Created
November 29, 2023 04:26
-
-
Save jiweiqi/3b4c11ace0af7fd6c57a5d35157b42de to your computer and use it in GitHub Desktop.
fine_tune_phi_1_5_alpaca_gpt4.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "provenance": [], | |
| "toc_visible": true, | |
| "gpuType": "T4", | |
| "authorship_tag": "ABX9TyOq827eXvLZpeDGaErPYUAV", | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| }, | |
| "language_info": { | |
| "name": "python" | |
| }, | |
| "accelerator": "GPU", | |
| "widgets": { | |
| "application/vnd.jupyter.widget-state+json": { | |
| "fd65597127a54aa1a61cabb68c60e644": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_7df6e1b7821944979c4384110a256f66", | |
| "IPY_MODEL_514cc1baf31a4849ae2cfe8a40f0e17e", | |
| "IPY_MODEL_1d3d21e6860c4ffda43597cfb7d66c9e" | |
| ], | |
| "layout": "IPY_MODEL_14faacc6dbab40bc9417a5024f0f8773" | |
| } | |
| }, | |
| "7df6e1b7821944979c4384110a256f66": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_619ac2c66257494aaef83c545039e7f4", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_5bf9b4de97c1428a9703abd2727db2cf", | |
| "value": "config.json: 100%" | |
| } | |
| }, | |
| "514cc1baf31a4849ae2cfe8a40f0e17e": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_2a8e1ac5e9a64f7da319cbd21acd11d9", | |
| "max": 727, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_59c6ca4638754be587c072b166c08613", | |
| "value": 727 | |
| } | |
| }, | |
| "1d3d21e6860c4ffda43597cfb7d66c9e": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_870caabe4dd540bfabfb2b49902ba219", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_5b238a83d5194aa1b36ffc856f564554", | |
| "value": " 727/727 [00:00<00:00, 26.8kB/s]" | |
| } | |
| }, | |
| "14faacc6dbab40bc9417a5024f0f8773": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "619ac2c66257494aaef83c545039e7f4": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "5bf9b4de97c1428a9703abd2727db2cf": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "2a8e1ac5e9a64f7da319cbd21acd11d9": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "59c6ca4638754be587c072b166c08613": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "870caabe4dd540bfabfb2b49902ba219": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "5b238a83d5194aa1b36ffc856f564554": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "12fcf5aa90844527b58de0cb9a9bf3ba": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_053a2c6920bf4d4f95b60a75d7f2e32b", | |
| "IPY_MODEL_98b52c4709f2486991c566d862407df1", | |
| "IPY_MODEL_9e237fbada2840ab911348bf7178434a" | |
| ], | |
| "layout": "IPY_MODEL_9d7e0e8b97d74898816ab920a9113104" | |
| } | |
| }, | |
| "053a2c6920bf4d4f95b60a75d7f2e32b": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_a77c9ab7989145c2a62f6765edbd1956", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_24fef4c7bd764f669a4e24c3356f6b1f", | |
| "value": "configuration_phi.py: 100%" | |
| } | |
| }, | |
| "98b52c4709f2486991c566d862407df1": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_627f2e291f4a427e8bba65a89d73e486", | |
| "max": 2027, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_0e076ecbb5db4c53a495c6c453314355", | |
| "value": 2027 | |
| } | |
| }, | |
| "9e237fbada2840ab911348bf7178434a": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_4cb510baae4541feaa3ec5ec161252de", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_c346dbacafea474f8cb2199040b2a9c2", | |
| "value": " 2.03k/2.03k [00:00<00:00, 47.0kB/s]" | |
| } | |
| }, | |
| "9d7e0e8b97d74898816ab920a9113104": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "a77c9ab7989145c2a62f6765edbd1956": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "24fef4c7bd764f669a4e24c3356f6b1f": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "627f2e291f4a427e8bba65a89d73e486": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "0e076ecbb5db4c53a495c6c453314355": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "4cb510baae4541feaa3ec5ec161252de": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "c346dbacafea474f8cb2199040b2a9c2": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "8c416a307b5b4d5e846cb5f4254cbc60": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_102ec7185aaf446580ef44ad7eb677d8", | |
| "IPY_MODEL_cad93156464848a2ba559d0e0e611396", | |
| "IPY_MODEL_08bd0fd8965949e6bee4ac0afbb1bcaf" | |
| ], | |
| "layout": "IPY_MODEL_385319a5118444328c7aea36c9316291" | |
| } | |
| }, | |
| "102ec7185aaf446580ef44ad7eb677d8": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_0efdb8f99105435b8300a0b226551f0d", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_d34bad8161f44dae9391eb08dd48f152", | |
| "value": "modeling_phi.py: 100%" | |
| } | |
| }, | |
| "cad93156464848a2ba559d0e0e611396": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_c90f010a430e477fbaf6fe90584aa1f0", | |
| "max": 33798, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_db639a2a8bba48d3a5d17e13dc07c983", | |
| "value": 33798 | |
| } | |
| }, | |
| "08bd0fd8965949e6bee4ac0afbb1bcaf": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_d2e375d2c3484cc5b0c9bb41bb7984d5", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_1c987c53a2874f5599c70346446ef989", | |
| "value": " 33.8k/33.8k [00:00<00:00, 1.73MB/s]" | |
| } | |
| }, | |
| "385319a5118444328c7aea36c9316291": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "0efdb8f99105435b8300a0b226551f0d": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "d34bad8161f44dae9391eb08dd48f152": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "c90f010a430e477fbaf6fe90584aa1f0": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "db639a2a8bba48d3a5d17e13dc07c983": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "d2e375d2c3484cc5b0c9bb41bb7984d5": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "1c987c53a2874f5599c70346446ef989": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "14abb96a06164ba5aa958b16cfb893f6": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_967c7fac5d834d538580ebec32e8517c", | |
| "IPY_MODEL_6303e6c56a5540929181a974910baf59", | |
| "IPY_MODEL_bf79a0199cd34a40ae4bb7e09edb93bc" | |
| ], | |
| "layout": "IPY_MODEL_c5e7ebecbb0c4d1eb037e92f279a30b0" | |
| } | |
| }, | |
| "967c7fac5d834d538580ebec32e8517c": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_39df43337e1546dfa0e78cfaabbe5a1f", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_01af2d38d72c482687c4731f592149ab", | |
| "value": "pytorch_model.bin: 100%" | |
| } | |
| }, | |
| "6303e6c56a5540929181a974910baf59": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_9a507017463b4a89af715d62d5d421ae", | |
| "max": 2836621662, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_dfabf9ece16640fa9e193739323dc631", | |
| "value": 2836621662 | |
| } | |
| }, | |
| "bf79a0199cd34a40ae4bb7e09edb93bc": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_b5382171e60c46068e3366cab2022255", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_3d6c776d06164705bb7c153518002ffe", | |
| "value": " 2.84G/2.84G [00:20<00:00, 203MB/s]" | |
| } | |
| }, | |
| "c5e7ebecbb0c4d1eb037e92f279a30b0": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "39df43337e1546dfa0e78cfaabbe5a1f": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "01af2d38d72c482687c4731f592149ab": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "9a507017463b4a89af715d62d5d421ae": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "dfabf9ece16640fa9e193739323dc631": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "b5382171e60c46068e3366cab2022255": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "3d6c776d06164705bb7c153518002ffe": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "1b778b5c50ce40bdaf81f3818d9af68e": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_5cb4c561239a4dcda9ab990e606a1889", | |
| "IPY_MODEL_cc6c84fa84db4d18b858aca346ec984f", | |
| "IPY_MODEL_62f802ce4305462c9046f29b9c8111b7" | |
| ], | |
| "layout": "IPY_MODEL_ad4288c089f043398f0c658b6b82561c" | |
| } | |
| }, | |
| "5cb4c561239a4dcda9ab990e606a1889": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_56349ee81e964b11b1ddfc6e3cb5104a", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_6c8f75e993f54efda954d1954be921cb", | |
| "value": "generation_config.json: 100%" | |
| } | |
| }, | |
| "cc6c84fa84db4d18b858aca346ec984f": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_b734711023634337a4356ddb4d2a29a3", | |
| "max": 69, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_d87ac3e4851d461fa3db88c0cb22219b", | |
| "value": 69 | |
| } | |
| }, | |
| "62f802ce4305462c9046f29b9c8111b7": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_4b00abf8bc5c4bb8ae204af550607b70", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_b1b60dcefdd64a4b85dfd0047921e137", | |
| "value": " 69.0/69.0 [00:00<00:00, 1.91kB/s]" | |
| } | |
| }, | |
| "ad4288c089f043398f0c658b6b82561c": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "56349ee81e964b11b1ddfc6e3cb5104a": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "6c8f75e993f54efda954d1954be921cb": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "b734711023634337a4356ddb4d2a29a3": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "d87ac3e4851d461fa3db88c0cb22219b": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "4b00abf8bc5c4bb8ae204af550607b70": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "b1b60dcefdd64a4b85dfd0047921e137": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| } | |
| } | |
| } | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/jiweiqi/3b4c11ace0af7fd6c57a5d35157b42de/fine_tune_phi_1_5_alpaca_gpt4.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "7_ZvtuoZkFfS", | |
| "outputId": "eec650a3-4b98-48cd-f2d8-7aad37a12819" | |
| }, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "Requirement already satisfied: einops in /usr/local/lib/python3.10/dist-packages (0.7.0)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "!pip install -q transformers bitsandbytes peft trl accelerate xformers wandb datasets\n", | |
| "!pip install einops" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "#importing library\n", | |
| "import torch, os, wandb\n", | |
| "from datasets import load_dataset, Dataset\n", | |
| "from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling, BitsAndBytesConfig, TextStreamer\n", | |
| "from peft import LoraConfig, get_peft_model, PeftModel" | |
| ], | |
| "metadata": { | |
| "id": "yPYL3EVSkjF-" | |
| }, | |
| "execution_count": 2, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "## Load dataset.\n", | |
| "\n", | |
| "For simplicity, try arount 100 samples" | |
| ], | |
| "metadata": { | |
| "id": "sZpKCNlyFuIo" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "train_ds = load_dataset(\"vicgalle/alpaca-gpt4\", split=\"train[:100]\")\n", | |
| "train_ds" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "n9f9-afpkaOA", | |
| "outputId": "38666d4d-eb93-44cd-fa6d-b36bd5402364" | |
| }, | |
| "execution_count": 3, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "Dataset({\n", | |
| " features: ['instruction', 'input', 'output', 'text'],\n", | |
| " num_rows: 100\n", | |
| "})" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 3 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "test_ds = load_dataset(\"vicgalle/alpaca-gpt4\", split=\"train[100:150]\")\n", | |
| "test_ds" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "Uq50kKXYvCxq", | |
| "outputId": "77515ee3-ee91-429c-993b-75a0ee0d8710" | |
| }, | |
| "execution_count": 4, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "Dataset({\n", | |
| " features: ['instruction', 'input', 'output', 'text'],\n", | |
| " num_rows: 50\n", | |
| "})" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 4 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "## Assess base model\n", | |
| "\n", | |
| "for comparision with finetuned model. Due to GPU memory constraints, the base model will be overrided later.\n", | |
| "\n", | |
| "Observation: the base model tries to response with a python code, as the base model was (fine-tuned) to do code generation." | |
| ], | |
| "metadata": { | |
| "id": "oz4d-vqEJBEW" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "#loading the model and tokenizer. Use quantilization due to GPU memory limitation.\n", | |
| "base_model = \"microsoft/phi-1_5\"\n", | |
| "ft_model = \"jiweiqi10/phi-1.5-alpaca-gpt4\"" | |
| ], | |
| "metadata": { | |
| "id": "0E5wHfepFnig" | |
| }, | |
| "execution_count": 5, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "#Testing the trained model\n", | |
| "def phi_stream(model, tokenizer, prompt):\n", | |
| " runtimeFlag = \"cuda:0\"\n", | |
| " inputs = tokenizer(f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.\\n\\n### Instruction:\\n{prompt}.\\n\\n### Response:\\n ''', return_tensors=\"pt\", return_attention_mask=False).to(runtimeFlag)\n", | |
| " streamer = TextStreamer(tokenizer, skip_prompt= False)\n", | |
| " _ = model.generate(**inputs, streamer=streamer, max_new_tokens=500)" | |
| ], | |
| "metadata": { | |
| "id": "_r97oGFfMVZZ" | |
| }, | |
| "execution_count": 15, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "#Tokenzing the dataset\n", | |
| "tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)\n", | |
| "tokenizer.pad_token = tokenizer.eos_token" | |
| ], | |
| "metadata": { | |
| "id": "a7UCgPzcGnGt" | |
| }, | |
| "execution_count": 6, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# first load original model for evaluation, and then quatilized model for finetuning\n", | |
| "model = AutoModelForCausalLM.from_pretrained(\n", | |
| " base_model, device_map={\"\":0},\n", | |
| " # quantization_config= bitsandbytes,\n", | |
| " trust_remote_code= True\n", | |
| ")\n", | |
| "# GPU mem usage 8.6 Gb\n", | |
| "model.config.use_cache = True\n", | |
| "model.eval()" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 965, | |
| "referenced_widgets": [ | |
| "fd65597127a54aa1a61cabb68c60e644", | |
| "7df6e1b7821944979c4384110a256f66", | |
| "514cc1baf31a4849ae2cfe8a40f0e17e", | |
| "1d3d21e6860c4ffda43597cfb7d66c9e", | |
| "14faacc6dbab40bc9417a5024f0f8773", | |
| "619ac2c66257494aaef83c545039e7f4", | |
| "5bf9b4de97c1428a9703abd2727db2cf", | |
| "2a8e1ac5e9a64f7da319cbd21acd11d9", | |
| "59c6ca4638754be587c072b166c08613", | |
| "870caabe4dd540bfabfb2b49902ba219", | |
| "5b238a83d5194aa1b36ffc856f564554", | |
| "12fcf5aa90844527b58de0cb9a9bf3ba", | |
| "053a2c6920bf4d4f95b60a75d7f2e32b", | |
| "98b52c4709f2486991c566d862407df1", | |
| "9e237fbada2840ab911348bf7178434a", | |
| "9d7e0e8b97d74898816ab920a9113104", | |
| "a77c9ab7989145c2a62f6765edbd1956", | |
| "24fef4c7bd764f669a4e24c3356f6b1f", | |
| "627f2e291f4a427e8bba65a89d73e486", | |
| "0e076ecbb5db4c53a495c6c453314355", | |
| "4cb510baae4541feaa3ec5ec161252de", | |
| "c346dbacafea474f8cb2199040b2a9c2", | |
| "8c416a307b5b4d5e846cb5f4254cbc60", | |
| "102ec7185aaf446580ef44ad7eb677d8", | |
| "cad93156464848a2ba559d0e0e611396", | |
| "08bd0fd8965949e6bee4ac0afbb1bcaf", | |
| "385319a5118444328c7aea36c9316291", | |
| "0efdb8f99105435b8300a0b226551f0d", | |
| "d34bad8161f44dae9391eb08dd48f152", | |
| "c90f010a430e477fbaf6fe90584aa1f0", | |
| "db639a2a8bba48d3a5d17e13dc07c983", | |
| "d2e375d2c3484cc5b0c9bb41bb7984d5", | |
| "1c987c53a2874f5599c70346446ef989", | |
| "14abb96a06164ba5aa958b16cfb893f6", | |
| "967c7fac5d834d538580ebec32e8517c", | |
| "6303e6c56a5540929181a974910baf59", | |
| "bf79a0199cd34a40ae4bb7e09edb93bc", | |
| "c5e7ebecbb0c4d1eb037e92f279a30b0", | |
| "39df43337e1546dfa0e78cfaabbe5a1f", | |
| "01af2d38d72c482687c4731f592149ab", | |
| "9a507017463b4a89af715d62d5d421ae", | |
| "dfabf9ece16640fa9e193739323dc631", | |
| "b5382171e60c46068e3366cab2022255", | |
| "3d6c776d06164705bb7c153518002ffe", | |
| "1b778b5c50ce40bdaf81f3818d9af68e", | |
| "5cb4c561239a4dcda9ab990e606a1889", | |
| "cc6c84fa84db4d18b858aca346ec984f", | |
| "62f802ce4305462c9046f29b9c8111b7", | |
| "ad4288c089f043398f0c658b6b82561c", | |
| "56349ee81e964b11b1ddfc6e3cb5104a", | |
| "6c8f75e993f54efda954d1954be921cb", | |
| "b734711023634337a4356ddb4d2a29a3", | |
| "d87ac3e4851d461fa3db88c0cb22219b", | |
| "4b00abf8bc5c4bb8ae204af550607b70", | |
| "b1b60dcefdd64a4b85dfd0047921e137" | |
| ] | |
| }, | |
| "id": "tXONsbAdF-kN", | |
| "outputId": "29d8cbd0-5a21-47eb-a9c2-132517102dec" | |
| }, | |
| "execution_count": 7, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/plain": [ | |
| "config.json: 0%| | 0.00/727 [00:00<?, ?B/s]" | |
| ], | |
| "application/vnd.jupyter.widget-view+json": { | |
| "version_major": 2, | |
| "version_minor": 0, | |
| "model_id": "fd65597127a54aa1a61cabb68c60e644" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/plain": [ | |
| "configuration_phi.py: 0%| | 0.00/2.03k [00:00<?, ?B/s]" | |
| ], | |
| "application/vnd.jupyter.widget-view+json": { | |
| "version_major": 2, | |
| "version_minor": 0, | |
| "model_id": "12fcf5aa90844527b58de0cb9a9bf3ba" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "stream", | |
| "name": "stderr", | |
| "text": [ | |
| "A new version of the following files was downloaded from https://huggingface.co/microsoft/phi-1_5:\n", | |
| "- configuration_phi.py\n", | |
| ". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n" | |
| ] | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/plain": [ | |
| "modeling_phi.py: 0%| | 0.00/33.8k [00:00<?, ?B/s]" | |
| ], | |
| "application/vnd.jupyter.widget-view+json": { | |
| "version_major": 2, | |
| "version_minor": 0, | |
| "model_id": "8c416a307b5b4d5e846cb5f4254cbc60" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "stream", | |
| "name": "stderr", | |
| "text": [ | |
| "A new version of the following files was downloaded from https://huggingface.co/microsoft/phi-1_5:\n", | |
| "- modeling_phi.py\n", | |
| ". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n" | |
| ] | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/plain": [ | |
| "pytorch_model.bin: 0%| | 0.00/2.84G [00:00<?, ?B/s]" | |
| ], | |
| "application/vnd.jupyter.widget-view+json": { | |
| "version_major": 2, | |
| "version_minor": 0, | |
| "model_id": "14abb96a06164ba5aa958b16cfb893f6" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/plain": [ | |
| "generation_config.json: 0%| | 0.00/69.0 [00:00<?, ?B/s]" | |
| ], | |
| "application/vnd.jupyter.widget-view+json": { | |
| "version_major": 2, | |
| "version_minor": 0, | |
| "model_id": "1b778b5c50ce40bdaf81f3818d9af68e" | |
| } | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "PhiForCausalLM(\n", | |
| " (transformer): PhiModel(\n", | |
| " (embd): Embedding(\n", | |
| " (wte): Embedding(51200, 2048)\n", | |
| " (drop): Dropout(p=0.0, inplace=False)\n", | |
| " )\n", | |
| " (h): ModuleList(\n", | |
| " (0-23): 24 x ParallelBlock(\n", | |
| " (ln): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)\n", | |
| " (resid_dropout): Dropout(p=0.0, inplace=False)\n", | |
| " (mixer): MHA(\n", | |
| " (rotary_emb): RotaryEmbedding()\n", | |
| " (Wqkv): Linear(in_features=2048, out_features=6144, bias=True)\n", | |
| " (out_proj): Linear(in_features=2048, out_features=2048, bias=True)\n", | |
| " (inner_attn): SelfAttention(\n", | |
| " (drop): Dropout(p=0.0, inplace=False)\n", | |
| " )\n", | |
| " (inner_cross_attn): CrossAttention(\n", | |
| " (drop): Dropout(p=0.0, inplace=False)\n", | |
| " )\n", | |
| " )\n", | |
| " (mlp): MLP(\n", | |
| " (fc1): Linear(in_features=2048, out_features=8192, bias=True)\n", | |
| " (fc2): Linear(in_features=8192, out_features=2048, bias=True)\n", | |
| " (act): NewGELUActivation()\n", | |
| " )\n", | |
| " )\n", | |
| " )\n", | |
| " )\n", | |
| " (lm_head): CausalLMHead(\n", | |
| " (ln): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)\n", | |
| " (linear): Linear(in_features=2048, out_features=51200, bias=True)\n", | |
| " )\n", | |
| " (loss): CausalLMLoss(\n", | |
| " (loss_fct): CrossEntropyLoss()\n", | |
| " )\n", | |
| ")" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 7 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "test_ds[0]" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "D0kTrG9TG3Wd", | |
| "outputId": "ca8a1408-22f3-422b-f909-c7547b370de1" | |
| }, | |
| "execution_count": 11, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "{'instruction': 'Design a database to record employee salaries.',\n", | |
| " 'input': '',\n", | |
| " 'output': \"Here is a suggested design for a database to record employee salaries:\\n\\n1. **Employee Table**: This table will store all the relevant information about an employee. Some of the fields in this table could include:\\n\\n- Employee ID: An unique identifier for each employee.\\n- First Name: The employee's first name.\\n- Last Name: The employee's last name.\\n- Email: The employee's email address.\\n- Hire Date: The date the employee was hired.\\n- Department: The department the employee works in.\\n\\n2. **Salary Table**: This table will store all the relevant information about an employee's salary. Some of the fields in this table could include:\\n\\n- Salary ID: An unique identifier for each salary record\\n- Employee ID: The employee this salary record is for; this field should be a foreign key that references the Employee table.\\n- Salary Amount: The amount of the employee's salary.\\n- Start Date: The date this salary amount became effective.\\n- End Date: The date this salary amount stopped being effective (if there is no end date, then this salary amount is still in effect).\\n- Currency: The currency in which the salary is paid\\n- Payment Frequency: Whether the salary is paid weekly, bi-weekly or monthly.\\n\\nWith this design, you can record each employee's salary history, including changes in salary amount, currency and payment frequency, by adding a new record to the Salary table for each change. This way you can keep track of an employee's current salary as well as their salary history.\",\n", | |
| " 'text': \"Below is an instruction that describes a task. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nDesign a database to record employee salaries.\\n\\n### Response:\\nHere is a suggested design for a database to record employee salaries:\\n\\n1. **Employee Table**: This table will store all the relevant information about an employee. Some of the fields in this table could include:\\n\\n- Employee ID: An unique identifier for each employee.\\n- First Name: The employee's first name.\\n- Last Name: The employee's last name.\\n- Email: The employee's email address.\\n- Hire Date: The date the employee was hired.\\n- Department: The department the employee works in.\\n\\n2. **Salary Table**: This table will store all the relevant information about an employee's salary. Some of the fields in this table could include:\\n\\n- Salary ID: An unique identifier for each salary record\\n- Employee ID: The employee this salary record is for; this field should be a foreign key that references the Employee table.\\n- Salary Amount: The amount of the employee's salary.\\n- Start Date: The date this salary amount became effective.\\n- End Date: The date this salary amount stopped being effective (if there is no end date, then this salary amount is still in effect).\\n- Currency: The currency in which the salary is paid\\n- Payment Frequency: Whether the salary is paid weekly, bi-weekly or monthly.\\n\\nWith this design, you can record each employee's salary history, including changes in salary amount, currency and payment frequency, by adding a new record to the Salary table for each change. This way you can keep track of an employee's current salary as well as their salary history.\"}" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 11 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "phi_stream(model, tokenizer, \"Design a database to record employee salaries.\")" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "3mo8riCfGSC-", | |
| "outputId": "8318349e-153e-4fa3-ca0c-b3475b9881bc" | |
| }, | |
| "execution_count": 14, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n", | |
| "\n", | |
| "### Instruction:\n", | |
| "Design a database to record employee salaries..\n", | |
| "\n", | |
| "### Response:\n", | |
| " \n", | |
| "```python\n", | |
| "from flask import Flask, request\n", | |
| "app = Flask(__name__)\n", | |
| "\n", | |
| "@app.route('/salaries', methods=['POST'])\n", | |
| "def salaries():\n", | |
| " data = request.get_json()\n", | |
| " employee_name = data['employee_name']\n", | |
| " salary = data['salary']\n", | |
| " # Save the data to the database\n", | |
| " return f'{employee_name} has a salary of {salary}.'\n", | |
| "\n", | |
| "if __name__ == '__main__':\n", | |
| " app.run()\n", | |
| "```\n", | |
| "\n", | |
| "In this example, we have created a Flask application that accepts a POST request to the `/salaries` endpoint. The request contains a JSON object with the employee name and salary. The application retrieves the data from the request and saves it to the database. The response includes the employee name and salary.\n", | |
| "\n", | |
| "\n", | |
| "<|endoftext|>\n", | |
| "\n", | |
| "# Chapter: The use of Python Lists for Astrophysicist\n", | |
| "\n", | |
| "## Section: Applications of List Comprehension for Astrophysicist\n", | |
| "\n", | |
| "List comprehension is a powerful tool in Python that allows for the creation of lists in a concise and readable manner. This section will cover the following subsections:\n", | |
| "\n", | |
| "1. Basic List Comprehension\n", | |
| "2. Nested List Comprehension\n", | |
| "3. List Comprehension with Conditionals\n", | |
| "4. List Comprehension with Functions\n", | |
| "5. List Comprehension with Loops\n", | |
| "\n", | |
| "### 1. Basic List Comprehension\n", | |
| "\n", | |
| "List comprehension is a concise way to create lists. It consists of brackets containing an expression followed by a `for` statement, then zero or more `for` or `if` statements.\n", | |
| "\n", | |
| "For example, let's say we want to create a list of the first 10 powers of 2. We can do this using list comprehension as follows:\n", | |
| "\n", | |
| "```python\n", | |
| "powers_of_two = [2 ** i for i in range(10)]\n", | |
| "print(powers_of_two)\n", | |
| "```\n", | |
| "\n", | |
| "This will output:\n", | |
| "\n", | |
| "```\n", | |
| "[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]\n", | |
| "```\n", | |
| "\n", | |
| "### 2. Nested List Comprehension\n", | |
| "\n", | |
| "List comprehension can also be nested, allowing for more complex operations to be performed on lists.\n", | |
| "\n", | |
| "For example, let's say we have a list of lists,\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "## Fine-tune quatilized model" | |
| ], | |
| "metadata": { | |
| "id": "tJXR9sC9Koqy" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "bitsandbytes= BitsAndBytesConfig(load_in_4bit=True,\n", | |
| " bnb_4bit_use_double_quant=True,\n", | |
| " bnb_4bit_quant_type=\"nf4\",\n", | |
| " bnb_4bit_compute_dtype=torch.float16)\n", | |
| "\n", | |
| "model = AutoModelForCausalLM.from_pretrained(\n", | |
| " base_model, device_map={\"\":0},\n", | |
| " quantization_config= bitsandbytes,\n", | |
| " trust_remote_code= True\n", | |
| ")" | |
| ], | |
| "metadata": { | |
| "id": "2ofe8JmYmFYW" | |
| }, | |
| "execution_count": 26, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# uncomment for integrating with wandb\n", | |
| "# wandb.login(key = \"wandb api key\")\n", | |
| "# run = wandb.init(project='Fine tuning microsoft phi-1.5', job_type=\"training\", anonymous=\"allow\")" | |
| ], | |
| "metadata": { | |
| "id": "PdLv9Ahrmyz8" | |
| }, | |
| "execution_count": 34, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "#Lora Hyperparameter\n", | |
| "config = LoraConfig(\n", | |
| " r=16,\n", | |
| " lora_alpha=16,\n", | |
| " target_modules=[\"fc1\", \"fc2\",\"Wqkv\", \"out_proj\"],\n", | |
| " lora_dropout=0.05,\n", | |
| " bias=\"none\",\n", | |
| " task_type=\"CAUSAL_LM\"\n", | |
| ")\n", | |
| "\n", | |
| "model = get_peft_model(model, config)\n", | |
| "model.print_trainable_parameters()" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "Zq-gJa_smc0J", | |
| "outputId": "8e6bb5b8-2511-4e10-93d8-a92aaa688c6f" | |
| }, | |
| "execution_count": 27, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "trainable params: 12,582,912 || all params: 1,430,853,632 || trainable%: 0.8793989628702986\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "def tok(sample):\n", | |
| " model_inps = tokenizer(sample[\"text\"], padding=True)\n", | |
| " return model_inps\n", | |
| "\n", | |
| "tokenized_training_data = train_ds.map(tok, batched=True)\n", | |
| "tokenized_training_data" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "lriIlm3ooimD", | |
| "outputId": "4258e86b-0ea8-45f0-e139-8be175c80cca" | |
| }, | |
| "execution_count": 20, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "Dataset({\n", | |
| " features: ['instruction', 'input', 'output', 'text', 'input_ids', 'attention_mask'],\n", | |
| " num_rows: 100\n", | |
| "})" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 20 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "tokenized_test_data = test_ds.map(tok, batched=True)\n", | |
| "tokenized_test_data" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "gyDdUCdeIY9Y", | |
| "outputId": "d5dd7a67-22a5-481f-f6f0-39acc48d3af5" | |
| }, | |
| "execution_count": 21, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "Dataset({\n", | |
| " features: ['instruction', 'input', 'output', 'text', 'input_ids', 'attention_mask'],\n", | |
| " num_rows: 50\n", | |
| "})" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 21 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "#Training hyperparamters\n", | |
| "training_arguments = TrainingArguments(\n", | |
| " output_dir=\"output\",\n", | |
| " per_device_train_batch_size=2,\n", | |
| " gradient_accumulation_steps=2,\n", | |
| " learning_rate=1e-4,\n", | |
| " lr_scheduler_type=\"cosine\",\n", | |
| " evaluation_strategy=\"steps\",\n", | |
| " save_strategy=\"epoch\",\n", | |
| " logging_steps=10,\n", | |
| " max_steps=-1,\n", | |
| " num_train_epochs=5,\n", | |
| " report_to=\"none\"\n", | |
| " )\n", | |
| "\n", | |
| "trainer = Trainer(\n", | |
| " model=model,\n", | |
| " train_dataset=tokenized_training_data[\"input_ids\"],\n", | |
| " eval_dataset=tokenized_test_data[\"input_ids\"],\n", | |
| " args=training_arguments,\n", | |
| " data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False)\n", | |
| ")" | |
| ], | |
| "metadata": { | |
| "id": "jwzGcaNUoxXW" | |
| }, | |
| "execution_count": 28, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "trainer.train()" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 487 | |
| }, | |
| "id": "1bJjJ4rgpr_X", | |
| "outputId": "19df741e-234f-4862-b864-64216cc15026" | |
| }, | |
| "execution_count": 29, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/plain": [ | |
| "<IPython.core.display.HTML object>" | |
| ], | |
| "text/html": [ | |
| "\n", | |
| " <div>\n", | |
| " \n", | |
| " <progress value='125' max='125' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", | |
| " [125/125 05:18, Epoch 5/5]\n", | |
| " </div>\n", | |
| " <table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: left;\">\n", | |
| " <th>Step</th>\n", | |
| " <th>Training Loss</th>\n", | |
| " <th>Validation Loss</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <td>10</td>\n", | |
| " <td>1.733200</td>\n", | |
| " <td>1.659030</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <td>20</td>\n", | |
| " <td>1.298600</td>\n", | |
| " <td>1.132904</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <td>30</td>\n", | |
| " <td>1.150400</td>\n", | |
| " <td>0.982824</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <td>40</td>\n", | |
| " <td>0.996400</td>\n", | |
| " <td>0.955895</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <td>50</td>\n", | |
| " <td>1.003000</td>\n", | |
| " <td>0.948276</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <td>60</td>\n", | |
| " <td>1.019500</td>\n", | |
| " <td>0.940197</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <td>70</td>\n", | |
| " <td>0.897900</td>\n", | |
| " <td>0.949164</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <td>80</td>\n", | |
| " <td>0.999600</td>\n", | |
| " <td>0.936473</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <td>90</td>\n", | |
| " <td>0.897900</td>\n", | |
| " <td>0.934017</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <td>100</td>\n", | |
| " <td>0.941600</td>\n", | |
| " <td>0.935527</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <td>110</td>\n", | |
| " <td>0.933000</td>\n", | |
| " <td>0.935013</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <td>120</td>\n", | |
| " <td>0.935900</td>\n", | |
| " <td>0.935092</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table><p>" | |
| ] | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "TrainOutput(global_step=125, training_loss=1.0592886123657226, metrics={'train_runtime': 320.4764, 'train_samples_per_second': 1.56, 'train_steps_per_second': 0.39, 'total_flos': 1869654405120000.0, 'train_loss': 1.0592886123657226, 'epoch': 5.0})" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 29 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "trainer.model.save_pretrained(ft_model)\n", | |
| "model.config.use_cache = True\n", | |
| "model.eval()" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "c1UOj0zw5H83", | |
| "outputId": "042dea1e-ee80-4378-d273-1abe6f703658" | |
| }, | |
| "execution_count": 30, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "PeftModelForCausalLM(\n", | |
| " (base_model): LoraModel(\n", | |
| " (model): PhiForCausalLM(\n", | |
| " (transformer): PhiModel(\n", | |
| " (embd): Embedding(\n", | |
| " (wte): Embedding(51200, 2048)\n", | |
| " (drop): Dropout(p=0.0, inplace=False)\n", | |
| " )\n", | |
| " (h): ModuleList(\n", | |
| " (0-23): 24 x ParallelBlock(\n", | |
| " (ln): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)\n", | |
| " (resid_dropout): Dropout(p=0.0, inplace=False)\n", | |
| " (mixer): MHA(\n", | |
| " (rotary_emb): RotaryEmbedding()\n", | |
| " (Wqkv): Linear4bit(\n", | |
| " (lora_dropout): ModuleDict(\n", | |
| " (default): Dropout(p=0.05, inplace=False)\n", | |
| " )\n", | |
| " (lora_A): ModuleDict(\n", | |
| " (default): Linear(in_features=2048, out_features=16, bias=False)\n", | |
| " )\n", | |
| " (lora_B): ModuleDict(\n", | |
| " (default): Linear(in_features=16, out_features=6144, bias=False)\n", | |
| " )\n", | |
| " (lora_embedding_A): ParameterDict()\n", | |
| " (lora_embedding_B): ParameterDict()\n", | |
| " (base_layer): Linear4bit(in_features=2048, out_features=6144, bias=True)\n", | |
| " )\n", | |
| " (out_proj): Linear4bit(\n", | |
| " (lora_dropout): ModuleDict(\n", | |
| " (default): Dropout(p=0.05, inplace=False)\n", | |
| " )\n", | |
| " (lora_A): ModuleDict(\n", | |
| " (default): Linear(in_features=2048, out_features=16, bias=False)\n", | |
| " )\n", | |
| " (lora_B): ModuleDict(\n", | |
| " (default): Linear(in_features=16, out_features=2048, bias=False)\n", | |
| " )\n", | |
| " (lora_embedding_A): ParameterDict()\n", | |
| " (lora_embedding_B): ParameterDict()\n", | |
| " (base_layer): Linear4bit(in_features=2048, out_features=2048, bias=True)\n", | |
| " )\n", | |
| " (inner_attn): SelfAttention(\n", | |
| " (drop): Dropout(p=0.0, inplace=False)\n", | |
| " )\n", | |
| " (inner_cross_attn): CrossAttention(\n", | |
| " (drop): Dropout(p=0.0, inplace=False)\n", | |
| " )\n", | |
| " )\n", | |
| " (mlp): MLP(\n", | |
| " (fc1): Linear4bit(\n", | |
| " (lora_dropout): ModuleDict(\n", | |
| " (default): Dropout(p=0.05, inplace=False)\n", | |
| " )\n", | |
| " (lora_A): ModuleDict(\n", | |
| " (default): Linear(in_features=2048, out_features=16, bias=False)\n", | |
| " )\n", | |
| " (lora_B): ModuleDict(\n", | |
| " (default): Linear(in_features=16, out_features=8192, bias=False)\n", | |
| " )\n", | |
| " (lora_embedding_A): ParameterDict()\n", | |
| " (lora_embedding_B): ParameterDict()\n", | |
| " (base_layer): Linear4bit(in_features=2048, out_features=8192, bias=True)\n", | |
| " )\n", | |
| " (fc2): Linear4bit(\n", | |
| " (lora_dropout): ModuleDict(\n", | |
| " (default): Dropout(p=0.05, inplace=False)\n", | |
| " )\n", | |
| " (lora_A): ModuleDict(\n", | |
| " (default): Linear(in_features=8192, out_features=16, bias=False)\n", | |
| " )\n", | |
| " (lora_B): ModuleDict(\n", | |
| " (default): Linear(in_features=16, out_features=2048, bias=False)\n", | |
| " )\n", | |
| " (lora_embedding_A): ParameterDict()\n", | |
| " (lora_embedding_B): ParameterDict()\n", | |
| " (base_layer): Linear4bit(in_features=8192, out_features=2048, bias=True)\n", | |
| " )\n", | |
| " (act): NewGELUActivation()\n", | |
| " )\n", | |
| " )\n", | |
| " )\n", | |
| " )\n", | |
| " (lm_head): CausalLMHead(\n", | |
| " (ln): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)\n", | |
| " (linear): Linear(in_features=2048, out_features=51200, bias=True)\n", | |
| " )\n", | |
| " (loss): CausalLMLoss(\n", | |
| " (loss_fct): CrossEntropyLoss()\n", | |
| " )\n", | |
| " )\n", | |
| " )\n", | |
| ")" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 30 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "#Testing the trained model\n", | |
| "phi_stream(model, tokenizer, \"Design a database to record employee salaries.\")" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "ePHmDt4bzsee", | |
| "outputId": "5c894f7a-677d-4ace-e44a-e11086c56e15" | |
| }, | |
| "execution_count": 31, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n", | |
| "\n", | |
| "### Instruction:\n", | |
| "Design a database to record employee salaries..\n", | |
| "\n", | |
| "### Response:\n", | |
| " \n", | |
| "A salary database is a tool that is used to store and manage employee salaries. It is a centralized location where all the salary information of an employee is stored. The database can be designed in various ways, but the most common approach is to use a relational database.\n", | |
| "\n", | |
| "A relational database is a type of database that stores data in tables, with each table representing a different type of data. In the case of a salary database, the tables would be employees, salaries, and salaries_paid.\n", | |
| "\n", | |
| "The employees table would have columns for the employee's name, department, and hire date. The salaries table would have columns for the employee's name, department, salary, and hire date. The salaries_paid table would have columns for the employee's name, department, salary, and hire date, and a foreign key that references the salaries table.\n", | |
| "\n", | |
| "The foreign key in the salaries_paid table would be a one-to-many relationship, meaning that each salary is associated with a single employee. This is because the salaries_paid table is designed to store the salaries paid to each employee, and the salaries table is designed to store the salaries of each employee.\n", | |
| "\n", | |
| "The salary_paid table would have a foreign key that references the salaries table, and a relationship that indicates that each salary is paid to one employee. This is because the salaries_paid table is designed to store the salaries paid to each employee, and the salaries table is designed to store the salaries of each employee.\n", | |
| "\n", | |
| "Overall, a salary database is a useful tool for managing employee salaries. It allows for easy access to salary information, and it provides a centralized location for storing and managing salary data.\n", | |
| "<|endoftext|>\n", | |
| "\n", | |
| "\n", | |
| "Title: The Importance of Health and Physical Education in Preventing Illness and Promoting Wellness\n", | |
| "\n", | |
| "Introduction:\n", | |
| "In today's fast-paced world, it is crucial to prioritize our health and well-being. Health and physical education play a vital role in preventing illness and promoting overall wellness. By understanding the importance of prevention and acquiring skills and strategies, we can lead healthier lives. In this article, we will explore the significance of health and physical education, and how it can positively impact our lives.\n", | |
| "\n", | |
| "The Importance of Prevention:\n", | |
| "Prevention is the key to maintaining good health and preventing diseases. It involves taking proactive measures to avoid potential health issues. Just like a person who wants to conserve resources in a positive way will place plastics in special containers\n" | |
| ] | |
| } | |
| ] | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment