdXS0REREREREREitgtBpQArLV/B/5exiw3vVF1kb2C2ocMRe1DhqM2IkNR+5ChqH3IUNRT0jCZAAAMT0lEQVQ+ZDhqIzKU3ap9GGu3i30tIiIiIiIiIiJS0u4SQ0lERERERERERPYQe9yAkjHmLcaYV4wxa4wxl+3q+sjOZ4yZbIx5zBizwhizzBjzmez0K40xG4wxL2T/vS1vni9n28wrxpjTd13tZWcxxjQbY17KtoXF2Wl1xpiHjDGrs39HZ6cbY8yPsm3kRWPMobu29vJGMsbMzusnXjDGRI0xl6gP2XcZY242xrQbY17Om1Z2f2GM+XC2/GpjzId3xbbIG6NEG/muMWZlth3cZYypzU6faozpz+tLfp43z2HZc9OabDsyu2J7ZMcq0T7KPqfod87eqUT7+GNe22g2xryQna7+Yx8zxG/bPeI6ZI965M0Y4wNWAW8GWvCyw51rrV2+SysmO5UxZgIwwVq71BhTDSwBzgTeC8Sstd8rKD8XuA04AmgEHgZmWWszO7fmsjMZY5qBhdbajrxp1wGd1trvZC/URltrv5S9yPsU8DbgSOCH1tojd0W9ZefKnlc24H3v/4f6kH2SMeZ4IAbcaq09KDutrP7CGFMHLAYWAhbv3HSYtbZrF2yS7GAl2shpwKPZ5DLXAmTbyFTgr7lyBct5FvgM8DRe7NAfWWvv3zlbIW+UEu3jSso4p2Q/1u+cvVCx9lHw+fVAj7X2KvUf+54hftv+L3vAdciedofSEcAaa22TtTYJ3A6csYvrJDuZtXajtXZp9nUvsAKYOMQsZwC3W2sHrLWvAWvw2pLse84Absm+vgWvs85Nv9V6ngZqs5277P1OAV611q4dooz6kL2ctXYR0Fkwudz+4nTgIWttZ/bi7SHgLW987WVnKNZGrLX/sNams2+fBiYNtYxsO6mx1v7bev+jeytb25XswUr0IaWUOqfod85eaqj2kb3L6L14g4wlqf/Yew3x23aPuA7Z0waUJgLr8963MPRAguzlsqP4C4BnspMuzt76d3PutkDUbvZVFviHMWaJMeaC7LRx1tqN4HXeQEN2utrIvusctr2IUx8iOeX2F2on+7aPAPl3CkwzxjxvjHnCGHNcdtpEvHaRozay9yvnnKI+ZN90HLDJWrs6b5r6j31UwW/bPeI6ZE8bUCr2nOie88ye7FDGmCrgL8Al1too8DNgf2A+sBG4Ple0yOxqN3u/Y621hwJvBS7K3m5citrIPsgYEwTeBdyRnaQ+REaiVHtQO9lHGWO+CqSB32cnbQSmWGsXAJcCfzDG1KA2sq8p95yi9rFvOpdt/2NL/cc+qshv25JFi0zbZX3Injag1AJMzns/CWjdRXWRXcgYE8A74H5vrb0TwFq7yVqbsda6wC/Z+kiK2s0+yFrbmv3bDtyF1x425R5ly/5tzxZXG9k3vRVYaq3dBOpDZDvl9hdqJ/ugbNDTdwAfyD6GQvZRpi3Z10uAV/Fi5LSw7WNxaiN7sddxTlEfso8xxviBdwN/zE1T/7FvKvbblj3kOmRPG1B6DphpjJmW/Z/lc4B7d3GdZCfLPmv8a2CFtfaGvOn5MW/OAnKZFO4FzjHGVBhjpgEzgWd3Vn1l5zPGVGaD2mGMqQROw2sP9wK5jAcfBu7Jvr4XOC+bNeEovMCIG3dytWXn2+Z/BdWHSIFy+4sHgdOMMaOzj7aclp0meyljzFuALwHvstbG86aPzQb8xxgzHa/PaMq2k15jzFHZa5nz2NquZC/zOs4p+p2z7zkVWGmtHXyUTf3HvqfUb1v2kOsQ/xu9gh0pm0XjYrwd4wNuttYu28XVkp3vWOBDwEsmm2IT+ApwrjFmPt6tfc3AhQDW2mXGmD8By/FuSb9I2Zn2euOAu7z+GT/wB2vtA8aY54A/GWM+CqwD3pMt/3e8TAlrgDheti/ZixljIniZdC7Mm3yd+pB9kzHmNuBEoN4Y0wJ8HfgOZfQX1tpOY8zVeD8KAa6y1o40SK/s5kq0kS8DFcBD2fPN09bajwPHA1cZY9JABvh4Xlv4BPAbIIwXc0kZmvYCJdrHieWeU/Q7Z+9UrH1Ya3/N9nEcQf3HvqjUb9s94jrEZO/OFRERERERERERGZE97ZE3ERERERERERHZxTSgJCIiIiIiIiIiZdGAkoiIiIiIiIiIlEUDSiIiIiIiIiIiUhYNKImIiIiIiIiISFk0oCQiIiI7nTHm3caYR40x3caYAWPMKmPMN40x9dnPpxpjrDHmHbu6rq+HMeZxY8yfd3U9RiK7ny/e1fUQERGRPYsGlERERGSnMsZcD9wBNAEfAk4Dvg+8E/jlLqyaiIiIiIyQf1dXQERERPYdxph3ApcCH7XW3pz30RPGmJvwBpdkL2GMCVtr+3d1PURERGTH0x1KIiIisjN9FlhaMJgEgLU2Y629v2ByxBjzC2NMjzGmxRjzDWPM4PWLMWaOMeZ2Y8x6Y0zcGLPMGHNJQZkTs491nWiMucMYEzPGNBljPpm/ImPMb4wxi40xbzbGvGiM6TPGPGmMObCgnGOMucwYsybvcb0Pl7sjco/FGWPen11W1BhzvzFmUpG6H1Rs3iJ1f7sxZnl2X/zNGFNnjJlhjHksuz2LjTHzilQnaIz5oTGmM/sY4o3GmGDBOqdk93VndvkPGmNm532ee0zxA8aYW40x3cB95e4XERER2TNoQElERER2CmNMADgGeKCM2a4DYsDZwO+Ar2Vf50wEXgE+CbwN75G5bwBfKrKsXwL/Ac4CHgd+Yow5oqDMFOC7wLeAc4EG4E/GGJNX5kbgcuAm4O3AXcDNrzPe05HAxcDngAuAQ7PLfT2mAFdl63YB3r6+Cbg9++9svLvTby/YHrLrnwR8APhmdv5v5T40xtQBTwKzgY8D7wUqgYeNMeGCZX0P6AXeA1zzOrdFREREdnN65E1ERER2ljFABbCujHkWWWs/l339kDHmLcC7gT8BWGsfAR4ByA6SPAlEgPOBbxcs6zZr7TezZR/Hi9n0buDZvDJ1wLHW2tXZcg7egNFsYKUxZgbwCeD/rLW3ZOd52BgzAfg68Ncytg2gBni7tbYru77xwPdf56NidcDR1tpXs8uaB3wB+LC19tbsNAP8DZgDrMibtxd4j7XWBe43xlQAXzXGfNta24l3Z1klMD/7HmPMv4Bm4CPAT/KW9bS19qIy6y4iIiJ7GN2hJCIiIjubLaPsPwreL8e7kwYAY0wo+xjcGmAASOHdWTPNGFP4H2eDy7LWpoDV+cvKas4NJuWtj7xypwAucJcxxp/7hzeoNd8Y4ytj2wCeyw0mFaxvYpnLAa/ur+a9X5P9+2iRaYXLvyc7mJRzJxAGco/anQo8BETztrkXWAIsLFjW315H3UVERGQPozuUREREZGfZgjfoM6WMeboL3ieBUN77a4GP4T3mtjRb/gy8x75CeI/LjXRZpcqQV64e8AE9Jeo7AWgp8Vkxw62vHKWW1V1kWuHy20u8n5D9Ww8cBbyvyHofKXi/aehqioiIyN5AA0oiIiKyU1hrU9nHpE7HG/DZEd4D3GitvS43wRjz9h207GI6gTRwLN6dSoUKB2b+W4ns32DB9DqgYweup6HE+43Zv53AvcDVRebtLXhfzh1oIiIisofSgJKIiIjsTD8A7jXGfDgvBhEwGK/oNGttOUG7w3h3PeWW4QPO2SE1Le5RvDuURllrH3oD15OTu9vpALw7sDDGTMaL6bRqB67nDGPMl/Mee3s30A+8nH3/CF4g7mWvI7aTiIiI7IU0oCQiIiI7jbX2PmPMDcCvjTHHAvfgPZY2By97WDPlZYF7CLgoG0OpE7gIL/D3G8Ja+4ox5ud4mdKuAxbjPT52IDDLWvuxHby+FmPMc8DVxpg4XvzLr+Bt645UDdxhjPkl3rZ8DfhxLgA3cAPwQeBRY8yNwAZgHHAC8KS19rYdXB8RERHZzWlASURERHYqa+3njDFPARcDf8C7y6gZ75Gq75W5uE8BP8fLMtYP3IKXle2mHVXfIi7CuzvofOAqIIoXTPvXb9D63g/8Cvgd3h1LX8TLurYjXQ9MB27DG7T6Fd7AFQDW2g5jzFF4Ac+/D9TiPQ73JPDiDq6LiIiI7AGMtXrMXURERERERERERs7Z1RUQEREREREREZE9iwaURERERERERESkLBpQEhERERERERGRsmhASUREREREREREyqIBJRERERERERERKYsGlEREREREREREpCwaUBIRERERERERkbJoQElERERERERERMqiASURERERERERESnL/wefHF6DCxZJpwAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<Figure size 1440x216 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "figsize = (20,3)\n", | |
| "\n", | |
| "foo(figsize)" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "anaconda-cloud": {}, | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.6.5" | |
| }, | |
| "widgets": { | |
| "state": {}, | |
| "version": "1.1.2" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment