Last active
May 17, 2022 08:31
-
-
Save ketch/1f639eaf2933b4d12ab2283ff2c6410d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "In this notebook we use `bseries.jl` to investigate error expansions for RK methods applied to specific problems." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "# Load the packages we will use. These must first be installed using: import Pkg; Pkg.add(\"package_name\")\n", | |
| "using BSeries\n", | |
| "using Latexify\n", | |
| "using RootedTrees\n", | |
| "using Symbolics\n", | |
| "import SymPy; sp=SymPy;" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "First we specify the Butcher coefficients of the RK method. This can include symbolic expressions and parameterized families of methods." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/latex": [ | |
| "$F_{f}\\mathopen{}\\left( \\varnothing \\right)\\mathclose{} + h F_{f}\\mathopen{}\\left( \\rootedtree[] \\right)\\mathclose{} + \\frac{h^{2}}{2} F_{f}\\mathopen{}\\left( \\rootedtree[[]] \\right)\\mathclose{} + \\frac{h^{3}}{8 \\alpha} F_{f}\\mathopen{}\\left( \\rootedtree[[][]] \\right)\\mathclose{}$" | |
| ], | |
| "text/plain": [ | |
| "L\"$F_{f}\\mathopen{}\\left( \\varnothing \\right)\\mathclose{} + h F_{f}\\mathopen{}\\left( \\rootedtree[] \\right)\\mathclose{} + \\frac{h^{2}}{2} F_{f}\\mathopen{}\\left( \\rootedtree[[]] \\right)\\mathclose{} + \\frac{h^{3}}{8 \\alpha} F_{f}\\mathopen{}\\left( \\rootedtree[[][]] \\right)\\mathclose{}$\"" | |
| ] | |
| }, | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "Ξ± = sp.symbols(\"Ξ±\", real=true)\n", | |
| "A = [0 0; 1/(2*Ξ±) 0]; b = [1-Ξ±, Ξ±]; c = [0, 1/(2*Ξ±)]\n", | |
| "coeffs = bseries(A,b,c,3)\n", | |
| "latexify(coeffs, cdot=false)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/latex": [ | |
| "$F_{f}\\mathopen{}\\left( \\varnothing \\right)\\mathclose{} + h F_{f}\\mathopen{}\\left( \\rootedtree[] \\right)\\mathclose{} + \\frac{1}{2} h^{2} F_{f}\\mathopen{}\\left( \\rootedtree[[]] \\right)\\mathclose{} + \\frac{1}{6} h^{3} F_{f}\\mathopen{}\\left( \\rootedtree[[[]]] \\right)\\mathclose{} + \\frac{1}{6} h^{3} F_{f}\\mathopen{}\\left( \\rootedtree[[][]] \\right)\\mathclose{} + \\frac{1}{24} h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[[[]]]] \\right)\\mathclose{} + \\frac{1}{24} h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[[][]]] \\right)\\mathclose{} + \\frac{1}{8} h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[[]][]] \\right)\\mathclose{} + \\frac{1}{24} h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[][][]] \\right)\\mathclose{} + \\frac{1}{48} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[[]]]]] \\right)\\mathclose{} + \\frac{1}{48} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[][]]]] \\right)\\mathclose{} + \\frac{1}{16} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[]][]]] \\right)\\mathclose{} + \\frac{-21246894637}{49670350848} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[]]][]] \\right)\\mathclose{} + \\frac{1}{48} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[][][]]] \\right)\\mathclose{} + \\frac{-722476128287}{1390769823744} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[][]][]] \\right)\\mathclose{} + \\frac{1970748171909370823}{42730909364772720000} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[]][[]]] \\right)\\mathclose{} + \\frac{3898363669}{40242182400} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[]][][]] \\right)\\mathclose{} + \\frac{1}{48} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[][][][]] \\right)\\mathclose{}$" | |
| ], | |
| "text/plain": [ | |
| "L\"$F_{f}\\mathopen{}\\left( \\varnothing \\right)\\mathclose{} + h F_{f}\\mathopen{}\\left( \\rootedtree[] \\right)\\mathclose{} + \\frac{1}{2} h^{2} F_{f}\\mathopen{}\\left( \\rootedtree[[]] \\right)\\mathclose{} + \\frac{1}{6} h^{3} F_{f}\\mathopen{}\\left( \\rootedtree[[[]]] \\right)\\mathclose{} + \\frac{1}{6} h^{3} F_{f}\\mathopen{}\\left( \\rootedtree[[][]] \\right)\\mathclose{} + \\frac{1}{24} h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[[[]]]] \\right)\\mathclose{} + \\frac{1}{24} h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[[][]]] \\right)\\mathclose{} + \\frac{1}{8} h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[[]][]] \\right)\\mathclose{} + \\frac{1}{24} h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[][][]] \\right)\\mathclose{} + \\frac{1}{48} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[[]]]]] \\right)\\mathclose{} + \\frac{1}{48} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[][]]]] \\right)\\mathclose{} + \\frac{1}{16} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[]][]]] \\right)\\mathclose{} + \\frac{-21246894637}{49670350848} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[]]][]] \\right)\\mathclose{} + \\frac{1}{48} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[][][]]] \\right)\\mathclose{} + \\frac{-722476128287}{1390769823744} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[][]][]] \\right)\\mathclose{} + \\frac{1970748171909370823}{42730909364772720000} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[]][[]]] \\right)\\mathclose{} + \\frac{3898363669}{40242182400} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[]][][]] \\right)\\mathclose{} + \\frac{1}{48} h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[][][][]] \\right)\\mathclose{}$\"" | |
| ] | |
| }, | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "A = Rational{Int128}[0 0 0 0 0 0 0 0;(-1//6) (1//2) 0 0 0 0 0 0;(-1//10) (1//10) (1//2) 0 0 0 0 0;(-21463//39375) (21017//26250) (-5//9) (1//2) 0 0 0 0;(-59588//54675) (118717//36450) (-4375//2187) 0 (1//2) 0 0 0;(-19993033//9443328) (28508695//3147776) (-13577105//2360832) (-4090625//3147776) (1136025//3147776) (1//2) 0 0;(367020141781//199294617600) (814214904871//22143846400) (-29834937659//1992946176) (-1983358776875//87689631744) (-6702625935//885753856) (688576//109395) (1//2) 0;(1081252805//134140608) (2639189439//74522560) (33646441//4191894) (-7873511875//210792384) (-504040617//14904512) (2110843561//115277085) (13//7) (1//2)];\n", | |
| "b = Rational{Int128}[(1081252805//134140608),(2639189439//74522560),(33646441//4191894),(-7873511875//210792384),(-504040617//14904512),(2110843561//115277085),(13//7),(1//2)];\n", | |
| "c = Rational{Int128}[0,(1//3),(1//2),(1//5),(2//3),(3//4),(1//4),1];\n", | |
| "\n", | |
| "coeffs = bseries(A,b,c,5)\n", | |
| "latexify(coeffs, cdot=false)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Since $f$ has not been specified, the elementary differentials are indicated by the corresponding rooted tree. The rooted trees are printed as nested lists, essentially in the form used in Butcher's book. We can also print out the B-series coefficients this way:" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "TruncatedBSeries{RootedTree{Int64, Vector{Int64}}, Rational{Int128}} with 18 entries:\n", | |
| " RootedTree{Int64}: Int64[] => 1//1\n", | |
| " RootedTree{Int64}: [1] => 1//1\n", | |
| " RootedTree{Int64}: [1, 2] => 1//2\n", | |
| " RootedTree{Int64}: [1, 2, 3] => 1//6\n", | |
| " RootedTree{Int64}: [1, 2, 2] => 1//3\n", | |
| " RootedTree{Int64}: [1, 2, 3, 4] => 1//24\n", | |
| " RootedTree{Int64}: [1, 2, 3, 3] => 1//12\n", | |
| " RootedTree{Int64}: [1, 2, 3, 2] => 1//8\n", | |
| " RootedTree{Int64}: [1, 2, 2, 2] => 1//4\n", | |
| " RootedTree{Int64}: [1, 2, 3, 4, 5] => 1//48\n", | |
| " RootedTree{Int64}: [1, 2, 3, 4, 4] => 1//24\n", | |
| " RootedTree{Int64}: [1, 2, 3, 4, 3] => 1//16\n", | |
| " RootedTree{Int64}: [1, 2, 3, 4, 2] => -21246894637//49670350848\n", | |
| " RootedTree{Int64}: [1, 2, 3, 3, 3] => 1//8\n", | |
| " RootedTree{Int64}: [1, 2, 3, 3, 2] => -722476128287//695384911872\n", | |
| " RootedTree{Int64}: [1, 2, 3, 2, 3] => 1970748171909370823//213654546823863600β¦\n", | |
| " RootedTree{Int64}: [1, 2, 3, 2, 2] => 3898363669//20121091200\n", | |
| " RootedTree{Int64}: [1, 2, 2, 2, 2] => 1//2" | |
| ] | |
| }, | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "coeffs" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "In this form, the rooted trees are printed as level sets. The corresponding coefficients are on the right. We can also get the B-series of the exact solution:" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "TruncatedBSeries{RootedTree{Int64, Vector{Int64}}, Rational{Int128}} with 18 entries:\n", | |
| " RootedTree{Int64}: Int64[] => 1//1\n", | |
| " RootedTree{Int64}: [1] => 1//1\n", | |
| " RootedTree{Int64}: [1, 2] => 1//2\n", | |
| " RootedTree{Int64}: [1, 2, 3] => 1//6\n", | |
| " RootedTree{Int64}: [1, 2, 2] => 1//3\n", | |
| " RootedTree{Int64}: [1, 2, 3, 4] => 1//24\n", | |
| " RootedTree{Int64}: [1, 2, 3, 3] => 1//12\n", | |
| " RootedTree{Int64}: [1, 2, 3, 2] => 1//8\n", | |
| " RootedTree{Int64}: [1, 2, 2, 2] => 1//4\n", | |
| " RootedTree{Int64}: [1, 2, 3, 4, 5] => 1//120\n", | |
| " RootedTree{Int64}: [1, 2, 3, 4, 4] => 1//60\n", | |
| " RootedTree{Int64}: [1, 2, 3, 4, 3] => 1//40\n", | |
| " RootedTree{Int64}: [1, 2, 3, 4, 2] => 1//30\n", | |
| " RootedTree{Int64}: [1, 2, 3, 3, 3] => 1//20\n", | |
| " RootedTree{Int64}: [1, 2, 3, 3, 2] => 1//15\n", | |
| " RootedTree{Int64}: [1, 2, 3, 2, 3] => 1//20\n", | |
| " RootedTree{Int64}: [1, 2, 3, 2, 2] => 1//10\n", | |
| " RootedTree{Int64}: [1, 2, 2, 2, 2] => 1//5" | |
| ] | |
| }, | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "coeffs_ex = ExactSolution(coeffs)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 50, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/latex": [ | |
| "$F_{f}\\mathopen{}\\left( \\varnothing \\right)\\mathclose{} + h F_{f}\\mathopen{}\\left( \\rootedtree[] \\right)\\mathclose{} + 0.5 h^{2} F_{f}\\mathopen{}\\left( \\rootedtree[[]] \\right)\\mathclose{} + 0.16666666666666666 h^{3} F_{f}\\mathopen{}\\left( \\rootedtree[[[]]] \\right)\\mathclose{} + 0.16666666666666666 h^{3} F_{f}\\mathopen{}\\left( \\rootedtree[[][]] \\right)\\mathclose{} + 0.041666666666666664 h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[[[]]]] \\right)\\mathclose{} + 0.041666666666666664 h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[[][]]] \\right)\\mathclose{} + 0.125 h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[[]][]] \\right)\\mathclose{} + 0.041666666666666664 h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[][][]] \\right)\\mathclose{} + 0.008333333333333333 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[[]]]]] \\right)\\mathclose{} + 0.008333333333333333 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[][]]]] \\right)\\mathclose{} + 0.025 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[]][]]] \\right)\\mathclose{} + 0.03333333333333333 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[]]][]] \\right)\\mathclose{} + 0.008333333333333333 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[][][]]] \\right)\\mathclose{} + 0.03333333333333333 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[][]][]] \\right)\\mathclose{} + 0.025 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[]][[]]] \\right)\\mathclose{} + 0.05 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[]][][]] \\right)\\mathclose{} + 0.008333333333333333 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[][][][]] \\right)\\mathclose{}$" | |
| ], | |
| "text/plain": [ | |
| "L\"$F_{f}\\mathopen{}\\left( \\varnothing \\right)\\mathclose{} + h F_{f}\\mathopen{}\\left( \\rootedtree[] \\right)\\mathclose{} + 0.5 h^{2} F_{f}\\mathopen{}\\left( \\rootedtree[[]] \\right)\\mathclose{} + 0.16666666666666666 h^{3} F_{f}\\mathopen{}\\left( \\rootedtree[[[]]] \\right)\\mathclose{} + 0.16666666666666666 h^{3} F_{f}\\mathopen{}\\left( \\rootedtree[[][]] \\right)\\mathclose{} + 0.041666666666666664 h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[[[]]]] \\right)\\mathclose{} + 0.041666666666666664 h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[[][]]] \\right)\\mathclose{} + 0.125 h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[[]][]] \\right)\\mathclose{} + 0.041666666666666664 h^{4} F_{f}\\mathopen{}\\left( \\rootedtree[[][][]] \\right)\\mathclose{} + 0.008333333333333333 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[[]]]]] \\right)\\mathclose{} + 0.008333333333333333 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[][]]]] \\right)\\mathclose{} + 0.025 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[]][]]] \\right)\\mathclose{} + 0.03333333333333333 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[[]]][]] \\right)\\mathclose{} + 0.008333333333333333 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[][][]]] \\right)\\mathclose{} + 0.03333333333333333 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[][]][]] \\right)\\mathclose{} + 0.025 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[]][[]]] \\right)\\mathclose{} + 0.05 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[[]][][]] \\right)\\mathclose{} + 0.008333333333333333 h^{5} F_{f}\\mathopen{}\\left( \\rootedtree[[][][][]] \\right)\\mathclose{}$\"" | |
| ] | |
| }, | |
| "execution_count": 50, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "latexify(coeffs_ex,cdot=false)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Next we define our ODE. For a non-autonomous ODE, it's most convenient to just add $t$ as an additional variable. That makes the code below look a bit funny." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "f (generic function with 1 method)" | |
| ] | |
| }, | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "Ξ» = SymPy.symbols(\"Ξ»\", real=true)\n", | |
| "function f(du, u, params, t)\n", | |
| " uu, tt = u\n", | |
| " du[1] = Ξ»*(uu-sin(tt)) + sqrt(1-uu^2); du[2] = 1\n", | |
| " return nothing\n", | |
| "end" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Then we define a symbolic RHS:" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 25, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "Ξt = sp.symbols(\"Ξt\", real=true)\n", | |
| "u, t = sp.symbols(\"u t\", real=true)\n", | |
| "u_sym = [u, t]\n", | |
| "f_sym = similar(u_sym); f(f_sym, u_sym, nothing, nothing)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Finally, we get the B-Series for our RK method applied to our ODE:" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 26, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/latex": [ | |
| "$\\left[ \\begin{array}{r}\\frac{Ξt^{5} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right)^{3} \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{48} + \\frac{Ξt^{5} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right)^{2} \\left(Ξ» \\sin{\\left(t \\right)} + \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2}\\right)}{48} - \\frac{18142497709 Ξt^{5} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right) \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{49670350848} + \\frac{Ξt^{5} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{3 u^{3}}{\\left(1 - u^{2}\\right)^{\\frac{5}{2}}} - \\frac{3 u}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{3}\\right)}{48} - \\frac{722476128287 Ξt^{5} \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right) \\left(Ξ» \\sin{\\left(t \\right)} + \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2}\\right)}{1390769823744} + \\frac{1970748171909370823 Ξt^{5} \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)^{2}}{42730909364772720000} + \\frac{3898363669 Ξt^{5} \\left(- \\frac{3 u^{3}}{\\left(1 - u^{2}\\right)^{\\frac{5}{2}}} - \\frac{3 u}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2} \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{40242182400} + \\frac{Ξt^{5} \\left(- Ξ» \\sin{\\left(t \\right)} + \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{4} \\left(- \\frac{15 u^{4}}{\\left(1 - u^{2}\\right)^{\\frac{7}{2}}} - \\frac{18 u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{5}{2}}} - \\frac{3}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}}\\right)\\right)}{48} + \\frac{Ξt^{4} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right)^{2} \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{24} + \\frac{Ξt^{4} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\sin{\\left(t \\right)} + \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2}\\right)}{24} + \\frac{Ξt^{4} \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right) \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{8} + \\frac{Ξt^{4} \\left(Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{3 u^{3}}{\\left(1 - u^{2}\\right)^{\\frac{5}{2}}} - \\frac{3 u}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{3}\\right)}{24} + \\frac{Ξt^{3} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{6} + \\frac{Ξt^{3} \\left(Ξ» \\sin{\\left(t \\right)} + \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2}\\right)}{6} + \\frac{Ξt^{2} \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{2} + Ξt \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right) + 1\\\\Ξt + 1\\end{array} \\right]$\n" | |
| ], | |
| "text/plain": [ | |
| "2-element Vector{SymPy.Sym}:\n", | |
| " Ξt^5*(-u/sqrt(1 - u^2) + Ξ»)^3*(-Ξ»*cos(t) + (-u/sqrt(1 - u^2) + Ξ»)*(Ξ»*(u - sin(t)) + sqrt(1 - u^2)))/48 + Ξt^5*(-u/sqrt(1 - u^2) + Ξ»)^2*(Ξ»*sin(t) + (-u^2/(1 - u^2)^(3/2) - 1/sqrt(1 - u^2))*(Ξ»*(u - sin(t)) + sqrt(1 - u^2))^2)/48 - 18142497709*Ξt^5*(-u/sqrt(1 - u^2) + Ξ»)*(-u^2/(1 - u^2)^(3/2) - 1/sqrt(1 - u^2))*(Ξ»*(u - sin(t)) + sqrt(1 - u^2))*(-Ξ»*cos(t) + (-u/sqrt(1 - u^2) + Ξ»)*(Ξ»*(u - sin(t)) + sqrt(1 - u^2)))/49670350848 + Ξt^5*(-u/sqrt(1 - u^2) + Ξ»)*(Ξ»*cos(t) + (-3*u^3/(1 - u^2)^(5/2) - 3*u/(1 - u^2)^(3/2))*(Ξ»*(u - sin(t)) + sqrt(1 - u^2))^3)/48 - 722476128287*Ξt^5*(-u^2/(1 - u^2)^(3/2) - 1/sqrt(1 - u^2))*(Ξ»*(u - sin(t)) + sqrt(1 - u^2))*(Ξ»*sin(t) + (-u^2/(1 - u^2)^(3/2) - 1/sqrt(1 - u^2))*(Ξ»*(u - sin(t)) + sqrt(1 - u^2))^2)/1390769823744 + 1970748171909370823*Ξt^5*(-u^2/(1 - u^2)^(3/2) - 1/sqrt(1 - u^2))*(-Ξ»*cos(t) + (-u/sqrt(1 - u^2) + Ξ»)*(Ξ»*(u - sin(t)) + sqrt(1 - u^2)))^2/42730909364772720000 + 3898363669*Ξt^5*(-3*u^3/(1 - u^2)^(5/2) - 3*u/(1 - u^2)^(3/2))*(Ξ»*(u - sin(t)) + sqrt(1 - u^2))^2*(-Ξ»*cos(t) + (-u/sqrt(1 - u^2) + Ξ»)*(Ξ»*(u - sin(t)) + sqrt(1 - u^2)))/40242182400 + Ξt^5*(-Ξ»*sin(t) + (Ξ»*(u - sin(t)) + sqrt(1 - u^2))^4*(-15*u^4/(1 - u^2)^(7/2) - 18*u^2/(1 - u^2)^(5/2) - 3/(1 - u^2)^(3/2)))/48 + Ξt^4*(-u/sqrt(1 - u^2) + Ξ»)^2*(-Ξ»*cos(t) + (-u/sqrt(1 - u^2) + Ξ»)*(Ξ»*(u - sin(t)) + sqrt(1 - u^2)))/24 + Ξt^4*(-u/sqrt(1 - u^2) + Ξ»)*(Ξ»*sin(t) + (-u^2/(1 - u^2)^(3/2) - 1/sqrt(1 - u^2))*(Ξ»*(u - sin(t)) + sqrt(1 - u^2))^2)/24 + Ξt^4*(-u^2/(1 - u^2)^(3/2) - 1/sqrt(1 - u^2))*(Ξ»*(u - sin(t)) + sqrt(1 - u^2))*(-Ξ»*cos(t) + (-u/sqrt(1 - u^2) + Ξ»)*(Ξ»*(u - sin(t)) + sqrt(1 - u^2)))/8 + Ξt^4*(Ξ»*cos(t) + (-3*u^3/(1 - u^2)^(5/2) - 3*u/(1 - u^2)^(3/2))*(Ξ»*(u - sin(t)) + sqrt(1 - u^2))^3)/24 + Ξt^3*(-u/sqrt(1 - u^2) + Ξ»)*(-Ξ»*cos(t) + (-u/sqrt(1 - u^2) + Ξ»)*(Ξ»*(u - sin(t)) + sqrt(1 - u^2)))/6 + Ξt^3*(Ξ»*sin(t) + (-u^2/(1 - u^2)^(3/2) - 1/sqrt(1 - u^2))*(Ξ»*(u - sin(t)) + sqrt(1 - u^2))^2)/6 + Ξt^2*(-Ξ»*cos(t) + (-u/sqrt(1 - u^2) + Ξ»)*(Ξ»*(u - sin(t)) + sqrt(1 - u^2)))/2 + Ξt*(Ξ»*(u - sin(t)) + sqrt(1 - u^2)) + 1\n", | |
| " Ξt + 1" | |
| ] | |
| }, | |
| "execution_count": 26, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "evaluate(f_sym,u_sym,Ξt,coeffs)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Here's the B-Series for the exact solution of the same ODE:" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 27, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/latex": [ | |
| "$\\begin{equation*}\\frac{Ξt^{5} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right)^{3} \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{120} + \\frac{Ξt^{5} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right)^{2} \\left(Ξ» \\sin{\\left(t \\right)} + \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2}\\right)}{120} + \\frac{7 Ξt^{5} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right) \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{120} + \\frac{Ξt^{5} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{3 u^{3}}{\\left(1 - u^{2}\\right)^{\\frac{5}{2}}} - \\frac{3 u}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{3}\\right)}{120} + \\frac{Ξt^{5} \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right) \\left(Ξ» \\sin{\\left(t \\right)} + \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2}\\right)}{30} + \\frac{Ξt^{5} \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)^{2}}{40} + \\frac{Ξt^{5} \\left(- \\frac{3 u^{3}}{\\left(1 - u^{2}\\right)^{\\frac{5}{2}}} - \\frac{3 u}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2} \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{20} + \\frac{Ξt^{5} \\left(- Ξ» \\sin{\\left(t \\right)} + \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{4} \\left(- \\frac{15 u^{4}}{\\left(1 - u^{2}\\right)^{\\frac{7}{2}}} - \\frac{18 u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{5}{2}}} - \\frac{3}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}}\\right)\\right)}{120} + \\frac{Ξt^{4} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right)^{2} \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{24} + \\frac{Ξt^{4} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\sin{\\left(t \\right)} + \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2}\\right)}{24} + \\frac{Ξt^{4} \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right) \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{8} + \\frac{Ξt^{4} \\left(Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{3 u^{3}}{\\left(1 - u^{2}\\right)^{\\frac{5}{2}}} - \\frac{3 u}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{3}\\right)}{24} + \\frac{Ξt^{3} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{6} + \\frac{Ξt^{3} \\left(Ξ» \\sin{\\left(t \\right)} + \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2}\\right)}{6} + \\frac{Ξt^{2} \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{2} + Ξt \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right) + 1\\end{equation*}$\n" | |
| ], | |
| "text/plain": [ | |
| " \n", | |
| " 3 β β \n", | |
| " 5 β u β β β u β β \n", | |
| "Ξt β β- βββββββββββ + Ξ»β β β-Ξ»β cos(t) + β- βββββββββββ + Ξ»ββ βΞ»β (u - sin(t)) + β²β±\n", | |
| " β ________ β β β ________ β \n", | |
| " β β± 2 β β β β± 2 β \n", | |
| " β β²β± 1 - u β β β β²β± 1 - u β \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 120 \n", | |
| "\n", | |
| " β \n", | |
| " ________ββ 2 β β 2 \n", | |
| "β± 2 ββ 5 β u β β β u 1 \n", | |
| " 1 - u β β Ξt β β- βββββββββββ + Ξ»β β βΞ»β sin(t) + β- βββββββββββ - ββββββββββ\n", | |
| " β β ________ β β β 3/2 _______\n", | |
| " β β β± 2 β β β β 2β β± 2\n", | |
| " β β β²β± 1 - u β β β β1 - u β β²β± 1 - u \n", | |
| "βββββββββββ + ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 120 \n", | |
| "\n", | |
| " 2β \n", | |
| " β β ________β β β 2 \n", | |
| " β β β± 2 β β 5 β u β β u \n", | |
| "βββ βΞ»β (u - sin(t)) + β²β± 1 - u β β 7β Ξt β β- βββββββββββ + Ξ»ββ β- βββββββββββ\n", | |
| "_β β β ________ β β 3/2\n", | |
| " β β β β± 2 β β β 2β \n", | |
| " β β β β²β± 1 - u β β β1 - u β \n", | |
| "βββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " β β ________β β \n", | |
| " 1 β β β± 2 β β β u \n", | |
| " - βββββββββββββ βΞ»β (u - sin(t)) + β²β± 1 - u β β β-Ξ»β cos(t) + β- βββββββββββ + Ξ»\n", | |
| " ________β β β ________ \n", | |
| " β± 2 β β β β± 2 \n", | |
| " β²β± 1 - u β β β β²β± 1 - u \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 120 \n", | |
| "\n", | |
| " β \n", | |
| " β ________ββ β β \n", | |
| "β β β± 2 ββ 5 β u β β β \n", | |
| "ββ βΞ»β (u - sin(t)) + β²β± 1 - u β β Ξt β β- βββββββββββ + Ξ»ββ βΞ»β cos(t) + β- βββ\n", | |
| "β β β ________ β β β \n", | |
| "β β β β± 2 β β β β \n", | |
| "β β β β²β± 1 - u β β β β1 \n", | |
| "βββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| "\n", | |
| " 3β \n", | |
| " 3 β β ________β β β 2 \n", | |
| " 3β u 3β u β β β± 2 β β 5 β u \n", | |
| "ββββββββ - βββββββββββββ βΞ»β (u - sin(t)) + β²β± 1 - u β β Ξt β β- βββββββββββ \n", | |
| " 5/2 3/2β β β 3/2 \n", | |
| " 2β β 2β β β β β 2β \n", | |
| "- u β β1 - u β β β β β1 - u β \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + βββββββββββββββββββ\n", | |
| " 120 \n", | |
| "\n", | |
| " β \n", | |
| " β β ________β β β 2 \n", | |
| " 1 β β β± 2 β β β u \n", | |
| "- βββββββββββββ βΞ»β (u - sin(t)) + β²β± 1 - u β β βΞ»β sin(t) + β- βββββββββββ - βββ\n", | |
| " ________β β β 3/2 \n", | |
| " β± 2 β β β β 2β β±\n", | |
| " β²β± 1 - u β β β β1 - u β β²β± \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 30 \n", | |
| "\n", | |
| " 2β \n", | |
| " β β ________β β β 2 β\n", | |
| " 1 β β β± 2 β β 5 β u 1 β\n", | |
| "ββββββββββ βΞ»β (u - sin(t)) + β²β± 1 - u β β Ξt β β- βββββββββββ - ββββββββββββ\n", | |
| "________β β β 3/2 ________β\n", | |
| " 2 β β β β 2β β± 2 β\n", | |
| " 1 - u β β β β1 - u β β²β± 1 - u β \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββ + βββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| "\n", | |
| " 2 \n", | |
| " β β ________ββ β \n", | |
| " β β u β β β± 2 ββ 5 β \n", | |
| "β β-Ξ»β cos(t) + β- βββββββββββ + Ξ»ββ βΞ»β (u - sin(t)) + β²β± 1 - u β β Ξt β β- ββ\n", | |
| " β β ________ β β β \n", | |
| " β β β± 2 β β β β \n", | |
| " β β β²β± 1 - u β β β β1\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + βββββββββ\n", | |
| " 40 \n", | |
| "\n", | |
| " 2 \n", | |
| " 3 β β ________β β \n", | |
| " 3β u 3β u β β β± 2 β β β \n", | |
| "βββββββββ - βββββββββββββ βΞ»β (u - sin(t)) + β²β± 1 - u β β β-Ξ»β cos(t) + β- βββββ\n", | |
| " 5/2 3/2β β β __\n", | |
| " 2β β 2β β β β β± \n", | |
| " - u β β1 - u β β β β β²β± 1\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 20 \n", | |
| "\n", | |
| " β \n", | |
| " β ________ββ β β \n", | |
| "u β β β± 2 ββ 5 β β \n", | |
| "ββββββ + Ξ»ββ βΞ»β (u - sin(t)) + β²β± 1 - u β β Ξt β β-Ξ»β sin(t) + βΞ»β (u - sin(t))\n", | |
| "______ β β β \n", | |
| " 2 β β β \n", | |
| " - u β β β \n", | |
| "βββββββββββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| "\n", | |
| " 4 β \n", | |
| " ________β β 4 2 ββ \n", | |
| " β± 2 β β 15β u 18β u 3 ββ 4 β u \n", | |
| " + β²β± 1 - u β β β- βββββββββββ - βββββββββββ - βββββββββββββ Ξt β β- βββββββ\n", | |
| " β 7/2 5/2 3/2ββ β ____\n", | |
| " β β 2β β 2β β 2β ββ β β± \n", | |
| " β β1 - u β β1 - u β β1 - u β β β β β²β± 1 -\n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + ββββββββββββββ\n", | |
| " 120 \n", | |
| "\n", | |
| " \n", | |
| " 2 β β ________ββ \n", | |
| " β β β u β β β± 2 ββ \n", | |
| "ββββ + Ξ»β β β-Ξ»β cos(t) + β- βββββββββββ + Ξ»ββ βΞ»β (u - sin(t)) + β²β± 1 - u β β \n", | |
| "____ β β β ________ β β \n", | |
| " 2 β β β β± 2 β β \n", | |
| " u β β β β²β± 1 - u β β \n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + \n", | |
| " 24 \n", | |
| "\n", | |
| " β \n", | |
| " β β 2 β β \n", | |
| " 4 β u β β β u 1 β β \n", | |
| "Ξt β β- βββββββββββ + Ξ»ββ βΞ»β sin(t) + β- βββββββββββ - βββββββββββββ βΞ»β (u - sin(\n", | |
| " β ________ β β β 3/2 ________β \n", | |
| " β β± 2 β β β β 2β β± 2 β \n", | |
| " β β²β± 1 - u β β β β1 - u β β²β± 1 - u β \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 24 \n", | |
| "\n", | |
| " 2β \n", | |
| " ________β β β 2 β β \n", | |
| " β± 2 β β 4 β u 1 β β β±\n", | |
| "t)) + β²β± 1 - u β β Ξt β β- βββββββββββ - βββββββββββββ βΞ»β (u - sin(t)) + β²β± \n", | |
| " β β 3/2 ________β \n", | |
| " β β β 2β β± 2 β \n", | |
| " β β β1 - u β β²β± 1 - u β \n", | |
| "ββββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| "________β β β ________ββ \n", | |
| " 2 β β β u β β β± 2 ββ \n", | |
| " 1 - u β β β-Ξ»β cos(t) + β- βββββββββββ + Ξ»ββ βΞ»β (u - sin(t)) + β²β± 1 - u β β Ξ\n", | |
| " β β ________ β β \n", | |
| " β β β± 2 β β \n", | |
| " β β β²β± 1 - u β β \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + β\n", | |
| " 8 \n", | |
| "\n", | |
| " β 3β \n", | |
| " β β 3 β β ________β β \n", | |
| " 4 β β 3β u 3β u β β β± 2 β β \n", | |
| "t β βΞ»β cos(t) + β- βββββββββββ - βββββββββββββ βΞ»β (u - sin(t)) + β²β± 1 - u β β \n", | |
| " β β 5/2 3/2β β \n", | |
| " β β β 2β β 2β β β \n", | |
| " β β β1 - u β β1 - u β β β \n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ \n", | |
| " 24 \n", | |
| "\n", | |
| " \n", | |
| " β β \n", | |
| " 3 β u β β β u β β \n", | |
| " Ξt β β- βββββββββββ + Ξ»ββ β-Ξ»β cos(t) + β- βββββββββββ + Ξ»ββ βΞ»β (u - sin(t)) + β²\n", | |
| " β ________ β β β ________ β \n", | |
| " β β± 2 β β β β± 2 β \n", | |
| " β β²β± 1 - u β β β β²β± 1 - u β \n", | |
| "+ ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 6 \n", | |
| "\n", | |
| " β \n", | |
| " ________ββ β β 2 β β \n", | |
| " β± 2 ββ 3 β β u 1 β β \n", | |
| "β± 1 - u β β Ξt β βΞ»β sin(t) + β- βββββββββββ - βββββββββββββ βΞ»β (u - sin(t)) +\n", | |
| " β β β 3/2 ________β \n", | |
| " β β β β 2β β± 2 β \n", | |
| " β β β β1 - u β β²β± 1 - u β \n", | |
| "ββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 6 \n", | |
| "\n", | |
| " 2β \n", | |
| " ________β β β β __\n", | |
| " β± 2 β β 2 β β u β β β± \n", | |
| " β²β± 1 - u β β Ξt β β-Ξ»β cos(t) + β- βββββββββββ + Ξ»ββ βΞ»β (u - sin(t)) + β²β± 1\n", | |
| " β β β ________ β \n", | |
| " β β β β± 2 β \n", | |
| " β β β β²β± 1 - u β \n", | |
| "βββββββββββββββ + ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 2 \n", | |
| "\n", | |
| " \n", | |
| "______ββ \n", | |
| " 2 ββ \n", | |
| " - u β β \n", | |
| " β \n", | |
| " β β ________β \n", | |
| " β β β± 2 β \n", | |
| "ββββββββ + Ξtβ βΞ»β (u - sin(t)) + β²β± 1 - u β + 1\n", | |
| " " | |
| ] | |
| }, | |
| "execution_count": 27, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "evaluate(f_sym,u_sym,Ξt,coeffs_ex)[1]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "And their difference, which is the local error:" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 28, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/latex": [ | |
| "$\\begin{equation*}\\frac{Ξt^{5} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right)^{3} \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{80} + \\frac{Ξt^{5} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right)^{2} \\left(Ξ» \\sin{\\left(t \\right)} + \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2}\\right)}{80} - \\frac{105199674209 Ξt^{5} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right) \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{248351754240} + \\frac{Ξt^{5} \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{3 u^{3}}{\\left(1 - u^{2}\\right)^{\\frac{5}{2}}} - \\frac{3 u}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{3}\\right)}{80} - \\frac{3844175612059 Ξt^{5} \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right) \\left(Ξ» \\sin{\\left(t \\right)} + \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2}\\right)}{6953849118720} + \\frac{902475437790052823 Ξt^{5} \\left(- \\frac{u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}} - \\frac{1}{\\sqrt{1 - u^{2}}}\\right) \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)^{2}}{42730909364772720000} + \\frac{1886254549 Ξt^{5} \\left(- \\frac{3 u^{3}}{\\left(1 - u^{2}\\right)^{\\frac{5}{2}}} - \\frac{3 u}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2} \\left(- Ξ» \\cos{\\left(t \\right)} + \\left(- \\frac{u}{\\sqrt{1 - u^{2}}} + Ξ»\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)}{40242182400} + \\frac{Ξt^{5} \\left(- Ξ» \\sin{\\left(t \\right)} + \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{4} \\left(- \\frac{15 u^{4}}{\\left(1 - u^{2}\\right)^{\\frac{7}{2}}} - \\frac{18 u^{2}}{\\left(1 - u^{2}\\right)^{\\frac{5}{2}}} - \\frac{3}{\\left(1 - u^{2}\\right)^{\\frac{3}{2}}}\\right)\\right)}{80}\\end{equation*}$\n" | |
| ], | |
| "text/plain": [ | |
| " \n", | |
| " 3 β β \n", | |
| " 5 β u β β β u β β \n", | |
| "Ξt β β- βββββββββββ + Ξ»β β β-Ξ»β cos(t) + β- βββββββββββ + Ξ»ββ βΞ»β (u - sin(t)) + β²β±\n", | |
| " β ________ β β β ________ β \n", | |
| " β β± 2 β β β β± 2 β \n", | |
| " β β²β± 1 - u β β β β²β± 1 - u β \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 80 \n", | |
| "\n", | |
| " β \n", | |
| " ________ββ 2 β β 2 \n", | |
| "β± 2 ββ 5 β u β β β u 1 \n", | |
| " 1 - u β β Ξt β β- βββββββββββ + Ξ»β β βΞ»β sin(t) + β- βββββββββββ - ββββββββββ\n", | |
| " β β ________ β β β 3/2 _______\n", | |
| " β β β± 2 β β β β 2β β± 2\n", | |
| " β β β²β± 1 - u β β β β1 - u β β²β± 1 - u \n", | |
| "βββββββββββ + ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 80 \n", | |
| "\n", | |
| " 2β \n", | |
| " β β ________β β β \n", | |
| " β β β± 2 β β 5 β u β β \n", | |
| "βββ βΞ»β (u - sin(t)) + β²β± 1 - u β β 105199674209β Ξt β β- βββββββββββ + Ξ»ββ β- \n", | |
| "_β β β ________ β β \n", | |
| " β β β β± 2 β β \n", | |
| " β β β β²β± 1 - u β β \n", | |
| "βββββββββββββββββββββββββββββββββββ - ββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " 2 β β ________β β \n", | |
| " u 1 β β β± 2 β β β \n", | |
| "βββββββββββ - βββββββββββββ βΞ»β (u - sin(t)) + β²β± 1 - u β β β-Ξ»β cos(t) + β- ββββ\n", | |
| " 3/2 ________β β β _\n", | |
| "β 2β β± 2 β β β β± \n", | |
| "β1 - u β β²β± 1 - u β β β β²β± \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 248351754240 \n", | |
| "\n", | |
| " β \n", | |
| " β ________ββ β \n", | |
| " u β β β± 2 ββ 5 β u β β \n", | |
| "βββββββ + Ξ»ββ βΞ»β (u - sin(t)) + β²β± 1 - u β β Ξt β β- βββββββββββ + Ξ»ββ βΞ»β cos(\n", | |
| "_______ β β β ________ β β \n", | |
| " 2 β β β β± 2 β β \n", | |
| "1 - u β β β β²β± 1 - u β β \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββ + βββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| "\n", | |
| " 3β \n", | |
| " β 3 β β ________β β \n", | |
| " β 3β u 3β u β β β± 2 β β \n", | |
| "t) + β- βββββββββββ - βββββββββββββ βΞ»β (u - sin(t)) + β²β± 1 - u β β 38441756\n", | |
| " β 5/2 3/2β β \n", | |
| " β β 2β β 2β β β \n", | |
| " β β1 - u β β1 - u β β β \n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ - ββββββββ\n", | |
| " 80 \n", | |
| "\n", | |
| " β \n", | |
| " β 2 β β ________β β \n", | |
| " 5 β u 1 β β β± 2 β β \n", | |
| "12059β Ξt β β- βββββββββββ - βββββββββββββ βΞ»β (u - sin(t)) + β²β± 1 - u β β βΞ»β sin(\n", | |
| " β 3/2 ________β β \n", | |
| " β β 2β β± 2 β β \n", | |
| " β β1 - u β β²β± 1 - u β β \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 6953849118720 \n", | |
| "\n", | |
| " 2β \n", | |
| " β 2 β β ________β β \n", | |
| " β u 1 β β β± 2 β β \n", | |
| "t) + β- βββββββββββ - βββββββββββββ βΞ»β (u - sin(t)) + β²β± 1 - u β β 90247543\n", | |
| " β 3/2 ________β β \n", | |
| " β β 2β β± 2 β β \n", | |
| " β β1 - u β β²β± 1 - u β β \n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + ββββββββ\n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " β 2 β β \n", | |
| " 5 β u 1 β β β u β \n", | |
| "7790052823β Ξt β β- βββββββββββ - βββββββββββββ β-Ξ»β cos(t) + β- βββββββββββ + Ξ»ββ \n", | |
| " β 3/2 ________β β β ________ β \n", | |
| " β β 2β β± 2 β β β β± 2 β \n", | |
| " β β1 - u β β²β± 1 - u β β β β²β± 1 - u β \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 42730909364772720000 \n", | |
| "\n", | |
| " 2 \n", | |
| "β ________ββ β 3 \n", | |
| "β β± 2 ββ 5 β 3β u 3β u \n", | |
| "βΞ»β (u - sin(t)) + β²β± 1 - u β β 1886254549β Ξt β β- βββββββββββ - βββββββββββ\n", | |
| " β β 5/2 3/2\n", | |
| " β β β 2β β 2β \n", | |
| " β β β1 - u β β1 - u β \n", | |
| "ββββββββββββββββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| "\n", | |
| " 2 \n", | |
| "β β ________β β β \n", | |
| "β β β± 2 β β β u β β \n", | |
| "ββ βΞ»β (u - sin(t)) + β²β± 1 - u β β β-Ξ»β cos(t) + β- βββββββββββ + Ξ»ββ βΞ»β (u - sin\n", | |
| "β β β ________ β \n", | |
| "β β β β± 2 β \n", | |
| "β β β β²β± 1 - u β \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 40242182400 \n", | |
| "\n", | |
| " β 4 \n", | |
| " ________ββ β β ________β β \n", | |
| " β± 2 ββ 5 β β β± 2 β β \n", | |
| "(t)) + β²β± 1 - u β β Ξt β β-Ξ»β sin(t) + βΞ»β (u - sin(t)) + β²β± 1 - u β β β- βββ\n", | |
| " β β β \n", | |
| " β β β β \n", | |
| " β β β β1 \n", | |
| "ββββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 80 \n", | |
| "\n", | |
| " β\n", | |
| " 4 2 ββ\n", | |
| "15β u 18β u 3 ββ\n", | |
| "ββββββββ - βββββββββββ - βββββββββββββ\n", | |
| " 7/2 5/2 3/2ββ\n", | |
| " 2β β 2β β 2β ββ\n", | |
| "- u β β1 - u β β1 - u β β β \n", | |
| "ββββββββββββββββββββββββββββββββββββββ\n", | |
| " " | |
| ] | |
| }, | |
| "execution_count": 28, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "expr = simplify(evaluate(f_sym,u_sym,Ξt,coeffs)-evaluate(f_sym,u_sym,Ξt,coeffs_ex))[1]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 36, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/latex": [ | |
| "$\\begin{equation*}\\frac{4535459777238976256125 \\left(1 - u^{2}\\right)^{\\frac{35}{2}} \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right) \\left(Ξ» \\left(1 - u^{2}\\right)^{2} \\sin{\\left(t \\right)} - \\sqrt{1 - u^{2}} \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2}\\right) + 611621992800 \\left(1 - u^{2}\\right)^{\\frac{33}{2}} \\left(1886254549 u \\left(1 - u^{2}\\right)^{\\frac{3}{2}} \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2} \\left(Ξ» \\sqrt{1 - u^{2}} \\cos{\\left(t \\right)} + \\left(u - Ξ» \\sqrt{1 - u^{2}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right) + 167675760 \\left(- u + Ξ» \\sqrt{1 - u^{2}}\\right) \\left(- 3 u \\left(1 - u^{2}\\right)^{\\frac{3}{2}} \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{3} + Ξ» \\left(1 - u^{2}\\right)^{4} \\cos{\\left(t \\right)}\\right)\\right) - 102554182475454528000 \\left(1 - u^{2}\\right)^{\\frac{27}{2}} \\left(Ξ» \\left(1 - u^{2}\\right)^{\\frac{15}{2}} \\sin{\\left(t \\right)} + 3 \\left(1 - u^{2}\\right)^{4} \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{4} \\left(5 u^{4} + 6 u^{2} \\left(1 - u^{2}\\right) + \\left(1 - u^{2}\\right)^{2}\\right)\\right) + 102554182475454528000 \\left(1 - u^{2}\\right)^{19} \\left(u - Ξ» \\sqrt{1 - u^{2}}\\right)^{3} \\left(Ξ» \\sqrt{1 - u^{2}} \\cos{\\left(t \\right)} + \\left(u - Ξ» \\sqrt{1 - u^{2}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right) + 4 \\left(1 - u^{2}\\right)^{18} \\left(868821451912298236625 \\sqrt{1 - u^{2}} \\left(u - Ξ» \\sqrt{1 - u^{2}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right) \\left(Ξ» \\sqrt{1 - u^{2}} \\cos{\\left(t \\right)} + \\left(u - Ξ» \\sqrt{1 - u^{2}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right) - 43318821013922535504 \\sqrt{1 - u^{2}} \\left(Ξ» \\sqrt{1 - u^{2}} \\cos{\\left(t \\right)} + \\left(u - Ξ» \\sqrt{1 - u^{2}}\\right) \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)\\right)^{2} + 25638545618863632000 \\left(u - Ξ» \\sqrt{1 - u^{2}}\\right)^{2} \\left(Ξ» \\left(1 - u^{2}\\right)^{2} \\sin{\\left(t \\right)} - \\sqrt{1 - u^{2}} \\left(Ξ» \\left(u - \\sin{\\left(t \\right)}\\right) + \\sqrt{1 - u^{2}}\\right)^{2}\\right)\\right)}{8204334598036362240000 \\left(1 - u^{2}\\right)^{21}}\\end{equation*}$\n" | |
| ], | |
| "text/plain": [ | |
| " β \n", | |
| " 35/2 β ________β β \n", | |
| " β 2β β β± 2 β β β 2β\n", | |
| "4535459777238976256125β β1 - u β β βΞ»β (u - sin(t)) + β²β± 1 - u β β βΞ»β β1 - u β \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| " \n", | |
| " \n", | |
| "\n", | |
| " 2β \n", | |
| "2 ________ β ________β β \n", | |
| " β± 2 β β± 2 β β β 2\n", | |
| " β sin(t) - β²β± 1 - u β βΞ»β (u - sin(t)) + β²β± 1 - u β β + 611621992800β β1 - u \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| " \n", | |
| " \n", | |
| "\n", | |
| " β 2 \n", | |
| " 33/2 β 3/2 β ________β β ________\n", | |
| "β β β 2β β β± 2 β β β± 2 \n", | |
| "β β β1886254549β uβ β1 - u β β βΞ»β (u - sin(t)) + β²β± 1 - u β β βΞ»β β²β± 1 - u \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| " \n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " β ________β β ________ββ β \n", | |
| " β β± 2 β β β± 2 ββ β \n", | |
| "β cos(t) + βu - Ξ»β β²β± 1 - u β β βΞ»β (u - sin(t)) + β²β± 1 - u β β + 167675760β β-u \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| " \n", | |
| " \n", | |
| "\n", | |
| " β 3 \n", | |
| " ________β β 3/2 β ________β \n", | |
| " β± 2 β β β 2β β β± 2 β β \n", | |
| "+ Ξ»β β²β± 1 - u β β β- 3β uβ β1 - u β β βΞ»β (u - sin(t)) + β²β± 1 - u β + Ξ»β β1 - u\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| " \n", | |
| " \n", | |
| "\n", | |
| " ββ β \n", | |
| " 4 ββ 27/2 β 15/2 \n", | |
| "2β ββ β 2β β β 2β β\n", | |
| " β β cos(t)β β - 102554182475454528000β β1 - u β β βΞ»β β1 - u β β sin(t) + 3β β\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| " \n", | |
| " \n", | |
| "\n", | |
| " 4 β \n", | |
| " 4 β ________β β 2ββ \n", | |
| " 2β β β± 2 β β 4 2 β 2β β 2β ββ \n", | |
| "1 - u β β βΞ»β (u - sin(t)) + β²β± 1 - u β β β5β u + 6β u β β1 - u β + β1 - u β β β +\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| " β\n", | |
| " 8204334598036362240000β β\n", | |
| "\n", | |
| " 3 \n", | |
| " 19 β ________β β ________ \n", | |
| " β 2β β β± 2 β β β± 2 \n", | |
| " 102554182475454528000β β1 - u β β βu - Ξ»β β²β± 1 - u β β βΞ»β β²β± 1 - u β cos(t) +\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 21 \n", | |
| " 2β \n", | |
| "1 - u β \n", | |
| "\n", | |
| " β \n", | |
| " β ________β β ________ββ 18 β \n", | |
| " β β± 2 β β β± 2 ββ β 2β β \n", | |
| " βu - Ξ»β β²β± 1 - u β β βΞ»β (u - sin(t)) + β²β± 1 - u β β + 4β β1 - u β β β868821451\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| " \n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " ________ β ________β β ________β β \n", | |
| " β± 2 β β± 2 β β β± 2 β β \n", | |
| "912298236625β β²β± 1 - u β βu - Ξ»β β²β± 1 - u β β βΞ»β (u - sin(t)) + β²β± 1 - u β β βΞ»\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| " \n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " ________ β ________β β ________ββ \n", | |
| " β± 2 β β± 2 β β β± 2 ββ \n", | |
| "β β²β± 1 - u β cos(t) + βu - Ξ»β β²β± 1 - u β β βΞ»β (u - sin(t)) + β²β± 1 - u β β - 43\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| " \n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " ________ β ________ β ________β β \n", | |
| " β± 2 β β± 2 β β± 2 β β \n", | |
| "318821013922535504β β²β± 1 - u β βΞ»β β²β± 1 - u β cos(t) + βu - Ξ»β β²β± 1 - u β β βΞ»β \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| " \n", | |
| " \n", | |
| "\n", | |
| " 2 2 β \n", | |
| " ________ββ β ________β β \n", | |
| " β± 2 ββ β β± 2 β β β\n", | |
| "(u - sin(t)) + β²β± 1 - u β β + 25638545618863632000β βu - Ξ»β β²β± 1 - u β β βΞ»β β\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| " \n", | |
| " \n", | |
| "\n", | |
| " 2ββ\n", | |
| " 2 ________ β ________β ββ\n", | |
| " 2β β± 2 β β± 2 β ββ\n", | |
| "1 - u β β sin(t) - β²β± 1 - u β βΞ»β (u - sin(t)) + β²β± 1 - u β β β \n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " \n", | |
| " \n", | |
| " " | |
| ] | |
| }, | |
| "execution_count": 36, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "sp.simplify(expand(expr))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 38, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/latex": [ | |
| "$\\begin{equation*}- \\frac{3 u^{8} Ξt^{5}}{16 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{3844175612059 u^{6} Ξt^{5} \\sqrt{1 - u^{2}}}{6953849118720 \\left(- u^{6} + 3 u^{4} - 3 u^{2} + 1\\right)} + \\frac{3 u^{6} Ξt^{5}}{8 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{902475437790052823 u^{6} Ξt^{5}}{42730909364772720000 u^{4} \\sqrt{1 - u^{2}} - 85461818729545440000 u^{2} \\sqrt{1 - u^{2}} + 42730909364772720000 \\sqrt{1 - u^{2}}} + \\frac{u^{6} Ξt^{5}}{80 u^{4} \\sqrt{1 - u^{2}} - 160 u^{2} \\sqrt{1 - u^{2}} + 80 \\sqrt{1 - u^{2}}} - \\frac{5407445509 u^{6} Ξt^{5}}{13414060800 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{3844175612059 u^{4} Ξt^{5} \\sqrt{1 - u^{2}}}{6953849118720 \\left(- u^{6} + 3 u^{4} - 3 u^{2} + 1\\right)} - \\frac{3 u^{4} Ξt^{5}}{16 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{902475437790052823 u^{4} Ξt^{5}}{42730909364772720000 u^{4} \\sqrt{1 - u^{2}} - 85461818729545440000 u^{2} \\sqrt{1 - u^{2}} + 42730909364772720000 \\sqrt{1 - u^{2}}} - \\frac{u^{4} Ξt^{5}}{80 u^{4} \\sqrt{1 - u^{2}} - 160 u^{2} \\sqrt{1 - u^{2}} + 80 \\sqrt{1 - u^{2}}} + \\frac{8425609189 u^{4} Ξt^{5}}{13414060800 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{328105563238046242399 u^{4} Ξt^{5}}{241303958765775360000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{9 u^{2} Ξt^{5}}{40 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{3635043306271280591533 u^{2} Ξt^{5}}{4102167299018181120000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{754418498879 u^{2} Ξt^{5}}{772649902080 \\sqrt{1 - u^{2}}} - \\frac{3 Ξt^{5}}{80 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{3844175612059 Ξt^{5}}{6953849118720 \\sqrt{1 - u^{2}}} + Ξ»^{5} \\left(\\frac{u Ξt^{5}}{80} - \\frac{Ξt^{5} \\sin{\\left(t \\right)}}{80}\\right) + Ξ»^{4} \\left(- \\frac{3 u^{8} Ξt^{5}}{16 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{3 u^{7} Ξt^{5} \\sin{\\left(t \\right)}}{4 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{9 u^{6} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{8 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{5407445509 u^{6} Ξt^{5}}{13414060800 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{3 u^{5} Ξt^{5} \\sin^{3}{\\left(t \\right)}}{4 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{6413500069 u^{5} Ξt^{5} \\sin{\\left(t \\right)}}{4471353600 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{3 u^{4} Ξt^{5} \\sin^{4}{\\left(t \\right)}}{16 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{8425609189 u^{4} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{4471353600 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{357614120019468965321 u^{4} Ξt^{5}}{2051083649509090560000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{14461936549 u^{3} Ξt^{5} \\sin^{3}{\\left(t \\right)}}{13414060800 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{98031318961151965421 u^{3} Ξt^{5} \\sin{\\left(t \\right)}}{1025541824754545280000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{9 u^{2} Ξt^{5} \\sin^{4}{\\left(t \\right)}}{40 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{757632721070389930279 u^{2} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{2051083649509090560000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{697309902804057541121 u^{2} Ξt^{5}}{2051083649509090560000 \\sqrt{1 - u^{2}}} + \\frac{4401390949 u Ξt^{5} \\sin^{3}{\\left(t \\right)}}{13414060800 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{748586994041784805121 u Ξt^{5} \\sin{\\left(t \\right)}}{1025541824754545280000 \\sqrt{1 - u^{2}}} + \\frac{Ξt^{5} \\sqrt{1 - u^{2}}}{80} - \\frac{Ξt^{5} \\cos{\\left(t \\right)}}{80} - \\frac{3 Ξt^{5} \\sin^{4}{\\left(t \\right)}}{80 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{799864085279512069121 Ξt^{5} \\sin^{2}{\\left(t \\right)}}{2051083649509090560000 \\sqrt{1 - u^{2}}}\\right) + Ξ»^{3} \\left(- \\frac{3 u^{7} Ξt^{5} \\sqrt{1 - u^{2}}}{4 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{3844175612059 u^{7} Ξt^{5}}{6953849118720 \\left(- u^{6} + 3 u^{4} - 3 u^{2} + 1\\right)} + \\frac{3 u^{7} Ξt^{5}}{- 80 u^{6} + 240 u^{4} - 240 u^{2} + 80} + \\frac{1886254549 u^{7} Ξt^{5}}{- 13414060800 u^{6} + 40242182400 u^{4} - 40242182400 u^{2} + 13414060800} + \\frac{9 u^{6} Ξt^{5} \\sqrt{1 - u^{2}} \\sin{\\left(t \\right)}}{4 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{3844175612059 u^{6} Ξt^{5} \\sin{\\left(t \\right)}}{2317949706240 \\left(- u^{6} + 3 u^{4} - 3 u^{2} + 1\\right)} - \\frac{9 u^{6} Ξt^{5} \\sin{\\left(t \\right)}}{- 80 u^{6} + 240 u^{4} - 240 u^{2} + 80} - \\frac{5658763647 u^{6} Ξt^{5} \\sin{\\left(t \\right)}}{- 13414060800 u^{6} + 40242182400 u^{4} - 40242182400 u^{2} + 13414060800} - \\frac{9 u^{5} Ξt^{5} \\sqrt{1 - u^{2}} \\sin^{2}{\\left(t \\right)}}{4 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{6413500069 u^{5} Ξt^{5} \\sqrt{1 - u^{2}}}{4471353600 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{3844175612059 u^{5} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{2317949706240 \\left(- u^{6} + 3 u^{4} - 3 u^{2} + 1\\right)} + \\frac{9 u^{5} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{- 80 u^{6} + 240 u^{4} - 240 u^{2} + 80} + \\frac{5658763647 u^{5} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{- 13414060800 u^{6} + 40242182400 u^{4} - 40242182400 u^{2} + 13414060800} + \\frac{1886254549 u^{5} Ξt^{5} \\cos{\\left(t \\right)}}{13414060800 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{902475437790052823 u^{5} Ξt^{5}}{21365454682386360000 u^{4} - 42730909364772720000 u^{2} + 21365454682386360000} - \\frac{16341676594871 u^{5} Ξt^{5}}{17384622796800 u^{4} - 34769245593600 u^{2} + 17384622796800} - \\frac{105199674209 u^{5} Ξt^{5}}{124175877120 u^{4} - 248351754240 u^{2} + 124175877120} + \\frac{3 u^{5} Ξt^{5}}{80 u^{4} - 160 u^{2} + 80} + \\frac{3 u^{4} Ξt^{5} \\sqrt{1 - u^{2}} \\sin^{3}{\\left(t \\right)}}{4 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{8425609189 u^{4} Ξt^{5} \\sqrt{1 - u^{2}} \\sin{\\left(t \\right)}}{2235676800 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{3844175612059 u^{4} Ξt^{5} \\sin^{3}{\\left(t \\right)}}{6953849118720 \\left(- u^{6} + 3 u^{4} - 3 u^{2} + 1\\right)} - \\frac{3 u^{4} Ξt^{5} \\sin^{3}{\\left(t \\right)}}{- 80 u^{6} + 240 u^{4} - 240 u^{2} + 80} - \\frac{1886254549 u^{4} Ξt^{5} \\sin^{3}{\\left(t \\right)}}{- 13414060800 u^{6} + 40242182400 u^{4} - 40242182400 u^{2} + 13414060800} - \\frac{1886254549 u^{4} Ξt^{5} \\sin{\\left(t \\right)} \\cos{\\left(t \\right)}}{6707030400 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{902475437790052823 u^{4} Ξt^{5} \\sin{\\left(t \\right)}}{10682727341193180000 u^{4} - 21365454682386360000 u^{2} + 10682727341193180000} + \\frac{49459645354533 u^{4} Ξt^{5} \\sin{\\left(t \\right)}}{17384622796800 u^{4} - 34769245593600 u^{2} + 17384622796800} + \\frac{105199674209 u^{4} Ξt^{5} \\sin{\\left(t \\right)}}{62087938560 u^{4} - 124175877120 u^{2} + 62087938560} - \\frac{9 u^{4} Ξt^{5} \\sin{\\left(t \\right)}}{80 u^{4} - 160 u^{2} + 80} - \\frac{14461936549 u^{3} Ξt^{5} \\sqrt{1 - u^{2}} \\sin^{2}{\\left(t \\right)}}{4471353600 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{98031318961151965421 u^{3} Ξt^{5} \\sqrt{1 - u^{2}}}{1025541824754545280000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{1886254549 u^{3} Ξt^{5} \\sin^{2}{\\left(t \\right)} \\cos{\\left(t \\right)}}{13414060800 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{902475437790052823 u^{3} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{21365454682386360000 u^{4} - 42730909364772720000 u^{2} + 21365454682386360000} - \\frac{49894260924453 u^{3} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{17384622796800 u^{4} - 34769245593600 u^{2} + 17384622796800} - \\frac{105199674209 u^{3} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{124175877120 u^{4} - 248351754240 u^{2} + 124175877120} + \\frac{9 u^{3} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{80 u^{4} - 160 u^{2} + 80} - \\frac{493765118337591853817 u^{3} Ξt^{5} \\cos{\\left(t \\right)}}{2051083649509090560000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{10319047364622345641093 u^{3} Ξt^{5}}{8204334598036362240000 \\left(1 - u^{2}\\right)} + \\frac{9 u^{2} Ξt^{5} \\sqrt{1 - u^{2}} \\sin^{3}{\\left(t \\right)}}{10 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{757632721070389930279 u^{2} Ξt^{5} \\sqrt{1 - u^{2}} \\sin{\\left(t \\right)}}{1025541824754545280000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{16776292164791 u^{2} Ξt^{5} \\sin^{3}{\\left(t \\right)}}{17384622796800 u^{4} - 34769245593600 u^{2} + 17384622796800} - \\frac{3 u^{2} Ξt^{5} \\sin^{3}{\\left(t \\right)}}{80 u^{4} - 160 u^{2} + 80} + \\frac{12079201575925326001 u^{2} Ξt^{5} \\sin{\\left(t \\right)} \\cos{\\left(t \\right)}}{120651979382887680000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{25788879601336394706311 u^{2} Ξt^{5} \\sin{\\left(t \\right)}}{8204334598036362240000 \\left(1 - u^{2}\\right)} - \\frac{4401390949 u Ξt^{5} \\sqrt{1 - u^{2}} \\sin^{2}{\\left(t \\right)}}{4471353600 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{748586994041784805121 u Ξt^{5}}{1025541824754545280000} + \\frac{1886254549 u Ξt^{5} \\sin^{2}{\\left(t \\right)} \\cos{\\left(t \\right)}}{13414060800 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{20005292013953025321343 u Ξt^{5} \\sin^{2}{\\left(t \\right)}}{8204334598036362240000 \\left(1 - u^{2}\\right)} - \\frac{705268173027862269617 u Ξt^{5} \\cos{\\left(t \\right)}}{2051083649509090560000 \\sqrt{1 - u^{2}}} + \\frac{3 Ξt^{5} \\sqrt{1 - u^{2}} \\sin^{3}{\\left(t \\right)}}{20 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{787044812470080253121 Ξt^{5} \\sin{\\left(t \\right)}}{1025541824754545280000} + \\frac{3844175612059 Ξt^{5} \\sin^{3}{\\left(t \\right)}}{6953849118720 \\left(1 - u^{2}\\right)} + \\frac{782183809884453165617 Ξt^{5} \\sin{\\left(t \\right)} \\cos{\\left(t \\right)}}{2051083649509090560000 \\sqrt{1 - u^{2}}}\\right) + Ξ»^{2} \\left(\\frac{9 u^{8} Ξt^{5}}{8 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{9 u^{7} Ξt^{5} \\sin{\\left(t \\right)}}{4 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{3844175612059 u^{6} Ξt^{5} \\sqrt{1 - u^{2}}}{2317949706240 \\left(- u^{6} + 3 u^{4} - 3 u^{2} + 1\\right)} + \\frac{9 u^{6} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{8 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{9 u^{6} Ξt^{5}}{8 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{902475437790052823 u^{6} Ξt^{5}}{42730909364772720000 u^{4} \\sqrt{1 - u^{2}} - 85461818729545440000 u^{2} \\sqrt{1 - u^{2}} + 42730909364772720000 \\sqrt{1 - u^{2}}} + \\frac{105199674209 u^{6} Ξt^{5}}{248351754240 u^{4} \\sqrt{1 - u^{2}} - 496703508480 u^{2} \\sqrt{1 - u^{2}} + 248351754240 \\sqrt{1 - u^{2}}} - \\frac{u^{6} Ξt^{5}}{80 u^{4} \\sqrt{1 - u^{2}} - 160 u^{2} \\sqrt{1 - u^{2}} + 80 \\sqrt{1 - u^{2}}} + \\frac{5407445509 u^{6} Ξt^{5}}{2235676800 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{3844175612059 u^{5} Ξt^{5} \\sqrt{1 - u^{2}} \\sin{\\left(t \\right)}}{1158974853120 \\left(- u^{6} + 3 u^{4} - 3 u^{2} + 1\\right)} + \\frac{9 u^{5} Ξt^{5} \\sin{\\left(t \\right)}}{4 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{902475437790052823 u^{5} Ξt^{5} \\sin{\\left(t \\right)}}{21365454682386360000 u^{4} \\sqrt{1 - u^{2}} - 42730909364772720000 u^{2} \\sqrt{1 - u^{2}} + 21365454682386360000 \\sqrt{1 - u^{2}}} - \\frac{105199674209 u^{5} Ξt^{5} \\sin{\\left(t \\right)}}{124175877120 u^{4} \\sqrt{1 - u^{2}} - 248351754240 u^{2} \\sqrt{1 - u^{2}} + 124175877120 \\sqrt{1 - u^{2}}} + \\frac{2 u^{5} Ξt^{5} \\sin{\\left(t \\right)}}{80 u^{4} \\sqrt{1 - u^{2}} - 160 u^{2} \\sqrt{1 - u^{2}} + 80 \\sqrt{1 - u^{2}}} - \\frac{6413500069 u^{5} Ξt^{5} \\sin{\\left(t \\right)}}{1490451200 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{3844175612059 u^{4} Ξt^{5} \\sqrt{1 - u^{2}} \\sin^{2}{\\left(t \\right)}}{2317949706240 \\left(- u^{6} + 3 u^{4} - 3 u^{2} + 1\\right)} + \\frac{1886254549 u^{4} Ξt^{5} \\sqrt{1 - u^{2}} \\cos{\\left(t \\right)}}{6707030400 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{9 u^{4} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{8 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{902475437790052823 u^{4} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{42730909364772720000 u^{4} \\sqrt{1 - u^{2}} - 85461818729545440000 u^{2} \\sqrt{1 - u^{2}} + 42730909364772720000 \\sqrt{1 - u^{2}}} + \\frac{105199674209 u^{4} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{248351754240 u^{4} \\sqrt{1 - u^{2}} - 496703508480 u^{2} \\sqrt{1 - u^{2}} + 248351754240 \\sqrt{1 - u^{2}}} - \\frac{u^{4} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{80 u^{4} \\sqrt{1 - u^{2}} - 160 u^{2} \\sqrt{1 - u^{2}} + 80 \\sqrt{1 - u^{2}}} + \\frac{8425609189 u^{4} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{4471353600 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{8425609189 u^{4} Ξt^{5}}{4471353600 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{782183809884453165617 u^{4} Ξt^{5} \\cos{\\left(t \\right)}}{2051083649509090560000 u^{4} - 4102167299018181120000 u^{2} + 2051083649509090560000} - \\frac{14903400795783417131743 u^{4} Ξt^{5}}{4102167299018181120000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{1886254549 u^{3} Ξt^{5} \\sqrt{1 - u^{2}} \\sin{\\left(t \\right)} \\cos{\\left(t \\right)}}{6707030400 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{14461936549 u^{3} Ξt^{5} \\sin{\\left(t \\right)}}{4471353600 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{782183809884453165617 u^{3} Ξt^{5} \\sin{\\left(t \\right)} \\cos{\\left(t \\right)}}{2051083649509090560000 u^{4} - 4102167299018181120000 u^{2} + 2051083649509090560000} + \\frac{48926120124603963505793 u^{3} Ξt^{5} \\sin{\\left(t \\right)}}{8204334598036362240000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{12079201575925326001 u^{2} Ξt^{5} \\sqrt{1 - u^{2}} \\cos{\\left(t \\right)}}{120651979382887680000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{27 u^{2} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{20 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{22318774874155177518791 u^{2} Ξt^{5} \\sin^{2}{\\left(t \\right)}}{8204334598036362240000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{902475437790052823 u^{2} Ξt^{5} \\cos^{2}{\\left(t \\right)}}{42730909364772720000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{757632721070389930279 u^{2} Ξt^{5}}{2051083649509090560000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{705268173027862269617 u^{2} Ξt^{5} \\cos{\\left(t \\right)}}{2051083649509090560000 \\left(1 - u^{2}\\right)} - \\frac{5102610026961050007259 u^{2} Ξt^{5}}{1640866919607272448000 \\sqrt{1 - u^{2}}} - \\frac{1886254549 u Ξt^{5} \\sqrt{1 - u^{2}} \\sin{\\left(t \\right)} \\cos{\\left(t \\right)}}{6707030400 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{4401390949 u Ξt^{5} \\sin{\\left(t \\right)}}{4471353600 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{782183809884453165617 u Ξt^{5} \\sin{\\left(t \\right)} \\cos{\\left(t \\right)}}{2051083649509090560000 \\left(1 - u^{2}\\right)} + \\frac{14780311813398039280937 u Ξt^{5} \\sin{\\left(t \\right)}}{2734778199345454080000 \\sqrt{1 - u^{2}}} + \\frac{105199674209 Ξt^{5} \\sqrt{1 - u^{2}}}{248351754240} - \\frac{756545264265589533617 Ξt^{5} \\cos{\\left(t \\right)}}{2051083649509090560000} - \\frac{9 Ξt^{5} \\sin^{2}{\\left(t \\right)}}{40 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{3844175612059 Ξt^{5} \\sin^{2}{\\left(t \\right)}}{1738462279680 \\sqrt{1 - u^{2}}} - \\frac{902475437790052823 Ξt^{5} \\cos^{2}{\\left(t \\right)}}{42730909364772720000 \\sqrt{1 - u^{2}}} - \\frac{1436611804849711823 Ξt^{5}}{42730909364772720000 \\sqrt{1 - u^{2}}}\\right) + Ξ» \\left(\\frac{3 u^{7} Ξt^{5} \\sqrt{1 - u^{2}}}{4 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{3844175612059 u^{7} Ξt^{5}}{2317949706240 \\left(- u^{6} + 3 u^{4} - 3 u^{2} + 1\\right)} - \\frac{3395336389 u^{7} Ξt^{5}}{- 13414060800 u^{6} + 40242182400 u^{4} - 40242182400 u^{2} + 13414060800} - \\frac{3 u^{6} Ξt^{5} \\sqrt{1 - u^{2}} \\sin{\\left(t \\right)}}{4 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{3844175612059 u^{6} Ξt^{5} \\sin{\\left(t \\right)}}{2317949706240 \\left(- u^{6} + 3 u^{4} - 3 u^{2} + 1\\right)} + \\frac{3395336389 u^{6} Ξt^{5} \\sin{\\left(t \\right)}}{- 13414060800 u^{6} + 40242182400 u^{4} - 40242182400 u^{2} + 13414060800} - \\frac{3 u^{5} Ξt^{5} \\sqrt{1 - u^{2}}}{4 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{6078148549 u^{5} Ξt^{5} \\sqrt{1 - u^{2}}}{4471353600 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{3844175612059 u^{5} Ξt^{5}}{2317949706240 \\left(- u^{6} + 3 u^{4} - 3 u^{2} + 1\\right)} + \\frac{3395336389 u^{5} Ξt^{5}}{- 13414060800 u^{6} + 40242182400 u^{4} - 40242182400 u^{2} + 13414060800} - \\frac{1886254549 u^{5} Ξt^{5} \\cos{\\left(t \\right)}}{13414060800 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{902475437790052823 u^{5} Ξt^{5}}{10682727341193180000 u^{4} - 21365454682386360000 u^{2} + 10682727341193180000} + \\frac{3186582816619 u^{5} Ξt^{5}}{1931624755200 u^{4} - 3863249510400 u^{2} + 1931624755200} + \\frac{u^{5} Ξt^{5}}{80 \\left(u^{4} - 2 u^{2} + 1\\right)} + \\frac{3 u^{4} Ξt^{5} \\sqrt{1 - u^{2}} \\sin{\\left(t \\right)}}{4 \\left(- u^{6} \\sqrt{1 - u^{2}} + 3 u^{4} \\sqrt{1 - u^{2}} - 3 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{7922581909 u^{4} Ξt^{5} \\sqrt{1 - u^{2}} \\sin{\\left(t \\right)}}{6707030400 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{3844175612059 u^{4} Ξt^{5} \\sin{\\left(t \\right)}}{2317949706240 \\left(- u^{6} + 3 u^{4} - 3 u^{2} + 1\\right)} - \\frac{3395336389 u^{4} Ξt^{5} \\sin{\\left(t \\right)}}{- 13414060800 u^{6} + 40242182400 u^{4} - 40242182400 u^{2} + 13414060800} + \\frac{902475437790052823 u^{4} Ξt^{5} \\sin{\\left(t \\right)}}{21365454682386360000 u^{4} - 42730909364772720000 u^{2} + 21365454682386360000} - \\frac{3234873435499 u^{4} Ξt^{5} \\sin{\\left(t \\right)}}{1931624755200 u^{4} - 3863249510400 u^{2} + 1931624755200} - \\frac{u^{4} Ξt^{5} \\sin{\\left(t \\right)}}{80 \\left(u^{4} - 2 u^{2} + 1\\right)} - \\frac{14461936549 u^{3} Ξt^{5} \\sqrt{1 - u^{2}}}{13414060800 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{22917976411669 u^{3} Ξt^{5} \\sqrt{1 - u^{2}}}{8692311398400 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{1886254549 u^{3} Ξt^{5} \\cos{\\left(t \\right)}}{13414060800 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{902475437790052823 u^{3} Ξt^{5}}{21365454682386360000 u^{4} - 42730909364772720000 u^{2} + 21365454682386360000} - \\frac{14385906530231 u^{3} Ξt^{5}}{17384622796800 u^{4} - 34769245593600 u^{2} + 17384622796800} + \\frac{519403663956455485817 u^{3} Ξt^{5} \\cos{\\left(t \\right)}}{2051083649509090560000 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{9972496796510965357061 u^{3} Ξt^{5}}{8204334598036362240000 \\left(1 - u^{2}\\right)} + \\frac{9 u^{2} Ξt^{5} \\sqrt{1 - u^{2}} \\sin{\\left(t \\right)}}{10 \\left(u^{4} \\sqrt{1 - u^{2}} - 2 u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{86326046719459 u^{2} Ξt^{5} \\sqrt{1 - u^{2}} \\sin{\\left(t \\right)}}{34769245593600 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} + \\frac{14820522100151 u^{2} Ξt^{5} \\sin{\\left(t \\right)}}{17384622796800 u^{4} - 34769245593600 u^{2} + 17384622796800} - \\frac{10831818276999618281093 u^{2} Ξt^{5} \\sin{\\left(t \\right)}}{8204334598036362240000 \\left(1 - u^{2}\\right)} - \\frac{1886254549 u Ξt^{5} \\sqrt{1 - u^{2}}}{13414060800 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{826854427199 u Ξt^{5}}{386324951040} + \\frac{1886254549 u Ξt^{5} \\cos{\\left(t \\right)}}{13414060800 \\left(- u^{2} \\sqrt{1 - u^{2}} + \\sqrt{1 - u^{2}}\\right)} - \\frac{234341226128040406829 u Ξt^{5}}{482607917531550720000 \\left(1 - u^{2}\\right)} + \\frac{756545264265589533617 u Ξt^{5} \\cos{\\left(t \\right)}}{2051083649509090560000 \\sqrt{1 - u^{2}}} + \\frac{4162893696667 Ξt^{5} \\sin{\\left(t \\right)}}{2317949706240} + \\frac{3844175612059 Ξt^{5} \\sin{\\left(t \\right)}}{6953849118720 \\left(1 - u^{2}\\right)}\\right)\\end{equation*}$\n" | |
| ], | |
| "text/plain": [ | |
| " \n", | |
| " 8 5 \n", | |
| " 3β u β Ξt \n", | |
| "- βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + \n", | |
| " β ________ ________ ________ ________β \n", | |
| " β 6 β± 2 4 β± 2 2 β± 2 β± 2 β \n", | |
| " 16β β- u β β²β± 1 - u + 3β u β β²β± 1 - u - 3β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " ________ \n", | |
| " 6 5 β± 2 6 \n", | |
| " 3844175612059β u β Ξt β β²β± 1 - u 3β u β \n", | |
| "ββββββββββββββββββββββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββ\n", | |
| " β 6 4 2 β β ________ _______\n", | |
| "6953849118720β β- u + 3β u - 3β u + 1β β 6 β± 2 4 β± 2\n", | |
| " 8β β- u β β²β± 1 - u + 3β u β β²β± 1 - u \n", | |
| "\n", | |
| " \n", | |
| " 5 \n", | |
| "Ξt \n", | |
| "βββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββββββ\n", | |
| "_ ________ ________β ________ \n", | |
| " 2 β± 2 β± 2 β 4 β± 2 \n", | |
| " - 3β u β β²β± 1 - u + β²β± 1 - u β 42730909364772720000β u β β²β± 1 - u - 85\n", | |
| "\n", | |
| " \n", | |
| " 6 5 \n", | |
| " 902475437790052823β u β Ξt \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + βββββββ\n", | |
| " ________ ________ \n", | |
| " 2 β± 2 β± 2 4 \n", | |
| "461818729545440000β u β β²β± 1 - u + 42730909364772720000β β²β± 1 - u 80β u β β²\n", | |
| "\n", | |
| " \n", | |
| " 6 5 \n", | |
| " u β Ξt 54074\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββ\n", | |
| " ________ ________ ________ β ________\n", | |
| " β± 2 2 β± 2 β± 2 β 4 β± 2 \n", | |
| "β± 1 - u - 160β u β β²β± 1 - u + 80β β²β± 1 - u 13414060800β βu β β²β± 1 - u \n", | |
| "\n", | |
| " ________ \n", | |
| " 6 5 4 5 β± 2 \n", | |
| "45509β u β Ξt 3844175612059β u β Ξt β β²β± 1 - u \n", | |
| "ββββββββββββββββββββββββββββββββββ - ββββββββββββββββββββββββββββββββββββββ - \n", | |
| " ________ ________β β 6 4 2 β \n", | |
| " 2 β± 2 β± 2 β 6953849118720β β- u + 3β u - 3β u + 1β \n", | |
| " - 2β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 4 5 \n", | |
| " 3β u β Ξt \n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ - ββ\n", | |
| " β ________ ________ ________ ________β \n", | |
| " β 6 β± 2 4 β± 2 2 β± 2 β± 2 β \n", | |
| "16β β- u β β²β± 1 - u + 3β u β β²β± 1 - u - 3β u β β²β± 1 - u + β²β± 1 - u β 42\n", | |
| "\n", | |
| " \n", | |
| " 4 5 \n", | |
| " 902475437790052823β u β Ξt \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " ________ ________ \n", | |
| " 4 β± 2 2 β± 2 \n", | |
| "730909364772720000β u β β²β± 1 - u - 85461818729545440000β u β β²β± 1 - u + 4273\n", | |
| "\n", | |
| " \n", | |
| " 4 5 \n", | |
| " u β Ξt \n", | |
| "ββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " ________ ________ ________ \n", | |
| " β± 2 4 β± 2 2 β± 2 β±\n", | |
| "0909364772720000β β²β± 1 - u 80β u β β²β± 1 - u - 160β u β β²β± 1 - u + 80β β²β± \n", | |
| "\n", | |
| " \n", | |
| " 4 5 \n", | |
| " 8425609189β u β Ξt \n", | |
| "ββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + βββ\n", | |
| "________ β ________ ________ ________β \n", | |
| " 2 β 4 β± 2 2 β± 2 β± 2 β \n", | |
| " 1 - u 13414060800β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 - u β 241\n", | |
| "\n", | |
| " \n", | |
| " 4 5 \n", | |
| " 328105563238046242399β u β Ξt 9β \n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββ - ββββββββββββββββββββββββ\n", | |
| " β ________ ________β β ________ \n", | |
| " β 2 β± 2 β± 2 β β 4 β± 2 \n", | |
| "303958765775360000β β- u β β²β± 1 - u + β²β± 1 - u β 40β βu β β²β± 1 - u - 2β u\n", | |
| "\n", | |
| " \n", | |
| " 2 5 2 5 \n", | |
| "u β Ξt 3635043306271280591533β u β Ξt \n", | |
| "ββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " ________ ________β β ________ _\n", | |
| "2 β± 2 β± 2 β β 2 β± 2 β± \n", | |
| " β β²β± 1 - u + β²β± 1 - u β 4102167299018181120000β β- u β β²β± 1 - u + β²β± \n", | |
| "\n", | |
| " \n", | |
| " 2 5 5 \n", | |
| " 754418498879β u β Ξt 3β Ξt \n", | |
| "ββββββββ + ββββββββββββββββββββββββ - βββββββββββββββββββββββββββββββββββ - ββ\n", | |
| "_______β ________ β ________ ________β \n", | |
| " 2 β β± 2 β 2 β± 2 β± 2 β \n", | |
| "1 - u β 772649902080β β²β± 1 - u 80β β- u β β²β± 1 - u + β²β± 1 - u β 69\n", | |
| "\n", | |
| " β \n", | |
| " 5 β 5 5 β β \n", | |
| " 3844175612059β Ξt 5 βuβ Ξt Ξt β sin(t)β 4 β \n", | |
| "βββββββββββββββββββββββ + Ξ» β ββββββ - βββββββββββ + Ξ» β β- ββββββββββββββββββββ\n", | |
| " ________ β 80 80 β β β ________\n", | |
| " β± 2 β β 6 β± 2 \n", | |
| "53849118720β β²β± 1 - u β 16β β- u β β²β± 1 - u \n", | |
| "\n", | |
| " \n", | |
| " 8 5 \n", | |
| " 3β u β Ξt \n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββ\n", | |
| " ________ ________ ________β β ________ \n", | |
| " 4 β± 2 2 β± 2 β± 2 β β 6 β± 2 \n", | |
| " + 3β u β β²β± 1 - u - 3β u β β²β± 1 - u + β²β± 1 - u β 4β β- u β β²β± 1 - u + \n", | |
| "\n", | |
| " \n", | |
| " 7 5 \n", | |
| " 3β u β Ξt β sin(t) \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββ - βββββββββββββββββββββββββ\n", | |
| " ________ ________ ________β β ________ \n", | |
| " 4 β± 2 2 β± 2 β± 2 β β 6 β± 2 \n", | |
| "3β u β β²β± 1 - u - 3β u β β²β± 1 - u + β²β± 1 - u β 8β β- u β β²β± 1 - u + 3β u\n", | |
| "\n", | |
| " \n", | |
| " 6 5 2 \n", | |
| " 9β u β Ξt β sin (t) 540744\n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββ - ββββββββββββββββββββββββββββ\n", | |
| " ________ ________ ________β β ________ \n", | |
| "4 β± 2 2 β± 2 β± 2 β β 4 β± 2 \n", | |
| " β β²β± 1 - u - 3β u β β²β± 1 - u + β²β± 1 - u β 13414060800β βu β β²β± 1 - u \n", | |
| "\n", | |
| " \n", | |
| " 6 5 5 5 3 \n", | |
| "5509β u β Ξt 3β u β Ξt β sin (\n", | |
| "βββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " ________ ________β β ________ ________ \n", | |
| " 2 β± 2 β± 2 β β 6 β± 2 4 β± 2 \n", | |
| "- 2β u β β²β± 1 - u + β²β± 1 - u β 4β β- u β β²β± 1 - u + 3β u β β²β± 1 - u - 3\n", | |
| "\n", | |
| " \n", | |
| " 5 5 \n", | |
| "t) 6413500069β u β Ξt β sin(t) \n", | |
| "ββββββββββββββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " ________ ________β β ________ ________\n", | |
| " 2 β± 2 β± 2 β β 4 β± 2 2 β± 2 \n", | |
| "β u β β²β± 1 - u + β²β± 1 - u β 4471353600β βu β β²β± 1 - u - 2β u β β²β± 1 - u \n", | |
| "\n", | |
| " \n", | |
| " 4 5 4 \n", | |
| " 3β u β Ξt β sin (t) \n", | |
| "βββββββββββββββ - ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " ________β β ________ ________ ________ \n", | |
| " β± 2 β β 6 β± 2 4 β± 2 2 β± 2 \n", | |
| " + β²β± 1 - u β 16β β- u β β²β± 1 - u + 3β u β β²β± 1 - u - 3β u β β²β± 1 - u +\n", | |
| "\n", | |
| " \n", | |
| " 4 5 2 \n", | |
| " 8425609189β u β Ξt β sin (t) \n", | |
| "βββββββββββββ - ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ +\n", | |
| " ________β β ________ ________ ________β \n", | |
| " β± 2 β β 4 β± 2 2 β± 2 β± 2 β \n", | |
| " β²β± 1 - u β 4471353600β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 4 5 \n", | |
| " 357614120019468965321β u β Ξt 1\n", | |
| " βββββββββββββββββββββββββββββββββββββββββββββββββββββββ + βββββββββββββββββββ\n", | |
| " β ________ ________β β \n", | |
| " β 2 β± 2 β± 2 β β 4 β±\n", | |
| " 2051083649509090560000β β- u β β²β± 1 - u + β²β± 1 - u β 13414060800β βu β β²β± \n", | |
| "\n", | |
| " \n", | |
| " 3 5 3 \n", | |
| "4461936549β u β Ξt β sin (t) 98031318961151965421β u\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββββββββ\n", | |
| "________ ________ ________β β _\n", | |
| " 2 2 β± 2 β± 2 β β 2 β± \n", | |
| " 1 - u - 2β u β β²β± 1 - u + β²β± 1 - u β 1025541824754545280000β β- u β β²β± \n", | |
| "\n", | |
| " \n", | |
| "3 5 2 5 4 \n", | |
| " β Ξt β sin(t) 9β u β Ξt β sin (t) \n", | |
| "ββββββββββββββββββββββ - ββββββββββββββββββββββββββββββββββββββββββββββββββββ \n", | |
| "_______ ________β β ________ ________ ________β \n", | |
| " 2 β± 2 β β 4 β± 2 2 β± 2 β± 2 β \n", | |
| "1 - u + β²β± 1 - u β 40β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 2 5 2 \n", | |
| " 757632721070389930279β u β Ξt β sin (t) 697309902804057\n", | |
| "- βββββββββββββββββββββββββββββββββββββββββββββββββββββββ + ββββββββββββββββββ\n", | |
| " β ________ ________β \n", | |
| " β 2 β± 2 β± 2 β \n", | |
| " 2051083649509090560000β β- u β β²β± 1 - u + β²β± 1 - u β 205108364950909056\n", | |
| "\n", | |
| " \n", | |
| " 2 5 5 3 \n", | |
| "541121β u β Ξt 4401390949β uβ Ξt β sin (t) 748586994041\n", | |
| "ββββββββββββββββ + ββββββββββββββββββββββββββββββββββββββββββββ - ββββββββββββ\n", | |
| " ________ β ________ ________β \n", | |
| " β± 2 β 2 β± 2 β± 2 β \n", | |
| "0000β β²β± 1 - u 13414060800β β- u β β²β± 1 - u + β²β± 1 - u β 102554182475\n", | |
| "\n", | |
| " ________ \n", | |
| " 5 5 β± 2 5 5 4 \n", | |
| "784805121β uβ Ξt β sin(t) Ξt β β²β± 1 - u Ξt β cos(t) 3β Ξt β sin (\n", | |
| "ββββββββββββββββββββββ + βββββββββββββββ - ββββββββββ - ββββββββββββββββββββββ\n", | |
| " ________ 80 80 β ________ \n", | |
| " β± 2 β 2 β± 2 \n", | |
| "4545280000β β²β± 1 - u 80β β- u β β²β± 1 - u +\n", | |
| "\n", | |
| " β β \n", | |
| " 5 2 β β \n", | |
| "t) 799864085279512069121β Ξt β sin (t) β 3 β \n", | |
| "βββββββββββββ + βββββββββββββββββββββββββββββββββββ + Ξ» β β- ββββββββββββββββββ\n", | |
| " ________β ________β β β _______\n", | |
| " β± 2 β β± 2 β β β 6 β± 2\n", | |
| " β²β± 1 - u β 2051083649509090560000β β²β± 1 - u β β 4β β- u β β²β± 1 - u \n", | |
| "\n", | |
| " ________ \n", | |
| " 7 5 β± 2 \n", | |
| " 3β u β Ξt β β²β± 1 - u 384417561205\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββ - βββββββββββββββββββββ\n", | |
| "_ ________ ________ ________β β 6 \n", | |
| " 4 β± 2 2 β± 2 β± 2 β 6953849118720β β- u +\n", | |
| " + 3β u β β²β± 1 - u - 3β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 7 5 7 5 \n", | |
| "9β u β Ξt 3β u β Ξt 18\n", | |
| "βββββββββββββββββ + ββββββββββββββββββββββββββββββ + βββββββββββββββββββββββββ\n", | |
| " 4 2 β 6 4 2 6 \n", | |
| " 3β u - 3β u + 1β - 80β u + 240β u - 240β u + 80 - 13414060800β u + 402421\n", | |
| " \n", | |
| "\n", | |
| " __\n", | |
| " 7 5 6 5 β± \n", | |
| "86254549β u β Ξt 9β u β Ξt β β²β± 1\n", | |
| "βββββββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββ\n", | |
| " 4 2 β ________ ______\n", | |
| "82400β u - 40242182400β u + 13414060800 β 6 β± 2 4 β± \n", | |
| " 4β β- u β β²β± 1 - u + 3β u β β²β± 1 - u\n", | |
| "\n", | |
| "______ \n", | |
| " 2 6 5 \n", | |
| " - u β sin(t) 3844175612059β u β Ξt β sin(t) \n", | |
| "ββββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββββ \n", | |
| "__ ________ ________β β 6 4 2 β \n", | |
| "2 2 β± 2 β± 2 β 2317949706240β β- u + 3β u - 3β u + 1β \n", | |
| " - 3β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 6 5 6 5 \n", | |
| " 9β u β Ξt β sin(t) 5658763647β u β Ξt β sin(t\n", | |
| "- ββββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 6 4 2 6 4 \n", | |
| " - 80β u + 240β u - 240β u + 80 - 13414060800β u + 40242182400β u - 4024218\n", | |
| " \n", | |
| "\n", | |
| " ________ \n", | |
| " 5 5 β± 2 2 \n", | |
| ") 9β u β Ξt β β²β± 1 - u β sin (t) \n", | |
| "βββββββββββββββββββββ - ββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 2 β ________ ________ _____\n", | |
| "2400β u + 13414060800 β 6 β± 2 4 β± 2 2 β± \n", | |
| " 4β β- u β β²β± 1 - u + 3β u β β²β± 1 - u - 3β u β β²β± 1 - \n", | |
| "\n", | |
| " ________ \n", | |
| " 5 5 β± 2 \n", | |
| " 6413500069β u β Ξt β β²β± 1 - u \n", | |
| "ββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "___ ________β β ________ ________ ______\n", | |
| " 2 β± 2 β β 4 β± 2 2 β± 2 β± \n", | |
| "u + β²β± 1 - u β 4471353600β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 - u\n", | |
| "\n", | |
| " \n", | |
| " 5 5 2 5 5 2 \n", | |
| " 3844175612059β u β Ξt β sin (t) 9β u β Ξt β sin (t) \n", | |
| "βββ - ββββββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββ \n", | |
| "__β β 6 4 2 β 6 4 2 \n", | |
| "2 β 2317949706240β β- u + 3β u - 3β u + 1β - 80β u + 240β u - 240β u + 80 \n", | |
| " β \n", | |
| "\n", | |
| " \n", | |
| " 5 5 2 \n", | |
| " 5658763647β u β Ξt β sin (t) \n", | |
| "+ ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + βββββββββ\n", | |
| " 6 4 2 \n", | |
| " - 13414060800β u + 40242182400β u - 40242182400β u + 13414060800 \n", | |
| " 134140608\n", | |
| "\n", | |
| " \n", | |
| " 5 5 \n", | |
| " 1886254549β u β Ξt β cos(t) \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββ + βββββββββββββββββββββββ\n", | |
| " β ________ ________ ________β 4\n", | |
| " β 4 β± 2 2 β± 2 β± 2 β 21365454682386360000β u \n", | |
| "00β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 5 5 \n", | |
| "902475437790052823β u β Ξt 1634167659\n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββ - ββββββββββββββββββββββββββ\n", | |
| " 2 4 \n", | |
| " - 42730909364772720000β u + 21365454682386360000 17384622796800β u - 347692\n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " 5 5 5 5 \n", | |
| "4871β u β Ξt 105199674209β u β Ξt \n", | |
| "ββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 2 4 2 \n", | |
| "45593600β u + 17384622796800 124175877120β u - 248351754240β u + 12417587712\n", | |
| " \n", | |
| "\n", | |
| " ________ \n", | |
| " 5 5 4 5 β± 2 3 \n", | |
| " 3β u β Ξt 3β u β Ξt β β²β± 1 - u β sin (t) \n", | |
| "β + βββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 4 2 β ________ ________ ___\n", | |
| "0 80β u - 160β u + 80 β 6 β± 2 4 β± 2 2 β± \n", | |
| " 4β β- u β β²β± 1 - u + 3β u β β²β± 1 - u - 3β u β β²β± 1 \n", | |
| "\n", | |
| " ________ \n", | |
| " 4 5 β± 2 \n", | |
| " 8425609189β u β Ξt β β²β± 1 - u β sin(t) \n", | |
| "ββββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "_____ ________β β ________ ________ ____\n", | |
| " 2 β± 2 β β 4 β± 2 2 β± 2 β± \n", | |
| "- u + β²β± 1 - u β 2235676800β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 -\n", | |
| "\n", | |
| " \n", | |
| " 4 5 3 4 5 3 \n", | |
| " 3844175612059β u β Ξt β sin (t) 3β u β Ξt β sin (t) \n", | |
| "βββββ + ββββββββββββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββββ\n", | |
| "____β β 6 4 2 β 6 4 2 \n", | |
| " 2 β 6953849118720β β- u + 3β u - 3β u + 1β - 80β u + 240β u - 240β u + 8\n", | |
| " u β \n", | |
| "\n", | |
| " \n", | |
| " 4 5 3 \n", | |
| " 1886254549β u β Ξt β sin (t) \n", | |
| "β - ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ - βββββββ\n", | |
| " 6 4 2 \n", | |
| "0 - 13414060800β u + 40242182400β u - 40242182400β u + 13414060800 \n", | |
| " 6707030\n", | |
| "\n", | |
| " \n", | |
| " 4 5 \n", | |
| " 1886254549β u β Ξt β sin(t)β cos(t) 90\n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββββ - ββββββββββββββββββββββ\n", | |
| " β ________ ________ ________β \n", | |
| " β 4 β± 2 2 β± 2 β± 2 β 10682727341193180000β u\n", | |
| "400β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 4 5 \n", | |
| "2475437790052823β u β Ξt β sin(t) 494596453545\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββ + βββββββββββββββββββββββββ\n", | |
| "4 2 4 \n", | |
| " - 21365454682386360000β u + 10682727341193180000 17384622796800β u - 34769\n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " 4 5 4 5 \n", | |
| "33β u β Ξt β sin(t) 105199674209β u β Ξt β sin(t) \n", | |
| "βββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 2 4 2 \n", | |
| "245593600β u + 17384622796800 62087938560β u - 124175877120β u + 62087938560\n", | |
| " \n", | |
| "\n", | |
| " ________ \n", | |
| " 4 5 3 5 β± 2 2 \n", | |
| " 9β u β Ξt β sin(t) 14461936549β u β Ξt β β²β± 1 - u β sin (t) \n", | |
| " - βββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 4 2 β ________ ________ __\n", | |
| " 80β u - 160β u + 80 β 4 β± 2 2 β± 2 β± \n", | |
| " 4471353600β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1\n", | |
| "\n", | |
| " ________ \n", | |
| " 3 5 β± 2 \n", | |
| " 98031318961151965421β u β Ξt β β²β± 1 - u \n", | |
| "βββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββββ + ββββββββββ\n", | |
| "______β β ________ ________β \n", | |
| " 2 β β 2 β± 2 β± 2 β \n", | |
| " - u β 1025541824754545280000β β- u β β²β± 1 - u + β²β± 1 - u β 1341406080\n", | |
| "\n", | |
| " \n", | |
| " 3 5 2 \n", | |
| " 1886254549β u β Ξt β sin (t)β cos(t) 90247\n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββ\n", | |
| " β ________ ________ ________β 4 \n", | |
| " β 4 β± 2 2 β± 2 β± 2 β 21365454682386360000β u \n", | |
| "0β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 3 5 2 \n", | |
| "5437790052823β u β Ξt β sin (t) 49894260924453β \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββ\n", | |
| " 2 4 \n", | |
| "- 42730909364772720000β u + 21365454682386360000 17384622796800β u - 3476924\n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " 3 5 2 3 5 2 \n", | |
| "u β Ξt β sin (t) 105199674209β u β Ξt β sin (t) \n", | |
| "βββββββββββββββββββββββββββ - ββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 2 4 2 \n", | |
| "5593600β u + 17384622796800 124175877120β u - 248351754240β u + 124175877120\n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " 3 5 2 3 5 \n", | |
| " 9β u β Ξt β sin (t) 493765118337591853817β u β Ξt β cos(t) \n", | |
| " + βββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 4 2 β ________ _______\n", | |
| " 80β u - 160β u + 80 β 2 β± 2 β± 2\n", | |
| " 2051083649509090560000β β- u β β²β± 1 - u + β²β± 1 - u \n", | |
| "\n", | |
| " ________ \n", | |
| " 3 5 2 5 β± 2 3 \n", | |
| " 10319047364622345641093β u β Ξt 9β u β Ξt β β²β± 1 - u β sin (t\n", | |
| "ββ - βββββββββββββββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββββ\n", | |
| "_β β 2β β ________ ________ \n", | |
| " β 8204334598036362240000β β1 - u β β 4 β± 2 2 β± 2 \n", | |
| " β 10β βu β β²β± 1 - u - 2β u β β²β± 1 - u +\n", | |
| "\n", | |
| " ________ \n", | |
| " 2 5 β± 2 \n", | |
| ") 757632721070389930279β u β Ξt β β²β± 1 - u β sin(t) \n", | |
| "βββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββββ + ββββ\n", | |
| " ________β β ________ ________β \n", | |
| " β± 2 β β 2 β± 2 β± 2 β 1738\n", | |
| " β²β± 1 - u β 1025541824754545280000β β- u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 2 5 3 2 5 3 \n", | |
| " 16776292164791β u β Ξt β sin (t) 3β u β Ξt β sin (t) \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββ - βββββββββββββββββββ + βββ\n", | |
| " 4 2 4 2 \n", | |
| "4622796800β u - 34769245593600β u + 17384622796800 80β u - 160β u + 80 \n", | |
| " 120\n", | |
| "\n", | |
| " \n", | |
| " 2 5 \n", | |
| " 12079201575925326001β u β Ξt β sin(t)β cos(t) 25788879601336394706311β \n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββ\n", | |
| " β ________ ________β \n", | |
| " β 2 β± 2 β± 2 β 820433459803636224000\n", | |
| "651979382887680000β β- u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " ________ \n", | |
| " 2 5 5 β± 2 2 \n", | |
| "u β Ξt β sin(t) 4401390949β uβ Ξt β β²β± 1 - u β sin (t) 7485869940417848\n", | |
| "βββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββ + ββββββββββββββββ\n", | |
| " β 2β β ________ ________β 1025541824754\n", | |
| "0β β1 - u β β 2 β± 2 β± 2 β \n", | |
| " 4471353600β β- u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 5 5 2 \n", | |
| "05121β uβ Ξt 1886254549β uβ Ξt β sin (t)β cos(t) 20005292013953025\n", | |
| "βββββββββββ + ββββββββββββββββββββββββββββββββββββββββββββ - βββββββββββββββββ\n", | |
| "545280000 β ________ ________β \n", | |
| " β 2 β± 2 β± 2 β 82043345980363\n", | |
| " 13414060800β β- u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " ____\n", | |
| " 5 2 5 5 β± \n", | |
| "321343β uβ Ξt β sin (t) 705268173027862269617β uβ Ξt β cos(t) 3β Ξt β β²β± 1 -\n", | |
| "ββββββββββββββββββββ - ββββββββββββββββββββββββββββββββββ + ββββββββββββββββββ\n", | |
| " β 2β ________ β ______\n", | |
| "62240000β β1 - u β β± 2 β 2 β± \n", | |
| " 2051083649509090560000β β²β± 1 - u 20β β- u β β²β± 1 - u\n", | |
| "\n", | |
| "____ \n", | |
| " 2 3 5 5 3 \n", | |
| " u β sin (t) 787044812470080253121β Ξt β sin(t) 3844175612059β Ξt β sin (\n", | |
| "βββββββββββββββββ - ββββββββββββββββββββββββββββββββ + βββββββββββββββββββββββ\n", | |
| "__ ________β 1025541824754545280000 β 2\n", | |
| "2 β± 2 β 6953849118720β β1 - u \n", | |
| " + β²β± 1 - u β \n", | |
| "\n", | |
| " β β \n", | |
| " 5 β β \n", | |
| "t) 782183809884453165617β Ξt β sin(t)β cos(t)β 2 β \n", | |
| "ββ + ββββββββββββββββββββββββββββββββββββββββ + Ξ» β βββββββββββββββββββββββββββ\n", | |
| "β ________ β β β ________ \n", | |
| "β β± 2 β β β 6 β± 2 4\n", | |
| " 2051083649509090560000β β²β± 1 - u β β8β β- u β β²β± 1 - u + 3β u \n", | |
| "\n", | |
| " \n", | |
| " 8 5 \n", | |
| " 9β u β Ξt 9\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββββ\n", | |
| " ________ ________ ________β β ________ \n", | |
| " β± 2 2 β± 2 β± 2 β β 6 β± 2 4 \n", | |
| "β β²β± 1 - u - 3β u β β²β± 1 - u + β²β± 1 - u β 4β β- u β β²β± 1 - u + 3β u β β²β±\n", | |
| "\n", | |
| " _____\n", | |
| " 7 5 6 5 β± \n", | |
| "β u β Ξt β sin(t) 3844175612059β u β Ξt β β²β± 1 - \n", | |
| "βββββββββββββββββββββββββββββββββββββββββββ - ββββββββββββββββββββββββββββββββ\n", | |
| " ________ ________ ________β β 6 4 \n", | |
| "β± 2 2 β± 2 β± 2 β 2317949706240β β- u + 3β u - 3β u\n", | |
| " 1 - u - 3β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| "___ \n", | |
| " 2 6 5 2 \n", | |
| "u 9β u β Ξt β sin (t) \n", | |
| "ββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "2 β β ________ ________ ________ ______\n", | |
| " + 1β β 6 β± 2 4 β± 2 2 β± 2 β± \n", | |
| " 8β β- u β β²β± 1 - u + 3β u β β²β± 1 - u - 3β u β β²β± 1 - u + β²β± 1 - u\n", | |
| "\n", | |
| " \n", | |
| " 6 5 \n", | |
| " 9β u β Ξt \n", | |
| "βββ - ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "__β β ________ ________ ________ ________β\n", | |
| "2 β β 6 β± 2 4 β± 2 2 β± 2 β± 2 β\n", | |
| " β 8β β- u β β²β± 1 - u + 3β u β β²β± 1 - u - 3β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 6 5 \n", | |
| " 902475437790052823β u β Ξt \n", | |
| " - βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " ________ ________ \n", | |
| " 4 β± 2 2 β± 2 \n", | |
| " 42730909364772720000β u β β²β± 1 - u - 85461818729545440000β u β β²β± 1 - u +\n", | |
| "\n", | |
| " \n", | |
| " \n", | |
| " 1051996742\n", | |
| "βββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " ________ ________ \n", | |
| " β± 2 4 β± 2 \n", | |
| " 42730909364772720000β β²β± 1 - u 248351754240β u β β²β± 1 - u - 496703508480\n", | |
| "\n", | |
| " \n", | |
| " 6 5 6 5 \n", | |
| "09β u β Ξt u β Ξt \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββββββββ\n", | |
| " ________ ________ ________ ___\n", | |
| " 2 β± 2 β± 2 4 β± 2 2 β± \n", | |
| "β u β β²β± 1 - u + 248351754240β β²β± 1 - u 80β u β β²β± 1 - u - 160β u β β²β± 1 \n", | |
| "\n", | |
| " \n", | |
| " 6 5 \n", | |
| " 5407445509β u β Ξt \n", | |
| "ββββββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "_____ ________ β ________ ________ __\n", | |
| " 2 β± 2 β 4 β± 2 2 β± 2 β± \n", | |
| "- u + 80β β²β± 1 - u 2235676800β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1\n", | |
| "\n", | |
| " ________ \n", | |
| " 5 5 β± 2 \n", | |
| " 3844175612059β u β Ξt β β²β± 1 - u β sin(t) \n", | |
| "βββββββ + βββββββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββ\n", | |
| "______β β 6 4 2 β β ________ \n", | |
| " 2 β 1158974853120β β- u + 3β u - 3β u + 1β β 6 β± 2 4\n", | |
| " - u β 4β β- u β β²β± 1 - u + 3β u \n", | |
| "\n", | |
| " \n", | |
| " 5 5 \n", | |
| " 9β u β Ξt β sin(t) \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββ + βββββββββββββββββββββββββββββ\n", | |
| " ________ ________ ________β __\n", | |
| " β± 2 2 β± 2 β± 2 β 4 β± \n", | |
| "β β²β± 1 - u - 3β u β β²β± 1 - u + β²β± 1 - u β 21365454682386360000β u β β²β± 1\n", | |
| "\n", | |
| " \n", | |
| " 5 5 \n", | |
| " 902475437790052823β u β Ξt β sin(t) \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "______ ________ _______\n", | |
| " 2 2 β± 2 β± 2\n", | |
| " - u - 42730909364772720000β u β β²β± 1 - u + 21365454682386360000β β²β± 1 - u \n", | |
| "\n", | |
| " \n", | |
| " 5 5 \n", | |
| " 105199674209β u β Ξt β sin(t) \n", | |
| "β - ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "_ ________ ________ \n", | |
| " 4 β± 2 2 β± 2 \n", | |
| " 124175877120β u β β²β± 1 - u - 248351754240β u β β²β± 1 - u + 124175877120β β²\n", | |
| "\n", | |
| " \n", | |
| " 5 5 \n", | |
| " 2β u β Ξt β sin(t) \n", | |
| "ββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββββ - βββββββ\n", | |
| " ________ ________ ________ ________ \n", | |
| " β± 2 4 β± 2 2 β± 2 β± 2 \n", | |
| "β± 1 - u 80β u β β²β± 1 - u - 160β u β β²β± 1 - u + 80β β²β± 1 - u 1490451\n", | |
| "\n", | |
| " \n", | |
| " 5 5 4 5 \n", | |
| " 6413500069β u β Ξt β sin(t) 3844175612059β u β Ξt β β²\n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββββ - ββββββββββββββββββββββ\n", | |
| " β ________ ________ ________β β 6 \n", | |
| " β 4 β± 2 2 β± 2 β± 2 β 2317949706240β β- u +\n", | |
| "200β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " ________ ________ \n", | |
| " β± 2 2 4 5 β± 2 \n", | |
| "β± 1 - u β sin (t) 1886254549β u β Ξt β β²β± 1 - u β cos(t) \n", | |
| "ββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 4 2 β β ________ ________ ______\n", | |
| " 3β u - 3β u + 1β β 4 β± 2 2 β± 2 β± \n", | |
| " 6707030400β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 - u\n", | |
| "\n", | |
| " \n", | |
| " 4 5 2 \n", | |
| " 9β u β Ξt β sin (t) \n", | |
| "βββ - ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "__β β ________ ________ ________ ________β\n", | |
| "2 β β 6 β± 2 4 β± 2 2 β± 2 β± 2 β\n", | |
| " β 8β β- u β β²β± 1 - u + 3β u β β²β± 1 - u - 3β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 4 5 2 \n", | |
| " 902475437790052823β u β Ξt β sin (t) \n", | |
| " - βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " ________ ________ \n", | |
| " 4 β± 2 2 β± 2 \n", | |
| " 42730909364772720000β u β β²β± 1 - u - 85461818729545440000β u β β²β± 1 - u +\n", | |
| "\n", | |
| " \n", | |
| " \n", | |
| " 105199674209β u\n", | |
| "βββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " ________ ________ \n", | |
| " β± 2 4 β± 2 \n", | |
| " 42730909364772720000β β²β± 1 - u 248351754240β u β β²β± 1 - u - 496703508480\n", | |
| "\n", | |
| " \n", | |
| "4 5 2 4 5 2 \n", | |
| " β Ξt β sin (t) u β Ξt β sin (\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββββββββ\n", | |
| " ________ ________ ________ ___\n", | |
| " 2 β± 2 β± 2 4 β± 2 2 β± \n", | |
| "β u β β²β± 1 - u + 248351754240β β²β± 1 - u 80β u β β²β± 1 - u - 160β u β β²β± 1 \n", | |
| "\n", | |
| " \n", | |
| " 4 5 2 \n", | |
| "t) 8425609189β u β Ξt β sin (t) \n", | |
| "ββββββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "_____ ________ β ________ ________ __\n", | |
| " 2 β± 2 β 4 β± 2 2 β± 2 β± \n", | |
| "- u + 80β β²β± 1 - u 4471353600β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1\n", | |
| "\n", | |
| " \n", | |
| " 4 5 \n", | |
| " 8425609189β u β Ξt \n", | |
| "βββββββ - ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + βββββ\n", | |
| "______β β ________ ________ ________β \n", | |
| " 2 β β 4 β± 2 2 β± 2 β± 2 β 20510\n", | |
| " - u β 4471353600β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 4 5 \n", | |
| " 782183809884453165617β u β Ξt β cos(t) \n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ - ββ\n", | |
| " 4 2 \n", | |
| "83649509090560000β u - 4102167299018181120000β u + 2051083649509090560000 \n", | |
| " 41\n", | |
| "\n", | |
| " \n", | |
| " 4 5 3 \n", | |
| " 14903400795783417131743β u β Ξt 1886254549β u β \n", | |
| "βββββββββββββββββββββββββββββββββββββββββββββββββββββ - ββββββββββββββββββββββ\n", | |
| " β ________ ________β β ____\n", | |
| " β 2 β± 2 β± 2 β β 4 β± \n", | |
| "02167299018181120000β β- u β β²β± 1 - u + β²β± 1 - u β 6707030400β βu β β²β± 1 -\n", | |
| "\n", | |
| " ________ \n", | |
| " 5 β± 2 3 5 \n", | |
| "Ξt β β²β± 1 - u β sin(t)β cos(t) 14461936549β u β Ξt β s\n", | |
| "ββββββββββββββββββββββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββ\n", | |
| "____ ________ ________β β ________ \n", | |
| " 2 2 β± 2 β± 2 β β 4 β± 2 2 β±\n", | |
| " u - 2β u β β²β± 1 - u + β²β± 1 - u β 4471353600β βu β β²β± 1 - u - 2β u β β²β± \n", | |
| "\n", | |
| " \n", | |
| " 3 5 \n", | |
| "in(t) 782183809884453165617β u β Ξt β sin(t\n", | |
| "βββββββββββββββββββββββ - ββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "________ ________β 4 \n", | |
| " 2 β± 2 β 2051083649509090560000β u - 4102167299018181120000β u\n", | |
| " 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 3 5 \n", | |
| ")β cos(t) 48926120124603963505793β u β Ξt β sin(t) \n", | |
| "ββββββββββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "2 β ________ ___\n", | |
| " + 2051083649509090560000 β 2 β± 2 β± \n", | |
| " 8204334598036362240000β β- u β β²β± 1 - u + β²β± 1 \n", | |
| "\n", | |
| " ________ \n", | |
| " 2 5 β± 2 \n", | |
| " 12079201575925326001β u β Ξt β β²β± 1 - u β cos(t) \n", | |
| "ββββββ - ββββββββββββββββββββββββββββββββββββββββββββββββββββββ - ββββββββββββ\n", | |
| "_____β β ________ ________β β __\n", | |
| " 2 β β 2 β± 2 β± 2 β β 4 β± \n", | |
| "- u β 120651979382887680000β β- u β β²β± 1 - u + β²β± 1 - u β 20β βu β β²β± 1\n", | |
| "\n", | |
| " \n", | |
| " 2 5 2 2\n", | |
| " 27β u β Ξt β sin (t) 22318774874155177518791β u \n", | |
| "ββββββββββββββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββββββββββ\n", | |
| "______ ________ ________β β ___\n", | |
| " 2 2 β± 2 β± 2 β β 2 β± \n", | |
| " - u - 2β u β β²β± 1 - u + β²β± 1 - u β 8204334598036362240000β β- u β β²β± 1 \n", | |
| "\n", | |
| " \n", | |
| " 5 2 2 5 2 \n", | |
| "β Ξt β sin (t) 902475437790052823β u β Ξt β cos (t) \n", | |
| "ββββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββββββββββββ -\n", | |
| "_____ ________β β ________ ________β \n", | |
| " 2 β± 2 β β 2 β± 2 β± 2 β \n", | |
| "- u + β²β± 1 - u β 42730909364772720000β β- u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 2 5 \n", | |
| " 757632721070389930279β u β Ξt 7052681730278622696\n", | |
| " βββββββββββββββββββββββββββββββββββββββββββββββββββββββ + βββββββββββββββββββ\n", | |
| " β ________ ________β \n", | |
| " β 2 β± 2 β± 2 β 20510836495090905\n", | |
| " 2051083649509090560000β β- u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " _\n", | |
| " 2 5 2 5 5 β± \n", | |
| "17β u β Ξt β cos(t) 5102610026961050007259β u β Ξt 1886254549β uβ Ξt β β²β± \n", | |
| "ββββββββββββββββ - ββββββββββββββββββββββββββββββββββ - ββββββββββββββββββββββ\n", | |
| " β 2β ________ β __\n", | |
| "60000β β1 - u β β± 2 β 2 β± \n", | |
| " 1640866919607272448000β β²β± 1 - u 6707030400β β- u β β²β± 1\n", | |
| "\n", | |
| "_______ \n", | |
| " 2 5 \n", | |
| "1 - u β sin(t)β cos(t) 4401390949β uβ Ξt β sin(t) 78218380\n", | |
| "βββββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββ - ββββββββ\n", | |
| "______ ________β β ________ ________β \n", | |
| " 2 β± 2 β β 2 β± 2 β± 2 β 205\n", | |
| " - u + β²β± 1 - u β 4471353600β β- u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 5 5 \n", | |
| "9884453165617β uβ Ξt β sin(t)β cos(t) 14780311813398039280937β uβ Ξt β sin(t) 105\n", | |
| "βββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββ + βββ\n", | |
| " β 2β ________ \n", | |
| "1083649509090560000β β1 - u β β± 2 \n", | |
| " 2734778199345454080000β β²β± 1 - u \n", | |
| "\n", | |
| " ________ \n", | |
| " 5 β± 2 5 \n", | |
| "199674209β Ξt β β²β± 1 - u 756545264265589533617β Ξt β cos(t) 9β Ξt\n", | |
| "βββββββββββββββββββββββββ - ββββββββββββββββββββββββββββββββ - βββββββββββββββ\n", | |
| " 248351754240 2051083649509090560000 β ___\n", | |
| " β 2 β± \n", | |
| " 40β β- u β β²β± 1 \n", | |
| "\n", | |
| " \n", | |
| "5 2 5 2 5 \n", | |
| " β sin (t) 3844175612059β Ξt β sin (t) 902475437790052823β Ξt β cos\n", | |
| "ββββββββββββββββββββ - βββββββββββββββββββββββββ - βββββββββββββββββββββββββββ\n", | |
| "_____ ________β ________ ___\n", | |
| " 2 β± 2 β β± 2 β± \n", | |
| "- u + β²β± 1 - u β 1738462279680β β²β± 1 - u 42730909364772720000β β²β± 1 \n", | |
| "\n", | |
| " β β \n", | |
| "2 5 β β 7 \n", | |
| " (t) 1436611804849711823β Ξt β β 3β u β \n", | |
| "βββββ - βββββββββββββββββββββββββββββββββ + Ξ»β ββββββββββββββββββββββββββββββββ\n", | |
| "_____ ________β β β ________ _\n", | |
| " 2 β± 2 β β β 6 β± 2 4 β± \n", | |
| "- u 42730909364772720000β β²β± 1 - u β β4β β- u β β²β± 1 - u + 3β u β β²β± \n", | |
| "\n", | |
| " ________ \n", | |
| " 5 β± 2 7 5 \n", | |
| "Ξt β β²β± 1 - u 3844175612059β u β Ξt \n", | |
| "βββββββββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββ\n", | |
| "_______ ________ ________β β 6 4 2 \n", | |
| " 2 2 β± 2 β± 2 β 2317949706240β β- u + 3β u - 3β u \n", | |
| "1 - u - 3β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 7 5 \n", | |
| " 3395336389β u β Ξt \n", | |
| "ββββ - ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ - ββββ\n", | |
| " β 6 4 2 β \n", | |
| "+ 1β - 13414060800β u + 40242182400β u - 40242182400β u + 13414060800 β \n", | |
| " 4β β-\n", | |
| "\n", | |
| " ________ \n", | |
| " 6 5 β± 2 \n", | |
| " 3β u β Ξt β β²β± 1 - u β sin(t) 38\n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ - βββββββ\n", | |
| " ________ ________ ________ ________β \n", | |
| " 6 β± 2 4 β± 2 2 β± 2 β± 2 β 2317949\n", | |
| " u β β²β± 1 - u + 3β u β β²β± 1 - u - 3β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 6 5 6 5 \n", | |
| "44175612059β u β Ξt β sin(t) 3395336389β u β Ξt β sin(t)\n", | |
| "βββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " β 6 4 2 β 6 4 \n", | |
| "706240β β- u + 3β u - 3β u + 1β - 13414060800β u + 40242182400β u - 40242182\n", | |
| " \n", | |
| "\n", | |
| " ________ \n", | |
| " 5 5 β± 2 \n", | |
| " 3β u β Ξt β β²β± 1 - u \n", | |
| "ββββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 2 β ________ ________ ______\n", | |
| "400β u + 13414060800 β 6 β± 2 4 β± 2 2 β± \n", | |
| " 4β β- u β β²β± 1 - u + 3β u β β²β± 1 - u - 3β u β β²β± 1 - u\n", | |
| "\n", | |
| " ________ \n", | |
| " 5 5 β± 2 \n", | |
| " 6078148549β u β Ξt β β²β± 1 - u \n", | |
| "βββββββββββββββββ + ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "__ ________β β ________ ________ _______\n", | |
| "2 β± 2 β β 4 β± 2 2 β± 2 β± 2\n", | |
| " + β²β± 1 - u β 4471353600β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 - u \n", | |
| "\n", | |
| " \n", | |
| " 5 5 \n", | |
| " 3844175612059β u β Ξt 339533638\n", | |
| "ββ - ββββββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββ\n", | |
| "_β β 6 4 2 β 6 \n", | |
| " β 2317949706240β β- u + 3β u - 3β u + 1β - 13414060800β u + 40242182400β u\n", | |
| " β \n", | |
| "\n", | |
| " \n", | |
| " 5 5 5 5 \n", | |
| "9β u β Ξt 1886254549β u β Ξt β cos(t)\n", | |
| "ββββββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "4 2 β ________ _____\n", | |
| " - 40242182400β u + 13414060800 β 4 β± 2 2 β± \n", | |
| " 13414060800β βu β β²β± 1 - u - 2β u β β²β± 1 - \n", | |
| "\n", | |
| " \n", | |
| " 5 5 \n", | |
| " 902475437790052823β u β Ξt \n", | |
| "ββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| "___ ________β 4 2 \n", | |
| " 2 β± 2 β 10682727341193180000β u - 21365454682386360000β u + 10682\n", | |
| "u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 5 5 \n", | |
| " 3186582816619β u β Ξt \n", | |
| "βββββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββ + ββββββ\n", | |
| " 4 2 β 4\n", | |
| "727341193180000 1931624755200β u - 3863249510400β u + 1931624755200 80β βu \n", | |
| " \n", | |
| "\n", | |
| " ________ \n", | |
| " 5 5 4 5 β± 2 \n", | |
| "u β Ξt 3β u β Ξt β β²β± 1 - u β sin(t) \n", | |
| "ββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 2 β β ________ ________ ________ \n", | |
| " - 2β u + 1β β 6 β± 2 4 β± 2 2 β± 2 β±\n", | |
| " 4β β- u β β²β± 1 - u + 3β u β β²β± 1 - u - 3β u β β²β± 1 - u + β²β± \n", | |
| "\n", | |
| " ________ \n", | |
| " 4 5 β± 2 \n", | |
| " 7922581909β u β Ξt β β²β± 1 - u β sin(t) \n", | |
| "βββββββββ - ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ + βββ\n", | |
| "________β β ________ ________ ________β \n", | |
| " 2 β β 4 β± 2 2 β± 2 β± 2 β 231\n", | |
| " 1 - u β 6707030400β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 4 5 4 5 \n", | |
| " 3844175612059β u β Ξt β sin(t) 3395336389β u β Ξt β si\n", | |
| "βββββββββββββββββββββββββββββββββββ - ββββββββββββββββββββββββββββββββββββββββ\n", | |
| " β 6 4 2 β 6 4 \n", | |
| "7949706240β β- u + 3β u - 3β u + 1β - 13414060800β u + 40242182400β u - 4024\n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " 4 5 \n", | |
| "n(t) 902475437790052823β u β Ξt β sin(t\n", | |
| "ββββββββββββββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " 2 4 2 \n", | |
| "2182400β u + 13414060800 21365454682386360000β u - 42730909364772720000β u +\n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " 4 5 \n", | |
| ") 3234873435499β u β Ξt β sin(t) \n", | |
| "βββββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββββββββββ - \n", | |
| " 4 2 \n", | |
| " 21365454682386360000 1931624755200β u - 3863249510400β u + 1931624755200 \n", | |
| " \n", | |
| "\n", | |
| " ________ \n", | |
| " 4 5 3 5 β± 2 \n", | |
| " u β Ξt β sin(t) 14461936549β u β Ξt β β²β± 1 - u \n", | |
| "ββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " β 4 2 β β ________ ________ _____\n", | |
| "80β βu - 2β u + 1β β 4 β± 2 2 β± 2 β± \n", | |
| " 13414060800β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 - \n", | |
| "\n", | |
| " ________ \n", | |
| " 3 5 β± 2 \n", | |
| " 22917976411669β u β Ξt β β²β± 1 - u 188\n", | |
| "ββββ - ββββββββββββββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββ\n", | |
| "___β β ________ ________β β ___\n", | |
| " 2 β β 2 β± 2 β± 2 β β 4 β± \n", | |
| "u β 8692311398400β β- u β β²β± 1 - u + β²β± 1 - u β 13414060800β βu β β²β± 1 \n", | |
| "\n", | |
| " \n", | |
| " 3 5 \n", | |
| "6254549β u β Ξt β cos(t) 9024754377900\n", | |
| "βββββββββββββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββ\n", | |
| "_____ ________ ________β 4 \n", | |
| " 2 2 β± 2 β± 2 β 21365454682386360000β u - 4273090936\n", | |
| "- u - 2β u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 3 5 3 5 \n", | |
| "52823β u β Ξt 14385906530231β u β Ξt \n", | |
| "ββββββββββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββββ\n", | |
| " 2 4 2 \n", | |
| "4772720000β u + 21365454682386360000 17384622796800β u - 34769245593600β u +\n", | |
| " \n", | |
| "\n", | |
| " \n", | |
| " 3 5 \n", | |
| " 519403663956455485817β u β Ξt β cos(t) 9\n", | |
| "βββββββββββββββ + βββββββββββββββββββββββββββββββββββββββββββββββββββββββ + ββ\n", | |
| " β ________ ________β \n", | |
| " 17384622796800 β 2 β± 2 β± 2 β 82\n", | |
| " 2051083649509090560000β β- u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " ________ \n", | |
| " 3 5 2 5 β± 2 \n", | |
| "972496796510965357061β u β Ξt 9β u β Ξt β β²β± 1 - u β sin(t) \n", | |
| "βββββββββββββββββββββββββββββ + ββββββββββββββββββββββββββββββββββββββββββββββ\n", | |
| " β 2β β ________ ________ ___\n", | |
| "04334598036362240000β β1 - u β β 4 β± 2 2 β± 2 β± \n", | |
| " 10β βu β β²β± 1 - u - 2β u β β²β± 1 - u + β²β± 1 \n", | |
| "\n", | |
| " ________ \n", | |
| " 2 5 β± 2 \n", | |
| " 86326046719459β u β Ξt β β²β± 1 - u β sin(t) 148205\n", | |
| "ββββββ + βββββββββββββββββββββββββββββββββββββββββββββββ + βββββββββββββββββββ\n", | |
| "_____β β ________ ________β 4 \n", | |
| " 2 β β 2 β± 2 β± 2 β 17384622796800β u -\n", | |
| "- u β 34769245593600β β- u β β²β± 1 - u + β²β± 1 - u β \n", | |
| "\n", | |
| " \n", | |
| " 2 5 2 5 \n", | |
| "22100151β u β Ξt β sin(t) 10831818276999618281093β u β Ξt β sin(t) \n", | |
| "βββββββββββββββββββββββββββββββββββ - βββββββββββββββββββββββββββββββββββββ - \n", | |
| " 2 β 2β \n", | |
| " 34769245593600β u + 17384622796800 8204334598036362240000β β1 - u β \n", | |
| " \n", | |
| "\n", | |
| " ________ \n", | |
| " 5 β± 2 5 \n", | |
| " 1886254549β uβ Ξt β β²β± 1 - u 826854427199β uβ Ξt \n", | |
| "ββββββββββββββββββββββββββββββββββββββββββββ - ββββββββββββββββββ + ββββββββββ\n", | |
| " β ________ ________β 386324951040 \n", | |
| " β 2 β± 2 β± 2 β \n", | |
| "13414060800β β- u β β²β± 1 - u + β²β± 1 - u β 1341406080\n", | |
| "\n", | |
| " \n", | |
| " 5 5 \n", | |
| "1886254549β uβ Ξt β cos(t) 234341226128040406829β uβ Ξt 75654526\n", | |
| "ββββββββββββββββββββββββββββββββββ - ββββββββββββββββββββββββββββββ + ββββββββ\n", | |
| " β ________ ________β β 2β \n", | |
| " β 2 β± 2 β± 2 β 482607917531550720000β β1 - u β \n", | |
| "0β β- u β β²β± 1 - u + β²β± 1 - u β 20510836\n", | |
| "\n", | |
| " \n", | |
| " 5 5 5 \n", | |
| "4265589533617β uβ Ξt β cos(t) 4162893696667β Ξt β sin(t) 3844175612059β Ξt β sin(\n", | |
| "ββββββββββββββββββββββββββ + ββββββββββββββββββββββββ + ββββββββββββββββββββββ\n", | |
| " ________ 2317949706240 β 2\n", | |
| " β± 2 6953849118720β β1 - u \n", | |
| "49509090560000β β²β± 1 - u \n", | |
| "\n", | |
| " β\n", | |
| " β\n", | |
| "t)β\n", | |
| "βββ\n", | |
| "β β\n", | |
| "β β\n", | |
| " β " | |
| ] | |
| }, | |
| "execution_count": 38, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "expr2 = sp.collect(sp.expand(expr),Ξ»)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 46, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/latex": [ | |
| "$\\begin{equation*}Ξ»^{5} \\left(\\frac{u Ξt^{5}}{80} - \\frac{Ξt^{5} \\sin{\\left(t \\right)}}{80}\\right)\\end{equation*}$\n" | |
| ], | |
| "text/plain": [ | |
| " β 5 5 β\n", | |
| " 5 βuβ Ξt Ξt β sin(t)β\n", | |
| "Ξ» β ββββββ - βββββββββββ\n", | |
| " β 80 80 β " | |
| ] | |
| }, | |
| "execution_count": 46, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "expr2.args[5]" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Julia 1.6.3", | |
| "language": "julia", | |
| "name": "julia-1.6" | |
| }, | |
| "language_info": { | |
| "file_extension": ".jl", | |
| "mimetype": "application/julia", | |
| "name": "julia", | |
| "version": "1.6.3" | |
| }, | |
| "toc": { | |
| "base_numbering": 1, | |
| "nav_menu": {}, | |
| "number_sections": true, | |
| "sideBar": true, | |
| "skip_h1_title": false, | |
| "title_cell": "Table of Contents", | |
| "title_sidebar": "Contents", | |
| "toc_cell": false, | |
| "toc_position": {}, | |
| "toc_section_display": true, | |
| "toc_window_display": false | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment