Skip to content

Instantly share code, notes, and snippets.

@danferns
Created February 21, 2025 08:25
Show Gist options
  • Select an option

  • Save danferns/7d18cedaa68eaba4071547a6e584f6a6 to your computer and use it in GitHub Desktop.

Select an option

Save danferns/7d18cedaa68eaba4071547a6e584f6a6 to your computer and use it in GitHub Desktop.
Meter detection with metrogram on librosa sweetwaltz example
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"import librosa\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"# track_path = \"./Husn.mp3\"\n",
"\n",
"y, sr = librosa.load(librosa.example(\"sweetwaltz\"))"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Text(0.5, 1.0, 'Fourier Tempogram')]"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAARuCAYAAADZOQZfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gURfrHv7O7sORF4gKSRIKiIgJKUIKKiOFnPHPgPE899Qycp4fhzoxZznzeKeiZFQynKEEJIggSRckSdgVW8i6wbJz+/bHsTNVMvdNVPTUzPbvv53l46O3pfqs6Vb1vvW+9FXAcxwHDMAzDMAzDMAyjTUaqK8AwDMMwDMMwDJNusCHFMAzDMAzDMAxjCBtSDMMwDMMwDMMwhrAhxTAMwzAMwzAMYwgbUgzDMAzDMAzDMIawIcUwDMMwDMMwDGMIG1IMwzAMwzAMwzCGsCHFMAzDMAzDMAxjCBtSDMMwDMMwDMMwhrAhxTAMwzAMwzAMY0jSDKmxY8eiX79+aNy4MVq1aoVzzz0Xq1evlo5xHAf3338/2rZti/r162Po0KH4+eefXWVPnDgRRx55JLKzs3HkkUfi448/TtRlMAzDMAzDMAzDIOA4jpOMgk4//XRccskl6NevHyoqKnDPPfdg+fLlWLFiBRo2bAgAePzxx/HII49gwoQJ6NatGx5++GHMnj0bq1evRuPGjZVy582bh5NOOgkPPfQQzjvvPHz88cf4+9//jjlz5uCEE07QqlswGMSWLVvQuHFjBAIBa9fMMAzDMAzDMEx64TgO9u7di7Zt2yIjI4bfyUkR27ZtcwA4s2bNchzHcYLBoJObm+s89thjoWNKSkqcnJwc55VXXiHlXHTRRc7pp58u7RsxYoRzySWXaNclPz/fAcD/+B//43/8j//xP/7H//gf/+N/DgAnPz8/pg2RhRRRWFgIAGjWrBkAYMOGDSgoKMBpp50WOiY7OxtDhgzB3Llzcf311yvlzJs3D7fffru0b8SIERg3bhxZdmlpKUpLS0N/Owedcvn5+WjSpImn62EYhmEYhmEYJv0pKipC+/btyYi4alJiSDmOg9GjR+PEE0/EUUcdBQAoKCgAALRu3Vo6tnXr1ti0aRMpq6CgQHlOtTwVY8eOxQMPPBC1v0mTJmxIMQzDMAzDMAzjOuUnJVn7br75Zvz444949913o36LrLDjOK4XYXrOmDFjUFhYGPqXn59vUHuGYRiGYRiGYWo7SfdI/fnPf8Znn32G2bNn49BDDw3tz83NBVDlYWrTpk1o/7Zt26I8TiK5ublR3ie3c7Kzs5Gdne31EhiGYRiGYRiGqeUkzSPlOA5uvvlmTJo0Cd988w06d+4s/d65c2fk5uZi2rRpoX1lZWWYNWsWBg4cSModMGCAdA4ATJ06NeY5DMMwDMMwDMMw8ZA0j9RNN92Ed955B59++ikaN24c8iLl5OSgfv36CAQCuO222/Doo4+ia9eu6Nq1Kx599FE0aNAAl112WUjOVVddhXbt2mHs2LEAgFtvvRWDBw/G448/jnPOOQeffvoppk+fjjlz5iTr0hiGYRiGYRjLOI6DiooKVFZWproqTA0jMzMTWVlZcS97lDRD6uWXXwYADB06VNo/fvx4jBo1CgBw55134sCBA7jxxhuxe/dunHDCCZg6daqUMSMvL0/K5z5w4EC89957uPfee3HfffehS5cueP/997XXkGIYhmEYhmH8RVlZGbZu3Yri4uJUV4WpoTRo0ABt2rRB3bp1PctI2oK8fqaoqAg5OTkoLCzkrH0MwzAMwzApJBgMYu3atcjMzETLli1Rt27duD0HDFON4zgoKyvD9u3bUVlZia5du0YtuqtrG6RsHSmGYRiGYRiGiaSsrAzBYBDt27dHgwYNUl0dpgZSv3591KlTB5s2bUJZWRnq1avnSU5K0p8zDMMwDMMwTCwivQQMYxMb7xe/oQzDMAzDMAzDMIawIcUwDMMwDJMmOI4Dnt7OMP6ADSmGYRiGYZg0YdT4H3Dmc3NQGWRjimFEOnXqhHHjxiW1TDakGIZhGIZh0oRZa7ZjxdYirCooSnVVGIL8/Hz84Q9/QNu2bVG3bl107NgRt956K3bu3JnUetx///049thjUy7DNhMmTEDTpk1TXQ0AbEgxDMMwDMOkHQFwOnA/sn79evTt2xdr1qzBu+++i3Xr1uGVV17B119/jQEDBmDXrl2prmJCKC8vT3UVUgIbUgzDMAzDMIyvcRwHxWUVKflnMiftpptuQt26dTF16lQMGTIEHTp0wMiRIzF9+nRs3rwZ99xzT+jYTp064dFHH8U111yDxo0bo0OHDnj11VdDv5eVleHmm29GmzZtUK9ePXTq1Aljx44N/V5YWIjrrrsOrVq1QpMmTXDyySdj2bJlAKq8Ng888ACWLVuGQCCAQCCACRMmKOs8c+ZMHH/88WjYsCGaNm2KQYMGYdOmTTFlBAIBvPLKKzjnnHPQsGFDPPzwwwCA//3vf+jTpw/q1auHww47DA888AAqKipCZQUCAfznP//BeeedhwYNGqBr16747LPPpPp89tln6Nq1K+rXr49hw4bhjTfeQCAQwJ49ezBz5kz8/ve/R2FhYahO999/f+jc4uJi8n4mAl5HimEYhmEYhvE1B8orceTfp6Sk7BUPjkCDuu4q865duzBlyhQ88sgjqF+/vvRbbm4uLr/8crz//vt46aWXQgsMP/3003jooYdw991346OPPsKf/vQnDB48GD169MBzzz2Hzz77DB988AE6dOiA/Px85OfnA6gyLM8880w0a9YMkydPRk5ODv71r3/hlFNOwZo1a3DxxRfjp59+wldffYXp06cDAHJycqLqXFFRgXPPPRd//OMf8e6776KsrAwLFixAIBBwlfGPf/wDY8eOxbPPPovMzExMmTIFV1xxBZ577jmcdNJJ+OWXX3DdddeFjq3mgQcewBNPPIEnn3wSzz//PC6//HJs2rQJzZo1w8aNG3HhhRfi1ltvxbXXXoslS5bgjjvuCJ07cOBAjBs3Dn//+9+xevVqAECjRo1Cv8e6n4mADSmGYRiGYZg0wwEnm/Aba9euheM4OOKII5S/H3HEEdi9eze2b9+OVq1aAQDOOOMM3HjjjQCAu+66C88++yxmzpyJHj16IC8vD127dsWJJ56IQCCAjh07hmTNmDEDy5cvx7Zt25CdnQ0AeOqpp/DJJ5/go48+wnXXXYdGjRohKysLubm5ZJ2LiopQWFiIs846C126dAnVs5pYMi677DJcc801ob+vvPJK/O1vf8PVV18NADjssMPw0EMP4c4775QMqVGjRuHSSy8FADz66KN4/vnnsWDBApx++ul45ZVX0L17dzz55JMAgO7du+Onn37CI488AgCoW7cucnJyEAgElHWKdT8TARtSDMMwDMMwjK+pXycTKx4ckbKybVAdIljtjQKAY445JrRdbRxs27YNQJXBMXz4cHTv3h2nn346zjrrLJx22mkAgEWLFmHfvn1o3ry5VMaBAwfwyy+/aNepWbNmGDVqFEaMGIHhw4fj1FNPxUUXXYQ2bdq4ntu3b1/p70WLFuGHH34IGT0AUFlZiZKSEhQXF6NBgwZR19ywYUM0btw4dM2rV69Gv379JLnHH3+89vXEup+JgA0phmEYhmGYNKO2JZsIBAJa4XWp5PDDD0cgEMCKFStw7rnnRv2+atUqHHLIIWjRokVoX506daRjAoEAgsEgAOC4447Dhg0b8OWXX2L69Om46KKLcOqpp+Kjjz5CMBhEmzZtMHPmzKhyTDPajR8/Hrfccgu++uorvP/++7j33nsxbdo09O/fP+Z5DRs2lP4OBoN44IEHcP7550cdW69evdB2rGt2HEcyNKv36RJLdiLw9xvJMAzDMAzDRMGhff6jefPmGD58OF566SXcfvvt0jypgoICvP3227jqqquiDIVYNGnSBBdffDEuvvhiXHjhhTj99NOxa9cuHHfccSgoKEBWVhY6deqkPLdu3bqorKzUKqd3797o3bs3xowZgwEDBuCdd95B//79jWQcd9xxWL16NQ4//HDdy4uiR48emDx5srRv4cKF0t8mdUo0nLWPYRiGYRgmDTAZmWdSwwsvvIDS0lKMGDECs2fPRn5+Pr766isMHz4c7dq1k8Le3Hj22Wfx3nvvYdWqVVizZg0+/PBD5ObmomnTpjj11FMxYMAAnHvuuZgyZQo2btyIuXPn4t577w0ZHp06dcKGDRuwdOlS7NixA6WlpVFlbNiwAWPGjMG8efOwadMmTJ06FWvWrAnNk9KRUc3f//53vPnmm7j//vvx888/Y+XKlSEPly7XX389Vq1ahbvuugtr1qzBBx98IGUKrK7Tvn378PXXX2PHjh0oLi7Wlm8bNqQYhmEYhmEYxgJdu3bFwoUL0aVLF1x88cXo0qULrrvuOgwbNgzz5s1Ds2bNtGU1atQIjz/+OPr27Yt+/fph48aNmDx5MjIyMhAIBDB58mQMHjwY11xzDbp164ZLLrkEGzduROvWrQEAF1xwAU4//XQMGzYMLVu2xLvvvhtVRoMGDbBq1SpccMEF6NatG6677jrcfPPNuP7667VlVDNixAh8/vnnmDZtGvr164f+/fvjmWeekZJkuNG5c2d89NFHmDRpEo455hi8/PLLoZTx1Uk1Bg4ciBtuuAEXX3wxWrZsiSeeeEJbvm0CDg9voKioCDk5OSgsLESTJk1SXR2GYRiGYZgoHMdB5zFVYU9f3HIieraNTmddEygpKcGGDRvQuXNnaW4NUzt55JFH8Morr4RSv9si1numaxuwR4phGIZhmBrLnLU7MOTJGZj3y85UVyVueOibqQ289NJL+OGHH7B+/Xr897//xZNPPhlKqe43ONkEwzAMwzA1litemw8AuPTf32PjY2emuDYMw7ixdu1aPPzww9i1axc6dOiAv/zlLxgzZkyqq6WEDSmGYRiGYRiGYXzBs88+i2effTbV1dCCQ/sYhmEYhmHSAI7sYxh/wYYUwzAMwzAM4zs4HxqTSGy8X2xIMQzDMAzDML6hTp06AJDS9YGYmk/1+1X9vnmB50gxDMMwDMOkAbXFQ5OZmYmmTZti27ZtAKrWOqpejJVh4sVxHBQXF2Pbtm1o2rQpMjMzPctiQ4phGIZhGIbxFbm5uQAQMqYYxjZNmzYNvWdeYUOKYRiGYRgmzajpzqlAIIA2bdqgVatWKC8vT3V1mBpGnTp14vJEVcOGFMMwDMMwTBpQw20nJZmZmVYUXoZJBElNNjF79mycffbZaNu2LQKBAD755BPp90AgoPz35JNPkjInTJigPKekpCTBV8MwDMMwDJMaeMoQw6SepBpS+/fvR69evfDCCy8of9+6dav07/XXX0cgEMAFF1wQU26TJk2izq1Xr14iLoFhGIZhGCbl1PTQPoZJB5Ia2jdy5EiMHDmS/D1ywtenn36KYcOG4bDDDospNxAIxD1ZjGEYhmEYxs+w8cQw/sK360j99ttv+OKLL/CHP/zB9dh9+/ahY8eOOPTQQ3HWWWdhyZIlMY8vLS1FUVGR9I9hGIZhGIZhGEYX3xpSb7zxBho3bozzzz8/5nE9evTAhAkT8Nlnn+Hdd99FvXr1MGjQIKxdu5Y8Z+zYscjJyQn9a9++ve3qMwzDMAzDMAxTg/GtIfX666/j8ssvd53r1L9/f1xxxRXo1asXTjrpJHzwwQfo1q0bnn/+efKcMWPGoLCwMPQvPz/fdvUZhmEYhmGs4tTKvH0M4198mf7822+/xerVq/H+++8bn5uRkYF+/frF9EhlZ2cjOzs7nioyDMMwDMMwDFOL8aVH6rXXXkOfPn3Qq1cv43Mdx8HSpUvRpk2bBNSMYRiGYRiGYRgmyR6pffv2Yd26daG/N2zYgKVLl6JZs2bo0KEDAKCoqAgffvghnn76aaWMq666Cu3atcPYsWMBAA888AD69++Prl27oqioCM899xyWLl2KF198MfEXxDAMwzAMkyQ4ax/D+IukGlILFy7EsGHDQn+PHj0aAHD11VdjwoQJAID33nsPjuPg0ksvVcrIy8tDRkbYkbZnzx5cd911KCgoQE5ODnr37o3Zs2fj+OOPT9yFMAzDMAzDMAxTqwk4Do9vFBUVIScnB4WFhWjSpEmqq8MwDMMwjCU6/e2L0PbGx85MYU3ip6S8Ej3u+woA8PmfT8RR7XJSXCOGqZno2ga+nCPFMAzDMAzDMAzjZ9iQYhiGYRiGYRiGMYQNKYZhGIZhGIZhGEPYkGIYhmEYhkkDeFY7w/gLNqQYhmEYhmEYhmEMYUOKYRiGYRiGYRjGEDakGIZhGIZh0gAHHNvHMH6CDSmGYRiGYRjGN+zeX4b563eClzpl/A4bUmlCRWUQ+0srUl0NhmEYhmGYhDL0qZm4+NXvMXXFb6muCsPEhA2pNOG0cbPR8x9TsKe4LNVVYRiGYRgmBdQWB03hgXIAwNcr2ZBi/A0bUmnC+u37AQDfr9+V4powDMMwDMMknnQzHJfk7cZ7C/I4JLEWkZXqCjCm8MfJMAzDMAzjN857aS4AoG3T+hjcrWWKa8MkA/ZIMQzDMAzDpAG1bSg1Xa93/fZ9qa4CkyTYkGIYhmEYhmGSzq79ZXjwfyuwcmtR0spcuHEXXp75C4LBxJlp6WoAMuZwaF+awWG3DMMwDMPUBH3g3k+WY/LyArz+3QZsfOzMpJR54SvzAACtGmfjgj6HJqVMpubCHimGYRiGYZg0oKYlMfhpc2xPVCIvd/0ODr9j4ocNqTSjZjWhDMMwDMN4IRBIdQ3SmxpmkzIpgg0phmEYhmGYNIMNAYZJPWxIMQzDMAzDpAG1zXZyat0VM+kGG1JpBo9AMQzDMAzDMEzqYUOKYRiGYRiGYXxOTUs2UhNgQ4phGIZhGCYNqHV6dG273hiM/mApTnl6FkrKK1NdFUaADak0ozbGC/+wcRfu+Xg5ikrKU10VhmEYhmGYpDNp8Was37EfX6/cluqqMAK8IC/je353cPG8zIwAHjznqBTXhmEYhmFi8+jklVj721785+p+yMzgPOUUNTWFe63zHNZi2JBi0oYNO/anugoMwzAM48qrs9cDAOav34mBh7ewJ7iWKeiJvNxadiuZBMGhfWkGj3IwDMMwTHpQHuROm2FqMkk1pGbPno2zzz4bbdu2RSAQwCeffCL9PmrUKAQCAelf//79XeVOnDgRRx55JLKzs3HkkUfi448/TtAVMAzDMAzDMMmAs9QxfiephtT+/fvRq1cvvPDCC+Qxp59+OrZu3Rr6N3ny5Jgy582bh4svvhhXXnklli1bhiuvvBIXXXQR5s+fb7v6DMMwDMMwKaM2JpxiGD+T1DlSI0eOxMiRI2Mek52djdzcXG2Z48aNw/DhwzFmzBgAwJgxYzBr1iyMGzcO7777blz19SPchDIMwzBMesAeFcY2bEz7C9/NkZo5cyZatWqFbt264Y9//CO2bYud5nHevHk47bTTpH0jRozA3LlzyXNKS0tRVFQk/WMYhmEYhkkXaoNCndBkEzX/9jFJwFeG1MiRI/H222/jm2++wdNPP40ffvgBJ598MkpLS8lzCgoK0Lp1a2lf69atUVBQQJ4zduxY5OTkhP61b9/e2jUkGt3RraX5e7CnuCzBtQmztfAA3v8hjxeKYxiGYWoVwSQmlPCT8r9tbwm++qkAlZxQI2WUVlTijg+X4fMft6S6KrUWXxlSF198Mc4880wcddRROPvss/Hll19izZo1+OKLL2KeF4hYiMBxnKh9ImPGjEFhYWHoX35+vpX6+4U5a3fg3Be/w0lPzEhamWc+Nwd3TVyOZ6evSVqZDMMwDJNKPl26Gb0enIq563YkvewAUrsI06lPz8INby3C2/M3pbQetZm3vs/DR4t+xc3vLEl1VWotvjKkImnTpg06duyItWvXksfk5uZGeZ+2bdsW5aUSyc7ORpMmTaR/NYnpK38DAOwtqUhambv2V3m/Zq3enrQyGYZhGCaV3PreUuwtqcDV4xckvexUh/YVHdQxvlkVewpGPPjJA+dHduyjI7aY5OBrQ2rnzp3Iz89HmzZtyGMGDBiAadOmSfumTp2KgQMHJrp6DMMwDMMwSfMO1TS7IrU+tcRR054TQ5PUrH379u3DunXrQn9v2LABS5cuRbNmzdCsWTPcf//9uOCCC9CmTRts3LgRd999N1q0aIHzzjsvdM5VV12Fdu3aYezYsQCAW2+9FYMHD8bjjz+Oc845B59++immT5+OOXPmJPPSGIZhGIZhUkJ5ZRDvLsjDwC4tcHirRqmuDsPUGpJqSC1cuBDDhg0L/T169GgAwNVXX42XX34Zy5cvx5tvvok9e/agTZs2GDZsGN5//300btw4dE5eXh4yMsKOtIEDB+K9997Dvffei/vuuw9dunTB+++/jxNOOCF5F8YwDMMwDJMixn+3AY9OXgUA2PjYmUktO5Hhd+zZiU1N9eilE0k1pIYOHRoz69yUKVNcZcycOTNq34UXXogLL7wwnqqlDRwvHObDhfmom5WBc45tl+qqMAzDMEzCoXSoxZv2JLciDMMASLIhxTC22LGvFH/96EcAwBlHt0GdTF9P92MYhmGYhBEjUXHcOI6Dn7cU4fBWjVCvTmb074krOqGkOlkHUzNg7ZOxSrI8ZvtLwxkJeQ0LhmEYhkkMExdvxlnPz8Fl//4+1VVhGN/BhlSawSMoDMMwTDrzyqxf8NVPW1NdjbRE1ACSNXD57oI8AMDivD3JKVAg1nQQN9Zt24vL/v095q/fabFGDCPDhhTDMAzDMElh0abdeOzLVbjhrcWprkpSkA0fB/9btgUbd+y3Xk4iQ/vciMfYSSR/fHMR5v6yExe/WnM9aal87kwVPEeKSUtSvaI7wzAMY872vbV3AdH//bgVt7y7BICdzHrJMl/StbctKCxJdRWYWgB7pJiEkr+rGBsSMPrGMAzDMOnEoo274pZBOX9q6uCiP31dqcWnDsBaCxtSaYbfPyBxDldFZRAnPTEDw56aKSWHYBgd1v62F499uQp7istSXRWGYazh804sgQQ4DisK13uSpq+LX8MdGftwaB+TMMoqg6HtnfvK0DCbXzdGn+HPzgYA/Lq7GC9cdlyKa8MwDOMvWFlnmNTDHinGiGDQwaw127Fjn3uce00NNWCSy4+/Fqa6CgzDMN6wbOuQmXstdbdFJeUoPFBudE7a2nPpWm8B1rNSDxtSaUaqG6xPlm7G1a8vwLCnZqa0HmI0QKrvCcMwDMMkG9tdX0VlEMfcPxW9HpiKciGipLbw1U8FWM4Dd4whbEilGam2Gb5etQ0AsLfEbM4Tr3/FeIXfHYZhmNjY8EuI/fqe4rBXyn0aU/q30T9vKcQNby3C2S/MSXVVmDSDDSkmYSRrXm1NaMQZhmH8TlFJOf49ez027zmQ6qqkJVb6xFrW3SWrf1+/nbMLM95gQ4pJCokMv+PQPoZhmMTz909+wiOTV+LcF79LdVUYcN9nE06oyHiFDSnGKtywMwzD1EzmrNsBoHYvqhsPNTUxQE0YKE3XZ8MGYOphQ4pJe9h2YxiGYWoDDvGXjTWqanNfygYJ4xU2pNKMdF03wnat5ax96XlPGD348TIMw8QmkXaAm7emJrTRpvevoLAET3y1Snu+YGWwBtwkRgkbUrWIA2WV+H79TlQkKa1pTWhcGYZhmGp42D4e2OthTkLDBuM4949vLsRLM3/Blf+Z73psYXE5+j0yHaPfXxpHiebwIHNyYEMqzYjns7j+rUW45NXv8cKMddbqo0siP2huKhiGYZjagNiVittspMWH6f1bvrlqvan1O9yz/U1c/Ct27S/DpCWbvVTNE58u3YzeD03D/PU7k1ZmbYUNqVrE7DXbAQBvfb8pKeXZTltK2WI86MIwyeW3ohI8NWU1tnAabCbBvDhjHc576TsUl5mtXegXasPyHLXhGv0KZf/d+t5S7CkuxzUTfkhqfWojbEgxaYmNibUMw3jj2jcW4oUZ63DV6wtSXRUmiaSi2X1yymosyduDd+bnJb9wE1Jwb2qD+ZI8Iy1xDzCV6gpPzUo8bEilGxY+Cr/GHKdXoQxTe6kOa1m3bV+Ka8LUFkorkjO3N5HYWY9X3eElVFd3EV4TokJq6tgsewsTDxtStZBkfVZSLHciy+GGgmEYxipjJ6/Ea3M2pLoaNYp0UtaTVVe/3JLEZj00Y922vbjrox+Rv6s47rJrgpHrd9iQYpKC+DGXlFfi37PXY922vUYy0qkTYuzBHQHDJJdVBUX41+z1eOjzFamuSgjOQBaNnGwidR1kQgdKa+FjP/+luXh/Yb6V+U218PYlHTak0ox08r5QNX1p5i94ZPJKnPrMbDN5nGyCYRgm4ewvrUx1FdIayuizsmhuCvq72jCGmUhD1FR2UUlVYpW1OqHTbrI135dg0Ena0jg1DTak0oCaNhK3JG933DLEpqNm3R2GYRgmkhrWDVrBtm5Q03QNN8TrranGou7g+wWvzEX/sV+jpJwHUUxhQ4pJGFSjnJnhnyarsLgcizbtqnUdCMMwjCn+abkZX1EDEljV1KkDuqrNkrw92LGvDD/+WpjYCtVA2JBKM/yu79MGSXh/puUWKx4j6JRnZuGCl+dh6orfLNaIYRiGsYnPuz4Jqkuyk7UvcbJrM7YNKb9kR448dk9xGT5btoU9TxZJqiE1e/ZsnH322Wjbti0CgQA++eST0G/l5eW46667cPTRR6Nhw4Zo27YtrrrqKmzZsiWmzAkTJiAQCET9KykpSfDVJA/bH2SqvS8Zlj1S8VzNjn2lAIApPxfYqQzDMAxD4rX78fsgYiqQbkkKLal0mrstkqx3KpXerkh978rXFuCWd5fg0ckrU1SjmkdSDan9+/ejV69eeOGFF6J+Ky4uxuLFi3Hfffdh8eLFmDRpEtasWYP/+7//c5XbpEkTbN26VfpXr169RFwCY4D4+Yrfso8i+xiGYRjGKqR+zn2fMUkzdhK5IG/CJLvLjlyQt3oNwP8ti+2kYPTJSmZhI0eOxMiRI5W/5eTkYNq0adK+559/Hscffzzy8vLQoUMHUm4gEEBubq7VuvqV9Bz3kette44Uj1QyDMMknpo6jySdED0MtcGjkgocx0lpOvlkUNOvL5n4eo5UYWEhAoEAmjZtGvO4ffv2oWPHjjj00ENx1llnYcmSJTGPLy0tRVFRkfTPz6SrnUDGidtIASttp+sdYhiG8SPcptoinQb6vFY1sdeYNJdUuETbRfrQaOHIIHv41pAqKSnB3/72N1x22WVo0qQJeVyPHj0wYcIEfPbZZ3j33XdRr149DBo0CGvXriXPGTt2LHJyckL/2rdvn4hLSAg2PvC4RLicrCM7y49fcBp1dgzDMLWNdBowS8U8ZBuhaWK1k3YJPlEH0nVJFe82mk9ufA3Al4ZUeXk5LrnkEgSDQbz00ksxj+3fvz+uuOIK9OrVCyeddBI++OADdOvWDc8//zx5zpgxY1BYWBj6l5+fb/sSfE2qR8hsZO2TOqp0avUYhmGYWol1Y0fo/FKa0CB1RVtDjJSxbQj70WTxoZMsbUnqHCkdysvLcdFFF2HDhg345ptvYnqjVGRkZKBfv34xPVLZ2dnIzs6Ot6pJI9ZHPeG7DVi/Yz8e+L+e/ot5JUa3bNezJjTiDE2qs0wyDJN60qkZIFOU+6yLjkQ0zPziAUxesgmhzOQUmVJ8/iqmFb7ySFUbUWvXrsX06dPRvHlzYxmO42Dp0qVo06ZNAmqYeiIbt/v/twJvztuEBRt2pahGeoj1zrTw1qVTp8owDJNeqNWsRGY2YzwgDlAmsJja9tyDPlQwbA8oZvjdqk8jkuqR2rdvH9atWxf6e8OGDVi6dCmaNWuGtm3b4sILL8TixYvx+eefo7KyEgUFVWv7NGvWDHXr1gUAXHXVVWjXrh3Gjh0LAHjggQfQv39/dO3aFUVFRXjuueewdOlSvPjii8m8tISi8/nsL6tIeD1MoUa0bH/APmzzGIZhGIvUhGbe96qrQ2y7nZamnbBY60Aik034ELaj7JFUQ2rhwoUYNmxY6O/Ro0cDAK6++mrcf//9+OyzzwAAxx57rHTejBkzMHToUABAXl4eMjLCLo09e/bguuuuQ0FBAXJyctC7d2/Mnj0bxx9/fGIvxmf4ZsRIowGyvyBvLWj1NDhQVokLX5mLk7q2xN9G9kh1dRiGqQHUhlTQtkmWIm67GD/2pH6skw6256+RWZA96n78RdsjqYbU0KFDY45c6IxqzJw5U/r72WefxbPPPhtv1dKGdBopoepqI9mEdXxYJVM+XrIZP28pws9bitiQYhgmDnzY0aRT51cDoLw1bsemKxlSsgm7sn0z0C3AgyP28NUcKUaN7Y86FW54sUhfLshbA3qCimAw1VVgGKaG4Rf7xSfV0MJmlERZhdyu0+szxl+W12ete97KrUVYv32ft0ISjJxswn9vWy1Y2iptYUOKSTq2G3z/NXkMwzCMCr+31yXllbjytfkY/90GaX9ZRRCj31+KT5du9izbtO/79+z16Hbvl5i7bofydykbrmWvh20DurC4HCP/+S1OfnqWYT1SO/BrA686TyKNHTak7MGGVJpBft8+/CikeauiR4q/YIZhmLTAJMQrkSRLn353QR6+XbsDD/xvRdT+SUs249b3lhrJi8fYeWTySgDAnRN/NDrPK4n0xBQUlSRMthWER+PHrH0iNoxL8V1M12QhfoENqTTAduOWyE9GR7b1ZBPcCDAMwzAWKC6rVO7fsa9UW0YiPRqJXOuJWuzXNmKf7cdhVethdBZkUHqODW8Xq1DxwYYUkzCoD99G+nOpM+FGoEbDj5dhUkciB6rSaRDMrap+NAiSRaqfouM4uOfj5Xh19i+eZcgeGhu18je8jpQ9kpq1j7FAmn7hthfkZRiGYRKPFNqXslokD0rBTGUCAp2QQCtzj8VtMSTR8oN3HH2ZOnd9cd4evD0/DwBw3eAuof2u2Qapa/SJmpXIKvnwctMWVmnTAB3byY8dHFVtr3Ok2AsVGz++AwzDMBQm7XiyDBmqe7LR51hPtJRIY8euOM+yde77/tIKz3WpxnbWPt/rKKwwWIMNqdpICj5wucH3d3ahdIVvA8Mwtqlt7SvVOwVtGFJez0uS0us51FLjvITOubItzzdZ+xK5tlWYdAqx9SNsSNUQ0mlxNXEdKf6AGYZhaie2PRNAVfryYBxWD+mRMqhtsrq1RBoQ6TQ3zkoWO9FoiVtahOwEun+8G+fq600jVdI3sCGVZqST2UG1bWLSvkqPHZ4Uy+3Tu1JWEcS2JKZ85faPYRjb+KV91anFjn2l6HHfV7j8P/M9l0MqvTZug5VES/4j1WGAth+NX9KfJ7JPt5w8uVbDhlSa4ZPv2xhpHamM8GtXaeGCbN8Tx3Hwj09/wiuzvGcAAoD/e2EOjn/0a6zcWmSpZrWTdH3nGYaJjW3PxJfLtwIA5q3f6VkG7ZHSx7bxqafzJi5k3vpiv1al2Rdovc+xkgjE9jtVu7IUJhI2pNIA64aCXXExylGvdyFm7fPskUrgl79iaxHemLcJj325Ki45qwr2AgA+W7bFRrUYhmGSTiLnt3qthy3GTV+DK/4zH2UVwdA+6hrjCRdMFOkaGm9fp7E7IOsXL2wiP7dEJlWpbbAhVUPwi5eWatip0S0bfZON716UcYBYkJFhGLukqyLI6LG3pByrDw4oqbA+x8fw+HHT12LOuh346ueC0D6qL03EfC5d5KQDdhdmFUlgrok4ZGskskj1i+SCnQV5LQihZPvEcExX2JBKM9JV8UhoDLXle8KTLRkm8RQWl2PA2G/w909/SnVVmAQx5MmZGDFuNhZu3KX83S/pz0WPFIWNeTO2uxb79kNy9AuxnJR6OaUlVcQImppPBpERkPUfc9iQSgNsN25JM8a0RqniTzZhg0S2HdwuMUw07yzIQ0FRCd6ctynVVWFiEE93sWt/GQBg2srfLNUmNja8HrYn4adrRjS/GLla5ft9jlQC8Z5a3W49ajNsSDFJQeyoxA/YdlgeU/NIdSfNMEx8UMkK/PJty8YOUVcjw8Iu8mKx7sd4hbpG64v9+nzet3+y9iUwbbqG6J37SnHOC3Pw3+95sCsWbEilGVLab8I48QsOsW1FtqPeZhgmPfCLEs3ExsZz8n2qZY3QJl+G1ftk3kwi50jplW8h2QSxbUOeH9f51DHSnvt6LZb9Woj7PuHw61iwIZUGUG2EH9t1ippwDQzDMIw5VjKEJTBUXMROsonkZyuwkmwifhEpwf5AbeLS13uezmD5IsXBDUr2fk68pQUbUjUEExdwshbPkz/O1C7ZV1JeiUmLf8X2vaUa8vw3eqSFD0e9mDAvzliHtzhEgkkzkjUR/afNhTjnxe/wfRxrQHnF0XBJ2Uk2Qd/AA2WVxhnqEjl/OrEeJP/JS1aUi5HshE7eFpJNEO8RaxR6sCGVBlDfXTqNHpGNh+eLMGvwn522BqM/WIbzX/7ObjUYRoP8XcV4cspq3MshEiHYG1170Bnou+K1+ViWvweXvPq98ned18XGK0V6pBL4vq79bS+O+PtX+NvE5UZ1ko8xU3tLyivx0+ZCO2FxOt5Cj09Hr3r+bkxszAsnjR2Poxta7xRbUlqwIZVmyKMm/m48/ET1OiH5uw5Yl11WEcSsNduxv7RC+Ts3Rsz+MvW7wTB+x4pxotEG7ikuj12PBPZ3Ol43G1GIlOwXZqwDALy/MN+glPi46rUFOOv5Ofhw0a+hfYmc1yxi35NmQYbh4KzncgyEJ8khxYNaccKGVBrj93dfapg0jjGSLYU3uFOZwFXpn5q6Gle/vgA3vLUoYWUw6Y04WswDIExtIxVeHq+QGQYt1JW6D0UHYhuRETUJb2nUKRh0sGVP9ADigoNre727IM+gbLcapQbPXh7iRK9hnIlcLNk2GRqVSmTWwJoEG1JpAPVxJnIVctukOuY4aGBIySM17udVz3v5du0O7TJqOhWVQRzgiaohxHcqgTY9w1jHSnZYYvFPs3rYOcYNKsOgyQCIaT2KSmJ7rHXCt6hDbn1/KQY+9g2++HGr+jxhO1kRL7bXqLJSVcPBWQvFuJJIr5FOSn1GDzak0gzTkIFkQ03YtG0MmlKZwEw5fhxVTTXDn52NI/7+FfaWmIy01g5S7ZFanLcb//l2vdHgAlN7Sei8I9shXhbOs5Jh0BAzj1QYnTr9b9kWAFXJblQkKzU3uUaVDdkJTLphdp6dY5KBzoCxX/RKv5OV6gowZkhZddJoHMF2rgk5lttdiledMX3usL/YsGM/AGBJ3h4M7tYyLll+6XjiwU+jf+e/NBcA0KJRNs7t3S7FtWFqA8lKzW0n/bndxYN16lTkMuBEeY2oY1RQ4WryeepwfDdjy/S+224D/b7Aryzb43tkuR4ctmcP9kilAaQR4tk4SLUqZxfboX3G5bvcT26wGBG/GIbrtu1Lafmp9swxetiZG5S4eUc2kOqRwDWvKHuktCJoINwbpAGWgqQDiQyT9Io0OGs9jC7+0Fbb6GQSZI+UHkk1pGbPno2zzz4bbdu2RSAQwCeffCL97jgO7r//frRt2xb169fH0KFD8fPPP7vKnThxIo488khkZ2fjyCOPxMcff5ygK2BM0GmYkrU4nffQviTFZ9dQ+NZUIXda/rgrNtbFYRgd0kkhs7EgLynb8o0wqRPtkfK3kauD/arG7zWysf5aIpMUpdM36XeSakjt378fvXr1wgsvvKD8/YknnsAzzzyDF154AT/88ANyc3MxfPhw7N27l5Q5b948XHzxxbjyyiuxbNkyXHnllbjoooswf/78RF1G0qGNkPC2378JHeWxtKIS7y7IQ/6uYjPZGu2LSdY+0zCsNOpvkg57HaLxyy3xSTUYvyP1M3bXrPHLOyj2T4GAWnl1G3hI5GCJnvcg9rMh629hjSNT7If2OcptMxnqbdv4pf33o5csXUmqITVy5Eg8/PDDOP/886N+cxwH48aNwz333IPzzz8fRx11FN544w0UFxfjnXfeIWWOGzcOw4cPx5gxY9CjRw+MGTMGp5xyCsaNG5fAK2Eo5LUY3NPgiLtfmbkeYyYtx8lPz/RcJoXX0D6tBsbnjdD67fvwt4k/YtPO/drncCIC2/hvqCPVnWeqy7dNZdDBxh3635ifsR7aZGOOVJKUWzFrn9QM+vB9TWyInD8uOBXthOc51ToRLAb3NZFeo4DWiLH/+i0/4ps5Uhs2bEBBQQFOO+200L7s7GwMGTIEc+fOJc+bN2+edA4AjBgxIuY5paWlKCoqkv6lI4ldKdwuOkV+t64qfXh5pd3GCDAL7ZNGJHVSr/qkw6G4+NXv8d4P+bjytQVax9/23hIMeWqGlfTl/r4zyUNOf+6Pu+LX9zYYdLBu276082be9PZiDH1qJiYKC5zWBGy8J5S3xMgQSGAabDmxQnhb/FZT+TbamGdL1V80HL0msjC979aTQ1jwJsnrXspCXp+zAbPXbPcm2BK25zFprSPFdpQWvjGkCgoKAACtW7eW9rdu3Tr0G3We6Tljx45FTk5O6F/79u3jqHkS0Ajt8yN0KnT1to1yKIIe5/LaSGea6sZo+95SAECeZsjkJ0u3IH/XAUxf+Vsiq6WNz19zY3zz3abaI0Xsf/DzFTj1mVl4/ht1uma/8tXPVX3Oq7PXp7gmTDxQIU+2vT/Jmh9cDRXeLl2v4WK/njGQnYrBTPHav1+/Ew9+vgJXva43EKlCDhc1OM9ziRqyNUJRqfI37NiP575e65ptsrbgG0OqmsiRK8dxXGN/Tc8ZM2YMCgsLQ//y8/O9VzjJkNFytWzkwLSRT6QXwC96sW2sGIA19eYY4qf059X4xTMWyYS5GwEAz0xbk9qKMADsKNTk2kyW62HHexbeFr8R29HORgq1hftHJpuwkpo+OW2J4zi4+Z3FeOzLVRH7xbrYKCe8bTJnO5EzAfzUXI8YNxvPTFuDBz5bkeqq+ALfrCOVm5sLoMrD1KZNm9D+bdu2RXmcIs+L9D65nZOdnY3s7Ow4a8yYQLnNTRrgeBoSr1n70gnbtrSdcJKaf99N8UvImk+qwdQCErEERDDo4EB5JRpmW1BjNBaMNzL6iP06SSO84mYQmaY/p8IdTWSTx3u8+uWbC/H5j1sBAH8b2cNz+co6SdcuGtC2vV3ephnoytY9R8dLRokqO5iu/4eNu4zqV1PxjUeqc+fOyM3NxbRp00L7ysrKMGvWLAwcOJA8b8CAAdI5ADB16tSY56QbVKMjfpAmHVVCPfZJCkM0DQ/0HDdtIUQjWc7CZHfMOrCyHo1fbkmq68HvRnqgq1CXxVgLifSoOO7HUFz2n+9x7INTsWNfqdmJLlBzZG0v9us5tM9j+F2qPdA2+mAxPFHK1CcdH/91ymV6O488xrw62ieaXHoGYdSbfIapfqf8QlINqX379mHp0qVYunQpgKoEE0uXLkVeXh4CgQBuu+02PProo/j444/x008/YdSoUWjQoAEuu+yykIyrrroKY8aMCf196623YurUqXj88cexatUqPP7445g+fTpuu+22ZF5a0pC9OemD3NARP3iWbfdOyGFYOvHZNZNaFi2aULzGyCcSv9SD8R+yl8L9RfnbxB/R474vyTCoRLQl36/fhfJKB18LczmtJJsQtsVwPrMwxOT3026DqXQiCWpOmI1amdXFjTqZYZVVx6hyrwdljIW3bUSzSDqF5TlS1HN3G5iIR3Y13IdUkdTQvoULF2LYsGGhv0ePHg0AuPrqqzFhwgTceeedOHDgAG688Ubs3r0bJ5xwAqZOnYrGjRuHzsnLy0NGRvhjGjhwIN577z3ce++9uO+++9ClSxe8//77OOGEE5J3YSnC7y+xzkRd2aby3wUl0ttlG+uhfT6xpPxyf63hk+vx4/eWKp6euhqb9xzA07/rZX3R1HTE9Jt774eqecavzdmA+/+vp0FBJnUKH7y/tCK03bpJPS/iSEgj0nZURZKl6MyRSmSbYEN2Vma4shVBB1mZ1bLtYt0TaXmSLBn5I5bpUlRGwIJ3tMZ1zt5IqiE1dOjQmDc+EAjg/vvvx/33308eM3PmzKh9F154IS688EILNfQn5C3zPGvRa03sYKN4KrxhVUERRr3+A0YP74aL+ulnY+QGQYWsUO7eX4Ym9esgM0Nf0eTbWoU8yu2Pm5LqavjJkKvOEDhqYCccc2jT1FbGZ5iE/SRLWS8oKgltNxLmSNkIHxMVTNEjZX+ujP6x8cxnqcY0WYbR/GUz0Z7nm2UJfU9ZZRD16kRbUt7fAbVOQWU7VMrQmP/tedkaw/MCgUDMm2EngYlRlWosvpkjxejhtRFNNaQtaCW0L8xfP/wRBUUluHPij/ELRsptzpQivlO/bN+H3g9NwwUv0+uzqajN908kkZPMvcKDB9GUxpjnU5uw/WZQIUJelUoba9xRyGFY3uYjUYcmy/ujgjZyNYw0F9mRbck78/Nw+rjZ2Fp4QOt4XbKEaKQKjfUmvSJKNjGkKBKRbEWFPG/e4Dxiv2uSEd/0ZqmFDak0gHZI+fsllupnOfaakmGl0TOcH2AkMI0Qa/3x4s0AgKX5e4xksLIejV/uiT9q4S988mh8hZEBEcdAn6uyTpRj3egjs9h5DX8SZBP7XeukIdsN0pCyIDuSuz9ejlUFe/F4RJpyZfkG3aN4bLmQBcJrJmAR+f0K/2XiibQ+FUBjsWRJtoFoG5MB2CNVBRtSaUw6dfq23dySDOFGZFh+o63c4nR6UAI8VyQx+OVtSPVrmeryGRqvz8Y0/C2RaavNZKgDGMXrsWFQeoUy7qRjXGQEqQV5E9jMl5QLxo5X45c4WDKkLN9vUZwNYyGVae91sOWJrK2wIZVmOMS2mYwEusQJz5NOZ2cj41KmhVaFymJkA8dx8NzXa/H5j1vsCk4A4p30elu5mY3GL32P3z3a6UpNGH+Qs5nFP1dGZ1DG7RgbBpMp8hwpr1KSE4Im7Vc0MjrKsu2sfeLApo27INZJDO2jvJU2yrER5SLLjt9jRsv2JJqcc+72TbJHqgrfLMjL0JAZ7zzGw+ryW1EJSsor0bF5w7hlkVlmrI/c+XARWaFOCzftxjPT1gAAzjqmrd1yLMPrSNkjFUqgG9wJRmN7DZrahunItufBQEnh9+Y1outBGZG2FWr9Y7VCIyO8VpHnxGPkuqEj2/Zzsu6RIt4pypNnoRhX/D4m45fESamGPVIMyQmPfo0hT85EYXG5p/NNPzHPXg+hIJOMcnrC7Yrbsdfu4pGJRCechNHDIf9IHal+pjaKP1BWiRvfXoSJi361IM03jyblUO+ru9coceFjdHi4BdkaA30m+jQ9wq8+xgSvaxtSnhVq3UQbAz5Sim2iHDeoY8sr3etqMu+O2m9jHSlJdoS4ddv2oajEm44VJdvrMyOMSNfTuMEEwIZU2pHISbYU+bvViyyaQLnevbrkqWOth/ZZuMt+H1WisJNpyPJQYQ3AP1fjn5p45cNF+Zi8vAB/+XBZqqtSYzF5S4w9UpazjHmF6ocSOeJulmyCyHpIGoDRP8RzLV69VtbHNYVroDxStsPbTDxSOga5WM7KrUU49ZlZGDj2G+V5lEfPtHy1bEKGxjEmdaoNsCGVBtBx0Mkp306Il3t4YhzSQ1u25yckctKwbaw/p3S1AH2I1yxQiSTl1bBQgfIEpkD2Ss2YI+XxPEkZFdtlC+FjlsP54inT/UTlZsQgnV0ChPcntI8ycqkshUYWtHq3vOir+/FK0cS9rAgGlfttILfXtoWHN2es3gYA2CcsMG1KKoc7U96H+AQ2pNIMyvVuY9RQPkYcKfT2qcoTljWO91SKfD0ZNjxSRIadisog5qzdgeIy742e3xE7DSsNNDe0UfjlnvjFoIuHZg3rhLYrKuNfA6oG3BLrmIytBAlFnE4pHj+2M7+K0oKWFWobS2t4nW9Jf++JNO7Ev+xKL6tQv2w20tQnNLRPlO0yEBRPtj8TVcirAV0T+hAbsCGVziRpJC6R8myMfIpYnyMl8M+v1+KK1+bjujcXJayMVGPbVV8Tmtnisgq8OGMd1v6217MMj4OxjAtN69cNbe/2OJdTxC+JQFKNbWXU9qg5HaVhuf2yYPTZqJLpOlyqMukFeb3VSYQ20dQeKRv3UvRIUcd4xXNoHxEeSH1PFdYzAloV5zqIzq1lFWxIpQE6owUeow60jrGd+pqckOytGKmcDMuGlFjXd+bnAQDmrNthtQw/Ibbr8kRhg86kho1SPTN1DZ6cshrDn53tWYbnEKEEkupq2ChebJtsTdhmEBGa5k2RlBR3KukA4bVyLSeBIxNUf2s0Cd/SMV5RPTNKZ5cNMLUh4JWMODwq6vPCf8kL8tqFfI9tyBaNNI+JHcT62U7kYsfLWbtgQyqNSeQrLH4gdmL+3WvrNTxRytqXwKR9NWHugxu2n7vt0UFTduwrxZWvzcfk5Vs9y1iSv8d7BRT4pe+paenPPXu3U5HBp4ZCtcuksm40QEPs1zjGK14X5BWxsW4inazDbL9StqG3ywQq1F5+N7xOHSC2LcgQhZhEDJsmm7DukRINLAt+YLd3o6b1IV5hQyoN0GmIbYek2FaAbWTV0cHGHCnbdU2FAZZKr0ci30tTxk5ehW/X7sCNby/2LMOOk9N/PU6qn40NqNFqIxlsR0VBGicGWbzsD8ZJJRnsNZUsGnrq/a4yUuGS8niPqQQYNqIQpAV5LfQLNryFpiTSI+W22K+pAW0CGQpKDICo68EtJsCGVNrhdTTPuBzLIxtUTe0YbGKHbXdBXtmFbkMbSI5VpXNfl/9aGOWpETsN0Sg1eQf81LTu3B//ul02jHMRv/Q9qa6HlfJttB/xi2AOQoePuedatuGZ8Aolw8QjZZyi3EaSjLglJHa9QNP03SrIjL/UttdyiG03Yyce2RUGWUe11g/z7DVV457+3Ft5NQ02pNIM8sU1eKFN1yMwi13X8Z55qxclQ9zOtP1GG4zOJJPnv16L370yFyXllZ5lnP3CHNz49mIsE0LXqKx9NkYQ0xXbXk6/xJXXtNHEVIeR1iQ8h0oJ24kMD6e8G/YjKey+ELJhYXSi63lUYgevmOgAVHHUHCkbCn8iU+BLXiPbc+MEeZVEwoxqTAdvkz025Ze+LNWwIZUOUCNaCXyH7YyiuXvPbHvVbGTtIzsqH1lST09bgx827sbExb8qfze5q+u27QufZ+GlqmkKeoaFVpIy/FOJX+oRD16XgJBkJPh9DQYdK6PayYRaD8r1PA3lljTSTAbs9A/VlKcxAGgyWGnhvYwHk341kSnKyXWkPKI1T86zbOodsNsnejXSQLyLViKGiPq5GXJp1qwlDDak0gzSnR2HzEcnr8TN7yyW0nzKoX128douUWtwmHz4pohVtdFgmRIMOtgfY7G+sgoqBay3UbSgfMFxk+wRsqhzLVTAfmifP3qfVFfDzvo/6m2zeojbdm+K4zg447lvMeTJGVbWufI7lOc1kWvS2Z6TKUqwvYYQVY4b9FwZdwPQXTYRkqgvgiyPyvzq1ctJ7bftnRLrajIIYtq2e50jZat8xg5sSKUZiQg7eHX2enz+41b8sHFXaJ8U4uU1/bmGkmO70cu0MkdK2LZwH8SOylTGFa/NR89/TMGWPQe8Fa5BUNZEQniesyBu14CG3XoCk7il2cEv9YiHRIb02KC0IohVBXvx6+4D+HV34r5h29j2xMgLi8av9Nr+nnTq4X2BU7VB6X0uj/t5RpITOkfKrjzbYZyybGFb9BolcPzDbI6Ueps6xgTbgxG1DTak0gBqxNTGaKzI1sISQZ7lkVlpO3FhD15D++iGKXGeOR3m/rITAPDp0i3K38mRSpNCqFFkCwZ0qrFRFdtrPPvl/tQEI1ekNs/jSxbuWbyEbUEB9Tw3iJKdSE8R4d1IpOLuhlaKciJiw/U8Yr+NeywNxll4floDsh4Nf7pM217q8LarRyqBSkci097XNtiQqoVQn+62vSXEMfFnbNNKcKFdSsSxwh92vAfJCRs0gZqUajtLIRWOU5uVTSvvlA9nSaW6Fna80fHL4xHYaLzeEbH90AntsxPeacHDRcr2Jk+rTNveH6/nEYslm0innqPtZBORpSYKr621zrE21pHSCulUPDLTRGOMHmxIpRl2kkCo2bmvLCxPGk30Jk+rUbExkVPYtu09sI3X6pk2uEbhOLbDZGqYYpphOYGJXzqqmuCRsj83gokHqi3R8Ui5eruISIZEhvZ59nJq7E+kB9XI20XItuLNz7DtiSS2pXcj/vuaSC+UiUdKfDqJTIJFXq7P9Sm/wIZUGkA1bjYaJhFpzYxEjvZ47Ug1lFE73gP1tpUGy+N5QQ1DSl5YUb8kUbT8DsRPDdDVrRvnfsl0lOpn45PbkLyQsYRJto9Xr7x4jTqpkT0P+JCGj/+w8UqZLsxqlGwigYo4NTfORvn2PVxq2UbnGRq5XrN5kme5iLNthDNVsCGVxiR04qXYeVqQodPx2Wi8vHoPdOLEPSebsNBRUR4pO8ad+zCk54nWKW6WbSjG9pNN+KOrSrUhZQMbI/zpwIYd+/HmvI0orfC+bpwJ3ttidZ/kaAzQeP7MrHgiqXqrj3GVR4ZeWXb5kBXQP5RKgGHHALSc/py4MDtGVSIHUcT7Gt42iTTRSzIi6CvK381kpyJTcTqSleoKMO7Iim7ijCdxtFFOOmB3jojt5kqUbcN7QHWkNhoVrxKokSvTkUq3Y4PEtdcEpdsrNkL7RPxyL2uC4WH7HbXeNlkSOOypmQCA3fvLceupXe0I1cTMgBC3dRQ/k3qo6+Q9lCs577+O8u8GNY9JUpw1vD9usm1DNZ1G/RNxHm3wWiCBr4bskfKYEjCBA+c2Bo9rG+yRSjPoEYXElWO2IKMow93osz16ZGNBXkp2KhsVr5NSdaDCcWyv85Ou2E424Zd7kup6pLr8ahKaUIAYifaKuEQFRVlFEJ8u3SwlDzLGo4FKRRjo9CdGA1VkR+jVqBJFx/+taoVQ2R4ItbEwa4y/Yp5HHCr2x569x5R3z/q8KEK21w9Aoxy37OdyJkaN4l2OkVPxu68fxnaUHmxIpRmJjAyw7daXZVN/2JXtVenVqVEqGxWvsdQ66ITdmMlTb3uXl1qN27qX0yeeIL/M1YoPC8a+RmirDZJ1u1/4Zi1ufW8p/u/575JUYhjxW6XmSHkdpKPLVMs2OS+R2E5kEU+ZKnSys3pfQ1GUnbh+38QTmur+RMSrRyqRSVAYc3xlSHXq1AmBQCDq30033aQ8fubMmcrjV61aleSaJxbamxP/aKdOLLcV5drDLzHlEZ2ntJK6jdFJYdtGCIRXGaQhRcjzHNoX9KiVULLjF5FybHikRPzTj3uviF9CPvwefmpap2DQwYINu7C3pNxzmVNX/AYAKCjy7pHyGopNjpfZHpgjyrEzcCOW40djRz3gKYf2GWAh/I4UTYUkJtDTZwOv/b7e+yIMNlhe7NfK7SHeKYbGV3OkfvjhB1RWhifT/vTTTxg+fDh+97vfxTxv9erVaNKkSejvli1bJqyOqcb2XCOqwUhko5fITjDSFR5vQ2BjQd5YiSx0G2ky2QQl2ygsQ90xe9WD/OJxsYVtQ8ovpNrwsP2eWAnvsV4nMz5YmI+/TVqOHrmN8dVtgz2VaWVOKzVuY3AeGSbssc03fV/d2lctlde2YZY0Q0C/IK/ZXnXKzvBs3WmUY7jfRJ7pXD+lPKpfNTBUJAOaqB9Vpvp3b+cxsfGVIRVpAD322GPo0qULhgwZEvO8Vq1aoWnTpgmsmX+wPcGSbIxsN3q23fqEbNsTziV5lvVpE0NPJ/2553pI27bDL1LbQNso3n76c390WomoxbPT1uC7dTvw1rUnoF6dzASUIGNlwMdKTQjZhpX6aNGvAIBVBXs9l2nb7De5hqDltpiCHvDxNoCkI9s2JrKpfkJnsNKzbAMZImL0BJlswqNsG3MOU9382mizvJdNvPMaxzA0vgrtEykrK8Nbb72Fa665xnWErXfv3mjTpg1OOeUUzJgxw1V2aWkpioqKpH9+JlmvNR3fbmOk132/V2yPTFEybCgo1AiTG4lckFdeR8qbDK9lJxobnYL19Oc+uT+JMHL/+fVaLNy0G5MWb7YuW0VC53JaRkd2uYUBk4Qu0OlRho7Xz63eVHIBHYPIDa0Mgx69Z5SS6tkQMCzfDem2e27zRd0hvF9akNfCvB69aQ6eirEzMK1h2Bo9GynCRnz/xWPUkUQ24PTnevjWkPrkk0+wZ88ejBo1ijymTZs2ePXVVzFx4kRMmjQJ3bt3xymnnILZs2fHlD127Fjk5OSE/rVv395y7ROHQ/3l2dWrMUKRSGvH7BBXqIbHBMqtbztNrCg7f1cx7vxoGdb+ph6JprwYYpW8RlFQc+2sdHyeJPgLG+nPE5n+3yuROvvcX3bg+a/XWvF+aq13ZNsI8npeAr0opuLKKixPmrCArLS5HKthMCULt9J1BuASukCzkbHjnmHNK1S/IYWgGciTl05Ry0to4gmXu6JniCbwuScw6sMtbJA2RN2PYWh8Fdon8tprr2HkyJFo27YteUz37t3RvXv30N8DBgxAfn4+nnrqKQweTMeXjxkzBqNHjw79XVRUlDbGlPWJtcK2NLLhebSMMsyo0URPxWhNZLY/OqOPjoEq8oc3fsCa3/Zh8vIC/PTAiKjf6TlSdhc8NNWhl+TtxoszfsE9Zx6Bzi0aRh9g+R1NBbZD+1Id7lhNZC0u+/d8AECH5g1wzrHt4pOdpEtM1gi/V0yrVF4Z25DSGcuxs0i3N0QlmspbQ84XUdWDcBPoRDuYYCNEjpadOENdLkfYNqi57bTpkiFF9E9mA33q8+xHtsQ/2EUa5x7fAfL+Jek9qqHTg63jS0Nq06ZNmD59OiZNmmR8bv/+/fHWW2/FPCY7OxvZ2dleq5d0KC+BbEvE732h9ntvVMzO9L6wfQJHeIT9JiFeOg2deMia3/YBAPaVViiPNU2T6nntL8MG/7yX5gIANu7cj+mjhxiXnQ5YD+2LW5odqOeUt7PY9dwAYl9HsuaB+fG+SjjkH0oqXAwpHWyH43gOaTMcTHKVbSijqvwYySZIBT3+Nynl2f5MlHULXiPxUGqOlO07Qg7Imryvlo4xIaFGkHUTUDjC0U+OVdvwZWjf+PHj0apVK5x55pnG5y5ZsgRt2rRJQK3SE69x4tY9X+RoordRINsx7dJ5hAyTNkT29AnbhGw3qPTnNkL75Oxa3mTk7VIr3ykP77FQvH2PlF15tklWX+mX25AsY0xrjpTbCp0a2Jkj5a0lIAf6SI+PBaPFxqBfQgcUzcpUQiabcB9kdRVt2cspjvlJC/JamcdEGecmRh8hQ0PnseH1tvLOa8hQDahQ+gz1nnvVV2obvvNIBYNBjB8/HldffTWysuTqjRkzBps3b8abb74JABg3bhw6deqEnj17hpJTTJw4ERMnTkxF1RMG1afZMHaoD5JMXWsiO8UKih0l3uu1axh6BrITuiCvsO3Zk0CO7noTZwsrhpSVOVL0X6mCnncX//UmzSMlblvQdO1nFzWTV2bBI2UDr3eBSlajE86teu9ob7m7oed2DToZzLy3/1SZ7uXbwOw1VieE8P4OJO4bor53+7oGbWzFah5N2w/r74CLOOPyEpjIoibhO0Nq+vTpyMvLwzXXXBP129atW5GXlxf6u6ysDHfccQc2b96M+vXro2fPnvjiiy9wxhlnJLPKScW0IXbtTKQRisR9NFox7V5He8RriF8cHcNvtDCf+3lWPFJU+QayxWPF0USj0A4NRSldsRPaF74pCbSJjaAVWvdzA4FAzAedtDlSXmN6koTpfbAT2mcXo2twyD/il20k2V22Vvg10bcYoeHtckMuO35jR06i5K1OpGyt/Ra8MkkaqLWN0XPXSHtv22sqvRtR+zm0T4XvDKnTTjuNVOAmTJgg/X3nnXfizjvvTEKt/EkiJx/aX5vJ9ihV8vE8h4votEwgk03QK/JqQyYCEY9JoMLjKiPFvaQU528hTjzV1+OGDcNRx1iM9DCk6r76KaOijdA+G7F9pJHt0gpSAyqUd8q1HjrHWOgHqQWDTeviWk4ClX+Te6xjIBoNxkH+lt3k2Rjk9HqMjqGn41E0+t2GDpViGaluG/2ML+dIMTSmBo7ZhFH1qHkiP2Bpv0cFwHqHZGXEz84x1SQ0tM92B1fDWlzRsPD6HKgRPz9iY05YKubG2fhWrQ9IEdsUNkL7rHukDI41/Tw8324Ng8TOXJT4zyNDCBPYDtgwJryWF8NPHbds0htnYSqCupTIupjoU2b7VeiMk5pEg9DXZXYMI8OGVJrhdaTEVF4itWFy5MxjI2VjQUadcjIMvhbxusjQPoN7bGpjep18a9sg0nkGB8oqcddHP2LGqm3xFxhZvoWLEJ9fpYWXyi/9kVevQzyyqWMSOUKdSkyVZbf058nDq9KrVnR1Rvvd0p9reacsKOtew5QTmaSFDL8jFGC3alNrPYn4MROwLM/bgCddvwTqPETURyLLsXGenMDK541tCmFDKs3QGemijlf/rlb4PYdiEMpRKj5Bzx8+ce0mCqbO/BOv85gkedRCjR5le00yQo6Qach4ZdYveH9hPn4/4Qft8pKJjTkEifR62MZ+1jeN472W41Hppcu2+3B0DAgYHuOGneen3nY9j5ABysDyeME6qa/tzJGyYFBSRpqBPNPBDbd6y6F97utHGvV9lAdOW0IM2ZThaLl99RzaZ9mzI89bj/8idaYZ2PCk1TbYkEoDtEZ4PH9Y6v22Q/so17vXOGx5v2uRnpE6HNtpsIVtz7It1El81l4zLsUzp27LngOeytTBimIavwjA0Lik+GX7Pny06FcEExjqaSdrn4WKGGJD6U0kNWFE1+3VkBfhjf96dZTlRJZDHmQBG94unTlpKiiPlHSa99EN13p4HeijHw3lUXGZ00caTPEP0FDlmA6uGMl2GzzQkCEeZXtNupqK75JNMLEx/fC8x0rb6Jy8jb4Zy7bdwRH77WfDEhssu/fIRJaNBBPxGLN+Vy9tZ7WK54JPeXoWgKp5TOcfd6iFykSj8567HWP63L1mhLIfLmRBCCEvWSO6Ntop2cnjTeslnw0VkuVScZ1aeG33KBm2P3dKYfUqzwa23xd5v3s/7XnghjSs3U7zfgfd9Sn367Ux6K0jwfbAb7KWtEhH2COVZpAjULbLSeToW5K+R88DapTyY5L+3LBwo9TqEQaYatvrpFivnqV43sV0ap9tzBuw4a1ZkrcnfiEENjpg007XxrfqFdtNExWOkzRDyrIG5cf5azoGqlH5xMF2wkWNilSSyPlXlG1nwSEVsd9RbhvJlupHDQBaGATW8FQZySP2WwnD1Sgn9LvGt0JF4aRTP51s2JBKA+IaQXE5l2p0gh4V6ngwKkZjZM9Kgyq5ub2dRx8TxkR2UGro7C4WmyzvnnxM4l4wPw4w+CXEiwyHsSE7Bb2uX+avOcSoQrKeu53nZ0EIIY9qb9TJJsRtQnGG+hiTOpFl2ojMIJXy+CENCzfPSQqMXK/fWbJaEisD0xrvjtf+Vuc81/c/DgPRH72WP2FDKs3w2nCS8jTK8SpPqxM0GZXTSKxAxnu7oHNfTWwWrdAmz4qfRgPtUZ48x8EbjtceM4k4joPCA+Xm53ktTyrboxCBRI5QZ1jIf663jpR62wT5nfc6Whz/SLlWOUnzSNmV5/3ZiO0o7adIFK6DiHHIM0nmYBu9sFm3a1cPEHrt+7Q8RbFFaEEm8TBoS/T6Zmpw1v1cd9nxy9CR53ndS0KG35ftSCVsSKUB8YQuWGlUbIzKxS0h9Zh5pCgZakvPyEij9nsd8ROOlT2R3hRM487T9R2N4+0hTr3nk5/Q64GpmLN2h6sInaxWrtWwMdppGetzFkTZSbpKyvvjXV78MiR5dsVZD9ujsBHCZCPkTid8S0e5di9HXaaVd4qMmNCXQQ4iEn947feTZSiY9U/uhpntOd02oN9F/XLozHre3ikqC7GeHshQsCGVZtBrJ9h9zW2E9lGdKqWge+/4iGM8e3zU257nMWlkXPKaWt3OROH4nzUpO0LeHR8uw4Uvz5UWtk1FA/3O/DwAwLPT1xidZ3tU1Y/YeKfMF2ZN4T0hBhK8Qi4jkSyPlOV1wOxnxbPbt3hFpx7y6LyZ4ulaZgrfeZ2SzepHGbziduIMlUTeSm93IcYxFt4dr5gauTxHSg/O2pfGWGmYEjgypVGM59FJLRmWr8F+1j5vwunUtR49SITS5PX2UZ1nMOjgo0W/AgBWbCnC0YfmeCwhddhRoPxNhsaAgUmoD3mM5dBkz++rx/P0ZKdAcfZJxuJUh0GZKcDuXi3PhoWFPlZWaN1PdDtCHuhzNxAjy481qKhjLFpf7NeTNFq2HW+quO2t/acHYdWyTepEH6N+N3zfcaUQ9kilAQn1vpANnXuZrrI1wi9ErM9BshGeIjUq3mToHGMjnbRXgsTDtlGmKLuoJDwnqWF2ZvzCNbChvErP3UqPbUGGBahqpGJBXu8FiWVaEJes7yyBWE9/bqFvoSIwpTbQY1ZUr9Gd8TwOO4NMcVRAJU/aH1u4bc+JznwlO+O+aiPNu5czgV6yOI5RnmepfK/4JUmSH2FDKs2wPdeC+vCouTJe5ZHHx3FuWEbiPnA5jM5C+nPDkUXXOlGudxfRZHilpxpFyCbk7dpfFtrOygg3Pab3wXEcKTQwHkyVThvGuZXwsbglyFAp9b2SijVHbKdUtkEiQ5tSQbLmaClx1H/QkQre+i2vo/068qRjEtlvuf0eh2fHtmHtFa+eQx1vkxVPGmHcJTTE0fVY6ltxl1cDmq+EwYZUGqPVWHtt9BI6smFZnuUPnwzDspFtgnhmJvqJFNqnMwlZ9buWFyr+oTPxXu4uLhMO8W68Xfyv7zH8mVmoqAx6q18c2Pie/NghySn15d/ydhZHZTh0G1QwHZlN5SBKshb3TtZj94tHkfaWqLddw0U17qBXL4rpMak0iilDz8gro3FdXq8woYp4km57Iq/BpE2g5uXRhrCgGyg+qHiMeh92W76BDak0gI45tqFEuP/iuUEVt7UaboMRxAR++HK9vY3U6ySS8OztMtxvIi+RSmXRgQpPsiMPXbBxF9bv2I+12/a5n5tAxTiVMmwjz7sLv4v5u4ox+MkZ6P3gVEN51qoWE9sGqu1620isYIqNZBMinkO8pP2JG4W3MW9GHj9S932e2ywL8sxx8cpoGaWUVyb2PpM08YD3sHZKE7JtTJuQyNTvWuVbNvREWywVUQbpAhtSaYbpSIn3BXndZZuQrDAGeeKs3TK9zuHSmXBuJtv9JXC7dPHnYFD/PB2oTi1oQ0FJiWKqLt8EU+XCDSshVkI1xFBJMdnE9+t3Akh8Fr5ULrGQvPC75LywiYy+MxpM0lDE3RY8Nw05MhoIiuNxJFul1PnevRoQOvkErC8BQRjcrjIIgWZGrsZ7acE4J8uXBlBjo5NswmvZOvtNj6mtsCGVBpAeCMtKLy3bcsNJNKJe5yBZV34s1I8UTXT6JpJjhWGpZKvr4T5yZuOuUmn0vYaQUIYZebzL7zpKp+17IsrYvrcUYyb9iOW/FlqQ7B2Tzt1UXiKOD50nyfBq5Kq3beD3kE4KnfkirjJI2Ykzmu0r1HbravI+JHI+i85VmbXLVDvvTR5djlqe/Xm+VPlu/ap6W5btta7x93c6g7rks/RlLIU/YEMqzaCVXvdG1+R37x2I94/Nyqi0hRhvWV5422vWPtIAk2THnxLQ68geaeB41DDpzs6TOFm2x/NsYeOzEGWMmfQj3l2Qj7NfmBNXveJFNEozLPQKyZpDYr2YBFY7We9uavNBmHkJ3BX+OBR0j22Wjgiv/aosO/ZAWjyDG64KtRSybndhVrLNT2QYv41nLfV96m3PWLYobddPS0KqO18fw4ZUmpHIEU5pzR/L5ZCjR9avQb1tJIPoCmyE39loT613LNZH89TPV8c75So7BaF99kfnw3/pzPNKFOK1VBKKlVfMQwG9YWfdM7Hds/tSpcIjZcVzbrmNTuS12wg1I/dreBVMytFJCe9SNHkMNTjmfp6ZFenZk2ZFhvt7mchBHLPBSvf7YFS21sBEbOOcGtCzsTZZbYYNqTSACrMzXZld/TvVsNtQrhNoMInbFjo7shxpVNBuQgivI446CoD7iCQhz4LRIJVDvgMG75dkjKll22LX/jLs3FcaUbzt0cTwdmYC3QeO42DDjv3SHDjyWCEBotYajBYyrEnHJzJO2bXsuEVokazJ2qn0SMmI37j7wJLb76aLG9v2ephgO7rCVLbXFOBevwAtg44Q7bXvIz1IBvIk2cS2VxmkbAPh1j2ROjLIe2xYmVoEG1K1HZ0v30ox7gq1FdlxS6MbDBvJJqRjxP0GiimVYc0EMm2uBeOXHoUnZBuUYx46pC+8vDKI4x6ahj4PT0dZRdiysOJFJIzBjIzEab2vzdmAYU/NxN8/+0mjTsQ75fGCU5K1z/LAiQ0S6X1PJF7fea05ImT76nGOrMYxyt/J8+I3ACl5OuWrfteay2mhHTXut1zqYcMr43WQmJQXx0FWQggtGKs65bjKM/zGeY4UDRtSaQb18ut0CsrfiW0boX3xdKrust07AiveA2HbRqY0qt5WlqgyiJs2fR7eDQjiOXmWF962kmxCuPNFwlpJRSXlqsMthbmGhSTSI/XklNUAgLe+z3M9Vg7tix+tUBHLo8g2SOiCvGmkiFgZTCLkmXiWtEbyiRF0IzTaQ9uDdF7baJ2DXM81vRhq4XflPm8GGC3PTbLme2IDN+Nc43kYeaSID86rPmVqKHutd22DDam0IDkvNh3LnZwvyIbBJu23UA/v/bK7AeHVSCNd78QxrvIo2WT53pQfHcXKBNtvJdlpSdvhv/aWlOPJKauwqqDIVTb1PiTSI2UClZreszzDtZKtGKgW2o9gxLe1OG83CovVRjWFlC4f1B/eSMXbYtL+B1wU7pjnGhyrN4Lu8ruGpyiRo/1S+6/8nRjc0KiTZ2+cgQydsultj22+zgCqkTzxD3EzSYM8Vgbm9AXG42GtDDr47/ebsPa3vdp1qy1kpboCjHd0jB33zoSSF0/N9MrWPcZEhpXQNHHb60i9zginFE5lIDqBhi117XL5+vXVMZ5MLodKWAEAm/ccQOvG2cjK9DY+JK8X5b796OSVeHdBPl6c8Qs2PnZmTNmUYuXVjrLtyDINQ3FdRDNZ3pcY70O88mas3oZrJixE6ybZmH/3qfoiDPfbxornnNh2Pc9wkMdKREKylF4LmAxa6dwbsu9zU6gtGDV6dVJvm8jQK0e/JD1vOVWmBQPQ4DyyT4rDIFIfSxiowhFvfb8J/5q9Xr+AWgR7pNIM6xPfCSFeR6hpl7O70WeCjsJvA2nUMP4M5fIxFgw9r/J0npMIOcruIsO2oU41/t+t24FBj32DK19b4E0wIpMsuA9MLMv3tvaTeH8yfeKRqgza/T515kgRj9IIr4qaLEPd1k1b8RsA4LeiUngl1QtIW5ed5NdVRwE1bctU8qhFyU3K1BmIoWtgF9veJOrawvvc33OvYZI637idgV+Nvs+lHJ3nnrSsgopvNZ6iF23a7f3kGg4bUmmA6QieWTppYps4xitajasNZUpj1MZVng1Djxzxc2+szWS7H6P8XWMEii5ff7STTnmu3nYtW9gWlfX/ztsEAJi3fqe+MM2C6MQcnsRJZKQwxZp8L+127qbyUjl/iHoXs7My45ctbSfnGm28UjYMQLpdVmOn3u7lmByb0PWEDA4VvYxWBtKIwQMrGQFBfFBw3U0cS8kgrsG179Mo0/B4E3TetRDE4J7XvpS6Lh15qWuh/Y+vDKn7778fgUBA+pebmxvznFmzZqFPnz6oV68eDjvsMLzyyitJqm1qMP3AbYROeIU0zOKWrCfQffTI+2inG6aud6M5UkQIh9f7Gteil66yw8heTvW2qzxCwcvMNJuUG0JnTgfZyXg11MPbXj1SOqn4PWeZTFKbYVsvteNJC8uoV8ebIWXumTCQnSS72/P3TrYfHr8VQjZ5jOfBM0oeVaZBm6VRptcybHue5PLDSIac4niNptNzO69TkJW+yvCeuMqj+uYEWiTW18Fj80kLXxlSANCzZ09s3bo19G/58uXksRs2bMAZZ5yBk046CUuWLMHdd9+NW265BRMnTkxijROPTkNMjV6ZyNYJyZLL9za6RsnwqiRYX/iOkO1Vh9HxGpnI1smomMh1RIzuq4URSZHIZADVUNnvTIqhwllNqzp7zXbc8eEyKfMfteir16x9ttepkUL7CMPaNqblrCoowszV22QZHj2Ecj1EeeHtenXsdo9JW0fKukSvRpD7t2/bEDAbnTcbzHEzJijZ9DGCbNXvHvuHyHPdytY5Tyxf+R4bP4/436lktU3SfhsDzAaDrPQcKbU8o8Fj08GDJLVf6Yjvkk1kZWW5eqGqeeWVV9ChQweMGzcOAHDEEUdg4cKFeOqpp3DBBRcksJapw3iUz+DDosrxqqFoydbYrzyW9KI4ym3P5dno6AlxkpHmto4UcY3yMQYNqk45hl41t3K8Pneq/xX3Z1mYayTKo5RecTd1zFWvV83TyqlfB/eddWSUbPG0jCQPZVHvDhmCSchRva+m/azpKPLp474FAEy9fTC6tW4cd/nh89TGmFePlEP8lSw1xEayCaqyJouSk8q1kWdCLdD64BnZh6j3m8kmBmhc3n+tNppqp1wH0jTuJTHI6XYXbHhzzM8zMSbiKccAHePScvvgdQBV6/2Pp2I1HN95pNauXYu2bduic+fOuOSSS7B+PZ0lZN68eTjttNOkfSNGjMDChQtRXk6nrC0tLUVRUZH0L12g57Z4beRFGWG01ujxaPjI++PHgs0ny/PYeOh0NokcjTWT4f48bHi7yHA+j/eYWpjYRtIGud7ifvdrULG18IC6HGE7kaF9yrKJOltZN478Q+N4A9b+ti9uGRTis66XFe4egx5XGLYxIGWKlzcj1vXJ0Q6x5ZheotyWJG5xceJELeleTtX5htwH+tSGjE49bBsTRgkXKIOXUNCVgzKUbMoIsfxteTW29J67cXW0ZZh5Mdk0soWvDKkTTjgBb775JqZMmYJ///vfKCgowMCBA7Fzp3oCeUFBAVq3bi3ta926NSoqKrBjxw6ynLFjxyInJyf0r3379lavwzbxjKB4Hf2z0f/To292P2Abng6q0ZEbfJO1ntwbeXl3tGytxf2o8mPWLoY88l4avEekt9D9GFfZxItpx5ASjDQqixdhJKoIQG1Zi+X4MdmE5+89Dg3BxvvlteZUOyV6pEoqKuOXnSTFxfSVembqahz38DTk7yoO7fOa9l7Eq5JPCSHbkkQOLCVQQXdVyk3lefyGjWUYGGnWdQqdd8BE59ExlC0MLNEGqhgu6mZYm+03gfSaWi6npuIrQ2rkyJG44IILcPTRR+PUU0/FF198AQB44403yHMildvqFyKW0jtmzBgUFhaG/uXn51uofZKgGj0bH5OGAkxUJea+mPs9KtG2R6acGH/pojNqR42emoRKkSOwxLuhlqEjmzjG5JkR53l9TpTCTxpSrsaOcKjGaUbKgMYociINKZXXiqqzTiijG6aP1IZH1rY88f3PFuZIFZfpG1I6gzJ+4rlv1mFPcTmenbZG+bsdpdeuoaL1Drgp/PqHKspJ/MPUav8tyNaRIWcNjD4joXdDQ7jRIIVh+2E0B0mjHtTgSvWWrBdQc3+9fU/x9ME+bb58ge/mSIk0bNgQRx99NNauXav8PTc3FwUFBdK+bdu2ISsrC82bNyflZmdnIzs722pdk4Vp4+/Zxe+xo6Cz7VAjP/F/nlRUivu1uzdGVib1UwaqcIx6ZXtCnpURKPf91kcNod52K4kaLROVf2qOlMk1iPIqqRE6gxuUQSkfwqbXuV2JXJDXRjZCzTMUWyZnxacMK2UTQioq478nyTOkvL0cGRni6Dgl2lt2UR28hg26KaakPKqd0mqz9PEchiWdR2Ul1WinlKI1FH6ifirRWkkMDL4F04Esr98ZeawFfYWar+3Z86ThPbORHdP66GctwFceqUhKS0uxcuVKtGnTRvn7gAEDMG3aNGnf1KlT0bdvX9SpUycZVUwKtAdCf6RET7a4X32MdK5Bg0B9m3JdYiPNQSIEJjJsUO5MTBpUDdkGSgSdXc5AMfX4DADTjsruuyseKxrQmRayNsiydb6L2OisSp+R5AV5tZJNiMebKA6G35535cduG0gZdDYGVGxPJtfBq5GdKRn+Yax4+jy2N3qhV3b7QUI0Xb7HcozWY6KO8XpfTb89k2QThE5hI2ulqcGmlEF97xrtgAmmz6b6ePF3U++252vXuEY2o2h8ZUjdcccdmDVrFjZs2ID58+fjwgsvRFFREa6++moAVSF5V111Vej4G264AZs2bcLo0aOxcuVKvP7663jttddwxx13pOoSkorO4LhRg0rtN1Fy9A/1eEJsESbKj849Mxmw0kmP6xB/KcOwyFEx9wp6fWaUkuoW2kHKI+pkQxER5zFlWmjJgsS1e1UMKBtJNAC92lGRp70+ZwO++mmr63la37jGw1G/r0YiPCtWtgdGtTwTFpSpRKQ/n7l6G75bJ88H9mqaU0a9PKdPXx7ddqp/MVuU3L1tNFIqiX7DThInb9YONdCmI9v92t3LpPont/dYR8m34jGzoDxoGRAGbSM10KdTZvX1xBMGa6Lv0TLUxlaylm9IR3wV2vfrr7/i0ksvxY4dO9CyZUv0798f33//PTp27AgA2Lp1K/Ly8kLHd+7cGZMnT8btt9+OF198EW3btsVzzz1XY1OfA5EvtmXZRKfv2UjT8HbZwOvojJ5sDWNG+Ts18qO+J25l6Hg3zIwn9/OoervK1jBIqHLcZYe35ax93iwpSkGhvy39+00Z1uK2jSQZP28pxIOfrwAAbHzszLjlxfJAW0mtHZLnXqbyPPI9iv+Dp9o9O6PpcYuQKCwux6jxPwAA1j4yEnXiHE0QT6fqGumVp+YoR0Ib8PpKuQ3jiSzH9HgLhrWbfq5TBG3su91Xdek2FgGWJYf/8jxwQmxTdfLalpCDKERfbiI78hflXse8DOlEyM/Vra2ONVj44ox1KCgsQU79mhPZlUh8ZUi99957MX+fMGFC1L4hQ4Zg8eLFCaqRP6BHSdUfkHyu28iP2X433EZb4imH9p4RRouBPJ39stLtIHIMlYwj1+hAzNbl0bmX+gqKXplmx6iO1XmPTeSJi8iSc6Q81rXSRtY+MtlE+DwbySZ27CvTPpaqMhnKGLFdXV3V7Y71TGes2oYVW4tw49AuoQ7eQO+LUY562wTqNOqeGMn2epEE4m0XF3yuDDqoTjJoI7RPJJbyGqss28mQqDp59SaZeiJNvbbK8zT2h3/XMGoMy1Sdp+VBcrmvVH/s0RmnhWfjSauPs2D0eX7u4W3Tb9ltcF33qp6cshoAcHKPVsp6MTK+MqQYM+w0RsTIFOVVcFFcdLJ/JatTtS1bxEaDJR7j1l6Kx+qs+WPSkcr74+8EKX2DMvTM5IX/kkLkrCzIK8qO3/CXUtuKMoQ/bHikKAkm8+50PMbS+6oQHkuZ+f2EKs/JUe1yMKRbSwB2QvusZzCz7DpP5Fo3Ujmi8uUxuE/06pLpz4l5VMo6aez32pboCDe73/F/7/J56veSkmeUbEjYptbpcyOegTRVMaYDcG7GgnH9vD53jT7OymAN0ayo5Ol5Bal2z23wgDiPqF9JeThbKRtSNL6aI8WoMfbEkB+ZQjZVjg19Qkc589wwuSsoXuOwaWNCf56QLE+sk3rbRDE1aZT1IAxlsnz9gnQ8HSZQHiFxNF1aA8rgOZkaqG7XkBHlwayuU5hkryJF3Q8d74vX5DIivxWWKA+yoPtYgTTSLCtQicSzR4oI7XN7H+hMreJm4q7e8/pJwnYwqN5PLVFhO5ur8ndD40SW7V66kQyD95gyHL0PnLiboiYGKnWejuFqgumSEtX74xkUse2Vl995hoI9UmlGIsMlpHK8fjZap8WvoNPSDIxInY5KkEJmDVT+7m6kee1ITec3qWV7a+R1oA1yyvA3kCfsl9KfZ4ZvfnkwiOyMTJgiLchLeWSh3q+CVGj9MrSnoYDK9zu8bTKCLiJ6Dr2GztHGudf2Q3zuojx1mV7xZXstoBNmSq27pkJrIEgaTFId6z7IQxk+ZkaVhukRRxs4/rsN2LSzWFrk2T1qwOz7MBnkiWfAwEg2Ndgr9qsuxgLZNhFttBvU+yLLJrZNPD6WBxLIOnk1cg37+mSsnZausCGVZlCKDTViZNboEedpKPTq393rYaeBoRQrr/IsyCDkUeWYII6eymV67Uzc91Pnmhzh9b5Smfrk7Hfhzpia36SCCr8LatwTt0vIIMKgxG2vyRu8eh20PG06nloXpZdC8nq4Hk1g8Ay0xBHXTr0DnstJ4JiuZOR69khR76ug9CoGk0y9twn1TpkcG0e/Ydp2P/C/qmQwJ3RuFpYhyouoVyAQ0FJoEzk32nufbXZfTd5XHQPCrG9Rn+gQR8WS/VtRCfndII79JlADE+7vVHi70vTlZtiQSgcS+eFJjQSpRHhT0OX93jotr1nz4kFHtkm9da7dtTMhnoftFc51RnTNRmbV8myswxUkkk2Ue148NXyenWQT6ocqhR5GKEU2s+K5ImUVJJQFYr9njxSVydCojfH2zpPyNBR+G4sUJ1I/Ed9F73OkdDxS0R5F08uS55fq15sc0NBoy5TyNAxlKwNpwl/7yyoE2fr10xmccj9afZ6W4Shsq+YH63i1gho33K0NpIxPExLhWXll1i947MtVOK93O6EcuG7L9XL5nfDCyjLi19XE/slrW1LbYEMq3dDq9A3EeeyEqHLIcJ0EKhF0IxV/oVQ4k+ewPOKZeZ1wa2PU13jCvoGRJntNCaPKoDjKkBFDxioqCZedAnJ9FtKA1//O6LVf1DiON2+CauQR0Jh/5fF5VJXpso4UISTTQmhfIo0T+l3zKi98YiLXYXHEV96j7pNh+sK6QHsM9J87eR5xjJV3SmegSl90jHLCRGZ8DQT02hqvXazO/Fevc2R16iRde8TgSiBg/l177vsM31FK8mNfrgIAfLxkc2hf0AG2FZVgqzgvNIaM8O+x9YJYx7v3Le79muncLoaTTaQdph2z5wUFxW0LHxAlz06H5O3Dpw0VR7ltIts0cYFygVON6/J8/6hO2rKSqjP/xNVoJ551JaHdmry7lLJMeWRNlGt5gF8tQ1QiTBRtatSWuieqssn9xEGS18PAJSU+30wi3NEE8tl4buvU37sTcZSf0VF6X5uzAUOfnIEtew4oj6U8UpJkZWifhrGhYeDYcMbaaA/jkV1aUYlFm3YbhReT5WkYTzaUXi3Dx8T4Jdr5INE2iY/dZLFfO/2g2TFm3iwHxz/6Nc558Tus3FqklKG691oeQp123EU29UzpftXfbWAqYY9UGmD6YXmeKyPJ89YR6BgnJsRz7TY+e7JjUeyjVn/X6ahcPVKGGaNc75uO0aAxeuUimm64PXrMdIwxz4oLMUhBy4tdEBUWYfJOSb8TBr783rkIIcrTeV/d7V31AWLHLHoOjbKLao2UuwghZVPb3t4p2svpoXKa5ZCecyd83EMHF22+/7Of8epVfaPkUXOkKKqfg873LkK9a0rbnHw2RDkWNGqdZ0Zd2+j3l+GL5Vsx+GCK/+jz1GWqqqJn4BDbbm205Xde57nrtCWq3fSx6vbQxMtpI1spWY5w2sJNuzWOj/6eKHnUfpO+mYI9UuawIZVmGHfMbo2KYQdigo4ibiNe2UTZo+pBHkM2KrHPpRsjdcNtMueEDJfz2JkkNGsTUaaJwkN10pXE9Zoo6JIyGhS33TsTt/uQQSrU7gqmW9kUrjJ0vJwaSo6b0itSIdzLTGqOlOv3pC7HS5sVDDrkumPkfEY90THPsz2iK43263iFDpK3qzi0LRm55LMJb5OLjruUrWMUmMwPtDFvWOf5mnZPXyzfCgCYvWa7IEPdHsXOPBjQ6hvJIwzaaK39Gscoj43Rt7w6+xc0qVdHncDE8PnqvF+uJ4q7Dfe7HUsNrqjbUe/tRGFxOUb+81uc3auNQqbe3DMxMp7Tn+vBoX1pBtV52jAmTBcRVJVjfbRY4xcbjR5ZCtUYGpxnZSRH47lTmCWyELY1OlU36BFT93KUxwrb1GKUXm+3TsY2k3JME0e43Qc5tI4wBKT31WXyPmV8agwCmFybqKxLXg8jpST+5wsAHyzMx9H3T8H89TuJctRl2lgDJ5EjutRzV9VbnLNRIYweZGpoA6o20LT9NZnHZBq66bXd1VJePb6DlJfYaEDKsPF07Z+I+6qTqbI8GMRXPxVgx75S1ypR+kr+7mI8OnkV/jZpuZXQPq+NgtZgrzfRMQY3YutZ4j5qAWyq3q/N2YCVW4vwxFerlUsVxDMYx+nPadgjlWYYew/cftfq7PQ/IHLkmCpfWzIN3TDpN8rUfhMjElKojXsHJ08qVU3edzdKaUNFkI3o69Dpl+lrd7mvhMeRLsftOanf+SAxD8Hk3aVGCnUWEnbP2iecJ+y3P6gQxqtXS+c9N1lHStyuELIoel1HSvrZo/IIAHd+9CMA4E9vL8bi+4ZHidNJe+8V23oI9Z67eY2KhcxxtEdKrWirs/a5Gzs6Sq+bba7V7pkYTxrKMlVtk3Lk+VLu77xqt3NQzqad+2Mca/A9kWW7X9h/vt2AdxfkoV3T+kYyxL1FB8pD227rl+l5ofTbfPrdcW/zTTA9LeSNMzxRPLy0InaiJTqDcPgPnbnHjAwbUmmM1wxFJIaNh+cwCpPOLh5jwsI9IRVTg45Kuk9E/UxC+7xmVJRlU8aO3UaU7KhM3h1JnrrB10nu4V6/8Lb83N2NQRXSGlWEbJPRWOo86hgVOgYTKUF8Xw3WkRK9HhkeQ0Vo77v6PT5QVom/frQMp/XMxf/1aqtdjs58PDdIAzriuHXb9qF9s/rIzjJfPDqyTtQ6Uqr3QXwvxaUCtNKfuyxKHlFDYUu8r4QB6NIIkoM/Mcp57uu1OLpdjltFzb2zcDDl5wL0yG0s1J9Y7sCr1yjigNveX4r/LduCET1bu8oGgMID5WhST0PFc6pCwpb9ukca9HAcBy/NXBdVlyk/FwAANotJS3T0BQ2PnpsxIe22oP+YDkZ77VuMyiT0AtlDrl8PnTLFn8mERWxJkbAhlQbQXgfieOJcV9mUjNgi6MKl3e4fp+0RWzfo+6duoOXFW1UKShitNTOokxVli8gKnnvnFFDkk9XxSFEdlYkCEM+cHLeyKWXK6wCD6cRjN6OF0kt1jBmT36mkA27o3DPa+FVlmVSfV0HON9OvrNbAiXD8699twOc/bsXnP251NaTogQ79Z03KJuRN+bkA1/93EY7v1Awf3DDAk+ygRv3cqk2GXerIcFN6vSqSZHHuJ4qyp634Dc9MW6N1rGlfOmPVNtw1cbl0LGWGumXSjDw3ZExE9EP/W7YFADDl59+k/aUVlagMOlL9luTtxhWvzce5x6rf/chrP++l77B+x350adkwtL/oQDme+Go1AGBY95bCufpauY6Xx+09pr4hjeKJ34l2z0CGDsbTHBTPnRZO6CgBcTtaX9Hrm731+wCwqqAIkxZvxk1DD0dOgzoaZ9QM2JBKMxziD+upf7WUSjfZ6mNt20s6i9+ayBDxqqDQgzrqe+w+jUmj8acUbTfZhoaKkeGjofR6HeXTSUDgNfyOXJBXqoyqfsIzJTIt0gayty+DGrVUoZVRizxXKNPF8BdlVFD3kth2Q+c+bd9b6nqMsh761dCSB+K5vz0/DwCwYOMuI9n0nAnhGGl/7CsSvYU6iSSod1p1HvWNU+GTrgvyEgKpMn/dXYxYyOI0+jvhjB827o76nYpQI0OlSCU+WumlcAD0e3g6ikoqJKPp5Vm/AAA+WbqFOE8Wvn5HVcjgL9vDoYNimBg1GELVya1MKqyyoKgEz3+9Fhf2aW9UjnfjnNhPGYOqAVRi3Sv6PaL2q5/7z1sK8eKMdTj1CNETSQhxgWxzhW0xiZNpn3T6uG8BVLW/z158rPKYL5dvRWlFEOcKixenO2xIpTE6Sr6NeUImmBp0XtN16jSiJnNv5P3q491CZijZng1KDYVb5/kplV6qGAvvlIi8NpPaiPSaCl0r7FNbMj0yqmMMVkPNOZHqR40EGtSP0jm9d7Du99UttJDy7IgLJNMjwPrtlI5h63ViNDXvzmt7KCJeY6aNNZPE91Wot5xsIrYMKVOlqeLnItu0XTZqp6hjCIXQDQfAM1NXY1HebvTpcIhSuGQMKm4WlQlSa1CGqJPbsUHHQVFJ1Zy3DTtjG46S7Di+FeV8XjhYsaUIX6/8DUe2bSLsF+tKlR/evuPDZViSt4c0AKUyiT7J68CcznnllQ6umfADjuvQNLRPNQe5Sp67AS1SEXQwZtJyHNGmsbT//174DpVBB5OXF4RlwMHeknLsL610rzTM7kmFFDLv3i+o+GlzoXJ/eWUQf3p7MQBgcLeWaNawrn7FfAwbUmmATkpeOx19GGqOCHW8qh6m85u8QitTHuURyj9Z5kF0QqyoZ0Z1TtqFxzg+oGjqqbAlG++UaSZII2+EoPhRio3JxGN6HhN1RmzZovImeQ+o99JgzonOCKfrgrxxyJaq7TKfRXynJI8U1Me4ofOOUvOb3KCuUSd0ToXOOlI685GUsoVtSrarh5L0lFL3WHinEe0RowZt6PTe7vVWomWEuL8DK7cWYdz0NTj/uEOFejh47puq+UCiN5NqU9Vzz9RUEG1TSXkl7vvkJ5xyRCv5Cpxwndyglmlww0K3G8UZz1V5I0Qjw7SvX7dtX9Q+ehCFMp7cGlL3YynZU34uwDertuGbVdtC+1Sh87FqQX1bkxb/incX5EnHBgLqNj3oAL0fnIaKoIPzDTw7tC5J7Nf45mas3oZ/zfoFT1zQy7V88Vr2l1awIcWkCp3OnWpgXCRTH5BHpUSW7bHBpxQ8w49dKcOwfJN7ojPCL9bAbV0eatFVWnJsDYWyk7VGKj3eZLJMI3HuBqDO/aGkh7YIj5nbuxY0XYMjxv12HIcM5ZLKJN41owVOdTpS4n1U1U88NnICu5tsFZTyIR1DXI8bOnMCvCqelAy3TGXmstXfu1LPdtS/61yjyitv6g2g+i115lKxfmbvKPWeXPjyXOwvq4yaa1RNSXlQud9toEUn2YQo4/XvNmJZ/h789/tNaKqYT6LzzlMhd+7h3Oq2Uz5Gve127LJf1d4IyoNKtRsmeP4+dfQLQfq+0oqoY6l7rdHtS2zZU6L+gZBd/eyX5O8xOi+SSGO8kvRIqWX+fvwPAKq8iV7KrwnwOlJphg0DgpQH92353Ohf6LhvcduboUdhfaFLcZu0JaJ/II0dHcXULfUvZUBoKKYm8690whHc7jb9TlHGiYnSG96m77G3DyOoI1s6Plq46JEik01oGAJL8naj78PTMWnxrzHLi1VvE0iFFer97nOkwn+I83Dk5+fN2JH2kx4DbdGkPK1BBTd5xHvk1SMlInvMqAq4yCBDGd0VXRPlWseAN5nLKe0n3lfKO7u/LDocSue9dPv29TxSYTbvDme9cxv0oNBJZKHCtI8z6WMrCQ8cKUF6j2OXY2pMu2G6JqPqflODInIodOxEVUBV2JsuJvOrq45X7IODDxfmo9eDU6U5f2Q2XJc7tG2vuyFoW1fzC2xIpQGmjgETPVInc4sNdMQpJy9rfHikAmDQ0VNQi766VUtH8ROPcBvhp+pEHS/JNlmfRUOe547KQsdHyaaUShPRYj0qiQ7Wrd5iJySHDRJKLzHv7rr/LsLO/WUY/UF4lI+6T0YhaKQM4nCT74lQckSPlNfMuloDE1Dvd4N8vjpKoAHis6Hm06jQMbwppU35PmisnaZVr4N3Rad/ogaCqHqpzpOfk3u/5TWDJf1Oxb4G0iNFeY3IgRZV6WpMkkCoy6ARRXs22Ki+WTxG2DYpx4nxVzDoxOiDqbOIctzug2F2VgqxnXTDaxKsSP760Y/YW1KBl2f+opRtkgE3ck7i4rzd+OuHy6SFm70OcPkdDu1LM8jOxILhYxp2o9qtVQuPiq4swr1RdjXCdJRHaX/0qfTEfNdiXD1Spskw5PLVipVKhvG2wVMj3x2PCpzeu2hgWAjoTKx188yJShPtkSL2C9t7S8pjH0DUyeu9JBc9JvZHzsMJBAKkAipn7aPaGP1vVSvJjuX74N0jpX5fTEL7dAxoOluki2ydb5lswKJ/1jJ2iD+8hqPJ76u47e0diEwOUVYRxIFy2YulUnqpR0q9/262tE4fXEko35RR99PmQnyyZDMGdW0Rlk2Ur+XxdJEh7qcTD6n3K+VpPNKyiiBOfXYWurWSkzY4joN12/ahYXaWsE/+Xb0dPkZlSNGhfXQ79fqcDTgqYn0zlUdKp//UQZn+nHqnPK7PGPkunv/SXABAcXklXrzsuIPyaqYlxYZUmmEjLTl1LGWEeFacDZVvj4PpVoxIWnRspY0yhnQ8Ma5lK8qr2k+8A2LHJ2XxUslWP1+6Q/SomEr71eWYjFIFiWuUw0P05VGJAcjnJ56sKEcnU5jOAs3iPA1VnagkGVLxLs9dlq2sEvneRSbSCAToZ00pZEaKruHAied1n8Rtg9FYU3kmWfvIb1KjXXFf5Fktg/Z6u7cVxIlCOWoZ4jtVUl6J79fvRPtmDUxKseKVjIxCOPWZWcjbVYxWjbOFY6JlkItkazRIqvdYp/qVOi+BwFnPzwEATF8pzg8j2gRRobbgStB7X73JELfn/rIT67fvx/rt+9FYWJD4X7PX47EvV8lrYgHYua8U+UKYZVSZwpNQGlKUAS0YFuIxX6/ahmkrqu5/byExR7lCNnU7qPskrSMlyvHYx5oMIFF12iCk1Hf0oxfTCjak0gD6Y9JQgN1GeIg/dNpNKwabyQgU1YhS5bgaZpSyoFGOS2ens9/k2qWOXsxcp6EYG60jpTHqa/bcCYOELMchR1Mjj9Wa0xRRZkzZkpEmlqm+BpWyqTOJmjbYDL5VsUzPxon6L2qEP5aynoEA7dWSGhPifXCpK1kPSgn0qOWT707EGeu27cOhh9RHvTqZB48l2hLiPtgP7VPvd3sd9MJjY5dv6q3TMdge/HwF3pmfh2MOzRHqoZYhy46t9OrVSf4tb1dVWvFte8UQJQOFmmgTTNbNop6B15C7jRqp0iul1PhufVXsd6S0opI0wqnkBq6yKXnSgFOYZ6ZWLc48Y/V2SfaAx75BWUUQp/fMjap3JKqBMuo5Us8mT7j3orjyCoM5UsT7YDQfmjgmSDx3t++cGkQU54OaLEmQTrAhlWZodSZG3gP3Ttr7aKz7Rysfry9P2k/eh/hxU4Z11tzRMdhiKfiR5eh4S0xCJKgjdWLalecRz532esjXE+tW0Gnb3fe7yha2qQbf7Z2uJJ4NVY7JfaWTTagVYGXZpAIq1sP9vqrCx6h3qpKon0n8PZlFUTpGve0qj7x2oa5CxWeu3oZR46vWkpl04yDtssVrzzQJ7SP367zzKsVPkGHYfqiMoFjfsptsasDnnYMLFv8oZIAzHYwzU9rU9yzW4EEkVLim9P5rZNkL9S2EgS9CGWkmUOdR362p9Af+9zPGf7cRAw5rLux2789Efti4CzNXb8OhhwgeSgd4ccY6tMmpRxrQ4oCF2kirCgUEgJlrwinNqXZF9fx0DGid49WhfUSbbzJSCnUbTaHTh7nWSUAcM+LQPiZlaKXn1VCQlL9L2+7KCnmyC5GeAZUIt/ABeqI6pVg5UeVRdYoQKJRJKdTR5bmu3xJRqHiI2wKnsiKiFg3pGFHp1U9VrTPSazb/hFLw1GVWezdIeWSd1PJ0DEaxbJVsytpRZu2jUsdCXSmd0XnVsZSy7J71Kox4l+PJMqkqUuvZxKxphDxJtsYxHtVKnWyN/523CQCwOG+PcJ6ovKnrIR1jZY6UuB27naJlm31DRrI1jBPKODcpj663STsV3hYVyQoik5qJYVFJJFsxSQJEyiYyYlpY79moXYnF+O82AgDmrd8pyIOw7S77d6/MAwB0a90otO+X7fswfWWV8TOkWzhcT074E7sc6fuMWKPwre834bAWDUnvmaoMEeq6xG9fPEIV2kehM0ggt9GqRlp9nhTSadBeVxLfsrxAePgYr95UP8KGVBoTTzICt/PsDxy419UtA5Fe2Jn6GJPa6Sz059ZJUwvHUoZAZKMXiJh0onONpNKrqB85sZa4a17DZOh3ijI43GS7N/Imng5ZtihDLdtNoZdDAolyxOMN6krNrQoS74YbOoYHPYIe3TlS948M3SHeB2VdRdlEym7KQHWDeqbUs9mrWEtGvN4MlbsuQoZRaB/ZdlL3QayXSzslPQ5RqdQxsKKfu1w/jTLFNtBN/dcYzKEUYzekb1Ko4AHFXEWqfKr2ooIpeUsIS6r6CJ3+WJTnWTHVkG0yQCPtJ36oIJR1N9nigr2ijMID4eQ81D1WFUMZ0Evyd2PmwRDA4zs1U8quhoomobLwiQMtYgUoo12FzrM2sJ1k2ZRu4HJyZJKWajKIQbea5J3i9Odpho4BYZT2VUdZ1+i03GTL56lRNQ46I9juyrfGeaQyEFuhkEfpXdIOxypfoPo26Fwv5aWQyjcY6aXeh0rCMDSrn3q/SWYgreuVjnd/j1UydNbqUlFJylCXQ+i/ISjPj6T4SYpa7PrphfIS9ZPedYUMwoNKpZL3GtqnM3/HeyZI6tmE/9pXojKkRINAJS3SI6VdPU2DRF2miXFOfZOu9SLbTmpbeJbEAtZKeRr7vSpq1Dcema2vGmVfRcjWMUjka3AO7nOvPynbKJmJupxKg3aFlK3Vrxo8J2E7S/iItgvz1ySPlKvnPLwtnldQGF4TSV4TL1oI9d5Sxg5l3JUZzJHSSZWuandNB02pNcFU0KF9ar2oBjmk/GVIjR07Fv369UPjxo3RqlUrnHvuuVi9enXMc2bOnIlAIBD1b9WqVUmqdeJRNbIA3ShXmgzFaXiKbEDLc78elQyTcEedS9FZR8TtPBEyDJHo6KmMf6p66My/cguhpt4pUlnx+EJQIW2UbFfjXNgmchi4Gio6aZl1wkhVVAbVLw85uizW2yVsxCGOtaE86s2/it1W6AzE2PAY0/PXwngenCe0cnH/PoVHSjqPXKAzvG1jQV6q7TQJyZI954Q8qURvSi+138rSB8S35TXxinheiYEhRWHi2ZHqJDUlZkqv0cdFILcx+n2zDlSKbTfZ4rZo1IiLwcrtg8vcY+JGUd+nOtmEGnEhcvEYasDVJP25zvphkR6i7XtLtV4LnQQ0yvIIfUaepxbe71Wn8CO+Cu2bNWsWbrrpJvTr1w8VFRW45557cNppp2HFihVo2LBhzHNXr16NJk2ahP5u2bJljKNrBoQ+hkqi4VHKIBprG1n7SOWRwCS0T9pPhDy59SbUyKgIlYVNFc4UWStVOdTIuiqdNaXUaRlp0qicyzpS5H6hk7biPdAo0+CdIpU9FwOGLIMyVAjZKrQyaUrbsQVKacYJbwnV8bkZ0BSUZ0I8VzXKSMmmvJlmIZ3itvpdpI5xQ8uAEP5QGVLi96ETyiKNSjtu2STD2/KAi3AMiG2T95W8x0S7W/09abxV1PsqqbxuCXeIwS7qGK+RGeKzLC6LftaxylchGzvh/WSqan3RUp8pKfkGdjrV94l19bwgr4a3y2uIl1incnEemkFdqUNFb5dk9BmE9lUSfYi49IHoWSo3WJBXNLqk0gPqer8xdyOembYGh7cKzzEjjbRK9+9MBfUeSckmDAzodMJXhtRXX30l/T1+/Hi0atUKixYtwuDBg2Oe26pVKzRt2jSBtfMf1Esuv6wmCoWwrdFpmaCVaEAZLqHx4bkYFjpKlU64lVuIFzl5nyqTCEEIK6aUUuf+bNwncRPPg9hv4uKXSnExakzlkeFyGkke3FLW06F9Yl1jQ3W6lHJLpZqtJp6EEG5oGTWEQu2m+NGjmu7tgApqkjL5XcQWF2GgqutBvUeqNMWkkUQMqIgj3hVBB3ViLCylk61UJ8ue2++ysaOWrSqTHpRxf9ZeE0JI++EgGHRwoLzSs0eKGnk/UKbWDk0yAsqeAffz9uwvx+/H/4DuueEFZanTqHkpJv7OCkIDFiNbvBo7tnUUEcq4kw1Xt1hn9W7x+xTX9DNZR4oyFkXZYjifOlzU/RrlE9RlvjzzFwDyHDMKnfZaWSfiAHnQSF1OuuMrQyqSwsKq1KfNmjVzORLo3bs3SkpKcOSRR+Lee+/FsGHDyGNLS0tRWhqOqS0qKoq/sgmENDyIl7zCoAGkjQZxP6WkxoaSR+HWOWmt+6Q4hpJKKQ7SMWTnHft3nVh4V++BxnOnZYe33deWUJcj4jVMRjLYiG2vc6RIQ4U4vnqbymgo32Oq/NgVpJR8SQZ1TxQnUJmXqG/Se+Y/9TFaAwIhhZpQuKnEBTFrKqPzrUrHe1X8JBn6ZVILTVIyJEOq0sHB5ahcZYjozONzD5V1f4/oMNfYuL0vkbKN1ruLeHcvefV7LNi4C51bhCNXTLwo1L2kQvuoVNoqpLlGxACXWNWnp63Gok27sWjT7rBsot6SR8rjED/lCakgvlsbSIa6q63jXj8RKrmHiewsISNESUX4HXAb7JLqJ3nJhOOFB18qGlIGN1kntE8sUxk2SJwnvg9UX65CZ06YDU+kH/HVHCkRx3EwevRonHjiiTjqqKPI49q0aYNXX30VEydOxKRJk9C9e3eccsopmD17NnnO2LFjkZOTE/rXvn37RFxCQtCbgBreNok/lvcTjZSFlakppdct2QTV4OrMl3Ktk8uoa6Q85YRgKuxGQ0kFETcdLtusU/M630wuU5BnkmxCRyknyjdR/GiDKbYxY6yYSuXHRidhBaj7oJCnCvmM3A4S2yp0jCc6pFP9rlfv1jFC6Hvs9r5S91Wst1COScY2jefh9k7pKAWUl5jyCMQqr6pOomz18W7vg07CCrdELmQRlOFDyDZJNhFZpQUbdwEANuzYTx4TC2qukUoBBczCxygvdQYRhrVlzwFt2UELhhR1nmgIeF1IlTqLbFcMoOptck90ii4VPFLqZBPuoX3UN1QmvF/KiByifjrP2qvRQg3Ee7V7qLW8apAd5V+P1M0334wff/wRc+bMiXlc9+7d0b1799DfAwYMQH5+Pp566ikyHHDMmDEYPXp06O+ioiKfG1PuDYZskBh4pDSUElJJ9eylUOPWOdF1Io539H4H9Boa1f0xNUR1FJTq26CjmNLhM6KCEj0fg1bO1PKozGtukM+M2u8mnHhmOnM9VMdSdSXDcVzqR4XaSNdLbCvrJSnc1PvircOkZMiDF+r9kuqg+M5IY0w8zeC5k3UiDEMzD6r6WZsMyph7iQXlwnOmRfd3Xpmmm0hsQ72LOnOxVDt10rZXBh08OnklurZq5GpIUZDKuolHihh8JJV1g8+MSqwgXq6ovBYdUMzLIsqr0FDW3aAM+fIEhvZVWjDSyNA+YbfrvGtKtlCnUsEjZbKOFGWci9tiaJ/JPRYNfGogzS2hB9WuUJ40b08pcs5o/O+rH/GlIfXnP/8Zn332GWbPno1DDz3U+Pz+/fvjrbfeIn/Pzs5GdnZ2PFVMGTqde6X0YXlTe+nRbwMFRaujD+/3nmxCPCb6eC0vHqEAuGYqI+RRSqWINEdKOteR/o+UR4/Iu3fYjlOlSJGj8MQFmWRwAnH/SIVVeSZRD526Evurjxc7oToZspGpLEeqX+wakl4o8RjiXrrYUaRxR20rR0o1lGJxmwpVVGeeIt5Xot5e52/qZO3z2kXLbYn+O0+nvdd4H1xkU2FBlOEjy44pWn7nNIxp1bl6KfXV23PX7cT7C/MBAEe3y3Gpq/pdpBoCk/eLeqfI8DGP81loL0p4e29JufIYN9meB1HIZBNqhdoGJtngSGNMwyPl+m1pPHdxjpSZZ0d9jeJ+sS9SvYNUaZK30IJXUpKt0c+YICcmgnI73fGVIeU4Dv785z/j448/xsyZM9G5c2dPcpYsWYI2bdpYrp0/oDsnsdHTbwApI4RqMGSDQx8dY8Yt7TdtNMSWLY2kS2tluiu0tOHqRJ1HraJOPieiXiGPFKX0UgqFALWWRtBxkBExhqaT6thzaIeGdmvSWJPz9cjt6HPFuPSsTHXonNfJ+5XUCB75LMXtaOHUGhz0dxu7flKV6BcstElla1Qlm9AZfDE14MNlqGWAuH9GnT4lQzzE5TlRz0A8kh5Bj11XKiMg6ZGVaxZTNtUekcqo4qXW+MQlRHk79oXnKpt4pOh2WX2MSZ1EaI9U7HeAkkHNzxS9P0WKdcp05gl5DbunPFKUt8vEcaiTtc+rgq5j5LoPzqr3i1E94lpiOus3qeohJ8sJy5Y8UgbPj5LtfS5zmArC2+WVjAAw5ecClFUE0bV1OGugDaPPL/jKkLrpppvwzjvv4NNPP0Xjxo1RUFAAAMjJyUH9+vUBVIXlbd68GW+++SYAYNy4cejUqRN69uyJsrIyvPXWW5g4cSImTpyYsuuwjakBYZRsglJuiW2T0R4tRVJU1j1ODKXuj8lnqhOao1LQqTJ02giqc3JfOJb4gTQEokeEtObKaCiHymqQz9qubDosKXaZ1MKHVMgkiHuiQmvxTY37U42oXFJhgzqhSG7l6SiS1HwW1VwZ6rv26ulziGu0oUTT76j6fquQlBmNcDCTgSBpUISYM0ddhNEcKcKjTclwn4/nfl4l0QYq5TnAf+dtxJx1O3BEm/BSJ2XUPCaDl4B6ZiaGFHU/TNsEVYILHYWfMtLcIA18wuth0q/qeY0MBBIyREySZNDGBNV+RZ9ByiCejfi6uoVmkuF3gmydAUATyomwS6+SHQe4/r+LAABvXnO8sD/+uvoFXxlSL7/8MgBg6NCh0v7x48dj1KhRAICtW7ciLy8v9FtZWRnuuOMObN68GfXr10fPnj3xxRdf4IwzzkhWtVMG2VG5pFSWZag/FGoE1qu7X0fhcYvj1WlwTUa5JYWD8CS4GViyt8vdeyCikz0uvE/d4JKGsFQvsd5O1O9UFjmprh47J3oxVmLbSLZQP0q24jmIHil6kEK93+2V0gm71PGEqtAZhTQaOCGNGnWZlGilB5Xa9njtpqOukd5K3XWaqNBR6v6ozqM8OHRWQ7JqUfLoLHtwPUaFTvgw/W1Fn2cazm00iAIH9336MwBg4cbdof0lZcSiuQaKGnWsyRwpMkET8Zy8eiip+pkk7hChvDayIaAvT4QatDKZfkD9SnnSjIwJ4lgTD6VOYi45AYa7B9ANKlujiZeHuk2ykabfRpPlCNvb94Y90DXIIeUvQ0rHQp0wYYL095133ok777wzQTXyH7IiZNZwu8uOrYBGy7bwZZmcptFJy8VEGw0UpqFcof3k71Rd3WWH00m7lA1ayae9Xd7qJDfQ3hpralvqV1xEk/OYNBTgasTJw/I9C29THZJJ+nOd+pEK+EHIOVJEnSgDWgXVlOgZqIjaT72LVHvkaNxvlTw6pFM8Ri5HV7EkQ91cnjuVKYw0fAw8+zoJTHTCJ1XQ3lt1XUViPXfHcWJEEKifnxvioTv3l4W2D1Apyg06PyosjlTWFbJ1lG8dpVc5kKauHinPpGum6iGlwSb6Ezd0sh7azjZoZEwQ+03mxtH1UBuiJn0LaeyICSE86nsU5cSCvF49SGL93FLJpyu+MqQYNZQKSyklOpl8QqO0lLJO1MVralGdRBFuv5OGhYE8LdkaippKiZBkk3V1v3/u4Xfq/XLjGt4vh2Gp6kRsCwdTynBk4oqouhp6PE1CvHTms6gSHZRRHimt5x4b+Xtzfxvd3m9qDQ4dYyxDYT1QHiHKYNJRzlTGuRzKom6ovHrSqFT8sQYVIucF0t5RQh7R1opluB1Lhcu5taM6BjSdbMLtvrorZDoDAuK+79fvxPX/XYTurYUFZcVjhG0T5Z/6WUwGIGIywk+G9hEivIb2uckwRWqXPWrROkaD1xCvUsIjRYWmmaDjSXPDdG6cMiEEUX9KDzMJlaWToFBhg/o3k/6e1MaO1+cknuc1cYffYUMqjdELw6IV/Ug7iuqkxR8oZc69ruK2hoJ50NCTOgfCICA792oFT8PYITOBUYqaQnmkFlikmixyZF3hSaPCzih5skcqOuRQuidu2jzkd0o02AKgG+RIcZRBolG8cCyh/JNGQXQ5cmgf9WzUdXIf4ScUarEeLs9dQnynCK8g1ZFmmHikpPqFt6n5Bqrj6W9S/e6KMtw7VbVSRx5tMEpL2b5yMbGfEzXvRz6Gendj108rWQeI/cpXSp1FSxSiY+SGdke0U3+Y8AP2l1WG1naKxLPiR9SD8kiZyCafmUFon6lSbmToUbKJ+SwmoX10/WKvcaRDKWXkEh4VFdTPVJ2oBYZVUJ5I2suk2Kfx3OUEGES4o4G3y0ZoH3VjD0iGlL44HUQjrQbZUWxIpR1SZyfupj6s2GJ0Rk8l5ZUYpXKrbPWhk5dvxeTlBcL+2DLERjGT6B1IQymi7GjZxMJzChlRsp3Yv1PKgqkipNpH1ZXq+OQ5UqqyiWs3VKzC56mv19TwUcsW5an3E/pv6BjJIyUcqjMvxK2G8mLYsd/LqP1KpVeU7f4eUUlG3M6jvHvUmk2STIV3VjxSJ227W8Yxyutm432Vy9FXnKnz9LIUurej1YNJVFhtkHx+6vKVZZBePEp29LmRz0ClyDoO8PXK3/Dt2h1ku+t1rowqOQNgx1AxSn9OFKeTcMENncQKXlOU6yj2xHimK2Iol0gZ8Q6oMXs2FQbpC6n5SibPTMfYkQZtCUNPGS6q4y30aEhR7U4p4TXSl0wPmFHernSHDak0wM0rEolOlqCg4yATAS0lWpLtUUGpPvLGtxfrHe9UGQDmGbr0lIiVW4sw8p/fhv7W8fKoFDWdxTKplNhuI72U+h4kHpROx6fODERsC8eIbb+cWj06tk/rGsnyXZQpSqHWULSr/5DmSBEydDyUKkyNHRPPBJ21L/yHONLr7pFyr2slsV8kFIpKPFSdMDGTMGEq8Qn1Tpko6Drvlwp5yQn1+0eHztHvWiBAt03yPCb5vHD5sStOGkxEuxJZP9U+9Xo4Dv7wxsKo/UZKIPEz5fUwW5CXUlj1ExqYGmMmhp6O18Orp49S7MsJr5GJ+ksauUQYugk2PH2mz8YktE8csBPPI5+lYj8Z2kfMYzJJVEKlci+pUHuNjN4pYvCsuCxx3q5UkpHqCjBm6BhV4sdUUl6JIsUCf0YjldLHFN52G1EzGXCInJTqKPabeo1i/X77+0vlY7RGkfVkA3qKEqVUqow0rUQgGga02zXohItSnYxysiz1O6WwKiWHz6UyolH7RVuieuRVVLxkRVcsj9gm6qeqB+XV1TGwqglQc6TI7zP8h1uKchHKoyEqktSzVD13LQ8S1Mco60d5Yoj7YDIBW8ebY2KQUMaJpOhKRhDxPanOIwZL6Psas9paxh1tyMn/q+roho3sbVRon8lcGRsL8prOU7ORDINS0E1k62Xtc+9bVNDz18L7qYQU1VDFUc+MyhSolGHwfAG1t0vHeNExctWhfWp55LMxeO7UfdcZ9HODmgNXXBZeIy1SXv6uYiNvop9gQyoN0Fk5XkT8IEeN/wHH3D81arV05TwcypgQzvO6/kMsT0Mw6OCUp2cpfzOZ7B61HbpGQbk8+H9k50tnAot97+lRerXhQRm8KqWSUo6oMqkVyeXU6tHPXScUiUyzq6iXQ1Rc3k0ohG5Km7CPUtClBlqoYPX9KSMWHNTxKrj1JVTGNhFKXkhxFmSIXiUdj1S5aEgJF199rk6WOxET45wyPHRCOt2Ub1En1psjJZxroADoDFSpxOlcC21gUXVxouTJg8g6z8bl2onrIg1hhdFJJTCR60EUT7STbseKkHOkDObKUDaX2RwptQxKOTTxHpAeM8IzYSWsUfQaid+fwX2lPFJUZjgVpAeH9KTpK+OUV4Z6Zqr7qjNwoPNs3NoVuX5im6DedkPnHfGabEJ6L4X2YV+pOhpkxqptOOmJGUqvdTrAhlSaISthamVP9WGv2FKkzN5GfRv0JHx95UeSR5YD7C4uQ96uYmX51MiLXD9zpTcy6sltLlnVtpsSoS6bmmfiECe4NVhU40aNVouEnztRb/HYg3898sUKrNhaFNovJZuQEmxEF6oVPqZhfIS9dOI+tTxqu7qDlTxSwgGlGiu6u3sm3K+XVtYPKs6EEayTVU30ILl1sNRzhyTP/Xi3d4qUIR4jXbN4TGxlXcvwcdGrxGtx8xJHHq/8nTiWCsUzydpHpVQ2NZDDv1NtE5TbIqr9BroWALPQPupXUlk38sqYZf5Th0hTx6rLNOk/yy3Uj5RNGBNk2KCBbNqQMvAaUcYOce2UF0wp29gjZfqGK2RTc6QU91UnfFFu//Xrp+O5k2SbvFNEPcrFcEeh+Ne/2wAAmLVmu3YZfoINqTRDZyRT9TFlZaofte46LCHZxIiyUjb5h7hb/UP1Xr1U7rHLV/0cuUAnOdneTTEmlBmtEWoXrwfl2aFCm6h7pTJ23JRikX9/u0Gut4vCoBMeRd1j+j2J3qKUQEqpre4ERYNJ7BjFjkXHIFJBxYbLqL/h6m0pPE84i147JLwtzWuQPGzVdSJqpPH+Uw9H7d1Wy6AV99jfNmV4q46NVab6RPUfJioT5TGTB1TM6ucofqfmRgSJa0Do2bgr+fLzo55ZdCk6+hV1iIkhRc7pIJR1ar+6HtR+G0pv/HO4TOeBmUSL6BgT4jtt4u0qodKfGxgkJuGVAJ1y3US2jdTqFCZhpJTBKRm5xLYbOvdJZ4kFFdR3TU3VyHSb0OtzONlEGkCqY0QnqGpgMjMCUqpqd92CUFI1DBs3eZHE+vap8AJJNqEAqH6vJvKztWmkRZ5HhfZR1x2ui7tyKytqagVdqpdLZU2TmYhvVehcQqElFW3CoBSplqPlhZLOC2+H50iFFSydRt5Eudaaw0LaJtXXKNxfwuMn1lWMOzcZRdZZ4Joa+VQZ9tRlkckXJK+MWL4ou2oNKBMvC6D2xlHhriLUfXCzJ+k5RernoQqdi2y7qv+klBKtb8uJLo96p3Tmc8n1q/7u1WXrYDK/g1IqD5TFb0jZyNpHtuca85vcoJRenSQUbpAL8hLzXEyUdcrrQXnYVJgkZwDkZEKusg2SiQBmqdXpMvVlFBPvtvgteA3tK9X4Pqj+1g0xNFK8Z2JYveM4uOujH1FaUUlmZE4X2JBKMxwA2/aW4JAGdUnjRPUxRXZCv5+wABf1bY9DGtYVZGso0RqeFpUMeiRcLaf6eLEjK6sM4qJX5qFRvSycflSuut6SjBj1i/huxSqs2BIOY6P0J9VcI8rY0ZmErJLjZiBGIqfCVct2m38F4npEpOelsdjv9r2lOKRBHTJMUmdtsur9otJEh3up7311gy4qJeIIo55HKvZz0Emcsa80bPiIa+1U31ZZeRPnOYX3yoZU+J6YrC9CPQ/SOCc9QU5UGfRizmaKn8rLqbNOnmrAh/L0mab/V9fT/T5RoXiha4w4rbpe5HxLonxJhqP3e7Q84hhHfUxknWOVI0J5PVSQoVyUsm4yR0rjPZJlx28ImCimlHFgtG4QAemRokL+TK1lBUb3z9QjZRDaZ+qRMqk3hY1nJhsk4f0monU8UiaD5SLSulmV6j52b0kF3l+YDwDodWiOp3L8AhtSacbqgr04/pGv0btDU/Q6tGloP6VoVFNaHpRSVX+/fhe+X78L40f1C8sgPkhZsVIfEw+xGifxI9y+txTb95YCAIZ2b6msn4gTtREmlkfqw0W/KverjIzPf9yiLJuKW6ZDZqL3U8YONcKvkxgg5DRyMeKq5AXVWYoohTSk9IZZubUI/R6ZjoFdmqNj8wbKMqXUzS6KmGiEyOdFHxu5fem/v8ej5x0tp6UVDXXJkFJWwxVyHSlh+/Mft6JLyzW4vH8H6dyQ0iveXzHZhKhQC0qOaFxWEPO8qmXqKMXUO0Up8dXbFRqdO2WcuA02UOfJz12tlKsGZVTzRSNlUPfKbUFeHSNcFfobKTXskULUsbHkqQwseoBCXVc9T1G1bLUM1bGRmIT2lVNemQQaE5RCbSMznAkm4WqmUOFq1DwXC3YUiktNvEZmBZYZGDv7hf5EhLpGK3OkLNxASoSNbI065bghvjvigIao68ntcXp7pHiOVBogvszVo89L8vZgwtyNyuNVH8gD//tZ2SCVEmsGiB2fsbIeOs+9g3UcdX2rz9XpyCglOhxpJssorajEL9v3R9VDXUFitwNs2LEfD3+xUjp2af4eDHlyBqauCC86rJfFK3ZddBRTMgyLKDNcbbVyVl7pKDslKjGA6n2onvg795edSoOtMugos+hF3rPqOkqGlGJUP3o7/Mee4nLc+PbiCI+UupGnEwZE/y5SSVh3kUf/8+u12LW/TNqn8uzIC/IKI3uER4pcqFFRX711pNSGlKre5USmJsqDJJUTMvQinnvoGxbrpKyGHMapmE8mD9ioO27ZoFS/A3L9HKkMIDJ5iihb/b6GvdvuxgYVJuxmDLrNa4w8RsfIDn8L6t9FKAVUfGfcFGYTBdkU0ouo0XYnAxPDzRTqWmwYgBR7S9QGTDLIkPoss3NNQhIpbBiiFDaMNBvIbZY6zE9sj9N9jhQbUjUEeYQ/+mNau22f8rwb3lrsKk/E61oVe0vLcddHPyp/U3k9Xp+z8eBv6jJ+KyoJbVdX6d+z1yuzvojXEggE8NzXa6OO2bBjP6b8XBC1v6ikAq/P2YAtew5EGGROyDsW3gNc9+ZCbNpZjCV5e0L7ddJWqxQhahSc9GSR8yfk47/6aSuembaGKDu8XVYRxC/bZIMz8npEqsuk4rplI7fqj8jUxdXvQlS6/oPnyoaU+DtxTxQvsjh4UH0tlUFHmlNBjfyrEiuIlBCrwquY8tNv0t8hI5Iw4kxD+6SMlyGvB/HOQX3/qBANlbJeTnikyOQLCo9K5LsVnhvnboyJ9VPNVaPaEsoQoIwM1bnkIsGEQWLikZKz/anfbeneSzJiv686CWDI0DTVPqIcyqNCjVCrMElyYIrpOlK1gUSu6ZNIo9iNeB6pT+wUEr/UT557rG6nxMGBNLejOLSvJuK1kXLg4OcthejYvKE8UZfoyE1GP75btxPAzqj9QcfB2S/Midr/+FercEX/DmTYgZhJLpSme/JK6ZiyyiDydxWjUbb8mn8khO6JXP/fRdj42JnSvncX5AEAJszdiFaNs8NlOkC9OvI4REUwiP2l0fekMujg+a/XonPLhpLy8cRXq3HNoM6oVyczSoH79+z1pAJKjVzLi+A5KC6rwCWvfo8thWGjM+hEG8+UIllWGVQ+m8qgA8dx8OGiXyXDofrcyMWOq6mOhwaAvaUV2LGvNMoYz9tVjCFPzow6t1qxE0MxFm7ahUGPfYMrB3SU6l10oAJz1u7AgC7NlZ1mYXHYSKsMOggGHfzfC3PwszA3jupsqzuFyHe/MuggIyAbhqIS9r9l0SGga7btlf6ufo+pjEyFB8L1/n79LhQWlyOnQR0p2US18uM4jjza7+Y9pgZOCG+IXO8qqGQdlCdGZbhGlqEKTaPS5ZcR3o3qeyiPJqsNCJ0EE5HGYAYCcigv6f2hDEpFeQB+2b4P3XMbR3gF1cYq6alSlC3XSTiWMPTMlmlQl6M1ad5Fw02kh8RGQoiaRm02Ihl7iN+4uC0OrqT7Z8aGVBrgtnYNAGzZcwAvzVyHy47v4Dme+vv1u3Dmc9GKs1i6XmIAB4FAQOvj2L6vlFz3obQiqBeT7CAqTAqoMowARBlSscIkqHUM8nYVo6VoSCFa2S6rCKJh3ehPavnmwlBSgZuGdZF+e3t+Hv5wYmdp3/frd0YZhdX3cln+Hjz3zTrhh/CmqGg8NXUNWjbOxo+/FkbIib6fQcdBQWEJ9hwoi/JIqQg6Dmat2Y47IzyMTrBK/j4i7lzkia9W44mvVmPSjQOl/ZTXsvrS9gkhIXuKy7GnuBzPTluDU45oFdp/98fLAQB/P+tIpax128Pe2c17DmDHvlLJiKoqT61oFx+8tkjFdPizs9CwbhYGHd4itK+609i+txQ/bNwdVY9fdx+Q/r769QUYP+p4NMzOjKrHjFXb8NDnK6Tjr33zB3x4w0BJSd2xrwxf/bQVvTscIh0bDp0L79MxIExC1uTQPuF3wvA5oGVIRUukjIIyImQzJJswtMh5EoSXTqTScZCFCK8R4R1188ZFlnHW83MwrHtLXD2wk7Leclr02NnHqFaUWo9PxxtXXhnEpa9+j6xMccFvdTkHytX32CS0L5HYyH5X06CMX4ZxIysjEGqDKySPlDDwRSZ3ctJuzhQbUjWEt+dXeU4WbNjlcqR3Hvjfz9gTMZqvIugAmZrfgTjKHklFpaM1KrZh534c99A08ndRsa8MOthdTJd59esLyN8WbQorw44TnSQj6KgVFlFhfHHGL9Jvu/aX4v0f8rBSWPA2P2JxYql+4+X6OQA27dyP9oc0iLpXXyyPDlWkFJ2zX5iD7XtLcXKPsEESGV5XzaJNu/HmvE1R++/+eLk0N0yH81+aK/0tes9Eej0wFaf3zMVXivDL0oqg8rpem7NBKWudEOZaXFaJK1+LfuaOU2UAzFi9DTv3hY30/QeVi7e+z5OOX39wzp1oBImGlIrNEYZUeaWDK16bj/sEAzDoAGt/24vfT/gh6vwfNu5GeWVQSjYxYe5G5dxJ1Yg7FYImUkGEZajkVBDzw6S1rQ5ullUEpf3rtu9DUUl5lIcyPAcpvE8qRipH7d2o3i9ei7hdJLznZHIZ0gA9WJ7ktVefR3vpoo3camas3o4rB3QM15swZikjNhR6KAhXJYiJrrfaqBKZs24H5q2Xowyo1tqGRyqRmGaTZBiGhgoxl0L7iHDkiqCDOroKpE9gQ8qH/Lq7GDv2leHY9k2rdhi05TNX218Z2nGAub/swPjvNkr76XkDDoCAVrX/NWs9+VtpRaXWmhDifKRkcet7S9Cuaf2o/TreGJGgA9w1cbm0T3XfNu85gPcW5EmGLAC8MXcjXp29Hhf3bR91H1RGqspIy99VHDIQZq7eJuw/EHUsAKURBQBfLN+q3G8LlRFVTeR9AYAiwkiPVOpW/7Y36pig4+Afn/2M/34vX+v+0gps31sa5R2q5vv14YGM8goHFZVBaT6fyI59agNLlF14oBzDn52tPA4ARn+wDJt2Rc9ji+SHjbsUo+5qZblaiZ67bgdWCAa+29y4yAQwlUEHP/66B3uKBW/xwWMj1/7516z1+OqnAnx0g+yhVIW9Ud5CKhvjf77dgKsGdkS9OmEjV+zoxVBP2vARLyHaixIZ2ld4oBw59eWU/5XBqtDpw1o0IrN6qtDJ2kclSimrCOLzH7fgyDZNlLLpzKHCMUEHz0xdjdY59SSDTfVeU2s3UWs9UevhJJt0Dy1iGL8itsvUdmQkTJ3M9ErfwIaUDznx8RkAgG/+MgSHtWyU4tpUdcyX/Xt+1H5qIcmb3lmM83q3wyszf4k6x4T9pZW49b2lcclIFFsLS7CV8J6YsFOhTFOK1d8mLY/aVx3GKc4/qmZlRLgaAFz2n+jnuF9QcsSiRSXa7yzK2x21b6+hUStSGXSijCigypDK0zBcgKo1og6/50vPddBBNfdKxV8+XAagqk2pRvayRCvRke8K5dEJe6RkJf9Pby3C1BVyQo1Kx8GmnfuVHeWmncVYmr9H2re18ACaNawrGy9O1Ry9T5ZuxpqCsBFMJS54f2E+3l+Yjym3DQ7LIOaekZ4nYlhIlQyjMuig94NT8dj5x6Be3bDxNm3lb5i64jcM7NJcylJVUVk1T890nho1R0rk+RnrsCx/j3LQp6re4W3KiFxZsBezD4Y8i0sY7FaEU1OeJ9VAR6zyMwLJz4zHMIx9xLZJnHYiZ4yWj2kYnkWRFrAh5WOW5u/BYS0boTSFGW4AYBMRalZcVol9pRVoKCgLADDl598w5efflOeYcMZz38Ytw+98sDA68QWV1t6UVGZGSja20wNTSu0b8zZh5dZoD1a6MF8I/a32GmVmyPMZqRA+uUMMd4LvLshDZdDB4a0aCb8Ho4woAHhl1nq8OOMX/Glol6jfAOCPby6U/j7zuTn47m8n47qD8x2BKgX7tTkb5KUHEH7fKyqDchp6xXVVBIPYvb8M5ZVB2ZASDCYqC6H4aoQ9ZvILE3SAOyf+iH9ecmyUjLm/7ETPtmEP0bVvLsQRbZrgg+v7R9W5Sla0B0wsO7KuIssOGqab96i9y/SaXOFt0bMrzkWNzLgZiwLCK0vBNhTD1AzEQTcxYkecGy8mCtKJQvIbbEj5mLKKILYWHsDvx0fPj0gmkSF91dz8zhLUzcrAsr+fltwKpTl1MzNqlZFjkxaN6qJLy0aSQWCTs3u1xf+WbYmZurw6cUg6Mkbwau7aX4Z+j0zHV7edhOWbw0lJqGQ1onFSKnSC1fMzRShvbbUh8LKBt3rQY99If+/aXxplRAFV7eX7P+Thvk9/VhrWkeus9X5oGprUy0LPtjmh/d+v34VNO/ejQ7MGmCzMMfxkyWa8NmcDXr7iOElmMOhgy54DoTlykVCvUWRynJVbi/DTZrUHmFobTFQ4yiuDcBwHJeXq+YIkBnO4AHn9HypczwYcascwNQNq7S0xyU+pMChTSiQf8zNsSPmMSBfn299HKyl+oqwiiDfnbUx1NVLKiYe3wJx1O7SPv3pgRyl9u9957eq+OKpdDh7+YqV2KFm7pvWVo+AtGtXFjn3RIUG63P9/PQHAkyHVu0PTmPPpXh/VF1sLS/C/ZVvIeU3xUL9OptEofjLYtb8Mxz/ytbRvVcFeZRZMcX5MSQpHDam5e+WVwaj5hiKRyT2AqnXiIg3jIU/ORPOGdaV9Cw8mmnnki5Wy9y4YxMAIQ0+ECi/dqfgGqEQtYnIU0ZCS1g+rdPDo5JV4Y+4mNK4Xu1svr3QwafGv6Nk2Ryu5xuoCtQd2P2d1YxjGBWpQRGw/xLmVXrNOp5L0mtFVC6BGHP3M2C9XpboKnunb8RD3g1ygkgbUBHKb1MMpR7RG6yb1lKnTn/pdL+V5/zhbTj0+uFtLnN2rLfof1lx5fF1hzszhrRrh7WtPwJBuLaOOG9EzF1kZ5s3Wrad0xcuX9yF/b9k4GwMOa4GMg2lXFysMrtZN4gvcPlII5/LKn08+PLR9/nHt4panYuXWIpylCKstrwzi2Wlr8NSU1ZJR5RdmuCTauekd9eLjqjmJOxWGJAB8u1YeMFEtWC2y/Nc9yv0qj/REYn27fwoLiFcEg8jbWYwnp6zCO4In8IOF+fj3txtQVhkk6y6WPfqDZRgxbrY8R+ng/8Ggg2VCvSnFJpEeKcYbaZY1mqnFHBDWPywhklCkC2xI+Qyxg01HF6dfaSKM0h56SHjidcfmDeOWHbkeUDUjerZW7rex0OGlx7ePW0Yk1wzqHLWvdU690Ha+cJ3NGtbFpBsH4txj20ad89ENA3Baz1yc3jMXAHDmMW3wxu/74flLe0tJBsQ5Na1zwkbKDUO6YNDhLfDGNcdHya6TmYEm9c0d6bcP74bcnHr464juAICTuobXe/rH2Udi6m2DUb9uZswV1od1D6eGH3fxsZhz1zDlcdlZ6ma1X6dmRnXObVIval8zwVMy4LDm6N2hadQxTVw8EjqIaeiPblcV+vb1qm3459dr8cKMddRptY7FiiQnIqo5kBRFJe7JUSqDDk55ZiZenPGL5PGNtaRDLMTU/NUDJfd8slwK4aMQF4Jm/EEnC/0ZwyQDcW1F2SOVfgM0bEj5jPKKsJL9ydLNnsPmThQWBmVkA1Wc/EgtxmkClfJcJwuXV6gO867Te6B9MzlD17Du0Z4dABh5VG5oOxAAjmjTOOqYe844IrT9ixBiNLRbSxzX4RBkRWRfe+WKPuh70GB45co+2DD2DLx42XHKBfbe+sMJ+M9VffH4BUeja6tw2SrjQCSnfp3QdmQIVjVN6mXhguMORY/cxnhTMMhuGnY4Nj52puRJa39IAxxyUE4sb9dhLcP3/LgOh6BtTvg+txIWa6ZG8Du3aIBXrjgO40f1w2Et1M9vwT2n4Pze7fDZzYPQSDCIurdujIxAlWevGseRy63GxuCAyFHtqjxpiVyjzq8c0qBOzN/FteWSQXmlY9Ub+Oz0NaHtT5ZuwSNfrMC7C6IzgKrwarylisxYoyQJoF4dM/WqV/VyJ3Hg9r6mmjOPaZP0Mv1+T5JNHwtROLYRw5Q5tI+Jm9LK8Av1y/b9MUcpbz+1G37X51Dlb5zMQKZb67CiLk86966UVPfLVDhFI4VnYMzIHq6KUFONhl9MQyzyp6FdMPuvw/DS5eFJ8S9fEQ5pa9EorHj/bWSPcF2zs3Be73b440md8drVfXHPGUfg8hM6SI2uaDCKi8ZWc0SbJjhdMM4ARBlQ4mhT0wZ1cOqRrXFxvw6ScakyDgDgk5sGAQCa1Avfn/N6h8PbRE/QqIGd8PRFvfDVbYMl46MaUakSn5N471s0ko207rlNpHMyBBkZwnWKMkTFoUWjbJx+VBsM69GKXDOnVeN6eObiY3HMoU2lxWkn33oSfrjnVHRp2QgvX34czj+uHc7q1Qb3nXUkhnZviYl/GiDdBzFbnC4NIrJvVuMllBKomhNmg54WQiK90KReFga5DEh9s2pbzN/TjWTN3RQHQ0wRIwpUZBEGU8tG0e3KaUeqowbO7x1/2KzpNdYxMPSO76z2bjczyBtNybiQ0Cls0Dg7+dPyD1EMtg0nnvugw9Wh5zUJvxuWD32+QpoXmg6wIeUzTOJDu+c2Qt9O6tEFUc6KB0dg4p8G4ILjEtdARnJch6aokxkgF4IU6dCsAd67rj+m3j7Y9ViR207tqnXcYS0a4g8nhsPWKoNB3H1GD3SO2P/AwUQGuky5bTCO79QMb//hhNC+S/q1x1O/64XhR7bG5Sd0lI5f9o/TcP2QLlL2M1Wjtqe4XLn/4r5V4Xx1MgNolB3+/YXLeuOwFg1xRf8OAKqMlxE9c/GHEzvjxcuOkxYi/f2gTvjL8G5485rjpY4+OysTWZkZuOfMI3HKEa3xx8GH4ZHzjpYMjkfPOxoA8NylvZWdE6WIi2QKSrlYL9Ez2EjobP95ybHo3KIhvrz1pNAC1U2Eep/Vqy3evOZ4LLr3VMkLe+Ow8FwiFaKyJda7aYO60vayv5+GzIwA2ubUQ69Dw9ndIif0VwSDuHnY4ahfJxNPC96u4zocgn9ecizuPfMIyaB77PxjkJURkIzZSC7sW/W99mrfFJkZATQ/qAiOPLoNnrnoWDSom4VDD2mACb8/Hn06NsOtp3RFh2YN8NcR3XHOse2w6N5T0aWl7J1q3SQ7ymMJVHktn7wwer7bZSd08DySP7CLu1KiemdGDewk/f3OH9VpwauJdQ+rWfaP2JlFrxt8WGh7/Kh++OiGAVj2j9NwiPA+iN7PIzTaNRPqZmWgbmYGOUBSU5h8y0lY9dDpuGpAR/eDoZ7Deu+ZRyiODNNaERILAHWyot/jHsJzvPWUrqiblYFh3VtqeU5euKw3rhrQEVNuG6wcNBAHIPoR/bSIKoEL5XEffoTaEGjW0F1Jfvjco3BJv/Z45qLw995WCOGmyrRBQ8KQEstXQYVL65ChGOkUx7FO6toC9etkol3T+rh6QCfP5Uy6caD7QR5wi9AAgDOP1vf0iX2cH1lVsBc3vLWIXNLBj7Ah5TNMwjbaNW2AukQDI76EDepmoU/HZnj6omhFCQAeOkdtQFAf8FAiVEzkmYuOxdpHzsAfB4cNFcqlfHG/9uh/WHPJawSERwupEchDIhqEZxTX17JxNr65YyjOOTY8wlhR6eC6wV0w446hOKpdWDm+sn9H3HJKV7SM8IjM/uswnNKjFe44rZu0v2vrxvjghgEYeHiLUBjH6Ufl4sI+h+LfV/WVvCwvXX5cyHBpLHhUqstv1rBuSIH8/aBO+O8fTkCfjofgwxsG4NHzjsaZR7fBg+f2xLt/7I/po4dI8xOGdm+Fr/8yBA+fe3RoX2ZGAPeddWSUQtCn4yH48yldMbhbS6keORrzji47oQNWPDgC/9crel4UoOeBqJOpVspFD6roxTrn2HaYccdQSXEVRzXb5tTD4G4tQ0ZGNfVc6iIaB2K9RQM2p34d5DSog2X/OA1Tbh+Mpg3q4pObBuGzmwdFLSjbMDsLd4zojp8fGCG9U42zs3DOse1w7UmHSecM6NIcy+8fgRuGdMFFBw2mYwRDDQD+eNJheOp3vfDG7/vFvJZqbh/eDbPvHIYTDib0aN4oG78Iabn/fPLhmH/3qfj2zpOjzn3yd70kD9w7156Az/98Ih4+5yjPoajtmzXApcd3QOsm2Rh7fvjdvOWU8ACIGKI68U8D8OqVfUKZGQHgiv4dkFO/Dj66YQCOV8wxa9k4G5ed0CH0t0ohG9KtJXLq18GLlx1HKuFdhfl6LRtno2+nZggEAtJ8vP/+4QRMuW0wNow9A306No157RmBaI8mALx4WZU3sXF2VihkEqgyZNc8MhKz/irPu6teSPfxC46W9j9x4TExy7fNX4Z3cz/oIOL32f8w+Zm1bJyNenUylaG+kXx28yA8ct7ROL5zM7x9bXiwqkHd2G1VKyIpzLai6KRAotFw5jFtsOS+4Xjt6n5R3qQm9bJwUd9Dpf72rGPa4sFzjkL33MbKbJxiv3XakWFPffU8zUiKS6NlRLbffzypM8ZdfCw6EAa3aoBLfB4dmjXAFf074rELjkGrxuFvRfzmTBTtHrnR4eCxoAwpt/eBCmUXvWpU3+I2DtSn4yGYc9cwTB89xLXfAIBTerSKKrtl42wc1+GQmFMqxEHbRgaeucNaNAq9j9TAtNh3iEZnZJ8CAJ2JsPLrh4QHk1RtLaAe+BIjMMR7LX5DpgNEV5zQQblou1/xZU1feukldO7cGfXq1UOfPn3w7bexF2adNWsW+vTpg3r16uGwww7DK6+8kqSa2kfXI3V6z1wcfWiO9LI9dO5RGDOyByb+aaCrNX9UuyY4vFUj1M3MwEldw4aR+PKLLv7Xru6LjEBVQgJRsaJG2porlIi7z+iBP57UGa+P6ovRQsesCk+sXycTr17VFxsfOxOf//nE0P5TerTC5FtOwpTbBkd91Oce2w7f3jlM6jgm/Sl6lEgM7WuYnYW5fzsZi+49FRkZAYwe3g0/3HOq1Eh2aN4Ar43qh5tPpj1gs/86DO/88QQMFRISdGgWbjzOEEaMxMbwsQuOweUndMAH1w/A3WccgbevPQF3nd4DR7XLwcQ/DUS/Ts1w2Qkd8OLlxyE7KxMDujRHx+YNQ8p6Tv06aJSd5doRfXbzIPzzkmOlrHmiMTGkWyvVaVHEUmJ0MkZRXqtIozgWGRkBvHddf4wf1Q+thNHnLKIjVSHer3qSIRWuR7Ui3Cg7K2R0Htu+KY45tGmUvC4tG4XqJioLlFIHAPUP3osH/u8o/OPsI/HKFXJWwTqZGbiwz6HWRhB75Ko74ScvPAYtGmVL70PnllXvWEZGIGoeYaQimJ2VgdtPrfqexayCXVs3wtjzj8b8u0+VwjV/1+dQjD3/aHx0wwCpU+/TsRlO6ymHhrZsVPV8+3Zqhg9uGCD9Nv73/TD3byejSb06eH1UX3Rr3UgKY730+PZ4+9oT8J+r+wKoUkqvPSmsLIjfpzg/RXyPxPe9ZeNsdM9tjEAggI7NwvU+PaLOQNU6Vbee2g11szLwl+HdcEX/DrjguENxxtG5eOaiY7H8gREhIwmoUsojOaJNE3z3t5Ox8bEzcXG/sLFYv04mLurbPuo5iF61eDm6XY70bK7U9CABQD3hG49855qF5iJGf6tHtGmCv591JAYd3hw/PzACxxzaFN1zG+OD6wdg0OEt8M9LjsXVAzq6hlt2FwbkqrOBdmnZUJp7Uf28R/TMxdd/GYL//uF4dGvdGA2zq0J2j45QQBfeOxyPX3CMa/8szos665g2GHv+0Zhy22BcfHx7DDisOR4+9yhJiRYTw+wXBseqDZTIzKUX9mmPc3u3UyaiAYA2wv7qAc+HzzsqVM7JPcLtfN2sDLw+qi9eueI4nNYzF7ef2g23nHy4NJg0/vf9sPDeUzHyqFwMEPqOm4Z1wbMX95ISArVx8SpFXq94/HYh8+39Z0eHjYtt03+u6hvaPr93O8y/+xTMuWsY/iz0z9WDFEe1a4INO8KDSace0Qp1szJwzaBOoX059eugeaNs1K+bKfUFopEoRiA8c9GxGD28mxQ+X/2evXnN8Zg+ekho/9nCoKM4cPLS5cfh0uM7YNzFx0rXWR1BcH7vdhjRszVaN8nGHSO6Yd6Yk7Hg7lOkARQxYZI4+PvqVX3x3KW9seqh06WEZdWDAGcR3taBXcLy/nzK4aibmYFTj2iFb+8chhaN6uL6IYcp+2/RcBMHNMXne7bQvonvoIhoCF9yfAflMX7Fd+tIvf/++7jtttvw0ksvYdCgQfjXv/6FkSNHYsWKFejQIfrmbtiwAWeccQb++Mc/4q233sJ3332HG2+8ES1btsQFF1yQgiuID1135guX9QYAyZBqf0j9kCIfQGylsqLSwRe3nIiKSkdqpO498wi0aJyNY9rlSOl1Bx3eAisePB316mTi9HGzQ/tvO7Ubnp66WkoXnVO/TkjxzM4Kf3jNG2bjnjOrGsnZa8JphCM9QICcnUxUevt0OiSURlq8VzPvGIqMjADaNzvopTvYLrdvFj0SEjna2LapwuNFDML/+eTD8fw36/B7oSEGgFZN6klKPQDk5tTD5FtOQk5EmN7Zvdpi8vKt6Nm2Cdo1rY9HzguPNrspCWKdZ/11KJrW11OyjzlUbQBc2OdQLN60W1KAvSI+a4obhx6OL5cX4KJ+ctbB83q3w6w127VTjKvSqP/ltO6YuXo7fq/IPhhJw7qZ6NfpEFQEHUmhbdqgDs49ti3W/LZP6pgpHjynJ8Z/t1EKC22UnYU3rzkeu/aXYXBXd+9t/bqZWnX2Qt+Oh4TWQDrj6Nyo/dcPOQy/OxgyKnoFWwuj1cd3boZJSzYDqFIYzj+uHS49vgM27tyPp6euxp0jeqBn2yYY3K0FjmqXg0Ma1MWCDbvwuz7hZyyuGdKuaX1cerCjbNO0PrbvKyU710jlrE/HQ7Bo027cf/aRUhbFk3u0xsk9qjzYs/86DG/O24gbhx0utSPV/OvKPnjiq1V48fLjsLekAkUHyiWPlGhM7xZSiYsepsNbh4+/Y0Q3tG6SjcID5cjOysT7C/Nx6yldcWX/jrjihA7kIIcYXnSakOHzryO644Vv1uHJCK/TX0d0x7+/XY83fl+lvN407HBc3K897v34J3TLbYzRw7uhcXYWxs/dqFwHjGJwt5aYvSacOv6Wkw+v8m6u3YFR4xega6tGUpvZuUXDkHI65bbBuPw/89GqcTZWbK1aULh1k2y8c+0JWPZrIY5tn4MJczcCqBqVru5rTj8qF2/M3YjdxWX48IYB+G7dTlzY51C0bVof15yo/hbOObZdKLJg/O/74Z35eZi24jcAVd6f6uypYujvJzcNwn+/34gbhnTBkCdnhvZ/eP0AFJdVhAYpqgdCqsnOysT/bj4Rn/+4Bdec2DmkhN487HC8MGMd6VU6r3e7ULKO3Jz60lycd6+rClF9ckp4uZD3rx+Ai/41Dxccdyg+/3GrVO8d+0px6CHh/uuwlg3R7eB7J3q7curXQeGBqsQfokHy76v6YuueErRvVh+9Dm2KKT8X4KqI0LXqbwYAbj0YKv+vWeHFsgd2aY7srEy8fEUffLAwH/PW7zxYfgOc11seAG3btD4aZmfht6ISTL7lJMxcvQ33ffozbh52OF6e9QtaN86WjPPnL+2Nez7+Cbec0hV/+XBpaP+oQZ1x1YBOKDxQjt4PTQNQ1Q5Uv18DD2+OZg3rok5mAKf1zA1949V6RIO6mXj72v74bNkWjOjZGic/NQvllRWhe1JSHpQG/cTvUDSEbz2lK17/bgOOObQpxn8XnjuY06CO5FUHgEMOhlRmZASkREL9D2uGupkZOL7zIZKuVtVeVvUNd3y4DBVBB62bZOPd6/pj4qLNuLhfexzSoA7KK53Qu9egbpakS/z55K7405Au6NyyITbuKA7tP6ZdTsgzufq38BpwM+4Yir0l5VIyIvHdad6wLh46pye2FpbgpK4tsfQfw1H/oPd44b3D4TgOSsuDmDB3I844Oje0YHmHZg3Q/7Dm+HTpFowe3i206LvYjnYV2kvxHaibmRHqdz65aRDeW5CPP59yuJZn0E/4zpB65pln8Ic//AHXXnstAGDcuHGYMmUKXn75ZYwdOzbq+FdeeQUdOnTAuHHjAABHHHEEFi5ciKeeeiotDamXhUaM4l9X9gllSxPX3xEb1w7NG0gfUST7yyqQnZWJ7Cx5EeB+nZqh08EXvYugXIgvtpgyd9DhLXDMoTn48ddCXP6f+QBk5Ucc9a0vjGYUCOmVVYrGIUKst9i4iSOZPds2wdUDOqJencxQnYGqSf2qtVT+OqI7nvt6rdbcqgfO6Ynb3luK24fLx44e3g0DDmuunWFJtXZQ3awMvDZKL1wrFjays1HrQJnw9rUn4J9fryWVC5G2Tetj4b2nRj3zc45ti3p1MpWhCLp0a90YP95/mpZBFwgE8MH1A0Lb4v5xl/TWLvOqAZ2ilBMAygQXqeDlK/rg6amrce1JnaXrHP/7fpi+8jec3D2sSJ3QuTnOPLoNjj40R0qkcXG/9ujb6RC0a9oAB8orQ4pLs4Z18fa14flLvTtUeaevObFzlDJ8co9WOKJNlbElym7XtH7oOYhcenx7LN60RxrRBYB3/9gfpRWVUlhqJB2aN8C9imQo1YzomYsRCi/SxzcOxJ4D5dIcGzEkRbx/g7q0QOcWDXGgrBKHHtIAD5xzFACgqKQc5/ZuFwppi+UpFsPBxHf2pmGH4/rBh0VlxLxp2OG4cWgXSWaLRtl45cqwF+7Pp3TFn0/pimvf+AHTV1YlwujeunHMvuCwFg1DhtSie08NjSoP6dYS3911MnLq10EgEMClx3fAxMW/4vVR/dCpeYNQPb772zA4DvCvWevx6dLNeOaiY9G1dWN0PegZ+uclxyIjEMAwwVju1roxvvvbydi+txTtmzVAn45mSwMM694Kg7q0QLd7vwQA3Hl6D7RslI12Tevj06WbQ8cd2bYJxp5fZZC2apyNbXtL0bJxdtWctKzYg1BHH5oT5ZkaPbwbzjm2bZTh9fLlx+GNeRsxamBnNKybhTXb9pHZUk/u0RovzvgFnZo3wBFtmmDRvcNRNysDTepl4blv1uFPQ7ugXp3MkBF16hGtUFBUgkl/GhS6580a1kWP3MYoPFCOybechHcW5GFIt5bIzsrA+O824vKDoVHVIYCdWjTE9UO6aN3bc45th0+XbsGogZ2k93LkUbl4dfZ6lFUEI5LoVC2yfubRbTBqYCdUBKuU/ysHdMLv+rZHvTqZuH7IYcjMCEgJi47rcAimHJwX/ejklVI6/4yMgBSm2LRBXcy8Yyga1M1Eg7pZmH3nMNTNzJBCLS/u2x716mSgTU595NSvgyv7V3lR37++P858bg5GDeyEQCAg6SGAPDctt0k9ZGYEUBl0MLBLC4w8GEmyY18pPl26JSpBx6c3DcI/PvsZfxe8aBkZARzdLgfLNxfi1CPCc6U/XBjOhikO8Ez800A8NXU1xow8Aq0a18OfhoafU92IeX3ZWZm46/QeWLm1CH06HhIamGjduB5GD++Gvh0Pke7b9YMPw79mr8cl/dofHDCs0hEb18vC3pIK/OHEznhmWlXmztycerhS6Msio08CgQBGn9YNQ7q1xKDDW+B3fXfgX7N+wRMX9EKLxnVxZf+OOK7DIcgIAM9/sw73nnUEznxuDgBI3kwx++2Io3Lxv2VbAAA92+bgoXO99/8pxfERpaWlTmZmpjNp0iRp/y233OIMHjxYec5JJ53k3HLLLdK+SZMmOVlZWU5ZWZnynJKSEqewsDD0Lz8/3wHgFBYW2rmQOOh41+dOx7s+d87452znt8IDTml5pTNn7Xbn65UFod9Wbg3Xc8ueYueI+750Rr0+3wkGg6H9v2zb63S7Z7Lzt4nLJPm9H5zqdLzrc+cvHyyV9i/cuMuZuXqbtK+iMuhMXJTvbNyxT9r/6BcrnI53fe5cM36BtP+Y+6c4He/63Hl08orQvv2l5aF67y0pD+2fs3a70/Guz50/TJBl/PmdxU7Huz53pv5cIO1/eeY6Z+DYr528nfvJe1fNsvzdztH/+Mp5Y+6GqN8qK4PRJzAMwygoKa9wnpm62lm8aVfUb/tKyp3i0grPsqvb9FGvz4+nikrWb9/n/N/z3zqfL9virNu21zntmVnOZ0s3Oze+tcjpeNfnzr9n/+IMeeIb54j7vnSW5O0OtdFiHxJJMBh09gltuB+Y8N0G56a3Fzml5ZWhfct/3eN0vOtzp9s9k6Vjl/+6x7lm/AJnxZbU9/M/bd7j7CmW9ZPS8kpn1daiqGODwaDyuRwoq5D61GrKKiqj9iWSzbuLnU+W/OpUaPatS/J2Rz2D+et3Ot3vney8Pme9tP+6N39wOt71ubP81z3W6lvN3ZN+dHo9MMX5rfCAtH9p3m7n193F0r6iA2XOews2Obv2lWrJLi2vdHbsLZH2FR4oc056/Bvnno9/jK/iBhQdKHO+WflblN6zpqDI+e+8jU5JeYWzfvs+Z2ne7oSUv2VPsbNpR5XO9vqc9c6LM9Y6JeUVzq3vLnb+8sFSp+hAmXP3pB+d+et3JqT8eCksLNSyDQKOE0f+Z8ts2bIF7dq1w3fffYeBA8NzWx599FG88cYbWL16ddQ53bp1w6hRo3D33XeH9s2dOxeDBg3Cli1b0KZNdDzo/fffjwceeCBqf2FhIZo0SU2q3Woe/nwFissrce6x7aJGPxZt2o2thQei4ulLyiuRnZURNfp5oKwS9erI+zfu2I+Pl2zG7wd18jz3oqIyiOkrt+HY9k2RK3ifNuzYjy9+3IJrTzpM8mDNWrMdZRXBqJSj+buKkZtTT3J5V1QGsbWwRBmSZ4LjOFoTmhmGYVKB4zhYVbAXnZo3jBolTxS795dh/Y796NPxEFRUBlERdFCvTiY27NgfGs2vCSzcuAttmtaXwnYZf1NRGYzywlYGHewuLpOW7Uh0mYmE9ZL0oqioCDk5Oa62ge9C+4DocAi3l091vGp/NWPGjMHo0aNDfxcVFaF9+/bKY5NNrJCUqqx30ckdqHhSVefcqUVD3G6QgUlFVmZG1HpBQFXsqyohQ+SE2WpUxlJWZkbcRhTgngWIYRgmlQQCAetp1N04pGFd9KlO+JCZgerILSqTV7rSl8g6xvgXlUGTmRFImBFFlZlIWC+pmfjKkGrRogUyMzNRUFAg7d+2bRtat1avm5Cbm6s8PisrC82bq9cxyc7ORnZ24j5OhmEYhmEYhmFqNr5Kf163bl306dMH06ZNk/ZPmzZNCvUTGTBgQNTxU6dORd++fVGnjr9XcGYYhmEYhmEYJj3xlSEFAKNHj8Z//vMfvP7661i5ciVuv/125OXl4YYbbgBQFZZ31VVXhY6/4YYbsGnTJowePRorV67E66+/jtdeew133HFHqi6BYRiGYRiGYZgajq9C+wDg4osvxs6dO/Hggw9i69atOOqoozB58mR07FiVQnLr1q3Iywuvb9S5c2dMnjwZt99+O1588UW0bdsWzz33XFqmPmcYhmEYhmEYJj3wVda+VKGbmYNhGIZhGIZhmJqNrm3gu9A+hmEYhmEYhmEYv8OGFMMwDMMwDMMw/8/emcfLUZR7/9czOedkPyGBmISEEBHCmhAEBATZwxYQIzuyuSvgRQQVFIF7lbDJ6wLCVQHhKoss4YIgGskCXAHDpoisQiAIEQ1JTshykjNT7x+TmdPTU2sv090zv+/95MqZrnrq6erq6nrqqXqKOEJDihBCCCGEEEIcoSFFCCGEEEIIIY7QkCKEEEIIIYQQR2hIEUIIIYQQQogjmTtHKg2qEeB7enpS1oQQQgghhBCSJlWbwHRKFA0pACtXrgQATJgwIWVNCCGEEEIIIVlg5cqV6O7uVl7ngbwAyuUy3n77bQwbNgye56WqS09PDyZMmIDFixfzcGDiBNsOiQLbDwkL2w4JC9sOCUvSbUcIgZUrV2LcuHEoFNQ7oeiRAlAoFDB+/Pi01ahj+PDh7FRIKNh2SBTYfkhY2HZIWNh2SFiSbDs6T1QVBpsghBBCCCGEEEdoSBFCCCGEEEKIIzSkMkZXVxcuvPBCdHV1pa0KyRlsOyQKbD8kLGw7JCxsOyQsWWk7DDZBCCGEEEIIIY7QI0UIIYQQQgghjtCQIoQQQgghhBBHaEgRQgghhBBCiCM0pAghhBBCCCHEERpShBBCCCGEEOIIDSlCCCGEEEIIcYSGFCGEEEIIIYQ4QkOKEEIIIYQQQhyhIUUIIYQQQgghjtCQIoQQQgghhBBHaEgRQgghhBBCiCM0pAghhBBCCCHEERpShBBCCCGEEOIIDSlCCCGEEEIIcYSGFCGEEEIIIYQ4QkOKEEIIIYQQQhyhIUUIIYQQQgghjtCQIoQQQgghhBBHaEgRQgghhBBCiCM0pAghhBBCCCHEERpShBBCCCGEEOIIDSlCCCGEEEIIcYSGFCGEEEIIIYQ4QkOKEEIIIYQQQhyhIUUIIYQQQgghjtCQIoQQQgghhBBHaEgRQgghhBBCiCM0pAghhBBCCCHEERpShBBCCCGEEOIIDSlCCCGEEEIIcYSGFCGEEEIIIYQ4QkOKEEIIIYQQQhyhIUUIIYQQQgghjtCQIoQQQgghhBBHaEgRQgghhBBCiCM0pAghhBBCCCHEERpShBASIz/60Y/geR623377yLIeeOABXHTRRdGVygGLFi2C53n4xS9+4Zz37bffxkUXXYRnn3224dpFF10Ez/OiK+hAtUzTv3322aepehFCCImXAWkrQAghrcQNN9wAAHj++efxxBNP4CMf+UhoWQ888ACuueaatjGmwvL222/j4osvxuabb44dd9yx7tpnP/tZHHzwwU3VJ1jmO++8g5kzZ+LMM8/ECSecUPt9+PDhTdWLEEJIvNCQIoSQmHjyySfx5z//GYcddhjuv/9+XH/99ZEMqTywevVqDB48uOF3IQTWrl2LQYMGpaBVP+PHj8f48eNTLXPRokUAgM022wy77bZbU3XJImvWrEm9XRBCSBxwaR8hhMTE9ddfDwC49NJLsccee+C2227D6tWr69LMnz8fnudh/vz5db8Hl7adeuqpuOaaawCgbjlYdVC+du1anHfeeZg0aRI6Ozux6aab4vTTT8fy5csb9Lrllluw++67Y+jQoRg6dCh23HHHmq5VbrjhBkydOhUDBw7EyJEj8YlPfAIvvPBCXZpTTz0VQ4cOxXPPPYfp06dj2LBh2H///Ws6nnHGGbjuuuuwzTbboKurCzfddBMA4JVXXsEJJ5yA0aNHo6urC9tss03t3nS8+uqrOO2007Dlllti8ODB2HTTTXH44Yfjueeeq6vPXXbZBQBw2mmn1eqp6sWTLe0rl8u4/PLLsfXWW6OrqwujR4/GySefjLfeeqsu3T777IPtt98eCxcuxF577YXBgwfjgx/8IC699FKUy2Wj/iaefPJJHHHEERg5ciQGDhyIadOm4de//nVdml/84hfwPA9z587F5z73OYwaNQrDhw/HySefjFWrVmHJkiU45phjMGLECIwdOxbnnHMO1q9fX8tfbVeXX345vve972GzzTbDwIEDsfPOO+Ohhx5q0OnRRx/F/vvvj2HDhmHw4MHYY489cP/990vT7b777hg4cCA23XRTXHDBBfj5z39e10YBYPPNN8eMGTNw9913Y9q0aRg4cCAuvvhiAMA111yDj33sYxg9ejSGDBmCHXbYAZdffnmd/kD/c3jsscewxx57YNCgQdh8881x4403AgDuv/9+7LTTThg8eDB22GEHPPjgg6GfCSGEOCEIIYREZvXq1aK7u1vssssuQgghfv7znwsA4he/+EVdunnz5gkAYt68eXW/v/766wKAuPHGG4UQQrz66qviqKOOEgDEY489Vvu3du1aUS6XxUEHHSQGDBggLrjgAvH73/9eXHnllWLIkCFi2rRpYu3atTW5F1xwgQAgZs6cKe644w7x+9//Xlx11VXiggsuqKW55JJLBABx/PHHi/vvv1/cfPPN4oMf/KDo7u4WL7/8ci3dKaecIjo6OsTmm28uZs2aJR566CHxu9/9TgghBACx6aabiilTpohbbrlFzJ07V/z1r38Vzz//vOju7hY77LCDuPnmm8Xvf/978bWvfU0UCgVx0UUXKe9fCCEWLFggvva1r4k777xTLFiwQMyePVsceeSRYtCgQeLFF18UQgixYsUKceONNwoA4tvf/natnhYvXiyEEOLCCy8UwU/d5z//eQFAnHHGGeLBBx8U1113ndhkk03EhAkTxL/+9a9aur333luMGjVKbLnlluK6664Tc+bMEV/+8pcFAHHTTTdZtQv/vV1xxRW13+bOnSs6OzvFXnvtJW6//Xbx4IMPilNPPbWhDqr3NmnSJPG1r31N/P73vxeXXXaZKBaL4vjjjxc77bST+O53vyvmzJkjvvGNbwgA4vvf/35D2RMmTBB77rmnuOuuu8Qdd9whdtllF9HR0SH++Mc/1tLOnz9fdHR0iA9/+MPi9ttvF/fcc4+YPn268DxP3HbbbbV0f/7zn8XAgQPFlClTxG233Sbuvfdeceihh4rNN99cABCvv/56Le3EiRPF2LFjxQc/+EFxww03iHnz5ok//elPQgghvvrVr4prr71WPPjgg2Lu3Lni//2//yc23nhjcdppp9XVX/U5TJ48WVx//fXid7/7nZgxY4YAIC6++GKxww47iFtvvVU88MADYrfddhNdXV3iH//4h/XzIYSQsNCQIoSQGLj55psFAHHdddcJIYRYuXKlGDp0qNhrr73q0tkaUkIIcfrppzcYAUII8eCDDwoA4vLLL6/7/fbbbxcAxE9/+lMhhBCvvfaaKBaL4sQTT1TqvWzZMjFo0CBx6KGH1v3+5ptviq6uLnHCCSfUfjvllFMEAHHDDTc0yAEguru7xXvvvVf3+0EHHSTGjx8vVqxYUff7GWecIQYOHFhLL7v/IH19fWLdunViyy23FF/96ldrvy9cuFCZN2hIvfDCCwKA+PKXv1yX7oknnhAAxPnnn1/7be+99xYAxBNPPFGXdttttxUHHXSQUs8gMkNq6623FtOmTRPr16+vSztjxgwxduxYUSqVhBD9htSZZ55Zl+7II48UAMRVV11V9/uOO+4odtppp4ayx40bJ9asWVP7vaenR4wcOVIccMABtd922203MXr0aLFy5crab319fWL77bcX48ePF+VyWQghxNFHHy2GDBlSZ3SWSiWx7bbbSg2pYrEoXnrpJW0dlUolsX79enHzzTeLYrFY146qz+HJJ5+s/bZ06VJRLBbFoEGD6oymZ599VgAQP/rRj7TlEUJIHHBpHyGExMD111+PQYMG4bjjjgMADB06FEcffTQeeeQRvPLKK7GWNXfuXACVpXZ+jj76aAwZMqS2ZGvOnDkolUo4/fTTlbIee+wxrFmzpkHWhAkTsN9++0mXf33yk5+Uytpvv/2w0UYb1f5eu3YtHnroIXziE5/A4MGD0dfXV/t36KGHYu3atXj88ceVuvX19eGSSy7Btttui87OTgwYMACdnZ145ZVXGpYd2jJv3jwAjXW36667Yptttmm43zFjxmDXXXet+23KlCl44403QpUPVJYsvvjiizjxxBMBoKFe3nnnHbz00kt1eWbMmFH39zbbbAMAOOywwxp+l+k2c+ZMDBw4sPb3sGHDcPjhh+Phhx9GqVTCqlWr8MQTT+Coo47C0KFDa+mKxSJOOukkvPXWWzWdFixYgP322w8bb7xxLV2hUMAxxxwjvd8pU6Zgq622avj9mWeewRFHHIFRo0ahWCyio6MDJ598MkqlEl5++eW6tGPHjsWHP/zh2t8jR47E6NGjseOOO2LcuHEN9RLl+RBCiC00pAghJCKvvvoqHn74YRx22GEQQmD58uVYvnw5jjrqKAD9kfziYunSpRgwYAA22WSTut89z8OYMWOwdOlSAMC//vUvANAGW6imHTt2bMO1cePG1a5XGTx4sDLaXFDG0qVL0dfXhx//+Mfo6Oio+3fooYcCAP79738rdTv77LNxwQUX4Mgjj8R9992HJ554AgsXLsTUqVOxZs0aZT4drvc7atSohnRdXV2hyweAf/7znwCAc845p6FevvzlLwNorJeRI0fW/d3Z2an8fe3atQ1ljhkzRvrbunXr8P7772PZsmUQQijrBeivu6VLl+IDH/hAQzrZb4C8rt98803stdde+Mc//oEf/vCHeOSRR7Bw4cLa3rlg/QbvE6jcq6peZHVACCFxw6h9hBASkRtuuAFCCNx555248847G67fdNNN+O53v4tisVjzCvT29tal0RkUQUaNGoW+vj7861//qjOmhBBYsmRJLfhC9dpbb72FCRMmKGUBlRDdQd5+++06rwMA7ZlMwWsbbbRRzaOh8opNmjRJKe+Xv/wlTj75ZFxyySV1v//73//GiBEjlPl0+O83aGDK7jcJqmWcd955mDlzpjTN5MmTYy1zyZIl0t86OzsxdOhQDBgwAIVCQdkOgH69R40aVTMGTWUA8jZzzz33YNWqVbj77rsxceLE2u+ys8AIISSr0CNFCCERKJVKuOmmm7DFFltg3rx5Df++9rWv4Z133sFvf/tbAJUoZgDwl7/8pU7Ovffe2yC7q6sLQOPsfDVS3i9/+cu63++66y6sWrWqdn369OkoFou49tprlfrvvvvuGDRoUIOst956C3Pnzq3JCsPgwYOx77774plnnsGUKVOw8847N/yTeXyqeJ5Xq4Mq999/P/7xj3/U/aaqJxn77bcfgMa6W7hwIV544YVI92vL5MmTseWWW+LPf/6ztE523nlnDBs2LNYy77777jovzcqVK3Hfffdhr732QrFYxJAhQ/CRj3wEd999d109lstl/PKXv8T48eNry/P23ntvzJ07t874L5fLuOOOO6z1qRpX/ucrhMDPfvaz0PdICCHNhh4pQgiJwG9/+1u8/fbbuOyyy7DPPvs0XN9+++1x9dVX4/rrr8eMGTMwZswYHHDAAZg1axY22mgjTJw4EQ899BDuvvvuhrw77LADAOCyyy7DIYccgmKxiClTpuDAAw/EQQcdhG984xvo6enBRz/6UfzlL3/BhRdeiGnTpuGkk04CUDHazj//fPzXf/0X1qxZg+OPPx7d3d3429/+hn//+9+4+OKLMWLECFxwwQU4//zzcfLJJ+P444/H0qVLcfHFF2PgwIG48MILI9XPD3/4Q+y5557Ya6+98KUvfQmbb745Vq5ciVdffRX33Xdfbb+XjBkzZuAXv/gFtt56a0yZMgVPPfUUrrjiigZP0hZbbIFBgwbhV7/6FbbZZhsMHToU48aNq9s7U2Xy5Mn4/Oc/jx//+McoFAo45JBDsGjRIlxwwQWYMGECvvrVr0a6X1v++7//G4cccggOOuggnHrqqdh0003x3nvv4YUXXsDTTz/tZJTYUCwWceCBB+Lss89GuVzGZZddhp6enloocgCYNWsWDjzwQOy7774455xz0NnZiZ/85Cf461//iltvvbVm/HzrW9/Cfffdh/333x/f+ta3MGjQIFx33XVYtWoVgMp+KRMHHnggOjs7cfzxx+PrX/861q5di2uvvRbLli2L9b4JISRRUg11QQghOefII48UnZ2d4t1331WmOe6448SAAQPEkiVLhBBCvPPOO+Koo44SI0eOFN3d3eJTn/qUePLJJxsiz/X29orPfvazYpNNNhGe59VFRFuzZo34xje+ISZOnCg6OjrE2LFjxZe+9CWxbNmyhvJvvvlmscsuu4iBAweKoUOHimnTpjVEuPv5z38upkyZIjo7O0V3d7f4+Mc/Lp5//vm6NKeccooYMmSI9B4BiNNPP1167fXXXxef/vSnxaabbio6OjrEJptsIvbYYw/x3e9+ty5N8P6XLVsmPvOZz4jRo0eLwYMHiz333FM88sgjYu+99xZ77713XRm33nqr2HrrrUVHR4cAIC688EIhhDz8ealUEpdddpnYaqutREdHh9h4443Fpz71qVrI9Cp777232G677Rru55RTThETJ06U3qvq/hGI2idEJYz4McccI0aPHi06OjrEmDFjxH777VeL/ChEf9S+hQsX1uWt3pc/cl5VN/8zqpZ92WWXiYsvvliMHz9edHZ2imnTptVC1/t55JFHxH777SeGDBkiBg0aJHbbbTdx3333SdN95CMfEV1dXWLMmDHi3HPPFZdddpkAIJYvX15LN3HiRHHYYYdJ6+W+++4TU6dOFQMHDhSbbrqpOPfcc8Vvf/vbhqiWquegkq1ri4QQEieeEEKkYsERQgghJFEWLVqESZMm4YorrsA555yTaFnTp0/HokWLGiLuEUJIq8KlfYQQQghx4uyzz8a0adMwYcIEvPfee/jVr36FOXPm4Prrr09bNUIIaRo0pAghhBDiRKlUwne+8x0sWbIEnudh2223xf/8z//gU5/6VNqqEUJI0+DSPkIIIYQQQghxhOHPCSGEEEIIIcQRGlKEEEIIIYQQ4ggNKUIIIYQQQghxhMEmUDmR/e2338awYcNqBw4SQgghhBBC2g8hBFauXIlx48ZpDxmnIQXg7bffxoQJE9JWgxBCCCGEEJIRFi9ejPHjxyuv05ACMGzYMADAZt3TUfA6nPIWvGLE0t1XVxbgXmZBuJXjwd4z56KPZ3G/Bcs6sUlnuu849DHVlSf0103yCxbPwpTG5j5ty3JJVys/Jk+va7lxUEa0wKa2gVFN5ZiuC5Sd8sl+LytkCK8xrQjkV+YN/F72GtPJ8sp+a5CFklEvdZmNeaGqQyFLq65zIZWtrqNKHsPzVehgK7++LLOs+rLt5Mqw1ckVm/rIOqZn3uq4jDOIGi/yODQdbMd6SeB55rLLog//6nmiZiOooCGF/kFewetouiFlO8CtKzOMIeVYjotemTakjEZQdBlRjRgaUvbk0pCyzJ9tQ0pmiNTn9ywNKU8iS5ZX9luDLKkhJZElLbPxnVDVoWrCS21Iqd43nSGlNziEVdu3NaTc3iOTbnoSMqRaYBAerV7zT5jxD2mEhpQ7NoZUf1rTZDghhBBCCCGEECdoSBFCCCGEEEKIIzSkCCGEEEIIIcQRGlKEEEIIIYQQ4ggNKUIIIYQQQghxhIYUIYQQQgghhDhCQ4oQQgghhBBCHKEhRQghhBBCCCGO0JAihBBCCCGEEEdoSBFCCCGEEEKIIzSkCCGEEEIIIcQRGlKEEEIIIYQQ4ggNKUIIIYQQQghxhIYUIYQQQgghhDgyIG0FssQasRwFSZV4KKozCTvZhQg2q+dpylflcSzPVj9tXTiWX7C4L5OcgkafgigAXjjZOrmqfMo69PT1WxDya87lACgobthTlBFWnukaENBf8p6Y8svSlWxfuKoOnl0ZSeLXQQi1/rr6KEMY66useI7VlixQVpZX3lCvwXZf/R2B9lNGueENKSjqOqhXUVTyB3UM6gcAZU/ymy9dcUN/HZSHgLyiqOYtNeS1KbfodTTkl5XTz4b0oj59tSbkeQAhkV/DGyC9T78eRUP/LGr66PvVYDmmb5BO76KhLCHU96TFk8vV1VFaCCGvH9fvNImPMOMqUiHKeDZtPEW/EYX81gYhhBBCCCGEpAQNKUIIIYQQQghxhIYUIYQQQgghhDhCQ4oQQgghhBBCHKEhRQghhBBCCCGO0JAihBBCCCGEEEdoSBFCCCGEEEKIIzSkCCGEEEIIIcQRGlKEEEIIIYQQ4ggNKUIIIYQQQghxhIYUIYQQQgghhDhCQ4oQQgghhBBCHBmQtgJZYkhhExS9Duv0BRRj16Egotu2XgT7OMw9uZZXqKYXDml1aSzrzEZPU3kFeOZyNPpElW+6brrHqPIBwPPMaWzk9KcNh+dQRmYIqCxsXoIAZae0fvnyd1sIvQ5ljY511yTJhEZbK7mKJGVDLQjPXEu68quXTOXUZ3F5Mj49LHQNS4P+WXxlmqSTzbckS8QxFkiaKGONtMlbe4iKyzc5z+jGXwCsxp1V+kQv/on/M6Zrr5ZECCGEEEIIITFAQ4oQQgghhBBCHKEhRQghhBBCCCGO0JAihBBCCCGEEEdoSBFCCCGEEEKIIzSkCCGEEEIIIcQRGlKEEEIIIYQQ4ggNKUIIIYQQQghxhIYUIYQQQgghhDhCQ4oQQgghhBBCHKEhRQghhBBCCCGODEhbgSwxQHSgiA6nPF5EW7SAYui8YcouOOZxSV8Q9mltdbcpvwDPXJ6FbqayTOVY6ZFwGZ4XXcdKOjOepayaTINu2ryOZWWZMoTvL/f7CvYYZSGk6SppLeT7kgioZaWBaxurYtPWdG1Kl12WT5VelrYgSSt7b4PvoKyMoHxpmsBvsjoNppHqaMhTKb/+R1k/Ir8Py3SWeV3yA+q3UJ1e3UBUeXTlmPLZXPcs3l2TjH5Z9tjKrKV3S659F41lxfDZiPPLE4c+dfLiFQcgWn2rKMT0XYlDN5c6W1Nai4U98cokhBBCCCGEEAIaUoQQQgghhBDiDA0pQgghhBBCCHGEhhQhhBBCCCGEOEJDihBCCCGEEEIcoSFFCCGEEEIIIY7QkCKEEEIIIYQQR2hIEUIIIYQQQogjNKQIIYQQQgghxJEBaSuQJfq89RAWJycXUPT9VbaWXxCNdmvJIr+ntHdL8nLq9DOXp5YPlAPpC7q0XtkqXVUyIK8TPyWUtfpVSzNR8PT17IlCw73Wl1BAWXM6dwGe8ToACEP9y2QUfGerm64L0Xjd8/T5gzIq6YLXGxESWZ7mHPiyRLeC5VHlNnXbrvjrUFbHLuieXzOwbQ+19AZ9deJkeVXpZWkLgZ88SebgexNMEpTbcD1YRiB98HpjevX1oL5mXQ3XI6aXVb3p/mVpZLJkaeT5FP1jQ1qhbXky2YD6S6Vtp5prprdFl7eWxpxEq1+/HPu+x/E1d57xt7lvGVF6v4IXte+NTtj7ruWPWL4XoQ7ClB3mflXvuIzOgt34nh4pQgghhBBCCHEkVUNq1qxZ2GWXXTBs2DCMHj0aRx55JF566aW6NKeeeio8z6v7t9tuuzXIeuyxx7DffvthyJAhGDFiBPbZZx+sWbOmWbdCCCGEEEIIaSNSNaQWLFiA008/HY8//jjmzJmDvr4+TJ8+HatWrapLd/DBB+Odd96p/XvggQfqrj/22GM4+OCDMX36dPzpT3/CwoULccYZZ6BQoMONEEIIIYQQEj+p7pF68MEH6/6+8cYbMXr0aDz11FP42Mc+Vvu9q6sLY8aMUcr56le/iq985Sv45je/Wfttyy23jF9hQgghhBBCCEHG9kitWLECADBy5Mi63+fPn4/Ro0djq622wuc+9zm8++67tWvvvvsunnjiCYwePRp77LEHPvCBD2DvvffGo48+qiynt7cXPT09df8IIYQQQgghxJbMGFJCCJx99tnYc889sf3229d+P+SQQ/CrX/0Kc+fOxfe//30sXLgQ++23H3p7ewEAr732GgDgoosuwuc+9zk8+OCD2GmnnbD//vvjlVdekZY1a9YsdHd31/5NmDAh+RskhBBCCCGEtAyZCX9+xhln4C9/+UuDJ+nYY4+t/ff222+PnXfeGRMnTsT999+PmTNnolyuhCf8whe+gNNOOw0AMG3aNDz00EO44YYbMGvWrIayzjvvPJx99tm1v3t6emhMEUIIIYQQQqzJhCF15pln4t5778XDDz+M8ePHa9OOHTsWEydOrHmbxo4dCwDYdttt69Jts802ePPNN6Uyurq60NXVFYPmhBBCCCGEkHYkVUNKCIEzzzwTs2fPxvz58zFp0iRjnqVLl2Lx4sU1A2rzzTfHuHHjGsKmv/zyyzjkkEOc9CmgWHeYremwWFfMB8ua0R22m1T55sN1o6U3UT3EVqW//yBdVdnBA12DB2EKyYG9nvAflNt43V9WmIN0q2lkh/TWdIjhIGDZIb11ZXh6GVVNbHA5lBEAytHOMETBSvfmE/VgXEB+4LGyPOt0Zpmm9mIrx6qsoOaKLC7POGx70B3ITeqJu4+vlx3fodBxH9Ydxzc8SFIHiid9ULnsAOokSfvg9czsgwmQ9iHqOlwPWE+KsG1nvbD7JqRqSJ1++um45ZZb8L//+78YNmwYlixZAgDo7u7GoEGD8P777+Oiiy7CJz/5SYwdOxaLFi3C+eefj4033hif+MQnAFRe5nPPPRcXXnghpk6dih133BE33XQTXnzxRdx5551p3h4hhBBCCCGkRUnVkLr22msBAPvss0/d7zfeeCNOPfVUFItFPPfcc7j55puxfPlyjB07Fvvuuy9uv/12DBs2rJb+rLPOwtq1a/HVr34V7733HqZOnYo5c+Zgiy22aObtEEIIIYQQQtoET9is42hxenp60N3djQ9t9EkUvY7a71zaVy0zuaV9LnVso79t2TauXs+gm6ksmzJMaUz3bMpvdZ8W7ndb17hrC4u6LCErSweCcGlfyKV9EWSFSVufj0v7bOHSvvjg0j47uLRPDpf2mQm/tK8Xv11+JVasWIHhw4dr5BNCCCGEEEIIcYKGFCGEEEIIIYQ4QkOKEEIIIYQQQhyhIUUIIYQQQgghjtCQIoQQQgghhBBHUg1/njXeL/8LBU9eJXFGKfK85kbec9Xdc4gMaKtPQXXPnv8/baLy6XUzRQHUldEg21I3Xf1qryl0DV+WPDKNLvpgAQXlIai6SDdRow3ayLBKZwjQ1uzIUibCBEm1jUJnSqeLkKfKq/5dLkt2sLVMhjK/5PeyVKbdb6p7LqNkn1ZSvkqGVo6Qp9flqVxT56voYRdt0DZCotDoGaV8ZXmG+4sk2/JAzVYizuiT2rFD28d7zgael2F/SMxtxGVsGgdl0WeVLsNPgBBCCCGEEEKyCQ0pQgghhBBCCHGEhhQhhBBCCCGEOEJDihBCCCGEEEIcoSFFCCGEEEIIIY7QkCKEEEIIIYQQRxj+3EenNxAFr8M5X9SQjGFCmgOakOIxlWMKNV6X1hB2vBoG0zpcukXZdiG29WmM1yOEU7cr3xBG3FB+VPm2Icjtn5t7uPEweWwJE248DmxDlrukDxO+XHctaghzlYxmhDC3DV8uL9c+bHlZlKQhfFXPQhXKWxeS2hSW3BSO3D78uX2Y8bBhw+MMve0ahj1yeTHq3iqwRppD2DEggFyFoY9y9E8Fu3DktpjGTwx/TgghhBBCCCEJQUOKEEIIIYQQQhyhIUUIIYQQQgghjtCQIoQQQgghhBBHaEgRQgghhBBCiCM0pAghhBBCCCHEEYY/9zFAE/48UnhKuIUSb8irCoFtCHsZRmcXPd3Dqdunt01rDLu+gThCpfenM4frNoUtdynTJTx43OHMw+qRpIxm4hrG3DWfTcjlMKHNK9fsw5urZCllNCHEeSVt+DDnqvxKGZpw267hzitlG8KaWzz7OEOAV4/psAmD7nny/sEUFt2ljwf0dRQ9VLI9QpQif+MJSYJmvgdx49ofxImqD3OSYT0mJIQQQgghhBDiBA0pQgghhBBCCHGEhhQhhBBCCCGEOEJDihBCCCGEEEIcoSFFCCGEEEIIIY7QkCKEEEIIIYQQRxj+3Mfyvn+goAk1GSU8atgQlmHCR7qEffQcwp3b6mJzr3GFIzeVpStH96yNeQ31pgvLHlauPp++rnTXTSHkmx06vqF8y1DyeUEVflyGTRh1U5htQBNeXKOLSq5LSPRKevsQ5CqdnGUowobHHcZcF8LcFLrc7rnZhz83hSYPU766rPjCstdkRtAnNh0c65CEw6VdJ4XL2CdVRF/aGoSmhHjCkIdC8ul0HcOXLeu+tUYohBBCCCGEENIEaEgRQgghhBBCiCM0pAghhBBCCCHEERpShBBCCCGEEOIIDSlCCCGEEEIIcYRR+3x0FAai4NlVSVwRX8JE5avTI0Q0QNfIJS462taLrQ5RIuvVZCQUYc8kO2yUvbAR9sKXp46kZ4qYZ44WaBelzzWaX5QImjao9LGJomdEI8IlcplJF/P1slIXVWRBlUyXSH6qSIE1GULxu0FuJa19tD59xEJ1VDHrSIGBJmTzbG2imSmj7WleoSgR8aQR+tyDbyqJEj2QEFeijrmIG2EjVqeNhwLKYr1VWrYoQgghhBBCCHGEhhQhhBBCCCGEOEJDihBCCCGEEEIcoSFFCCGEEEIIIY7QkCKEEEIIIYQQRxi1z8f+XXuhszCw7reCQ3Qil7S2SW1lep45oY3VbBITVYbpfnTyw8rVFanK52lyqfO4pVfLkUdGi6tcQF3PzaxjG33qyggRKawQR5S9DFEOES5NWFaBbey0skGeqThdfpOuJh2T1K1ejv1zsJUZNn2QpFt8VP0IISQP9JbX4qrlfzCmo0eKEEIIIYQQQhyhIUUIIYQQQgghjtCQIoQQQgghhBBHaEgRQgghhBBCiCMMNuHjJzcMwPAhG6rEtEPes7BBrXbZW9qy1ulcomM42tFhdvuHKScpGcYyQt5f0iS1u7tsG14gZD7rKAcGeab7t9FHl8YYoSCifqbyXWWFkeskM0R7S+LdcXnn4+hrtdFUQubVlam9pov6osmnjRYTUheTPjb5XdI5fGeE63chynckrm9QM74zzfheJonN+KqdMX2T2oUkvn8+elauwVU7mNOxtRJCCCGEEEKIIzSkCCGEEEIIIcQRGlKEEEIIIYQQ4ggNKUIIIYQQQghxhIYUIYQQQgghhDjCqH0+XrjiXxg6oEt6reC5R7LyQuRxtWxdy3C9Dxf5LrJdAgB6hfh1sL0v+3RWyQAABcv7cal714CKLnVaX068EQTDBoLMIrZBCt1kRqsgUQ6fP477iaq/n3KEe2kmSbSDVnpPsoRtX0xIlbi/ga1GXvsq2Zho5fp1VnnpkSKEEEIIIYQQR2hIEUIIIYQQQogjNKQIIYQQQgghxJFU90g9/PDDuOKKK/DUU0/hnXfewezZs3HkkUcCANavX49vf/vbeOCBB/Daa6+hu7sbBxxwAC699FKMGzeuJmPJkiU499xzMWfOHKxcuRKTJ0/G+eefj6OOOspZn+P//BYKXodV2oJXdJYPAF4I27UAt7IKwr4MW31sdLCRVTCkMV7X3JuufJ3cAtSLej1FeWHkqX6X6a3TSSlHsjhZrYscT1euYvGztv4M66V1eW3y28hQ5svwWu5yyGX4ZZgzmvbw6GSo8urylBWZhCKP7Kx6lXyhkK1Kr5QjLdVdTuWaXFatLE9/3eYZmsqoK88hbU2+QUdrOSHKjos0yyaNmL7t+aF5H47WqbNGXMapzUA2DitZ6pjqnaxatQpTp07F1Vdf3XBt9erVePrpp3HBBRfg6aefxt13342XX34ZRxxxRF26k046CS+99BLuvfdePPfcc5g5cyaOPfZYPPPMM826DUIIIYQQQkib4QnVlF6T8TyvziMlY+HChdh1113xxhtvYLPNNgMADB06FNdeey1OOumkWrpRo0bh8ssvx2c+8xmrsnt6etDd3Y3NRxxGj1QEHeiR0sujR8otr01+GxnKfPRIOcugR0r/e+UaPVI1OfRIkQ20snclKVq5zvLhkVqHZ1ZcjxUrVmD48OHKvNm6EwMrVqyA53kYMWJE7bc999wTt99+O9577z2Uy2Xcdttt6O3txT777KOU09vbi56enrp/hBBCCCGEEGJLbgyptWvX4pvf/CZOOOGEOsvw9ttvR19fH0aNGoWuri584QtfwOzZs7HFFlsoZc2aNQvd3d21fxMmTGjGLRBCCCGEEEJahFwcyLt+/Xocd9xxKJfL+MlPflJ37dvf/jaWLVuGP/zhD9h4441xzz334Oijj8YjjzyCHXbYQSrvvPPOw9lnn137u6enBxMmTMCKvsXwFEv2PMfldbV8nrut6rL8T6WvDBc3sY3etnViKtfmHmp1IlmOZZRv0FO7JLCgzqtfSqjOF355Ylhdwl0DAroqVhxp26uwK6dep+hr7lRLMpPEtGTLBptlXZV05rJ0S7p0S7dUslW/a8tBqeGdVS6jU+hURsm63LKwT1v5XZ6+Uq76vkzL5YRCDxvZ/WXoZfSXFWLpnql8QzM03V8chFmS2G6EefZJEWasQ/JPmO0qWcBm3FkWfVayMm9IrV+/Hscccwxef/11zJ07t84b9fe//x1XX301/vrXv2K77bYDAEydOhWPPPIIrrnmGlx33XVSmV1dXejq6mqK/oQQQgghhJDWI9OGVNWIeuWVVzBv3jyMGjWq7vrq1asBAIVCvUVcLBZRLmdnpoYQQgghhBDSWqRqSL3//vt49dVXa3+//vrrePbZZzFy5EiMGzcORx11FJ5++mn85je/QalUwpIlSwAAI0eORGdnJ7beemt86EMfwhe+8AVceeWVGDVqFO655x7MmTMHv/nNb9K6LUIIIYQQQkiLk2r48/nz52Pfffdt+P2UU07BRRddhEmTJknzzZs3rxaV75VXXsE3v/lNPProo3j//ffxoQ99COecc05dOHQT1fDnGw2dwj1SNbkZ3SMVRn6UPVIa3dpuj1SIsm3LqU/LPVLmdDnaI2WZnnukgmWkuEfKWCb3SGUB7pEiadPqe6T+3fOEMfx5Zs6RSpOqIfWB7o+i4JmddGGMKtfzAFwMJJeGbKuHzT1aDaAjGkmA3RlWYY0TG/lpGClmnU3XDeczWRgaNm3F1eiJaiRlodOOMsCzN5SinSWkM+rUZyPZG0oyo8fFAFOf22RneMnLdzOiZEaX7tmqDJskDS6T/Pqy7I2bKAPwuM9naoZRpiybxhoh1mTh+6vCZcxsi60hld1aIYQQQgghhJCMQkOKEEIIIYQQQhyhIUUIIYQQQgghjmQ6/HmzGeSNQMHrqP1ts79HRZi1pDZ7gRryOG6qd9tPFcM+Lcl2DLu9N3Z6NjMYQpb2HdmksX3WLvuWwuxx8rzowSNMuOplu1dJjv69cNl2arcXSp1GucdD6PZC2e+Rquy1arzfsuQebfdCBfc3+fMVN3ySTLKKopq3f39NNa/tnirZ5njdfirZ+yRQRlFSP/37lRrz+O/NRoegfPWeon5Zpn1M/v0ELnurKvoUYgtyUEY5kb0NJqp1mOU9HySfpNGem4HrPv8kaVZgE9sxcHZqhhBCCCGEEEJyAg0pQgghhBBCCHGEhhQhhBBCCCGEOMI9Uj5Wl99rOEcqylrMsIf4JnnmFOCydyZbZ05JZfi2xqR+CK5XzeN+tlQY/ZSyNPuFdPu49HqrZcazdyzaPq1SpD1P4fZxxXEEn/9eVHuXgvfrT6fatyPLZ6NNo7CCdL9NQbLnqICi5B4a8xdFoW4fUAGFhj1M1bZYn1ciCwXJvqZiw5lSwTJV5cryAkBBUZVlxyYgUJK+Z3X7pgLXg3oH+3vZnqlgGbo9U9X+22WvlOeF3ycV9zlUQLpnUangGVXZoZl74bLYFl2RjSmTeG9Do+h74t7HVRZ9VunokSKEEEIIIYQQR2hIEUIIIYQQQogjNKQIIYQQQgghxBHukfLRWRiCAV5XLLLC7o/qzx/OxnU9+8q1HOu4+pbnW9WVr9hvYCrTdA+mdbPavUGG+9Dvrwq350i1pyiJPUx6/fV7bIx7oyz2Hbnu44lr5scLcR6WRIgUEXG/FgCn1eiN+5KCe2j0+ujOqVJdU+2PCX12VeCykOzBspITQHkulCcvVyfL5rrNvhjZHqywsgDUtUPZeVmu2OqXBlndd8TzqOIhzFmaJB5czyRtB0piPd61SMeaI4QQQgghhBBHaEgRQgghhBBCiCNc2udjoNeNotdhlTaKGzT0sj0bt3dgqYr70j379E5pwyz1i1CuzZIxU1hu85LAiEvfIiyrs5JvWFpn1t8Ol2VyhRBhxiu6xLAUL6PIlqu5LHApm8KwJ7QEMZuLrCwR7rOItu3c1Ma1S20Vl+LMowrlLusvVHXkWqYyvUoXR931stzzADb9py6vNqsxv5Mch67Ruc2H7HZddGooM3zWBqLoYUMsS8QjkvQ9xkXW1LSpt97yWly23EJWZG0IIYQQQgghpM2gIUUIIYQQQgghjjgt7dtvv/2s0s2dOzeUMoQQQgghhBCSB5wMqfnz52PixIk47LDD0NFht5coT/SJtdahX13DjAPh9kb590WV0KdP67BvS6VL8O51+7L8aY335tnubTLsSxIFlDS7M6p6qFLUyfcan7V/jX+wnOCeqmAZQd39e1/kewdKymtVzXT1WobQhz03bIEpG9cI2+0RMO218a8jN+7ngXyPiS5Ed6NeWVuNraeqr8s91uUPu5FBUk82z6eKv2cIr4Mc22eoK9Z5v44kvWwdfXDvTPANDcoPym24Hvg7uO/Cf70xreaaRs9GHe31c0kbrD6Xe7XJ35i+sf1Kn6FFGpf9Ya77s1Tpw+y7Kpj6X8OrZPoq2+wlsX37C559/+Lao4TZKxRlSZbncC9xlluTEcsJHtGP6oiiR7S9dO66u5a3prTOKp2TIXXppZfiF7/4Be644w6ceOKJ+PSnP43tt9/eTTNCCCGEEEIIyTlOhvHXv/51/O1vf8M999yDlStX4qMf/Sh23XVXXHfddejp6UlKR0IIIYQQQgjJFJ4wHXuvYfXq1bjjjjtwzTXX4G9/+xvefvttDB8+PE79mkJPTw+6u7vxwY2ORIc3MJKssGHREw2JHrGsJEKiMxy6pPyE5QPRQ6L3p7MjTHjYuJeJNciPuPQv7BI8a/khu+Qw4cxdQpiHue8In5fQZeaBOJafmt7luMp2+Vq4vu8u77qr3q7VE+aZhHkEUZ591OVcYdtMnQ6RJfQTd1ef5LLuhD9LuQ/VnpT+ccp1FbWuvBY3LbkUK1as0No2kd6Jp59+GgsWLMALL7yA7bffviX3TRFCCCGEEEJIEGdD6u2338Yll1yCrbbaCkcddRRGjhyJJ554Ao8//jgGDRqUhI6EEEIIIYQQkimcgk0ceuihmDdvHqZPn44rrrgChx12GAYMcBJBCCGEEEIIIbnHaY9UoVDA2LFjMXr0aO1a26effjoW5ZpFdY/UmO6PoeCFNwxd9hL58RIOpe6il2e558q2fJsw8ea9QXoZuv1WUWTr8qrqVFfXKj3DlaMI7aypC61uujDqmmtR93XZpqmVF3Ghehqh0aPu87Htok3l6K4LzW4pVT71742yhCeXL5Mhyw/IdSxL5KryS/VSppUfg6FMr7g/nSydvFpeYT6OwySjP53d0R6Aug7j0sVansX9p0XYOmo3wo6LiJww48U8EzZ+QByUxXq8tfwPxj1STlbDhRdeGFkxQgghhBBCCMk7NKQIIYQQQgghxBHndWxPPPEE7r33Xqxfvx4HHHAApk+fnoReuSKM6zrp5XxAekv64ljOB0Rb0mdTRtzL+oDKcg/V9bJXluosUFaWp5LnXxLlX64WXELlX+oXXIrilytbYlWVq1rCVYBnXMpTgvk5qO5FisUyN52MUgLhtKMu3XPJb1wKppHlshQPSH85nu1SvODSOZfld7Jld8r8imVmPn+QsAAAuotJREFUAmUEq0S3jE63JEz3fE3L3GyWmrks7xPCfela1OVuzVjKF/fyQ0KyRprL4ZpBs5Y3lkWfVTonQ2r27Nk4+uijMXDgQAwYMADf//738f3vfx9nnXVWGB0JIYQQQgghJJc4ma2XXHIJTj31VCxfvhzLly/HxRdfjO9+97tJ6UYIIYQQQgghmcQpat/w4cPx5JNPYquttgIA9Pb2YsiQIViyZAk23njjxJRMmmrUvs1HHIaCVzlU2GZ5mowwLlXTEjZpHsOytiBuUf7s9bGO3hd3Oov7t1s+aJPGHOlNFy0vznJso87ZPxe3KHZRot5FjbiXFRy6zBq2y/fijqynu5ZEdL00lvK5l+0YkU+3pE/6e7hlfTqZdWksl7+5LLNzWfLXkDfEEkATWYuIl+XogSS7tHKEvaxEY/S85PQoiz78c8X/GaP2OWnw/vvvY8SIEbW/u7q6MGjQIPT09IRWlBBCCCGEEELyhnOwid/97nfo7u6u/V0ul/HQQw/hr3/9a+23I444Ih7tCCGEEEIIISSDOB/IaxToeSiV8uUGry7tGzVs51AH8oZx37q6RV3dl7ZR+Gz1sL3HOJbTmXQ3RuMz6KqPyKfOm6WDf3XXokczjH7Irmmpo2uZdjKau3QwerQ+y4NUNYe92ugSJkqc6oDZpA67tV2Wp8qvlBHTsrywkfaA6NH2koy0F2UJXVLL3bIUVS+JZYuEZIkkl8bFQTMjEAbHuWXRh3/3PBHvgbzlMjsVQgghhBBCCHF3vwBYunQpRo0aBQBYvHgxfvazn2Ht2rU4/PDDsddee8WqICGEEEIIIYRkDaelfc899xwOP/xwLF68GFtuuSVuu+02HHzwwVi1ahUKhQJWrVqFO++8E0ceeWSCKsdPGkv7qoRd0pTUUr8qaSz5synX5j6iLP2LskQv7NK/JJb9ma5HW6YYTwRCIJ0lgFnCdWlVGsv8gHiW+qnKcI6i57DkzzUSny6PaYldlOV/QDLR+PrLj7YMr5lL3LIWsY8QFa32PcoDzVyKmEjUvq9//evYYYcdsGDBAuyzzz6YMWMGDj30UKxYsQLLli3DF77wBVx66aWRlSeEEEIIIYSQLOPkkdp4440xd+5cTJkyBe+//z6GDx+OP/3pT9h5550BAC+++CJ22203LF++PCl9E6Hqkdp9+JcxwOsypo/7LB8XmbZpbc7ssTu3yIxnkFPQ6GLSQXcbqrxh8gBAQXFJVZequlGV76qvUh+FHFl6lYyKHMf0jvVQyaO5aMhrk78mJ0SciTzNJYadoy9b9u6mr4CpfF1+XV7V50ent05VXT69TH0FaPNa1LFtYBKXI8rCtokw56Bp9YhXXCxEDQRDCJETc/eRadaLXvxm2RXxeqTee+89jBkzBgAwdOhQDBkyBCNHjqxd32ijjbBy5cqQKhNCCCGEEEJIPnCelA3OStt4PgghhBBCCCGklXCOrHDqqaeiq6uy/G3t2rX44he/iCFDhgAAent749Wuydz35fcwvKtTuU5IucdNta5Is95Iu1/Oda1XlGsAvAh5rdLEIQOwXuelvZ8w5caRJ0k5WSPqWp8w+S3zCBfZVmu2LOW5lOt6/xHr26lOUsLpnZaRRJ/QpH7N6t6bmQYALM6UdJYZNQ9gvxZYW3YTFv22at/fKmShT2zWcUNJrdWLuw7jlGdZtz1rejHi8+Z0TobUKaecUvf3pz71qYY0J598sotIQgghhBBCCMkdTobUjTfemJQehBBCCCGEEJIbQh3I26r0LSujr6ve5WcMWW+xCiCqDKulHTYrBax0tVn+YVEWYL18wfpYgDiX3IQpvy5TE5caZbkMFUkujYgi23EZg9PxOQku3wt1jE8cz6CVjvSJa8VWyPcqVD/jWlYI3UIfyxKlD8z68uiUl95FXspKKuSpHrOwnJDUIdass0qXpwjAhBBCCCGEEJIJ6JHycfBtQ1D0Out+czkLqorradcuZ0h5wuVsKnNa27KN5z0ZyjLl1103RYbUng2lkqk8i8n9zKs4zo1SpZVNqMVxrlUaZ1rZXKvI1GM7yRglomjaM0xRHEG25wSZJkDjPq9JdVaT6xlNqjOCVLetqktdPal00p1PpD9LS1/Zto5S2/ORyiE2kJvO0jKWGSm3SzmcuSf9uIyfWoW0v08umM4ZTRrdmM7EemEXQC9Pz4MQQgghhBBCMgENKUIIIYQQQghxhEv7fLxRegqeV6z7zUNRkVqP57iD13UJYVBPHbZLDW11tqkTmzJN92BeLqi/rtNTJ7sQUq+CpryCf0lmYGWKVheFTH2ekNcMy0ajPo9KGssAJA5LWMPokQblkIufhGeXz7TkyVS+UFwvK8rXyVNdk5VRRsk+rVIXexkAUBZu6YVCfqXscPVau67QxVZ+fVl6WY1lR1+QF7Zdu2CqI0LSxGU81q6k9l12XAnsHweXRZ9VnmyOOAghhBBCCCEkw9Aj5cPzOkJ7I9Qy3WYq0vAe2ZZrcy829RPFk2RThu4ZhvH+1K5rvCRh5aq9W+G9P2H1tCm3kiYZr1ISM1ZxbESOa3N79f6cPAwW3qgonihXL5RKnosHqpI+GS9UXB6oyjV5njD1Wbsek/fJxfMUxusU1cuUtAfJVM9ZIA5vH8kJlp6LvOO60spPGm9DmGBx/s9py3ik/vGPf+BTn/oURo0ahcGDB2PHHXfEU089JU37hS98AZ7n4Qc/+EFzlSSEEEIIIYS0FZn2SC1btgwf/ehHse++++K3v/0tRo8ejb///e8YMWJEQ9p77rkHTzzxBMaNG9d8RQkhhBBCCCFtRaYNqcsuuwwTJkzAjTfeWPtt8803b0j3j3/8A2eccQZ+97vf4bDDDgtd3vDiGBS8Dm0a09I/Ga7uRdMSs7q0DsunXPSw1cFWpu2yLaulZaZ7FvEsMbRZFmZavhbXUjkrXZyer/2St7DL46Kc45RlbM9pqmKzNFCZRlT/R7fUTnE+k/L3RlkNSwiFWoY0v+WSvGreou/TE5QXlFWs6VK/XKyIAdblypakVPI29nPVZYDB90nUdC8GfvfrVZ8neG9+PWS6+2Xrl8f5NkQbFs34l2TbLgks+uSHWqKmWAIUV2CKsEGgmhm0IsoyKJJt2i24RBYDODXj/SoL260xGebee+/FzjvvjKOPPhqjR4/GtGnT8LOf/awuTblcxkknnYRzzz0X2223nZXc3t5e9PT01P0jhBBCCCGEEFsy7ZF67bXXcO211+Lss8/G+eefjz/96U/4yle+gq6uLpx88skAKl6rAQMG4Ctf+Yq13FmzZuHiiy9u+H11+T0UC536zIqJ4zAzZK5WvsssiJt3wiLQhMX9WXmBIgasKKAInYMkWqCFEEEhNLMiqnoNH7RCFZhCXSE6j5k+TLrem2S67qFgFXbU1duVx1PsgzrLvDyq+6qm1bcL+Sx/AZ6irGKjHkLu4ai+EX6Plf896ZfRmL8oGr0v/jZX9RwVGvKqdCnUyfJr6PdWVcv1p6sF+vD0eQGg6BXkni7HmCMCJek7Vr0n2TP1lxvs71XelDBBTGxw9UTFUX4zPEZ5CFRBsk2zA4mECpoQIyXHYxVcCO3dS+gZ+Pts2+ecaUOqXC5j5513xiWXXAIAmDZtGp5//nlce+21OPnkk/HUU0/hhz/8IZ5++mmnZUTnnXcezj777NrfPT09mDBhQuz6E0IIIYQQQlqTTBtSY8eOxbbbblv32zbbbIO77roLAPDII4/g3XffxWabbVa7XiqV8LWvfQ0/+MEPsGjRIqncrq4udHV1Nfxe8DpQhH6PlA1R1s+GmXlw9mw5eM+s90BZ3rPd3qXwYchtygjjearki/eg22Z5n8J6nrRlRfBm2aYJs8cqDx4rVeuTeY90b0L/Xi31s9Dtz9Jda5i11+yZ0v+uCIvulRs8lrb7saT6wfLgYCH5zSC3kl49I6vdv6YNI6+f5W2QK2naqrDuVvJMeO4H/MpoxoG9Kuh9ak3S9tCQaGRxz5WMslhvlS7ThtRHP/pRvPTSS3W/vfzyy5g4cSIA4KSTTsIBBxxQd/2ggw7CSSedhNNOO61pehJCCCGEEELai0wbUl/96lexxx574JJLLsExxxyDP/3pT/jpT3+Kn/70pwCAUaNGYdSoUXV5Ojo6MGbMGEyePNm5vMGFkSgqova5RNKry+d4KGmVcJ4pNx1j3Uflm0y2jtBnUTdxRN+rpEk+Al9Y7w5g40WLtmcJMHt4bL05tq3GC+EdKjQh0p/tfcZ1EK+xnA2epaJDfQkIwKGubOfl++/Z3Je4Ri+skx9T1dbv84pHpp+4PZyu8my9snZeYENZNjIi9iGm24ma30YGABQs5NjXvR2uXZt7W3GTX1dWxGYepq+3IapeeS2bNAfTI15XXoub8HujnEz713bZZRfMnj0bt956K7bffnv813/9F37wgx/gxBNPTFs1QgghhBBCSBuTaY8UAMyYMQMzZsywTq/aF0UIIYQQQgghcZF5Q6qZlESv0+ZU54N2Ewhf7l/OV0KfOp3lEkNVufVHTurvo6SRU6eT4UC1ylI69fOo3lNJkcavQzCFdJmeV/Jdb3T6VstRLQEsq+SifwmSarmGKoR1f359cAfdMrRqmbKlWP7lKyoZjeG7ZWkaEQp5umUgZc1ysbiW/TVryZ4tsvvS1QPgvpRGG7TCVx9Oy4k0zyOOpT42zzvsUjBZPllaWbrgkp/gErDguxCUG5Tpv94g25c2eM3/d1DLumsa/Rp101zz5OmCaRvvQS2nct0zXNfnb0wvtNdlMqVyJWmU7cmyDFVa3ZdQ9xoUNH2ZeRml4brN8kdzkg2y7PvcMD1H2GV4cS3J8hzuz4akl4o1Y9li8D2Mm7jvQSZvdamMm5ZY5I1XFUIIIYQQQghpfeiR8lH0upTBJnSECUThGoTCLTBEEp6vmNNFDGFuW5ZxxrqFA0zEEVzCpZW6eiHi8jBlJeR5nJ6uat2YPFMmVF5BG6IFjtaXa1VXjqpL20GE6kui7Uf1skUJ1qD3bGj6MU0+XR8T1sti0seY13DdLqiGMUnMHhvLhAjWebx9eEW+YwarMsI/T225MXT9cXgT4oyRFJenJc6vYhw6xbNKIUr57vSW7Y5/oEeKEEIIIYQQQhyhR8rH2vJyFDz7Kgl78K7z3irH9Lk4cNc0qxjBY2XyyNXlbVgXH++huw3lWcoMc/BugzwRvObuPUvUa+bTz+Xw3Tg8UGnMIEU9GtTF42UTmjy2w3ot8oU6sDcOOaoDdm0O73W4Ztpb63z4rkyG5nBfq7I0TUJbvkWzczkYOAo8YLf1affDdl320ueFrD9T1ZixZHkgb7bvjhBCCCGEEEIyCD1SPtaJNSgoqkTqOTDM1HmGqHTSPA7eJBdPla33TDlz0ODdsFkV7eAZkmCamYnilVJ5kMLKVD1rk4dLNo9bEPLfa/p5jVer5ZQCOf3em2AuO89W4wywTqbNdUBSz4p3SR490Q6d56o58+f9hN0/ZZvP7BFx9z65eItcZMh0lXlbZHmt5UmesH25dnkBtSdGlV4oWp6Vt0tSxcLCE6STbdJLmla4e4VsdDCXm/xbS48XaTWy7g1KgrCrxYKUhToStp/2q2FCCCGEEEIIiQg9Uj6GFEai4HWEsuDDrGt13yvlVoZLZMAw51bFI0+TTlikqcqxuFfzfp9o+4GA6FEAbcqx0sO6/pPdm+Sy98mVsHulkjpHSrcvqfEsrmh7mACNlyTBfUoyGXn0OrnkB9w9T5Vrag+KyUNj8ozYemdsPUHV1QM2nimV913nqXLd51vFr39cs8w6TKsomuEVIyQOmvG+NJuw/UiUEuNLRQghhBBCCCGkBj1SPlaV36uL2uccLS8je6JcZiLiOq/J5j6S3BMFL/y+KJNs7d6oYD6f46HZEQDNZUY7U8skX1qWpfMnK2dBJYGLB8zOU6XxgmgiuyUZ8U4lI4p3SZk2Yx6mpL1LLvuLkt7rVCWOPU9+0vD0tMN+qCjPmDSXMONHHVl79nHs1QruAXcqP4SHzrafo0eKEEIIIYQQQhyhR8pHqbwOwhcRzdb2rc0kOGy9cLXOXaxpp71RlrMgNh4nK8+V7j5E9H1MUSIF6jxiYTxWoT1gofWI6AGTOIWiPo9KGntvk41XLKweaRB25l7nWaqXr+90wp595HrOkq3nqZLWwXNkGVVPK6OZkfVU12PwOrl4myplphNdr16H7O0pagdPVJW4vRwkPdox+p4Lae4JoyHlY6OOCSh4HdJrLo3YJShEHEESXMqNYymf8brungzGUpiladYH1FrIcj2YVpZeKUMReEEuQ44nS+sgV5rUc0irkFvRQ56+Ikt3GLAeU7yKcEEwnLNkAotzduswBqwwyNMNOVXBNcoamTJ9VDqodJelVy5bVAgXymWObrpU9Al3sLHNMk6rg3pjXjqqzhvCADG8Z7YTBq1KUoFvCCHRKWEd/o0njOlo4hJCCCGEEEKII/RI+bh5+3EY3tElveZ59TNHBa9xJimYppbWIp1Mnkta1Qy7V7DNb38/Up3qyilr07roqtYhBhmKaQTl7y5yJHr0y3ErtyJPfUmXT+t5sZhGsVoZYjkdE2qVSQxTPZ7OVdZmCJ27KAoxORZi2R8ds5Mj8T3bOXDKuHpCSXbJWAwCOU3SMYm6iO1dKUf7bkW5NyHClR22TNd8YfQTDvVZfYYr16/DB+82p6dHihBCCCGEEEIcoUfKx3ZHrsPwQYEfZbPZwd8k0/7SWfDab57kN1OZEpvXNq9CR6lMV7kuMnS/q9wVcZWry2PKZ3KlmDweunJtrtuWE0amn7g2DoUpm0SnnIepZtC9ISPLz47vM2lnmv1uJrZqIMb7iCor7D2GdXm5lrfh/jpWrQXokSKEEEIIIYSQ+KFHyseJ3x2JDk++R8qPTZQw28l9G1k2jghdVLRKOTYydPkNh7nq8uqcPSEiwFWuSfZCQf57v6z62Qx1FD05UqeeS1rL/MpoedLw5LbpZNH+7OSp0iqdi9pnEK3M2jX1pYpM2/cvhBMu6zuuwsz12UzYRYnwpytDJ1adR/4UVOllv6vKVZepicAX470B+rq2mZON43m6lhlFfpzluqCLuEjaG9OYKq9k3XuSZrUH62adpSeLhpSPx9Y/pD/Dx3G3fJJnRQH2Z+dk6qwoJHtWlFF2Bs6K0oWpV+dx+z28bqZno+7lbM6AivvcqSh5sohrOOQo50gB+vDT+tDdDudG5fBMKq0cx3Op+q+ry7I7R8rOrAhzdlOU86Ncz7dylp+L6AgkS/D8LDdsxn55Iq5zJcuiz7I8QgghhBBCCCFO0CPlQ4j1dTNzwVkN00xf0KrXzSDKZkxUM28q70EpMBOo9AT55OosdaG592CZ2hkMUTaUU9J6rUooGzxLavkCJa1uOk+tbpmX8qBOr6TxVsnz6O5PddeqPGVNXZQ93XMoSz1WJX8bkJbn1zVw3Wt8P4KeopKiJv3eLNf55wIKmTzYMuwsv+0hpVG8Ubq+KQ4Pkq6MpLxIRg9SoLpk6cN6jXT1afpu2Hmj7Lw+Lt6b0O0zhMdLKavJsd9b3buVtHeQtCet5rGy9ViqVh8EoUeKEEIIIYQQQhyhR8rH0I4xGGARbKKKi5Xusl9Kt48njFzdnpy6dBZ7XOIq005G9DSme6rTQzLBr92DZArAEcOeIVMZVoFPYt6XFGY/knHjbo63OLlsWLfxnJUN8tSeHt2epsZrLp4k2/zSvFKvUln7d1VWMVBsGSUUA58tU5lFr6OW16zvhrSSmciCoqyKHI0nSzP7KVBGUdNX9nt/1DLqV1FoZAV0LFr0C1IPToj9J6q2lsRMt85j1vp7Zzika3dc99pnibj2NoVB1jfY7pHiW+djvViDEtbX/nbt5F0agbaxBwYPtkaYdfAJy/uKErjBWoZBFydDSCZbGy1Ol9f9WoOunv8/w5blHtyhUZ5/aadcXslwvVamxTI6qQyFcRAlSERWoipV9bAxqGT3G6xPUxpZWxIoK+uyDKG4Jl8qKmtXBelyP/3Sz1qqoDGkXXKqllW5x2IgTamhPoRk2WqlTH1ev5Hk79v8RlU1fdCgqvapMoOqsvQ0/iVlaS0JtC1bX17CASqavGSQkLhxDVZWJel3KwomIy+JflJF8Bsk6wNt+8VWn54hhBBCCCGEkNihR8pHX7kXBcmGeSCcu1Q76xr0OjksOXDxlMURrrxSpkRO4B7yFLYcUHu7PBSk87hVWcFrtfK9YHo7j1HNGyQN/qAJVe7JPSCq2VhPFOQeA598v+dD7sUoaa5VZdgvV5R5t2y9VEKIyF6pWMOma3TRefGKBh2EUHmU/Kg9hdU3IHjd/2b0txmZl0kAovE9clou6PdoCbf8YZcL1v3mKyoPodRr+QyBR0weJ+sZXs/dixNp5ntDc056BprBF0ir02qBIOIk6lLBsu22mEilEEIIIYQQQkgbQo+Uj6HFTVDYsDE5SJj1qi5BI8KUEXcQCRcdbMqONaCELmx5pH1UyR1AG3bvk7bMCPoa9z9ZeHdsPDgurdiL6BEqZGSflI6yEEavkwoB4XTUu838vtxzFTi6wWK/l1XgjGoaTVIXT4iNPG2+NiYO72tYGWH3ezTzcO6w3u0o9RrHTHbUPlRGM/vVVjlMXUeWPlMOsZHanvXoxduYb0xHQ8pHCeshIB8Aq5YI6NyqJRHckGzqNjcsm7I0wGyGHwUUlefC1KUT8k3UVYK6y5axBI2rxg3Z8s3t/fkV5yFtSKM9L8nBWAzKTiJSTLONqCjR/fJkQOXBcAqi09kUoc+1norYYHzp9LGRmZF6drl/XT3r279dett0wfPogu9X8D0Jyg3KbLheF8TGU15rTGuvp1lHO/2sZAX1MOlpuGcbGep8kqXGFvJV6QB1v6hqrrrzDHVvgy6fTo86+RavW8FhUiJMNxLla2yqg7BkozdsRLW8n8TDmlIJv11uTselfYQQQgghhBDiCD1SPoroQAGNS/vSPAMKsF/CB9gv44vr/Kk4lu/FehZUqPKztXwPSM77BDTfA9VO3idXVPdo8lTpkNW3yUuVVVz0LgmhbGvSoCbVupcUUdrwY9170BAgqD9dHSL4/oi6PDJU6aXeEK8xrexdtPWg9acNhOGXemLMHjh9foe0ispSeUTUdasmjFfI1O/pui0bj4kxrIxlt2jT77p4cDzJf8UhN0oemQcxyfLqy45OdA9aRUBcHpG4PrlxeQajiImiQ7U+15bshNCQ8tGHdZDFNXNa373hvXZdLuYaeSUJ4y5Ow87GoLM+Y0rRlqMbUBpjpaq/dDAQv3GlM9hiN9Y2tNGoxpopHlb/QCjcUrOSxphoNVd6mNhlNvt+4tjrpLqu29vkejhw/zW1TFUEu7DyIMz7s7TLomvRB81PTxY90ESUs5B0EQTjhmc21RN2P1iWcZnMzQp5ew5pHkYbhizqG3aLh4qSWGdXbqylEkIIIYQQQkgbQI+UjzWl5XXeG9cZDdezpmwt+shnTElmQeM4XyqqR6giI+T5UEmfK1W3SVt1HpS7DsqzpRTPWDfD4lxGiCWMYb1hAFAQZre4k2c1xahjLsQRIc5WhtGjEsIzZHUWlEGOUkYcZ0KZ5FmeB+VyFpQ0v+IcJd0zUQUt0nriDM/Y5jwnG6+Z65lLQoTzRMV5dlSks6zi0oEeObKBvHnBskSYs1qTpiz6rNLRkPIxqDgCBU9eJW4DvmQO17VeehfjUr44Q6zHUV5NhmJ8mPR+rDodQpRhM5CPsi/LtgyXdECY0PwJhORN2AiKK0S2q5woxpDpehxGkUqO22G18RpGyrQJGUeq9JXf1XmiGEhAfEZSpTx3oyOssVQl6QN3s0ASg2caZ9mAhlHyZNGAcoWGlI8+sRYFQ5W4GD5OBlWcQSoc9mnZ3o+VEWRxD9b7olTXIweeMBhqGu+frZGmGq4UREF5rU5vTxZavv96SSGlamgoy7AwEtX32Phh1xk2uiFbWIMo/blnOWEMMLszmAyeCM3+nVDGlYNhpJPjZHRZeo9UergYSUDzvEgmmUC8RlKlvOZ4lKokYSRlwcPkhwZNe9Muzz9Ng9H2nW+mwdU/DrKNG0AIIYQQQgghxAl6pHz09q1w8ww57F0CHJfxOe2Lst1rZblMz2r/lCRNMDywybtkKCfKHi2jbIVuie7LkoUjVniJwu7z0uufbhh623LkeVojFLqr98pub4tF1DhHr5Lumot3SZteqVNy+5SSWIZnmlE1e67sZmRdPUhhPUZxe4WyMqsf1QNHSKvi8o66jnvjIsr76+pxq6764R6pEHQN6G7YI+Ualtw57Hnsocltz5GKYRle5GAUloEfHGWr5IYxvOp+942BXYNAuO6bcg3+oDI0tAEm4pRlOIDCHE7djrBnUgHIzLlUYc+IsjlTSfmpqYXqVsvQhUpX752yD43uIsNlb5dz0AxHw04ny5TPysi1NaR0odgddLLKn8JC2qwYXCQa3FcUDrb/7FEW67HUIh1bPCGEEEIIIYQ4Qo+Uj6+O+RgGFgfW/SY/Hb5xBlSeTo7tie8FT3GCu6VM+Wn3cpmytKqToWWniUvLj5hfdWq57b0C8vtVPxfJc3VI63K/YdKryjXJM8lslKtod5YOHdn7YZVPc295o2wR+l2bP4TnzcXR5aKf0OpSf61c08HO0x62nvQ6uVFunWYXGV0f0kxM/VWzaaW+KS2i9olhiLOfqBK1v4iiU9iyXevetRhX+S6+N2Ep20WmbT2uKq3DScvM6WhI+fjCl/+F4YM660aMXvDL4v9bdw0ACgX7tMFRaiEw3HcpyyY9AATXuppkquTYplOtrbWVqf1d87Kp8gBm60CXN0y6ujwZGbW4EKYnL1t2caZ0JktBl1+ntzZfSJmm9dymerSus7Bf1owuI0nyPTLJ1s5EaPKG6Xt0uqjkqfLo+rBmlG+6Bmh1FDbP3PjsbPvpmNpKkLD7RsK092bKyxNx9mlRZLns5XEpx6avt5FnSONF+Q6H+ZaG+Tarflfp5lK2L23PqrXAgWr1qtCQ8vHtKzdBV2Gg9Jr2W6X1BITNp76YRHn23pH+v/vz1K+nD6OD2qPkJkftQYqpXAdvjYtHEnDzfunTKy5odFJ5KnV5bMoDbLxhhgJCpg2jS9aIOqPqYmfZprXRyeqbL/21vy8xzUTaDEHq9ZCFWrfDZsbVpWWFtn/DZasRcnueM2E8qoQQkiXWltZapWvj6QtCCCGEEEIICQc9Uj5uXf77WiQ618gzLmHT3Q7qjS8Kn0vZUUKP25Zl0jlK1MCw4cPjDEeujooXInpgKL3covIB+kN7XSMPuly3j0oZIWpfRmfJwxzo65LPFA1Kf3ivW0Q8ILnIes0+GFibXhvhTx/xzvg8DOHHXaJ7uR7SG9chu2lEIMvaYb7tSjMPTs077RbhMMzRJ80kOCYti/VW+WhI+VhfWgXPK4YIYZ6eYWQvz+ZsKF+ZirGV+eynaMaT09lSDedWhTMCdDqFOVcqjNFlDKeuXGoY1phU7bcwPwNTaHpT2VZ6aPNk0yCyJYzhFMd5UqHDe6dwnpSzjJjOk7I+SyrwCHWDeLtnZzYCbM9RCWMMRTVCkjac8nQGlKvxSkjecT0mKIvIxq6mSa0qNKR8DOkY3XCOlB83T1J850M182woQO/psZWjG+AD5sF4VPnm/OEP863pLhkPRyvX4LUx1JlNO7ExQmwNlbCzaXk3hHS4Gkl25wy5e4wq1wKyNyRVnUfk4jWK6jEqB4wSF6PMtmx93o76tBs+mMEWbW2IbfhuyO61KlP/rDvMB/tang3lOQzkawZKiGAJ/nuNOpAy3XszDwGNahS2m5eBpEurt7d0PZx2YxUaUg74PxymQav/w6BrCKLuYySXGfw4q8oOftxlH7fgR0JWpt8KVxlVJr39gxiZ0eMfFMiMqqjyq/lNdSqrS921qu4qQ1CgnErHZjT+Mrr0LgmjynQ4sA26w2l1qO5HbfBI3o1A2mAKUdcPBcKP+4PBBJcp1CypQuD3srwcr/oeFH1pq/ILvt825PfJFZK+su6dr/5WSxf8Gxt0KkgGtsUGI6koGtMVUJAYH415AXkQk7IoSdt95R0vBn6rGmLyugUa36GGvtjX18oMi4KkzmVUdUvKMxJ1+V+SS/B4qClpFVrZQMrS8k/92Ml23EMIIYQQQgghxAl6pHz0llYal7U57YeKKbBDFftAETZ7WCz3Kmkm5nV6R1niluU9SzVZwSO3JHJcg00YA00Ejx5zli/3lqiWDNbLCc72y2WVNNdq5dXNrKsOiLb3KgXThvUmJYnpfuo9Saa06vZcbYWymfmq3GCdV9tuw7MQjR4QfyuXeaz65TR6Zoqi0SPT4MGRLtErN/xdVHiKgngB74esTFW5qn5UurRQ2V/o9lxp9lVp+nCBMoqG/rvi9TF/B2yXC1bKregrq3tjXv8epxiW6am8YlnZq8HAF80jS96NdifrwSRs8Pf7tmN4GlI+BhW7pXukXF5UF3dsnHufXMqOYw8UEH0flE05TsEUAuPAsPug4oyQV7nmHiUvrDxtWRH2ZxmNI8NyOjfDKDy689eygIhwjpXtkLdiyJgG2no9rPZlSZLollaFlWlaSqba82VbdrVclyVrUZaQuRgvocnaaxBCH5vvR1QSWz7lu99mDS6zsPfUtI+XkMzj+1T0iV78E/9nzJJpQ+raa6/Ftddei0WLFgEAtttuO3znO9/BIYccgvXr1+Pb3/42HnjgAbz22mvo7u7GAQccgEsvvRTjxo0LVV7BG4CC19H4e4YNHlt5JqMHiB4AwqacpgSBcCw3biMorMwkjKCkDSDbz6aLgVOIYY9TFgYVMsKGOgfkplFZYhAVbe49kCSKgZc14mxr2ndSGUmz8YJtWtleLdk7Gnzv5AeCe9o0wbJk9RZMI9XPkCeov6zPsDnQXJrG8iB027wuh5yr2pnu0PBQh6g34cBzl97S9VD0qKZVDJ8DI1EPem83wh4ongZRFqisLa3Fwh5zukwbUuPHj8ell16KD33oQwCAm266CR//+MfxzDPPYPz48Xj66adxwQUXYOrUqVi2bBnOOussHHHEEXjyySdDlScgpEEKdDOV/gGzbqmG38jSzWbWlatYHhA0sKRLWhqW1sg2LweW5ARmSoOGSZhygmWYgl3oAnqYgm7oAljoglfoy1QvuarOhMsMKn0wCyGVp/rdr7888IY6n+4a0O+ZUBlUpvz1oQLUVAfqNoNcv3EQ1qiSGSxpG1dRjCgVqvqRGVg6surJc33+Ns9YJ1K5/NXBaAprDKnKcTWIgMbnKTU4Ggwpw/WQ92CVJmaDCJAbB+q0ds9RJdeUR29cRTOEbN4QG0PBelLM4ZV0NVDC9kJRDaG4/WhJGn+FJk56NcOIDdIsn6ZNm1lTsqtrT2RxQ4GGkSNH4oorrsBnPvOZhmsLFy7ErrvuijfeeAObbbaZtcyenh50d3dj0xH7o+h1WudzCofusHbbaXlgk71WAD1X8mvN81wZyzPWXXgPFpD+Mr6sDvrDEsYb5LbMz0KHCEv9bK5HORTY5noljV2t2CwFdC1bnZdR5JpNGvs0mj1J0+wldGnufUl7AsxPlnQJkvUof1mqO1td+kQv5vf8ECtWrMDw4cOV6TLtkfJTKpVwxx13YNWqVdh9992laVasWAHP8zBixAitrN7eXvT29tb+7ump+O7WlJbHapjU0jrssXI7q6qgDQYB2BtwTgfhSssJb/hU8scbYEKbz1MbcmGMLJUsdWCKkMEmrPVxCzYBOO7VEmZ5NtfzFFI9SVwH6jbpwxouLmdJAW5nUkU5j8p4FpVOnuVZVOqy7Q/7dT0YuHIt/GG+pudsE/TA1dgLE1Y9rgN10zJMGTyCyGCgC3fyFJCijD6rdJm/o+eeew5Dhw5FV1cXvvjFL2L27NnYdtttG9KtXbsW3/zmN3HCCSdoLUcAmDVrFrq7u2v/JkyYkJT6hBBCCCGEkBYk80v71q1bhzfffBPLly/HXXfdhZ///OdYsGBBnTG1fv16HH300XjzzTcxf/58oyEl80hNmDABo4fvXhe1zy3UeVJep3gi7NmWa3MfVkv3InuwokUEDBPy3E6veCMBmsqMctCuafmHTXuw8e64eICiLD/Ii6cp7FIw20hwUZbBxeFZUslx8/LE62FSprX0MCl1d/Qwqbw1Ok+K1ltl8IRYL2e09CKF8Rxl+YBeoD0O6Y3L45dnXMZrpLlkfdmhDM8roiz68O+eJ4xL+zJvSAU54IADsMUWW+C///u/AVSMqGOOOQavvfYa5s6di1GjRjnLrO6R+kD3R1HwBsS2HM6PrQs4TqOoIi8bhhGQrHFkIz+L+66sZJuWyFmsl4/LaHJJ5yfJjjSsgZVE8AfAbeBmt/fHZDhpBuIxGEhAMkaSSm4WluLpygy7FK+Zy/CavfwuqSV3WVxS1w6GGckneTRYgqS1XFIaGEz04d2ex1pnj1QVIUTNm1Q1ol555RXMmzcvlBHlZ+36ZXYeIBdPlWVap2AU1jItPFCG+7XyYhn0sT78Vyo7vHEU96G/2v1YmjpIfD+Wp89TyRfBiIzhPDBbPRrT58MLZcJ9H5TtgFlzbpMhqIKqDGdjysFwUenlLKM6wA6eIRyTpyhJL5GNkWNr1IQxYKIaJ0kaEnnzrIQxWAlpBlk5nNoZ0bgvqRnexmDP46GAskQXGZk2pM4//3wccsghmDBhAlauXInbbrsN8+fPx4MPPoi+vj4cddRRePrpp/Gb3/wGpVIJS5YsAVCJ7NfZaR99r0qh0FU3WHZ9eGkHoLDRt9WDTwDhAlDovFk1QyIwaAuzfNA1QITuWpwHBye5RDBLywPjKN9P3F6tWL1ZItwyPyBhT5aw92S5yo7DqDPKMhmoBkPF5hkLz36AHsUblJRRlEVPEiGEBNGNZVvCkPrnP/+Jk046Ce+88w66u7sxZcoUPPjggzjwwAOxaNEi3HvvvQCAHXfcsS7fvHnzsM8++ziXd/Dgg9BZ6Kr7zfXQPdezJ2zPHAHUkUHUZ5w4prc8y8NVRlKHHLrIleeXnDUUw5kkzTz/xLasSlr5IFh/ro7i94hnmxQ8y/MZrFL55TpmyBlhDkJ0yVIW5gq0kWfS02b4brPovGzRQmwXr7uaFGEPpUxiQWmeDsgkrU1am0WSmBKI472KKiJ8P+P+MQxTlmse1yLc5dtnMMnuLa/FD5c/ZJSTuz1SSVDdI/Xef34Kwwd21o/GFP/tqdL4/9YdC+8pZGnKbLxWUF+T/e1FyGtKLy1PMgw3yVXKVgzppRaSQ1qTfNM1k1xXWTbEeUpeXK9/2eEzZhxlG2SpruvkqpYMqfLodIgzD6DWzZTPJU1d+hwsn3J9T6xOHNWdiqp7/1UzE479TFJ9mFJuTPopZ2ZC9plh+2Gb6xZ9o7BtW85tMIa+vdVngqrEYaG49mOW6T1TOtM3M+z3C3D/tqh+l+no8t2UpZX+Jskr+54F09nIskkTLKtBhkGmLn25jJ7VvRhx6o9bb49Uktx023gMKg5UeATqK9zWayD3GEg8IZbybLwoak+HMKZTnbLeUIZMfsOSl7I0rcwbofYu2XmNbL1L6vtz8U7J0kruydEzpJKjk2WSJ2tr9eVpLxvz18sK/3F0KScrCAvvjQ02XqAo5dqOWVzk2niCKjKtRTrXg60OfuKcNnTVNy3CzExXUfWX7UaUvo20Bmm871HeXR1xebDjqJMo9xjdWxcs2/93Aav67JYo05DyMeutBZWofQmEPbff5xRfdL84wp1H2Y9kym+1LykmmWnuTZLJUe3Jke1HMu9r8hS/m/VTpdXumVIuPVXn0bUi1XLOWl5LD1zYfU5xOvjiIMxg3yr6n0GwbkmEbo5VVrZqoYPLQcDyPVCiLoUuv0uo9ySjGJpkma7pyquXYb8vKczeKFPwEidZGQ/S0EqR+VohkluWMUULbmdsAlVlkeo7UxLrrNLTkPKxps8ctc8t5Hl60f3sAk9Ej+oHmOuk5aL6Ke4nsSAXMclLKqofYNdhho7s52BYhDKmmjjZHCU4hU1QAdMAMGwkP901aZlefIEf4ghnHmco87xE9LMpTy4/u1H9gPxF9nOFkQDzRW6j4+WMNM4JMwUOqkJDykdncegGj1TcXqZ4jSS7kOQxnR+Vca8WEN4YMcl2Nkp8Y+SsnklVSWM2NmzOprItz7XsMMQpN+5IfH55prdSN/AtbsitjxpX1OrvaQahAmXp86waOP5r9XrKfy/6fq8fXBc3pK3/SBU3tLngQLyAgiLKXyNFr6AYyBetP4r95crRDuMNzbAQQxAO26YuhPx56ssvhz7HpWqAJeUBqT7XvBy8Gtbg48CcNJu8vFNRCNMveZaTQjSkfHQVKoaUilY/VNdaTtwH6wYGF614sG7UQ3WbFWLcvu2GM1xa5VwoP+5nRJnTa8+H0izRK0NI356qgVMMXK03yoq+9D7jT9TL8KeUeoUsQ5vL2lpFXr2OZZRqRpa/zDrDTnIfDYaa1MjakNbByFIbWGXl+9NvBDQ+Hb8HSGrIBnSWfQ9kXgzZ4Mg0uLcpX4Xq+xhXKHRd35TFpXjtMDglydJuyzLTOoxXRgEF47aDKjSkfKwprbAzNmI8ELdfZpzeKEUa3/jLxjhL8iypuA/LBWJaWucPbOi8FyrC/ixP8bs/fQx7s/qv2e/RiiIveN00pHL9cOTRMAvqLDOsdAPyMPdcqBkXwahHhQ2/1w9E/S1Z1DxSMkOr0RtVDLQhmaer7El+QxlBM6WMcp1nqyoviCcZrOu8a/VllFD0ZGU0vs9lUVIagEEjtfJ7VS/ZvW7QXVp2Pw3Gr9QwUXkL66n22S7Lx4oohPKulDXGoysmYyxpLxghaWDb/lrF4Io66RKnIVbe8H820JDy0VEY6BxsAog/4ATQ/KATFVnRPEFAysv0tEZAGCMrpFGR8kG5YQ0ebVlN8ogB6mAWccnPClVjxKXrF5ZLLk1eL9P1ug94MEKsQ8CIyu/yQ3mB+A7+rYjUePGq5cgi/Zr2lcUQCKIix22QoJTr0MzjDBBBmkNeN+inSR4MCRrl+aMk1uPfeMKYjoaUj47C4IohldGleUB2lucpy6nbJ5SMx8p0PY3leXF7coxLAWPwDillWxgytkaL6+fN1pUeBtvofypMUe9cKQbu1eogQck9yHcE6TEvL1Qt04o5MoelkRbE2Wi2qlp7meZ3TFOO6p13jIYpPeQ7YlrbA+Jl96c+7qHxgu0B5bK6Uh6DJc1vn7ail+oZqAlzoLkpH6DW0Ua2Szm25Snlh8sWudy4SfLbU8XlsNhm04xDveMuIgmd/Z+43vJavLzcnIeGlI+SWA8PnnHZQ9VbVNItoajr5tTpqoNsXZl+Q6wkWWLROKiWLHMJGGBB3YMyyl69DLlR1C9DZrz4y5AP/EtK2aa81Vli283xQZ1VxlZJs89B9+kq6MIea19295m0Ajzl7JaHgnYwWoCnvF4d8OgGy9WBhqmMKqY5uODdu3xoXD98cRtCcRO8H9u6CDMXG9p716RY8S7PVmcg68P42+exMURsjBAbAyQot+4c9UDaYD0Zz2TXXTPo2qin4XrE9EDjIN10/7ZypPqpjCvLMwpV5ejShzbQDK+H6e2xOr/anKRSlkOXoDvzMK4y1GWbiP59yIpRSOJhTcmuTdCQ8jHA60TB6wAQr7epP218XicneTb7oWIKX21TVtTIc1kMGBElWETY5XZAtCV3VsEnYvROVdKGpxkzhs0m6gyl62IRl8AYLt6nJAJuBFEujQlZhXFHZ2wGSS9fjWuJVBx6RpURdolwXOX3y4mHOPu/qN55qcyk22aTuv+0l4hn7VzDtOtDRTOM1vVl7pFyZk1puTZqnx/XTW1JnD+VtXDpxuAUCYVJb8hXF7ihOec06Z6Zev9TskElYtlfVbdUM5n9Vab8YdI16JC1r1OAMEvmrA7hddkL5ZA36gG4LjJczp2S5beVmca5V4A+YqBpX4Vp9UQcZ4/VpQ2xGTzMWVZ1ZTbpXKVWP5+qjvzNIeQeRnGsJw9h/suizyodDSlLXAyntIymuAymSnnZNJpMeaPs/YrzkNtmBqpQUYZQGh7CK0uNKe2SSd/X1ybyXG2poGEgZVqOGCwn3KG72Ro5uHpDbAa7roZP/7VkDCAgWnh0GwNIZrS4GV52+aXGjnA/6Derh/xWykn2oN9KGfEZRWlt3m8rg4u0HO1q0IUaQ9GQcsd0jlSVNM6TsrXem3WeVBzLBbVlCHMZSS4RjHaQb7QId1k5Uwpw73yysKQnCaIsA7PNaxoYho3EF4ehpJITxVBykmlr8Dh4iVw9RK5GU6XccFEGATujw8agqX47zHt/6991ncFgO1nYcAZWnOfEpDQ3EmYgyohtJE3yENXQlWacOSXbHymDhpSPVevfhecVnTrKuJfhxXlGlU1DM58VFd3I054ZldWzqBo2Nbt7wUJ7v5QbmcNGBkzGYDTJrk/nZhyZjMk4iHL4aFhUxosKu+V7EUOCO8h08jw5LHGLzQCSVFdcXiOdLEBv+DTbaxSmHUf1FiVlLGTNA9SspYaEZInMLcULeIuS8LTZHtROQ8qH5xUaHkZSZ0q5yLadTWjKob7+NBEMqEoZ4Ywdk+wkDvSNk7hnh5IwopL0uNXKcDCWXJbLmmXp9nqFawPWHivDPesOxm0QJTkot1EnzTPWehxc9wU1/l7EAGuPU1HIjSbVc5fpUfQ6HPcndUg/lAVl+qosxcfVk99vVaZaj4ouNfm6j7ev6eqMJdVT1xoBlvuDgSYbNxbdSdITICTbxPl9IKRKGVza58yHBuyBDgxUXo878lrYs4DUZ4W4nUNSuSYnjrNOooYXVqV1OQNEdn+2Z6qEPetEliZsSN5o92SRxiEsr319KGQqPW2a9tmEML9R0mcNl3M1bNPqkulk6CISqvK5lqXb+qYaWivLDiErSr5KXguPYwzPKarspGW4kOWzePJMs59jXDR7+2tS0T7jvI84phXiODMwapuKWtdRb2G96MVv8JgxHQ0pH/ccvgLDO9f0/1Dofwr+QWSds6Yg/71u0BkMKmeRvzGPX4GA4gVFuqCcwDVPc02bFqi/QdOBHA2y3NKbD0cxyJflsZELAAWJSWFtKVnKU+XX/q6ZgTOe5GhhLdh6YsNaHnX65/QLngUsw7OGl5/Qs0ljuVZeR4pJkZVZg7Q2v2fl/rNMXO9MmPfdtmzrdAYddHK011THMijyqGQpf5fIl6W1/E3YzEgF09jIDvzdUI7r3yIoT1N+Q9m6tDod/UKAnt512OT/wQgNKR97/ub92jlSOuII1gAkFbChvmFECdiQlSVjSg+cbQhvgxxXj6HUSyb1aNmX5+IZlHkF3bx8knIa0laXjak8k9X/qm9v6nsO0r/EyBSZ3Bicw2E8FHXs1KyzrCKfL2XrxTCmUx/grMuv9+AIyHyJ0m+1omx1uZKBg0Na1aHNqueh9Hpp6yxcdEWb67b7lFyiZIYhrqV2rnsK4yaPZ421K1kMUpRNZPXUnnVn2l7QJ3qt5NCQ8rF03d+N+4wSCW2eQsCKOIJVJB2owii/YHmulKXMuPdWhQmnHmt4dqHLU2hIq71uqSNgO4nQ/GiAQHOCWADxDADtB7vRzwpKOvBEJX0ywSeUMsJE31M0s1jDlnt6mXX6GMhLyPLQgSgi2jFZC1RBiJ92DUWeBElEJmT48xAMKHQ2GA9pBY+IK3BEHEEj7MpJxvNVyRt/8IiwZ1FJjQgRTWaYs6h015sRic/GsHE1WpLaMBzVCAs1K625d9sBbRG2Bpk5gIXqmVcHuME24zdk/M/Fr7vqd39Zoi59cUPa+oG5h0LDQLuqT9CgKqAoNaakMryi1JiSpa38XnSOyKaSBVT6xDjPTZKXUbA2FgootHRQhlY0mhghsLVJun9Im2ZG+ksiaiij9oVgUHGk9hwpG+Mmrtn4uM6NatYyxOiD9wQi+AnDdYRfhmiUm/JZUVaGjqXh4mqIxLnEQrVUMCli2WAb47Ip3eBQfd5T9POkZEvcyihL31Ibj5K/7OKGz45NRD9ZND9p2HqvjGCMwzJKKAbPRqrJD6Td8MFUGYFFX/rGwe0Go09mnHlqQ6sIk6FlafhYviJClJ0nK8ooRz6vRYhSU86x0dV1XmnF839IPLBtVEjyPCmPHil31pRWGA2PNEKW2378pLr5xkNpe55M8pvpeaoZbrJ4EAojJ4zHSVm+oh2FMfrCeLR0xo7OyGvmYcAmXeIsJ26i7K2IOhis3ndQB6UHyVfH/SHVpTElG36RebsEyg1ttYCCxLskMxQaf2sstdGzVRQSj5SkTFleAChKB+FuHi1VS9U+TU0TFaKkfd+q9aTqN4MGn+rb5XLwbhiPVlKeuawZTa3oESPhaMaSvay1/ySwGUcn6dWzlU1DyofnFbQeqcb09pZwJGNIli4Go6hSXnSPVZSleVbym7VEL6S8cIaM27K8OI2lsIZSmJD8tTIT8H7Ftm8qAa+Xv6W4e7nkdRU0jFStu5pOewaV6iMs5GXp9Oj/3eDxsgwm4bz3Sne2lbRM9/1Oqr1Zpnw6/Yyyfc3SZdBkuxwlWE6cA7NWWZKWlaWQPCeJJEVW2ngWKYv1VuloSPnoKAysM6Rsl9fFYbA0a0lg1KWAUZbohY7mJ8LpFHfUwfARDuMzaJIyZmJZKmhpkIQ1gHI7lIjJUEvzc+fiYYvbE2h87rU9ioY27HjOXtjz5mzOvgu+K8F71MlsuBaUHSjff70xrVqWu46aa5q0Numl/lGH+1bJsT/zr7H9q8/Fs5MJ6Nu2Muqqppmb3jybqKW2/axTtNQIHvqkV3fn9rviSJrfj6TP+ionsPpECGBtaS2+ufwPxrQ0pHwM8AZKPVJxRiGzMc6sZ+9jMc6SCMHuVka0vUiGvDGHYu+/Hv/SuCjGjLkOs20oJfExa0ao8iQPB4364Yu0vDDCl68Ekc2w0QmpFMVwdPWG2pZlPRi2lWehp10fYlWc9X3GLc/leASXZxemfwtjQIRti1GNlTiP5Eqq3272sWFZP6Ys4+o5Eq1zVz2rdZbniNCQ8rG2tEK5tC+Ty/h8z7hZy/hsyoriFYtiHEoNtg0vSJxL+XT5CijI913F6AFLbTlfQ4j0/C3na3bwCj9RA1nEGsRCu4wtvmV9gCKYhevyQIdlfWmEa9fpY5JnklnLb7Fkz3Z5Xpild1GXAAnFUsuIQvv/s8UjoJHmkmQQg1ag1YJdSIMYcWmfO2WxTn1REr1DZQgFPzfKBif5qMhf3vqypQ9ckqtBv0CjCLvPyl+WSV9Xb5O/4boaZCVU8sqMsZJn1idoOJU23IeLoVP9lDfK0pTvuXndamVI9CopyyhJZVXyVK81Ghk1vUMZYvpDfYNl2BhJ/qFSqI48Y44S130pUQ9sdTV4VDJdjBJbY8cmil8lXeOA2b7caOdQac+gqvxHoLwYz5/SyGvQQynb9sBet3YZxYhJYtN81gM/tMoesnalmWG925GsnK/F8OchEKKMMhotUHW0o+B5KKroSfWduq6R+D8AqoFiydcJa2dNRHUgq9DfH7lLoVO1LLVXzFRGSatnqRZ5SpbfLFumV0noZG4wGmTGlkKXstdf3/UGkvzsG7+sKv0yG1/MAooN6f35VIMaVeS/ikzV82zUNXitWm69IjK9CxvymTub0EtOmnSAbhyEPYQ3roN3eehuIL1kMK0bwGqNzJQMn/4ykjGAKrKjDeqTih6WVWOIRhBplTaQVYNQ9+5nxcjyQ0PKR0n0oSgZ8KkeavCBmj4o1fSmD1e1cdt8oDyLNMJm5l6YXNkbvDMKWVUtlI3cwdPUGHK3n0Yd6711tvuegi5b29DrpYCh7TfISoGmY+v9KgU9jpb7uhpPsykqrzUaRv584fao6YwyWVpXD1JlmWR8H6w4gyDEvQfIZQBstQzMGCnO3agKE9XOPdKe+3K6ONInhekQ3P6+3vBN8PWrLuHKq2h1cFjCJPt2JbXER/YtycJzbbUlTYRkgSy+Vzbja4CGVB2jOrdAwevQpkkyqh0QPjiCSXb4iHPue3t05UXe32OxL0wlRxpxKw4ZDtHAVHev2mAr2+QdNcqYKq0uvTZSlGbfkalrtNmy5HTuVEJboFw2DlvuT3XGZYuV3WG/Jhm6vJp9VBq5Kr10usSZR3bQcJ1M7f4wPbbGtcteuTAGe5xGfoPh0lo71FuWTAZ7yTBZqK9mhyEPu4LChWbUa5L1VhLrsBRPGtPRkPLxwO4bY1hHJwDA8/obgH9wVij4f5en8Tak8V9XpWmQU4D8vxVpKkpVr5UCZfgTlepGtUEZdQNQTboGx0ZBd00Tw9aUVjYCD6Rp1E0fQ1fqLJNaHxF+g+ReNGkjXXNJUyXFYAuxEzZ4g4ulY5s25nTC1RoLY73FZfElZTmmQdyhtqLKC5lf2gclVFaofM0sq0oMfV+oerUh6yHewhJj3+DcJwL23wgb2aY02hkk9TXlfcXxu+L+pU7tYH6JPLt8svIMaQKXTekb9NBdD14TinSBtKIM9Kxbh01vghEaUj5O+GMBAwwH8oYNX23a65HEQahhzg3SynM8h8XV+wJE98C4prc586U/v52HKapnSH6Oib2eNuen6PKrn7MqvUIPRXpdHsA8prAO7dzE8V2aJDW+MHpgDDL0HiO3POr0Ks+TIr1KnxBjIK33SiPP7Ak0eM1ieHb18kJ4vWIYH6flBUj6TBtCWp0sePCawbpyr1U6GlI+/r7+MeN68bhDm7uktTqDylpWiHDpDeGvDWHQDbpI78chpLvtvqagbJ1clcywIdvVSwfdDy5OJFS7hrDLOnVlupRfnzbCWT0ZDlgRZXlF2kEqXANUqMpKcn+VUoZin6oxKp+03HBBKgDzflmbZStxB6wIo4O57HQ252dhTxWxJ4v7ZIieVg4TX5ZE65ZBQ8rH4I5RdedIhQ0PHqRZ5zdV5ETcwxWDrlH2gZnkRzncNzHDQUQt13AeUwRvpm0ZtmlqOoX84MUZ8CFtwszKNQzsJCJsQ5zL3gTZoLdYDWigPM+p8Vn65RQ3tL+g7tV2FzRsVAEWyig3tBuBcsM7XTWI/Gn9ZVffxcZyiw3GlIdC5MG0ylAJY0BFNZxsjCZXgymsoRS3cZQHoyerkQRbhTjaQBajurUyru9EKxrLNKR8rCutVhoSiXp6JNgZaNENq4ZyAmM4k66u50TZ6ha3B6iiSwQvkHS5XgjvlaN3qCAKyg3ecQb0qMm0NtoUIdljPDNKRl47YZcBQrVuVAaVv+6CaRojXvqOOPA926pRFXwOVXkyObK6Fyg3vDtlryzNb3v+newJS9PJqkfSrKR5ZelEybp9CZQU96M+ekGgLO1P/QaJTmZFriR/0HiURbuzjPTnYlT57yWrIdQbyqEh1PLwGcdPnMZpViZMbPp6236NhlQdJfVcsO3ks8X4UAj5oKReE/35SxVB+nOWAPNZUXVnUkmX2vlmgqWDA/2ZVqW6QUAwv1q20OhV0p615RuUBPTR6VKuHVgbvIcNdSw9d0n1HEtKI8u5C1HtPxLymXbtuVMoSAfn/sF00GsRNKzKmmdWuV4diOtfhDKEtTEVxnjKnudL1R7UHYvqza/zzmjus1LHqvPfitKyq6mDbUjt1SrWyqr94hNblePXwn3JXhnFwKdKGaJdMoiK42wrVzm1PIYPsUBZ+82w8UBZGT+erzxHrAYTFq9bs6OSBWmVs38IIc2hLOyWLdKQ8tFRGIKCNyAWTw/QvGV/UfYS2ZSRZMj3sOHerfYEScaocYd6D+d9CheUJIy8sMFITHltrtfKcYj6ENYAyqefSk+Sw85MbhY2qOTaNkxtQhr0prqPUhvSX3YEgiJdMHBpQ3BScxCZ4PsTvC+TzIbrDcFUPe11XfBV6XVnfQ3XHdNLdWpMYqwHVTpbearfKvkV3mZNE9e1/qgBemy7aNdgPHFMZ+UxAFASJBEcNarIJAMp1pXjmt6xDFXytaW1+N6K/zPmpyHlo+B11PZIZWnvU1RDqFZOSgZRVNlJnIEFhDPikoja2OyIjaa8NtcBewMp7gFwGHSRIpNGF91Nh2s9uHxsXJ5JVowuVz3KMN2nWl5JqI8xl/k1PGGxB9HztCMX47JbXaRLXV8QMp9rVM+KPDWJ6G+odn2E2OAvwnBdJt+MlRzrvtQe16ilYfvdKFHlkzCS0pxUa6XTRbJKM6Nu9lp+VGlI+VhfXl0fbMJkKFlEgfOTuqcruP8pQU9XlKAWce9zUsr09DJj3eukkeVqtIUx2JIw1kxBNqr5bRbU+MsxpXfxcPVj1/uG9YglZWy4hqa20cMYXlu3VE17YK3ummIpnnI5XwhZOr0dIw+arhkjHdoEhbAwfXVLDa3LNYWpV+kR6miybC+fy8r+DFvyuic0C9gEziLhaJd2WRLrrdLRkPJR9HmkZMRlCAEuxld2Iv7ZlNXKUf8q+cN5lspe46b8KkKx1yo4kKtFSdMEIVANTEsoK40sf47GIAGmgAf6gZP/qs5IcRl+ZSGcedQBmYvhZWccGaK9ORosziHMHQwV2W/KfVOWIc2zFBI9rAEm3YvUcC5luuHQo+5zSjIMet6MJBUMlkCShpEN7cbNDH8egvXlVTXDpdlnNlXkmb1IqUXzayhDtYm9Kj+8QRIlhHsmPF0qmZ7/P+Nfrmg0MA3tooBCXfAReZrKTdgMh8IYPHYTDNkfaLgOOG3PkzKHRg83iI/rrKikzolyChjhaBBVrrkZRVHOh0rLGEo7zHkzDZ1WNkYYNIPIsJ3EB/L5fsRt/Nn0R7bL8mlI+SgWBtV5pOIyWoDmBadoxp6sJAJTxGbI1B3o67ZkL1Ro8ljkyz01rsv0VHKU8pPYm+XVWYtOefvT2BP33iddkAEbyjEv4HbdX2X6NCgNsQ0/65YShl3Wp/Y2qbxhbl4ynREal8etLq/B6C0bIvGZynfSR1GOzdLCWMrPIa7LJZuFaSIsabJaL3kmzvcwKbL+fqe5XLgs1uM9i3Q0pHz8x5j9MLA4EIA+MpE5CpFQXg/mNUdEEobrwbL95QbPmDGVrd9sK49epM9jlBmU5zUOfBr1NtWJRIZBL/s05nwueeXRvlQRneS/6zdxC6g2O3iewftkaVPInplebjaCF8RN2SLggAnhKMM5OlEIHcuOxmoUW7JSh6ry3AearrrnAVX/kEhZCb2rSW3Kb2bdqHDtD5MgzHsehqjvl0tfYdu/2uhkKldXltDI1/XHKpkqeSpZLullZcrEytLJzCtZu5KlC+oi01mmbzBdME2oPBL9gvcRTFOVsabUizOX3y+RUA8NKR8P/7MXHX6jR9HbO4W/DZnOJWKSbHgRTh9PWbZs5t/O0JLoIUtnCJlbSSORZZMmpnzW92IIJ+wiK4wB6FyGPLtysONSnimPSQcbfdQy0x/QJEGYwYvNgMVmXlI3UNAVoc2nG3yEkBlaj9ADJE2BBn1sZfTLcthbF6H5J/HmJBG+mZAkaWaEOBmJHoER073FUUdR7jNs+TZlrivbfWtpSPl4fP0DtaVzsS7ri3H5n93+p+hLBM17pMIvDwy9/wrh9haFjS6oWqboujwxXJj1ZJclhtXLKNMUwtli+YptIBab8polw5WoUf7cglWEC0RhKivM8jj5/qf87cMC9EtOwuzH6tfD8Lwshx0ue5uiBJGIe89OHvdvkPaGwRuyg8teMRMMNhGCrgHdjudIZWt/VKWsaCHNKzJi2IfVCmdWOR7oa3U9pPFiX77ZKLANAuFi0NiW3Uw5UYkjpHmcBg8Qbj+QTraLoaGTYxuJzymKnqWx42Lo1NI2LD1xDw7hHIHPIM9Gl375yQaZYIAJQkhYWsWwtN2fRUPKR8X6rHxhq12ydnDr+xjrjZyKVasNj12Toytv/QadwnuTyrAJWKH/INkEqygpPmr99SlvoFUDrCTRoZq3LNnbU28cBcKGBwwHv+zG51uSyKvPG+YMhVrocsngsKqfbNARLMs/KJI9B/9gWmWQCE8dCl0nW57O9iDJaMZRGudW2MxrmQaKqvuWGT2yNteQTvLcqm1Cpm/V8ArK7pcrb1/FQDnV+/S3C39brvu9VieNvxV9v/XXXdGXrv/dLkreC/l7VGzICwBFryB5PhvSBj6QHmRpg3fRT1nTDwiUpX1s1TiRv7f+PkmSN3Bvwe+EzoiQPxs9Vf2jGFRJGFF5MZYYWS//xOnZaDfieE/zZIzRkPJR8AZggNdplbbZZ0o16zyppM+SSsoTFTa0eTPDkCexXE5nEEVZgmdcomfV1uyNpyiGVrgDeuPC7h13PVjXT6Qzp6Sbc8Mt5Wu4LtvcnNAywgb5yv1RlmHkQ0Qoi3qGkqyJR5apkW2Dq9c5LHGWE0d0u6gTM3HdT9ze97TO2GtWO8orsb3nIbE9XiMsSR1In1S92X4nSmId3sNTxnQ0pHwEO4O4jKUoe4L6y4nmQYi6XC/KUr0oB+zGbSAlcUZTuLKaaxxFNYzi9jxFMX6ysvTPiQj3a+od/B8xO7MunzOtYZ67slUHvvumMPq6sPjK4wVUwVpiSG8TsKc/v11ZLnqFDUikz2+ftqKX/f1W0ivkK9Lr8gD6ADqmkYOpO7CJmGrzNthGXq3Ic3u/XGQ3lhU/UfQhcpoRICbuImILogGB3vJaPLvCnJaGlI+K9euzVAPuSdkgNmjZyowv2SGndYaNxA0aLEu2VMBvgMmWwlXKqcpRLVupLp+RL0Wo6qlaqtdfhnqpnkq3al7ZUr2KbkXoYqvo3Mcqw6BUk9tIWWekaIxqlXFTgtoA05flfiYPAJQjGWDqpSgFeMaFKrVll5pusW6gZvDQ6AbNJYuuN10vlTtRPFaA+4ygbXqbmTtrD5byerS9YTZlWJejSiPzvplmeX15rGZWFbcQ96xs1s+NIf2ksaQ5buitqof1kR9KYp1VOhpSPsqiTzsr4zeIlF4k3+Be98L4P2Y2xpfUo2Rl6AXX1tfL0e1FquBu5Pl1lRlg9fIl+500+6T8+fV7pRSGoyhYGJ2NCM0svs4ogufuBavelcwIq16T6uqrj6DcYHvyGyoyI8k9up55r1CYXQOhvU8ZDbUcZglEHEZCnIfWxhGgImpEPmk6ZfmW+RX7gVT3q5p8CnvYr2k/Uh6CVFTKiL4/qBnGXl72W8UF9221D9zfZY9u5RmDTYSgd/1yFAp2e6QA+81wtjMQcYZTjyOUetQw6qFDqItq+eFkxx0+XadLnOHTKzoU/Qnrr4XaexVySabBAKzItmz/juv245yFTWr2Ly4vgcuA0WZfj0mvUCHLYwgtHkqOq2EjSR/mfsNG3DMNVG0G7rbtytVYiWKYJGFwZHVQ327GFWlN8ux1bnaQCV1fatvP0pDy0VEchEKhwzq9rdUf19lPFVlxhVKPtqcq6r6vuA0ancywwS9cz4VqkCX0cuI6EyoP+7dMcl3S1OkTs6EUdf9V3Jtu6z6IBtF2niv3EOmAo0dL6OU1O+R6Ja3DmU+eXh+TPJ0etfwWH2jXwVAY4yTtzdyEJE1cofxbnbQDYmSRljlH6uGHH8YVV1yBp556Cu+88w5mz56NI488si7NCy+8gG984xtYsGAByuUytttuO/z617/GZptt5lTWY3vvhOGdFY9UoVAZDXi+/SrVbRde4Frw97prBdT/b+D3SmFBOf5rwfzqa9LffNe86m5MqQyv4Tf/7k1P8lv1v+vKryooSVefR39dmd/z62RXVuW/C+Y0wX01NnlUaWR/e7q0AYPAdN0kX5VGK09jlJh28ury+olj75JtWVmlnMIHK47j52XEfS9J7m5Oo95lpKlHVt6dJPRIKtpAVuosTcK2Wdv32SRfd11Vhsq7KEsvk2+TTpYmWG4wjf9vkzxVWn9/bpunrMjj+2/h/11WhkGGkF2X/Sb8ZUp0r8mTXZPoWk0nAtdkIQ/Kgb/9v4n6az1r12HcjTCSeUNq1apVmDp1Kk477TR88pOfbLj+97//HXvuuSc+85nP4OKLL0Z3dzdeeOEFDBw40Lms3Rc8XedJadYSuoqcaB4eIMJSupoOUZbp5XM5XZhw666yZOnDRA+U6ePu1XL3NiURKTDO8OlhvUjtEJDC1kNmSqcNcqL1cjnuv1J6paLv44rD46WSXUnv4PWy0Msk0yS3To7lrHwYT1LUZXrNmgmnl4y0QvAO0jzKG85uNeGJqOGimojneQ0eqeOOOw4dHR34n//5n9Bye3p60N3djcEDP6g1NuJcfldJF98eKytjLeJyPjsZ4Q2uKIZgM/dTNcv40+vQ3PO2THkr+V0DVJiJemZMlj6cUQdytmcf2QxMzYELwg3uXZftqeTpo1MmGxQibECIdts/Fed+orT2THFPFCH5Jsk9VUKUsOz9v2DFihUYPny4Ml3mPVI6yuUy7r//fnz961/HQQcdhGeeeQaTJk3Ceeed17D8z09vby96e3trf69YUQkU3zVgeMPA2uZshbS9RXbyTYNknWchvG5hDQiEHPCrvUiK+xPue5gqOsTjUYpalu65ecJ06G56XqEkDRxbXZI6RBBQDU7l92wfPlyVP1hWJZ3QhtFvlFUvp+BL2yhfZhhV8hclvwFF0f97o7zG5yXVb0OZ/vfVb4SpjnrwUJQaX7JWIlCS/q42unzLuX05g8aM/5pcllcrX4UHu4G/sGzXYfeO2MrXl522AcN9M6TZMJJeEgiRpDG1YYmhyd8kcgQAMXv27Nrf77zzjgAgBg8eLK666irxzDPPiFmzZgnP88T8+fOVci688EKxoYb4j//4j//4j//4j//4j//4j/8a/i1evFhrm+R6ad/bb7+NTTfdFMcffzxuueWWWrojjjgCQ4YMwa233iqVE/RILV++HBMnTsSbb76J7u7uRO+h1ejp6cGECROwePFireuTNMK6CwfrLTysu/Cw7sLDugsH6y08rLvwsO4qCCGwcuVKjBs3DgVN0JlcL+3beOONMWDAAGy77bZ1v2+zzTZ49NFHlfm6urrQ1dXV8Ht3d3dbN5ooDB8+nHUXEtZdOFhv4WHdhYd1Fx7WXThYb+Fh3YWHdQcr50p2dmKHoLOzE7vssgteeumlut9ffvllTJw4MSWtCCGEEEIIIa1O5j1S77//Pl599dXa36+//jqeffZZjBw5EpttthnOPfdcHHvssfjYxz6GfffdFw8++CDuu+8+zJ8/Pz2lCSGEEEIIIS1N5g2pJ598Evvuu2/t77PPPhsAcMopp+AXv/gFPvGJT+C6667DrFmz8JWvfAWTJ0/GXXfdhT333NO6jK6uLlx44YXS5X5ED+suPKy7cLDewsO6Cw/rLjysu3Cw3sLDugsP686NXAWbIIQQQgghhJAskOs9UoQQQgghhBCSBjSkCCGEEEIIIcQRGlKEEEIIIYQQ4ggNKUIIIYQQQghxhIYUgJ/85CeYNGkSBg4ciA9/+MN45JFH0lYp01x00UXwPK/u35gxY9JWK5M8/PDDOPzwwzFu3Dh4nod77rmn7roQAhdddBHGjRuHQYMGYZ999sHzzz+fjrIZw1R3p556akM73G233dJRNkPMmjULu+yyC4YNG4bRo0fjyCOPbDhrj+1Ojk3dsd3JufbaazFlypTaIZ677747fvvb39aus82pMdUd25wds2bNgud5OOuss2q/sd3ZIas7tjs72t6Quv3223HWWWfhW9/6Fp555hnstddeOOSQQ/Dmm2+mrVqm2W677fDOO+/U/j333HNpq5RJVq1ahalTp+Lqq6+WXr/88stx1VVX4eqrr8bChQsxZswYHHjggVi5cmWTNc0eproDgIMPPriuHT7wwANN1DCbLFiwAKeffjoef/xxzJkzB319fZg+fTpWrVpVS8N2J8em7gC2Oxnjx4/HpZdeiieffBJPPvkk9ttvP3z84x+vDVrZ5tSY6g5gmzOxcOFC/PSnP8WUKVPqfme7M6OqO4DtzgrR5uy6667ii1/8Yt1vW2+9tfjmN7+ZkkbZ58ILLxRTp05NW43cAUDMnj279ne5XBZjxowRl156ae23tWvXiu7ubnHdddeloGF2CdadEEKccsop4uMf/3gq+uSJd999VwAQCxYsEEKw3bkQrDsh2O5c2GijjcTPf/5ztrkQVOtOCLY5EytXrhRbbrmlmDNnjth7773Ff/zHfwgh2NfZoKo7IdjubGlrj9S6devw1FNPYfr06XW/T58+HX/84x9T0iofvPLKKxg3bhwmTZqE4447Dq+99lraKuWO119/HUuWLKlrf11dXdh7773Z/iyZP38+Ro8eja222gqf+9zn8O6776atUuZYsWIFAGDkyJEA2O5cCNZdFbY7PaVSCbfddhtWrVqF3XffnW3OgWDdVWGbU3P66afjsMMOwwEHHFD3O9udGVXdVWG7MzMgbQXS5N///jdKpRI+8IEP1P3+gQ98AEuWLElJq+zzkY98BDfffDO22mor/POf/8R3v/td7LHHHnj++ecxatSotNXLDdU2Jmt/b7zxRhoq5YpDDjkERx99NCZOnIjXX38dF1xwAfbbbz889dRTPJF9A0IInH322dhzzz2x/fbbA2C7s0VWdwDbnY7nnnsOu+++O9auXYuhQ4di9uzZ2HbbbWuDVrY5Naq6A9jmdNx22214+umnsXDhwoZr7Ov06OoOYLuzpa0NqSqe59X9LYRo+I30c8ghh9T+e4cddsDuu++OLbbYAjfddBPOPvvsFDXLJ2x/4Tj22GNr/7399ttj5513xsSJE3H//fdj5syZKWqWHc444wz85S9/waOPPtpwje1Oj6ru2O7UTJ48Gc8++yyWL1+Ou+66C6eccgoWLFhQu842p0ZVd9tuuy3bnILFixfjP/7jP/D73/8eAwcOVKZju2vEpu7Y7uxo66V9G2+8MYrFYoP36d13322YwSBqhgwZgh122AGvvPJK2qrkimqkQ7a/eBg7diwmTpzIdriBM888E/feey/mzZuH8ePH135nuzOjqjsZbHf9dHZ24kMf+hB23nlnzJo1C1OnTsUPf/hDtjkLVHUng22uwlNPPYV3330XH/7whzFgwAAMGDAACxYswI9+9CMMGDCg1rbY7hox1V2pVGrIw3Ynp60Nqc7OTnz4wx/GnDlz6n6fM2cO9thjj5S0yh+9vb144YUXMHbs2LRVyRWTJk3CmDFj6trfunXrsGDBAra/ECxduhSLFy9u+3YohMAZZ5yBu+++G3PnzsWkSZPqrrPdqTHVnQy2OzVCCPT29rLNhaBadzLY5irsv//+eO655/Dss8/W/u2888448cQT8eyzz+KDH/wg250CU90Vi8WGPGx3ClIKcpEZbrvtNtHR0SGuv/568be//U2cddZZYsiQIWLRokVpq5ZZvva1r4n58+eL1157TTz++ONixowZYtiwYawzCStXrhTPPPOMeOaZZwQAcdVVV4lnnnlGvPHGG0IIIS699FLR3d0t7r77bvHcc8+J448/XowdO1b09PSkrHn66Opu5cqV4mtf+5r44x//KF5//XUxb948sfvuu4tNN9207evuS1/6kuju7hbz588X77zzTu3f6tWra2nY7uSY6o7tTs15550nHn74YfH666+Lv/zlL+L8888XhUJB/P73vxdCsM3p0NUd25wbwchzbHf2+OuO7c6etjekhBDimmuuERMnThSdnZ1ip512qgt1Sxo59thjxdixY0VHR4cYN26cmDlzpnj++efTViuTzJs3TwBo+HfKKacIISrhWS+88EIxZswY0dXVJT72sY+J5557Ll2lM4Ku7lavXi2mT58uNtlkE9HR0SE222wzccopp4g333wzbbVTR1ZnAMSNN95YS8N2J8dUd2x3aj796U/XvqObbLKJ2H///WtGlBBsczp0dcc250bQkGK7s8dfd2x39nhCCNE8/xchhBBCCCGE5J+23iNFCCGEEEIIIWGgIUUIIYQQQgghjtCQIoQQQgghhBBHaEgRQgghhBBCiCM0pAghhBBCCCHEERpShBBCCCGEEOIIDSlCCCGEEEIIcYSGFCGEEEIIIYQ4QkOKEEJI23DRRRdhxx13TFsNQgghLYAnhBBpK0EIIYRExfM87fVTTjkFV199NXp7ezFq1KgmaUUIIaRVoSFFCCGkJViyZEntv2+//XZ85zvfwUsvvVT7bdCgQeju7k5DNUIIIS0Il/YRQghpCcaMGVP7193dDc/zGn4LLu079dRTceSRR+KSSy7BBz7wAYwYMQIXX3wx+vr6cO6552LkyJEYP348brjhhrqy/vGPf+DYY4/FRhtthFGjRuHjH/84Fi1a1NwbJoQQkio0pAghhLQ1c+fOxdtvv42HH34YV111FS666CLMmDEDG220EZ544gl88YtfxBe/+EUsXrwYALB69Wrsu+++GDp0KB5++GE8+uijGDp0KA4++GCsW7cu5bshhBDSLGhIEUIIaWtGjhyJH/3oR5g8eTI+/elPY/LkyVi9ejXOP/98bLnlljjvvPPQ2dmJ//u//wMA3HbbbSgUCvj5z3+OHXbYAdtssw1uvPFGvPnmm5g/f366N0MIIaRpDEhbAUIIISRNtttuOxQK/fOKH/jAB7D99tvX/i4Wixg1ahTeffddAMBTTz2FV199FcOGDauTs3btWvz9739vjtKEEEJSh4YUIYSQtqajo6Pub8/zpL+Vy2UAQLlcxoc//GH86le/apC1ySabJKcoIYSQTEFDihBCCHFgp512wu23347Ro0dj+PDhaatDCCEkJbhHihBCCHHgxBNPxMYbb4yPf/zjeOSRR/D6669jwYIF+I//+A+89dZbaatHCCGkSdCQIoQQQhwYPHgwHn74YWy22WaYOXMmttlmG3z605/GmjVr6KEihJA2ggfyEkIIIYQQQogj9EgRQgghhBBCiCM0pAghpIX4xS9+Ac/zpP/OOeecVHTyPA8XXXRRomVcdNFFyvv2/9tnn30S1YMQQkj7wKh9hBDSgtx4443Yeuut634bN25cKro89thjGD9+fKJlfPazn8XBBx9c+/udd97BzJkzceaZZ+KEE06o/c49TIQQQuKChhQhhLQg22+/PXbeeefUyhdCYO3atRg0aBB222232OSWSiX09fWhq6ur7vfx48fXGWuLFi0CAGy22Waxlp9X1qxZg0GDBqWtBiGEtBRc2kcIIW3Ivffei9133x2DBw/GsGHDcOCBB+Kxxx6rS3Pqqadi8803b8hbXUbnx/M8nHHGGbjuuuuwzTbboKurCzfddFPtWnBp35IlS/CFL3wB48ePR2dnJyZNmoSLL74YfX19tTSLFi2C53m4/PLL8d3vfheTJk1CV1cX5s2bF/q+n3zySRxxxBEYOXIkBg4ciGnTpuHXv/51XZrq8si5c+fic5/7HEaNGoXhw4fj5JNPxqpVq7BkyRIcc8wxGDFiBMaOHYtzzjkH69evl+r9ve99D5ttthkGDhyInXfeGQ899FCDTo8++ij2339/DBs2DIMHD8Yee+yB+++/X5pu9913x8CBA7HpppviggsuwM9//nN4nlczHAFg8803x4wZM3D33Xdj2rRpGDhwIC6++GIAwDXXXIOPfexjGD16NIYMGYIddtgBl19+eZ3+ALDPPvtg++23x2OPPYY99tgDgwYNwuabb44bb7wRAHD//fdjp512wuDBg7HDDjvgwQcfDP1MCCEkr9AjRQghLUjVc+NnwIBKl3/LLbfgxBNPxPTp03Hrrbeit7cXl19+OfbZZx889NBD2HPPPUOVec899+CRRx7Bd77zHYwZMwajR4+WpluyZAl23XVXFAoFfOc738EWW2yBxx57DN/97nexaNGi2mC9yo9+9CNstdVWuPLKKzF8+HBsueWWofSbN28eDj74YHzkIx/Bddddh+7ubtx222049thjsXr1apx66ql16T/72c9i5syZuO222/DMM8/g/PPPR19fH1566SXMnDkTn//85/GHP/wBl112GcaNG4ezzz67Lv/VV1+NiRMn4gc/+AHK5TIuv/xyHHLIIViwYAF23313AMCCBQtw4IEHYsqUKbj++uvR1dWFn/zkJzj88MNx66234thjjwUA/OUvf8GBBx6IrbbaCjfddBMGDx6M6667Dr/85S+l9/r000/jhRdewLe//W1MmjQJQ4YMAQD8/e9/xwknnIBJkyahs7MTf/7zn/G9730PL774Im644YaG53Taaafh61//OsaPH48f//jH+PSnP43FixfjzjvvxPnnn4/u7m7853/+J4488ki89tprqS0fJYSQVBCEEEJahhtvvFEAkP5bv369KJVKYty4cWKHHXYQpVKplm/lypVi9OjRYo899qj9dsopp4iJEyc2lHHhhReK4OcDgOju7hbvvfdeQ3oA4sILL6z9/YUvfEEMHTpUvPHGG3XprrzySgFAPP/880IIIV5//XUBQGyxxRZi3bp1TvVQzXvFFVfUftt6663FtGnTxPr16+vSzpgxQ4wdO7ZWH9U6PPPMM+vSHXnkkQKAuOqqq+p+33HHHcVOO+3UUPa4cePEmjVrar/39PSIkSNHigMOOKD222677SZGjx4tVq5cWfutr69PbL/99mL8+PGiXC4LIYQ4+uijxZAhQ8S//vWvWrpSqSS23XZbAUC8/vrrtd8nTpwoisWieOmll7R1VCqVxPr168XNN98sisVi3bPbe++9BQDx5JNP1n5bunSpKBaLYtCgQeIf//hH7fdnn31WABA/+tGPtOURQkirwaV9hBDSgtx8881YuHBh3b8BAwbgpZdewttvv42TTjoJhUL/J2Do0KH45Cc/iccffxyrV68OVeZ+++2HjTbayJjuN7/5Dfbdd1+MGzcOfX19tX+HHHIIgIqXxs8RRxyBjo6OUDpVefXVV/Hiiy/ixBNPBIC6cg899FC88847eOmll+ryzJgxo+7vbbbZBgBw2GGHNfz+xhtvNJQ5c+ZMDBw4sPb3sGHDcPjhh+Phhx9GqVTCqlWr8MQTT+Coo47C0KFDa+mKxSJOOukkvPXWWzWdFixYgP322w8bb7xxLV2hUMAxxxwjvd8pU6Zgq622avj9mWeewRFHHIFRo0ahWCyio6MDJ598MkqlEl5++eW6tGPHjsWHP/zh2t8jR47E6NGjseOOO9Z5nqr1IqsDQghpZbi0jxBCWpBtttlGGmxi6dKlACqD5CDjxo1DuVzGsmXLMHjwYOcyZTJl/POf/8R9992nNI7+/e9/h5JrKhMAzjnnHGUY+GC5I0eOrPu7s7NT+fvatWsb5I0ZM0b627p16/D+++9j5cqVEEIonwXQ/7yWLl2KD3zgAw3pZL8B8jp78803sddee2Hy5Mn44Q9/iM033xwDBw7En/70J5x++ulYs2ZNXfrgfVbvVVUvsjoghJBWhoYUIYS0EaNGjQJQCQ8e5O2330ahUKh5lQYOHIje3t6GdEGDo0owAIWKjTfeGFOmTMH3vvc96fXgPhtbuaYyAeC8887DzJkzpWkmT54cuRw/S5Yskf7W2dmJoUOHYsCAASgUCspnAfTrPWrUqJoxaCoDkNfZPffcg1WrVuHuu+/GxIkTa78/++yzVvdDCCGkHhpShBDSRkyePBmbbropbrnlFpxzzjm1AfeqVatw11131SL5AZXob++++y7++c9/1jwf69atw+9+97tIOsyYMQMPPPAAtthiC6ulgHEwefJkbLnllvjzn/+MSy65pCll3n333bjiiitqy/tWrlyJ++67D3vttReKxSKGDBmCj3zkI7j77rtx5ZVX1sKTl8tl/PKXv8T48eNry/P23ntvPPDAA/j3v/9dM67K5TLuuOMOa32qz9ofOl4IgZ/97Gex3C8hhLQb3CNFCCFtRKFQwOWXX45nn30WM2bMwL333os77rgD++67L5YvX45LL720lvbYY49FsVjEcccdhwceeAB33303pk+fjlKpFEmH//zP/0RHRwf22GMPXHvttZg7dy4eeOAB/OQnP8GMGTPw1ltvRb1NKf/93/+Nhx56CAcddBBuvfVWPPzww7jnnnswa9YsHH300bGXVywWceCBB2L27Nm46667sP/++6Onp6cWihwAZs2ahaVLl2LffffFnXfeiXvvvReHHnoo/vrXv+LKK6+sGT/f+ta3UCqVsP/+++PXv/417rvvPhx++OFYtWoVANTtd1Nx4IEHorOzE8cffzx++9vfYvbs2TjooIOwbNmy2O+dEELaARpShBDSZpxwwgm45557sHTpUhx77LE47bTTMHz4cMybN68u9PmkSZPwv//7v1i+fDmOOuoonHvuuTj66KNx8sknRyp/7NixePLJJzF9+nRcccUVOPjgg3HSSSfhhhtuwI477piYl2rffffFn/70J4wYMQJnnXUWDjjgAHzpS1/CH/7wBxxwwAGxl3fGGWfgwAMPxFe+8hWccMIJ6Ovrw/3334+PfvSjtTR777035s6diyFDhuDUU0/FcccdhxUrVuDee++thT4HgKlTp2LOnDkYNGgQTj75ZHz+85/Hdttthy9/+csAgO7ubqM+W2+9Ne666y4sW7YMM2fOxJlnnokdd9wRP/rRj2K/d0IIaQc8IYRIWwlCCCGkVVi0aBEmTZqEK664QhnYIi6mT5+ORYsWNUTcI4QQkjzcI0UIIYTkgLPPPhvTpk3DhAkT8N577+FXv/oV5syZg+uvvz5t1QghpC2hIUUIIYTkgFKphO985ztYsmQJPM/Dtttui//5n//Bpz71qbRVI4SQtoRL+wghhBBCCCHEEQabIIQQQgghhBBHaEgRQgghhBBCiCM0pAghhBBCCCHEEQabQOV0+LfffhvDhg2rHX5ICCGEEEIIaT+EEFi5ciXGjRunPfCchhSAt99+GxMmTEhbDUIIIYQQQkhGWLx4McaPH6+8TkMKwLBhwzb8Vxc8tK5HSiArARrLTS4v7ftudvl5bsN51j0qabfTOGiFe2gV2vldahf4vhGSHAJA2WcjyKEhBdSW83nwuLSvKRQj5A1jhDX5mTacKJCvNpWuwc2BQZw0f2IoY22d/bkEbo1W0+xJvhDUfV+a076zMwkbL6lOnOeyb2qvvqNyOlSv0S6gIeWjVTsLORn6YOTgKLM020azO/vQ5eXyw0DqiONdZDvIOBnq+3NDhgaQYbvnCN+R2N5oL0P1aE0edU4eL5fPEhDCpf8TEKLXmIqGlI+uzk1qjcNrwZdHJPgBdWucScgIlzdKmVHrM9r9llIsG4g0GIuhrdSJi9nIjdVwDf2xCZcv/o9bFO9xWkR7N6ISR1/YbPI6KIpKHp+VPbp7y8/zTqZtxtevxa1fmmPPrPcDsbyvDp93IcroK71vTEdDyseeg45Gp9dV+9s/oCr4ZlkLvt/9k682vxcCD9Grkxu8JpcRvCaVG0gfvC7PY07TX778gu41NE1U277CcU94q+7RhXICDitX54BtF2Mj1yRLGISY6sOkgi6/TV2bjCvb5+XyDMoRDLocOGVDEfVdDfZ7cZVn887bGNQ6OaYydJd1eXXLTML2v2Hyae89rB4J1Vklb7TnaatHFLlJy4iLKN876743ghxV/y/LI0spTSf5LfidDOYL5gmm110PfmP9soOq+K/VpxPy3/3pA9Kq11S6lBV5VTL75fll+K77f5fm918Xjdd9msqul33XhVdWXq+TsyFdSazDX5bfBBM0pHw81TcHnpfMDGycM1/lJnpfhHCb3XXx0rjoY5vWtnxreVbpYi7T8fmGa1vJzNq39gyvjBjv17Hu3DxxFrItrLmo3j8rb5/RGjJPuVh7FZ1mYKPP1mZ9xldGfO90CDlpvxN1wmOe7XCeZbBrO/G3ffs269a+3cZaYd+dsB6e8O9q+Hc8Sv8QtW+JwxOWVP+WVr9p2/fRkPLRs+ZN5Wxf9gaITdCnifec/v60jDzfVnVNkJagKfv1jO+AeRLA+i1q8uuWSHHck9Ycwtazqj079/V2k19BqcpvawKNMd5l0XHJim8Qnkj/l6iRkO7ETR4njvyYVt5UoSFlSfYahJ0+kQzAWO7ZrvxI3VMsBl/j7Fj8xp2FnmE+Hk00vpI0eDN/9EDmBqxZ65Oik/k2QBpIfxIs46TcpO2Lz8hkYo3s9W+JtHXHVT9V7PrKdJ9p3ueFaUiFJo+bq9UktVQxU4T+UOk7sLwO6ZL0nqZbJ1n70JNQZM67T6KQhvHbPsZbzt6VWEfO6QaNyToCyODkXmth28/QkPJRGYCuT1sNS3LWwarI2KAqOx/obNVLA3mfamol+DEl7Qj7IJJF2B/HS6rvOQ2pEJSR9px7rsiYERQHUWdX4zPEsresoY5cvSat104zT8YGudmZIImfzC2HbNZAMnMD1oz32ZmGfXQsZKzfzRPybwQNKWcqEeri7Zwz95FrQ1p5ENUcWvgj14IfHrZ3ezLXP2fKOMiHYZC5Z9hKxLU33Djp2gZbEGJG2s/n9lVIf4wh60cqe6TMS0xpSNVRAkS8LZFDmoyRqYEKSZ1WaA8BYzC3A8tWeBYtRfqDGxuif2PzYTCmQshACKQdyEf/0AxoSPnwMEB72GEmaXY0wRZczpcHWtfL0KbtqQU9YZFhnZBUsAmn33ptM7cTLs0ib2NBkho0pHwIxL+0L3FafsaIs4WtTZs+35x1MyQN2nSSIQwJG+E0OtoQTuzooaFZg4aUD8/ryJ9HCkDeB6PZOaOreeu0k7znOE4ol8pNTOf45SZav01or0k9wzBk5/3ML1k40F00yTBL+l6TlZ+M7CR1TvK5NqfdNncyOJ13Mf33P0uribLv4XWrKxpSdRSQ1FQxByPZo7FDbV5HI5/syk5Hl6VONwzZ76ibRb6fozVtNnvM9k1soCfNDr5PRA6j9jkjRC+SMqTa7DuvhhXRXuTSwxuAbdYZDkyyDQfYpFmwL4gPvrfNxbbl0pAizSXugTUHudmGzycecmaQxvfBb19PPgdNJC7SNGbib8U59rK30PewPQxkeqSc8VBs+ser9Rtjwp1emAFmBjuz1m8H6dAyg9EMttkqybbdHA+aImKq1ZZp22HJ2eRCbslw30PSox36H3qkckLWG2P0QVIWZpQDg7EMfoC17YAfMpJhst6HtSNtMTHDftEKvp+EJAsNKR/Z+vi070yslJx+NLPVpkgz4QCGpAXbHiGENAcaUpklC56cDJHTcYGb2jkznjNm3GbNaM2SPi01sM6gR5kQ0mJk7PtG4sP+28w9Us54XjGn50i1KBkPwR3/QDms8ZxSPcnelRQ/PmkaC1kymmRkVb9QzyzPAxx+X0hWyel7ldW+Le+01ORbANt74x6pMIgymub6yOK5Uhk3XLKGBy8jnXhcbSmG55+1gWKTBget/NHJJVlrh4mSwW9JjonjXc7Gd8GRzL0ydt+j3Pa9OTVcSSM0pHwI9AGiSS8l3yFCCEmGthqklNJWoKVop5aTJLk0JkkDuTVUmwgNKR8eBlSW9mXRW0Ralxb1BLbGh7Q1n02stJXRQpKkNfoMYgsH6aQVoCHlQ6AEwANEk2b4OACpJ/blONEN4lg6epNhbmW4x2Pce4lMEhTlZSVQEpDUPZCsI1p0wkFP+3ibhCi3+bC6xdt3zt7f1jbq8/UsUsOyCdCQSpO2WsefBtE7i1i60mYZ5hbQdm9H8mN4cobagqgTCTkb0GaF1h5Yk/YiXB/Sfv2zgMB6YyoaUlHhyJSkAY1wEkTZF2XHkDfB3tQCVlL6sP8lbUi7dT22kyc0pHx4Xod7+HP2p8mQo1nTbM5UZrD+WmDSIZvPuvVpv5nQjEIDghASldyMBWhIOSPEhj1SmSKDA+IgKbwUrTCgbdrgMLXBT2D5QNZeLR+2zyLDt9DS5Pt9T7kPj7N/NsjK83NKxVjPpGGan6XAJE/4+sFMtnsJ3CMVhiaeI5VHMjSLkLkZ6rx0DE2l2nFm/8Oc5wEgCUMOJqjiool9k1u/3Jx+IdFvRdMC32SnD2Wwn/yS7YA9KehmrA/ukSJxQ2OBhCLLnTfJPBmawGlrYu//XfqF8IP3RCdJfIGEkp3cy04f6vI65nOCKjt1nfW+L5/Pt4LN+8o9UiEoFAa575FqIbIxW5GwDgncY/ydSYw6xtgR57nTdCFz3s6EaJfnGReZaxct/a3Kn9ej/n3Kwrc0A2TcEDDR6n1k1D4tc31iStCQ8lExJNJuGDnogFM0uLLdsWXw2cU42GKnmVFCDlaSfJ7Zfk/Dobqn1N6LZgxSUzPWMtiX5omcGzBx0Yr9UJywfkzQI+WM5xUy4JEKNxPXVG9SamukM35go8i0dgDYcWaJ2AbgGWx2GVQpNvgO6aABlAl045g2MrI4+UeiYPum0JDykQ2PVJAW+DBlYsmgnvYcHGX/ubQy7djiCCEpk/pkMYmf/C2FzQVCAOgzJqMhlVlaaJBb9WBl2KBymblqHaOrNTvf3M9Cxu3xjfO9Y8SuZMlwHxk3rdOPtgap95u56FvyoKMcRlt0RwiBcrnXmI6GlI9QB/LmhpI5SULUlh3G/iLHPOiwHMTE8cHJ2yAi9Y9sXLi2wTQGtiHKbFp7ErJ+pH0G//VwYEKaR6p9cE7DvEc3HooZ0MEnq4l9Tr4Mr2R0FaKMcrnHmI6GlI/hgzaF50V/cWxo1p6mckyDnDD6CumgS5PeUlcbXazSGMrTydDLD5dPp4++PHU9m+vBos4dnn3mDUTHNpk8SfYD7h8X42BN+nGt9pnq8tQfZXV/q8qjGkzoP/xhdLO7XkvnUN/5GqS4E/b7ZvsNCFOOfdp4vi+1tA73FH1ckHT/1lzDIrl3Khm5Wbg3177F1ThzGSOH6ecKYb5bMfSnMhlClLDs/SXGvDSkfOzecTA6vK66JcQF38BC9XvB97vfoxV8LDZyg/KAxsFN8Hpjev31oJ79OslROelMTdfWuSfTLyxhX6e4h7NlR3vCZv+v8eg4jQxdXqHJqLsP1SVdHtU1nQGm1UF7z/pKNdW5TZvQ1V2DvIg2pul+kqAQYhbc5n3Wef5l77AsuUy3OPtST/W7oo+v798Vv0vSyK7LyvYk3xxZuv5rQplep4esDmqyfeXV0m8ox5OkaSy3Xye9bKGRJRrvQXvPjb/JyvL/LtMz+Ht9Pdn8Lk8TTNdQfrCNatKq8sjy9adV9yu232adjCQQloGd9N+ORhmycFbBLr4cyBfMo0svfGn9utmkqf4uyycCf1f0qurj1f3tlxGUGfxb+btCdn/6fn1E4Fp/3urfXu1vmZzafwfylwUaZAt4Et39/y3UeQPlCwGsK6/Ff7//F5igIeXjX6IHHWKg9JrKStYNNEyDEJeZgDADmmbiMsgzzdDpZKmuyTxvwmv8TZZfmjfwWzkgK5gn+HdD/sBMof96o2xNWqG+Vvm7/7pJp6DHsDF9oCyhv2eZTFm5MlmqMk3pba9XieKhTeOcNVevbpzE5Z23nS3UzUQqvVNKr1XRmC7Y/wbvN6hPUEawDH/6oCx/WXXpfDKC+hQ8+bVCsFxRMKZTlR/82y/LnM83GSjs0sn+brhvQ3qg0RCXpZEa5IrvaKHB8vCU31z1xKJbel2eik7qfK4TEVF1MU2KanU1jF10eU2GnM2oKOrEToM865TBMkJmTAjX4I1RJhbVE6j9/1+VVpY3OPEaTONXwz/mazBy6/L0X6zKW1+2+/7SkPLx/Nrf1z6WeVl6keTgLorspJYz2KVtztI/e30AmyUXbvUd4tmEXm6T4QOHjSSwvK2W0Ea2OY25rzEbNEksP3OVHQ+6srKxFyvtg8tdl7+50sx9GCQcyb6T4WWH0SuJ5XBJLIVzW4qX7PK3KmGWwZnI8ti32VtibCcyaUj56CutTr0Rpf2RDpL0R1tbdlPrIgPBOJwI0U5Dtu2MTaQ5kfb7HA82Rrhd+/WbxFnra5pJ3ttFc55djGUkpG/z92Tm9Z2JYBy5fgGs3624jSI74yWpSadwfUpzjdYk5dTkNXkiJsm+3LafpSHlo1Re25JR+9IfMCVUfsz3Fe9HOSbdYjg8MfMBIHzEHZkq1jtvwb4hGbJvpLTSmaQtE1HTQFz9WLT6ak4wqsRpykRCPGXYjl9su+cwk079aJ5/TH2KtWGQch/WDp5rGlIhyOaBvGmQkuHVRIMvWeMiznN7FO3RYSQY10CrGQaZTRmpDRz9dd50oyp7H61cDOBz7nlqKqlPuOmJ0t78/UqeJpYSoyl7L+3LiOVIkaQfq1eAzeGsUQl/H+3b1yXllbINJkVDquXI6McwjY36rbzsozqQb+LUuulj16z6jqOcyB/uZtR7nbGW5nst/0hlYUBqfI4ZNw4aSNPwa2GjMwcmPyERyVlfFxeinNjnmIZUKFrEI5WzwUMWBmSZ64RyuPYoUx6KGDx5qdNEXfXvYMbeDR/NfpqJt/GkbojLUlOkFQ3U7PYJhMSF7diUhlQrkrOZxdQ/8aKMzK19d6iUbBiiOSH1xpZNmlEtmTK0M0B7v7c5GYjHMpmRjUPA27u9ERIGGlIkSXLm9WplbAeozf6QcuBM2gUOUl2Je7Ivoe9Rq3jyhGB/TIgjtr06DSkfQqwHp6yzQr68aqQRt8ElDfOmkqcljk2AhlD2aOuBf9wGXKsYhHmkzfra1upL6ZEKQQF5M6Ta+mNDpOSzI2tnwzkFI7IVBlYxDlBS70dz/zyy//6m/oybTc6W+EciyytkmtTssvLdD3+72XuGlWAT5qW5qRpSs2bNwt13340XX3wRgwYNwh577IHLLrsMkydPrqU59dRTcdNNN9Xl+8hHPoLHH3+87rfHHnsM3/rWt/DEE0+go6MDO+64I377299i0KBBDhqlGGwi5KAgG69OG5P7ARBJjngPpiQBWu7Vy95Awh6J7hmbia87jLodvpwJ3mLbGaWkTcmBR2rBggU4/fTTscsuu6Cvrw/f+ta3MH36dPztb3/DkCFDaukOPvhg3HjjjbW/Ozs76+Q89thjOPjgg3Heeefhxz/+MTo7O/HnP/8ZhUKOBigckJPEyNF7kDt0g988D4wTJmOD7ERp1749w/dNQ4A00E59UsrkZyLDTk9P2AZKbwL/+te/MHr0aCxYsAAf+9jHAFQ8UsuXL8c999yjzLfbbrvhwAMPxH/913+FKrenpwfd3d3wMBBehjt/YiY/L6iJFh2EZ6e7ySSt035bGw7ECdHDvqy5sE+Kn0ob7sOKFSswfPhwZbpM7ZFasWIFAGDkyJF1v8+fPx+jR4/GiBEjsPfee+N73/seRo8eDQB499138cQTT+DEE0/EHnvsgb///e/Yeuut8b3vfQ977rmntJze3l709vbW/u7p6QEACJSgXS/ShoNAdoaEEB38gBvg5BxpQ9gvkNxjOfzNjEdKCIGPf/zjWLZsGR555JHa77fffjuGDh2KiRMn4vXXX8cFF1yAvr4+PPXUU+jq6sLjjz+O3XffHSNHjsSVV16JHXfcETfffDN+8pOf4K9//Su23HLLhrIuuugiXHzxxRItOuiRIoS0MVwGmjRZGWBykgzItOc/G0Mzkjc4ho2Ninm03uiRyowhdfrpp+P+++/Ho48+ivHjxyvTvfPOO5g4cSJuu+02zJw5E3/84x/x0Y9+FOeddx4uueSSWropU6bgsMMOw6xZsxpkyDxSEyZMgOcNTtmQaq1BjJeZqEHNO2w3qXv2Ym4b8eqZZd2Sk9lQRsbf3+y8j8kiMhjBSyQ8YE/inuOXGZ+8RO43oWfU3PaYkcN/M/gOmsmjzhpy+QzqSXuyp2Ie9eZjad+ZZ56Je++9Fw8//LDWiAKAsWPHYuLEiXjllVdqfwPAtttuW5dum222wZtvvimV0dXVha6uLsmV5MOf53sw0zyDJK8k9QGJ/SOfiemTCg3vRIZ0i4usG1k25LvvIkmQhQFzHo3UCvEaPcnomdC9N6ndpD0Qryf9d4W4koOofUIInHnmmZg9ezbmz5+PSZMmGfMsXboUixcvrhlQm2++OcaNG4eXXnqpLt3LL7+MQw45xFGhPgBeoucvZOHDE56+tBWoJ6d1ma3OnZAgOXyvsrGwwgn2A4SQKGRlmXDrkgND6vTTT8ctt9yC//3f/8WwYcOwZMkSAEB3dzcGDRqE999/HxdddBE++clPYuzYsVi0aBHOP/98bLzxxvjEJz4BAPA8D+eeey4uvPBCTJ06FTvuuCNuuukmvPjii7jzzjud9KkFmxDZcI+Ho11mjXM42EubHA42SQuSxPLpHO4L4CBoA+yXCCE5JlVD6tprrwUA7LPPPnW/33jjjTj11FNRLBbx3HPP4eabb8by5csxduxY7Lvvvrj99tsxbNiwWvqzzjoLa9euxVe/+lW89957mDp1KubMmYMtttjCUaMyhMj7xy05A4MffkJIZDI4cKZ3KBvwG0PyDPuRViOH50ilBc+Ryift0WnR81YHuys97L8CtIuHnrQXOfwutEnfnfdxCScz+snlOVKp4xU4EMkDG/ZG5eGFj96pRhkINvljm8KHMu8frbAo237WBiup96fNegdosJFmkof2Fnj3Uu8LmkMexiWRyNo3JgPQkPIjykg6al+7ke+Bbg5n/dLE6kMZc6j0WKURQgiJh6h9Pb+/mSRvBnETDD8aUknAMME1MvfKOUX6a89w7/k2frMCBwHEBn4rCJHDdyN+2vC7FDT8EjCsaEj5iG0AGSrqXxs28KxAVzUhDdCgbgbs9wkhJJvkIPw58ZPE7As/0la4uKppdJE2oeXX+hNnaFyTLME+ilRJs2+iIVUH90hlGhoxJIdw8Elk5HEQmLrOedufQeKH4wBr+O1pDjSk6iigYkjRk+MMOzcSJ1keMDm29dQHnxmDH/cKWa+HTLbbJL8zWe5zSD98TtZEfofbfFxne/c0pHx4G/6vXYMMRIJ9mxNZH0QlQ4tMUIT9kLf5R6lKJgfoJP9wgE1IvDTzncrx95GGlB+eI5UPnCLvZYN8GE75q9dQ5LjDbnnY/xJCiBl+xzIDDSk/PEeqJcmHEeNKxo2eDHXyrfn87ciM9yezBlK+Qyxn5vmSzNJa/V/Gv3sqMvQ9TIP8tkFG7XNGoA8Q/DDFSdZfIA5EWp9cP+PMGiCtQk4HZhvIdu9KCAGQXD+eEwMtr99g7pGKQNYH/yQ++KzzQ14740jk5EOZBfguN4e2fA9JKvCdbk1arQ+hIVVHEfBa7RFnnXzPCBOSH/K9jM1E9vpt9m0kBVpo8oWjMZIHaEj56I/al3RBrT2gcYMREgGkEkAj2dm+BO+nSQOFVpgNre/PSqnpQfJPK7wPWYZGAyH5hIaUj6YNLEWCA5oEB5nN+JDG9jGJvCY5mrEb+T5iMbb1Mlw19BKfAGgPo9qlHkUOI1S2Nq1rjJraWraG+Tl5LzL8/mbHME65jlL04GXnGRA5DDbhjOcV4UUagGfA0yRRP/kBsC3NHSg34769hJ55MrrHLzPJOk76+SX17KzKzsw7SfykZbiKBAeTSd1TvHLjkxWnXnE9l/ifQXSD3j9USK7d28iNYVwQRf+YZgjCGEXpTk5k18jPCkII2LxrNKRiJcmGGX7glZ1Z7ebqEfdEk2zwm9h8UmKC0/H65NmorSsjEwZQFnQg0Wlef5jENyBO4y8e/aIbF/HoEWNdN+HbTa9Iu5L170hWxq1maEj5EGI90p4jyD0ttNE1SJJ3xo9Z9mjpPQsMq07ySs6+Me3Ut2eyz2RfRxKGhlReydnHpJm04ocrkx+oZsKPoR22/QL7D0LsiNj3tH3fTUiLQ0PKh4difjq9nKiZBqqqaUUDy578uMnrqA74czzwb+92R0jOyXHf40puxj+ENAUGm3DHK3DmO20SXBOe1kciGwPpKOuhUzTCknwfmzRA4uAkGbLxXpnh888feWlbcdOu9x0nfN/bDxpSPoQoga6eIDnyZGR85rAdP1L8qOSInE0ipdK2Mt7HkHhgv0VIcuRnLESPlDNNO5A3V0SP8ta0lybjjy7j6iVMjgxyJVmPckQSp71fYkIIkeD2fc/LOJvhz0OQHyu5FcjowJqH8yVOXjrRRnwdas68N4TER7YnFHLVv2TiOAXStsS2laL5x6o0Z7xEj1QIyuCUYx6J8WOU4uNv7ZaXUcOZNAcuiYuXVA35LL/LhXxNSInoZ1/ZkCvjkrQUuXofQ0JDqo4yhGCHIyOTHXFtMJHlD7uKdpuJbIf7zWM7bBJxD/zb3TBr9/tX0hzDJG+wtRASBnqknPG8LnhcstOU09TjJP0ZjzD11YQ6zttgq+XfvXYwJptEqzcVQkgOyNdYiThiOYSiIVVHAfxCI3frtvP5xJrQAeepYnJmvBOSZdKfXEoa9hd15G3SDGiDiTOSWazfF3qkSB0Z//A0eSCd/ECDHieigYMIQsywj4tMZo1qPluSeWhIhaDFgk1kbJY//Q495frIyYcj/efUBuSkLSRFJvdcEtKC5Pld47eI5AEaUnUU4HnND+MYJ8JvPGVsiZ5bd56E0RPi2cZpjMb0PUv645Kdz262JgIIyQ/Z6vtJnLRPv+jBa/tJJx00NOPHP/FgW7s0pHx4GTM8wpDXexANBktG7kNZn+l9zKSGTsa8jybsPgAZaQMZJ88zzpkhp/0maUcyPNmbxHeoRbq3JIyeFqkaZHZygMEm3KkM5k1NM6MPPAlSGJw3b4alSfeWwmwaZ6naC//TzrRRldl9YYWmnecTB5l+xi1MvvrVNhqn5BpO4FTIaj1wj1QIEt4jlTOvgZ/sfkQyWqcpLkeIOtDK7rNuHXI5GM6sIRSVLPUh5gFFvO9nlu6dkKyS1YF+Nsnl902BTW9LQ6qOhMOf15aP5O/jFblWEjMi7Zc5NNVAsKqwbLaDVuoE3WjPj2X7Pu98Em8/lrU2n80+sUZW9uukNqmRbHtpSl/U1GW8WXu/iBvCypKiIZUKzXi5MvZBiqvzimCQZW/AqDcC6RkizSBr7Sx772m2aO36yfD+HwAo5HVgnC2987qXu5GMt1diiWppt7CaO6EhVUcGwp+33HlKMlp3f1KDCjHXb0sMorK8RCwDbSbLNKO/aPUnkOl3OMvvZhaIcy9dG/c1AoihrYU3xiK/gzVDsC+aHABJGrnpGax5MzBV+nKPlDOe1wUv7Q9J04ovNbc4yCLzRcUgz+XmYtTNP9hMpn4z5m1sJZry/ud3NjZvw+xMGy05JWsezLxRa5Ot1DRz4WFqvo758LzlzejJHjSkfAwoDspJw4+X+A2cIMkP/JO/hw3lJHgv8d5DfDOnydVtqxmEyfcdze2f+IGNl/xEBtSR78m3IDHIj6hjvoKHKPqfEJ660JMcTR6jhetzw/edUfp4L6ZvUDuOg2UIUUbZ4pWiIeWjc8DQ1A7kFU0MvxuHMeD6gXNJb6ufX6bMkWBXpjqNLL+/o9LpaS5b/7zN+S3uLeQHvhkzzk33FDTlw9A6EwYVbJetxF+38X3Ik+nPw+mX38FJc9tdP8k7iGN4JlFXiTnniKdNR33Hog7ao7/jWe534iFr+mSduAzJKkKUsd4iHQ0pHxt3bYmC15G2Gk6EMYqE5cxo2SBbb0ioy9DJlemm+oir5KjKlukrk22rg+w3tU6y/JJybHVU1Iltft3vKoNAN5hStQX9ACyqMQlYGy+uhn9kYzID3jbVHoxUly/bfeiUqrsOO50GInZpPa9gOfFlHvDaDpRcBgj2gy+HuvFiGHhzUGgkLYM1LlyesU2b1snTXlPIVk2Uq2QVlHLsf/c0/YBSjqZuTJP9Kp1typXrEu9klI1+KkxjUldMY+Gy6MPadW8a5dCQ8rGF2AoD0NXwmP0f74JvEFIIfNSD4xPX64XAddl+LVkTVI2LgvJ1aWXlywjjSbCRmxTlkONh24G0Sb5uP3FZUYY+jyy9PINKN5dy40hbVuinqmNdV6kqo6KT+poun0uaWlkROnSXcvKCrK+xwcVAsC3DlE63D1aXV6Wprk8sKMpSlePSl4dJr+qLVXWivGfHcnV5tHoZnqXu22L67phak9X30GJSwmXYGHaOI0kTNa55lyRia7j2wjY6mGS6fm9VRcrSy36TfSeD6Wy+x8E0wfv031dQvk6W7TX/OMB/T0E9/HnqdIL8v/3fYlUavwEmPFV6X5oN/13COvwT/wcTNKR8DC10oKNQ8UhVO9FqR+nvqKodi/+j4e9sannrDLD6/61cb8xjKlP7u0UaWx0q1wyGXv2fDdcb0ze+7bKPlarfVn3YdB8Rm4+AXK5i4GIWlyvCfttcDVTbj6jth9G2fFs1Xe5HhGwFYY36ZpfTzImPsGXJ+pI4yrFJZpJlM6iNMqGlu6w1LMLqo6lrfT7NNaXhpKfgaXQx5jUkqKazS1Yp04s2Q56Gjy7qnL4Q5oo0Lkx3Njoay5SlbTQAAnkarnvK6w0D/Nq1xt7HX65KRl0aye/+74o/bf912W9y40fIfhP1Oumuye6hatToytHp1V+GkJYpK6Mxrd/Iqv+taqhVy66r+5qcyrlQtTzV3yXGWBkCfcLuDaUh5WNJaSU6y/UrIqVeHUn3p5wBVM4kuqXvv25HnqNVWXuDjNfdvRdKr4rkd5lXQpZO/lt9XiH5IAfzydzaQR3KATmyPA1lS9PYLTsMlqfKq8oPAGWHpZj1183Lq1yWAkTxMjVzj2PcyxuaSZRlHSbC7m9184rZLsXT62JTZkFzP6b8BU35Bc3gQCdXJ9Oc16Sv4bphQGOuD9N1gxfTYkAVtQzbNFZtJybvba3MEG6psF7qSt72JEzPbrPCQbdawyRDO46KMAaq/N7kcZDXKKMhr29cURLrpHoHoSHlY5H3FxS8eKrEuNbZcdbYdfBkO7ALE9hBLifafhfTdeN+LaN8c30YB+4R78G2HBdZrmnDdNVh1u1HM0qiGArhDJpwZYbI05S9WmkaWm5DIKcJnyT2/iDK3p349g60yv6hZPb4hJ+kaMp7bd3vu7zLrjpEdEM7GUo6Q1wjR9vGw+yFctvvpN43pZIffX+Urlx92cnsn7LpZ6wni0L0WXnr52zH0TSkfPSs/UfuHnTcxPEhDBUAI3bDIbqxEtWwakowBQsZdh/wJn+4kyLSgv4QH4Yws65OG32rRAiJm2if1goh0sMO1OM8YqA1QqNnDde2X+mTHd8X64Ahkt8yP97IzmRB86MEyr6JhRDBm/Rkvw20L7bPlIaUj77S6siNOotRd5I8+0hbbibqIpsDFPu6MbRHi/aayCLP/K4cjQw/fH6y+X6RCsn2wQnITkDf+I5ziEG3wARUJqejQk1GJeiJrmUK2+9mKdpklo5jcCyjDRdc0pAKQam8tm4tcDYMgThown0kWFfNONeokQw/+2Z5g1INk+0nWx140tWf5/2NhNiSTr8ehfTPnGoVBIR7Pxd6jOGYL2CUxDsO9J/NF993zfRNisPQytvbGgemvWVVaEj5qLwwcfd0GR6Qy2ii8ZjJE91jHiWnNViIZTAerIvMGFatTXJtJmd9UZJkdWlqEuT6vc3WJEq7ketJnaauHEi/nXKlRHrQkEqcJBp3ggOiJr6M8XbRCpe5q2EY83cjx58hkiSpfPRaYT9TTPDFTJeWWe2RYzI98E5ft3wbJu3e1zd3yTkNqcRokQ9Fwh+8ZGbfY9Y5ptnrrC1lSWS2MfbZ7+Z8zJo+82rzXuX6Q06aTkaNk/T7vZTrJUveT3//3JQAJ2H7ML1uzeivhUAKfXBc5WWzLwDSM1BDRR/m0r4wJLG0L+ck2ehFOaEOMebZmJhUTKNlpT+IyQf99ZShDxAjuZFUaDUDPun7MfQZuV5aGZWo/an82TXtu7ahD27eRJtlfeV4ki1fsQfs2ll+nwYhhBBCCCGEpESqHqmHH34YV1xxBZ566im88847mD17No488kgAwPr16/Htb38bDzzwAF577TV0d3fjgAMOwKWXXopx48bVZCxZsgTnnnsu5syZg5UrV2Ly5Mk4//zzcdRRR6V0VxmiSZZ/srNDSYTYbTMvTaozonmbq8mbviTL5HqzPrGk3fejtBk59gaRZEjVkFq1ahWmTp2K0047DZ/85Cfrrq1evRpPP/00LrjgAkydOhXLli3DWWedhSOOOAJPPvlkLd1JJ52EFStW4N5778XGG2+MW265BcceeyyefPJJTJs2zVGjAlpqaV+TXvjc1VjuFI6TPLnViT38uCcH35mWIldLi0jmYPtpCwSE9R4pT9imTBjP8+o8UjIWLlyIXXfdFW+88QY222wzAMDQoUNx7bXX4qSTTqqlGzVqFC6//HJ85jOfsSq7p6cH3d3d8LzBdedIEaTWaTRnDXQK95aN101O5ts+jYVs00YDjCy/x3kk831PjLDtSMnTft6W9zS30/uooWIerceKFSswfPhwZbpcBZtYsWIFPM/DiBEjar/tueeeuP3223HYYYdhxIgR+PWvf43e3l7ss88+Sjm9vb3o7e2t/d3T05Og1iHgjAc8eE3oWFMYmEv7Jz5vO0LUEwcthGQfvqdtT8044SCe5IzcGFJr167FN7/5TZxwwgl1luHtt9+OY489FqNGjcKAAQMwePBgzJ49G1tssYVS1qxZs3DxxRc3Q+1wZHENbgrGncusT3qzWU2ul4wMOJpd37mbAeRggOSdjPQ1LuTJqxEHuesXbchhuyOtSgtF7Vu/fj2OO+44lMtl/OQnP6m79u1vfxvLli3DH/7wBzz55JM4++yzcfTRR+O5555TyjvvvPOwYsWK2r/FixcnfQuEEEIIIYSQFiLzHqn169fjmGOOweuvv465c+fWeaP+/ve/4+qrr8Zf//pXbLfddgCAqVOn4pFHHsE111yD6667Tiqzq6sLXV1djRcEz5HKE9mYfYxzLsLmkNZstM+WnAltaXIxZ0ayRA5f8RyqnABcKm6EXq8a2RhHZZUWOJC3akS98sormDdvHkaNGlV3ffX/b+/eg6Mq7z+Ofw4JCQokkCCECEQqykUujoAV7yiiFBXriKhIQTqOtCpSrfXSseD8HPHSUutgvZQK2otYR2EQ64UpJEhV5FqpWkVBQgVkaoUEKEGS5/dHYEnIbrJn95w9zzn7fmV2YDeb3Weffc7znO9zO/v2SZJatWp8kpCTk6O6OiqT5mTXwROSskDlnp0yEhyH5BhAliLQ944teWlxnWNJh2TaPDhnoFO0XjrnxIEGUnv27NFnn30Wu79582atX79eRUVFKi0t1VVXXaW1a9dq8eLFqq2t1Y4dOyRJRUVFysvLU58+fdSrVy/ddNNN+uUvf6ni4mItXLhQS5Ys0eLFi12nx6hW9GkhMFGp3MMqqEDWg/fNro4RRE/8k+7In+RR56M5EetcjWo7Fej25+Xl5Ro+fHiTxydOnKgZM2aoZ8+ecf9u2bJlsV35Nm7cqLvvvlsrVqzQnj171KtXL/30pz9ttB16Sw5vfy7lRr/izjY0VA3Y0lOJ8LK4lxmWoJ5JhPOL7BHVoKFlEWkjjDn0HR5scftza64jFSQCqQgjkGqAExykKyKNJHxEPZMI5xfZg0Aq5FwEUlavkcq8HE68gUiKSOWOkAhvMBH6k30bLx+CrJPyURTS64geCRxtP/6SzF/HSXavCQKpxti1L/SycIDVhp6v0J98AZ6qrf8nhB1z9bWJ7SdDzTC1rv+E+ivzbGi3oimcgZgv0j4fjMCufZlnko5AAVtwEmCpEJ5EA/USnIxFsKPKhOSUnnoeYReOI62hCF2QFwAAAABswogUEGaMeiAdERxhcI1jKHkRzCtGeoDMyMix5mGbluwrEUg1wmYTsEFE5jhH6CQ9fFMSkDQPyykn5T6hXbYYE5vCISLnFS3xsq5IsmngCAAAAAAAlxiRasA59AM7RH8UIGI9RBEagTqaIycLyiPSlW1lJGPtZYTrlsPCW3b8b8c4LwsII8FJIZBqILwVWVhFLJCwVRachLjBcY5sxkmpnfhe0CyCGmsRSDVSKxkKa7I4IUUQ0j3h4IQFAOAawQziYI0UAAAAALjEiFQmRLQXg579LMMUQcQT0fotc6Lcn8n07bioS8Mp1e+NOjLSCKQacZoWeC8qPJ8rzShMsfMtKPO8AvP+pMeXz+74cHLWKJn+n/w5fnyGFuUE8J7xBfP54QVjbAkgan1/B38+q8ev6VEaPWtrHY8+nw/nFracTwTWURvqoIc2Izne1i/kOgAAAAC4xIhUA45ymvaCeNk54VMPs7f9J8HF1v72wHs70uBFWp008zq9NKT+t+m8b1p/60HZ9LKMZWLEyIvPDO8Yn6eqeT2648XrpfuZ002DN3niQT54NqrlfRnyfwTU/5HNeOwZ2Y3H5rQlYHV+NubvyGiy7WpyaSCQashpFdCwbjAnS5mfOpS5aVNhP8n1N/3pvXZzjVtL6U6nYWx4ApJq/qTbMDf8zu1u5OEnvwOqFt8/g2UvM+/lz3v4kXavv3v/8tff4Cez9V+Ax5ul9bwtUzBTZ2e+NpZcHtPdCQAAAAAuuRqRuuCCC5J63tKlS1NKTNCMqZX7iXIWRtVJLkANe39GSjI24hjgFEl2UwSQgnD1clvY9kYJOwsGKlzHYlT5MLWvvLxcZWVlGj16tFq3bp1SsgAAAAAg7Bxjku92eOSRRzRv3jx9/fXXGj9+vCZPnqz+/fv7mb6MqKqqUmFhoaR8OaHe+tIdRi78E43eJHp8fUNvLxCIaNTNyGacu2VGfV1xULt371ZBQUHC57kKpA5799139eyzz+ovf/mLevfurcmTJ+u6665r9o1slq2BlBscuMhWnHihHh0LGUVnA8KC80b/BVAf+BpIHbZv3z699NJLeuKJJ/TRRx9p27ZtoQymCKRaRiCFbEUghXoEUhlFIIWw4LzRfxYHUmltf7527VpVVFTo448/Vv/+/SOwbqpWMhwQ8dCkAQgdTnDCi+8OwGFB1AdJnvi6DqS2bdumefPmad68eaqqqtL111+vlStXql+/fm5fykL0PQNAZIRkVIMRf9gkm86EIn3s0RmREa4Cqe9973tatmyZRo4cqUcffVSjR49Wbi7X9AUAAACQXVytkWrVqpW6du2qzp07N7uWaO3atZ4kLlOOrJHKjXbvBCItm3oRkZ6srefooY0juGveAXCDdZqZVB8efevtGqnp06enmy4AAAAACL20du2LCnbtswk9LqFDFZIZ1E2HMILSUNaOLkZUNGYWhKAdj1C7FY0yc4QtdZpvu/atXLlSixYt0rfffqsRI0Zo5MiR6aQTAAAAAELH1YjUggULNHbsWLVp00a5ubmqrq7Wr371K02bNs3HJPqPEamosrxXzKIesaj1aHnJlt6xQFAfAoB3LGr30bxkR6RczZF48MEHNWnSJO3atUu7du3S/fffrwceeCDdtAIAAABAqLgakSooKNDq1at18sknS5JqamrUtm1b7dixQ506dfItkX47PCLlqA0jUkmI3uiF5SNXyaKnK+O8Oha8GPWK3nEJNJbVo8MNcKxnHmXPIyE6x/Zl1749e/aoQ4cOsfv5+fk65phjVFVVFepAynNOyBdDm+YDi+hVKDmx/9ndQLUQ8NlaQUU4wLPpWLApLa7ZWnYBC4X6WAcixvVmE2+++eah9UT16urq9Le//U3//Oc/Y49dfvnl3qQOAAAAACzk+oK8Lb6g46i2tjatRGUaU/sQj92jU6gXkWmZAAIQ8tkjAFqQ+jmCL1P76uo4aQEAAAAA11P7JOnrr79WcXGxJGnr1q363e9+p/379+uyyy7TOeec42kCM8moVgrr3OMIr0Pxi20jTtk479227wCZEYWyTtkNryPlL1yzZ1xhdg0yIdLnnsl9Nlfj2hs2bNAJJ5ygzp07q0+fPlq/fr2GDh2qX//613r66ac1fPhwLVy4MJXUAgAAAEBouFojNWrUKOXm5uquu+7SH//4Ry1evFgjR47UnDlzJEm33nqr1qxZo/fee8+3BPvhyAV5W7NGKmoi3VsCAHHQjsEt2krPMFodFUZSbYtrpFwFUp06ddLSpUs1cOBA7dmzRwUFBXr//fc1ZMgQSdK//vUvnXHGGdq1a1e6qc8oAqkIo3EAkG1ox+AWbaVnCKSiIrlAytUaqf/+978qKSmRJLVr105t27ZVUVFR7PcdO3ZUdXV1aum1gKOcSMzdD4K1FUfGvs6QbcQS0kbT2nIWIdSBERDS4zsr2Brk2pquELKyDqVOcC3ZHHO99+fRIzaM4AAAAADINq537Zs0aZLy8/MlSfv379eUKVPUtm1bSVJNTY23qcswN73dVvY4BOjo/Mi+kQM/r0fiw2hXSDtAnGwrVkhb9tVFSEXG2nRGBoBIcbVG6oYbbkjqeXPnzk05QUE4skYqP+kRNgKp5nHy4qWQTRv0EychcIm6CMmgTQfQUH3bcdDbzSaiKus2m+Arhx+y4diJAo7/SCBARNAIPjODYz0oyW024ed8JAAAAACIJNdrpKKtlTK4zZsCm7LFyIGdwj5SEJL007sXDHqvvUV+AtmBY929TLbzjEgBAAAAgEsEUgAAAADgElP7GnAO/WROTgbfC4lYM9UrI0WPHQBdH+MhmbKYEqb5IjLoF7YLbQ0OCaAN9eJc3rcL8gIAAABAtmNECtaxZoSoiQB72AIeFbH3O7FTaBYHR3m0DVmmNugEAMhCjEgBAAAAgEvWB1Jffvmlrr/+ehUXF+vYY4/VqaeeqjVr1sR97k033STHcfTYY49lNpFZyvj045+6NG8ZYEz8W8CcDPxEiV/HBj/8ZOMPANjK6ql933zzjc466ywNHz5cr7/+ujp37qzPP/9cHTp0aPLchQsXauXKlSotLc18QgEAAABkFasDqYcffljdu3fX3LlzY4+dcMIJTZ735Zdf6pZbbtGbb76p0aNHZzCFAAAAALKR1YHUokWLdPHFF2vs2LGqqKjQ8ccfrx//+Me68cYbY8+pq6vThAkTdOedd+qUU05J6nVrampUU1MTu19VVeV52rOBn9Ox/JnOYctM1mamCUZtO2oX0xJDOb0vat+X1Ww5fgGwvXmGWDC1H82zumXatGmTnnzySZ100kl68803NWXKFE2dOlXPP/987DkPP/ywcnNzNXXq1KRfd+bMmSosLIzdunfv7kfyAQAAAESUY4y94W5eXp6GDBmid955J/bY1KlTtWrVKr377rtas2aNRo8erbVr18bWRp1wwgmaNm2apk2blvB1441I1QdT+XLoYQ5AFvZs2XvY2YnjMgGr+8J8E8rRS2SN8G+QEZI2OUTtaPjLRDYykmq1e/duFRQUJHyW1a1w165d1a9fv0aP9e3bV5WVlZKkt99+Wzt37lSPHj2Um5ur3NxcbdmyRXfccUfctVSH5efnq6CgoNENAAAAAJJl9Rqps846S5988kmjxz799FOVlZVJkiZMmKARI0Y0+v3FF1+sCRMm6IYbbshYOgEAAABkF6sDqZ/85Cc688wz9eCDD+rqq6/W+++/r2eeeUbPPPOMJKm4uFjFxcWN/qZ169YqKSlR7969U3jHOokpI/VCNGSO+PyYShDYlCrKYwK1mXsri6ZXUhoAWFMnJdE+MR05WH5OrbR6at/QoUO1YMECvfDCC+rfv7/+7//+T4899pjGjx8fdNIAAAAAZDGrN5vIlKqqKhUWFkrKzepeAxZDAtnLj7qPOgV+y+Y2O5tRt9glisdhfRk7GO7NJgAAAADARgRSAAAAAOCS1ZtNZF6Oy8WLIbnWQpKiODQLIDjUKVmGlQLIEOoW2IIRKQAAAABwiRGpBhwnR46rEamcQ/8Sj0ZPtEYbfWfCm1/hWrQc3nyOyaJRi3CVLXcYEQAAIgAAAAAAcI1ACgAAAABcYmpfI62kLJuu4DjRiqWNZ1PM/MiXDEzL8mGKnT/Tk3zKiyyaNgb7Mf0N2S7K01sRdcmV3WidRQMAAABABhBIAQAAAIBLTO1rpE6eTO3L4A5m6Q6bN54JlWa6PZhW5ec0gLSm2bjazfFo6fVXeDI9KI0pnInfPbh+mKhNSUWyclp+CuKoDToBSfFuarZbGX7fAHc5zfRUu5Zbr5DtRMr08dDIVFnnbAQAAAAAXCKQAgAAAACXmNrXgOPkurwgb6IXanjH36ko6aY2LFOkHEti/szll3/v48dn8Po1/fq+/fz+gjqWbDk2os5YNAUpU1Pg/H4fP/LU6zR7+3revZaX6QrD91DP/ymqLabb0404LalTApxqmqxUpuml+1UZY5RMmaMFBgAAAACXCKQAAAAAwCWm9vmu4bCgHTtO2Tydz/ZpSkcP+/uXl34Mtden1Y8pF6m8ZnN559s0qgSzAzz5Hi3YzMn248drNk23a04mpuL59x42T5UL07S0RMKxo2K2iNcW+FceLKmvPT2P8SevPJtR6fK7TKZZt+RbBAAAAIDwIJACAAAAAJeY2tdAXV2NN7v2Wc+S6TBc2M4fWVGGvRLtviRPLuYcNTZObQ7BrlleyPTFYOMLOK9p9/xnZRtoYb3jAm1JYuH+ZgEAAAAgAARSAAAAAOASgRQAAAAAuMQaqUZqJcM8UIScD3Pw7Vjb4Afv1kvYOIfcs2/NyjUHKTJh2m6avs6mQrqeLINro6JSX6dcp6aT177VdZkot/7VF1EpU24k+5mppQEAAADAJQIpAAAAAHCJqX2NOImHddmyFLbKwLQrG6etAdEX0mlsaCqD02Pr62v6yYFM4EgDAAAAAJcIpAAAAADAJQIpAAAAAHCJNVINOMpJvBaEJSLIkGhsMxrStR0RWwsZjbIE2CUca0bDtM1/hkXpcg7wEdufAwAAAIAvCKQAAAAAwCWm9jXktGLIN1sYe6eeHZ42Yve0LHvzj+l5APzEMdlUOKY7HhKxNgJ+YWofAAAAAPiCQAoAAAAAXCKQAgAAAACXWCPVkKkT+5wHK7pzzy1eU9RQhOaOR7csBS9U6yGQPtYOwysRamMygXYsSKyRAgAAAABfEEgBAAAAgEsEUgAAAADgEmukGkhvLmpI1sD4IYRznpl33FTU1r1E7fMgYlh3hGxEuXfFinYshOd4Xkj2UzMiBQAAAAAuEUgBAAAAgEsEUgAAAADgEmukPOMmJo3Yeio/5zz7NDfXinnHgFdYd4B0Zek6iNAI5TFOX30khLHoecEYSQdbfBqlHAAAAABcIpACAAAAAJcIpAAAAADAJQIpAAAAAHCJzSYacA79+C8nA+8RbrEL5oZ6kWPENhUBEF2eb2aQHf20bFzkA8fismNo11Nlkr7EbbhYXFoBAAAAwE4EUgAAAADgktWB1JNPPqmBAweqoKBABQUFGjZsmF5//XVJ0rfffqu77rpLAwYMUNu2bVVaWqof/OAH2rZtW8CpBgAAABB1jjH2XoXv1VdfVU5Ojnr16iVJeu655/Too49q3bp16tatm6666irdeOONGjRokL755htNmzZNBw8e1OrVq129T1VVlQoLC+WojZxQXvTOAzbPSUY0Zflc83DOFw/Bd2ZvkxYuoWoLo9V+se4qnMJZp6cqBG1BMpppL+q/z4PavXu3CgoKEj7P6kAqnqKiIj366KP64Q9/2OR3q1at0umnn64tW7aoR48eSb8mgZQIpJB5BFJBJyEFIfjOwtWk2StUbWG02i8CqXAKZ52eqhC0BcnwIJAKza59tbW1eumll7R3714NGzYs7nN2794tx3HUoUOHZl+rpqZGNTU1sftVVVVeJhUAAABAxFnfjbNhwwa1a9dO+fn5mjJlihYsWKB+/fo1ed7+/ft1991367rrrms2cpSkmTNnqrCwMHbr3r27X8kHAAAAEEHWT+07cOCAKisrtWvXLr388suaM2eOKioqGgVT3377rcaOHavKykqVl5e3GEjFG5Hq3r07U/uATGJqX9BJSEEIvjO7m7TwCFVbGK32i6l94RTOOj1VIWgLkpGNa6RGjBihE088UU8//bSk+iDq6quv1qZNm7R06VIVFxe7fs3Da6SkXCow24SmMY9WQ45sEZHGEACiKlyn6Rnlb/BqJNVGZ43UYcaY2GjS4SBq48aNWrZsWUpBFAAAAAC4ZXUgde+992rUqFHq3r27qqurNX/+fJWXl+uNN97QwYMHddVVV2nt2rVavHixamtrtWPHDkn1O/vl5eUFnHoAAAAAUWV1IPXVV19pwoQJ2r59uwoLCzVw4EC98cYbuuiii/TFF19o0aJFkqRTTz210d8tW7ZM559/fuYTDAAAACArhG6NlB9YI2Ux1kgBPmKNFABYjdP0hFgjZR0nRCfusIvlJ6RUxLBAdu1qBVvQQYpsRH2bGXSjAwAAAIBLBFIAAAAA4BKBFAAAAAC4RCAFAAAAAC4RSAEAAACAS+za14DjtJYTpV37jOU7ySXB3l1nQpa3bst1FHb5i9KxbJsUywe7p0UQxxlsE4X2ywNe1bf2nofZgREpAAAAAHCJQAoAAAAAXCKQAgAAAACXCKQAAAAAwCUCKQAAAABwiV37GnCc3Gjt2heBj5LqRzCh27HQsvQ2l/Ghy1t4LgJ1C6Ihe3cUi2g9zI57MdlbtsOFESkAAAAAcIlACgAAAABcIpACAAAAAJcIpAAAAADAJQIpAAAAAHCJXfsayVE0t6OqDToBMf7vpufh63uYVu923/Hy83m7I1BYdhhybDnGQ7lDKH1vDVlTliwRljogsyK6u95hEd9ljzKNltAqAgAAAIBLBFIAAAAA4BKBFAAAAAC4RCAFAAAAAC4RSAEAAACAS+zaFxr27Lx3mP878B3m8/v4/Dm83fUnXt9HiulPZde4ZnZoCmIHs1Ty1ppdmA7lZbh2frOvHgpSWiUplLs2InDskgdYhREpAAAAAHCJQAoAAAAAXCKQAgAAAACXCKQAAAAAwCUCKQAAAABwiUAKAAAAAFxi+/MGHMeR49gaW3qfrnS3L3ecHBfPTmfb5MSf3ZMt2GPfuYfboDdIV7rbW7e8HWyqZSOFz+vFls0ebt8brq3D4Qu2EYetIr5VOQBGpAAAAADANQIpAAAAAHCJQAoAAAAAXCKQAgAAAACXCKQAAAAAwCUCKQAAAABwiUAKAAAAAFziOlINOGolJ4tiy0xcM8vErlXkz3s1vISMJ9eUSsjldbBauLSNm7Qmd5WcVD57M9cB8zMv43yglq+VBXiP65DZKxJ1QmiKl59tpztWHZNcB6yxLLtmnzFGyZz7ZU/UAAAAAAAeIZACAAAAAJcIpAAAAADAJQIpAAAAAHCJQAoAAAAAXCKQAgAAAACXCKQAAAAAwCUCKQAAAABwiQvyWsgEfHE87y9s6/Jits1IP21p/r0HeePdhSZ9KCcWXIAwEhfitFCgF7q06kKOR/oPo1rWrLqoaYocOZH9frxjz4V07ePBOEH4DyOkJbn6hxEpAAAAAHCJQAoAAAAAXCKQAgAAAACXCKQAAAAAwCXrA6nly5frsssuU2lpqRzH0cKFC5s85+OPP9bll1+uwsJCtW/fXmeccYYqKyszn1gAAAAAWcH6QGrv3r0aNGiQZs+eHff3n3/+uc4++2z16dNH5eXl+sc//qH77rtPbdq0yXBKAQAAAGQLxxgL9jtOkuM4WrBgga644orYY9dcc41at26tP/zhDym/blVVlQoLC5Wb00mOE3xsyfbnibH9eUNsf47ksf35YcHX8X6LwvbnEnVBy9j+PLHoH+fwV314VKPdu3eroKAg4fNCfR2puro6vfbaa/rZz36miy++WOvWrVPPnj11zz33NAq2jlZTU6OamprY/d27d0vyI4BITfCBlNeNl3evl37a0vx7D/LGu5MDP04ybDhxsSEN0RNorlr1lVqVGDSDQKol5E9i5A3SVV+GWjzvNCEiySxYsCB2f/v27UaSOfbYY82sWbPMunXrzMyZM43jOKa8vDzh60yfPt0cyiFu3Lhx48aNGzdu3Lhxa3LbunVrs7FJqKf2bdu2Tccff7yuvfZa/fnPf4497/LLL1fbtm31wgsvxH2do0ekdu3apbKyMlVWVqqwsNDXzxA1VVVV6t69u7Zu3drs0CeaIu9SQ76ljrxLHXmXGvItdeRd6si71JF39Ywxqq6uVmlpqVq1SjxVNNRT+zp16qTc3Fz169ev0eN9+/bVihUrEv5dfn6+8vPzmzxeWFiY1YUmHQUFBeRdisi71JBvqSPvUkfepYZ8Sx15lzryLnXknZIaXAn1ary8vDwNHTpUn3zySaPHP/30U5WVlQWUKgAAAABRZ/2I1J49e/TZZ5/F7m/evFnr169XUVGRevTooTvvvFPjxo3Tueeeq+HDh+uNN97Qq6++qvLy8uASDQAAACDSrA+kVq9ereHDh8fu33777ZKkiRMnat68efr+97+vp556SjNnztTUqVPVu3dvvfzyyzr77LOTfo/8/HxNnz497nQ/NI+8Sx15lxryLXXkXerIu9SQb6kj71JH3qWOvHMnVJtNAAAAAIANQr1GCgAAAACCQCAFAAAAAC4RSAEAAACASwRSAAAAAOASgZSk3/72t+rZs6fatGmjwYMH6+233w46SVabMWOGHMdpdCspKQk6WVZavny5LrvsMpWWlspxHC1cuLDR740xmjFjhkpLS3XMMcfo/PPP14cffhhMYi3TUt5NmjSpSTk844wzgkmsRWbOnKmhQ4eqffv26ty5s6644oom19qj3MWXTN5R7uJ78sknNXDgwNhFPIcNG6bXX3899nvKXHwt5RvlLXkzZ86U4ziaNm1a7DHKXcvi5RvlLnlZH0i9+OKLmjZtmn7+859r3bp1OuecczRq1ChVVlYGnTSrnXLKKdq+fXvstmHDhqCTZKW9e/dq0KBBmj17dtzfP/LII5o1a5Zmz56tVatWqaSkRBdddJGqq6sznFL7tJR3knTJJZc0Kod//etfM5hCO1VUVOjmm2/We++9pyVLlujgwYMaOXKk9u7dG3sO5S6+ZPJOotzF061bNz300ENavXq1Vq9erQsuuEBjxoyJnbRS5uJrKd8kylsyVq1apWeeeUYDBw5s9DjlrnmJ8k2i3CXNZLnTTz/dTJkypdFjffr0MXfffXdAKbLf9OnTzaBBg4JORuhIMgsWLIjdr6urMyUlJeahhx6KPbZ//35TWFhonnrqqQBSaK+j884YYyZOnGjGjBkTSHrCZOfOnUaSqaioMMZQ7tw4Ou+Mody50bFjRzNnzhzKnEuH880YylsyqqurzUknnWSWLFlizjvvPHPbbbcZY6jrWpIo34yh3LmR1SNSBw4c0Jo1azRy5MhGj48cOVLvvPNOQKkKh40bN6q0tFQ9e/bUNddco02bNgWdpNDZvHmzduzY0aj85efn67zzzqP8Jam8vFydO3fWySefrBtvvFE7d+4MOknW2b17tySpqKhIEuXOjaPz7jDKXfNqa2s1f/587d27V8OGDaPMJenofDuM8ta8m2++WaNHj9aIESMaPU65a16ifDuMcpec3KATEKT//Oc/qq2tVZcuXRo93qVLF+3YsSOgVNnvu9/9rp5//nmdfPLJ+uqrr/TAAw/ozDPP1Icffqji4uKgkxcah8tYvPK3ZcuWIJIUKqNGjdLYsWNVVlamzZs367777tMFF1ygNWvWcEX2Q4wxuv3223X22Werf//+kih3yYqXdxLlrjkbNmzQsGHDtH//frVr104LFixQv379YietlLn4EuWbRHlryfz587V27VqtWrWqye+o6xJrLt8kyp0bWR1IHeY4TqP7xpgmj+GIUaNGxf4/YMAADRs2TCeeeKKee+453X777QGmLJwof6kZN25c7P/9+/fXkCFDVFZWptdee01XXnllgCmzxy233KIPPvhAK1asaPI7yl3zEuUd5S6x3r17a/369dq1a5defvllTZw4URUVFbHfU+biS5Rv/fr1o7w1Y+vWrbrtttv01ltvqU2bNgmfR7lrLJl8o9wlL6un9nXq1Ek5OTlNRp927tzZpAcDibVt21YDBgzQxo0bg05KqBze6ZDy542uXbuqrKyMcnjIrbfeqkWLFmnZsmXq1q1b7HHKXcsS5V08lLsj8vLy1KtXLw0ZMkQzZ87UoEGD9Jvf/IYy14JE+RYP5e2INWvWaOfOnRo8eLByc3OVm5uriooKPf7448rNzY2VLcpdYy3lW21tbZO/odwlltWBVF5engYPHqwlS5Y0enzJkiU688wzA0pV+NTU1Ojjjz9W165dg05KqPTs2VMlJSWNyt+BAwdUUVFB+UvB119/ra1bt2Z9OTTG6JZbbtErr7yipUuXqmfPno1+T7lLrKW8i4dyl5gxRjU1NZQ5lw7nWzyUtyMuvPBCbdiwQevXr4/dhgwZovHjx2v9+vX6zne+Q7mLo6V8y8nJafI3lLtmBLTJhTXmz59vWrdubX7/+9+bjz76yEybNs20bdvWfPHFF0EnzVp33HGHKS8vN5s2bTLvvfeeufTSS0379u3Jsziqq6vNunXrzLp164wkM2vWLLNu3TqzZcsWY4wxDz30kCksLDSvvPKK2bBhg7n22mtN165dTVVVVcApD15zeVddXW3uuOMO884775jNmzebZcuWmWHDhpnjjz8+6/PuRz/6kSksLDTl5eVm+/btsdu+fftiz6HcxddS3lHuErvnnnvM8uXLzebNm80HH3xg7r33XtOqVSvz1ltvGWMoc4k0l2+UN/eO3n2OcpechvlGuXMn6wMpY4x54oknTFlZmcnLyzOnnXZao61u0dS4ceNM165dTevWrU1paam58sorzYcffhh0sqy0bNkyI6nJbeLEicaY+u1Zp0+fbkpKSkx+fr4599xzzYYNG4JNtCWay7t9+/aZkSNHmuOOO860bt3a9OjRw0ycONFUVlYGnezAxcszSWbu3Lmx51Du4msp7yh3iU2ePDnWjh533HHmwgsvjAVRxlDmEmku3yhv7h0dSFHuktMw3yh37jjGGJO58S8AAAAACL+sXiMFAAAAAKkgkAIAAAAAlwikAAAAAMAlAikAAAAAcIlACgAAAABcIpACAAAAAJcIpAAAAADAJQIpAAAAAHCJQAoAkDVmzJihU089NehkAAAiwDHGmKATAQBAuhzHafb3EydO1OzZs1VTU6Pi4uIMpQoAEFUEUgCASNixY0fs/y+++KJ+8Ytf6JNPPok9dswxx6iwsDCIpAEAIoipfQCASCgpKYndCgsL5ThOk8eOnto3adIkXXHFFXrwwQfVpUsXdejQQffff78OHjyoO++8U0VFRerWrZueffbZRu/15Zdfaty4cerYsaOKi4s1ZswYffHFF5n9wACAQBFIAQCy2tKlS7Vt2zYtX75cs2bN0owZM3TppZeqY8eOWrlypaZMmaIpU6Zo69atkqR9+/Zp+PDhateunZYvX64VK1aoXbt2uuSSS3TgwIGAPw0AIFMIpAAAWa2oqEiPP/64evfurcmTJ6t3797at2+f7r33Xp100km65557lJeXp7///e+SpPnz56tVq1aaM2eOBgwYoL59+2ru3LmqrKxUeXl5sB8GAJAxuUEnAACAIJ1yyilq1epIv2KXLl3Uv3//2P2cnBwVFxdr586dkqQ1a9bos88+U/v27Ru9zv79+/X5559nJtEAgMARSAEAslrr1q0b3XccJ+5jdXV1kqS6ujoNHjxYf/rTn5q81nHHHedfQgEAViGQAgDAhdNOO00vvviiOnfurIKCgqCTAwAICGukAABwYfz48erUqZPGjBmjt99+W5s3b1ZFRYVuu+02/fvf/w46eQCADCGQAgDAhWOPPVbLly9Xjx49dOWVV6pv376aPHmy/ve//zFCBQBZhAvyAgAAAIBLjEgBAAAAgEsEUgAAAADgEoEUAAAAALhEIAUAAAAALhFIAQAAAIBLBFIAAAAA4BKBFAAAAAC4RCAFAAAAAC4RSAEAAACASwRSAAAAAOASgRQAAAAAuPT/QqMgasKlJyQAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1000x1200 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"hop_length = 512\n",
"win_length = 384 * 4\n",
"oenv = librosa.onset.onset_strength(y=y, sr=sr, hop_length=hop_length)\n",
"\n",
"# fourier tempogram\n",
"fourier_tempogram = librosa.feature.fourier_tempogram(\n",
" onset_envelope=oenv, sr=sr, hop_length=hop_length, win_length=win_length,\n",
")\n",
"\n",
"# autocorrelation tempogram\n",
"ac_tempogram = librosa.feature.tempogram(\n",
" onset_envelope=oenv, sr=sr, hop_length=hop_length, win_length=win_length\n",
")\n",
"\n",
"\n",
"# --------- plotting ---------\n",
"\n",
"\n",
"sfig, ax = plt.subplots(nrows=3, figsize=(10, 12))\n",
"plt.subplots_adjust(top=1)\n",
"\n",
"\n",
"# the onset envelope\n",
"\n",
"times = librosa.times_like(oenv, sr=sr, hop_length=hop_length)\n",
"ax[0].plot(times, oenv, label=\"Onset strength\")\n",
"ax[0].label_outer()\n",
"ax[0].legend(frameon=True)\n",
"\n",
"# autocorrelation tempogram\n",
"\n",
"librosa.display.specshow(\n",
" ac_tempogram,\n",
" sr=sr,\n",
" hop_length=hop_length,\n",
" x_axis=\"time\",\n",
" y_axis=\"tempo\",\n",
" cmap=\"magma\",\n",
" ax=ax[1],\n",
")\n",
"ax[1].set(title=\"Autocorrelation Tempogram\")\n",
"\n",
"# auto-correlation tempogram, interpolated to fourier tempos\n",
"\n",
"librosa.display.specshow(\n",
" np.abs(fourier_tempogram),\n",
" sr=sr,\n",
" hop_length=hop_length,\n",
" x_axis=\"time\",\n",
" y_axis=\"fourier_tempo\",\n",
" cmap=\"magma\",\n",
" ax=ax[2],\n",
")\n",
"ax[2].set(title=\"Fourier Tempogram\")\n"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAG3CAYAAAC+MGQfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVPUlEQVR4nO2deZwdRbn3f31mMpOQkEASQxIICSJbWIIKagBlU2TfFFARwuK9cl0RRFkuF7gqQeS6vSBcFEGuIrgQ4JUXvVxJAGWRzQuC7EuiIaJANkImM3P6/WNyzvRS1V1VXdVdfeb3/Xzmk5zu6qeqq2t7qp56KgjDMAQhhBBCCCGEEGUaVSeAEEIIIYQQQuoGFSlCCCGEEEII0YSKFCGEEEIIIYRoQkWKEEIIIYQQQjShIkUIIYQQQgghmlCRIoQQQgghhBBNqEgRQgghhBBCiCZUpAghhBBCCCFEEypShBBCCCGEEKIJFSlCCCmJa665BkEQCP+++MUvlp6eWbNm4YQTTig9XhesWbMG559/PhYtWmQs48UXX0QQBLjmmmukYfbaay/pN4z+nX/++cbpIIQQUg+6q04AIYSMNK6++mpsu+22sWvTp0+vKDWdwZo1a3DBBRcAGFJ2XPG9730PK1eubP++9dZb8dWvfjX1TTfbbDNnaSCEEOIHVKQIIaRkdthhB+yyyy5VJ4MYMHv27NjvJ598EgC/KQAMDg5iYGAAvb29VSeFEEJKgaZ9hBDiETKzsKQZXstMcOHChfiXf/kXTJ48GZMmTcKRRx6JpUuXxp7t7+/Hl770JUydOhUbbLAB9thjD/zhD39IxfH3v/8dn/rUpzB79myMGzcOU6ZMwT777IO77747Fq5lAveNb3wDX//61zFr1iyMGTMGe+21F55++mn09/fjzDPPxPTp0zFhwgQcccQReOWVV1Lx3XDDDZg7dy7Gjh2LcePG4YMf/CAeeeSRWJgTTjgB48aNw7PPPosDDzwQ48aNw4wZM3D66aejr6+vnZ63vOUtAIALLrigbV7Xyq9nn30WJ554IrbaaitssMEG2HTTTXHIIYfgsccey/0epui825NPPokPfvCDGDt2LKZNm4aLLroIAHDfffdhjz32wNixY7H11lvjRz/6Uez5Vhm4/fbbceKJJ2LixIkYO3YsDjnkEDz//POpNP3whz/EnDlzMHr0aEycOBFHHHEE/vznP6fCff/738fWW2+N3t5ezJ49G9dddx1OOOEEzJo1qx2mVQYuvvhifPWrX8UWW2yB3t5eLFy4EGvXrsXpp5+OnXfeGRMmTMDEiRMxd+5c3Hzzzam4giDAZz7zGVx99dXYZpttMGbMGOyyyy647777EIYhvvGNb2CLLbbAuHHjsM8+++DZZ581+RyEEOIEKlKEEFIyrZn76J8pn/jEJzBq1Chcd911uPjii7Fo0SJ8/OMfj4X5p3/6J1xyySU4/vjjcfPNN+NDH/oQjjzySLz++uuxcK+99hoA4LzzzsOtt96Kq6++Gm9961ux1157CfceXXbZZfj973+Pyy67DD/4wQ/w5JNP4pBDDsHJJ5+Mv//97/jhD3+Iiy++GP/zP/+DT3ziE7FnL7zwQnz0ox/F7Nmz8bOf/Qz/9V//hVWrVuG9730vnnjiiVjY/v5+HHroodh3331x880346STTsK3vvUtfP3rXwcATJs2Db/+9a8BACeffDLuvfde3HvvvTj33HMBAEuXLsWkSZNw0UUX4de//jUuu+wydHd3493vfjeeeuop47yXoftuRx55JA466CDcfPPNOOCAA3DWWWfh7LPPxrx583DSSSdhwYIF2GabbXDCCSfgoYceSsV38skno9Fo4LrrrsO3v/1t/OEPf8Bee+2F5cuXt8PMnz8fJ598MrbffnvceOON+M53voNHH30Uc+fOxTPPPNMOd+WVV+Kf//mfsdNOO+HGG2/Ev/7rv+KCCy6Q7j377ne/izvuuAOXXHIJbrvtNmy77bbo6+vDa6+9hi9+8Yu46aab8NOf/hR77LEHjjzySFx77bUpGb/61a/wgx/8ABdddBF++tOfYtWqVTjooINw+umn4/e//z0uvfRSXHnllXjiiSfwoQ99CGEYmn0YQgixTUgIIaQUrr766hCA8K+/vz8MwzAEEJ533nmpZ2fOnBnOmzcvJetTn/pULNzFF18cAghffvnlMAzD8M9//nMIIPzCF74QC/eTn/wkBBCTmWRgYCDs7+8P99133/CII45oX3/hhRdCAOGcOXPCwcHB9vVvf/vbIYDw0EMPjck59dRTQwDhihUrwjAMw8WLF4fd3d3hZz/72Vi4VatWhVOnTg2PPvro9rV58+aFAMKf/exnsbAHHnhguM0227R///3vf5fmnei91q1bF2611VaxfGm919VXX50ro0XrOzzwwAPG7/bLX/6yfa2/vz98y1veEgIIH3744fb1V199Nezq6gpPO+20VNzRbxOGYfj73/8+BBB+9atfDcMwDF9//fVwzJgx4YEHHhgLt3jx4rC3tzf82Mc+FoZhGA4ODoZTp04N3/3ud8fCvfTSS+GoUaPCmTNntq+18mrLLbcM161bl5lHrXJ08sknh29/+9tj9wCEU6dODVevXt2+dtNNN4UAwp133jlsNpvt663y9eijj2bGRwghZcEVKUIIKZlrr70WDzzwQOyvu9tsy+qhhx4a+73TTjsBAF566SUAwMKFCwEAxx57bCzc0UcfLYzziiuuwDve8Q6MHj0a3d3dGDVqFH77298KTcAOPPBANBrD3ch2220HADjooINi4VrXFy9eDAD4zW9+g4GBARx//PGxVbnRo0djzz33TK1+BEGAQw45JPWerXfMY2BgABdeeCFmz56Nnp4edHd3o6enB88884zwvYpg8m4HHnhg+3d3dzfe9ra3Ydq0aXj729/evj5x4kRMmTJF+M7Jb7vbbrth5syZ7W9/77334s0330x5aJwxYwb22Wcf/Pa3vwUAPPXUU1i2bBmOPvroWLjNN98cu+++u/B9Dz30UIwaNSp1/ec//zl23313jBs3rl2OrrrqKmF+77333hg7dmz7d6u8HHDAAQiCIHVd9bsTQohr6GyCEEJKZrvttrPmmGDSpEmx362N/m+++SYA4NVXXwUATJ06NRauu7s79ew3v/lNnH766TjllFPwla98BZMnT0ZXVxfOPfdc4QB44sSJsd89PT2Z19euXQsA+Nvf/gYA2HXXXYXvFFXOAGCDDTbA6NGjU+/ZkpfHaaedhssuuwxf/vKXseeee2LjjTdGo9HAJz7xiXY+2cLGu/X09KTysHVd9M7Jb9u61vr2rX+nTZuWCjd9+nTcfvvtsXCbbLJJKtwmm2yCF154IXVdJPPGG2/E0UcfjaOOOgpnnHEGpk6diu7ublx++eX44Q9/mApvWo4IIaRqqEgRQohH9Pb2tp0oRGkNcnVpKUvLli3Dpptu2r4+MDCQkvnjH/8Ye+21Fy6//PLY9VWrVhnFLWPy5MkAgF/84heYOXOmVdkifvzjH+P444/HhRdeGLv+j3/8AxtttJHVuMp+N2Do24quve1tbwMwXAZefvnlVLilS5e209wK11IG8+IAEFsxavHjH/8YW2yxBW644YbYfVG5JoSQOkPTPkII8YhZs2bh0UcfjV274447sHr1aiN5rTOVfvKTn8Su/+xnP0s5uQiCIOW6+tFHH8W9995rFLeMD37wg+ju7sZzzz2HXXbZRfinS3IlLorovW699Vb89a9/NXuBDFy8Wx7Jb3vPPffgpZdean/7uXPnYsyYMfjxj38cC/eXv/wFd9xxB/bdd18AwDbbbIOpU6fiZz/7WSzc4sWLcc899yinJwgC9PT0xJSoZcuWCb32EUJIneGKFCGEeMRxxx2Hc889F//2b/+GPffcE0888QQuvfRSTJgwwUjedttth49//OP49re/jVGjRuH9738//vSnP+GSSy7B+PHjY2EPPvhgfOUrX8F5552HPffcE0899RT+/d//HVtssUUhz4JJZs2ahX//93/HOeecg+effx77778/Nt54Y/ztb3/DH/7wB4wdO7Z9uK4qG264IWbOnImbb74Z++67LyZOnIjJkydj1qxZOPjgg3HNNddg2223xU477YSHHnoI3/jGN5wcmuvi3fJ48MEH8YlPfAJHHXUUlixZgnPOOQebbropPvWpTwEANtpoI5x77rk4++yzcfzxx+OjH/0oXn31VVxwwQUYPXo0zjvvPABDZocXXHABPvnJT+LDH/4wTjrpJCxfvhwXXHABpk2bljJLlHHwwQfjxhtvxKc+9Sl8+MMfxpIlS/CVr3wF06ZNi3kIJISQukNFihBCPOKMM87AypUrcc011+CSSy7Bu971LvzsZz/DYYcdZizzqquuwiabbIJrrrkG3/3ud7Hzzjvjl7/8JT7ykY/Ewp1zzjlYs2YNrrrqKlx88cWYPXs2rrjiCixYsEDq/tqUs846C7Nnz8Z3vvMd/PSnP0VfXx+mTp2KXXfdFaeccoqRzKuuugpnnHEGDj30UPT19WHevHm45ppr8J3vfAejRo3C/PnzsXr1arzjHe9ou/Z2gYt3y+Kqq67Cf/3Xf+EjH/kI+vr6sPfee+M73/lObI/RWWedhSlTpuC73/0ubrjhhva5XxdeeCG22mqrdrh//ud/bp8PdcQRR2DWrFk488wzcfPNN7edheRx4okn4pVXXsEVV1yBH/7wh3jrW9+KM888E3/5y1+sK5GEEFIlQRjyQAZCCCGkblxzzTU48cQT8cADDzgxGWyxfPlybL311jj88MNx5ZVXOouHEELqBlekCCGEEAJgaC/T1772Ney9996YNGkSXnrpJXzrW9/CqlWr8PnPf77q5BFCiFdQkSKEEEIIgCGnHS+++CI+9alP4bXXXsMGG2yA97znPbjiiiuw/fbbV508QgjxCpr2EUIIIYQQQogmdH9OCCGEEEIIIZpQkSKEEEIIIYQQTahIEUIIIYQQQogmdDYBoNlsYunSpdhwww1jJ7ETQgghhBBCRhZhGGLVqlWYPn165mHkVKQALF26FDNmzKg6GYQQQgghhBBPWLJkCTbbbDPpfSpSADbccEMAwPgx2yAIuqThgoCWkJ1IGDadyG2iuFyTtIXhoF546DnuNEuTwTMW8q9I/DZx1XYENbHOznr/qr+NDWyW1aJ0Qn7qMNLetxj1yyvfv69PdZ/YJQxDNJuvt3UEGVSkgLY5XxB0ZSpSejLrMcDpJEwb3CLfPEtZCqAnV5R+W+UxC5kxq6yD6OSybUsxKeO7Zcffud+orvg4INSddCkcn+eDTh+/kWtG4jtXie91YCQiqwNh2MS65uu5W36oSEUYaPZVPgAi5VHXBo0d3xAulIVWmSiqUNkaoJq2Rz6XkaJ5U3a9dZWXReUWzQdfyogv6XCJrbbKVE6R9qxo2os8XyzdxcZytvuXRsXWAyN5cs20jQnDQazrX5objopUhEZjVO0UKdedkIsZy7IGQmV10DbiMckT3XiLpbPzBzvVo9bR6XaIVXag7spofrg8Wbp1ruwBf9mDZnflxLZc/9v1VNlSsJ5Wjy+/T7ZdVuVlQzxekoWXlU25/Oyyk1VmVcqzal3RqRuysLKvpltfTceoRScH66wImj+rtu2BilSEzXrejq6gp+pk1IqmQqNehKJKVzMwe17nvVTT2FRQSlVkhTlpU92bpRSXpiJdZF9Y3nspyTAYQKikWZYPsjxMpiP5bqn7kd/R9ESvt9IQCu63/0UzdT0MB4b/j2ZE5mBM/lBn09X+f6vjHbreaHdG7X+R+B3prIbvDXf60fvRTjnZyaV+JwZr+oO07IGHjQGCaUdte8CrU/9U63ZeO5H1Dnl1OvNZyb2sd8yWJ0+LWlvonyKtMjjOK/958eTVD6V0KtYPVXN4LcXGsaKi035oT4Jpbg/QbctMlDJThcxKO6uZH+bxDKW1GfZjOf6UG56KVITtuzbHqEZv+3fSLLKR2E2Sup/4HSTCJ++nw+fcF9hpJotmOs1p8tKtIleYPkFcItnJfJGHU5Mnf148myCToRMfIJ8ry/OgnyUzz/l+1rPtMPlBhuMr6O2/oemowieaubmdTaj56irDsKbKzHUBGVlplqVPJk8mSh5enN+i8PbiFN+wJR8wy1MVuSrydeIylWszTkLyCG0UTAkq9U2GyaOq8am1+9mB8mRkt1Pymybtm+wbytIoil8Wr2pYUbimIKAoX1vvNRD24UXcKk5IBCpSER4fXIyu5shekXK9wgTYM+0zWW3SfT+dtKqsOKnKVFmdsbnyFAtf8gb0srHhTREoNtsuSoMo35PfLrZCJVnlMlndUlnZQuSaeGUrmtZGe4UruoI1PCM7vIolXslKr1glZ0Jlq11D0tPTCaLZ4EzTII3ZT9/2H5h5yVRsv/JMJnPuy+qffMO3+mqwSEZ6dVghjDAteulOomq+plJORasCeSu7sueGwuqZ6GWtLhQxt1Opc3ZN9tTruKuVJ646ReO1u+KUeg/NudMm+pXCUZGKsGzgcW/2SLkwI7Alsyq33nJZdgb+RRS8urgEHwkbu3XxPU+qsQ2PP1+WopBU4NZfFIe19N18//5ZVO3EwGeKfNdofgzL0dnfoxN3MzHJIQ5VxMRyCPOJHyCvjKgrYipK4DD2FTY1c0ib5oo6Cpje+FO33hZWdCpqJ6qKV3VsSUUqQhCMQqOopxdbG/IKmly5xBdlU4dOXmWpq/dB3/HtjKY61jsZLutjVfXBmmJX0V5BH2QD9laMAZvKtr3yart8VjER4DrOMgbONuOw1VeE4aBWO6/zHYKgUbxuGX73ogpcVZNdVKQMCMN+q414x+LBtpg6zyLboqxZGhcbPH3sxHzH58GcNJ7CLr4trTZbXQEv6ADHQd67sWBwo+zWaeJnpPYzuSZ4HbiCWYRaHB5f4bitrtPYqt+CihQppbMoEoeeJyrFfUMFPehlHeCmI0vFpn+IYvb5KuiYV0g9p1lye2vTDn5IXmes5pgMbnU6eZ3yVMS9uIm3tiEMZSrupxF1+elwgudM66GmSZOJeZXas4mwFXoyzKb6ATyVCEJGBlSkDBjKNI9t6uCmEa9yGV2loHbpdJ6WPp8r5bLq/WWms8xl781SCa+VpvUuwFsU3jtU0UGRQdDFgZwBdVmx8Wlm2+o5SmXFW/g7K7Q7pZ7fN7Ko02qlCeWXBYcm1JWVaxfxysanPEdKm76B1V4PUnxLWxkmVa5WEmzmpY79r40zOUyURd/KTt2wcuiyozOuisShowy4WNnSWgFztLJmEl5MZw8C1ai2nSneztlPf6PBtrcsvN8vptR325wAUR/i67avemMzjX4mNz/z6pNJ/smeoSKlTdIVb2bYEjsMH82SODAfxuqeh5raR9vuwGzM9uu7fXcXXjUtSitxlk3fdMxOh8g+XDgvHXJ0zNn03DW379uYyAAgTqu5maqNZ4Di/VJdvABWtS/Sx77YJj706522gleFoyvXK3s+e5W28e7RYz/W9a/JDU9FKkL/wBovGpK6UjdPO4C9DtnHAUjZgw2bgwwbsrKcZIg6N+28N1gZdNXB+Tr48DVdRMxIdymf2wYkTIRHAhwT+UNd61WLMtIvGvfo9ru6ZZ6KVITeUeNTA7gyG5GiLiJdwsa0sym7gbbtuUw3/cl6XnTW0OYsWFUyqtrXUoY8u/ictmrw8XvV3Q1+EVz2135NPvqUFn8neo3irul+fGG8hvmo2oZQkYqwzmCPlP1G00yebTOjIof7yZ9V83YVxuzQstIR/1aBaInA8kF/cdwenpcrz2PF2zeqP7tFTVFTk5sTJtN7XZaNp8475ZnQKS7XFaoTluuTs07erjlY3doRvwZPJaRFa6W6eqWrHvjhRbLOFiNZ1GWivOxJCnrtM2DMqI2cnyztWlbRM3+KpEG3YdDNa9UVO/V9bvnxq8Sp8h55eZPrhCIjrbmyc9KX9XwjJ48aYbE9KSpxqJYrm04/UuFz3lMVnzpPU2wqpc3AXJbuqqa24w5t+W4cdwB6+aSTjhYm37RZYBXXtAwVPVesyEp4cc+l1aUdKJ53Ppyf1gmWA1V/BxsyqvY+PPS8+7JARcoAHWcTJuSeu2JF21a34a7i8GEfzB5sU5fZHJfYadz1GkYbDaGrs5B0wthCeQLB4hldumXfmglNByikPuGL2+my6ovLeGzlZfUDZvfWMYArb5wlWgC0hVVUhzwykZRR1zES3Z+XiM0BTOoZy2YhUWSSfSj0Pg6UOt1jUx5leB8q+7yq4XgNZvEdu9h2cRD1cHh3qycmh+2af7dqyotrWer4oQAR0kJ7ckXrnEj/xgV+Ul27UPVkud1JIa5IafNG3z8UGwF2XkD1FWak4svssQl2y4zmCpbN2UdlTFxi67n2VhmI5Ldr6gOUMt15p+Sk9kX64e57SJi5fLal9qlzO9liJJSLkfCO5dNZTiq04m//z8KKrqKhNBWpCN1doysvBL7ic2NXhw7T1/zzrbyX77J95HQ4ZeVtlSu3vpVn2/js2ZW4pWxTfDdnBZV/PmA6DeV6JzVJr5bzMO00ubWkANy/sxj7FjM07TOgt3ucs0FA3Tp4lyaFxD+KboCtAz4os3V3M69ClfmsGncVh2TawEbOdqqJct36WFNKU6Zd5Gfg/5CzijazKOV7s3PbfrqcHNdVUt/sW5kbzv9SXSKD4QCCTPfAekQbPNsFvY6VvUUZld52RbdZsX079NKXRmukUPcBXyd803LfwcXMvsX2yCPnCHGqVnbtK5x2PPO6aT+qa5fq3R6SOuDWcQoVqQiDzXVWG5Oqu4EsfPXHrySrxIND1cMX8+Bm5h1OXMLS4RO/I/fzz+warg+xs4FS9SRdb+R1KcOVe0790xlE2KvLdjv6TlBESLV4eZ6N1vlJdcPvwX6dJmfqlFbf6LS+o7z3MS1zVKS06R9YU6CS+213a15gbamD6rN7RQfTRTfWR58XySrbfbROmXR9llf8WTsdog/7PkzfxYeOzcXqtL1V02r3RBi1rV64b7bnHKWIi//s51UncoCsyZyhNKhZgqQOehbWW3sOXtSeXR/GoB0r3oYOPe/jMQsyOsHFvRx/LFfKbjeH8XkJQQ/ukTJg3OgpTuzH67zfyPXskQ8DUVuUtc/Idp5VeThfGDYxqD0pUI3rbpvPtJ8t0UTXdrnxaWa5Sicleu6bi8XlGh47QYrg695DXxxS1WH/qJO4Pcl/QH8ya12Te6S0GMrgoZ7OZudV5438qg1j3WaZTAf/rs7r8fVw2WyZ6s/I4s6W76LeqA3KTOu/jwPRsnE38Df8JqbfMuO5rHJbpAyI4tRtc4rkf7SeuijLZShFvij4Pqy0l04NnEkA1e4xL2+slOg/LZvelqEcOcmrRD6YbrmIUo9SXxL9g28Wbuh9nD3zpWPpBIKgoVW5VctDctVSpIDlfsf1DYRL16PK4YzNhewpb1npyDNX0ptZHf52sYGoxrlP2d/WxFTJzn4zt4eNF1E47LSzrtrGMgbRVbfrVcffKVS1UuCjA6zC5myGK2KmSkGZFgz+OoXpXOhswoB1A6s86Byqjt8e1edlfWFjF2e4LMmUCl05BdNT2plM5dehaNmzrWALn7U8s+nm/JuRWx9dl8G69xOqbYFP5k0tiisuOs8Xt7oAik3SDVOVlZA9iwibE2F1PZDdNVyRMmBsr/oeKTtuTEfOmVU0ecrHx45WhquBpQ0z2LIPXGxRlrno8HPF8kpW3kzajyL5Zr1tiCjV1sqpJx7pymojyjyiIdfLqKHs6j2hNlsPD/3bnu0ZKu92vKCaeUC16Qwpjv7KejI+V+MXZ3Ittl+209hpY8Gyx0hckTKgb2B1quBV4TnF7anWUVSe1fUCl9F4WzB1EnrREz6f7mBEz4pMcFQ99ckUYdU0JtPZkiczC5LnnzgdWeZFsgmDrEYuz1xJZWJAtRFtGJhulaGsNyxPfjQrmhm13SE1LW0yd9FRVrFHtc7n/CWp0wSPC3x1oJCkzDJnu07ZUNyLOT0q1yRwON6i40v7ZbNTTE1toFouqEhF6O4a7eUeJ+IOYeMbNlNKg7iSD6SuBEEDKp5820qRJGyeUmI629gu34J4sxWvrPjsKXJD8rLzsKhCV0SZk3kYNFXibCtmwjhC/2YlXdAM/OuIk7hUnG0oPCYKsZb7d4X3zxsQ55t2yePIkp2VtqxBXm56LTocco36SlV2u6WyRzD3mBGFtlEtHtV9yqZtuMUVqRp7eFbBheJXdAIhq941wwGsWPNErgwqUhGKnSNVDB+XYEk5+DgTUwY+lHmXaXC1Qlb2ZI8P3ykPXz2k1SHv8qj6Heo4Q64zuFMzf8xQ8ix5Y1V1zKNyTpiJJ7TsCUB908fU7wLWJ1npy5wUzKg7usqmjXDt8BYVtqrbB5eoTixRkYowqnsDa4MUXzt2V3RyZcqi7E6+as9IJiYQrs9y0jKFTe1tsJcO02fEdJJyPTLahjq0gb6k0bc9s65Wg9y1ZWYOF/SVrnR7r3Tgci5ppSfdFEfGYuFwuNhzETnRs1OHvOtmxymSl3vdwIOq7F4rZ/Pqgot9+0XGp6l41M6sLQWrxxaFTZr2mdBAw7sGXoYvHWKZ+PjOhc5sMRh0d9konxkb53PTpHFOSB3P6orFb5JPGi7os9+zoRAG0BnAVDGzP1Q/ig2y8uXbCediA75y+rTeWX2yz+XgqmzvXZxFrw6XbYctc6+yJr50+zW9Pe8ixTV+Tdq3RBQaV2dO6p83WWxFNB1uMOe+PM40+UpxmNbGhVCRijDQ7HNqNmNVtuIsQBkdhuvVt9Y72GzMrXvHMejkpQ4fLKbNrkche+XXZZnhIKl+1M28tc5lrKx9GK7quO0+2lYbaet9bXwfm+2+ieOfPHyasC5jn6oOVTggsrkia+p4SNtyRTOfVBXgaDqa4QD+uvy3uc9QkYqwpu9vCFQPpImhUQC0zJCqXzMNsqbljYXabkRdzozan/2t4vwH3w5WtXauhAcD2ioHBT5sUE9SN6VIF/uTMEXMbPQGgSZpV1UQ3KzUKXgCtbzqp5qntvNFR4HSUdq0y0hStuIwxIYiWaWzhTLa8dLdd1tSyoytS7RX79TSq7UHUSMPkn1XM0w7FBNBRSrChA1mlbqR24dBYJ1xdpaRoVyTxkb9wNP8xqDIQYUmm4NbzyTvZ7+T647E0PNgAZv45PsXOb/Ftj283oDLrD0yU77N2ln9TdVuBpwu8lU1T/RN8DQmgwwGk3UYQPu0AlI2dRq8R58ta/AO6O39VV/ZUDQ5VxwD6DkwKT5eGJZl9311ZOqGBYq6wU+OZbhHSpvurrFoaOwBaTHSHEtEcXV2hVIBliyWFXZuIJWbnaaGSFZuXENlR5aPrfDJwZAofwI0lOyM8+yT88OLw8plDCaurf9XcIhlewW0Pfgc+jc+GI2cvaXhmSn9HlFb6HSeDG2AzrdHT6Wl4EKyzQkCPVl6ira6HX3ehvWkA5C8fXrRbzz8f1kZSd/LLidxzDx96W5K11Xkh56x7y3Mxcq1rpJkbbW6Rv2yL84u2s85GBSrhMt0T585EZidXrPDmRXve2IVUOUeT5N05Mftl8llFlSkIgwt4+mPgvyoRmLKMLOxsXxc+GC6ig/0M8U03a1GxpdVzZE2mVD47IqCLo+BYiuQefcLuVSOTUTobk5WS0NRQjRTHX40TcP1KpoGsUI+5CEsMfmAZvueLA5geNAhy4/s1U15/gQZZ4c1kTFIkZ1rp+mpK94eZJvH2PAC5ks7aBtb/bdrK4uiDhWkYQs77VEL47ItHaLo8/4obFm4nrwou56rlmsqUpbwcfYrRLOUgmfl3SODL6NG38JWrtbQwsWhcZ1InQ8PrGrg1an7h1hn9Khz3XGB6/JTlUJStoc3YTgLyohrRUQtjJuJIZ/IXIE2cL2uj3/j2DpARSpCgMBLhcgUnXdx0dAUXmUy6FxdnNuh0hnaWGEA7NstF33GBzp1ttln6lpWXEIHKRJZFZvgmJxtB+j1eUUVAR130lmm1Mn72ftTByXX06usLVRMqJNlJ5CY2qbv5ZjABvnhRfEPhdP3gJtnRaF0ZILSsQpujiuIx1Fdm1J1/c/CtG1o0QwH8OqqZbnhqEhFCBHWZubCNmUOnKo2BdR9NtngihQrW42uctosOVMsOqiz6bkqL4xND15D8uo5mHTnVrr6AX7VVLlSpPtdbZgi190kt9DGcs1+yKZTgDJXk4Zl2XV+UAZF+gQTpz+ydlxWT+R7G+XpylfgFPo5xXqr7ZjG5BgXC22ICxf7NmiG/XhVIRwVqQhh2F/qPpkq9gW59CyXfq6k8wQceICxPVtp45milOWVzdXsmIvzxKKUNYmS7UDA8J4lb4BVU3QGUQfXrsOrVlKq2PMJuPMUqd8OlVPmy5qA0DHtyirbNpSCpAxRfMn0iuJNyk49E2TfH5IrSF9ij6Dqc/Kw4rzJKuvJNOTFofLcUJxqs6hZ+ySHZem2aXZmcG3JyaNZ0PPTQNiH5xXCUZGKMGnUVugKRknv5xVwUzrJnFCEz6t8zaC6tNk8eM8kj1UPzlOaFc15l7xBXbZzA/tnS9hGpUPK9LKW1bFm2s2byQTUZwHNXGLXQ3GrKzb6It3vqvNNi/RpVSugnYZpfqqUsfZ3loxX5QqIeCAtG/zryhFdFytI6XDCZwXni4qfTSM7i7OhKHMofuFla+GH05R5e71sfSXIpxqtM0rob/YohaMiFWHD5kboCtQyrkUnNvplDEhNlStVxUflHZpoSjuArPSJFCBReFlak88Lnw2zwyQVl+j7pu3ms8Im4oms9iTzMClHxdW6LJ5OxqY74CiiMq2mwIlmrKN7HvL3QkSVwEbseiMloyF4Liordj8adzSM8LlIHKE4nQ2JvGS8sf9nzF4n8zc5EEkO/PLCy66pDvJU7gH6g52yZogB81niMMx/Lku27J6srReFl8lItZXStl8kU9ZmSmRo9oG6/XmrDGfF06oz0TSKynATTet1KPW8Qt1JPRNk309KTCpDqkpQMphKGFk4kZIjVvBE4dTikIaVNA8iJVEWVi5DM3xG25bVG2Y1ibLn1jXVxvdUpCK8fewU9DRGA4hnbLoyxIneT378rLCi8Mlvnb6fX3BF5SWVLlGlFDTy4nBiRGFlxVA6Y5JR2LO6+qznVKqCyrijoTEAMJi0icRDiqjyCuOtRFzqH0tVtk76mwbjyoJHVZWCSq5KO12RvFTbGubcl8cVxK6HqevRsPG+IExda4VttZ8NQX+QvJf83ZIXRNLSiKRtOF3ZcoZ/NyXX18sLhvMvem0o3tbvhOwgGX44L6T3ErKDhjhckExDQ3w9ULw+dC3xb+uZVmY3ImHFx9clnh++Jrqff01WACVhMgpwICqAkt9Ci73MgUhTLDcWVtTCNePpbxOZRFNZ8sjC9HmTRlbz+TArjOye6HrymqDTSfsjCaW/M8NG7oWS69FmVhZG5MtEeC0mSy6nHa4ZCO4F8d+J60PXgpic4WfE15uS6yvX9eM//4pcqEhFWLWuid6GeAikO/CXL+dmpyHvvkjZ0ZWRkllk1C+K36q0YWyuk6nMbrbjVQiaFcSkfQ1lM5+Cy6JXEc18isMlwwhmTA3lS2eAFeUNxS2bRc6aec5HZ1Zcp6yYyHfxfNmorGjIZ0DNzGaibWx0hjg9+5yWK7o2JCedpmElRy5n6Lkglq5G7F5aSWvFkZy0E03ipRWuHNmJNCTvJxWszLCJOFXCxtIYiSNIhBPpFiLFVh5HXPFMhh2SkX7H5P+zwuXdS0+WhtL7jcQ98aRn4vmMtOiFUZ0oVXtWvMph/qzs+WR+DssVy8h+Rt6uyp4ZSlc2Wc+qxp+Hahy2iSooqjQVnpHJlfXfovCieJLh0npp4n6iFka7+5X96ySpiUNFKsJf1q1Cd6CWcSrkDS58GizZSEvhQ0oN9yuZpN3I6YbmMyb7r3TTVcZ7DMVj4IpeIx5pXkWqUF4aMs0xJfushOaJyXgCgelOhtmjzHRSZjbZerYlM+7eeDB2rfVvUxQ2IScZb5br4eQBzw00hs32EuZ7w78bsWcbEIdvJMK1nhOZ+LXvBWkTPZFpn4pZX9R0rx1niAzzwOj/I6sAGiZIKuZ7RfZnyMLG7+shm/wrQtaEh4i8FkM8gSMztwszfyfrSfR++tlIPQuagvBi0+pmEK+v7XobDYNByTOJ6+Hw71a70EQz0m4MX4uGyWt3kojMeEV1Olqf2+HQFavDybrbCBvrw6fbgpaMaN1uX2tNUoTpa+17Q6mKXwuCRNj174ggNfmSnCgRTZzIJkGGJwgEEzWSyY34PaTuySZahtMkuCa4nxVGNFERTWvyevKZVJxGSn8aHUsFQK6Y58kTyor8f+3gWqVnqEhFWNJ4Go31ziZ83ftU5Yb6KqjaUUUhL2IO9OSyv38Z9SAIuozzqqijFtX3S4dL/A4UmlL749TikxcllacwHEQYDiIIutpxDsbiHkgmTBvtshDolW9Tz4c+OhPS9oyqMJGi5PY7J0xeeyuMI1Kv8tKZty9R6R2a9pz0FCHb+2e8rA4rHxHFaH2blXRYk5z4SMals8cxRBMBGmhiEA10rVcSm7HvEKDR/moNdLW/p2jCJVlndSdDgMiESJg9GSJ81mAyRHXFfeh6Gh1nFVmyh9IivWX8XN6z7TCK/Z+OhZTrlrW/qVaHqUhFWNtchYbKgIjEKOqy2JW7c5XOv+iJ7lkdr9TxgiC/VB03JK+FsRlG8f9bKU2FSV1LzmA2BQbWQHIDwPBKh8kBjsNyUtHI3PHmni2SNcAwu5cnNy7Hf491Nlw2l3mGWOaznngIdHmYpkqZMnU8Yoov+R4lL01B0FV8ckhkDlegzuso2rlnEBl68ZR58JQ9k+XBsRE2hBMh2Z5J0/KiEy7RZ2N9rsJkSOp+dAUlxzOhqTfVXGcwNlyTh2oKTFym+WyerQkhF45tXDnLGQj7lMJRayCFKTpwTDb+eYqZ+mBAXrzbCoiF+mf7XCMXHu5spdGnwxqzsDpgdHxOjOmA1PX5Xi4VQl8OFVbN+zJWrtrPV7iCVbYlhk7ZL9Pzp+2V/8zjHTTiGsxd0VMb+LVol9WC1hM2DoiVlQWpMqdwdtVwvJKzpoR7xNIydM6cGn5GlhZxvLF0ZaCS1yr1WEf5UFH8TNPhMwPgHiltBpvrEAad5abZB7fTvgziXR9GXOZp9Vn3881n9FfRhim2gqeL2sDY/gpU/gG35itbKvLj8goOzA0UQV8OVW0/Z2H1w5Ximfo+OYNSW4MLlwq+j6tNUUz6NZW2KdvCQB6nbF9iPIz8qInk76bU0iCy51IQJsviIGZpsP63zKIBGC5fw3shhy0R0vsnE78T14eudSXkpPdgpf4vsXKQyU7KlT+bHV4kMxln5rNFlEJF5S6dDsVJIQOlyGZbU/UZgzr7vQdDKlLaBEFDWmB8sHOvg8nQSKeomaNNqt5fFqUuK1mqlDlB4fug1hWuVwJtkb+CHv9+pqsdyQGbzTqVzGvb5dt2GVaRl3wHlfLUldXPR8z+c/NeMBjW+e62JuVyJ+QyvrPcND3DqY+CqXv0+dYKW1X7zmyYa8vKlWzCxHxyTz8Nw8+6mbgrOinkexvfDAfyA4GKVIww7PfbmYNDJ39lDnRtxWX6rUzi11WQXO376jR8b0iLYlbWim3aV3q+wMqj/NBltX1+yJmZ10VchgSzyRkz2tmyVMMp3DNcPS0id+jZvL1D9vbpFJVf5Jn2sxWsYCrJtDwhW2TlfIiMIaCbbSeVUfXEoss+Pl9hTu6tzhjP+ONMunJUx31UpCSUOQvsxWCywxpNl/ii9FRptulLHlSJF/VWg5G6siWjbt+vKqyZZhdor3TToDqTrLdKpDJBoeDgyIJpt1aaLManG3aYOvcXfrQTndBeVTFuKJJvqumlIhVhKNOGNIq8xsdmofbJHKwMOnlAJxosuHrfKvOxin07ZGRj3akLJwNKpUh7JWpvshQz1fZFtxVyUWaqttBI4uYdR9YYh/iN6upkGDaxrj8/HBWpCGv7V7pZzvdg0Oh2Y7KLPHOkfJTwLdKmL2qzo8Q+rkx17Q/q7Q00ipiw2HgvXRkm6XUzg25nFcDc7LL4cQ1ZyNs+ycZ4R8cM5KkvRUwcAbX+SLUfUA5XgvOY0o4sqJHHUxFlT5DY6GO020yN/kJHaSh034mTK3MT9mLm762jYNTsHKlIRWiGA0oNopuKWrfZUbueumx5OiunE87uCFsbaFXeyeZZPEZhDWaJbXSOPjhvqRtl2PiXulfSA4+inUDZK9OuBseu24SqnDXV3QV0nahij7uL1baibX2Rdly3XdZXAtXD2za9HQ6r6NwkHMQba1fmhqMiFaGne5zVxtaHlag64nZTZgE7fcGhtpnhFU/F9mWmR+yyNy/coOR6JI6Wt6b2LtZkuMbw6e2xOiN2iZucQdfxtGk6U16Gi+/28yUNvDqtfarT+5Q5kVCWAlFW/lehmPhStnxJhy6dbM7fCRSZ1FItk63xgU4ZFnnRlI5pFOU20dRIs1q4ShWp+fPn48Ybb8STTz6JMWPGYLfddsPXv/51bLPNNu0wJ5xwAn70ox/Fnnv3u9+N++67L3bt3nvvxTnnnIP7778fo0aNws4774zbbrsNY8aMUU7PwODaWAZX7eWFFMO6hyQbKzECGa4PVs2V52CgVVWH34mzv3UdPOnQKfuVyp4Rt2OKaTaISvWPGVYwZTpPMD8nT8/dd1HPmcNE81+9LXblHbKo6aVqmHbYkrxA2ng2V3YH9j+ucDW+tnluaS2cTdx555349Kc/jV133RUDAwM455xzsN9+++GJJ57A2LFj2+H2339/XH311e3fPT09MTn33nsv9t9/f5x11ln4P//n/6Cnpwf/+7//i0ZDr1D31nRFqhMGWr7NWPlmduTDoca6g0QXS+1AdgPcklK21ysdeSZh47jdUxR7ruL9VmJc183q+oDyBpXlDV7ND2FWX2mWxWerb7Tdx5Y94O60Myh9d17hs5JQVIaNd7PZN9iRpTeJkiQIVXdTlcDf//53TJkyBXfeeSfe9773ARhakVq+fDluuukm6XPvec978IEPfABf+cpXjOJduXIlJkyYgAkbzO6o2XkipszZ77o4OxiSaadzqsq+u5hdeInKSUkKVBlOH0ziKUqx84U0FZuSlJRi8bmTYxT3CJ6VL8uKpcoziezSGSvR7qiP449OHOeGYRN96/6CFStWYPz48dJwXu2RWrFiBQBg4sSJseuLFi3ClClTsNFGG2HPPffE1772NUyZMgUA8Morr+D+++/Hsccei9122w3PPfcctt12W3zta1/DHnvsIYynr68PfX197d8rVw5tJls7YOa1zy+3vOUOhmj+SEg12B6wNgLD7iAAqlYe6nB4aluuS9OiigczdVeiqly58X2VxYQ6jg98LsOdtrKYhQ/1IQwH0ZcfzJ8VqTAMcdhhh+H111/H3Xff3b5+ww03YNy4cZg5cyZeeOEFnHvuuRgYGMBDDz2E3t5e3HfffZg7dy4mTpyISy65BDvvvDOuvfZafO9738Of/vQnbLXVVqm4zj//fFxwwQWp66N7Nq+8I9LB97T6nj6AjaYJdfiuxD2duB8tj04u+z7tU6v6TCTdQZyuwmDT9Ng0DbryXcmuok75bqpZt2N4fBhHuRgvheEgVr/5dO6KlDeK1Kc//Wnceuut+N3vfofNNttMGu7ll1/GzJkzcf311+PII4/EPffcg9133x1nnXUWLrzwwna4nXbaCQcddBDmz5+fkiFakZoxYwY2GruD8GPYLIC29gJV7YLapNDqDrxcuPFWSUPeu6nkW1Y8eWnNkt8okLZGRryNHO80pnLznh163p6b+Lz3SFK0A+hkZcKmWarpzHQzMHzOID7tPYBGcejPsurGY5JnZaSrHZfBTLOx2anhfroiZb/YvkI7s/DWFFFH+xFdK+1lOX0pY9XE5aqeky0CFstM1XvDw3AQK9Y8UQ/Tvs9+9rO45ZZbcNddd2UqUQAwbdo0zJw5E88880z7NwDMnj07Fm677bbD4sWLhTJ6e3vR29ubuh4Eo3IHqkPhyrPRT8dtrogVHfRZs9+3uJnb5kBWNW9VGrZBNDO+tXnjoKso5GHzW9iclVKph5JEZNwqyz2znyuJVWAyQLdB2SZFJsqBbdrvXNLUqGuHPFYOOq1AqdFXyN2d26OalioOeI3LVD3Xx50zH5fOlIafKV5nqjCX9Gm1ukxq4bUvDEN89rOfxYIFC7Bo0SJsscUWuc+8+uqrWLJkSVuBmjVrFqZPn46nnnoqFu7pp5/GAQccoJWeZrMPoWNzKl9MQ3xJRx2pulGpOv4i1KXc+bBX0nW8rgYOKoMFlcGAkkfFgmewKclQem9L71PAtfcwCvmfKyfnvquyrlzvynWZPUS1EyS66S+/PXKhEGaEyXJzL5lNCDJn2mT5K/Eemfk97E7Il+0iXkw9+m6b1EKR+vSnP43rrrsON998MzbccEMsW7YMADBhwgSMGTMGq1evxvnnn48PfehDmDZtGl588UWcffbZmDx5Mo444ggAQBAEOOOMM3Deeedhzpw52HnnnfGjH/0ITz75JH7xi19opaeJZrui2VrpqJutayyeCjqOsgfaRqsUGW2xtihP90H5RlkbTwvN9mWUC2smCoLBiukAS3TYYSaB4ntkOK0oZDJVxCujhYO4zeKt/tgCqcwKHQHUeTLIBU7yQ7OfqsskFyGmuGp3KlWkLr/8cgDAXnvtFbt+9dVX44QTTkBXVxcee+wxXHvttVi+fDmmTZuGvffeGzfccAM23HDDdvhTTz0Va9euxRe+8AW89tprmDNnDm6//XZsueWWWunpH1jjrDHxpZHyJR22kSlEdfQaJKPMwYevA52i39OHTbFlUqf67muZU6GT2hkZdf4+vlNGPbWz8uoDdUmnOfX5Fp1NLc+RqorWOVK9PZu5U6RqOoCr00BsJOPTjLX2+UVa4ctdHTAv/2rPqcgv41DXIvERokPdB4l1Vpp9yns/0kIz/TpQVZ0LwyYGB1+rh7MJX+hu9Eq89vljfsVBTrX42vBVeeZClY0cUcO3dqOuE0vEAgKTszooJ632xlXZtdmeyfJTpx0oZkpr+my552C2n3dQ/urQP/nWLwDi+uV7f0FFKkKjMcqJ0uSTi2QfK06dcN3hm+4hCYKGpkcjRS9JBTe/Z92XyZY9I76uHlYUnzx9uoqpvN3IqnOyDiK/nua4q7e80lXsqIT0sy7qEdu2OHUYyNlkpL1vFjYGnqr1SVSXR0JdrFN58zutPqdNDSpSEYYKm0VPAhhqUMo600AJ0QDT60omxodTr4HqZlJdzdAkJxJyHY5EqkuRztMX1/xly3ZB2fXZZnxF20p7zh3sti9ltBO+teO+pWckU4cVv7ph2i9UUS+q6sPU3rVe/asIKlKKlFUQK1m9irxbXQaNdUnnSMDXAVOVHtPKnDxxnf91P3RSOQ2eluO6wjbaH3w3jaobRdqKsuqFDyb3Lt/VfXvdhOpqGRWpCM1wAIEs40pyyaE6ZPGl03eZjrrbLfvyjWxRp4FROXnv1p7f/sGXNs4XiuJL+fa3XPpVZzrvOIuyFQS/vmcUX9PlK760XWr4NpbwYeJLhO18UvXFR0Uqgm+FtQ44Nala3znY/C5lzgb52+l2BpmDKLsWusQBrjtjq5v3C8uq7iyqovlsz+mA/ZXNZml9ti9jg5GgOPrj3MsFI2lcMFLG1FSkIij7jPesItSxsJY1o+Eqb3xe8fCD8uuIb/WS5FPHtssMu846tJ4v9LQNAVFGyvcmZTBy2g8/V4H8yX9X5udckdLGvikNqZpOP2C5LvheZ8qxt7ZLlSsV9vKrCqcxbme8O82crR2vd22eb+kh+hRrR2yVSef7TC23/3bSa972Fovf8Flbe5419unQtM+ARtBd2jkLVVH2rIaveaSSrqoHDjbjtzn4MkqX5qx21XmvQ9UmZLp12sqBycLvmS83LSvdBam8T/47ZA0SBhVlaORTRFaq6zUqyxqu6bXlmymSVlxqW1V+yjSf9rc9qlNbmcaPtAclmIJbHQs5S29147XSvc0q9jODg3254ahIRejtHlfZ4bv1bgyLUTcHELoe2Wyf71TkbCcr5zqFWbLU3OvrniE1TFb+qNVdk3OddGRkU6d6Xr7XQ1WlMP/ctFZZkJeX1jeUy4l+q5x0Vdh+tw+KVU6DLE+y649J25lMk58z8zUnZ9K8vDyyv7rsJu1l5EfFE5cp7I1ryxqrul55tymfilSE6DlSZSs2YThynROU+d7KhwxmNOBduhVQYfaoHV9gr0racsFtozOz5UK77p4cfU6Dz/i4P8AnWH6qw/u8p+OdEvC8DJSM93XCMlSkIgyGAwja0+0VrBJJZpYqOVuK5FL2QctVKTQ6g1hl19454bLiNFtxM18pS4cbzLmvkgfxOp1ua9IziKL2SDSrJm+3MlbiFNo61fbQdKbPxkqhjsyRiouZXiq6evgw0CwrDT6vQtqT1YANZcra2Yce57kZVeyl5R4pIwYG1+Z2vJ3SMVdfMdRw1UH72RjX45sMUb4XstZzmQPuxL0qB+DOHJ2UOLFSlakzqR6dSZdOO/DVtWLow15sURrqMi6wgS/9dtXHG9hIgzrVKESuoSIVYbCZr0iVwUhqzHzFh3KQpiTbZJdng9XEo5kNZyTOXO+XqXCHA+XF5YBObku5CmROJ5cLMkR537jg8QQFTS+t9HkGaTDLXz9UDvW2Uy2cH2/lCaO6x3k6gHZPp80oErf4slIxUuurCN8Hh7b2yUnlCzq9ouXDRZ7akilqs8tQrqouZ1XHb4dOeAd16v7NqtgzT9xhe7xLRSrCqMZoNBqjCsuxXemCEk/67vSBKRXGbHyY5Xa3kmPJ4YWVvWr2vUeWaS5UVCnyzRzFicLksC7VzdNpNv58R5Nvph+net3Rl13g/W1851LHD/45qdLH7tjOqTUJx05SqEhFaKKJMBwo7NxB1PgVKeDJxt1WZREpaEU6ok5xi2kLnzzMqSoRKvLzwmQ54ZA9KxuY67hJL+pmXdWduzxsdpwm6JR1vfpX/h63uuFOgahmT4Xb88YUjm1QkpcRJrPOqR+yGeTZMeWWb3uOWYaQD6ZlK/++njFYhJHSrsjo5FUoHyZoTVBNNxWpCM1mP4Ig3xdbkUKhd6aQwqDWaNBahmczOXkOAdINavb96O88WSrOCJKdl6iBFynbeXENx1nMI5usc5VNAGR7Q5N34nkTCirmfaqdtOnkRZmrtT5QdFXN1NOk/iBcPZ06adJ5f502Sf9sOL3vUM5KRysu8zLiy2orYNcrqu1Bqm0zVZsDTWue3ypygmDlwPBM1MIre6B1foC4igyzCYh2kIyJiNyJB0BjJVKvny+uXBcbH9BrnwE93WO19n6YDuJMCofJrJHuPhbdwazOe+jklWo6yh7I572DSlyNnDQrychJRyNUeZfsMHlxqMoZlqdeVkyVKpX3VsWXWdo8bA3AmoG+nMyBbqAYLoLKuzRzBhwxGYL+P+898+Sn4hDJsHCo9lCYfDk28xZwpwAPpUFT+dQcIHeKMmyiCBvFY6goGU/GFFDMaEqsKLfElR9fVtBcpiMMm2gqiKciFSF6IG+LLGVBp8GLDsLNGtfhZ2wcKpskQAODug14jrIeV3TseP+KDbLVrTmkWHFzraNQJ9JsojToKsg6SoFOenTeWysNpu+n6XlIVVnUkmlRmbOJiaKkJNdw9cOkw1dRUHLlh8mfajKrUlhcrNap9gtacSu+j3r+qOa33Xe2nTd6FigWyreFdNh8VjmOmpp++TbhVu7RGBp7ch1+X5cmoapln4pUhDf7l494O13fqO+m6nI7LheH5g5R5rkPiqtgKofHWt3HoLpC6mo/U+Q5Bx3lSGnzfJlBBaoZOJZ2AKuTeMrfV2a/TZW3pUZmW06dQ+ibiau03y4O9S7Wfjk+jmOEtK2dChWpmlF2J19OfPbj8PXkbx1cdBKBQlVWUkC0zDWrO+y2TLk2KWV21/IeA5+cpvgWhxx/lDZSgjm99jk8/rdVI5k69CUkmzL3e1KRitDd6FU2m/LlHJ0WrPgjEzfn3FRjj15UAbDhSc+G18Ih7MjJS3fRmXA9OVEslTuPVolM0fEYV1eUNpwrC3PRV5Xf/3VOn+vXWCaPUvK9pCrtm2kgiUNFyoAg6FLy2OaSoq7Xy6BOHYhP5jw6qNrg2/oW0XwqOkkQoMtIGRO9S5YiofLurfdS7rAi40Vp2VEcU/qwwbl4+ffDA5hULld+vKeubbCYMk2di2Nr0scnwtDXMYh+v+lz++VnHpcL3Z8b0AwHECQzzvLMRN6Aropq5XNltkmdzInKcrFf/LnyNj0DfpVVH2YT69LZ2d6P1parnxRSNvxIGvjTvtWBzlLSi+FT36iDz9+Q7s8NoHeaEjckezDT7dKcyeYZFCZyVdAdhKsqDpnnVsXuuT9TwoWi4YMCVVeqav9cu8i1i1151s9QcvQNfR5QFaGKyQ62UZ1P5zissbPKay9tw3KoSFVEXWaIo8QaXc4eauPbfjniLzbbh7oPPG0fapoZl+NBh+tvUeW39n3yjxBSLj70PWVZGPUPrMkNR0UqQnyfiNmAx4cCpkunzRKXYRZnw/ZcJkOWfnmc6QFpkbyVl/20wigKK5sNlcvNrmt5ddGFS13TOIgjByg19RzoI2WVZZerIp3k+bPuq0cjcSKxzEmgMqhyssTnYxnCsIl+hXBUpCIMNtfFGtIqB0+d3qAHQcNdZ2h0BkZ56Sgt/hHYwZVB2Z1oPc1g1z9Xwfk/ZciqM7J8sN0+2ii3sjQ5+5YZljxVt+civJjgCQe0H/Ei3QRA/dtFH9JPRSrCYHMNgmDYtk3vAymGtfXRMxsi1T0qSeQD78x9LwVXFIquSKiGQWhnn49qWNlAwvz8JTuK0Uj0RKnqBVGFvPwr7mkvrqjplhdpuVP87qL0a51iH13ZN/j20fTrltWsvHf73fxRGNsyddPU+V7cCbGGj4p1XaiLIk335waM6h4v/cA+Vpq6FMa6pNMlNsqPrZUQ2ysqeQO2so0gnJmMeuCR0TQdLiaFbDpU0UufWolyMhHmJZ1j5la3M43IyKUqc7hOGE+Z9GFVjMGpSBkwqmsDK7P+nVDQy6bM5VkbioS2t71E+CrMrHzCpQe+VriqVv5Y/81w61nPjTpf9mCqE+o+0DnvQeoHnaf4QR3agDBsKs3bUZGK0BV0rz+U1+1AqKqBVuDxbB8Hn3qYKgnsREY25RzxYE9psZHeMGwCgXlXV9Qs1Kapp7ETJA8Oh7YtB7Dbnvm+kk2qg+MTf/HhaAsqUgJUM69unv3KHESX9Y429r7oplVndls1z1XSkBcmLy4bcaSx8Z3dnieltd/NQEF1clZVxR13VabMPir6dXVtbjsvnezjsiLTT2WqjLJMJY0Qd/AcKQNceJKrW0Nnc1N+EnszmuYz3iadm+s9KTaVLd24h9BVJAuYJRqWr+jAXrFts0bVSg2pI51fZmzUCzt1y15eB5rnKGY6NymYFiUyI6lBX165k5YCYwkHB8A6oWZjUJ+gImVAV2M0GoomIHQtXS48vFNBbuluHdbH2yENtQ/v4XIiI4pdt+KddabKSID9l1uqrhO+nbtWxeSbabxmafUrv4kdwrCJgcG1ueGoSEXobvSqK1Ie7Tfywb20cxxM75U1aE3iUuGx3fhWlUdRqh6U6MJBKiHEFnVr/2R0omMWV315nffrlTlmcG92PYjVb/4jNxwVqQhh2FQ3s/JggNmi2OknRWZ7zBoRnbxTd7Gcn5bcPUYZ97PySfZcVv7I8kAuK31dJEMYTvpeemkwwad6UhTTfFE9UkEcLn1NFE732IY8k6pi58ZlK5Iq5lyqk0OmpmFGXiMLTJ6Vffh42RSZPKhCUfDBSYXOIFx/H69eeJNxQKesmNiom6aT2UXjdrlfuP2MZrvXCdOIrbqp2jZRkaoBtjV8a+cRlb3k7qDjUQ3XQEP6HUSNUxg2MwcXrcYpdfiqSBaamQ1g7B0kK3dKjiYc75Vyda6PrQ49t5MJANl+jKLKjTSswbl2KoNa3Q61yKp32YMFV6i2P6KBR5kOJSox8TXYt9gpA3Ef0a0zXSb1u5RNYHYosw1xZa1kZU+i1f2E7lWmqq2tmuGAUjgqUhFGNTZQNu0bydhSxEwVRJOBgusZOt08se1gYlhuPcxAVDsb5bOjlFcw9Br/ShUICx1y1R1Rp+LKfMW0/pooJcbtr622TjAQ98UCAVDLnzKVwbz2JKuu60/UpNsem5M6JmmVpUtNZs4qeU47qdKO6rTXRRSaRsmm476seru0bmlK2rRm2K/0PLWGCF3oQsNBllS9n8r64FpB2VTphFxXz1jFczR71h5U1Gh2jpQzm+aiA/LVVDJvcO3rvjHTSSF3CmrS3FMx39j+ZGKjLhqbbxn2/2UOtnXjami8UyPUND8r+K100qZD2QqFtLyV7LXWB6raqz2IdUrhqEhF6A42QFcwqrAcncGOTBPWkZenKOUVwvzzh8zly9Imm8mTyRKlQWWPkCj+VJjEb1Ea0s9I3svSLKbKaobJTKBIrqzB1jNXK74vpoqZL1srg3l1MOt50715qjLkz9hdRVXd35eUI6+PzdS1MHVtUPrMMEPlaqgMDpfTVpkMYvfjzyTDpsMVN9WU72MrVof10uB2BSKKrkJiyyzLxaqdrX2wuv2kbv+Z95wOJuUv9v9EWYvfiz7TlZItk5OMP1oOozJjspLpSMhIKqOp+4I6I1IaRfVFpuxFw0a/ZVadybyXo8Sq9rk6dbbhaFYnUFDIw8CuwjUQqukDVKQiTBvcFN1Bb9XJUKZpeWpCR56S2UNGoW4G8riEsgNxx9QUxCFLW/K6UF6iQ1OPU+E5VWVQ0KlKFUwNxVNVpg6itLpYgTXfzFs8LVUoeD6Y5Dmz9Td8N51Zdpcz7MLnNWfdbSNqk7SeNzUpLNCGqEwiWqXg+M7UpEqnLLpa6XFdH/Tl6+SJgnOaZF4khhdGpnth6152wckb4CulX7FwmiopNvswV4qSlTgMhsRBxuFxA4oqEhWpCJuP3hA9jSFFKqiprURoUJKaGo+oHoaqqpSpy1ND9QA1lXdWeYe86GIyEkVK9mxWvE3BQ7JvLsozkWxRnonCCZ8VKqNqzw7fy1itKTrDZGmuQWU2LHvWUN6eyO5ldX4m8oDsTkPleXH4kijRpKUMQxKrE2El5Y1q+5qF3oRddtgsRU61HUpNsCXanPYzoSR85HdSoW2FzXwmosTKZInCDK6vpqoTdMP3xAps1sSJcFVFsuoDxBWxqJLTCjeYCCNbNYr9XyAnHX647Yq22cm2ORou9oxiOCDSlgbpe1EpybFkI0iGTcpF5n1RGFG4hqQZl/UBWe24ykHVthSsvLgsNEFt8tqXfsWOoPppT0IIIYQQQgipGVyRijBzXAOju/zcFN1CZ/VI55m8IDIZotUQUVjR48lw0ZmG5ERANGxyRiIaViQjOosakyOQ32xPPqafCdszkmFuXK1nAmQ/2/rdWmkKI3OJw2HDeNjW9fZsZ/L++v0kQfJ+ZH9J69mgGVspS86c2tzkKVuxEV1XtzU3W7UB1FaZxHL1n8tekZPdE89m65BKq2b7YWslTRRWPNOaPVsryvm8GV+RHJUZ3aywec8MpyXzdiYqq4cirKwaaYjIXTXSWbU3eF5FRjuczelsERniReUydj9lsjD838zyGiiGa6cjHSZd75L3s2UK401cE1n5JMMI05a+JA+bkcdFVlx0WnyTaluknZDKtC9SCcNmywgX+Ralr9kA8s/jpSIV5f2brMTY7j7pfaMKUtDmommwXJrbcYVimaEgLlGHmnw++VxKQYrcT95ryUpGE41jWElJX4vKFMUjuhZXpoL4vURcWfEk056W0fodJH4n5aUVRVEYcRqywoTye6I4QlHaW7/lsprhsOIZl5VUGtOyZIplOw6EMSUzKseVohlTMttxpZWaYflps5s8s5z2vVB+L2mCk+3UxcImckVFV2eTdutenqmPyMynkfg3+mwyzND/h+pE0Ew+H8T+jT8fv9caiA1fb4WPmPjEwoTtfmFYRiQz1rcRrQ5/WP4wyedj16KDZASpa225SF+LxieLM/N6avAcJzW4VhwES02OHCmlJo8VVbe0zOUVYtOdQC2afpU8U/2O8TIslhEPE6buR59tP9O6nlEfGoJyPlzfwsTvLDmhgtwwdW1Yjvid8u5Ln4ukNUjsN4+/R/yeuD6mS4v822aXLNeKTR559UQ0xpU91wwDvDHQh+++lB8vFakIO77jFUwY0zP0Y31pDFI1KnE9WWMABMlronuinlLw/yDnfub/o/G048/p/UQ1QXgtY75DtTZVVetUe6WscM2Mgau4VuZeC4VLeSnNU/47615SvqqcSPwph0+SZ7LDxW+FsntJZTxTRjI+zfuibBdvMBMSD9uu/BG5gma2qVb263BmqbJTtYa8PgVBVGkc/r9QtuBaMlxq0it5PylD436qDQ3E4VJhRSO1ZFwZ7XGgovFkPq8WLvNeIJGnLbMhDyu7ltLcDGSI+i3VPk9W0GX9mKyPTIWP5lNOZVLtM008HVY9Co5iYnqT11ia9OftZyJ5Iwor7Lub2WFifVpG2NRzkbChJFx7prKZcz/abwv6fdHsc+KacFyRMvFphZXJSF5PpKk9C5u+FnXYmnTe2nqNsJkOH4Zo98Nhc3jyPIyEW7GuH3gIuVCRitAYE6AxZn0DFFGGRIqRUCFKKE5BQ34vMkWZDiv8t5H5fOp+1rOx5xvy8HnXZM+nwmd0eMl7uZ2lQkco7cAyOpeM5cYwr3NTjaNigizlzyRs7tJnlrKZ13EpPiOTI/XkYSnerOt58gB1DclkQAFkp80lpuXf1gBRe1BrYXAstGsStVOqg3iFNk8QZ6qdUkmDSvyiPG8kbC1M3w1AKJFvfE03LJBjv5lX5jqjf1BCpV3JC6PTZqu0+Zphgmjbm6nASMKJns95LhApP+1nBcpO8l7ymVbYZFzNqOYgkif5HTYRpJSgSJjktXD4WhC9J1CkwogylY5jWE7Y+r9ACYspWlHlqxnGla6kwhVVnhL/H8rSMHIvXK9Qoa1gdSv201SkIvz98dHo6xnyGx+b8IvMpLaWUZPtbtBopsIkwwWJGdlYOKVZ1nRDIx1XZM7+Sm+py7eM6rgy18RdMNMvkx0mTRRzVjLS4RO/Q3HYaLhk+tsmhJIwMTlR00aB/PjkVPo50TUg0vbI5LefF6cran4qS4NKGBUTUJWwpiaqQ8+KkZnDAtKFqrjcjOd1ZaWeMdS1fEFnIlylORK1k1nPikxbAJEZkpoJTNL8Jb2AlbyvHj5lqpOcQzIMmzIPSi0GZclNPBt/VCA75/mcdAPpvlT0bZJyhf1nag4uX45qmoo+K31eUpCl12Xl28HYQWm8oDGmKDL+KHOvjgjT7XhKY6GMMPLxjkiO2nhJZ6yUNU7SHSMNhYmPkUQyRGMXkcxmInzyNxAfD60e4IG82ixcMg1juqo9R6qoY4isAZ+wHokGmKJnkwNbwWA1ywmEKK4w616GrCw5yftZ+7dkjifS98KMexnpisaVJT8n37LkJDeW6+RxOmyOrFQ6w5z7afLSmy9Tfj95L7mxPOZAZP2V5HOp9MWeiYSLuS9Oy4ntpUrsxYreV9mPldyLJXKRnLwn23uls++qRdYeqZgb4vV7o+Kuidcfqpna29SV+J34NxE+Hmb9Kn4o3yclc2ksvB/bRxRvL2LWdJpujIdkpy4ZObXIe7ZsihwNIXtWuCChUaeHwsufjzkd0qjX0f8n91cK7yXqZxPxui2rz9G6nKzHIZrtuhuNJ3pe4PD1SN2XjKqHD6OOH2obROpwq14F6Br6HbvXFaujjfVhWnKi9Tgqq4EAQRj/3a7PQykYDhfZixjdqxjdoyjbn9hAINyXKA0fDNfvlNEPEr8T+xyTe6ySuzaE+yElslvvmL6WDqezryz1LOLk7XdMTyolfkOMrE1T8R1QtSIMAG8OrlUKV/N1ZkIIIYQQQggpH65IRfjj6wF6GtHZy5GBqjlR1lK1TIbMFW/eqpIoTNYKimyFJ3sFI53OpuBZkTzRNZl3ufhz8dULGx7mhmcy81cyslYwwsSMZnT2tDXzGZ31bM12NhNhhp+Rr4TkEVv1CNKrE62Z0/asaWKGdfi63BtcAMEKSiO5UpL2NpflaS4qX+Uwya71TfCoxEqy7DDJ9IqJeOVFJXz7OekBjdlTgqnYDExZdA4+T3k3KzhjqW9BE8bbE5X3DeVtoClWD/JVxJeVMMD++8ffrUvwPwGqSbCUVN38jx4WqyUvzFhdkFi7ZB43EF0dUVydVTmQVtX1uexdkocsD5l25ZuUDsUtMZXM+EZ55svx+9mFxkZN9MmvSIsyTNR1o1inODimIhXhr2v6McrAKNfV0RQmHYbuORkqrldj8rVC67+D7qBDV75Jnpq4ljbt7JPPtQfR6wfWws49ptRV5GQASLfwjhvrmMmZLLsT13UHJCYDSJkb8SpImUaJMqr8cbkyPg3gbaLdLirUa5OzymTtRdR0zUSGKL1Nocz8a0JZgomZ1NECifiSz6geRRCdBBIdfwBA2cQuOekUldMK03ouNhGVeF6FaPvYnmhKTDglJ6miE1R5k1OyianYPQVz39T9UPSM5P+JswBlzwz9lk9WqYSXXVM9Ny/ruslkVlYvk63U5U2QZd/XMbkr2n67Nu/LG272h2oTwFSkIvwl/Du60GNFlosBrZLMSMFT63yzC0qWDFHHmCVTJivagamkX7a6IR0UZLxDmFFRss/tkT8ns0vPk5mXnqF43StKWYpAdIUniuiQ2kAwKZE8g0j+rHw+OCt9qoflitKR/4w9BamR8X46uFLaGgb5Y0Je+2OKrXrSVOxIiR422zFpW2w4QaDad8dXyHMsWTycDzA5WFyEqC1tfd9B2R4tjbgz28rYfqBsmXltmugQeBXZMrkm/VTeNzFNY0y2Qr3IVIAkz5secK+LrXKrwkAoP1c2ChWpCKuD19EIRlUWv61O27ST0jG/aqKZWSF1lRe5EiSYeUw0zqkZzDB75jH5fNbm3Ojv2GxkbLZQMpPZmmGMmbjJZKh/s2inLTZ7a6TDiUzdYp2/eFAQl9EFhAPCe00IGvJQpBANpBrC6Ju3ZYb9kGGiBEUpsyGWojHI052UUa3HOmVOOw0F2jKd9kvlHUwnPYpMiLggr9yKJi5U7rXDKNYrFVlD8hTDKU4q6NZb1XS6pGhbVYS8/MoqwarfZIiB2K8ikzuiNDclfYFK3kbTMoi0nKiSNphysKCmmA0m3r99X0GxUM2rtrKmoZDb/g4KEdqR4xGDoZrXvnq/JSGEEEIIIYRUAFekIvSFb6AxwrKkyMyxTeQzF4LrebMyBcwoKt1jVGOqnnnSm0FNPGsh7a7e3+mMdk49ycqXMkxMXaLr/KQMbLU9tr+Niz7Cdjvr4/cE7KdLpz0w3U8FqH9zUbubVf7y2tpomvPa1GjeyvJFlpZWOrKtgOL3kiaGgzn5m1zhisZblDJMr1VW1MpEtpXEJaJVTBEjS2vI4c3B5db2LviCjvmOskzNzkEnDSph8/cZ6e+JEjW4Mjlp00C5OWBahsD0T2Lul2zIo/fiZiticz2ZDT+k1+XPp+4ln0uF7Ur8Fm3IlcvPvJbRicjMefI6MBfmRaamRVWaA9WdogNX0/ayiGJQlhnkcHzVm4q6MCvNk6mSz3n5qZruIv2u7jctMjjPa6MyzUUN9tLmySxivqpyvx2uIjPWYbn6bby1PW0VmbwW7tcqcIrUDMVmm0moSEVoNvsQdpgi5Qqdymg7rF/zJKRsRF6tIjfdxOlgQgKwMzNvM222Vh9crVi5+g6AH3tqqsAnL5NVoVpelQfWiuFE5dmn75E5KZmVZzkDUFn+qLY+rhUXnbbARMEp2tbYaKtcTth1Sluq6reAilSEoUbDQ/c6BbBpQmE6iNEZnKl0aPkzj2aNfxG5NjHZNC7rWKThhSs9ZjOMWfG0KDrTKAqnpaAX7TQcNQu2u7IyTZxc1Yey6llRaAZsn6q+fWWrwJ013LBGWQPxsk3Sbb2XjXoSouksn33ZMiJCb+Vc7T0qVRvvuusuHHLIIZg+fTqCIMBNN93Uvtff348vf/nL2HHHHTF27FhMnz4dxx9/PJYuXRqTsWzZMhx33HGYOnUqxo4di3e84x34xS9+UfKbEEIIIYQQQkYSla5IvfHGG5gzZw5OPPFEfOhDH4rdW7NmDR5++GGce+65mDNnDl5//XWceuqpOPTQQ/Hggw+2wx133HFYsWIFbrnlFkyePBnXXXcdjjnmGDz44IN4+9vfXvYrlTKTorfsXCCekmfpqlgO9smMIkoR5wm+UbUjClIcl6svNmcvi5oU6sxWymqo7VVB26s0Za766JYb131AXVY7fZ7RL4Oy3r8epYFUhbLTlTDMO9u3HIIgwIIFC3D44YdLwzzwwAN417vehZdeegmbb745AGDcuHG4/PLLcdxxx7XDTZo0CRdffDFOPvlkpbhXrlyJCRMmYNyYrTtqAOsjVQ+aTDpS/c3Z5Q3mgCJODRTOuVA5f0bpjBq7Z8qoxiujjspd3cx0AfW64MpRgW5dLKN9EMMhHdHDmWltyf1XNr4olMXGhUX6qqKTvfYmJ9z2mT7uqwrDJtb1L8WKFSswfvx4aTj/Up7BihUrEAQBNtpoo/a1PfbYAzfccANee+01NJtNXH/99ejr68Nee+0lldPX14eVK1fG/gghhBBCCCFEldo4m1i7di3OPPNMfOxjH4tphjfccAOOOeYYTJo0Cd3d3dhggw2wYMECbLnlllJZ8+fPxwUXXJC6PtKX0+uGyUyN0ayHow3BdT+LR4TUZbzquyq6G3VNXUyAXFNlGXX5Ddx/X/f5VmYZ7cS2yjd8MTMv3K/W2oGGH99gJOJjn6uaplooUv39/fjIRz6CZrOJ733ve7F7//qv/4rXX38d//M//4PJkyfjpptuwlFHHYW7774bO+64o1DeWWedhdNOO639e+XKlZgxYwaCoKsS0z4flzSroqzK5PPZLSphXXs3HKJ4HCao14cCZ6BYNEdUlWfzOVsUGbz5MLj2df+QjbzJS0uQM2At/i6Rc+s0yolLU2g92fptfJWeWc32WNgdr5i2RzbzrVqFsvo2rSp8aM9NcDvhplYrvVek+vv7cfTRR+OFF17AHXfcEVuNeu6553DppZfiT3/6E7bffnsAwJw5c3D33XfjsssuwxVXXCGU2dvbi97e3tT1rMG1SwXLF028ykFd2XlQ5HvqOuEIw0G9vHU4o1fXxlKELzO4OnTSHkwvDg6W1BXjiZISZtN9qoO+9D2q+JxeH75r1flTbvxu43LxLrbLiJv8dmOZVU3ZLLrfrwMUqZYS9cwzz2DhwoWYNGlS7P6aNWsAAI1GfEDV1dWFZrP6Ro0QQgghhBDSmVSqSK1evRrPPvts+/cLL7yAP/7xj5g4cSKmT5+OD3/4w3j44Yfxq1/9CoODg1i2bBkAYOLEiejp6cG2226Lt73tbfjkJz+JSy65BJMmTcJNN92E22+/Hb/61a+00xMihEyD9f0Echt0yh4xVzODVg7BKyCjyHtVPVPpApsrqLbqcm6aPNkDViauy17ZKwGdVpeqNi8l9qj6WwZBo8T6Uexd801n7eeleMG7QH4VWEGXv78btSAM6thOhwjDNbmhKnV/vmjRIuy9996p6/PmzcP555+PLbbYQvjcwoUL2175nnnmGZx55pn43e9+h9WrV+Ntb3sbvvjFL8bcoefRcn/eM2q6VuWputGyTZmKoeu8cy6/1LzywITKIVW7xB9KQ+ftYct6Pi992XFnf6/Ce+9MXbMb7jLRJfB9N72Vtq+Au+ZC8Zu1dUXbe5vtudu+x78xRx3GQX5Ofng84VtCPzqMev+vJ1/VwVVGPxmGCLE21/25N+dIVQkVqSGoSGnIpyJlDSpSpvFQkYo9RkVqCCpS+s9TkTKmDuMgKlKaMqhIrY9PTZHyeo+UT4g+oJ+V0z+EDa3GmEe3oQ6gb16gG0eIplG6dCnkFMNCB+fy4No6dMAusN1u2Diot5DJqaEiXG5nbV9GTJ4HjgbqiM/m8SO1fXKJdj/LMVaKqvLEdRvnowfWMGyif2BZbjgqUhG6u0ZbaTxddw5lrlD40Jm4HMzbxIe8qhtVdQo2lI8krt7FhxU7Jdk1GvTYrqs+KAS+tj8+5I2MTl/tB/wtFzrUqW3JwkpbbrAgXtZET6HvZPs4hzx5Fo93qX8NI4QQQgghhJCS4YpUhGZzIDZ7Y3w4nWvtv+aev0o7dLdykycb71mXmTgLK7m2Vwk6YCY2SZkzs50yC2ybssqVdjwFtoj5smpUep2teV9K9KhDm+aDmXAV+eTjGWSqaaIiFWGwudabwVfVFd6XfHBP9e5isyk3fVV/905weOJMrieDXV9xMQCpej9WWfvIQjQN0qmfNpO8MMkDO/1nVceBlGNuWNqEANstL6jHHif9OufSAYWqLz6WcEIIIYQQQgjRhCtSnpKcLSp7hcpFfOXMgJV0sKqrZytyO8xVlHIodKhyIZflxSnVrNAD8xYVqrYcsIl+G2DihVQ/z4yczXvuoZ6UT9XWFj7gtL3yrs7Z8tq3NjccFakI3V0b1H6fRt0GriPBa5ItbHpvE8q3NHiNNtaqMk1MkUzSYycNduW5eJdh7JcZWRrKH6jYaztcpL0TzFSL40+6/M0jv9MWpW7jC5LAkbJTl4kvFeL9G732EUIIIYQQQogTuCIVoRF0OVkhqcuqS11mxcqiarOdOq5AuX5WN81uvmEDKjNV0fqUlQ7RLK/sPUV1NPsdo21PfnlSyy9xmMxnVeRqtz9ZHtd0D/4UXy/SJsq3KTvoDzL2RLNdX08Br4a+UnUfVZQyyqb7cz1dyHewQl61I6matEMm6aQiFaEZDiIwaG3zMr42jV0HdjSdQGUnmVuKt6jCZpoOl17IdGTbPPjPnjIElOpav91GmnWmdjrhzvKGpkMnmmT5mM+l43RfCgfeMnxOGykflgZCCCGEEEII0YQrUhEGm+uszDS4WUGwK7M2q2TES+zPyJU/p5N+B/U0BBV4KKpTneWMbXGYh/nUcaWN39VPbH4Xl+WyLltFfMJ0m0QYDqJPIRxrNCGEEEIIIYRowhWpgohmMUbqieEjaaZtJL1rJ1Cn1RwfcVnebbdjNmdsXbx3w4vV1/rhsg43LZ05U1yGWwdDdcbHlZi616sq2qJKCMxUHdX6SEUqQhA0MiuGqKEs+4yaLDmiTe3i8IMZYSL/j50HFPdEEbR2ucbya+j/8TyMN37Re8kBVJ6pVfK+UInNlan23FA4ccMtel7WIOkq2oFgQ3x2eFm88k4nq/HUTZuq3Lw0DceR37DrNP55aTZNQxYNhx2+b5MnxD1VndHSLDio1zofTfG8szyFJ//QanE8WXJFaRP1qzIZyThV+ulknKn7id/JuGNn+UXiT8YdDyc//y8v/mhKhlHvZ5TGBeGA+FmFvrton511fSgN2W2+qsJl0r67UDDrpmDZmAgRyg2zPMMOU6/cIoQQQgghhBAP4IpUhJ7ucW3t3lQjN13qNX7OZMZdIy6dGRKVmRGVfFVJX5HVkax0Zr1vpsyM9MhkylYupOElcTRCyQxa5rvoxq2fL6l0RRY1TfN56H62p4dAkh+68ejE6fr5quFKWDZ1/755NB2ejVF0xc00bbrP6c56h8H68ApFQyct2unQCN8M9GTrpsVk5cC0fDQVVzltxgno52H7OcP0GueP5oqzSTyqK82AetnQWulWfEdZ3E3F8TV7R0IIIYQQQgjRhCtSERpoIED2PikReis86itILlaOVO1pVWfr1W1/ba1WlbPPJtfmOW/VJCeduc/nrbjlrLqYriC0ZnuSz4tmbFp5KJ1JypyJHX4m+S6DGTNOARr581HB8CxU1nceVJwtayAoMLdpH9UVN1KMsvcJdPqqVlnYWD0zWjnRXs2xvwqlOluvumqiEq/NtKmuyth/T4WDzlXj1FjpUZVpaw+hSdzt8Brvpb9qqt/Dmjh30V5B5R4pQgghhBBCCHEDV6Qi9DfXWnNnWdQVqs7zyrMaCjJteRfUx3zvlPS6Ja88Jp7xssqRqdc8lfuA+qqn9sprwXkXH9zXmqwyuPIIVCZ0qyzGhzLpIy7KS5F9J6b9qclMd5H4XMvqdFy1tSbfQKcOlDkGy/dMWey+ztjOVdk2H4fb9VGg+n5aitQ+++yjFO6OO+7QEesNAQJrm6pbH8Z2R21L0bNltuL6HIW6n9OQhVnjrtAQRxpCmw2dzU7O5eDCF6WhKrfVsTRUPIirOn5SPTbrQZkTlGnKVwSBahTQ5BEp7uIxJ39sYDbRCeRPGqqNS+xuj1B9xmQyls6ExKjWPS1FatGiRZg5cyYOOuggjBo1yihhhBBCCCGEEFJ3tBSpiy66CNdccw1+/vOf49hjj8VJJ52EHXbYwVXaSmfo0FnzmRWRVl9kdly0mmVr5mcQTTurPZrp0V0JK/K+LlezbMiWmxJaXMXU3L/eySuAJvi2omJqqqQs39H7upDr4wqp7dVQ16uaZZTvvNlunTQUbp8U28MyV5N9a2NMsNlv2F4dqXOfVue014midVDrK33pS1/CE088gZtuugmrVq3C7rvvjne961244oorsHLlykIJIYQQQgghhJC6EIRhaOwrdM2aNfj5z3+Oyy67DE888QSWLl2K8ePH20xfKaxcuRITJkxAd9fkjp4B8Ovdqk+LT/lRRVrKtIv2Ka+JGp0wU142PuyL6zRYDv2F7TrpZMKwib51f8GKFSsydZtCteDhhx/GnXfeiT//+c/YYYcduG+KEEIIIYQQMiLQdn++dOlSXHPNNbjmmmuwcuVKfPzjH8f999+P2bNnu0hfqQw21yIIeCgiqQfVzQa6cRnN2c3Oo9NWE3wso3XyuOVj/ulQdnl2scJp9x388JCaj16fVdbRIHbqQzl1qu511wQn7s8PPPBALFy4EPvttx++8Y1v4KCDDkJ3N4+iIoQQQgghhIwstPZINRoNTJs2DVOmTMlcuXn44YetJK4sWnukRnVPsXo+ACFxqpudt+aVzOAd9OLOn+G0eaDgsNAmoDXjZnqOh/nZJoDezGfZhxrai9+vOKqkTqtNhPjOSNrD2AnWAFW/Qxg20T+wLHePlNZy0nnnnVc4YYQQQgghhBBSdwp57esUWitSY3pnWZvh7LSZ0k6cGR1Js1OmVD0jRIpRl3aoE9uXMmAbVj1VtZEu47VZrmyks7gM8+eLxF0kHztnL5ubPdUibPd3YdjE4OBrdlekAOD+++/HLbfcgv7+frz//e/HfvvtVyihhBBCCCGEEFI3tFakFixYgKOOOgqjR49Gd3c3Vq1ahf/4j//Aqaee6jCJ7mmtSI0dvSWCIK49J38TPwlDuzMuZc0kqYZVSU+WrOx4xPdkz4jSIg4r/iYmM23imSZx3ZTNSslWPbJnsRT2Lel6eCo4a+bb6k1dVr24uloMrn6xDJVBffPY33TXN0+rJQybGBj8h91zpC688EKccMIJWL58OZYvX44LLrgAX/3qVwsnlhBCCCGEEELqhNaK1Pjx4/Hggw9i6623BgD09fVh7NixWLZsGSZPnuwska7JWpHyCV/TZns1qAzKmF11NQtkU65vtvAu5WUz8mbsXOevrbJlJ5122qhOn9nttLPpOp/q+14f64SbcmynjNpMmyvrhHpYGbhPo6rXPq2UrF69GhtttFH7d29vL8aMGYOVK1caJ5QQQgghhBBC6oa2s4nf/OY3mDBhQvt3s9nEb3/7W/zpT39qXzv00EPtpK7D8HVFqfCejVrMXuRjfWZNftRaJE6DGcUcuZWtBOSly7I8Uj6dsE/Gxxn0InTa+5DOplPGC8Qcm2XAh/ZP+0DeXIFBgMHB6pebdSjLtK9TFalOoYoK6cIs0i+TKnfySPlQkfKPTnsf0tlwvEHqokiFYRPr+pfadX/ebHZ2g90MBxEgrVfa+ui6H7ws71wmg3lflcKqMC0j7FTSjMSBYdn7DF0pRHXYF5hV5+qoKLIN8QvfvGoWheWLmFJGX65aPl227dqmfQDw6quvYtKkSQCAJUuW4Pvf/z7Wrl2LQw45BO9973utJpAQQgghhBBCfEPLtO+xxx7DIYccgiVLlmCrrbbC9ddfj/333x9vvPEGGo0G3njjDfziF7/A4Ycf7jDJ9mmZ9m0w+q3Zs5UezJS7SINPpmA+5LGvcGYwjnlZqeacLx3ZJt9adSZcT/bI3D9ZvB3Se95GOcuWoXOmm+CaTn4Iv3n6msuz4fKey0qXvgy9cECxVStbdaqKutlpq3Ui6riqDfg/9qpm60UTa9cttuu170tf+hJ23HFH3Hnnndhrr71w8MEH48ADD8SKFSvw+uuv45Of/CQuuuiiwoknhBBCCCGEEJ/RWpGaPHky7rjjDuy0005YvXo1xo8fjz/84Q/YZZddAABPPvkk3vOe92D58uWu0usErkhxRaoO1HV23xVckUo8wxUpa3BFKhmQK1K2wgFckepkuCLlBp9XpLT2SL322muYOnUqAGDcuHEYO3YsJk6c2L6/8cYbY9WqVYZJrp4Net6CRmC0bay2VHWYrsvGxv1Bo/XySknEBIYHLPr+/X3vEDsB24NQ07IYk2FrgO1gsEvnRPn46sHVpD3RbSN141AN31R8f+WJDAvfKC8ulbTkfVclGdrf1Ua/Ut4EgrEDMIM0aj8RBEHmb0IIIYQQQgjpdLSXX0444QT09vYCANauXYtTTjkFY8eOBQD09fXZTV3JTG1sja6gx/j5xghYtlZFdSbIpgyd2bemwoxZnrxmkHM/Iw6Z7GbGjJfoGdnMnyjvZHGKZtnEz6fDiWa1ks+K5CfTIpKjEp9K/LJwsrTJ0mgTdTO87Jl8lVk3lXYpT46yeZPiyopL00V5nOWsinRCP+CTSaaN1boWtr6NjbJke+Wv7HJn87v4RFUWBzbGTEnsrEia54fpO5l8A5OV07z0NcMBrF23OFeOliI1b9682O+Pf/zjqTDHH3+8jkhCCCGEEEIIqR1aitTVV1/tKh1eMIgBZFk75s0gmWrfnTCDqYqLWRcTGoLZtOQKUt737gqH7stmfWTfdWglSzyb1xWMykyTDNWZJ+GKV8I6V0VWe8Yow7JX2T5dJT6FWTGV+Fzb7kcpo6zb3ldRdAZTfa/BcLgyZh91w2uvhmunx+CdLZYn7cPhK9h/VXQ1Nq9ftbEKa3sFVneVynRlzMaYo6xVy05d+XJBmatptvbiFu0nXbalWRZCUUbOCJ4QQgghhBBCLEFFihBCCCGEEEI0GVm+vnNYNvB4aRuSbbsoLiqv+PKqrbOo/HYtbYJJmTIxm9A11yjLnShg1zzDp43wNrHeJlgw8yiapirbJdO4yzS7M3ItbfpeJabRhYw6Yd09voM2r6wznTq1vXaFy7pSlTt8s+fsua5X2z4gclKldswuSzghhBBCCCGEaMIVqQhr+1dy9oTYJxyoOgVKVDVrXGSWTCfNamHlYaQu1KVu5UXXBxXC6OaHuM1Kt2XiVcGsNi9v1lq9vSzvIMaisA8YwmZ7wDwthsq30M1jl8c7xOKpoF/ptBVQv96n3LTYeHel1Veh4yy1uNm6EUIIIYQQQogmVKQIIYQQQgghRBOa9klwbYpQ1kbPzDSU5FiDVIP2pvmMM6GM01CiGYBf5g9y6pLOqimz7JA0NMcjLmD7p4d/+SVqF9ylUacdKpJXRcbkbCkJIYQQQgghRBOuSEXoavSUukrDGb98ypqNKep2XXf2XPW9bLj2zJKRLd+e44X8uOygWqd0Z5/s1VXWeTG+zbr6h38z037DFc364IOFDiGmsPQSQgghhBBCiCZUpAghhBBCCCFEE+9N+/7617/iy1/+Mm677Ta8+eab2HrrrXHVVVfhne98ZyrsJz/5SVx55ZX41re+hVNPPdU4Tprc2acuJnoxWQVNQ8o6AbxlFiFLb+Y5QevviePMem74/9FnM/1VaDmz6FSzHPfvVcfzwIziq7Wpm712qhroqIjYw6Tv6hRo1lh/vFakXn/9dey+++7Ye++9cdttt2HKlCl47rnnsNFGG6XC3nTTTbj//vsxffr08hNKCCGEEEIIGVF4rUh9/etfx4wZM3D11Ve3r82aNSsV7q9//Ss+85nP4De/+Q0OOugg4/haqxlFVzXoVrw6bOZ9UHTWNbZqo1GmLLkhp+txO5Q5K8rZyfpQd2cGnVxnZYzEdzahbmXbl+9aTTpGjiVA6VYPivF53Wvfcsst2GWXXXDUUUdhypQpePvb347vf//7sTDNZhPHHXcczjjjDGy//fZKcvv6+rBy5crYHyGEEEIIIYSo4rUi9fzzz+Pyyy/HVltthd/85jc45ZRT8LnPfQ7XXnttO8zXv/51dHd343Of+5yy3Pnz52PChAntvxkzZrhIPiGEEEIIIaRDCcIwDKtOhIyenh7ssssuuOeee9rXPve5z+GBBx7Avffei4ceeggHHXQQHn744fbeqFmzZuHUU0/NdDbR19eHvr6+9u+VK1dixowZGDt6S5rleULVpgVlL1/7Ypqgi02ztyKyiprEFa33Ls3/GiXPd9Vlg3dd0ukjhc2Wa0RYsWMPF227DZlNgz5WN17dbRKq/b7NcxhV41U60zE3jNk5i7L0yZ8R57s4vOBaIlwIPTUhEO1PkLbX+c6wstFvy1T7jjBsYnDwNaxYsQLjx4+XhvO6J5o2bRpmz54du7bddtth8eLFAIC7774br7zyCjbffHN0d3eju7sbL730Ek4//XThXqoWvb29GD9+fOyPEEIIIYQQQlTx2tnE7rvvjqeeeip27emnn8bMmTMBAMcddxze//73x+5/8IMfxHHHHYcTTzyxtHQSQgghhBBCRhZeK1Jf+MIXsNtuu+HCCy/E0UcfjT/84Q+48sorceWVVwIAJk2ahEmTJsWeGTVqFKZOnYptttlGO77BZj+CoO7ne6Sp2kwuia9mbL6mayTgykzLqumhxQX8MszS6mr6VpbnQttm3Dbz26Y5pyhdRfsEX8qWioliGWaMmflhyQvrSMV1v2zD9LNoGqsy1bSZhiLerm2MUV2Z0L45+FpuOD9aQwm77rorFixYgJ/+9KfYYYcd8JWvfAXf/va3ceyxx1adNEIIIYQQQsgIxmtnE2WxcuVKTJgwAaN7Nvdmps0mXJFSw9d0jQS4ImWfurZlXJFyvyLlo0wTfHGa4Ut+dCJckVKDK1KOVqT6Xsx1NuG1aV/ZDDbXldggljNoL0s5qN/hr2aV3k1+JmX62ynbrx/mA6EqvfzZSoc5/pYRc9y0IUXqrGm7VqydsGVerle3VMpxXr1RqwtqZVe3XvnSHkjjGMHKlqtxiG+TxHWnygPh61w/6ptyQgghhBBCCKkIKlKEEEIIIYQQoglN+yJ0NXpqvbxIOps676upwmSgTodrF7EvL4OqTGiq2LdY1V7JKs2U6rQ/VJbWOr2DGfV6v87/HqTTUS3D1BoIIYQQQgghRBMqUoQQQgghhBCiCU37IvR2j2ubA9kwcbJtJlWmq9e6mDhW6WWG2MemeVMxb216pnY6cQnDBuKmWNWlrUr8quaDKt9A9X2V0mX1HVW/g70422ENyu5IN3+qSz/jCl/7Lx/HP3VlpNdx39Bpp1XDsqQTQgghhBBCiCZUpAghhBBCCCFEE5r2RWiiiQABAKARVpyY9USXx01O4DY1BxQtR7tYqvfVtKFsqjjZW6U82TCnyjJPk3vgEqctK590vXmZyMq7J6cK8w7WrTj630CnzTNqywL9R0j9qJsnSFF6zd9BfdyiFkdOmKy2G6KBXSJ8mAgTJCupuJ4HWZVZa+xU4GBpmlNaJUyWBQnMdUIIIYQQQgjRhIoUIYQQQgghhGhC0z4Jqt6yMtE1tTJcOrfljUvXnEkmLxk2/Wz2/ahccZpE7xs3YYwucUdNbuJL3+LrsmezwonDytM0FHt6HiMlU7BULzLXDIJGbnpEacpKS1YaZOlQlZmXnnRc+nM+KvG7JC9/TEx1fcBK26hBWQfVujoU2UV+2So7NkzOiryfaZ6X6SHRJK+1zawN0maS767HGLFnLJoVOn2u5HQWfTaOm7ax0zwN6n7j1ngjVKxlXJEihBBCCCGEEE2oSBFCCCGEEEKIJlSkCCGEEEIIIUQT7pGKMKf7A+gOegEAjQxXlln3ACBIuctUfzZPs810sQmgkRG3ahoAgcdPBzJU5DRyZGTl9ZD8vOeznpXfzHwuywuqRKbsmWxZmuEFic7KH9k7yp6RhrckJ0sWkO1JOrccFSyHefHryjIJKyMQuvztPEKLvsSbhlmm+5xOcFXZYhfPZvJUJOXJyfMgnLUHoYjsLLmy57KfET8kS6MsabLwcjnq8crfK31DJw90310vvmJhh9Ihvi7NOw3Z0nfPqB1SWZISZiJr6F7GvvZAfs9YZs6OoWZGnHmy83Yj5cadsZfRNN2DYT+eff2Xmc8CXJEihBBCCCGEEG2oSBFCCCGEEEKIJjTti7Ck8SwawajYNRW3yw0FF86q7psbOS6T2+FCNXnG8WaYTCjLVEyjqptq2++sFbei2VCgkEabcSqZWKqUYVtxWTItVcmhPHO8mDwVO9N23GYmYhpRaGOaJhtkmYHYQPHw+BS66ZKZ/4hQMY9TcYurkkaZ6ZCqjLz7+SYx5vJzzXFyTX0KyHZoZqQTRse1cpb5UVHZ0jhz8sFLdJs7i82j7jfyERdHRjQtHA9h7Gpe85voHg0gc/feDAeUnueKFCGEEEIIIYRoQkWKEEIIIYQQQjShIkUIIYQQQgghmnCPVIS/rXkcQdA5uqULO9m2bIlNaTnP+2jzrVdudMqZalidvWG65dy0XuikSR632r5BM9nu6rvqXjgTOqmdckHR9kkFXTt8FWymOyy4p6FI/2H6HibPmaRTNx698C5lF9hnUkKdSFKknTLpO8ziM+zbirybxfbbRh+bG8cI7W9U68zIzB1CCCGEEEIIKQAVKUIIIYQQQgjRhIoUIYQQQgghhGjCPVIRBptrI7agna1jVm3zqhJ/1WksG5k9rqqdrsx2vqz9aGXZ+ttC1bZcrRzak1XlfjSh3BFWD3WoYt+Jz1Rdp+3uMXP/LipxZOVp9vPiPXLiZxLXEmHi56qJnh9uI6Ln+4XCtiN+Tda+hBlnakqfWZ9ulbZwWIbqd47L1CkfyfQWKVspWSXUOZ187SS4R4oQQgghhBBCHEFFihBCCCGEEEI0oWlfhCDodmLGYtdEwI4sJZMCg3TbzL8wzA8zhJ04jU2qdF2JS9IrkuPCTXpWGuSyzV2Ql2Ea5tLVeB4u3GBn4drkqKjbbJtUbSqWB80eh/HV7MfV8Qm2vr2ttstFWay6fAcZ5n2dQtV53Cm46Beb4SDWrlucG45fkBBCCCGEEEI0oSJFCCGEEEIIIZpQkSKEEEIIIYQQTbhHKkJP9zhle2qXdq1V7PfoBDvdTngHE3xx05uH6V4ilbgHE7J19vmo7sNRdkNf0F29iTy1OO3IUUl3vpzs75P/fMb9jGfjbpwV5UmRtzdRF9DyQKrtlZt9kkPo7UExaWNN907Zac8760gAV/EW3d9W1v5iwCytJvvkiuR10TGcs+9c4zGSy/1yobQ/UhtH1DdXCSGEEEIIIaQiqEgRQgghhBBCiCZUpAghhBBCCCFEEypShBBCCCGEEKIJnU1E6Aq6tTcldtqmwJFwAF4e8o2HDuN04DCiqEyXziGGw1bnFEI1bDXOKNw7hijqEEI1DW7IOLw6w8+DggsIRUZmO2nyvbPrT0YZUz6QXZ3qyms5lDtucFcHynoPXw+RLkqdnUr4hGp7wdwmhBBCCCGEEE2oSBFCCCGEEEKIJlSkCCGEEEIIIUQT7pGKMNDsMzq4zQZVxUvcobP/R0uu4d6lmAyTvQ6az5ik0/b+pjh29kfUaZ9FgIbcXt7ehiENOmfujvsQ7MB8rAdVtHtu4rQr00Yai/TpwviV9hfqj0/clYEsueW3D602KQzVNmqyBSOEEEIIIYQQTahIEUIIIYQQQogmVKQIIYQQQgghRBMqUoQQQgghhBCiCZ1NRBjXOxWNQC9LytiAaXowagtdpwe2DiDNO9g263nZPVleyMJnvbvsPU3SpSM/C50DAvM2aWfdzyrneY5PVDaHNxTfw3SjeXkHNtIJTF3oBKcFvh4Q2unOkFTbKzKMTn2rk4MeXYqOz0xw5ciqLd/RO5VdDvLGoLnPh4N4ffWjueHYehBCCCGEEEKIJlSkCCGEEEIIIUQTKlKEEEIIIYQQogn3SEVY8eaSjrCz9w1X9ra58VZsl111/GJ8SFN1B+xVJaPo3pcq26Wq4q77AaBVHZxt49mi7YTtb1dVH6KCzX1tduqaP22Ny7bDh/2EHC+a49v4SNTGqKaRpYAQQgghhBBCNKEiRQghhBBCCCGaUJEihBBCCCGEEE2oSBFCCCGEEEKIJnQ2EaG7a7TSwYNVbDDkgYHqVHNAXjlxuj6IryxcHvDJDcB+o1xXArfpqBoX5bRIP2GSHt1ndA64VpWt6nRAp83RyUeXeaCbllg8ltrYMp06jJRxTlljFDsOb8zHHLrvqXuArs64SzUt0fdthgPoW/eX3GdGRqklhBBCCCGEEItQkSKEEEIIIYQQTahIEUIIIYQQQogmXitSl19+OXbaaSeMHz8e48ePx9y5c3HbbbcBAPr7+/HlL38ZO+64I8aOHYvp06fj+OOPx9KlSytONSGEEEIIIaTT8VqR2myzzXDRRRfhwQcfxIMPPoh99tkHhx12GB5//HGsWbMGDz/8MM4991w8/PDDuPHGG/H000/j0EMPrTrZhBBCCCGEkA4nCMMwrDoROkycOBHf+MY3cPLJJ6fuPfDAA3jXu96Fl156CZtvvrmyzJUrV2LChAnYYPRblTzw2PJiY8Orji3PT7a85dj2ROXCs5Wu1yRluRV4iyvTo5LP2PBOJJVtySOjrkcik/hVw6p4MFKRlefRSeW75MWTe9/Su+iEG6Z8D6HuqEHb7aiNraodpYfRkUdZHn5T8ZbQVrl6N/ty1fuD/oFXsGLFCowfP14arjbuzwcHB/Hzn/8cb7zxBubOnSsMs2LFCgRBgI022ihTVl9fH/r6+tq/V65caTOphBBCCCGEkA7H++mQxx57DOPGjUNvby9OOeUULFiwALNnz06FW7t2Lc4880x87GMfy9QcAWD+/PmYMGFC+2/GjBmukk8IIYQQQgjpQLw37Vu3bh0WL16M5cuX45e//CV+8IMf4M4774wpU/39/TjqqKOwePFiLFq0KFeREq1IzZgxg6Z9FqBpX7nQtG8ImvbphaVpX7Fww9C0TwZN+xTipWnfiIOmfT7ItWva570ileT9738/ttxyS/znf/4ngCEl6uijj8bzzz+PO+64A5MmTdKWyT1SVKSsyKUiVRlUpPTCUpEqFm4YKlIyqEgpxEtFasRBRcoHuSN0j1SLMAzbq0ktJeqZZ57BwoULjZSoKD1dGxgrNzY+tMrgxhVNNJWVqazGX3ZPprzIw0uuC76PLN2Z6ZSkJysPZGUjrxNWyVdV5U63w28UUNappMUx6YiaOYpGEfm6iplJ+2LyznnKlQzT9s9UQY3JsNxRV9mWu8DWRFsLmwqEq4mxFrbfnchxXW9stBVA8fbCqC1WbFdV22ylibKc/Co6CZaVD1nPZuWFzcm7MGyiP1ea54rU2WefjQMOOAAzZszAqlWrcP3112PRokX49a9/jYGBAXz4wx/Gww8/jF/96lcYHBzEsmXLAAx59uvp6ak49YQQQgghhJBOxWtF6m9/+xuOO+44vPzyy5gwYQJ22mkn/PrXv8YHPvABvPjii7jlllsAADvvvHPsuYULF2KvvfYqP8GEEEIIIYSQEYHXitRVV10lvTdr1izUbHsXIYQQQgghpEOg8S8hhBBCCCGEaEJFihBCCCGEEEI08dq0r2zWrHutVi5bbdJJHtrqkN++0AmuWF2+Q1X54xb/88tG+bD37ex4+pLRmWVsiOraYree/GT43Pd0Uh9vizJcgqvgvg3ww1thob7Hch6FyN8apLp9iDWLEEIIIYQQQjShIkUIIYQQQgghmlCRIoQQQgghhBBNqEgRQgghhBBCiCZUpAghhBBCCCFEE3rtizBm1EYIArvefnz24uOSKjxRNT31BBeGljzmOPAwZFo+8/KnruXeZ89WvniYauGijlutd57ll2tslF0b9dZ23XdVJ2339USOrT5QO15HbYCNdqqojCLvZhK3eXrNniuSP0W/eyvuMAzRbPblhvd31EAIIYQQQgghnkJFihBCCCGEEEI0oSJFCCGEEEIIIZpQkSKEEEIIIYQQTahIEUIIIYQQQogmVKQIIYQQQgghRBO6P4+wac/b0RX0CO81DHROk2diz4eO3L6OMP25TDfIzcBOXEVcuZs+ayufmjB3dVvHb0XiuGq3fKdO5alIHdXFVZ1uFnCpbZqm0CDfdNpjnXTpuBRXSUPeu6m4o1aKJyfdWXmQlwYb75AVJu/91OSvT2OQG1SzPGiU6UTcSs8qpLcKXI4ZwrCJvnWv54YbmT0eIYQQQgghhBSAihQhhBBCCCGEaEJFihBCCCGEEEI0oSJFCCGEEEIIIZpQkSKEEEIIIYQQTahIEUIIIYQQQogmdH8e4eWBxxAEXdrPBdB/pghB0Hn6r5brThP5hu5+ddKlGraoC1WZ+1iZG1CZPNF1kYxkuPRz8vtJefFnTb5JvK4l60LStb+4ruSHyapjeccHqNZP3Xpc5NgCk3YtX2bntUOucN2+FUHHjbb1uB0fd1BGvruIw3a+2EqjHTnmMorEXyRPzeK1U6/sly9f2yL/+pMwDJXC+ZdyQgghhBBCCPEcKlKEEEIIIYQQogkVKUIIIYQQQgjRhIoUIYQQQgghhGhCRYoQQgghhBBCNKEiRQghhBBCCCGa0P15hCE3k4H+gwaPFKFKd7VV49KdrQ3Zea7NbcQdBF3CMiB1jy0pn0n31WHYFMsIEmmUyMtyL5vv0l31/fPDxdyvC+UmXbIrRp1D+e7AOQ9mCl23Ex/w2bW1adpM3Iyb54PeWMgsHh/chdtsr4ZksQ1UIVQaHzAnCSGEEEIIIUQTKlKEEEIIIYQQogkVKUIIIYQQQgjRhIoUIYQQQgghhGhCRYoQQgghhBBCNKEiRQghhBBCCCGaUJEihBBCCCGEEE14jlSE7q6xaATqWdKoUA8t6wwAl+c26WJ6RlMLk/O3dM/EUM2vUPH8C1vnL6nkXX5cimlWzDNfypYv6SB6lNUGln3eivQ8OFIJJuciacdhuQ2yIa/M86CKpVf9Wd14XHz7uvY3ZbaDNtvAIukOwyaazZW54dhiE0IIIYQQQogmVKQIIYQQQgghRBMqUoQQQgghhBCiCRUpQgghhBBCCNGEihQhhBBCCCGEaEJFihBCCCGEEEI0oSJFCCGEEEIIIZpQkSKEEEIIIYQQTXggb4SeYIzWgbwAEARdxvG5OnjR6kHBgT1RdaToIcBAsUP9dA8R1kmvyqHAOocHmuZVGQclx+Or54GISco+KLZudMJ3Vj242xc6Ic+TlPFONvqZPKwc0mvQVmfKs/jeLr5TJ5ZnF1TRF9n6NllpD8Mm+gfyZbAnJoQQQgghhBBNqEgRQgghhBBCiCZUpAghhBBCCCFEEypShBBCCCGEEKIJFSlCCCGEEEII0YSKFCGEEEIIIYRoQkWKEEIIIYQQQjShIkUIIYQQQgghmvBA3gg9wVg0glFoFDhkV4arw3ddY+vAvKbjQ1fzDq7MO/BQFlfWAYRZMmXpkR0iJ5Mlil+UVpHcZBqEYTTSk3UAniyf5Pmq+g666dAprzllQiE98TCDiWuRe61r7cP/hv4dPgxwuM2JHhAYpMINPysMnzhcMNnuiA4fzHtmKEy6TZQdZJh1IHjW4Yd5hzoGyG+Xs/IiLU+vTS5y+HoLq4elW8DlQZplHWZq5dB0ywfNAvb6Ttv5WLdDnlVRaR8Kx9FBh6An2z+bhyP7iEk9aoaDeLPvxdxwnVMqCCGEEEIIIaQkqEgRQgghhBBCiCZUpAghhBBCCCFEEypShBBCCCGEEKIJFSlCCCGEEEII0YSKFCGEEEIIIYRo4r0iddddd+GQQw7B9OnTEQQBbrrpplSYP//5zzj00EMxYcIEbLjhhnjPe96DxYsXl59YQgghhBBCyIjAe0XqjTfewJw5c3DppZcK7z/33HPYY489sO2222LRokX43//9X5x77rkYPXp0ySklhBBCCCGEjBS8P5D3gAMOwAEHHCC9f8455+DAAw/ExRdf3L721re+tYykEUIIIYQQQkYo3itSWTSbTdx666340pe+hA9+8IN45JFHsMUWW+Css87C4YcfLn2ur68PfX197d8rVqwYkhf2tyQ7SK33i38S7ORF0+DkeJ2TtvNOa2/myAoRiq9npDtLpiw9stO1ZbJE8YvSKpY7mBtGlh5R3medDC7LJ3m+qsnXT4dOec0pEwrpCcMwdjd+LYwGTFyT/ZufLveIv5lqONk3z5edHa9KqgLltAOBZj7ryJbjVz8QOEyPXl00J69tVyGrnTeWaaW8uMhH++/qA3ZyOxs7bYAfJNs/W+XVV0zqUatdiPfzwoD1AUC4YMGC9u+XX345BBBusMEG4Te/+c3wkUceCefPnx8GQRAuWrRIKue8884LMVTv+Mc//vGPf/zjH//4xz/+8S/1t2TJkkzdJFivoNSCIAiwYMGC9mrT0qVLsemmm+KjH/0orrvuuna4Qw89FGPHjsVPf/pToZzkitTy5csxc+ZMLF68GBMmTHD6Dp3GypUrMWPGDCxZsgTjx4+vOjm1gnlnBvPNHOadOcw7c5h3ZjDfzGHemcO8GyIMQ6xatQrTp09HoyFfva+1ad/kyZPR3d2N2bNnx65vt912+N3vfid9rre3F729vanrEyZMGNGFpgjjx49n3hnCvDOD+WYO884c5p05zDszmG/mMO/MYd5BaXHFL4NtTXp6erDrrrviqaeeil1/+umnMXPmzIpSRQghhBBCCOl0vF+RWr16NZ599tn27xdeeAF//OMfMXHiRGy++eY444wzcMwxx+B973sf9t57b/z617/G//2//xeLFi2qLtGEEEIIIYSQjsZ7RerBBx/E3nvv3f592mmnAQDmzZuHa665BkcccQSuuOIKzJ8/H5/73OewzTbb4Je//CX22GMP5Th6e3tx3nnnCc39SDbMO3OYd2Yw38xh3pnDvDOHeWcG880c5p05zDs9auVsghBCCCGEEEJ8oNZ7pAghhBBCCCGkCqhIEUIIIYQQQogmVKQIIYQQQgghRBMqUoQQQgghhBCiCRUpAN/73vewxRZbYPTo0XjnO9+Ju+++u+okec3555+PIAhif1OnTq06WV5y11134ZBDDsH06dMRBAFuuumm2P0wDHH++edj+vTpGDNmDPbaay88/vjj1STWM/Ly7oQTTkiVw/e85z3VJNYj5s+fj1133RUbbrghpkyZgsMPPzx11h7LnRiVvGO5E3P55Zdjp512ah/iOXfuXNx2223t+yxzcvLyjmVOjfnz5yMIApx66qntayx3aojyjuVOjRGvSN1www049dRTcc455+CRRx7Be9/7XhxwwAFYvHhx1Unzmu233x4vv/xy+++xxx6rOkle8sYbb2DOnDm49NJLhfcvvvhifPOb38Sll16KBx54AFOnTsUHPvABrFq1quSU+kde3gHA/vvvHyuH/+///b8SU+gnd955Jz796U/jvvvuw+23346BgQHst99+eOONN9phWO7EqOQdwHInYrPNNsNFF12EBx98EA8++CD22WcfHHbYYe1BK8ucnLy8A1jm8njggQdw5ZVXYqeddopdZ7nLR5Z3AMudEuEI513veld4yimnxK5tu+224ZlnnllRivznvPPOC+fMmVN1MmoHgHDBggXt381mM5w6dWp40UUXta+tXbs2nDBhQnjFFVdUkEJ/SeZdGIbhvHnzwsMOO6yS9NSJV155JQQQ3nnnnWEYstzpkMy7MGS502HjjTcOf/CDH7DMGdDKuzBkmctj1apV4VZbbRXefvvt4Z577hl+/vOfD8OQbZ0KsrwLQ5Y7VUb0itS6devw0EMPYb/99otd32+//XDPPfdUlKp68Mwzz2D69OnYYost8JGPfATPP/981UmqHS+88AKWLVsWK3+9vb3Yc889Wf4UWbRoEaZMmYKtt94a//RP/4RXXnml6iR5x4oVKwAAEydOBMByp0My71qw3GUzODiI66+/Hm+88Qbmzp3LMqdBMu9asMzJ+fSnP42DDjoI73//+2PXWe7ykeVdC5a7fLqrTkCV/OMf/8Dg4CA22WST2PVNNtkEy5YtqyhV/vPud78b1157Lbbeemv87W9/w1e/+lXstttuePzxxzFp0qSqk1cbWmVMVP5eeumlKpJUKw444AAcddRRmDlzJl544QWce+652GefffDQQw/xRPb1hGGI0047DXvssQd22GEHACx3qojyDmC5y+Kxxx7D3LlzsXbtWowbNw4LFizA7Nmz24NWljk5srwDWOayuP766/Hwww/jgQceSN1jW5dNVt4BLHeqjGhFqkUQBLHfYRimrpFhDjjggPb/d9xxR8ydOxdbbrklfvSjH+G0006rMGX1hOXPjGOOOab9/x122AG77LILZs6ciVtvvRVHHnlkhSnzh8985jN49NFH8bvf/S51j+UuG1nesdzJ2WabbfDHP/4Ry5cvxy9/+UvMmzcPd955Z/s+y5wcWd7Nnj2bZU7CkiVL8PnPfx7//d//jdGjR0vDsdylUck7ljs1RrRp3+TJk9HV1ZVafXrllVdSMxhEztixY7HjjjvimWeeqToptaLl6ZDlzw7Tpk3DzJkzWQ7X89nPfha33HILFi5ciM0226x9neUuH1neiWC5G6anpwdve9vbsMsuu2D+/PmYM2cOvvOd77DMKSDLOxEsc0M89NBDeOWVV/DOd74T3d3d6O7uxp133onvfve76O7ubpctlrs0eXk3ODiYeoblTsyIVqR6enrwzne+E7fffnvs+u23347ddtutolTVj76+Pvz5z3/GtGnTqk5Krdhiiy0wderUWPlbt24d7rzzTpY/A1599VUsWbJkxJfDMAzxmc98BjfeeCPuuOMObLHFFrH7LHdy8vJOBMudnDAM0dfXxzJnQCvvRLDMDbHvvvvisccewx//+Mf23y677IJjjz0Wf/zjH/HWt76V5U5CXt51dXWlnmG5k1CRkwtvuP7668NRo0aFV111VfjEE0+Ep556ajh27NjwxRdfrDpp3nL66aeHixYtCp9//vnwvvvuCw8++OBwww03ZJ4JWLVqVfjII4+EjzzySAgg/OY3vxk+8sgj4UsvvRSGYRhedNFF4YQJE8Ibb7wxfOyxx8KPfvSj4bRp08KVK1dWnPLqycq7VatWhaeffnp4zz33hC+88EK4cOHCcO7cueGmm2464vPuX/7lX8IJEyaEixYtCl9++eX235o1a9phWO7E5OUdy52cs846K7zrrrvCF154IXz00UfDs88+O2w0GuF///d/h2HIMpdFVt6xzOmR9DzHcqdONO9Y7tQZ8YpUGIbhZZddFs6cOTPs6ekJ3/GOd8Rc3ZI0xxxzTDht2rRw1KhR4fTp08MjjzwyfPzxx6tOlpcsXLgwBJD6mzdvXhiGQ+5ZzzvvvHDq1Klhb29v+L73vS987LHHqk20J2Tl3Zo1a8L99tsvfMtb3hKOGjUq3HzzzcN58+aFixcvrjrZlSPKMwDh1Vdf3Q7DcicmL+9Y7uScdNJJ7X70LW95S7jvvvu2lagwZJnLIivvWOb0SCpSLHfqRPOO5U6dIAzDsLz1L0IIIYQQQgipPyN6jxQhhBBCCCGEmEBFihBCCCGEEEI0oSJFCCGEEEIIIZpQkSKEEEIIIYQQTahIEUIIIYQQQogmVKQIIYQQQgghRBMqUoQQQgghhBCiCRUpQgghhBBCCNGEihQhhJARw/nnn4+dd9656mQQQgjpAIIwDMOqE0EIIYQUJQiCzPvz5s3DpZdeir6+PkyaNKmkVBFCCOlUqEgRQgjpCJYtW9b+/w033IB/+7d/w1NPPdW+NmbMGEyYMKGKpBFCCOlAaNpHCCGkI5g6dWr7b8KECQiCIHUtadp3wgkn4PDDD8eFF16ITTbZBBtttBEuuOACDAwM4IwzzsDEiROx2Wab4Yc//GEsrr/+9a845phjsPHGG2PSpEk47LDD8OKLL5b7woQQQiqFihQhhJARzR133IGlS5firrvuwje/+U2cf/75OPjgg7Hxxhvj/vvvxymnnIJTTjkFS5YsAQCsWbMGe++9N8aNG4e77roLv/vd7zBu3Djsv//+WLduXcVvQwghpCyoSBFCCBnRTJw4Ed/97nexzTbb4KSTTsI222yDNWvW4Oyzz8ZWW22Fs846Cz09Pfj9738PALj++uvRaDTwgx/8ADvuuCO22247XH311Vi8eDEWLVpU7csQQggpje6qE0AIIYRUyfbbb49GY3hecZNNNsEOO+zQ/t3V1YVJkybhlVdeAQA89NBDePbZZ7HhhhvG5KxduxbPPfdcOYkmhBBSOVSkCCGEjGhGjRoV+x0EgfBas9kEADSbTbzzne/ET37yk5Sst7zlLe4SSgghxCuoSBFCCCEavOMd78ANN9yAKVOmYPz48VUnhxBCSEVwjxQhhBCiwbHHHovJkyfjsMMOw913340XXngBd955Jz7/+c/jL3/5S9XJI4QQUhJUpAghhBANNthgA9x1113YfPPNceSRR2K77bbDSSedhDfffJMrVIQQMoLggbyEEEIIIYQQoglXpAghhBBCCCFEEypShBBCCCGEEKIJFSlCCCGEEEII0YSKFCGEEEIIIYRoQkWKEEIIIYQQQjShIkUIIYQQQgghmlCRIoQQQgghhBBNqEgRQgghhBBCiCZUpAghhBBCCCFEEypShBBCCCGEEKIJFSlCCCGEEEII0eT/A4178kGKt9SaAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1000x400 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAG3CAYAAAC+MGQfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLh0lEQVR4nO2deZwdRbn3f31mJpOQZSAJIYmEJLIEAhJAUCMo60XCDgKuEBa9ctlEkCugCFFegoCIvCBcZHMHvBDgFUWjJCyyhQQ+RGXfEiUxCiSThUxmzqn3j8k500tVd1V19XJmft/PZz7J6a6tq6ur6ql66nk8IYQAIYQQQgghhBBtKkUXgBBCCCGEEEKaDQpShBBCCCGEEGIIBSlCCCGEEEIIMYSCFCGEEEIIIYQYQkGKEEIIIYQQQgyhIEUIIYQQQgghhlCQIoQQQgghhBBDKEgRQgghhBBCiCEUpAghhBBCCCHEEApShBCSE7fffjs8z5P+ff3rX8+9PJMmTcKJJ56Ye75ZsG7dOlxyySWYP3++dRpvvvkmPM/D7bffrgyzzz77KN+h/++SSy6xLgchhJDmoLXoAhBCyEDjtttuw/bbbx+4Nn78+IJK0z9Yt24dZs2aBaBX2MmKH/3oR+js7Gz8fuCBB3DppZdG3umWW26ZWRkIIYSUAwpShBCSMzvttBN23333ootBLJg6dWrg94svvgiA7xQAqtUqenp60N7eXnRRCCEkF6jaRwghJUKlFhZWw6urCc6bNw//9V//hdGjR2PUqFE4+uij8fbbbwfidnd347//+78xduxYbLLJJthrr73w9NNPR/L417/+hdNOOw1Tp07FsGHDMGbMGOy333549NFHA+HqKnBXXnklvve972HSpEkYMmQI9tlnH7z88svo7u7G+eefj/Hjx6OjowNHHXUUVqxYEcnvzjvvxPTp0zF06FAMGzYMn/rUp/Dss88Gwpx44okYNmwYXn31VRx88MEYNmwYJkyYgHPPPRddXV2N8my++eYAgFmzZjXU6+r19eqrr+Kkk07Ctttui0022QQf+MAHcNhhh2Hx4sWJ78MWk2d78cUX8alPfQpDhw7FuHHjcPnllwMAnnzySey1114YOnQotttuO/zkJz8JxK+3gblz5+Kkk07CyJEjMXToUBx22GF4/fXXI2W69dZbMW3aNAwePBgjR47EUUcdhRdeeCES7sc//jG22247tLe3Y+rUqfjlL3+JE088EZMmTWqEqbeBK664ApdeeikmT56M9vZ2zJs3D+vXr8e5556LXXbZBR0dHRg5ciSmT5+O++67L5KX53k444wzcNttt2HKlCkYMmQIdt99dzz55JMQQuDKK6/E5MmTMWzYMOy333549dVXbV4HIYRkAgUpQgjJmfrKvf/Pli996Utoa2vDL3/5S1xxxRWYP38+vvjFLwbCfPnLX8ZVV12FE044Affddx8+/elP4+ijj8Z7770XCPfuu+8CAC6++GI88MADuO222/DBD34Q++yzj/Ts0fXXX48///nPuP7663HzzTfjxRdfxGGHHYZTTjkF//rXv3DrrbfiiiuuwB//+Ed86UtfCsS97LLL8LnPfQ5Tp07FXXfdhZ/97GdYvXo1PvGJT+Bvf/tbIGx3dzcOP/xw7L///rjvvvtw8skn4wc/+AG+973vAQDGjRuHBx98EABwyimn4IknnsATTzyBiy66CADw9ttvY9SoUbj88svx4IMP4vrrr0drays++tGP4qWXXrKuexWmz3b00UfjkEMOwX333YcZM2bgggsuwIUXXoiZM2fi5JNPxpw5czBlyhSceOKJWLhwYSS/U045BZVKBb/85S9xzTXX4Omnn8Y+++yDlStXNsLMnj0bp5xyCnbccUfcc889+OEPf4jnn38e06dPxyuvvNIId9NNN+E///M/sfPOO+Oee+7Bt771LcyaNUt59uzaa6/FQw89hKuuugq/+93vsP3226Orqwvvvvsuvv71r+Pee+/Fr371K+y11144+uij8dOf/jSSxm9+8xvcfPPNuPzyy/GrX/0Kq1evxiGHHIJzzz0Xf/7zn3Hdddfhpptuwt/+9jd8+tOfhhDC7sUQQohrBCGEkFy47bbbBADpX3d3txBCCADi4osvjsSdOHGimDlzZiSt0047LRDuiiuuEADEsmXLhBBCvPDCCwKA+NrXvhYI94tf/EIACKQZpqenR3R3d4v9999fHHXUUY3rb7zxhgAgpk2bJqrVauP6NddcIwCIww8/PJDO2WefLQCIVatWCSGEWLJkiWhtbRVnnnlmINzq1avF2LFjxXHHHde4NnPmTAFA3HXXXYGwBx98sJgyZUrj97/+9S9l3cmea8OGDWLbbbcN1Ev9uW677bbENOrU38OCBQusn+3uu+9uXOvu7habb765ACAWLVrUuP7OO++IlpYWcc4550Ty9r8bIYT485//LACISy+9VAghxHvvvSeGDBkiDj744EC4JUuWiPb2dvH5z39eCCFEtVoVY8eOFR/96EcD4d566y3R1tYmJk6c2LhWr6utt95abNiwIbaO6u3olFNOEbvuumvgHgAxduxYsWbNmsa1e++9VwAQu+yyi6jVao3r9fb1/PPPx+ZHCCF5wR0pQgjJmZ/+9KdYsGBB4K+11e7I6uGHHx74vfPOOwMA3nrrLQDAvHnzAABf+MIXAuGOO+44aZ433ngjdtttNwwePBitra1oa2vDn/70J6kK2MEHH4xKpW8Y2WGHHQAAhxxySCBc/fqSJUsAAL///e/R09ODE044IbArN3jwYOy9996R3Q/P83DYYYdFnrP+jEn09PTgsssuw9SpUzFo0CC0trZi0KBBeOWVV6TPlQabZzv44IMbv1tbW7HNNttg3Lhx2HXXXRvXR44ciTFjxkifOfxuP/7xj2PixImNd//EE0/g/fffj1honDBhAvbbbz/86U9/AgC89NJLWL58OY477rhAuK222gp77rmn9HkPP/xwtLW1Ra7/+te/xp577olhw4Y12tEtt9wire99990XQ4cObfyut5cZM2bA87zIdd33TgghWUNjE4QQkjM77LCDM8MEo0aNCvyuH/R///33AQDvvPMOAGDs2LGBcK2trZG4V199Nc4991yceuqp+O53v4vRo0ejpaUFF110kXQCPHLkyMDvQYMGxV5fv349AOCf//wnAGCPPfaQPpNfOAOATTbZBIMHD448Zz29JM455xxcf/31+MY3voG9994bm222GSqVCr70pS816skVLp5t0KBBkTqsX5c9c/jd1q/V333933HjxkXCjR8/HnPnzg2E22KLLSLhtthiC7zxxhuR67I077nnHhx33HE49thjcd5552Hs2LFobW3FDTfcgFtvvTUS3rYdEUJI0VCQIoSQEtHe3t4wouCnPsk1pS4sLV++HB/4wAca13t6eiJp/vznP8c+++yDG264IXB99erVVnmrGD16NADgf//3fzFx4kSnacv4+c9/jhNOOAGXXXZZ4Pq///1vbLrppk7zyvvZgN53K7u2zTbbAOhrA8uWLYuEe/vttxtlroerC4NJeQAI7BjV+fnPf47JkyfjzjvvDNyXtWtCCGlmqNpHCCElYtKkSXj++ecD1x566CGsWbPGKr26T6Vf/OIXget33XVXxMiF53kR09XPP/88nnjiCau8VXzqU59Ca2srXnvtNey+++7SP1PCO3F+ZM/1wAMP4B//+IfdA8SQxbMlEX63jz/+ON56663Gu58+fTqGDBmCn//854Fwf//73/HQQw9h//33BwBMmTIFY8eOxV133RUIt2TJEjz++OPa5fE8D4MGDQoIUcuXL5da7SOEkGaGO1KEEFIijj/+eFx00UX49re/jb333ht/+9vfcN1116Gjo8MqvR122AFf/OIXcc0116CtrQ0HHHAA/vKXv+Cqq67CiBEjAmEPPfRQfPe738XFF1+MvffeGy+99BK+853vYPLkyaksC4aZNGkSvvOd7+Cb3/wmXn/9dRx00EHYbLPN8M9//hNPP/00hg4d2nCuq8vw4cMxceJE3Hfffdh///0xcuRIjB49GpMmTcKhhx6K22+/Hdtvvz123nlnLFy4EFdeeWUmTnOzeLYknnnmGXzpS1/Csccei6VLl+Kb3/wmPvCBD+C0004DAGy66aa46KKLcOGFF+KEE07A5z73ObzzzjuYNWsWBg8ejIsvvhhAr9rhrFmz8JWvfAXHHHMMTj75ZKxcuRKzZs3CuHHjImqJKg499FDcc889OO2003DMMcdg6dKl+O53v4tx48YFLAQSQkizQ0GKEEJKxHnnnYfOzk7cfvvtuOqqq/CRj3wEd911F4444gjrNG+55RZsscUWuP3223Httddil112wd13343PfvazgXDf/OY3sW7dOtxyyy244oorMHXqVNx4442YM2eO0vy1LRdccAGmTp2KH/7wh/jVr36Frq4ujB07FnvssQdOPfVUqzRvueUWnHfeeTj88MPR1dWFmTNn4vbbb8cPf/hDtLW1Yfbs2VizZg122223hmnvLMji2eK45ZZb8LOf/Qyf/exn0dXVhX333Rc//OEPA2eMLrjgAowZMwbXXnst7rzzzobfr8suuwzbbrttI9x//ud/NvxDHXXUUZg0aRLOP/983HfffQ1jIUmcdNJJWLFiBW688Ubceuut+OAHP4jzzz8ff//7350LkYQQUiSeEHTIQAghhDQbt99+O0466SQsWLAgE5XBOitXrsR2222HI488EjfddFNm+RBCSLPBHSlCCCGEAOg9y/R//s//wb777otRo0bhrbfewg9+8AOsXr0aX/3qV4suHiGElAoKUoQQQggB0Gu0480338Rpp52Gd999F5tssgk+9rGP4cYbb8SOO+5YdPEIIaRUULWPEEIIIYQQQgyh+XNCCCGEEEIIMYSCFCGEEEIIIYQYQkGKEEIIIYQQQgyhsQkAtVoNb7/9NoYPHx7wxE4IIYQQQggZWAghsHr1aowfPz7WGTkFKQBvv/02JkyYUHQxCCGEEEIIISVh6dKl2HLLLZX3KUgBGD58OABg06E7w/NanKbtec2rPemBu3MuEcjPQKYQNQepVHPJWzd8DcnhdNMSIvnZdN+XyfPavBeh8dwu8kkTL4qrdKK4K+PG9DIoazbGcO2+RxNc123ZST8+p5svpNWA8TI4ndHMc5Yo/elZCJBv+xSihu6e5Q0ZQQUFKfR1Zp7XggoFqQZZdNIDmSwmbOq80gvB9lNB07z1wusJ9i6F/4E1qSQuyaLt5LGwNbAWz9Kr8qcUhFLODyhIJdGfnoUAxbTPpH6CrYwQQgghhBBCDKEgRQghhBBCCCGGUJAihBBCCCGEEEMoSBFCCCGEEEKIIRSkCCGEEEIIIcQQClKEEEIIIYQQYggFKUIIIYQQQggxhIIUIYQQQgghhBhCQYoQQgghhBBCDKEgRQghhBBCCCGGUJAihBBCCCGEEEMoSBFCCCGEEEKIIRSkCCGEEEIIIcQQClKEEEIIIYQQYggFKUIIIYQQQggxhIIUIYQQQgghhBjSWnQBykRH63hUvLbEcBWvxToPL6XsWoF93o00hHv5Oe1zJeHiudOQ9fMRtwjUCsm3hqrzNF08S80zS0PnOXTLVRP6daKTptAoW00rHY0wBmXXyTNaBrP2IoTpe3TzHZjUQ2JaDr9N0/qQppHim7XJ3yaOVdsyyEf3/eq+O7O87d5hUX28CtM5gufphzcJa1OWvnzSzbNMy2lDJce5mBBVbOh+OzEcZ4eEEEIIIYQQYggFKUIIIYQQQggxhIIUIYQQQgghhBhCQYoQQgghhBBCDKEgRQghhBBCCCGGUJAihBBCCCGEEEMoSBFCCCGEEEKIIRSkCCGEEEIIIcQQClKEEEIIIYQQYggFKUIIIYQQQggxhIIUIYQQQgghhBhCQYoQQgghhBBCDKEgRQghhBBCCCGGUJAihBBCCCGEEENaiy5Amfh31yvwvJaii9Ev8Tz3Mnsl5TqAizJl8Vwe+k8bFKimiy9qzsLVEB8mLg0h1M8hUqRrEsY03yzxBtAaXN71bNMWypC2PjZlKFd7y6Lft6VMZRnImPYTRt+iMCyMbT4FUdYy6paLXyAhhBBCCCGEGEJBihBCCCGEEEIMoSBFCCGEEEIIIYZQkCKEEEIIIYQQQyhIEUIIIYQQQoghFKQIIYQQQgghxBAKUoQQQgghhBBiCAUpQgghhBBCCDGEghQhhBBCCCGEGEJBihBCCCGEEEIMoSBFCCGEEEIIIYZQkCKEEEIIIYQQQ1qLLkCZGN8+DS1eW2I4z6H8WUGLs7TS4PKZskSgVljeNVRTp5Gm/DVPP65uWXXLUxPu0hMJZatppaFXbqFZbt18g2VI3x76A15J+rBKBn2Y52X7bHn3u1nUkQ5laSPNQln6FtM+UQebMdCkH6+TVX8uRHK6JnnrPpv+mKcZLmUb082nqPRcIEQVq3qWJ4ZrjtkzIYQQQgghhJQIClKEEEIIIYQQYggFKUIIIYQQQggxhIIUIYQQQgghhBhCQYoQQgghhBBCDKEgRQghhBBCCCGGUJAihBBCCCGEEEMoSBFCCCGEEEKIIRSkCCGEEEIIIcQQClKEEEIIIYQQYggFKUIIIYQQQggxpLXoApSJf/W8iorX4jRNz3Mrq3qOZF8v5XNWUpTDdZ0E0obb96eLQDWPTNInIWqp4tdgH18I93WUth2XnTTfmZ8sv7ma6LaPm6I9ZUWgzi2+uSzrGnDfx+m2sbhvLW5cqqCi7B+TniVpvNMdr3XGzYpGvVZEfDqJ5U37vCnvN8IlPEcY03mHbb9VgWcU3jN8jmh+JdhLSHhk4z7SrAoTEZ77PrrmYjKD7MePqtiAZ/G3xHAlaEWEEEIIIYQQ0lxQkCKEEEIIIYQQQwoVpGbPno099tgDw4cPx5gxY3DkkUfipZdeCoQ58cQT4Xle4O9jH/tYJK0nnngC++23H4YOHYpNN90U++yzD95///28HoUQQgghhBAygChUkHr44Ydx+umn48knn8TcuXPR09ODAw88EGvXrg2EO+igg7Bs2bLG329/+9vA/SeeeAIHHXQQDjzwQDz99NNYsGABzjjjDFQq3HAjhBBCCCGEuKdQYxMPPvhg4Pdtt92GMWPGYOHChfjkJz/ZuN7e3o6xY8cq0/na176Gs846C+eff37j2rbbbuu+wIQQQgghhBCCkp2RWrVqFQBg5MiRgevz58/HmDFjsN122+HLX/4yVqxY0bi3YsUKPPXUUxgzZgw+/vGPY4sttsDee++Nxx57TJlPV1cXOjs7A3+EEEIIIYQQoktpBCkhBM455xzstdde2GmnnRrXZ8yYgV/84hd46KGH8P3vfx8LFizAfvvth66uLgDA66+/DgC45JJL8OUvfxkPPvggdtttN+y///545ZVXpHnNnj0bHR0djb8JEyZk/4CEEEIIIYSQfoMnhHBj0D0lp59+Oh544AE89thj2HLLLZXhli1bhokTJ+KOO+7A0Ucfjccffxx77rknLrjgAlx22WWNcDvvvDMOOeQQzJ49O5JGV1dXQxADgM7OTkyYMAGbDduVfqQ0oR+pILn4kXIA/Ug1F83gRypNmyq9HykL6EdKP336kTKNTz9SfvqFH6kEiu4jB7wfqVW3YNWqVRgxYoQyXCkc8p555pm4//778cgjj8QKUQAwbtw4TJw4sbHbNG7cOADA1KlTA+F22GEHLFmyRJpGe3s72tvbHZScEEIIIYQQMhApVJASQuDMM8/EnDlzMH/+fEyePDkxzjvvvIOlS5c2BKhJkyZh/PjxEbPpL7/8MmbMmGFUng09naVf4XZdvrSrp82wYk76SLsjpUu6nSuzuLo7XUKjTDp5x4VJykMVV51mTF6SOKr8s3zvcd9u0kp28ndv3i+46kuK6pOyeFfmaVq2Y+P2V00IJ4kXDiN9T8Fr0XfZknBf3nbVbUJ+PfbbyPS70Qxj+H3Zzj+abXy3/QZ1xiIX45DNGBQbx2D80Rl35OlVY+77fifVfaAtpf/OAfV3oNsOChWkTj/9dPzyl7/Efffdh+HDh2P58uUAgI6ODgwZMgRr1qzBJZdcgk9/+tMYN24c3nzzTVx44YUYPXo0jjrqKACA53k477zzcPHFF2PatGnYZZdd8JOf/AQvvvgi/vd//7fIxyOEEEIIIYT0UwoVpG644QYAwD777BO4ftttt+HEE09ES0sLFi9ejJ/+9KdYuXIlxo0bh3333Rd33nknhg8f3gh/9tlnY/369fja176Gd999F9OmTcPcuXOx9dZb5/k4hBBCCCGEkAFCaYxNFElnZyc6OjowdPDWVO0zhKp9zQVV+9LnTdW+IFTtcwtV+xLKQdU+qvZlDFX76lC1r6f670RjE83VugkhhBBCCCGkBFCQIoQQQgghhBBDKEgRQgghhBBCiCEUpAghhBBCCCHEEApShBBCCCGEEGIIBSlCCCGEEEIIMaRQP1Jloyaq8GBuDT4r054yk4y6pp4BPVOlKrOXus8kM3NtYxJdx9xo2U2oujZbbGNC3KQMrky1mubrIl5ZsTFbLFAzatv1OvO85DC+goXIo94tTT+nMAudFN8mnE0ZBhK6fYR2eg76hCz7FdfPa5NH0vN5qPSbvlX1nTbj87lsO2mfXy++zAVANFSkT5SECeQXM3ZF4mX4vdXLpDYZrycPcEQghBBCCCGEEEMoSBFCCCGEEEKIIRSkCCGEEEIIIcQQClKEEEIIIYQQYggFKUIIIYQQQggxhIIUIYQQQgghhBhCQYoQQgghhBBCDKEgRQghhBBCCCGG0CGvj5FDtkbFs6uSLJ002ji4JXrYOL3VIa0TORPHy2GsHPlCPz9TR4Cm5TF99jR17dKpo0kdZkkzOqrUpb89W1b9j2vi6t1DsuN3IwycdTY7afr5AU/KdpKHY+W8aJZ+sYzljGsHQtTQteG9xDQ4QyeEEEIIIYQQQyhIEUIIIYQQQoghFKQIIYQQQgghxBAKUoQQQgghhBBiCAUpQgghhBBCCDGEghQhhBBCCCGEGEJBihBCCCGEEEIMoR8pH921dUZ+pDzPjRzq2g9HFn6nPM+xr5B6uhmU1eT5k8KmeTc2z1ap17OGjwzd9Csaz1ARyWk18ksoW1J++uV2Gw7Qe84ksvQZlweu/KfUPLt0THwnmYTVfa6ahr8vnbR0n99VfgBQ0/A7pJuWjt8z3frXyVPHZ5JOfjrl1vFXk5RXUnmTnjmpDEnPkRjfwTPqptMbzt7nVX/y2VTG/t92Lup6XpfYRprMR5wQVXRphCtfiyCEEEIIIYSQkkNBihBCCCGEEEIMoSBFCCGEEEIIIYZQkCKEEEIIIYQQQyhIEUIIIYQQQoghFKQIIYQQQgghxBCaP/exumuZM5PmJmSVpysznS5MZLp6Rtem3fN630W0qzKja3I3b8parjSYmBAvC3m/hzSmnaXpOapzF/Xgui7zMGVdxHfYXN9+M5V1IMJ5RZnLpoMQNe0+obmflBBCCCGEEEIKgIIUIYQQQgghhBhCQYoQQgghhBBCDKEgRQghhBBCCCGGUJAihBBCCCGEEEMoSBFCCCGEEEKIITR/7qOnut7IZKNO2LgwdfPkYROLsXE00ovGiTdfrvMcumbH05i8bDZzmSbmcsNhdeMmma5OSkfHrLOOOWOd8uZhPthVG3Hd1mTfXh5mooEMzFtbpJfmWU3z0w9v/33Ghk31Tcq/x/g4Mfds3r207avGjrjvRN8tRtrvLa0rj2YbW/IgL3PvefWDAxKRQxaZtxO3ridcIoReBbN3IYQQQgghhBBDKEgRQgghhBBCiCEUpAghhBBCCCHEEApShBBCCCGEEGIIBSlCCCGEEEIIMYSCFCGEEEIIIYQYQvPnPnbZ5Ai0eu2J4XRNgTcTSWa2dRFeNqYyaxnZ+Uz73DTt2pykMafcLN+/q286CZNvIK0Za9eU/fstW32VlbTfZAWeVjhPuHMVopOndrk08nSRn+fF30+Kn1RKT6eMCWWI5mkWPoxhdpmVQ4arsuWNplVxZ9jOH7tFF3773lWJ4dhLE0IIIYQQQoghFKQIIYQQQgghxBAKUoQQQgghhBBiCAUpQgghhBBCCDGEghQhhBBCCCGEGEKrfT4ePLMTIwYP6rtQ8aT/9/zipycPo44bMrNS/60Rt56XpxO2kW4l/n6g/JKwFcl9Zflk91X5K657OuFD8r8qHBA1axO+r7ymMIcjC2tyP2tqGlbIVGFqEss2srDha2ETPOH74XT99+PCipr8ek1xPe6eKq24tCP3Ep5TZopIWqea9RwXXiusYVtUtXmb8LrfVPha0veq6j9l4ePCqvqZuDTiyuIZ9EmJz5RRH6bqm1TXFSbBhGk6ifcM21GdcJ3HxVGWWdYmo2FF5P3qvoMU11Qm2WzqX+d+XsT2dRrjDRA/5sSOL9F7nlDFFcFr/nsidC08hvjCevX/C0V6qnwi4SXh6teEKozidyS8Kl7oughfT4jn+79o5K1IQ3FNRPKShBf1PBC9F0grfA++e9Frnes3YPMfIJGSfFmEEEIIIYQQ0jxQkCKEEEIIIYQQQyhIEUIIIYQQQoghFKQIIYQQQgghxBAKUoQQQgghhBBiCK32+Zh+fQ9aPA81L2olpoaqkzwqaAn+FkFZ1vPJtv6w9euVwP1KJA1Pdh8brf0J9b3e//sszUjuA9XAb8/zxw1aGApL6B6iFogqCqtE4bTCqIwZ5YnMQFscNehFqBkkLDTT7M2/uTBd4ZG1r9j0lY0oOeek9ilD9/0D8W1A9s7D7zacl/ClF77n/y1CKfnvBf9fa8QAAOHrL6Ppy1teOC+XeAnvsBJzP7HvEcWuPQrJ2FRH1cZM3oFs7EtKxzSMDnHvKFVYg/eX1I5symDbvlTpy9ILXws/R3SsDoX34u8nje3hvjWafqTIynpJGutt+mJdkvpsqZFWSZyIgUF/Xxq6KQL9rDyOqj9X9eXJ/Xi0X5E9h+63rerb1d+TF/l/ln20zrdaz6NHdCWG7Q1PCCGEEEIIIcQIClKEEEIIIYQQYggFKUIIIYQQQggxhIIUIYQQQgghhBhSqLGJRx55BFdeeSUWLlyIZcuWYc6cOTjyyCMBAN3d3fjWt76F3/72t3j99dfR0dGBAw44AJdffjnGjx/fSGP58uU477zzMHfuXKxevRpTpkzBhRdeiGOOOca4PKvE26igFQbnwpsLy3OZQigOGSbUU+LhRFFPP9mQR9LhdGUZAYgYQyGqeOHrsmcJhwk/h7/M/rCB/yOcRk2StjyMDM8Lr41UpPcC/98YJul+7/UWaZiKVj7yuOFDqP48wmmH44bTVcWRpavKPymduHx1022kLytTzHdqcgB+oGBjuKJm2+dI3k1c/xLIM+Vh7Ug4jWfQzbfxDIo+Pa7P0ckj6z6+N376fr6O0kCHMh153mmfKQ3RscB3T7N/lKWR1B/Lrsn6Smk8Rf+m6rtj++eY51eVyST9vnyS0+nNT5JWojEN8zjxZdAra1Pj0P5ITXRrhSt0VF67di2mTZuG6667LnJv3bp1WLRoES666CIsWrQI99xzD15++WUcfvjhgXDHH388XnrpJdx///1YvHgxjj76aHzmM5/Bs88+m9djEEIIIYQQQgYYhe5IzZgxAzNmzJDe6+jowNy5cwPX/u///b/4yEc+giVLlmCrrbYCADzxxBO44YYb8JGPfAQA8K1vfQs/+MEPsGjRIuy6667ZPgAhhBBCCCFkQNJUeiKrVq2C53nYdNNNG9f22msv3HnnnXj33XdRq9Vwxx13oKurC/vss48yna6uLnR2dgb+CCGEEEIIIUSXphGk1q9fj/PPPx+f//znMWLEiMb1O++8Ez09PRg1ahTa29vxla98BXPmzMHWW2+tTGv27Nno6Oho/E2YMCGPRyCEEEIIIYT0E5pCkOru7sZnP/tZ1Go1/OhHPwrc+9a3voX33nsPf/zjH/HMM8/gnHPOwbHHHovFixcr07vggguwatWqxt/SpUuzfgRCCCGEEEJIP6LQM1I6dHd347jjjsMbb7yBhx56KLAb9dprr+G6667DX/7yF+y4444AgGnTpuHRRx/F9ddfjxtvvFGaZnt7O9rb2yPX13e/F7HAkmT5xRV55aNDM1h20bWUlYSq3iNWh2TWlVxbQSw5Nm20/qyeVwm8s1grXhsth9Xboe6bzu1b1Vh/srEk5wIXbSvNt2Wav2l4Xct3afMJxjWvj7TvP4s+osh+p6jvwQWF1lvqvM3j6+ap806T09Kw5phj/cePIcnzIt0xyMT6qvm4ZjcOuhw/naZV0H6P51W0216pBam6EPXKK69g3rx5GDVqVOD+unXrAACVSrCiW1paUKs1b8dNCCGEEEIIKTeFClJr1qzBq6++2vj9xhtv4LnnnsPIkSMxfvx4HHPMMVi0aBF+85vfoFqtYvny5QCAkSNHYtCgQdh+++2xzTbb4Ctf+QquuuoqjBo1Cvfeey/mzp2L3/zmN0U9FiGEEEIIIaSf4wkhCnM/O3/+fOy7776R6zNnzsQll1yCyZMnS+PNmzevYZXvlVdewfnnn4/HHnsMa9aswTbbbIOvf/3rOP7447XL0dnZ2Wt4YpOpVO3DwFLt087PoXrBQFLtSxPXtB1StY+qfa7yCcalal/qvKnaV1DeVO0zgap9buhPqn3vd72JVatWBY4VRcIWKUiVBQpSQShISfKjIEVBqp4PBSln+VOQUuVJQaosUJBShKMgZRjfF46ClH5aTSBIlfqMVBmw+YjTHMpPi4sGnLeQ0gzo1KvuO0z7jlwOLEYT0zT5KpZr0j5LmRYg+iNOBDMLQQRwM/nOahJW9GKI1cJERt9Ks32DRU3M+hPNKBgX/c3mXYas3pHOM2S9oKZHmsWzWuDfJNijEEIIIYQQQoghFKQIIYQQQgghxBAKUoQQQgghhBBiCM9I+aihBi/kZbViIWuq9Cpd6ZI7S8eBUYmyHioMGw1xgU1bKII076RIPXJbQwJhbM/kBNJwrF9eRL32p7OOZTjfQIqj2c5h6dIMhp1IPEX3s3n1jVnk42rMr+P6TK8QVfRU/50Yp3/2ToQQQgghhBCSIRSkCCGEEEIIIcQQClKEEEIIIYQQYggFKUIIIYQQQggxhMYmfLzf9e/IodbinUK6OcjYbIe1zQ4Xp/c4nmToIj6+fVzVvbjyJD5LXH6JZXXjvd3EMEeZnIuWHZffsYu00h4WdvU8LgyMRNLM0OloUf1xmceBZnHyWuY6JIS4gw55CSGEEEIIISQjKEgRQgghhBBCiCEUpAghhBBCCCHEEJ6R8jF8yARULB25FnVmw6UT2zLSLHrzWZGVPn4aJ4I2ZYqL47+ne+ZG1JLD6ZybSWpfuuU2Sdc2TSjSVMWxLUMfpm1Ev+/U6S91+za7vtel8+/s+uC8xpUyjCMeKs1x9tErugDJNHO70Tmna592E7QvHyZnjYl7hKhiQ/fbieH4lgghhBBCCCHEEApShBBCCCGEEGIIBSlCCCGEEEIIMYRnpHysWf+PkA5tejnTtU5u3jq+WenOmz6Hbvg0fpLi8ojTVVb6gor156RXjsD/Y8sgT8+m3EnlS043Pq5Om9LRDU8qo2mejbxtz0k6/FYqBs9WBDVH/u1UZHU2spaBvylSDkzbTNI50aTzmqr8VGczZenJyiA7vyiNK8lHXSbVOUqz70H3fKztPEWnTzeeOzTxfoFJm9Z5N0nvWysNjTBp/Qtmge55s2D7EpppE0IIIYQQQggxgoIUIYQQQgghhBhCQYoQQgghhBBCDKEgRQghhBBCCCGGGBmb2G+//bTCPfTQQ1aFKZqRQ7dFi9eeGE7rIHzKA/dJecQaK0hKO87gQkzcuAPwFRFnuMAuzfh48ntx9aYqoyofdR5yj4yeIn3TdJTpu0rHMwvfe0+OJ4uz8XxmRZFPUl4AEBPVKB3T9GzTT0ulCZx8NjOqNp8GF6uQLouVV1stKzXNg+EyhEFUnWP0QiPBWkKQpOeJyyIurm28WkxEoYgX7148rowx5YgrY1yaMaWxTTPOqILw7PJLTFejBdZi8k5KX+e+djk0jJnoGtRIeiaTPHXzrolurFz7l8R0jASp+fPnY+LEiTjkkEPQ1tZmEpUQQgghhBBC+g1GgtTll1+O22+/Hb/+9a/xhS98ASeffDJ22mmnrMpGCCGEEEIIIaXEEzp70CGeeOIJ3HrrrbjrrrswZcoUnHzyyfj85z+PESNGZFHGzOns7ERHRwc2G7azUiXPxGdNHPb+FSzjWfrE0bW5L8/T/dE7V/WfF6b+ORLT0/TfEcbGn4PKD4oyvKn/FotnSVuftvVXlvTDZOmnI+9nMW1vrrHtI92WgceVZWTZFtO0u6z6vKRwcfnGxY1P18z3VFI5kvPrQ6fdx/tPjItvG0/jvsH8KCufmVpp0QxCKoSoYu3617Bq1apY+caqlqdPn44f//jHWLZsGU4//XTceuutGD9+PDo7O60LTAghhBBCCCHNQipxddGiRXj44YfxwgsvYKedduK5KUIIIYQQQsiAwFiQevvtt3HZZZdhu+22wzHHHIORI0fiqaeewpNPPokhQ4ZkUUZCCCGEEEIIKRVGxiYOPvhgzJs3DwceeCCuvPJKHHLIIWhtNUqi1Kzb8G6/0lUvo35sEfWbdZ4u6znteY20z5rmbFyY/vQtJSF71izPd7h8TxHyfm9ecWNIlmfNbMjjfFrWZ9JMzw85zz/nM3514vo73b6Q52NI3hT9vZYZlVn/MEbGJiqVCsaNG4cxY8bE+uVYtGiRbpKloG5son3Qlv1q8lfGjpSCVEJaFKT6DUVN6Ig+FKQySJ+CVCko4/hPykfR32uZEaKGdetfTzQ2YbQUePHFF6cuGCGEEEIIIYQ0O1bmz/sb3JHKD+5IJaTFHal+A3ekyg93pDJInztSpaCM4z8pH0V/r2Umkx0pAHjqqadw//33o7u7GwcccAAOPPDAVAUtExWvNRsfSCXrYIlbbH17yCP02Jcj5QSiKN8oKj8mOvF1yuxiYmXjV0QdxyRswr2EyZJJ32Ps7yTlRM21/6Yy97PaCxR5PEOBZ9II6W+UbTEmTNL4l5ePziL9BWYtLBr1qHPmzMGxxx6LwYMHo7W1Fd///vfx/e9/H2effXZGxSOEEEIIIYSQ8mG0/HXZZZfhxBNPxMqVK7Fy5UrMmjULl156aVZlI4QQQgghhJBSYnRGasSIEXjmmWew3XbbAQC6urowdOhQLF++HKNHj86skFlTPyO16dCdjNRNyqxKQnpxqS9vk5butr9O2klb46rta1XasuuyNKThItdqyvvhNINxqzH3+oh+ay3Ke2GVs2hcPdU61fftQp0ubd9RxvMPsr6zSHUO1xR9lqDoM3dF51+n6PfggjJ+vyZw7pM/eX1/WXxfrsueT13UIEQN3T0rEs9IGX0Na9aswaabbtr43d7ejiFDhqCzs9O6qIQQQgghhBDSbBifOv3973+Pjo6Oxu9arYY//elP+Mtf/tK4dvjhh7spHSGEEEIIIYSUEGOHvIkJeh6q1eZS56BqX/+Fqn1U7aNqXz5QtS/j/KnaB6D49+CCMn6/JnDukz9U7csuPTn6qn1GO1K1WvN3YHGsWb880EGYTUyTJoSh36qGkDDpi5tQyu4nTyrl+cSFtTXHnGhCWmcCqjEA5SUM65g0tjV7XMaBKuvOy9aMrEm5bIVR3fyEqKkFV3/aoeUrE2G3F9PwkjI4RHdiqN+uszPb7jp+M5HFN5w+zYzcLmTqGkHVj9iZktZtg3rjn/tvLJKupffRgfSt1XHxzZmn4WYB1961i/z7kMdRpGPyzNJ2ZT5/DX+/uvtMVg4l3nnnHYwaNQoAsHTpUvz4xz/G+vXrcdhhh+ETn/iETZKEEEIIIYQQ0jQYLQ8sXrwYkyZNwpgxY7D99tvjueeewx577IEf/OAH+J//+R/su+++uPfeezMqKiGEEEIIIYSUA6MzUjNmzEBrayu+8Y1v4Oc//zl+85vf4MADD8TNN98MADjzzDOxcOFCPPnkk5kVOAvqZ6Q2G7YrKgq1MNdb0lnpSJuotblCW32tQAaiSgGRU5azHoC9OqOKtGeS0qj+palXoVSVyj7vLNMyxXV76I+UebwpyzhTlnLI8CzVH0kxpO2bjfPLqP+1SVeIKlat+1viGSkjQWr06NF46KGHsPPOO2PNmjUYMWIEnn76aey+++4AgBdffBEf+9jHsHLlSuMCFwkFqXSUeWCrU+aBheQLBamY+BSkKEiVnDKPN2UZZ8pSDhkUpJoLClLJgpTR1/buu+9i7NixAIBhw4Zh6NChGDlyZOP+ZptthtWrVxsXlhBCCCGEEEKaCWNjE57nxf5uZtZ2/ROVSrRKZLtHLswlx+0eJa0o6azK2axKlXklyxTTFYik8HGrxWqra9HVHB0T40mmyQPmxQNhFWEU1/uol1NtBdLfjoPtRG1x0NSKpPS7yuD7Acq9si3DZrdC28JZSmuGplYHTSyimlgujHxHltYN4zBro8mm95VpWpjfd2EZNSmP+PSz322oWlv3NFtZd2H1T9fFhDJskvVfwzx00JvvuOnHTS0D24wFcemFsR0T+tO8qU6aPtJkrMrS9YtuHuZWc4MYC1Innngi2tvbAQDr16/HqaeeiqFDhwIAurq6TJMjhBBCCCGEkKbDSJCaOXNm4PcXv/jFSJgTTjghXYkIIYQQQgghpOQYGZvor9SNTew14ky0eu3SMBWYqzDaxNGhbOqUrptQzdDbn274pO3fuHRU91Rb2MKLXpelIYsfLmdNmlYt9nckjbDDaN/9cPr+sJF0hPye/0BqXFn8W/Q1Rfz6dnpNEU+mpiiLr05LP93w/8PhktBRZ0lWf4x3ug1EVVJ0VcVkB79dqFfGqcjEO/ROVg2zUb/JSuUsK6NBJEoaVVxTAwcm71VloMo2zYpmWSvCwGm1Yd3pliFNHuq8+U35cWWAxkbdMzxvSJu2bC5jml9cXrW0KoCh/GuiG0tW/sGtsQlCCCGEEEIIIRSkCCGEEEIIIcQYY2MT/ZlWVNCqKVvaqNe5UPUrpeSbUtUwvNlqo4Sjp97Xl7KuOqJOutIwwv/flCqFktsmKoVJ+dQMLavpqBoqr3sJaaMK2WdiVhb19n7iu9Cw7GWqIpGnHw7nfqlysJBmZOEJVVR11D/CbVrxienkrfMsaa1G9aZh8Vwpw7lEx3KZ2hqbvv9GubpsNL5KRUxXxTU5nY1xQm0rTsUtSW1NRwUxC7VD2/SV+ebsK8pEzZEkq9ilTj/FmGc65uiM2brpemixGq/Z+gghhBBCCCHEEApShBBCCCGEEGIIVft8PLl+Tqwz0TCJ97Wc5hbjSM7WgVx/cTxno/qiEydJVSgujaydztli285VbVuVnokqjn7ZNC1qlaxdW7VPA5UEWweFdbJo5zbOc02dkZo7Xsznm9Nrf+md7boYs0zySxNeK80M14LTOLWNTdeyzeiph6b5LuPi2jsCjoarxtxXlEHUAGn7SbJWmmzxFDBxqK3O2zy+eThp3AG2H2Kvbm7uJFg3zsB6A4QQQgghhBDiAApShBBCCCGEEGIIVft8dFfXOFM/cLHdmq4sRedfXNo2NOP2eF51mKgGplTH6MmgNKQsuFJrs1HVMM3bvKx64evfoLW6FsxUSBISC/4swHIfIcmE1e001K/TGzwGEP0mGt+vhVqxXobxt5tx3jGQoGofIYQQQgghhGQEBSlCCCGEEEIIMYSqfT4q3qAYdalmU5Ool9e9FSYt61Dajo1zsjaY0ZqBllqCY0ycnWqnmaF6lQtrU9rpJIbJxqFpWgtf2alh5ecMmJD+Sf59vHvK3Q8UpYYqAqp3zTbH85PV/MZFum6+n6yPMqSZI5Z+R+of//gHvvjFL2LUqFHYZJNNsMsuu2DhwoXSsF/5ylfgeR6uueaafAtJCCGEEEIIGVCUekfqvffew5577ol9990Xv/vd7zBmzBi89tpr2HTTTSNh7733Xjz11FMYP368dX6VSmthRhBc7uC42DHS2WkxrStTX1dp8moWrFbivNZEPz6m+dT9LensdtV3X5LeST1P0/aoKqtWG7A4lOzaX4yVIYTYcqfxoxRnDKHvXUfv+37XfWo0Tk6Hw/bm4dUfIvCesvXzEhdHVkZd2N/EkY2hD3sfSAq/ZNLwoWsqv2Ib27qn+jAj7SPaXtRtyMy/Xm850vsQ66Xc/iNd5pP1Lpd9+sV8P2bpudzBTJNW37eiU+407UegZr0rVWpB6nvf+x4mTJiA2267rXFt0qRJkXD/+Mc/cMYZZ+D3v/89DjnkkBxLSAghhBBCCBmIlHrZ7f7778fuu++OY489FmPGjMGuu+6KH//4x4EwtVoNxx9/PM477zzsuOOOWul2dXWhs7Mz8EcIIYQQQgghupR6R+r111/HDTfcgHPOOQcXXnghnn76aZx11llob2/HCSecAKB316q1tRVnnXWWdrqzZ8/GrFmzItdrtR7F1qDJVmzG/puERjh/GFuVQYkPoGgYSTox+flr0cRIg+dVlCoYcaRRJQzknSGy9HXydFmqvA/6us7PVM0xDvreaX6yMMaSFa7VStNSZPtv9m+vbO/SBUWPDdnlX6w6tzIdB+VyU5bw/KyoPtUsX7O+PzoHDde/EAmOwDbiCd2QBTBo0CDsvvvuePzxxxvXzjrrLCxYsABPPPEEFi5ciEMOOQSLFi1qnI2aNGkSzj77bJx99tnKdLu6utDV1dX43dnZiQkTJqCtdWz5BSnDcGU7e9WXlqEgZUEzCFJlyLPowTItFKSIHwpS9lCQsqds79IFRb8TClIWaWRSZ83Tp+qTPAcVQqBWew+rVq3CiBEjlOFKvSM1btw4TJ06NXBthx12wN133w0AePTRR7FixQpstdVWjfvVahXnnnsurrnmGrz55pvSdNvb29He3h65Xq11wfP8h0tTHGLVQnc3wuxwqv3B7PQHWk2EAFcmyYs+GJ53J5qUn/q+xDBBorECWRiZkYKocQIljffV996C7zDeAEG43cjfv+LbiDvQneKwt04aNhTdtosmq4lUFulmPZEuelJbpyzlMGEgfkcunrnoeis6/6JxNrfIyTCGaV55G8gIppM8T9LdZyq1ILXnnnvipZdeClx7+eWXMXHiRADA8ccfjwMOOCBw/1Of+hSOP/54nHTSSbmVkxBCCCGEEDKwKLUg9bWvfQ0f//jHcdlll+G4447D008/jZtuugk33XQTAGDUqFEYNWpUIE5bWxvGjh2LKVOmFFFkQgghhBBCyACg1ILUHnvsgTlz5uCCCy7Ad77zHUyePBnXXHMNvvCFL2SSX1vrUKfngHRIs3VtE9dF2U3ON7lioG/xm+LifFieDKT324yqUaSPgdRWXVO2uutP32J/eJYi2kfW9ZbmDK9N2UzOiGZ/nECdhyqO9LqnE7ZVmpc/TN/ctaoM03sswKzeS21sIi86OzvR0dGB9kFbUpDSypeCVNmhIFVe+sOEZyAzkNqqa8pWd/3pW+wPz0JBKggFqTp6YZMEqT7iBKm+/IQQEGJdcxubyJuK15r6Qy7bQBEmL6swZe7Uc7dS1w+tOdlQFuMiTg5hO3uW/BcldChTP2ayKODK4qmXYNHJ1YKbzvvXfX67hbVytj9CskBYWJ/TnS/oCkxFCDp96enlnUZwqpNUH8l5aBiPMJxbmc79hKjh/a43E8OVZ7QkhBBCCCGEkCaBghQhhBBCCCGEGELVPseUWaUNKH/5/NioxKVXO9TX2zXxtxS9L/e7JNB3ZNGD36cZfP6XALUPJkDmd0ym9qNSPUpWEbLzNyZ7nzbqSPV6tFWva6ZvADD/Dlye4cyKLNRdbdQ29EmpphITXx03XrVFFi/+e7LvF3R9tSl9Gzr2eaitwmmkFppOzdGlOmyeZ1yzUOMtQx/r0lE7cY+q3TXavle8eCJEFe9rhCv/iEsIIYQQQgghJaN4ka9EtLYM1l6VajaraHmju8pVhpWrZqUIowu2h9PLZOChKMqwC2OVh8UBbat8cuwL8sor61XxLJ/D5FC8Vfo57Bjo5NGoQ9GTcWnM4fhI8qRMhrHK0PZ1y9DcMxNCCCGEEEIIKQDuSPnolT69xHAAUPVJ7mlW213sbLnUcc7K7LFyJ0OvuvXzKdhsM3dNNPKwXGmKnElLsVNi559DP46+Kdx8TMC6MGfrIh/TcEEs242Dlc283EbokW6nyL4cFvEM8vKfDzVDN48UPhtNByrjcchCO8BqrHNj7r7ocXYgUIYdmXjy0VQoEl03u/waCCGEEEIIIcQQClKEEEIIIYQQYghV+3y0eK1GJlD74/Z2VtvJWaiMyeo/SRVK11iCS/O6WRgwSdP2bA1GlIW8VPp01PPi2ltSm48rS9wzxsaLuRf3PPFpJpjhTmka3DScSd7G6ZVenaZ/kq7eDdQHdduiQzVWlyT1+3rjke7YYTbGZHYsIKd5Vl7vUzufWG1SN2VN98z9X3wQmkr6/U8SIIQQQgghhJCM6f8ipQFD2kajEnICZrZLYLbSb2KYwNQohemug6mRhEoK54VZGWSoFLjTUnN48NJklb2W0hhB3M6Hai1Glp5s10IdP85RsTxuOP1kZ8jJ+YR/K8srSzvFTlRZsf0uk+JpryhrnOcvc91yN4vokkVbSfNtmJRHFTZ6Pc2OvH5f3Eu0P04sj+9+0NBJOF5f/xUwOqLhpFrd9yXPVbJwOm2bB4mHtUgIIYQQQgghhnBHyse7614tjYSuU460K8Eu8gim525HyOQ9uFrd03VAWaT+vKxewu8o/B78cfw7m+G0/L/DO5rBe+r8wjunkTzQEki7gkpgJ0LWhmRtULVDq9qJTWrHNjusZTJ1n2Y1WmdX0yYv3bNs2qbiDZ/R1KGsjfPctM6K0/YTrhz+pnW+62qn0I2perdmmTPZPXKcpot2kKZMNu3H/Ht2e9ZSux9zsFunT9l3tcsz5skppv7KXiuEEEIIIYQQUjq4I+VjUOsw5a6KzZkI1ysZWjtIGjsWveHUOw51EncXJLsNNuWR1blyx0GanvydqdNQ7z7E7TLonFPTtgrocA0jzXk1GaY7FCpc7VzIVlvr16J59PReNz2zFfK7p3NuS5WP/AxZ8hkuZTjNsqjj65VRFT/uelJ6NmnVMdUOiPum4tJS3YtPL6YPickrrg+x7d8jYRxbJo2mrzfG2FCptDlJp1lIuxNonW8GK/cud9lc7Cqm22FLscNvs7Od824gkN+ZOpdxAbdtN7ksenlxR4oQQgghhBBCDOGOlI+DNjkKbZX2wDVPYkmqIjEvJQ0nueaF4srCyONphgsVRCYpy59JM5zjuLrP1Rs2eiNtmvL4QiucSV6qFQvdejLJS5Wf/L1Hn1UdVpGX5jvoDRvNL+1zAYAnSTcuvLqOFenEWJSLuxeXpk5cnTTSpNvs1MyqpYHQMRFomIdumknpJd1Pyicx/bi0hTrtuHhxecYVp6bITxVHlY+qbEIZPpqvLKwsXVkZZNlIw2nkYZu+rF2Ew0Tj6KQrYu/L0omkYfvc4fIn3JeHiQayqQf5cyen3VuGcBnlDTPpeXvDyOPK8pXlI68zvfLEha0pyiWtI2lIVXkV+anKoXoWqWZLfBo9ogtPdd8gDeOHO1KEEEIIIYQQYgh3pHy82fMeWr1BsWFUEmx8HIPzAxb6nzUvX33esmHiY6si0lkqVOUl26VspCfJ0yQdVdpya3bysPJdVP2wvdflyHYKG3EUeejkF8jDwQ6LTj4usOkj4lCtqtvgumyusXlHOm0jbRtLih+3A6j6zvrSjke37evWne23lM0uZ3btMX5nLngz6RuL+250d7J6wybvYOjsIoTDJN337xb4dwiinpZ84UKJ1gLx/OmF/fHJw/X+9vlu8s1b4sJJ8/DCeWqeaY2Z75j6gnR1VsfpeekUvjRTl8Mz93eqm66fTPJQUBUbtMJxR4oQQgghhBBCDOGOlALZLgIAtMXuVsSszBvsKhinF1qNilsBjU9Tje2uQ+xOjeUKsG0821Vjk/NNOuVQxTM5G5YUx+ScVWx4h/ViHD62ftXEvpfE80zJmKzMx707U/I892R79kiGTEc+bb5JwRLPGRmetUlK0zS9tLsYqvKYnC1SPY/q3IfOuRdA/1xGb1hJ/inPgJiWzSZ8b3lidqkSWqjOXobu7rGqvnSx2aUOjm/BXRDtPZE0xfbFLfsuexpcW1e0rSvTeEZaWJoaVTplSMpXpz5tNLy4I0UIIYQQQgghhnBHysfi939r7VsjjIm+qQv/IWXxeRLrryVmrSo+nt2zAcn6tC79spjo7iaVO5i/XZtMo0us+8zxaTjyLePYT5YKl7rqKpyvMBr6EHHl2wvQX3VMylPHD4p+Xvr1kbevGNL8FOH3qYw+n2z9PJnmaxJeu4/QSFPnPSf3a+r7sfdi0rVL0y69rNCbYzuYt2nO5ePGfd364Y4UIYQQQgghhBjCHSkfg1tHGO0UlJ20q6YRyzl+6dxAZdZmFc/VKlzaFZc0O5S6OxxJbU6nDE523rRXcPS+EZO6s9kNsvlWbXfpbNuB7c5e1paJsuznsli1l9WHrH8zqW/Pa7FeWa9YHsuw6ZNt69O0DzXeLcho9083rMsdiN5w8c+jU596ux3pznHoP4+LMdSfhiNtHUdjkc6YoT2mWYxVSfn707Ttb11pSOVl6c5VecuCEFWs1zDc17+emhBCCCGEEEJygDtSPtZteDe0iuBuNcP1mSmbsDZlieZnvrLiYselP2C7QlirdSeHgZsVU+3VTssdQ5NVvKTrsrRkbU0WV7VCJ81HVSbLM3+9cc3avPMdJI0dFZOdkFTnBRQ7G6o4sutSnzEivKMezSdc7miceH82/vvRcpmlJU9DjrpN6rZf8zOuOvdVZUibZhmx6c/T9tHxeZrHS1Me27ZQNzKojl/RylNW9nCasnTkZUquh3raVmOf6DGPY5K85dwi2zmDXv+d3A9WY+6ZPHfc3D44vjbeNc9IEUIIIYQQQkg2cEfKR2vL4HRnYnJeWcvSylheZ8WadTVSh7wt4tTbQ9wqU2BFT7Zap7GiV8/LxrqQQM16VTUd7ixQ6q/6m6XRF8fNDm4qq40l/i5lZWuRPWuOfreyogirWrbkYckwtbU5h1Yuk/rSYL6996W7IaE84tL1PNVujcaObOwOaVVxfeP//Tuvvu3shp+8wDcpW/mPrvj78wnWS025iyqrDz+Nes54Hpf1+d/ePNzNwfLqz/M6i2WDTR0IUcXKte8mhqMg5aOnus6wsm0OyOcTB0irwpfNBxFJ14EvPVeTDaMD0c5NlNbJYjJiOMnXVaNDRd1OvCZQb7PA1UTMfz3SJnxqIPmayQXSmso1UXtxLyTovJvi21D/I2uT4A5cMWQw8dVP0+3EvFIxm7alXXAt86JKlqQbx7Mz9qLfbzoyjpLa+ImGKfkUY4Fe+7RbnKRqHyGEEEIIIYRkBHekfLS3bZp61TuN6d+0Jr+bQQ3E5FCnLjbqU4oIvjRNzChnb548C0fHvXGT8k2uBzNHxClXR5tgR8HWpHYgjYKdxbo0YZ6FQ1FpPk3Q/w10st7dcKHunodbBeMxzrDfs3fz4KZ/zcO5eRxlVjHLkmYYH+u4GCdtMBkfa6Ibf1/5x8RwA7O1EUIIIYQQQkgKuCPl4/0N/46sFKlWVuJMd8YRu7Og7RA1v3NWReDszFNO5zWyM2mb9gAxYHZ+QW4CFAi2uWhbCn0z4W9I45syNdagSqcvntsdRR3yXgXN43C/KQNlJbiZ+lOgPOXNwllzHQ8tbnY/RY9xfflz1RqffWeD9fqqvnOTOt+YqhYSn0sku9owwXSHpKhdiiSK3u3Ou6/P8juNzdfwObPe+axpmq0vR+9KCCGEEEIIIU0Ed6R8jBgyERWvxUJ/OX99ZNcrv2VZsfTTTPq+NrhefbNZNTNZ6dJdpXK9E6hbTy6cDevUhyqd6sa4OvWUl/NkF/nYhtWnfDtrRVD0qnca0o0f2Z0vSmUGO4N1ZtfjbN7PZzpncXF+2CSt5DPByeV3ZW3WpK6S6sDEgXxaPLQU5jqibBoNQtOsNAUpHz2193MzsVxUg8nd11VWH7qrtFwPbCXrCIrAqA40Omyd9ISoJX+7obxkApoqp8AkV1HmRhgvvltNEtb60lHdryrvK82tq/x6CbnPFpW3eWlYDb82sjCmaqlKj/YKHzdRAc2vqhqqPIXfGhkuzO2qKMuClmk/lk4INDUTbZdLnsKeMr+Yslu5RhH2QqjJglc9nvF7FsltSSdFz2tx4ipFnnY5vrksKZuA0izoLh6zdgkhhBBCCCHEEO5I+eiprrc69G5DOY9URilyh6UMDliBbFesslopGgirbIB7dSibQ702ZXChJmljwMRmxyqKuREUdVrx9aB+Rp8zaL/bAmVKen1JevP8/fO7y881h017UKQdaZPJWxqRnUpAsltpM0ewcwgaCJOxifU+3LXhgTIO+bEfk9w78M3Sma6JkazeCDKtBLttRul3Cig0CwBbI3BCc/t74LVyQgghhBBCCEkJd6R8bDZ4EioJ5xtsdklcrFI6Ny7Rzw05ZIFL4xBpzZnarBCbmDTVMrqgUR9JK15x+SSV13R3pTdO/Apbi+I7U6VZg/zcUFI51OUz22Uy2Xkyia+z65SUXxh5PSWtFMbcS9EnZrtS3v/WJ9OdPa9ldnjd5Y50Xo6jbamXT7fdm9ZN3zdhWw+65yeT8rcjm/PYFmnmYKhhIO70FYEQNbzf1ZkYjoKUj5VdSzL15ZQWl6puaT9EF4Kdy86gyI6lLEJpHj44bCcuuvHSWM3rux8jLFmqOtgKEa78h8WWzVKNzlg1IxFbtWg7tbtUE9+MDq73kmxYwzX2AoVZn1FGy4Lu+v5y9ONBou8nTdO1e38JcZT9kqyktXpBGmEaalqBVZMYwzCNG2YLM1kYiSmLVch85j8DT3jT/V4GXs0QQgghhBBCSEq4I+WjVjP3aN7M5PmsrvJyvRNYFoMWZcCVN3PXfqR0wqU/VKsTpmh/S3Jk34T8e2t19B2WxxcOGXiwvdiRR5/kJo9stR4CcVLsFAtRS7UTbLuzmKergX6L9ryDfqSM2aR9c1Q0J9ZZqvaVYXI/0P0OpD3DJMNWUDHt7LWFEwdnnHTCuFDX6w3j3iFwfH4cdOIYKBPa/mqJDyjHWGPLQGl/WZNXP+dioS4/65HZpZFWeMsnXn7CbGx6BQt+QtRQra5PDMeeiBBCCCGEEEIM4Y6Uj1ZvUKzVPj1fD+oVvrhdnriVwbgV0aSdIx1DCKYrrrq7dq7zNSXtakZNYwUt1tCAYsdHtUMjNxoQTUMWP5yXbGUoHE+WdqQMnjq9SBjF88a9ZV1DHUnfXlxb0l11N9mFLctquIsVQN3dV1srin3xVe3exleJm51QnXTkcXIw7JLDamzRKqhpyOMd2NLfdsVd9L+yfjguXVV/HBcnuZzp/HnptmGTnd5m1P4x1dhxqU1iY5XXxIiU/9mEqGL1uncTy0RByseQyqaoeG3G8cIvLysrbiYDka2wUwY1FtNBKEngcSHshNMIdwzR8FVf2JoybD0dEbimn5bqWhz+wSI8cNTbbiCMz/mpf4DwDwDB8KowLb4wFWmYcPxw2EYc2aAsC5fwLVaEoZPLEnwfAXwGrbKceNc8u7RrKS1JFq3aMZAoum0nfatxpG1nKtKUKXXehn2TCjfuV/Jx+2IqVLgSQlzVtS0uvz1XfaZNn68jYGkvcCWEi/vmE+PGPJs/3aroxup1L8amBVC1jxBCCCGEEEKM4Y6UDw8Vq5UBf5wsV1AFatq+gmqiO3rNdDtWa5tVXZ5YZ6uGW7BKdTgd9bSYtE3K4UqVKC2J6pyGqg+yHVQh+hzNynbLPFRQ9dedz7iNUq1BpCt7OK20O7/NqFJRGJn6XWoOijLM4HqnyIkPwBJoXeRBFdFxlGRLnrvQjfHfkRPdrOYAWdVJrMqdRZ+f1xwI0DOWFRNZi5ro0QpHQcrHP9Ys2DiRy+6shO3ZirQDTFnOdJSNslmZyUInPk/v8mXLp+wUfQbCbf7ZWnpKb+LetfqXXJhQtW1VH67+FuzOguid5dUIk9PYBpRPgCoDLibPeVh50y1n1i4oTJ2mq8NLFmcjYUO/ffeDjoj7HBA3nA83HA/HOB3WdDYc/81pnI/X/GZdfJ/Fjvl2edMhLyGEEEIIIYRkBHekIpjJlg1VJ01pWybh6sSNW/XRWS0o465EGTB5Vp06tFm58b9bm7pPKpcsTRMrNsnYWD2zyCYT8l1pixj3cGQlyjTf/oDL3bT+ZGVNa+Vf53kV36iyLeX0TTfT7hWNpfShtVNagn6qGdpXGeopL4rsU4WoaSn3UpDyMbR9TFM7KMyLvBt2Ns5xC9A5tk0z48G4yI4qywHBdEA0/fZ1y65zJsVa5Tej+svqDIwNqXThVWmmaPOmcc1NBRuoVRn2NyZ9iZ1ZeAfqaEkqnCUXTryAylb26pFWcWzOgttaAnbQR7k+z1qUIDIQBKCiBR+36VWxfkNyuP7/VgkhhBBCCCHEMdyR8vF+98qmWTHIcvvZRR24rMe8ttpd7EZmsaOZ+e6ApsWiLNQOm4nw6r/ubkAeNVD0Kn3R6jBl3rU1jVuWw/s6aeRpACSNvzw1bg7km7R/+7HR4Zg6AI0KFdlHFV0PReffrOj2ORSkfFSr6zPS43WXpswkdSSMtvft7NQObDuttIJIER3GQDGjbVW3jszKZoXR5MyTd5cmqlt6k187R4MmJvt1rVjJ44edU8vcCsSFCQukMRaxpGkHD+NELF41bui01+y/3Xz7JAvHqSksdyVaItT+/rNVgUv7DoqYhOfRbvJa6Mrbmq35c2Wr8po3dm0nf/XyPPtGq/PrtNpHCCGEEEIIIdnAHSkfwwaP1doRcaL65lhdq4idmKLVecpE0apV/ZX+3MaKthRnasQhD+MDLgzLNMOKsWuKOtCf9c6Q7jiZlT8cUw2JtNoJrsfxMhmNaTayMHJjlH+O/VhmjoRLaHzLpF5roor1G5Ykhiu1IHXDDTfghhtuwJtvvgkA2HHHHfHtb38bM2bMQHd3N771rW/ht7/9LV5//XV0dHTggAMOwOWXX47x48db5dfaMhQVhfoOkI0KF3VX3eOyA9LtYFQDVtqOJAsBLW39lMnSXiBuCrXQotQzy/z9D0SBJI4s3pXNRNekrep+EzrfnZb1SZ0zRwnpVBLKHBe/EpN/RaRzNRCXtqv60wqT8BwmZTLNWx7Prf62p/l8/Q3hhfrbFNVas/BFYKSirhm2VkkOp5OvTpi4MtUUQnFsHK+GqujGe3g2Me9SC1JbbrklLr/8cmyzzTYAgJ/85Cc44ogj8Oyzz2LLLbfEokWLcNFFF2HatGl47733cPbZZ+Pwww/HM888Y5Xf+u73mtL8eRZSv3EZSnzY23Vats+ajzlh97re6Q+U22HrY0kdT88zvCp+3MQksawWafbGc7NDrjtJyuvsie1KufmOhsOzmjHt3FoQt5gsVTdOCrTqMOHbrJdbZ/XdxVeuNb6WxsecmkJ3ykt67tTZYpSu8SPXWj05vNOkRQLSuwvkCtO5WqAfFEBN6HiRAjwhyuMaU4eRI0fiyiuvxCmnnBK5t2DBAnzkIx/BW2+9ha222ko7zc7OTnR0dGDYkO0oSNmWgYJUJvlSkIq5T0FKK2+AgpR5PvmodKU6qO1gIpn3Tmwzjq8y+rPKsS25tyUKUv2S0ghS6BWklqz8A1atWoURI0Yo45V6R8pPtVrFr3/9a6xduxbTp0+Xhlm1ahU8z8Omm24am1ZXVxe6uroavzs7OwEAG3rW9FnFy1StxXXa2Zsrd2UC1nrCufG6Xh75Tj5103MZL5BGE+vBp9FDb5YzOy7KkTat6sbnSGxvpuVytAxXFsuXZVa1HIjkpV6a9js3typnYPbdkTl8GzP2SqufGtY8VWF1LYb2klRP8rEv/B1LLU6mXHCLvZ64QJZ+rqSTT19azWMNOauxwOYb1/1OSy9ILV68GNOnT8f69esxbNgwzJkzB1OnTo2EW79+Pc4//3x8/vOfj5UcAWD27NmYNWtW5Hpby5BGgyuy4eW5upnV4d90eZTrQLCd5/jiz+v0l9XfJFztyNpOpmyFwSyEOt260JmcaZlq13h2N/6OejF9R8YT8ZBgWORufzMYsOHOjF0/axJHeywpqcpfWSiD5k4apAKoQ59zCZlnm74lWeYrUNNOv/SqfRs2bMCSJUuwcuVK3H333bj55pvx8MMPB4Sp7u5uHHvssViyZAnmz5+fKEjJdqQmTJiAkcM/rLX1OhAn+nYWnSzVd1IOzmkEEZe7O1lNMqge0EuRKgC9cczzT3tothEm5tnj8ogrs2rQUKWnKoPx6rakTGYr4XFljPO7ZeevKyldF+FtKNKRuk1fl2ahJ+2zulz1znq1nrukzUfW37vr9F1qXqRzXp5CQ8Vqxym5n3+/681E1b7SC1JhDjjgAGy99db4n//5HwC9QtRxxx2H119/HQ899BBGjRplnGb9jNTwTbYPdO5ZqXaVcReoLy8Xg3E2E/2yqP+Q7MlKpU5FlquVaXYWTAalvHaHkt6Na+ElPj2VcOZCVamOef665THBvaN19+fm8jrDZptf3ukZ588xjuRIkbveroVBp+ryG+tFiBq6Nvy9/5yRqiOEaOwm1YWoV155BfPmzbMSogghhBBCCCHElFILUhdeeCFmzJiBCRMmYPXq1bjjjjswf/58PPjgg+jp6cExxxyDRYsW4Te/+Q2q1SqWL18OoNey36BBg4zzW79hpb5jvxKt0qVdRXO1CjeQVtMKd6Zq7YQ13/x0SWe9LN/vxVUaeeLq/eXR7rR3ebTCpVPRiyt3fFw3u4M6RNqiUsfE0rltgs5KOt9vzfUdlY2y+Hor/j3ml3/xzxpPmcpXZPt0kbduGqUWpP75z3/i+OOPx7Jly9DR0YGdd94ZDz74IP7jP/4Db775Ju6//34AwC677BKIN2/ePOyzzz7G+fX0rITneRCGpqg82SlPA4swjSixH4AbS3SNsDlYpOuFuuiAK5XJivT/pnG1wmdkDci0HKnOu5VoQElDloNRs+vGZ6EX7yoO0FxuIUzoL9+WLZkecjdIO/oeilkwKb4dps1fvz3LnrWZ5yZZkocV7GzSroX+jafpzkhlQf2M1GbDdo6dGBqdVzAIm2Yy4/qjjpu46poAlZ3pkvrrkZoZDcYNl0eeTnwcWbqq/FXPL30mRViVMYg44aQSIyjHebLXFXji0rdLz03H3ozn3ky/V93wJpNulaf2VGl67vM3LkMWZqENjYJYmcnNzEx+/pbGsrT26Vproej+o8yuJ9K4lsiSvM6/lvmbzMNCrOs5aNJzpzHQY2MEKS49vedJPssrRBVr17/W/85IZcnmrVPQ4rUVXYxE8lKh0518A0lCQnx5VfdlAoSu8FMJ7xJuXC7wJGlqxVdck5dHbodWdd3z1HZrVXF678Uj3SlVpRVTBt3ypEWzCErSLgnVDHaiawmZqXa1400aqNOMW+9KKrfOc+lOOozqyMLJlPUEw0AIlOdb3Hqi7TNnJkT4qiLN9y7ra5NI+0xZ9k955mFKUe03j3wz8+VXUJ9h8jxJ/XLc4lfsPZUxHsl12aKZNJwkv3DccLzwwln4fsRBbuR+6LeIDy9LszdeqFwb49VED9aufy0SPkzzLQcTQgghhBBCSMFwR8rHytrfUfH6qiRORS5uSz9ePc7wTElJVKjyNkcNwNrBYOwqjoPFxDz9XOmojmir46X0kaa7QxmnihibZ4rFzaSymaiiaaFoRzo7O7oqdFmpz0Xycaw+VgZHsmVVaxpQlG/jJjVpx0EX34aNapnTs5Al+7ayUq8sWm1Ui9CYmeqYiAMDObE+DB34HXThcxDQ9zuo+61RkPLRuf4f2ueAVOTtR6Mv3/LqapviQgfZtZUwl/5i8jrI68qypKqNJqWvk39S+7d26lyCw7nu/WSUawLTrJRB0MuDslh0c43z78qJcJPN+Wndw+5prE/qxJeT1B9ZWokM308cI3T6+mzmb67jNxPpjAu5/wbM03X3XVCQ8qFr6jbuw46reNlHZtOJS9PJadDM43xWXhMdW+tIse9YUT/+Z4rrbJOMh5iYfNbx2m1Cnk5FtdIaQIOWGeWol2Z6P/1V6EhH89ZJHu8zi3GqudphPotcNpPd6DijK5DqlkqPPPvAItpO3osQvaRbUDRb9NBrEBSkfLRW2rVXwLPaAcrjw2uKLWtNXNZXcw1iZmShmunON5F5x1hMB55tOs1G0b7UXKfRR7bvc6C2F5e42A1PXQZU4HzRwkIdspkWLPo72X/bZgv1ceTp0sEsr2wsE0bRiUtBypiaqMLTPagherTTNWrglisiJiv9cc0nrYBo26nbCnf1D8nFYFKpZPc5FG0m1yR3Wx14a5VFT13v8TrX5vrYQN9AYLOzW8ZJcFETqaQ+R7euksqvM3Cr0rBrk6b1aZZHuKxlaVOyei6rk/Wi68yd/6L09NVFOd4VBbsscec3zLYf8vcJukKVmVaNf7YSPxdJ1+/746b7jilI+Vi/YUXQFLWrzjq2Y5H5PFKFV/gnUp3rsnL+axPH7oxNUjyt+47O2HheRUuINRX4Gg7pXKjFFTRAWa9cacYzFZZkQpKsfqMHR5NMp9YUYaOqkiJyLWTG1a8KHHhvLdLr/nYcfc8JvtSE4rokbRVZtC1XacrKn1ZIU32PdgNzOiEuuZ76j9q2n6KFIRnavsksDrjHk/3ilZvv0cAlSor8XDuwJ0FcfXseKsZzGzMBTtXe7AQsdX6y8PrPxZZGCCGEEEIIIYZwR8rHoLaRpVjFyHtl0PaZbeKZPJvRbpImtjtKpmSywp+jeqBfvc/kWdQ7MeqwsndSU6jfCVGLtAshqpF2JVDT2s0Ml1em9tenPhotu/xMg2oly2xn1nSHyXbHWCft0uGl3+U1WpUN+/fWiWt43qUs1gSbpg0Y4rJ+s92lN1AvlrSxtLtqcWRhldil1T399PJPq2iCY136NBppGaUgaXMqVyKx7TMquuirGeq2/SoAoWWAhIKUj8GtIwKTtDJ9RGUqSxko+syRiv7wnoSoWdev57Von7FqqD1KOrUWlTqXrH43nrHSMahhM3ko0uy4zZnFLNpg3gZqCvFbh3Kqmzk5/5nxApKLMmbVp2fxPeTZTtL4bSpje24WmtGQlU0+un2tmbU7DZ9UKU2Pa7mtsThjHVbxr9U6E/OhIOWjtWWTgENeV/QnH0/NSBn975Rl9dmPO71p/fYuUHXmo62sIqypSwQSfZe5TQhL4ETWfNVfw9F2Dj7djByNm/i4MxSw0gr9/WG8LnrMK2ohpE4WToPT9kGmdZKlNVv/s8hae1L9ufC9mXg2WrlTtbFsMX21lpCmsRMmRA3dsSn1QkHKR3tlmLEg1R863bxx3ckndlCqD8awszXtSOPKpZocFGUKHNBXxXOZZtZqRKVQUyrB5LxMPm+ymORI83EgfOU1IfRP/s3L3WtBNvZbk6inGAszCZZq629VK91QedJ8p2nGYKnQ5diXkAk6dddMu0xZfz9p5hJp+kRzH4x65czKsXPSe9ATjDSfweEOl+4zmr5LbUNYNT3r3BSkfKztXuFcMOKKc35kOcC4GBDyUivLc4DIm6y+p1IIXA4p0seT0WTAkTqmi7MnZmlppBPKL/NFg1TfRhpBprwWHxvpFfx9cx4QT9nGnSw1RsrhvzDLM36KuAXkKcfETxX9SBmzvqcz9tyGCXl0DGk7Z7MVSQvDEjbGKDI0mVxm8nQwm6h7nKnusr7ZYB2T5r3IO0Z1ORTXc1Mf01mxTzNgqTr/UJqiYTfddzFkal22nSYtfxpDF+6Nymill2EfIW27WS9wRF67xjmFxHRj7qvOGFhs6UjbGRDzrZgbXMmyndm2pfwFrOYaF/Ojf5zJzNUAj5L0Ggf5CdZJcxkKUqkwt0OvH98mXCN8oh67/YQmrY687rPo6rAPJIt5eag7Ze0PSobJTp6589R0dVaOQad/MhBW4LN8/y7StmnfWe9A9lHc6nQmaq4JaarG1vz7kIRyNvl3W8Y+OavdrfTPms2co4zvQE06/1F1KEj5aGvZJJMzT0VYXUqTt7UAk0LYcGP1KWvVmeY4D6cUMDI6q+N6oMi6I87rjE4ammswypYy1UUWZz5cPl/Riwu9ZSiD6tLGNEr+vsqUVzzFlyNfS4llFX5U5D+mNYPWlR3+PGn+3Ji2lqGoKCbLRXrpdn6Y1jh/h34ZMtzZydtEc2nJ2LhBnhaZyiD0lGcykw9FW9yqk4flsWaYMLn+BtwKbtnUn+s2mEU5XbfPMgt9WZ0bzLMMJvHlQ2j6sruYS8nr0EG6hvWb98KyTd2lb7dU7TNmXOtUtHiDEsOZTNhNJ/cVYbsblO5DyloIqZTBdFkJqeVgIiqriXEWA3/NK3YSL62rJmi6WX+/ZRGu8iSvZ85KmKs5EsBclM/Vd23zTKblr2Vs4EdXMNb276NtRCU530Trbg7O3SVbkFPnYeMXqC9uOpPecfdd+jB0bR3PJG/XNPsipBA1rN/wXmI4ClI+dmufgMEtg2PDxM2pKhoTLk/TpbTptMjGU3WZ9m/C5dc845cZtp+/brl100867FhLyC/udlzcpHR707YvW1I96QiYpm3EVZ0T0kzofMtG6Tle/EnzuemWRScP3bRqGokl9o2W5Yjrm+Liqe6pJuOy8Ko0ZEKEUAjO8nRDYb1ouWSCeDietBzK54sKK3p5BuPJ0pcJ4nLjM3KByeQ5ZEKXSqjLwgR7XH7xeWSnbeDS/HpNVLF+w5LEcBSkfLz5/lq0ekG78aY7KabhdQUr3bR1hCOlhaRwWo7LZiLspd3BshEsmwGbSYfJxMdcOHEz+Ugz8bApD6AhpBpOGPPYXfRTFqfOeT+3LkWWK4/dLNVkNQvK+o7DuKr3zHYJLd9Z47lSjGtGhn80wprsDialF1cvcfnEpZu0sxi7u4VqZBVSLaDoCzlx6TTylaaVLEgm5ZtmN68vDReWQN3tVLnaCVTWmabAR0HKx3Pdvy+dQQEdvdA4tR5bK35xZ5ni46nM0qrTS1JLSrY2qPfOdNSfbN9/1oYuml51K2EC4HLior3aFSqT1cpayc6vOJtIWq4YFnEGwuYdlN2CpS7NrjpTp9mtxZF0uDvL5a4/zsrJa5o4LndbbPLvI/u6kaZjtftlGqevDdH8uQVd3SsjHbrqJdhL97ofur7Ri/AkXj4oSeLJ0lIMaDJBQRnWII3e8OnMqusJSBmbXM/QiEaWk4yiJ2JpBZFUDgJ1vZvnNGjk5Xy5TAO+SdqunO7GpeO6X5fHiUkn6Rlj+4J0C1I6fpbK6HvQjOwFNgqF5SDbsc3lwl+KMSyn/j9IfgtXfVjETzwzF3vwoTcMBSlz2ts2Ld2OVJi8OukyWfvL8pmz9g/lgnon5HL3w4lp4Yx0qfPwJ5XlQd3szbf3j12IOlkvcqgoehGBEJJMvt9p/uOiMp1chST7uUWefuT6Mk1fx/FHXOrzQgGB7sS0KEj5GDpoc1S8bKukGSbu/ZG8dz70hQYNneONaclWeNU7piYr5Op7aj1sff3s8IAgi2uz86uTRp5uC+p5ZSEY2K3uu+lruMKuR1kFszzMyNtSlkWB8r67cpQrr/fkug83rz9VXvrp+Mub5v15qBjXu+dVLPNsga0wpavFFSTlmJLbmCQiZ+VkUJDy4aElUdBxdVYlz52vrM/vuCA7fy71zsGsDsIChOx9xQlnLUju0GqoydMNTXzq709WR7KOU1auSJgEoSkaXm2tqLFj5osjUFPeA2q+Xbbw/erG/2/87Y/nVVB/j72dd4vv/3311Nex99WNTMjxfxfhwSDyO6I+a3eGMO15QN0wQPEOsrXzStk/lWUy7iePCXBWPtay8bmU3+FyExrlcmCcKAu/Uq6+w7T172mMZ1rlSHh/suctRpjMSZ27gDOlWTvvbY6FN92xkQ55jWn1BqHitWmFTStQ5bkzVUZBKjPBKdxJaOwwygbncI3Jy9vXVqSDqG9wVuUhnQx5rdq7Q0JUgytgqAXed58g0eIL0xfHn09A+Nt4v55nRGDzdy6ySYgI3vPHF8Iv/AQnMkLUAuklnfcLCEYaQpI6TIs0TG9u6c4X9uaV7hygzjdsujiTpg9rjsGyeShispilgRlXQoWrcaIsDpLzdCpbJ48znibv29hgQpKhorjy+uKa5avu3/R2zfTyshFQhW9M1gofSb9/aEXlMwbpvRsKUj5qoif2vn+iUrXs4PsmRPYdqukEyMXKZRlUErNYgdUdZJK22QOCimRQ8b8zf57+evU/n0w9IPzewztaQlSjE+6If65a8F0mDFIVn8BUCwk4DSENLQGBrr6S2ptXn8DWuO8zdRvYxRLpVmADeSCYd6TMXt/77B3Mqhuvt0QGnlqojio2q7OJk4Fq7DemM3hKB/iYvqIa8z0lCmUxz5+Vhck8Bs68+7lGXfU3dw1N/jxZWzHNYizL0v+Pa0Ep3uBLjLlzQ9V0P7Fmx6Xq5vpmxNWq7nHPaf4svWOqCkV6XnlURLPE3fgQXJjWafkUpHy8X12FSgqVO5sXabJblMeKs+kzuJ54ZG3m24Q0g6nJQGk7AJj6i7DpTP3CR/3dyHapegWQjcLIRqHTv+sVaFeK3Sxd/e44gSsQPzziKLbow2WtP0NfmlXpIkqkDL68w+1YZxVT9d6CQnV8uwp/j7qrsHZ67vU8g3HjBDR1/hr9SEKZXPQdpqu9uqj6SZcT9jL1nc1O9nXpLv2+/th0ftCL1lgl0exIZfW0oYEgy7t1Y7nk8ZT5evHP4sWdzfV97zVJH+DPs75wGM5blnZcvxqnsi8j+tzJAp0L31EmFKmpEH4es7m1P2xN8X81FKR8rO9+z+wAuPZZBXk4VccnS1fVsZubIE/IUzLZjGuQOp23yaAkUhkHyGc12dVqYmq9dU/SoUPdQcsElXqd1Z9JNniEhQy/QKX8BnztyL/7IytrYHCJCRsuTxKR8vvTTdJ7lu7khQfFvl2sMOEda2mZNXd1zNpJj91gZuFv1emg2Rz+XktDM6wwl6mMeU3wmlXl1fW7SiVkGaSTtLBku+ujk46+0STNuIlGmaoJ9/3jm+b71GqvmvNcr5L4PlyQZ79C8+cWbOjptLa4Enc4Pdq56h1yT/IPpedTSk9YsxbUpIJXMM/wpxU72Ih6GoY7Y14LgHjVzDJj2gElrWIlDkCGVv0i6m6Jh4aDQp5fNTKy+xOzG9RbVrkApft9SsMlCEoyoc1f5zr9RHhXywSRxhhNPxBKynDGxvjsgs3ZkpRWKV2WxaVvHPsy9JFOKDEdPxzvQDapQKWDq4mseTrZfI/5+I6ro7gnFazCHXmtnkHfJc8/kIXnoDH6tUbtM1w2DW2QwnBdBgpSxgxu2ywXa3o2eeh2zC6c02pZDjPY/TFXFzQfhAKT9pL7ArOdJLr2ap6GCioSy4bh3aWoMAVEBSPVTpNUzU4hzPjD6xDZmVPthKnUATXOc8WfqUuIW4pBSZ/iJlfmwlIqAVxK2kWNNPGTLXT2EroWUQES6rAN/It8oUlaglGYQNDYtu/ru0PfnplBlmQ1WT927dfsvGLzU9w3DtgtiujnZXcuK7FOdFTVtVe+etub57kSkIoR9tMuMsS/D9fPREHKmCGDRqPVG+Q83aJWp8pgIKLMuD7wq91ph9qD9jmJhG866XxHWM87GDeq2uePI7suN36h0dYlEyRd0+5hAxI66USyj1HJ0D23FIhjJfjb73YXQZknhnH1r2pXWumWoN6bkTJaiW0WXFqzdb+4kWYXow/bBTDTM0V6pJ0DJNSJ1qK0OXZ9U/7zwSz60Dg50jVC1FDVaCIUpHy0eu0Bh7xZHDgt+25JmXGpf1tDzUrQjD3MarnaGTbioE5ffiaqcT/BsmBs2miRPpvKAITsus4uVe+16HPEneuqEz5L5SdOqIlL04a0E8WsJ+jZDF6cHBcBhZJyUqSDWt14Nt+s6cKDunz6wlJf+voClf6iZfxtnSMwvXO2Ip1a280ZczsXyD6KgpSfwd5wqR+pNJb84mADNERmGcfRgFZLIaQlliHgyyI5n8QDuLG7JOr0ldb/NNWDwvHjnPTK0gjnE7mfcA4rGt6XnqfOP24XS1ZufxwZpgZektLrjZvcx+gMjLaLP3kLShTMBgbUioiSpx8qk/C6mhFpDECkPtsbc9+VYYk+0s8t8tc8KPciX5642ZHVS4OClI9txRS0oT16I2HVopLBXmPFkSOOLLdBXZXRhlrKE/U6K1E6edRiElLpPstPMATDyqzFhMNE4vhSjgvrHzD9Pp384Wp+X08bw/uv1dOo/xvMuyqNF7kugr/rE4xwmvWBuRYKJ0St75ovrXoHKlDt+38gbC0QvvGcih2vuhBUF3bq9yqN61HjMf4JpMqAjF94CgtAUeM16rDhtGR5xcWV5SG/rz/Ipl186i+LTFnuXKRZ/MkS03ev864rmgJZRfSPdhOm5iW3oySPNzptMa5NSS3XSfKMLIBJrdYF46VZ5FM5qleVIe0CX1y+JmQhZOkupDWbwJSXFcho+Cq6e5YnhqMg5WOlWItWG8tvoTlvUmNOEkBk91WDTTisNK5EmorGk6Oy/FLxPFQVgkLc8yUJdrrCmT+clbDo3yVSyEItOmXZGERH6FLlI4sbFZLCgpEsvN85b5wgJXzh5MJXQ6DyD0AN4Sl4LyowhYQsERWkal4NLV5bSLhqQ01UUfGlKVBFrSGc1NOroO6M2KsLS95GtUIB+H2NhFULa7Xu3n9FT69wtfFfIXo2/r8bQA2e1wrPa9uo6ltBpdIKDxV43sY/VBqW9TxUUNl4r65SIxB1sCsToqTCmEJo8gtL4f4gEE4y6ZQKVTET3qTJ7UCa2OpMYgH5RFZlKCUQz9QfnGLCHOtwVJVWgjBmNVn0dT1JY2GaBQClK4+ktmsg6OkK9LrfQxbouQyNPousTajqpiZz9q5A9vakKt++ay2Bscv/PH2pyfxlCVTRIlMjDPmFarj58DmO740ftdYaTl8mdAhRi+QrCxOLQphJ+uZMtA7KLjDZ7hpl6Vw5KS0ZFKR8/KXr99YNz9QUeZL5cdkqd1+66nSkK94iOQ9Z2qqyqcKF85emoWEuXTfNBv6Bu8xn0EwEPk9/xVnluLDvvtnEy2YFUaDaeA9B4UytjqdaJfSXN3C9IZBFr8XtMPXtUNUk6fUJXBW0Iux4sndgBWq1DRuvxO1Cyb9ZrW9UEVa++6R3rTevhG/Lor9rpt0i2x0hIwuQFha/TFe5dScHOv5uoivySSq08j10e+zatKzd2ajZxqUXTUdvPCn7hNUlZtZR3br1MC2La1XAtGGTcZFWGdtidjvzOvVv+67pR8qC+mqz8r71+YNoZxx+eVWEDof670cEIfmuWZ5mzV0NVH3p2QlA2XugLwc2K8M6g5jtiozuuSq9s1buJolx1z1UAgKm68mPTIjTORit9S0ZlNW1oJOngZysHTrm6VdKN45LtwZ6ZXSXXyB8msmSQ99nLtt/dgJSGcet7Ca7dbKy/pnHgkmUfFRrs7SYaurcfqBBQcqCTQZtHrDap0uayby5jyWzSU1aQcPFJKqZVrBdYd+xpzdG0Zt/NbK7EsxHc0XcU5WrNfqMniRdLyp0ebIwkWuteqvzARXNqvR6434OEwUbXC7QuCSvVfbg2bSMn8mn4mMcV6bik9Cm9FwRaE5mdNpvYCc6vzMcRaZZNlx9N/nXlYtyp180kpG4GJWkZqcol51Fwjo2fZWbfidvylCGYhBa5+kpSPlo8VqtBKm0lonKIOwo0x6AQpAKFxNx3QmctgWlpAPGCYNBvK6x4dkN2c6Spkn1sHNeIPpd9OnIx6vzqJ7ZlQUx3XeYt6uDZh3smllgk7Upnfah88wuzfZbTco1VZGN0rY4z1rWBRATbOq/iO8iPRW43tkqQvgeCAJ/eSnH8Yze749npIxp9QZrC1IuBAzXamk0NduLS0e7fkHD5J2rV8BCjnAVky5/24gTdlT+n/ryi1ctk/l+8pdVVj6VvyqZIONvk/5y6jr+9VM/3Gt7iDcNgXZQIoFloKi2OiGv95YwhqS19uWSIieMWahxFil0xdalpYHbrN+PCB8pMImr6UPKLG4UdfkM0tBQsQ7nmY1z5IE5R8vEt2GJxj4KUj6GYiRaEPUjFcbVCyzS0k9R6FoYUmHSuaWxtmWar6nZ2MY9L9kQhL+1ydNqU05K6tbt5OXqjSO1elTHkwt0ntLKkk+gCq+ox+Sjs0NQL28Rgkxcjly9dIvL9+ticcltebJtu3T43kfW5+0i+eV4Tsd2sdC1EQUtNXOts336z6NTz/EGBBLOBRu8x7R9f5nHjjI5drfpN12UX4gaeqr/TgxHQcrHGvEvtHgSP1IOyEt6Hkgr1ImduOEB5izPNQE6jnbNrX8lpZuVep6OYYm0FsiCZTA8+O5ogCpqoDN1ElxGXFpATYxjNdDaCR1pBuis+uesFhfKtPtaVorQBLHN06jNa+yiJaXmUjskkrZDodCVQNgbLj+hUOe+bj66pBkTazUL90IFQvPnFrxfXYVKLd4ccV5kMWnKarUyb+Ety3eS5cTZRKXHhcW93nRihCzFIFcW63tqi4EmAprq+fXT0MlbF9325bqNl9OSWfb9Rn8QBIoS5vtD3emS9lnzWuQYSO8kiTTfRd7WO92mkd/Op3baudanO+E8WUil1T5junpWlaajysJ0uM6z6QhFrsw126yqeV7FeKdJnX++7zpvK1ppDFHoCE5xYU12wsx89iTHj6ZXU4eNuSfrsF2YMg+iULtUGcwwtvKZ1pBNlt9I9gKCnk8kjXSs3A+YxNFYOElML4v6zEOlxmwcyMIVgF07L2AX0KGZ+IGEOyEi4zNrjoWdMhhqcfNMboSnrIRJClI+unvWhTqx+EE4yZFhmICTToXzznDn3HD2meCcMHJfEt4/uZV6lPeChgfSetCOE5TK4oeqTta7an7v6raYqEmEPbarwqjykb5Pkx0iXfPlQNBks8KEeewulCe5plNGRdhmoSyLPkVjdojcLo1gNM38Gq4DdML3DcVqQzXymPlNVBxZOsxwMUA/7fxclpQl7YGEyips+rSyej+9eWSpiVD2ne14oc+NQRTzeSLNnxszqHVoCr35dIOMyQeUVsAxzVdHANAtv+kKeX9x1OukPBvrWEdFUMcss9LHjaqsqomh1GdTVeuJ9fXO8zv4TMpDlgYD3LgzyKY9FWLyuQSr1zo021lBG8ooUJW97/S337T1FzSElMe7UIzFDuu8jG3Kj75hS4M6sbSWWUeIGmoa2VGQ8jFk0GgrP1J+bCfMaRp5lk56TQSZNANcFoJPGczBuz5sa2o6We8cVXwZ0xjJ6MtDr9x6wpCb82PBNN1PEso+cPUH8pjcZXlgvpFHiSapZSpLHPy+siHP9+/aFYC16q7jBZuyLEo0y7fsgqwciHdrhKMg5WNXb0+0aVjtq6h0LPxhNEVhjaSs0s07j0ga6ZOwpuZIj7ymoZAet+0bF18VTxanpggsZGET0gsfngzfj4QPpSgtXyQNiWqdxBS9qn6k8f3XNrYtmXl71cCcLAzmO+AUsaqexWJF6XZ+Rfbl0XWr4IqkZ8q7PEWTxzvWpQx1n1YY0Xf+rp+PiZsT3XST6jouz7g84lyXJMWVh8/Gj6ULyiLgxWEr1Gbhn68merB8w5LEcBSkfHSL6sbzIfFSQEXoCFJ6eBppSdM3kY5iJvtyoam5TrTqCDyJaWhaZwHkAkwgraS8YgUs9T214KEStPSEF/k1PWEovlwxxiziBrbEATMmbskEJhUuymEqjLkcaOoCVJmcywL5T2xzef4cFqXK8l1oEaqPtL4JTbCtJxft0vY5tQUVzQmsbnqmAoWuOxPt/DWex/b7zWOXmhSP7numIOXj9coLqHjxDnlN1MVMJjqVFGes0q5uu3YMXKYVQ20MJyuuJmxpJgFGK4SuzKkblNdmkDJzhuh4oCalpCy+aOLIqm2V/YyYVj5NpF6UVVvLRQW1JG3Z5bO6aP95tPMi2jhVW7OHfqQs6BJrUQlViYnglOrskeaGiK3QlEYFJ4uzRk1/YDgnZ7/RdMwHFteqGyaDm50wZfaMNoMYhap8aAZBIO0kyPXkuz8YsGj27ytTnzsZfhOBfEoiEDkVrEryTGkpSzkojMVDQcqCquiRzI+jnphVQomqyqWNVaiPsGVhPKJeNm2fU4E0kxuTqaDmn3y4FNTKJKC5XglzrioBN8YodPPqy9O9oGRshCOnyUwz47z9WvtwylawNglv3s7s6zBtG81qJb4sk8Bmocj6KlLwSP/cFotwKX0SZpUXKQemgiMFKQu6e1Zbmds29oth5FDQjenxJAEj6bldOertK092lgYD+aQ0S19Gsj6MqTtxtR1IrHapDJ65qc57lBT3jiEtz3eYTIwyEIh00syybdpbIUv//sr4HZVpoaxO2eop3zaTrbAD6C72JYWxd04fxfSZs22zsnlXNkJeyjR1XZ0Yqvt4snMZ0rloRWrkK27eGndm3Q8FKR89tS5LQUpzl6f+whTvRi4s9ATjStKUDeRhQaXeGSkbjbSB9aURnnjIylr/eF1uF2dlqj0xLVsHcDkMqvXndK1il7cZ82jajg87c8UwM1yps9m8o6x2kFwJTW4mfmbhTPJOk74tZotsmj4JLcaZZldl0npflo6bVcaE4tOoJNwPUzOa+IfbczRcVXLPF2bjtd7JuT9ubxkak/BImYK/g2Wu/18933CxuG2SVh6k2p3MY17kQGAN13WvH6nOxHgUpHx0V98PVGR8w0lqGGrBJ+mav0FE7sWE7b3fEvodvB8WTGLL4xOuwoJZNRzWj4hv1L1ljKpMysroQl2yDP6kTMhy9T7Rqp1DH01mahZudsGyOi9VNjPfrnDpuDIPijgI70rAT9t2XQpoLkl0+h47FtjdS0pXh6bUVggJSSb9dfzKe02vPgt0a+JHubCsnHdF37UqjaS+PksNpEYcyzlLEUJXf16wrIkq3luzIjEcBSkfg1qHFd656nwIaT705MHJjSphHP7OX1bfqsmS/7ltdKHz6GSy6lTMVtbTCUPJEzr3qn9uhEC3dRTMO0jR/YQzmsTTgaszbS5XRvM+jK8z0S3L6nUSOuV0IViaptlMlE2lMA/q34DOewy0MaFeuA23xaSexrV6aRZjSbP0A2Uj3K50xx0KUj4Gt22GiheskqJXosvyQTTbrk6YIlWRXBtCsF35VtWBMnzMs6YVamyf0bSszTrZyEJNIet4jfgl3r1zWTZnfXNJVvmzIs9vMKnfsX1nzWwwoj8RVxfhb9tWfTapjbh+H14W7zfFAlmZ+++8oSBlwSBvSESQSkuRK9d5fBBl7OTljV/HsqHOKtfG80kG54nihHFZnv42Iz//tnFVThLXRIgyFUpU9WMrNJkIS9JrJs+f00FqfUzO/tntQDfOLBruYJtOLBrh0rhYyLifLMuC1EDB34ayXoQLajik1JZQfPNZtp9E4c/2vG6T7r7l8a3mkkdBAkm/0ZZoIihI+Wj1BqHitTnp+PP6iNI48jVB1+t5WtIIZg1hQUMYlgkF/jeWvOsT/35rqCk7NL9Q05KkruhV1AKebNUpokNfn0yHjY9UlecBVdeDZ9eSw/fdb1EKhMmHiSXb7QYCVNK9PvTj+/Pvu1cN/a6FDjr34sHbeLB542HnRt21BH57vvt9acrPTgoRPMAdPTdpdi6zL4ybcwW2gqA0bMFnB7hamz2lVL/M0Cl0Iw+njmybU4gyJQuBqAyLLs2uAdRf0J33UpDysQM+hDa0N35XDHUuvAxUNEzLoEvNdO/XVwxNi5BaedQSElOZwlQNE7I8ZSYsw+HCv2WDeVIcv3ARtoAUF7aR38Y6rvnihsMF8oA/XFV+fWNayvtCfr33d989aXnr/w91NtGwMstKoWfZmIZcSFGnoUovfC94XW+HTJVPPVz9ml94alyT7TQGhKe+//uFp8b/IwJVUNCqhASxvvB9A7BMuPILRxWFYOZPIxjGl3ZIoAiEC00CImFlAlokPflEoiJZwFAJN6o04oShOIFQR81bVr44XAlmRaugZ4mZjzr9sDUNK3VpyuIiDaPnyUHYsyUrzRUX34+qnygDzbBwU5RWUpr2rlvmbnThPTybGK70gtQjjzyCK6+8EgsXLsSyZcswZ84cHHnkkYEwL7zwAr7xjW/g4YcfRq1Ww4477oi77roLW221lVFeXbUe1CpmVRIQdAxlkzSfiNR2fsGY2v9PwvTzVAlunudFhKn6e6vHCQusNcnbaUHwA4ym4TMXH5pQtSA4gLZsDNsncLU00mrxFTVOgFEJXEEBRV/Yig2jELgEqo0dwHq+lXAYX13U8xKoogV9uy01r5FgI4/6bowI7fY04mwUXMJCmD9cnNAjq6MkZGZw+4SZ3nrwItcr2gJRIF6CUORPz5+WPE5wsiCbeEcsfkrCSOMZCiw1UY0IU+GBTblQ4gUHz8rGL0tGNWQZ1FTIqWM0mTHslsswiWuGyZqMMqqVF0kZ2pKadGXLUkjMMu0s26jNQkCq/BzXU2ECmInbGIUl6DClF6TWrl2LadOm4aSTTsKnP/3pyP3XXnsNe+21F0455RTMmjULHR0deOGFFzB48GDjvP6CJ1ERyVWSdvXP+hB4is4ozxXLUuroakxwXFkGMzYuYeu/ScTnZ3I2SX4GSd84hexa3A5RuGzKnSjJDo9KKAqH7f0tV7kL+xVpfFuNb7MS+k5b6gWN7BYJUVfBQyOuH5mQ1Jev+p7ymoGJ37h0ZNj0E2VQhSkLA0WliujD76P8NJsbh7QU0U+5ml/liW6ZPaHrurcEeJ4X2ZH67Gc/i7a2NvzsZz+zTrezsxMdHR3o2GSqthCQlS+BOGHJhV8N3ecznVDlcc4BKJcKi8vO0IUzXFl5nBh60DRUEb6WpGonVLtcmip1wf/Hx9Eh+WxR/P1kH296gpIsbjBONn1UWSnS95NNObQc+2rm24yCWVbtrmiLi2meq2y7fmVa7Cxqgu16R8TYebZpeIvy2vWdunHc951lQ4gaeqr/xqpVqzBixAhluNLvSMVRq9XwwAMP4L//+7/xqU99Cs8++ywmT56MCy64IKL+56erqwtdXV2N36tWrQIAbKiui/fBpKm3YbMyLFe1Ua08y64r1GvCYX1blXHPU0voaCPlDYnj8YNOj5EwpTJy0F/QfabEjlQqBMnXSeQCkyqsvDRJ6XkifO6s73ckvM56TmyQ+u5QDX6BJ/mL1f/GEgUlzW848N1tfG6zPiNaEdIFhuZZI2tg5i9NQ2BJNLOfcEbT0oiJK/P9qsmKTd46mEz49QULzUXEjB2d+p8trv6SrGDa5B9+J0Wp5jeszpZ4dyDPsrk6juDaZyLgfrHFtdGlwD1lPyWrXzM3LFH84Sy1uxK/3fp3IgL/KhFNBAAxZ86cxu9ly5YJAGKTTTYRV199tXj22WfF7Nmzhed5Yv78+cp0Lr74YoHe2Qj/+Mc//vGPf/zjH//4xz/+Rf6WLl0aK5s0tWrf22+/jQ984AP43Oc+h1/+8peNcIcffjiGDh2KX/3qV9J0wjtSK1euxMSJE7FkyRJ0dHRk+gz9jc7OTkyYMAFLly6N3fokUVh3drDe7GHd2cO6s4d1ZwfrzR7WnT2su16EEFi9ejXGjx+PSkW9i9XUqn2jR49Ga2srpk6dGri+ww474LHHHlPGa29vR3t7e+R6R0fHgG40aRgxYgTrzhLWnR2sN3tYd/aw7uxh3dnBerOHdWcP6w5amyvlOgFpyKBBg7DHHnvgpZdeClx/+eWXMXHixIJKRQghhBBCCOnvlH5Has2aNXj11Vcbv9944w0899xzGDlyJLbaaiucd955+MxnPoNPfvKT2HffffHggw/i//2//4f58+cXV2hCCCGEEEJIv6b0gtQzzzyDfffdt/H7nHPOAQDMnDkTt99+O4466ijceOONmD17Ns466yxMmTIFd999N/baay/tPNrb23HxxRdL1f1IPKw7e1h3drDe7GHd2cO6s4d1ZwfrzR7WnT2sOzOaytgEIYQQQgghhJSBpj4jRQghhBBCCCFFQEGKEEIIIYQQQgyhIEUIIYQQQgghhlCQIoQQQgghhBBDKEgB+NGPfoTJkydj8ODB+PCHP4xHH3206CKVmksuuQSe5wX+xo4dW3SxSskjjzyCww47DOPHj4fnebj33nsD94UQuOSSSzB+/HgMGTIE++yzD/76178WU9iSkVR3J554YqQdfuxjHyumsCVi9uzZ2GOPPTB8+HCMGTMGRx55ZMTXHtudHJ26Y7uTc8MNN2DnnXduOPGcPn06fve73zXus82pSao7tjk9Zs+eDc/zcPbZZzeusd3pIas7tjs9Brwgdeedd+Lss8/GN7/5TTz77LP4xCc+gRkzZmDJkiVFF63U7Ljjjli2bFnjb/HixUUXqZSsXbsW06ZNw3XXXSe9f8UVV+Dqq6/GddddhwULFmDs2LH4j//4D6xevTrnkpaPpLoDgIMOOijQDn/729/mWMJy8vDDD+P000/Hk08+iblz56KnpwcHHngg1q5d2wjDdidHp+4AtjsZW265JS6//HI888wzeOaZZ7DffvvhiCOOaExa2ebUJNUdwDaXxIIFC3DTTTdh5513Dlxnu0tGVXcA250WYoDzkY98RJx66qmBa9tvv704//zzCypR+bn44ovFtGnTii5G0wFAzJkzp/G7VquJsWPHissvv7xxbf369aKjo0PceOONBZSwvITrTgghZs6cKY444ohCytNMrFixQgAQDz/8sBCC7c6EcN0JwXZnwmabbSZuvvlmtjkL6nUnBNtcEqtXrxbbbrutmDt3rth7773FV7/6VSEE+zodVHUnBNudLgN6R2rDhg1YuHAhDjzwwMD1Aw88EI8//nhBpWoOXnnlFYwfPx6TJ0/GZz/7Wbz++utFF6npeOONN7B8+fJA+2tvb8fee+/N9qfJ/PnzMWbMGGy33Xb48pe/jBUrVhRdpNKxatUqAMDIkSMBsN2ZEK67Omx38VSrVdxxxx1Yu3Ytpk+fzjZnQLju6rDNqTn99NNxyCGH4IADDghcZ7tLRlV3ddjukmktugBF8u9//xvVahVbbLFF4PoWW2yB5cuXF1Sq8vPRj34UP/3pT7Hddtvhn//8Jy699FJ8/OMfx1//+leMGjWq6OI1DfU2Jmt/b731VhFFaipmzJiBY489FhMnTsQbb7yBiy66CPvttx8WLlxIj+wbEULgnHPOwV577YWddtoJANudLrK6A9ju4li8eDGmT5+O9evXY9iwYZgzZw6mTp3amLSyzalR1R3ANhfHHXfcgUWLFmHBggWRe+zr4omrO4DtTpcBLUjV8Twv8FsIEblG+pgxY0bj/x/60Icwffp0bL311vjJT36Cc845p8CSNSdsf3Z85jOfafx/p512wu67746JEyfigQcewNFHH11gycrDGWecgeeffx6PPfZY5B7bXTyqumO7UzNlyhQ899xzWLlyJe6++27MnDkTDz/8cOM+25waVd1NnTqVbU7B0qVL8dWvfhV/+MMfMHjwYGU4trsoOnXHdqfHgFbtGz16NFpaWiK7TytWrIisYBA1Q4cOxYc+9CG88sorRRelqahbOmT7c8O4ceMwceJEtsONnHnmmbj//vsxb948bLnllo3rbHfJqOpOBttdH4MGDcI222yD3XffHbNnz8a0adPwwx/+kG1OA1XdyWCb62XhwoVYsWIFPvzhD6O1tRWtra14+OGHce2116K1tbXRttjuoiTVXbVajcRhu5MzoAWpQYMG4cMf/jDmzp0buD537lx8/OMfL6hUzUdXVxdeeOEFjBs3ruiiNBWTJ0/G2LFjA+1vw4YNePjhh9n+LHjnnXewdOnSAd8OhRA444wzcM899+Chhx7C5MmTA/fZ7tQk1Z0Mtjs1Qgh0dXWxzVlQrzsZbHO97L///li8eDGee+65xt/uu++OL3zhC3juuefwwQ9+kO1OQVLdtbS0ROKw3SkoyMhFabjjjjtEW1ubuOWWW8Tf/vY3cfbZZ4uhQ4eKN998s+iilZZzzz1XzJ8/X7z++uviySefFIceeqgYPnw460zC6tWrxbPPPiueffZZAUBcffXV4tlnnxVvvfWWEEKIyy+/XHR0dIh77rlHLF68WHzuc58T48aNE52dnQWXvHji6m716tXi3HPPFY8//rh44403xLx588T06dPFBz7wgQFfd//1X/8lOjo6xPz588WyZcsaf+vWrWuEYbuTk1R3bHdqLrjgAvHII4+IN954Qzz//PPiwgsvFJVKRfzhD38QQrDNxRFXd2xzZoQtz7Hd6eOvO7Y7fQa8ICWEENdff72YOHGiGDRokNhtt90Cpm5JlM985jNi3Lhxoq2tTYwfP14cffTR4q9//WvRxSol8+bNEwAifzNnzhRC9Jpnvfjii8XYsWNFe3u7+OQnPykWL15cbKFLQlzdrVu3Thx44IFi8803F21tbWKrrbYSM2fOFEuWLCm62IUjqzMA4rbbbmuEYbuTk1R3bHdqTj755MY4uvnmm4v999+/IUQJwTYXR1zdsc2ZERak2O708dcd250+nhBC5Lf/RQghhBBCCCHNz4A+I0UIIYQQQgghNlCQIoQQQgghhBBDKEgRQgghhBBCiCEUpAghhBBCCCHEEApShBBCCCGEEGIIBSlCCCGEEEIIMYSCFCGEEEIIIYQYQkGKEEIIIYQQQgyhIEUIIWTAcMkll2CXXXYpuhiEEEL6AZ4QQhRdCEIIISQtnufF3p85cyauu+46dHV1YdSoUTmVihBCSH+FghQhhJB+wfLlyxv/v/POO/Htb38bL730UuPakCFD0NHRUUTRCCGE9EOo2kcIIaRfMHbs2MZfR0cHPM+LXAur9p144ok48sgjcdlll2GLLbbApptuilmzZqGnpwfnnXceRo4ciS233BK33nprIK9//OMf+MxnPoPNNtsMo0aNwhFHHIE333wz3wcmhBBSKBSkCCGEDGgeeughvP3223jkkUdw9dVX45JLLsGhhx6KzTbbDE899RROPfVUnHrqqVi6dCkAYN26ddh3330xbNgwPPLII3jssccwbNgwHHTQQdiwYUPBT0MIISQvKEgRQggZ0IwcORLXXnstpkyZgpNPPhlTpkzBunXrcOGFF2LbbbfFBRdcgEGDBuHPf/4zAOCOO+5ApVLBzTffjA996EPYYYcdcNttt2HJkiWYP39+sQ9DCCEkN1qLLgAhhBBSJDvuuCMqlb51xS222AI77bRT43dLSwtGjRqFFStWAAAWLlyIV199FcOHDw+ks379erz22mv5FJoQQkjhUJAihBAyoGlrawv89jxPeq1WqwEAarUaPvzhD+MXv/hFJK3NN988u4ISQggpFRSkCCGEEAN222033HnnnRgzZgxGjBhRdHEIIYQUBM9IEUIIIQZ84QtfwOjRo3HEEUfg0UcfxRtvvIGHH34YX/3qV/H3v/+96OIRQgjJCQpShBBCiAGbbLIJHnnkEWy11VY4+uijscMOO+Dkk0/G+++/zx0qQggZQNAhLyGEEEIIIYQYwh0pQgghhBBCCDGEghQhhBBCCCGEGEJBihBCCCGEEEIMoSBFCCGEEEIIIYZQkCKEEEIIIYQQQyhIEUIIIYQQQoghFKQIIYQQQgghxBAKUoQQQgghhBBiCAUpQgghhBBCCDGEghQhhBBCCCGEGEJBihBCCCGEEEIM+f+qRUfQWSdNWQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1000x400 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def plot_tempograms(y_axis):\n",
" sfig, ax = plt.subplots(nrows=1, figsize=(10, 4))\n",
" plt.subplots_adjust(top=1)\n",
"\n",
" librosa.display.specshow(\n",
" np.abs(fun_tempogram),\n",
" sr=sr,\n",
" hop_length=hop_length,\n",
" x_axis=\"time\",\n",
" y_axis=y_axis,\n",
" cmap=\"magma\",\n",
" ax=ax,\n",
" )\n",
" ax.set(title=\"Fundamental Tempogram\")\n",
"\n",
"\n",
"import scipy\n",
"\n",
"def fundamental_tempogram(\n",
" act_tempogram, act_freqs, fourier_tempogram, fourier_freqs, result_freqs=None\n",
"):\n",
" if result_freqs is None:\n",
" result_freqs = act_freqs\n",
"\n",
" # interpolate the Fourier / AC tempograms, and sample them at the result frequencies\n",
"\n",
" act_interp = scipy.interpolate.interp1d(\n",
" act_freqs,\n",
" act_tempogram,\n",
" axis=-2,\n",
" bounds_error=False,\n",
" copy=False,\n",
" kind=\"linear\",\n",
" fill_value=0,\n",
" )\n",
"\n",
" ftt_interp = scipy.interpolate.interp1d(\n",
" fourier_freqs,\n",
" fourier_tempogram,\n",
" axis=-2,\n",
" bounds_error=False,\n",
" copy=False,\n",
" kind=\"linear\",\n",
" fill_value=0,\n",
" )\n",
"\n",
" ftt_on_result_freqs = ftt_interp(result_freqs)\n",
" act_on_result_freqs = act_interp(result_freqs)\n",
"\n",
" return np.sqrt(ftt_on_result_freqs[:, :-1] * np.maximum(act_on_result_freqs, 0))\n",
"\n",
"\n",
"act_freqs = librosa.tempo_frequencies(\n",
" ac_tempogram.shape[0], hop_length=hop_length, sr=sr\n",
")\n",
"ftt_freqs = librosa.fourier_tempo_frequencies(\n",
" win_length=win_length, hop_length=hop_length, sr=sr\n",
")\n",
"\n",
"funt_freqs = ftt_freqs\n",
"fun_tempogram = fundamental_tempogram(\n",
" ac_tempogram, act_freqs, fourier_tempogram, ftt_freqs, funt_freqs\n",
")\n",
"plot_tempograms(\"fourier_tempo\")\n",
"\n",
"funt_freqs = act_freqs\n",
"fun_tempogram = fundamental_tempogram(\n",
" ac_tempogram, act_freqs, fourier_tempogram, ftt_freqs, funt_freqs\n",
")\n",
"plot_tempograms(\"tempo\")"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAAG3CAYAAADVdOgPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABI4klEQVR4nO39edBtV13n8b/XHs45z3zne3MzE5IwBWjBITgwtZQoCgKKtlUm0D9bW+2CkrZb7FKgS4WyuxwomqZsAVFaofuHIOVU0kICNMIvYJCIzJmHm3tzp2c4wx7W+v2xz32SSwaStOwb4P2qepLn7LPP2Wuv/V1r7c99ppBSSkiSJEnS11h2phsgSZIk6ZuD4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IeYf7gD/6AEAIhBK666qp7PZ9S4tGPfjQhBJ7xjGc85Pd/05vexB/8wR/8P7dTkqSHyvAhSY9QKysrvOUtb7nX9quvvpovf/nLrKysPKz3NXxIks4Uw4ckPUK95CUv4d3vfjfr6+unbX/LW97C5Zdfznnnnfc1b0Nd1zRN8zU/DkDbtsxms16OJUk6MwwfkvQI9eM//uMA/Mmf/Mn2tpMnT/Lud7+bl73sZffav6oqfu3Xfo3HPOYxDIdD9u7dy0tf+lKOHDmyvc8FF1zAZz7zGa6++urtb+264IILALjqqqsIIfBHf/RHvPKVr+Tss89mOBzypS99CYC3vvWtPOlJT2I0GrFr1y5++Id/mM9+9rP3asf/+B//g0suuYThcMjjHvc4/viP/5grr7xy+zgAN954IyEEfvM3f5Nf+7Vf48ILL2Q4HPLBD36Q6XTKK1/5Sp785CeztrbGrl27uPzyy/mzP/uzex0rhMDP//zP87a3vY1LL72UhYUFnvrUp/Kxj32MlBL/5b/8Fy688EKWl5d51rOetX0ukqQzozjTDZAk3bfV1VVe/OIX89a3vpWf/umfBrogkmUZL3nJS/id3/md7X1jjDz/+c/nwx/+MP/hP/wHnva0p3HTTTfx6le/mmc84xl84hOfYGFhgfe85z28+MUvZm1tjTe96U0ADIfD0477qle9issvv5w3v/nNZFnGvn37eN3rXscv//Iv8+M//uO87nWv4+jRo7zmNa/h8ssv55prruHiiy8G4Pd+7/f46Z/+aV70ohfx27/925w8eZLXvva19/sVjTe84Q1ccskl/Nf/+l9ZXV3l4osvZjabcezYMf79v//3nH322VRVxf/5P/+HF77whbztbW/jJ3/yJ097jz//8z/n2muv5fWvfz0hBP7jf/yP/MAP/ABXXHEF119/PW984xs5efIkv/ALv8CLXvQiPvWpTxFC+Oe6TJKkhyJJkh5R3va2tyUgXXPNNemDH/xgAtI//uM/ppRS+tZv/dZ05ZVXppRSevzjH5+e/vSnp5RS+pM/+ZMEpHe/+92nvdc111yTgPSmN71pe9s9X3dPp471Pd/zPadtP378eFpYWEjf//3ff9r2m2++OQ2Hw/Sv/tW/Siml1LZtOnDgQPr2b//20/a76aabUlmW6fzzz9/edsMNNyQgXXTRRamqqgfsj6ZpUl3X6V//63+d/sW/+BenPQekAwcOpM3Nze1t733vexOQnvzkJ6cY4/b23/md30lA+vSnP/2Ax5Mkfe34bVeS9Aj29Kc/nYsuuoi3vvWtXHfddVxzzTX3+S1Xf/7nf86OHTv4wR/8QZqm2f548pOfzIEDB+7zt2bdnxe96EWnPf67v/s7JpMJV1555Wnbzz33XJ71rGfxt3/7twB8/vOf59ChQ/zoj/7oafudd955fOd3fud9HuuHfuiHKMvyXtv/9//+33znd34ny8vLFEVBWZa85S1vuc9v83rmM5/J0tLS9uPHPvaxADz3uc897Sscp7bfdNNN93fqkqSvMcOHJD2ChRB46Utfyjve8Q7e/OY3c8kll/Dd3/3d99rvzjvv5MSJEwwGA8qyPO3j0KFD3HXXXQ/6mGedddZpj48ePXqf2wEOHjy4/fyp/+/fv/9e+93Xtvt7zz/90z/lR3/0Rzn77LN5xzvewd/93d9th67pdHqv/Xft2nXa48Fg8IDb7+s9JEn98Gc+JOkR7sorr+RXf/VXefOb38yv//qv3+c+e/bsYffu3fz1X//1fT7/UH4t71f+PMTu3bsBuOOOO+617+23386ePXtO2+/OO++8136HDh16UMcCeMc73sGFF17Iu971rtOe9zdhSdLXP7/yIUmPcGeffTa/+Iu/yA/+4A9yxRVX3Oc+z3ve8zh69Cht2/LUpz71Xh+XXnrp9r7D4ZDJZPKgj3/55ZezsLDAO97xjtO233rrrXzgAx/g2c9+NgCXXnopBw4c4H/9r/912n4333wzH/3oRx/08UIIDAaD04LHoUOH7vO3XUmSvr4YPiTp68DrX/963vve997ntykB/NiP/RjPfe5z+f7v/37+83/+z/z1X/81f/u3f8vb3/52rrzySt7znvds73vZZZfxD//wD7zrXe/immuu4brrrnvAY+/YsYNf+ZVf4X3vex8/+ZM/yV/91V/xjne8g2c+85mMRiNe/epXA5BlGa997Wv5+Mc/zotf/GL+8i//kj/+4z/me7/3eznrrLPIsge35Dzvec/j85//PD/7sz/LBz7wAd7+9rfzXd/1Xfd77pKkrx9+25UkfQPI85z3ve99/O7v/i5/9Ed/xOte9zqKouCcc87h6U9/Opdddtn2vq997Wu54447+Kmf+ik2NjY4//zzufHGGx/w/V/1qlexb98+3vCGN/Cud72LhYUFnvGMZ/Abv/Eb279mF+Df/Jt/s/33O374h3+YCy64gF/6pV/iz/7sz7j55psf1Lm89KUv5fDhw7z5zW/mrW99K4961KP4pV/6JW699VZe+9rXPqz+kSQ9MoSUUjrTjZAkfeM6ceIEl1xyCS94wQv4vd/7vTPdHEnSGeRXPiRJ/2wOHTrEr//6r/PMZz6T3bt3c9NNN/Hbv/3bbGxs8PKXv/xMN0+SdIYZPiRJ/2yGwyE33ngjP/uzP8uxY8dYXFzkO77jO3jzm9/M4x//+DPdPEnSGea3XUmSJEnqhb/tSpIkSVIvDB+SJEmSemH4kCRJktSLh/UD5zFGbr/9dlZWVk77C7SSJEmSvrmklNjY2ODgwYNf9Q/KPqzwcfvtt3Puuec+rMZJkiRJ+sZzyy23cM455zzgPg8rfKysrACwY+mJhJCTUs2o2MWs3SDGGVlW0MSKGGvqdsLepccyi5vkoaAII2ZxkzZWrE9uIsaKQbmDxcEuFvJdFGHAneN/YlSskucLZKFgmC0TCDSpItEyDEsUYRGAaTxBk2bbbSuzRUpGnGxuoYkVRTZgkK9QhgUKhjTMiKkhCwV70/kM0oA7s5uZpBMc2/oyRT7irMUnMo4niKlmNT/IYlqmpuKO+jpGxS5GYYVz4qMoyLgrO8bh+CV2ZueSU7KYlpiGCaO0QEMNQE5BJJKRkaWMSTZmmEaczI4RqTnYns9WGFOHiv1pD22KFCHjBFuMwxbTsMHu9iyWGLGQlWzFipqGhpYmNOxhjXGasRXGLKVFFsOQMsu4Ix4nIyMQKFPBUhjSkjgajrMSlxmEkirVLGcjYkocY4OFNGJnPmLXMOf2SUUkUaeWpWzAIGSMioytpmUaGyapYl+xRJEF2tR9D18IcGc1YV+5QASmsWUWW46xTk5OSIGLRzu5YbrOnnwJgAOLBW2Cm7amrKcxQwas5kPWyoJRDjePZ6zmJcebGWeNFhjXkZZEJHGynQCwnI1YyQvalJjGSCQxCjlrw4xZC21MzGKkCIGdo5w2JgZ54K5Jy9FmSiSxt1gAYJYiKcFGnLGaD8kJZARGRZfk8wB1TJyoa0ZZznKZExNUbWSWIlVsWcpKsgB5CORZYLGAQ5OGQciIJJqUqFLLNFVUNAAMKAhkTMOMrbDBLEyAyGZ7hBAyUorUcYvN6SGKfJE8G9C00+3aXxjsZpivMGs3SKlmkK8QiezKziOGyLHmRgBSiuTZgKVsF7O0xaw9QZ4tsDs7n8W0QkbGLEypmVEypEgF69lRmjRlgR1spMOUYYEyLDJKi2Rk5KngZHaUXXFf10cpZ0jJQlbSpsgXw+fYaA9TZiMCOXkoWQg7yFLGerqTPJQMQzevbMUjNHFGCDnL2R7G8RhHNq4jhJIs5IRQAJGm3STPunmgaY9T5DtZW7yAUb5GwWB+rUqGaYlARhWmnGhvZZStUDCkCCM24iFySpo0IwslMdVsVncSCMzqk+T5iEDGvsXHMAgrnNOew4SKlTAiAQtZwSDLWG8qjrJOkQoGFEQSQ0qOZScYh02ylFEwYCkuk5GxMG9fQ+yuCXH78ypUXT+EdZpQs5zW2BV3cDJsMkgDMgJLYUiVWg4MFhkVUEc4UTVsxBkLoSQLgVlsKEPOMTYYpJJIYoEBDZFpmLGcFjgR1tnJGqNQkIfAJDZEEikl8pDRprjdzhPZCTIyyjTgZHaMKm1QpSmzdoPV4gCztMWecD5lGmy3MyNwS/ZFttpj7CzOZ5QWWYur3dwdKiKRxTRiFmpGacgwFIzTjIzAIJQcCUf54viDXe036ywM97FjeB5FGNDSklLLpD3JY7LLyQhUNMQQGaSSjMCufJEmdXPFZ7mOlpZpe5JhtsxWfZiyWGE52wNAFkoA1ts7KMKQjIxBWKJmylZ9J7sGj6ZJY5bYzSgtcizczjStk1OyFs5ilBbJyUl0v0CypWEPO2hSd20TkYqG9ew4e+JeZqGmTAVH8juJ1MTUctfsiyyWuynndT0MK2Tk22P8VB1lZMT5e7Y0jJiPAxoSkQnrVGmLUbaDjJxIS5tm1GnCpD1Jng3YnZ3PkAXyVFCHiiPpevaHR1OmAS0Nx8JtbDSHiLHh3MFTto/Xzb7dOd7VXk8WCtpYsVjsomBAS02TKk5ObybPBqwNz+W8eOm8byJbYUwTmu01sgoV07ABZKzGnRSU3BVuo2FGIhEI7OAsMjIaGsacoEpbFGHA7nQuGRnHsztp0pQmVVRpwmp+FqO0xBbHyMOQYVogkHEs3cJaOEBOSUbGOGxs92+dxuShpEjD7fkjI+MEdzAIi5RpxJQNwvy71VfZw0pcpqSgDDkNkQ3GNNQsp2WK+X5bTNnKNmmpWUzdHHc8HOKu2RcpsgHDYo294VFscNf2fJXPb832xF3cmR1mKa0wSkNmVDShu8ZNaBimEaM0YBZqtsIGi2m5WwvSiGmYMQ0TpmFMncbb8/UwjZiFKWUakIjkFPO6ymloiaGrqXHYZDXtpKWlDhWjtLB9PY5lh1lMK2xybLs2h3Tr+YwtJukEbWoYZsusso+cgmEasZBGZITt+5cUEmUqaGiZZVNqKoZpxHp2lDKNWE5rzMKUIhXb91Gz0K15Y04wSSeY1scB2D28ZH7NciI1barZlQ5ur2fxHnMtwIR1JukEOeX2OBnHo2ShYNKeIJ/PB3WcEuNs+350d3b+vD+W5vP1lEhLkUrGdG2p4haDbIlV9jMNW5xsbt1ej0LIyCmZxU0SiSIMKLNFhmGFIpUUDNjkCE2qaKmp2jHA9j1AmY1oUkUR5mtIqshCwVK2i5aaRKJJ0/nrWspsiUG2tH2dYmpo0oyFbActNdO4QUotbZySUiSEbH68kjzrjjHMlmlTzaw9AeTk2YA2TsizBfJQ0KaGmLr7mGMbn9zOCA/kYYWPU99qFUJOFvLuxjoUZCEnhZyw/dGdSPfc6R8ptISQEUKY/z+fP1fe43G+vX+YT7eJQBbK7cLIQkFGu9227nF5jzbc/b4ZJdm88LJQkjOgYDh/rpgfN+sehwJI5PP94vb5du9VhCEFGXkYkIWCPAzI6QonDy0FAxJdP+UUhHn4yMnJQ0POYPscijAkDw0xQMGQQKQMGQU1eajvcbwhZSgpQiCRAy0pZN0NIpCHZr7PkDLM2zaPHwUlZRgSSORh0L1fKIlklGFIJJEz616fDRlkBWUI82WmpQwDyixjkGVUoaUNOTWBMhtSZIHsHuGjCJEyGxKBNrW0oZ33dXcbP8hGFGFGmQ0BGGQlbYIiJAq6vitD14ZBFigClFlJEWCQDamzSDa/oShCdz3LMKTMCrKUaFO3TJZZziDLSSnNl+QufAyygpbEIAuUWUMR0nz/rj0xRhJ0xw1D8tDdRA2yU+EjwPwanTpGTN1NfYyRFFrKe4SPIgvdsUJNmc2rOHa3DV1l5PPB2NV5EbprlM8XmSx0tZmI85rOtsfIqYmiq+l8exyeGpMQ5xNeJAvdcboxVNyj7vN71HBXM3mI85oYdItTKMlo588X22Nwe3+KbuGeT4g5xbzmujGXzYNDN5ZPHa+c12ex/Xh7DId23q5yfv7hHnPFqckx3OP8w+lzDafeq2tjICMP7WlzQT5/74xuDjk15kOY3zaf6mey7fPtxmGYjxkoQ0GZZZQhzGu8pJiHj4Jyfh3LeR8Ntm9qT93ccNqC2H3ezr+TNQ8lKbD9ujxU3Xy1ffyWQTZkkAUCiTLk85rtwkcbcsqQz8f1YN6mARDnY23YzQUMKefhow55Fz7owkeYt6mro8H2eeTb82kzv65dLZ2qoVPtzObz9anre+pcuvODQKRgSBvCPBAWFNDNWaHrv6+83qeuYSLMazmf92s3ltr5/JvN56durCUyynvUfnHafH6qv++uv6KrzdCdYwhdYI6U8zEx2D7n08+767/5iKRkOL+up27c8+35tzvnu9cyuOc6WGy36bTwMe//bH62Xd10tdfVUTdPdNem2H592N5eb4/DU23OKYiB086D+bl3c0w3H506Xpj/088955x0amxRkoCMeNq6XoThdvjIQ0MK2fYamYdunIb5elpQzvv21PHuPufUxd+756D59lPzU0bcPu/uubvnqTAfeafW6m6eu7t/2/lx8/k1PtXf2fb27v1OhY9TtVzMwwdEChoS81qe71eQyEN12nW6u2/vvhb3PM6p8NGN+wHFfEy1BNJ8LUgh2x5rbQj3uHbMx1IiDy15qGnv0Q/d+I3k3B0+8vl/oVuvmfdNN1+083uTwXwchdP695S7+6wio+jqIBTb53PPeeHu+5dIQQm0NKGLB6fG1ultLbbvo/L5mn+qDsJ8Xdsev5xa5zhtPTs1l23XLvccv10dbK8P9xiDp+5r7zluYkjb55uHdl6j5T3WnbvrMw/VPd6rW8tPrXmn1ve758e7+zWbz8Sn1u3uHiBs3/Nuvyd3r2tpfn7d++fb1yALd1+nu19Tbj+fCMSQc2odvefYZnuf1NXsvJ/iPeaqtN3jp7LBV/9xDH/gXJIkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXhg9JkiRJvTB8SJIkSeqF4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXhg9JkiRJvTB8SJIkSeqF4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXhg9JkiRJvTB8SJIkSeqF4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXIaWUHuqL1tfXWVtb47wdz2Eh20Wk5WR7O6NsdXufROwOQEZGRhFG24+P1TcQQsZKfoCWmkSkTTWJlpQiIXT7FwxpmLEYdtJSE1MLwBI7mYZNZmmThbDGKC1RpIKcgjKVRCJ35XdQpJLFtMJ6dgyArXiUYVhmoz0EwGp+kBHL5JSsxjXG2RZZyoghMooLpBBZY5lhyDkZJwxCCcA4zVhgQE1DRcPZxRo7hjkAszZRxUQdI9O2ZaUsqdpInSLH45izihWWyoylImOphGEWmLSJSQN5gComBlkAoMwgBLhrGmm77qSKkTom1gYFi0UgBFgtA/tHic0Gpm0gAXVMnL0IVYSjMxhkgSomlgv40npipQzkWXeMtRKaFIgJ6gijPDFpYfewe1xmXdvivFK2GrhrCtM2cfZSRhESoxzaBKMcpi3sHXYN/sJGRtXCnhGslokM+NJGYJgHVsrEIIP9w5atNuPILLBUwI6ye+2p4zUpMMoSTYIqBqYxUEeYtIHHrNTMYmDSZoyyxF1VxtFZ4JbNlhN1zc5ByVmLGYmuD7603gCwkGecvZRRZt05DrLErVuJNsFCEajaRB3h2KxmbVAwyrt+3agjk6bleByzJ18CoE2JJkVuC4c5mm7iZHUbg3yJMlsghKyrr3CAw+0XGGWr7A7nsxiXeOrqbqZtd8y7pjUhwDDLGLft/H0jK0XJ6iBnkAWmbWKriRypJuwqRrQpMcoz6phoU2Iz1ly8vMiXNyeMspw8BHYMCjbrlo2m5sZwM2fHc1jKS+oYKUJGCHCynZER2AxjltMiM2oikY3sJCtxjYKcSKINDcezuzje3sJStptV9rLBUaZpnRPTG2naMXVzjEBOyBZIqQYiywsXMMxXWM730VLTpBnT9jgAdTtlMO9HgDwb0sYZk/oYBxf/BYGMRGR/ey6RyGa2waPD2dQpkhHIQzdWZrHlZJpwLDvMWtrFMA04MFhmkAVmbeRYPWMlH7BnVJCFrhYGOSwVgVGeWMyhyBKTNtBG2Gy6+jxRde+/e5jm4wp2lIk8wEYT2GpgqYDFPHHzuNu3mLcJYJgnpm3g5s2WMuvG2GIRGHXTBUdnkdUyY083PVLHwJFpZKOO7BjkHFzsxl9KUMz/qWj/sOX2ac4wgxu3uvHfJvjiyZppGxlkGUtlRh4Cq4PAHeOWUR6oY9ruL+ja0aZurtioWzJCN7+kloW84NK1AW1KrHTTHsdn3XxUz+eipSIwaxPTtpsfbhvX7B0VDLLAbeOaSdsQgS+Gz3XXNpScbG8npppxdRdFvsCOwXkkIk2aUoQRbaoZhmXyUNKmmq14dLvWilQwCVusxV0sh4VunUmJhsh18SqyULCc7+v6MY3JQskq+ximEYGMMpWcyO5ixphF1jg3ncUoKwDYjDVVqokkDg5WgO5f5taGOSklYoJrx3eymzWGIWfPqCQmmLSR9bpipSi356s6RarYMk4Vu4vFbg6LiUlqmKaK9WydC8KB+XzesqMccLKumaaGzTCmDhWRyEJaIE8Fm9kGx7iVNtUMwgJlWKRNNTUTmjRlGJYJ5CRaijBiGk/SpBlPK57OatmdXxZgs245Vs/YUQy7WgS2mobNWLGaDbfngoVQsFoO2DHoaqiOiUmTWBtmtKnrlwhMm0QVI2UWWCgyyvn6VWSBJiZ2DgOjPHBslrh1q+ZYMyURuXhplWmTOFZVnEwTzhmskgfICByaTShDxo5ysF2rR6sZk9TQ0hJJRCLjbIsNjlKlTbJQssROAhlVmFClMcvsBmDMcZo0o0kzqrjJ3vJSWur5ujIlkFOEIRk5R5vrWch3shh2MkgLJCKb3MUwrHBBvIDdgwE7hzl5gEmTGOSBYQbDPLDVJJoI4yYxayP7F3PKDKYNnKji/Fon9i/kbNaJ2yZTRllOSrBQ5NxZjckIrOTdeZ+1WJLRvbaKiVO3aYMsY6NpmMaWs0Yjhnm3Tk6axNFqxnE2OZjvoE2JKrbMUsvx7ATjsMG35JfQpsS4bclDYO+opMgCN21OWMpLRnnGUhmYtTBrI1tNS51a8pCxe1gyygPHZy2zGMlDICW6+kiROkYSiVlqOThcJAQ4XtVMY8Pt2e1MWOcyLuNo3CIjMAoDFkJXm0fiBgsMWckHlCEjzwJVGzneTlkIRbdepTifHyPT1DAMOWXoJtFIYjNW3JR9gf3pPCZhAsA0bFGmIcM0Yhc7uC3cRsmQMg26NYVdnEwT1sICy0VBHgJbTVdjbYqMsm5bFbtjj2M3Pyxm5fbjPGRUqaYhbt8TzkLFZthgzEkaZhxIj2ISxhxM+7fnlYbUrblpSklB9w6RAV2fzEJFmUpKCrqejUzCbP76QEgZdagZhw3uqK+jiRXLg300cUYIOUvZbnansynI2QwbBDKGacRWONnVEQtscJQRy6ymHYxStwDNqGhDyzhsUjKgTANaGqpQAbCQFolEyjTvg2yLloZ63rZZ3ODGE3/ByZMnWV29Ow/cF7/yIUmSJKkXhg9JkiRJvTB8SJIkSeqF4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXhg9JkiRJvTB8SJIkSeqF4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXhg9JkiRJvTB8SJIkSeqF4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXhg9JkiRJvTB8SJIkSeqF4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPUipJTSQ33R+vo6a2trPHntpeRhwCxMWU4rbIUtBmnAJGyxLx4gI9DScjg7RE5JyYC1uMZyNuB4HDMLMwASkZKSkDJSiISUsS9foU2JcayZUTMLM9rQcDZ7OR7HtKEhTwWRyAJDZtQALIYhw5CzUhREYNK0DLKMUZ4RAqzXDSfbGcvZgH2jAVWbOFHXbMQpFQ0XDXdyrKrYNxqyVAZWy0AeIAG3brUA5CGwexQYN3Bs2rI6yFguA5MGxk1iVASmTaLIYM8oEAiM8sRWA+s1XLAEX95InLMU2D1M7CwjeUhM24wjVcZKkZi2gc0G9g4Tozyy0WRkwFIRWcwjwyzRJDhWFewZNmw1ORtNRgD2DmualHHnNGelSOwd1uwYVCwWDZHApCkY5Q3Lg5oib5nUJZO64NbxAot5ZLlsGGQtd05HpBTYaHIuXd0gD4lB0RJCIg+J4aDhs0d2ATDIIitlTSSQkTgyHZGHxI5hxdHpEICNJmcWAzvL7j1SCtQp0KbAZpOxVrYMssikzRlkkeWiZZC1/NP6EqMssVK2HFyYsFQ25FkkhETV5GzVJWUWqWJOTPCFjUUOTTOGOawWiTpBEwN5SOwdthyZ5US6xxctzdhoCkZZ5GSdc3BhxrjNSSlwcHHMZl1SZIk6Zuxf2iKlwJHxAk3KCCTGbU4Rumt0vCq4ZTKgipCH7mOr6f5fR7h93H0egbMXISYoM0gJlopEmwIRODINbNbdsNw5DOwYJNoEJ6vALCZmLdy6VdOmREZg30LB4UlDnSKz1JJS4kh2lIyMxbhEQUZFwwJDJsyowowmNKzGVcZhzGJa5LbsBhZZY1/cxygUlFnGNLYcCkdoaRilRepQsZAWmIUZkchqXCUjsBm2WEyLbGab7I47yUNGnVrKkHNbuIMtjvPk8ERui8cpU8lZxQqjPKNNiTomjjVTRqGgJrKWD8izQBkCX6qOMgkTilSwix1kBHICuwYDpm1k3DbURA6FwyylJfJUUIea3axQhpxBllFmAYBbqw1GYcAw5JShmw+GeUYiEROM8sDqIFBmMG1h0iRWB4GYumv3xfUJk9Rw8dIyX97aoqVlK0wAWE3LLGcDmhQZp5rlbMA0NuwejGhjIgtQx8TqIGerjozy7t98do0ydg+7MZ7Na6RNgeUi0qTAiSpwoobdQzh71FBmXU2M24yFvPv8eJVTZokTdUYZEgt5YuegJSaoYsZS0bI2H89VzDleFWQBxk3GsTpnqwkcr7pjZwEGWaBNibumie/eF7loecKszRjlLWUWiQRSgmnbzSHTtmDWZozbjGGWuHNWcmTWnd8ohzbBtUcjN07XmYWKzXCSCes0zEippQyLtNRM43o3j4QFBmGZJXZS0M3vGxxloz3Ewfzx7Et7SClRhoxxqmiIbGYbtDS01OyIe8jImIYJk7DFQlpikIakEDmv2Mm0jQCcjBMuXFhldRBYKgKTNlFmMGthmMN6ldioI4tFdy7DPDBpEvsXuro9Nutqt8wCe0aB5eLu8522UMdAkxILeTcH7Biw3c9VCwsFTOZzwyDvXgOwVSd2DAPnLcEg69aBadutG4tFYKtJTJtu3gihO97ubnqljoE7J5GNOtLExB31JqMw2F63MwJ1aplR04aGYRpw0eIqbUocns44FI6yGlfm6+iAhsQGW4zSiHbew8thgTZ1fXjR0hInq5YQAoMsMMrD9rGmbSIliCSmbeRIs0UdakZpxAULy6wOujpqE/N1OhII7BoG6ghLZbfOTttubEybbt+lEgJdfxUB1uvEzuHdx20jzCKsloHjVWKzilQxMouRNiXOWxoSgc0qMsjvXtsXi0CbutcN8+46nTqPL56sWI8zMgI7iq6zJ23DOFUAzEJFmUo2s03K1PX3OGySU7AYl5hmE8ZhgyxlzBgzYplz0zks5QXD7FR9ZRQZLOSBEKCJ3ZyRZ4Hdw8BG3fXDVt1tmzaJ9brp5p+yAKDI4MSsZaHo5r0yu7umqhhpUuK85ZIMaFJX421K7BhkVDFxZNqQEbZfv2cUKLPAStHdy2Shq90mwVrZjZelPJIFOFZlbDWBcdvd65QZjJtuPttqEjsGcPZCZL3OiNy9Jm41sNnAagllgHz+ujx02wPdfNTE7rlTdXDqPbq5KLHVRMoQOGspY6vu1s02JZYLmLSBE1XXplEORQiUWeJkBRt1Yml+j9f1L7QpcWhSs2NQbNfVRt3SpsRGW3FwuMjtszFlyFkryu3aOpxOkqecIQMWQ8koz+drXGTvaMAgCwzywFadSCQmTWTnMKeeX+utpmXSNkxSdx3WwybDNCQSObtYYxpbPs21ACyxkymbAOxN55KnnAEFa9kCC0XOUpExbeN8fsiBu8fZpInUMbF7VHBi1s7n/YxIompPrTENiUQeMkZZdx55CGy1NQt5QUZXG7MY2Wi7e+9hyIlU/OXx/8rJkydZXV3lgfiVD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXhg9JkiRJvTB8SJIkSeqF4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXhg9JkiRJvTB8SJIkSeqF4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXhg9JkiRJvTB8SJIkSeqF4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXIaWUHuqL1tfXWVtb4/9z8FXsHS0waxOfPTlhRzlgochYKgJ5Bm2ErSaxYxAY5JCHQJsSf378eqZhk4W0yu64mwsWltm7EFjIA3WEY7PI6iCwWsJW0x1z3MCkSZy1mNEmuGsaaROsVy231CfZERZZLQfsGGScs9S9NiPxxY3Ad+xu2DVoGOUticDxqmC9Ljh/acrqoCIPkbumC3xhY8ShaUZMsGuY2FVGFotIESLTNqOKGbsGDYMsMspb1uuSWQw8/aLbWDmnpl6H8fEBG5sjjk4WyEjsWRozHDbsPGdKsTOjOR45fOMSnzuyi0fvPEHV5uxeG3P7XavcsrXEpTtPsLQwY3G54uhdy2xVJTduLvO0C2/n07fs59yVDdZWJizurKg2C+46usywbNh77ibFCoQiEKeJ6dGM5cdk5I/aBVVDPLJFffuMo18ecfBfrXHifUdYPDsy+Bf74MAuWFqAz9/M7NqjlOeMCMsDaCLtkQnt8ZbB49cIWYBBTpo2nLxqg5DB2o+cw+Z7b2HpyQuEgzvgvP1w9CTr77yRhYOJfEdBtmcJFgc0/3QX7VYkGwbCINBuRMaHcqppwT/dsYfvevrtfPCD53DZWUdY2TNl4fwcioytz7Ws/sA+OO8A8YlPIJw8SThxAo4cI37nd8Dx47BzJ+HYUcLHr6X+yM2UL3gSt/76F1jbPWH5O1cJy0PYscyxt9/MjqfmZGetwp5V2LMTPncT8Y51yALZ7kWaG0/SHGm5+fM7ODEb8tTnHeeOj+QsLNasXhrJd49oj8/4/IfWOLBnndFqQ7kGs7sCN928i10rWywuV6QU2Fgf8ZnDu7l1MuB5F91KUUTe+dnzefTSjCceOEIIibouuPq2/ewe1uwaVCQCx2YDNpqcUR7ZO5xxrBpQhsRnN4Z87mTih86umcXAdScHnLvYcu5CxdqgYnlQc+vmEo9aWyfPIgB3jRc5PBlxcHHMvtUt2jbj0MYS128uccNWzpWPvYXJdMCn7trF+Utjztt7ghBgY3PIPx7dxVrZcOGuE6QYALjl5Ar7FiecfcEJ8iFMj2ccvWuZ2zaWedqzD5Et59z+kZL9T5yQLebkj90P5x0gfeILhPP3wsF9MCi7gb2xCbcehvMOQFXDDXfwm/95B7dPIAswyuFdxz/JNJ3kQLiEtbjGR8d/zGiwk7OGl3FBvICVvGS5zDle1fx9+gS7OId9aQ/LWcnaoGCzbhm3DTsGJf/r2JvYu/x4zuUJPHa0hz/f+gvWinO4IF7M0/ascGAhspwnZjFw2yTj3MWW3YOGMktM24yTdc7xOuOipYo3fbHmvMVFHrUS+J69m1x9ZJlRDkt54pyFmqecfSfDUcPSwYaPf+wglx44ysJKzWh/d12OfmHE3ssqikfv4P/3lpKDaxvsPDBm4dIhn3jfDrbqgizAuavrrCzPuPPYClt1wa3jBS5e3WDX8oRZVTCpS760vsy3nX0nf/i5c9lRJvaPGi5ZW+fCRx/jbz55PvtGFbsWJpx/yQkG55Skacv0lsRddyxx4OJNyrNKsqWS6efHjO8q2PFE+N//33MZ5ZE9w4qL9x+jHLS8+zMXsFK0XLg85sJ9xynKSEpw6K5VBnnL7l1bAHzp9t18cX2J2yY5L7rgTv7HF/Zz0XLiwqUp569usDCs+fCtB9g1qDl7aczKaEZKcHyywE2bizxm50kAJnXJNUfX+I1bP86tJz/Ci3e9gsUiZ6nsanHSJG6ZTLh4eZGFoquZ9SpxdNpypNni3OEKS2Vg3CRum465Ob+ecTzOrnAuP7LnUewfJa743i8xuGQFskA8OuHwx3P2PH5GeclO0qwhHhlz7NqMPc8oae+cMDsUufOWFe7cXOLobMhS0fBtT7iNlGDh/Jxs72I3d945oborMjyYk+1eIG1WNHdVbN5csPakQLZUkppI2qo58Y+BI8eWueR7x7Qna27+xAoHzltn4eJBNxfHxPgftli4dEj2qD2wMIRZRfzCYbKz1+DgbogRjm/S/MMhjlw3IM8jb//M+Zyz0LJrUHPW4piUAm/98k52DgO7BokiSzQxkIfEbZPAt+zs1reY4ObxgFvGcMe45TlnBf7wxjFnjxbZt5Bx8UpiIY/82S2RAwsl5y3B7mGkDDCLgSOzwHoN+0ZQRdhqAjdttByrKr7/nCGfuAsevzNw/mLDuYtjpm3BRl1weFawWkbOXphQx4wjswG3T0sevzphvc45URfcPsm4ddyt/T90TuJ9twaeuidnVxnZPawpQuKdNw1YG2Q8ahl2lJEIjNvAZh3YOUiM8shK0XK0KrhzmnG8guefvckf37TMzkHgcasN5y5OWRtU/Pp1K+xfLNg5CEzaxLSFI5OGS9ZK9o8i0xg4UQU26sSxaWTnMOMHDk45MivZM7y7vgGuP77GRbtPsPf8LYqVQGoS7QQWnrYXdi5BWcKhY0w/fpTZyYzpVsn+H16m/qdjZKsF2Z5FQpERj46pbp4xOGdA2LkAs4Y0bRh/bsbiY4aEQU57dMrR60quu30vd04HXH7gCJuzAZ87ucqeYc2OwYwii/z9sR2slS17hzPykKhjxnpdMsgil511hKW1iizvbhPvvG2Fm9ZX+bbH3kY1zvncrXsZZC1roxltCkzqkmuPrbKQJ1aKlhASW03OTeNuLisD5CFxtMo4USU268TT9ibWypZxk7F/VFFmiUDicxuLPHp5yu7hlJXRjKbNqWPGZlWyOqwIIdG0OUcmI45WA76wUfCkHTOmbcb1WyXnLLTsH1UcXN7kk0d2sWvQsHt+HYZZy/Wby9w+Kdg7bLt7zDZjo8lYr2HcBL5lZ8W0zdhqM3YNWpbyljoFbp2UPGZlyv7FMQtlTdPmbFYla6MZK8tTymHLeHPA+njEoa1FbtgacfZCxW2TAetNxo6ym//rGPjyZmDXAPaNIqMsks3HTwaslS2D+Rq+3hSMm4zzl6a0KbBe5xyelYyyxKWrmywPao5PhyyVDcdnQ8ZNzrjN2Gwy9gwblouWJgbaFDhRF5ysM564Y4s8RKZtwbjJWSxaVgcVAF9cXyYPibWy2a6JKmZMY8ZC3rJSNNv30pM2ZxYDJ+qMJk74D597PSdPnmR1dfUBc4Rf+ZAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXhg9JkiRJvTB8SJIkSeqF4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXhg9JkiRJvTB8SJIkSeqF4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyRJkqReGD4kSZIk9cLwIUmSJKkXhg9JkiRJvTB8SJIkSeqF4UOSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF4YPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi+Kh/OilBIAVZwxi4FZTNRpRh0TeQyUMZABMUIVE7MYSAHyEGhTok0VkZo2VTRpRhULZjGQhUAdoYqRWQxMW5jF7piz7ffKaFO3T5ugjpEmzajJqWOiioFpGxhkEOiOPW5bhk1Dm1oS3eNJ27LVzMiyijxEtpqMSQuzmBETTNvEJEsQIkWITNuMOmaM24Y6RtrUMm67dm7UFWlWU1cwqWGjydhqMgKJYV1RZQ15VVHMMpoqslGXbDUzNpqKus0Z1BWbzYxxW7DZVMS6oqkrNpqKcRMZtyUbdcVWM2OzqcjqiqaqqOvIZlNR0TCsKooZhDYQZ4lplRGnGfl4BnVDnFbUs4qNOmN9PGO9rmhmkcF4BltTSAEmM2azinKaEXKgibTTinbWMphUhCxAm5GmLet1RQgQxjM2q4p2khPGM9icwtaM9aqiniXyaSSblECimVW0s0hGIKRAO4uM65y6jmw1M9Zn3Tlu1BWpqqinORQZW1UL83bG9S3CxpiwOdl+zMYY8kG3fTyjnlWUW1M26opQVcRJRciAsuvHbJqTjWewNYPRFMYz4rSCLJBNcpppRVO1bDYVWw2sTys26pymrmEWyScZ7bS7Zht1RVU1lDOYVYHNZkY5v34pBTbrjHE7Y9JGNuqKIkWm7ZRxW3XtC4m6jkzaGeO2ZthU8xpNjNucSNc34zZRhsS0TVQxMW6b+diLTNrIVlNRZBVkNVtNV0dZ1g2erSZn3HZtW6gr2jZjqykYtwXTNmOjrpg0MG5n2+cUAmw0gXE7owhNd01imL9fV4frVUUeYFpnbDTV9jXMipyNOrEwq8iyvKvBzSlpUhG2ZrA5gUHTDezNrv/ZnEJdw3jGtJ0yi5AFCAFiqompoaWbL1KKpNTSprob+zFSxYw6NaftV6dIFbvxWqfu/ynF7X2qOCOmljh/n1ksmbSRfD7fzGLGpI2M24YyJaZtxqTNmbaBcVvTpJoqZkzbwFYzY9p202lGd3026ooqb2hnzXZd11VNNZ/UNuqM4ayimMzYarr6yKuKetq931bTkgXYaCo4NUc0LeM2266zWROZ3mOOmLZTJlli3LZsNt04HLcztpqKwfyaDaaJNGuZVomNumRxVlFOE1mWmFYVkzqSTbt66Oqvq9UytEza6Xy+7M6nIJISbDYzBikyqKvtGpmcqq+mYhanTNq0XTtNVjNuZwybms1mBnU1f5+McZuz2XTvM2kik3ZKTDUpJeo4o4oZ5bwWq5jma0hGNq+ZKqbtdaGKA8oIVYQmzU6rpWnbtWl9VjGYdOM/zsf6YFZRTmakWTvfljGYJNpZxayK83ovGLcADetV1/56mpNNim7unFVUVWQ4zckmOWla0cwqtupImAayLJHaSJrWbNShG1PTinZWs9FULFYV9ZRuLo6J8bw2svEMIlBVxGk1n8um3YI7ntHMKjZqyOOpuSZu93NKgSpO5+trIk+JNgaycPda2aQ4XwMjs9itsZM2zPszZxYDkzYBaT72WqYtTNpEE7qxM23D/P9d389ioIqROlVM2kQ132c8X4enbbu9LhdZV1/depuYzvcZtzmTtmXaBqp5u8Ztoo6hG5tZYtzW5KTt+45pC5MsEYFJ2x1z0iYSiTy02+83i13NnroXOXV/kGcVdRxQxWb7Xqc7dssstkzm9wB3P9fdg3T1H9m6R32fGhcbdTVfrwOpSbQV1OMZDAsoWpjMmFYVsypjVicWJt2alk0j2aQgFBlxWlHNKgZTCJMcZg1p1jCuKpppILQ57axio07ztqR5zab5fFBTZDOKrFt7ymx+viHN+z1Sx25OaquKLO/u+bbn+aqirvOuz7KWvKloU5iP19l2/4bQrWPTtiEL0AbIQjeXnuqvSQtl1jJpM7aaijJLBNL88YxhPoOmom1z6hjYaiJZXhNComkztpowr5OGcVsxbbN5PXVz12ZTzdfXhlEzA6DOWsZtyaRtGLfdfDxpu7m8u+/s5vhZmzFpA+M2Emip0921sdnMaEJD2+ZsNpFsPk8XWcuk7uayrSZn0ga2mq7up23o7iuBej4uTo2dmOJ8/urun8uspY5d27qx0fVHm8L2WEipq6lu3YcUGrYamLQ54zZj0nb3rIGWJgbi9v1vmF/vyLRtmbQ5iZYsq+bHK8lDogjNdk3UKWMas24/mnvcS+fb991NnJ2WER5ISA9mr69w/fXXc9FFFz3Ul0mSJEn6BnXLLbdwzjnnPOA+D+srH7t27QLg5ptvZm1t7eG8xTet9fV1zj33XG655RZWV1fPdHO+rth3D5999/DYbw+ffffw2XcPn3338NhvD59910kpsbGxwcGDB7/qvg8rfGRZ96Mia2tr39Qd/f9idXXVvnuY7LuHz757eOy3h8++e/jsu4fPvnt47LeHz77jQX9Bwh84lyRJktQLw4ckSZKkXjys8DEcDnn1q1/NcDj8527PNzz77uGz7x4+++7hsd8ePvvu4bPvHj777uGx3x4+++6he1i/7UqSJEmSHiq/7UqSJElSLwwfkiRJknph+JAkSZLUC8OHJEmSpF48rPDxpje9iQsvvJDRaMRTnvIUPvzhD/9zt+sbzmte8xpCCKd9HDhw4Ew36xHpQx/6ED/4gz/IwYMHCSHw3ve+97TnU0q85jWv4eDBgywsLPCMZzyDz3zmM2emsY8gX63frrzyynvV4Hd8x3ecmcY+wrzuda/jW7/1W1lZWWHfvn284AUv4POf//xp+1h39/Zg+s26u2///b//d574xCdu/2Gyyy+/nL/6q7/aft56u39fre+suQfnda97HSEEXvGKV2xvs+4enPvqO+vuwXvI4eNd73oXr3jFK/hP/+k/ce211/Ld3/3dPPe5z+Xmm2/+WrTvG8rjH/947rjjju2P66677kw36RFpa2uLJz3pSbzxjW+8z+d/8zd/k9/6rd/ijW98I9dccw0HDhzge7/3e9nY2Oi5pY8sX63fAL7v+77vtBr8y7/8yx5b+Mh19dVX83M/93N87GMf4/3vfz9N0/Cc5zyHra2t7X2su3t7MP0G1t19Oeecc3j961/PJz7xCT7xiU/wrGc9i+c///nbN3rW2/37an0H1txXc8011/B7v/d7PPGJTzxtu3X31d1f34F196Clh+jbvu3b0s/8zM+ctu0xj3lM+qVf+qWH+lbfVF796lenJz3pSWe6GV93gPSe97xn+3GMMR04cCC9/vWv3942nU7T2tpaevOb33wGWvjI9JX9llJKV1xxRXr+859/Rtrz9ebw4cMJSFdffXVKybp7sL6y31Ky7h6KnTt3pt///d+33h6GU32XkjX31WxsbKSLL744vf/9709Pf/rT08tf/vKUkvPcg3F/fZeSdfdQPKSvfFRVxSc/+Ume85znnLb9Oc95Dh/96Ef/2QLRN6ovfvGLHDx4kAsvvJAf+7Ef4/rrrz/TTfq6c8MNN3Do0KHTanA4HPL0pz/dGnwQrrrqKvbt28cll1zCT/3UT3H48OEz3aRHpJMnTwKwa9cuwLp7sL6y306x7h5Y27a8853vZGtri8svv9x6ewi+su9Osebu38/93M/xAz/wA/zLf/kvT9tu3X1199d3p1h3D07xUHa+6667aNuW/fv3n7Z9//79HDp06J+1Yd9ovv3bv50//MM/5JJLLuHOO+/k137t13ja057GZz7zGXbv3n2mm/d141Sd3VcN3nTTTWeiSV83nvvc5/IjP/IjnH/++dxwww38yq/8Cs961rP45Cc/6V9mvYeUEr/wC7/Ad33Xd/GEJzwBsO4ejPvqN7DuHsh1113H5ZdfznQ6ZXl5mfe85z087nGP277Rs97u3/31HVhzD+Sd73wnf//3f88111xzr+ec5x7YA/UdWHcPxUMKH6eEEE57nFK61zad7rnPfe7255dddhmXX345F110EW9/+9v5hV/4hTPYsq9P1uBD95KXvGT78yc84Qk89alP5fzzz+cv/uIveOELX3gGW/bI8vM///N8+tOf5iMf+ci9nrPu7t/99Zt1d/8uvfRSPvWpT3HixAne/e53c8UVV3D11VdvP2+93b/767vHPe5x1tz9uOWWW3j5y1/O3/zN3zAaje53P+vu3h5M31l3D95D+rarPXv2kOf5vb7Kcfjw4XslZT2wpaUlLrvsMr74xS+e6aZ8XTn1G8Kswf93Z511Fueff741eA//7t/9O973vvfxwQ9+kHPOOWd7u3X3wO6v3+6LdXe3wWDAox/9aJ761Kfyute9jic96Un87u/+rvX2INxf390Xa67zyU9+ksOHD/OUpzyFoigoioKrr76aN7zhDRRFsV1b1t29fbW+a9v2Xq+x7u7fQwofg8GApzzlKbz//e8/bfv73/9+nva0p/2zNuwb3Ww247Of/SxnnXXWmW7K15ULL7yQAwcOnFaDVVVx9dVXW4MP0dGjR7nlllusQbp/2fv5n/95/vRP/5QPfOADXHjhhac9b93dt6/Wb/fFurt/KSVms5n19jCc6rv7Ys11nv3sZ3PdddfxqU99avvjqU99Kj/xEz/Bpz71KR71qEdZd/fjq/Vdnuf3eo119wAe6k+ov/Od70xlWaa3vOUt6Z/+6Z/SK17xirS0tJRuvPHGf7afgv9G9MpXvjJdddVV6frrr08f+9jH0vOe97y0srJiv92HjY2NdO2116Zrr702Aem3fuu30rXXXptuuummlFJKr3/969Pa2lr60z/903TdddelH//xH09nnXVWWl9fP8MtP7MeqN82NjbSK1/5yvTRj3403XDDDemDH/xguvzyy9PZZ5/9Td9vKaX0b//tv01ra2vpqquuSnfcccf2x3g83t7Huru3r9Zv1t39e9WrXpU+9KEPpRtuuCF9+tOfTr/8y7+csixLf/M3f5NSst4eyAP1nTX30Hzlb2yy7h68e/addffQPOTwkVJK/+2//bd0/vnnp8FgkL7lW77ltF+rqPv2kpe8JJ111lmpLMt08ODB9MIXvjB95jOfOdPNekT64Ac/mIB7fVxxxRUppe7XAb761a9OBw4cSMPhMH3P93xPuu66685sox8BHqjfxuNxes5znpP27t2byrJM5513XrriiivSzTfffKab/YhwX/0GpLe97W3b+1h39/bV+s26u38ve9nLttfRvXv3pmc/+9nbwSMl6+2BPFDfWXMPzVeGD+vuwbtn31l3D01IKaX+vs4iSZIk6ZvVQ/4L55IkSZL0cBg+JEmSJPXC8CFJkiSpF4YPSZIkSb0wfEiSJEnqheFDkiRJUi8MH5IkSZJ6YfiQJEmS1AvDhyTpAb3mNa/hyU9+8pluhiTpG4B/4VySvomFEB7w+SuuuII3vvGNzGYzdu/e3VOrJEnfqAwfkvRN7NChQ9ufv+td7+JXf/VX+fznP7+9bWFhgbW1tTPRNEnSNyC/7UqSvokdOHBg+2NtbY0Qwr22feW3XV155ZW84AUv4Dd+4zfYv38/O3bs4LWvfS1N0/CLv/iL7Nq1i3POOYe3vvWtpx3rtttu4yUveQk7d+5k9+7dPP/5z+fGG2/s94QlSWeU4UOS9JB94AMf4Pbbb+dDH/oQv/Vbv8VrXvManve857Fz504+/vGP8zM/8zP8zM/8DLfccgsA4/GYZz7zmSwvL/OhD32Ij3zkIywvL/N93/d9VFV1hs9GktQXw4ck6SHbtWsXb3jDG7j00kt52ctexqWXXsp4POaXf/mXufjii3nVq17FYDDg//7f/wvAO9/5TrIs4/d///e57LLLeOxjH8vb3vY2br75Zq666qozezKSpN4UZ7oBkqSvP49//OPJsrv//Wr//v084QlP2H6c5zm7d+/m8OHDAHzyk5/kS1/6EisrK6e9z3Q65ctf/nI/jZYknXGGD0nSQ1aW5WmPQwj3uS3GCECMkac85Sn8z//5P+/1Xnv37v3aNVSS9Ihi+JAkfc19y7d8C+9617vYt28fq6urZ7o5kqQzxJ/5kCR9zf3ET/wEe/bs4fnPfz4f/vCHueGGG7j66qt5+ctfzq233nqmmydJ6onhQ5L0Nbe4uMiHPvQhzjvvPF74whfy2Mc+lpe97GVMJhO/EiJJ30T8I4OSJEmSeuFXPiRJkiT1wvAhSZIkqReGD0mSJEm9MHxIkiRJ6oXhQ5IkSVIvDB+SJEmSemH4kCRJktQLw4ckSZKkXhg+JEmSJPXC8CFJkiSpF4YPSZIkSb34/wPsPnhO7kHJLwAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1000x400 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from scipy.ndimage import gaussian_filter1d\n",
"\n",
"def plot_metrogram():\n",
" sfig, ax = plt.subplots(nrows=1, figsize=(10, 4))\n",
" plt.subplots_adjust(top=1)\n",
"\n",
" librosa.display.specshow(\n",
" np.abs(metrogram),\n",
" sr=sr,\n",
" hop_length=hop_length,\n",
" x_axis=\"time\",\n",
" cmap=\"magma\",\n",
" ax=ax,\n",
" )\n",
" ax.set(title=\"Metrogram\")\n",
"\n",
"def metrogram_transform(T, tempogram_freqs, k, aggregate=np.sum):\n",
" # Assume T is the tempogram we begin with, and k are the harmonics/ratios we're interested in\n",
" T_interp = librosa.interp_harmonics(\n",
" T, freqs=tempogram_freqs, harmonics=k\n",
" ) # and other parameters as needed\n",
"\n",
" # T[np.newaxis, ...] is a view of T with compatible dimensions to T_interp\n",
" # Now we can multiply them and aggregate out the tempo dimension\n",
" # Default to aggregate=np.sum, but user could supply others as needed\n",
" M = aggregate(T_interp * T[np.newaxis, ...], axis=-2)\n",
" # M will now be of shape (T.shape[:-2], len(k), T.shape[-1])\n",
" return M\n",
"\n",
"\n",
"# the tempo harmonics (meters) we're interested in\n",
"k = [1 / 3, 1 / 4, 1 / 5, 1 / 7] # 3/4, 4/4, 5/4, 7/4\n",
"\n",
"metrogram = metrogram_transform(fun_tempogram[1:,], funt_freqs[1:,], k)\n",
"\n",
"\n",
"plot_metrogram()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAAG3CAYAAADVdOgPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAj9klEQVR4nO3de5DdZXkH8Od3clkiuUDCZXOBEJFELhEqsbp44VYZo9AgUCM6YwIdK1U6MFBboKNJOmgY20FlKM1QSaSmStrhImPVkUoSsIgTKJSUWkYlJKEQUrFACiSRnLd/bPbsue/ZJXk3gc9nZmfPed/nvZx3X0K+OZtNkVJKAQAAsJeVhnsDAADAm4PwAQAAZCF8AAAAWQgfAABAFsIHAACQhfABAABkIXwAAABZCB8AAEAWwgcAAJCF8AGwj/nmN78ZRVFEURSxZs2ahv6UUrztbW+LoijitNNOG/T8N910U3zzm9983fsEgMESPgD2UePGjYtbbrmloX3t2rXxq1/9KsaNGzekeYUPAIaL8AGwj5o/f37cfvvt8dJLL9W033LLLdHT0xNHHnnkXt/Db3/723jttdf2+joREbt27YodO3ZkWQuA4SF8AOyjLrzwwoiI+M53vlNpe/HFF+P222+Piy++uKF+586dce2118bb3/726OrqikMPPTQuuuii+J//+Z9KzVFHHRWPP/54rF27tvKtXUcddVRERKxZsyaKoohvfetbceWVV8bUqVOjq6srfvnLX0ZExPLly+PEE0+MAw44ICZOnBgf/ehH4+c//3nDPv7u7/4uZs6cGV1dXXHcccfFt7/97Vi4cGFlnYiIp556KoqiiK985Stx7bXXxowZM6KrqytWr14d27dvjyuvvDJOOumkmDBhQkycODF6enriu9/9bsNaRVHEpZdeGitWrIhZs2bFmDFjYs6cOfHggw9GSin+6q/+KmbMmBFjx46NM844o/JaABgeI4d7AwA0N378+Ljgggti+fLl8ZnPfCYieoNIqVSK+fPnx9e+9rVKbblcjnnz5sX9998ff/ZnfxannHJKbNy4MRYtWhSnnXZaPPTQQzFmzJi4884744ILLogJEybETTfdFBERXV1dNeteffXV0dPTE8uWLYtSqRSHHXZYLF26NK655pq48MILY+nSpfH888/H4sWLo6enJ9atWxfHHHNMRETcfPPN8ZnPfCbOP//8+OpXvxovvvhiLFmypOU7GjfccEPMnDkz/vqv/zrGjx8fxxxzTOzYsSN+85vfxJ/+6Z/G1KlTY+fOnfEv//Ivcd5558WKFSviU5/6VM0c3/ve9+KRRx6J6667LoqiiD//8z+Pj3zkI7FgwYJ48skn48Ybb4wXX3wxrrjiijj//PPj0UcfjaIo9tSXCYDBSADsU1asWJEiIq1bty6tXr06RUT6j//4j5RSSu9617vSwoULU0opHX/88enUU09NKaX0ne98J0VEuv3222vmWrduXYqIdNNNN1XaqsdV61vrAx/4QE37//7v/6YxY8akD3/4wzXtmzZtSl1dXekTn/hESimlXbt2pe7u7vTud7+7pm7jxo1p1KhRafr06ZW2DRs2pIhIRx99dNq5c2fb83jttdfSb3/72/SHf/iH6Xd+53dq+iIidXd3p//7v/+rtN11110pItJJJ52UyuVypf1rX/taioj02GOPtV0PgL3Ht10B7MNOPfXUOProo2P58uWxfv36WLduXdNvufre974XBx10UJxzzjnx2muvVT5OOumk6O7ubvpTs1o5//zza57/9Kc/jVdffTUWLlxY037EEUfEGWecET/+8Y8jIuKJJ56ILVu2xMc+9rGauiOPPDLe+973Nl3r93//92PUqFEN7f/0T/8U733ve2Ps2LExcuTIGDVqVNxyyy1Nv83r9NNPjwMPPLDy/Nhjj42IiLlz59a8w9HXvnHjxlYvHYC9TPgA2IcVRREXXXRRrFy5MpYtWxYzZ86M97///Q11zz33XLzwwgsxevToGDVqVM3Hli1b4te//nXHa06ePLnm+fPPP9+0PSJiypQplf6+z4cffnhDXbO2VnPecccd8bGPfSymTp0aK1eujJ/+9KeV0LV9+/aG+okTJ9Y8Hz16dNv2ZnMAkIe/8wGwj1u4cGF88YtfjGXLlsWXvvSlpjWHHHJITJo0KX74wx827R/Mj+Wt//sQkyZNioiIZ599tqH2mWeeiUMOOaSm7rnnnmuo27JlS0drRUSsXLkyZsyYEatWrarp95OwAPZ/3vkA2MdNnTo1Pv/5z8c555wTCxYsaFpz9tlnx/PPPx+7du2KOXPmNHzMmjWrUtvV1RWvvvpqx+v39PTEmDFjYuXKlTXtTz/9dNx7771x5plnRkTErFmzoru7O/7xH/+xpm7Tpk3xwAMPdLxeURQxevTomuCxZcuWpj/tCoD9i/ABsB+47rrr4q677mr6bUoRER//+Mdj7ty58eEPfzj+8i//Mn74wx/Gj3/847j11ltj4cKFceedd1ZqZ8+eHf/+7/8eq1atinXr1sX69evbrn3QQQfFF77whbj77rvjU5/6VPzgBz+IlStXxumnnx4HHHBALFq0KCIiSqVSLFmyJH72s5/FBRdcEN///vfj29/+dnzwgx+MyZMnR6nU2f9yzj777HjiiSfis5/9bNx7771x6623xvve976Wrx2A/YdvuwJ4AxgxYkTcfffd8fWvfz2+9a1vxdKlS2PkyJExbdq0OPXUU2P27NmV2iVLlsSzzz4bn/70p2Pbtm0xffr0eOqpp9rOf/XVV8dhhx0WN9xwQ6xatSrGjBkTp512Wnz5y1+u/JjdiIg/+qM/qvz7HR/96EfjqKOOiquuuiq++93vxqZNmzp6LRdddFFs3bo1li1bFsuXL4+3vvWtcdVVV8XTTz8dS5YsGdL5ALBvKFJKabg3AcAb1wsvvBAzZ86Mc889N26++ebh3g4Aw8g7HwDsMVu2bIkvfelLcfrpp8ekSZNi48aN8dWvfjW2bdsWl1122XBvD4BhJnwAsMd0dXXFU089FZ/97GfjN7/5TbzlLW+J97znPbFs2bI4/vjjh3t7AAwz33YFAABk4addAQAAWQgfAABAFsIHAACQxZD+wnm5XI5nnnkmxo0bV/Mv0AIAAG8uKaXYtm1bTJkyZcB/UHZI4eOZZ56JI444YkibAwAA3ng2b94c06ZNa1szpPAxbty4iIgoioMq73xUvwNSVH03V1HUp5/WfdXPi2jTVz8uqtYuRrQcVxrEnBGt56ler37Ndmv0jq2dt7G+bt26terrm81Zf3alujn7ZmpsqdtbarZW4ztd9eOa7aG/tvP2ZusPdf7+ca3fqStS+3fxBpq7v66zdwM7ravW6nV3aihr7otr7M/KsW/9gMHc+0lR3qvz763Xs6fnLe+Bc0jF69tTGuJrGuzeB/s1Lxed1Xe6j07qBtpjOXYNML79WbZ7Te3nbj6unJqPafU6Uos1Wp1Ns9eTWqzZbI5m66XUWFc/ttkazfdSP9fA63W2/uD3M9A69V+Tgfc12Pnqz2dXXX/7+aNh/vr5yjW9dYPrHpcrGaGdIYWP6sDR/7h5cMgTPqr72oWGwcw5mHn2ZvioCxJ7KHw0+01sQ/houtbA41rVtZqzVXu73+wPNXy0+43xQL+xFz72nTX2Z8KH8NE7354IH69vjqG+pmIvh4+iw9fV6T46qRtoj8WA4WOA8W1eU7tf11vP23xM6/DRao1W9c0CRatf2zurbb63+t/4djauvq75Ta6fq3Huxj+Q7OT/X3v317DBq9/PQK9psK+5qr/uoJudeyd/HcNfOAcAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCxGvp7B3eNOjBGlroiIKHbnmFJVniliRE1fRESpaNK2u66UqseWavpq6xvX6hvbvK7onze17+97XDtP0ThP0dhWneSKvjFF49y942NQ7aWq9qJoXLN6XNs5q+eJ2kGllnXRsq6oW7g+zda+ntZ99fN2OqbZuCYlTeeuf/3talvN265+oL4iUuvOAcbWztO5TudsGDe0YR1p9jV9I0jtv7x7TXlvzLmHXsuemOb17CUN6r+W17fmYMcMdolO50+DmLmTOTuZbaB5Bvpvo90dbjd3u3lbzdlqTOv6xgGt9tSsuVlts7ZmX7f6uvqtlJuMaayp768tqF+jfs7q8oHWq++vfl7/+ir7Kurq6vfX11dfV/fKqvtqH/fXpaI8cE3V43JNffPHNfWxq4N5WtSkXQ1tqaq21ZoptarZPV9qse/UuI/q2uq1a9p3Py5HOVLaFdte+a/ohHc+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyGPl6Bs8uTo5R0RWlKCIiouj9VPO873Fpd1+xu6gv9VSPqTzuq60b29/eyXx1zwdo3/0pSkX/uq36a9tT+7oB1mtbu3vuZq+rVDVB/5qp5dy18/fNm1rM179uzfgmNa3GtVq7dv3G9Fuq6iva9NXP32z9zmsGHtdqbLs5KuOazFUZ12bOTucf7Jp7Uqf7b6bc8BXOIw19yxERUU5D2/dgX+9g9zmYfaVB7KXc4T6Ge/3hf017fs5yJ+t2ON9Ac3VyJgOdcbs52o1tN26wc7aqb/X6m51fs9pm8zZbqtnXt76ufq769Xr/2y+q+osm/a3nqJ8/teurej6UOaq/BtXttTWt2tPg6lP7fTbrb/b6Umpct9mazfZaqa+Zt/9J/R761io3qe+vbTa+b1xVX19b03VT7bi+NXZXV9f21/T2paIcUdTXlGvHF+Wa9nLVKffV/Da9Gk+88l/RCe98AAAAWQgfAABAFsIHAACQhfABAABkIXwAAABZCB8AAEAWwgcAAJCF8AEAAGQhfAAAAFkIHwAAQBbCBwAAkIXwAQAAZCF8AAAAWQgfAABAFsIHAACQhfABAABkIXwAAABZCB8AAEAWwgcAAJCF8AEAAGQhfAAAAFkIHwAAQBbCBwAAkIXwAQAAZCF8AAAAWQgfAABAFsIHAACQhfABAABkIXwAAABZCB8AAEAWwgcAAJCF8AEAAGQhfAAAAFkIHwAAQBbCBwAAkIXwAQAAZCF8AAAAWQgfAABAFsIHAACQhfABAABkIXwAAABZCB8AAEAWwgcAAJCF8AEAAGQhfAAAAFkIHwAAQBbCBwAAkIXwAQAAZCF8AAAAWQgfAABAFsIHAACQhfABAABkIXwAAABZCB8AAEAWwgcAAJCF8AEAAGQhfAAAAFkIHwAAQBbCBwAAkIXwAQAAZCF8AAAAWQgfAABAFsIHAACQhfABAABkIXwAAABZCB8AAEAWwgcAAJCF8AEAAGQhfAAAAFkIHwAAQBbCBwAAkIXwAQAAZCF8AAAAWQgfAABAFsIHAACQhfABAABkIXwAAABZCB8AAEAWwgcAAJCF8AEAAGQhfAAAAFkIHwAAQBbCBwAAkIXwAQAAZCF8AAAAWQgfAABAFsIHAACQhfABAABkMfL1DP7EUaUYO7IURaQoFb1JpihSRKQoRUSpSFHs/lwqIopIERGVx43tKYoiorS7ryh61ylFiqKvtujr2z0mattKu9uLIqIo1dYWffOXqtt66/r6ilJVbSmi2B3P+p5HqXpc7wb6a2qfVx739fe+2NrnldqialxR+7zofV7bV/W8qr3/gIuqNZrVlhrHVQ68SV91W2WN+rYBnresr2uvbmvYU1Verp+n2biISM36B1q3er/txtbvpUlfajdPy/la/LlAJ2OrVZ1Dx/MNpeb11L/ZlMv7zlxDHZ9SnrX29pi9VFukDmo7ma88wDkPNMdA/a322Wpcu/00G9OkrWhW1+w+dTJf/X4a+uue16/Tbr7qvnZ11WfYcnyT9o7mSK3nataX6vvarFv3OdXsp8U8VZ9T/T7ra1LfvI37bmyL2j2UIyI1tvWP6+urepyatJWrvuTloqqt6nFlfBGpryZV1xT9c6ciys1qUhHluvpys75U9L603c/Lqah63NffP3/fuHLUzRnF7iOvfl5Eiv65+vt6H9es27deVX3fnE2fV+29v7/vcbF7jYiXd22Pz78QHfG7BAAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgC+EDAADIQvgAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshg5lEEppYiIeHXXjigVEUWkKBW9SaYoevtK0dteRESpSJW6iKgaU9+eoqjqK4rYPVeKoq+26nNlnSJVPkq75yqKiKLUN09fW++cpVJ1W29dX1+UamuL3fGsKFLv41L1uN4N9NdERNWYSl9ff++LrX3eV1sUVeOKiFLV86L3eU1fUfW8qr3/gIuqNSoHWdVfahxXmbNJX3Vb5XOztmg9pqivL9V+7lu/WVv9mJZtjXOl6v6iSW2pybr1+2m1Tv1emvSloq62/nnT+Vr8uUCz9lLR2FZZq01fu3UGW/N66t9syuV9Z66hjt/9/4DBrTWUMUPY32DGDKY2dV5bdFLbydoDndlAcwzU3+rr2Gpcu/00G9PkHIqmdU3mbVZX31a/n4H669epr6/ur+5rN2/1ayy3Gp8aH9fsbaDaJv3N+lJ9X5N9Vvpq50s1tS3mqfqcUt0+62tS37yN+660pdq9pOq9pca2/rmqXlLtcr1tVf2VbZaLqraioT+lor8mVdcUNTXlZjWpiHJdfTn6+2rqon9cOTU+7h8X/XNG0fC83OR5iv65+vt291ev27deVX3fHNXPq788fXvv7699XE4R23ft2L33gX+tL1InVXWefPLJOProowc7DAAAeIPavHlzTJs2rW3NkN75mDhxYkREbNq0KSZMmDCUKd60XnrppTjiiCNi8+bNMX78+OHezn7F2Q2dsxsa5zZ0zm7onN3QObuhcW5D5+x6pZRi27ZtMWXKlAFrhxQ+Sru/rWLChAlv6oN+PcaPH+/shsjZDZ2zGxrnNnTObuic3dA5u6FxbkPn7KLjNyR8czYAAJCF8AEAAGQxpPDR1dUVixYtiq6urj29nzc8Zzd0zm7onN3QOLehc3ZD5+yGztkNjXMbOmc3eEP6aVcAAACD5duuAACALIQPAAAgC+EDAADIQvgAAACyGFL4uOmmm2LGjBlxwAEHxMknnxz333//nt7XG87ixYujKIqaj+7u7uHe1j7pvvvui3POOSemTJkSRVHEXXfdVdOfUorFixfHlClTYsyYMXHaaafF448/Pjyb3YcMdG4LFy5suIPvec97hmez+5ilS5fGu971rhg3blwcdthhce6558YTTzxRU+PeNerk3Ny75v72b/823vGOd1T+YbKenp74wQ9+UOl331ob6Ozcuc4sXbo0iqKIyy+/vNLm3nWm2dm5d50bdPhYtWpVXH755fEXf/EX8cgjj8T73//+mDt3bmzatGlv7O8N5fjjj49nn3228rF+/frh3tI+6eWXX44TTzwxbrzxxqb9X/nKV+L666+PG2+8MdatWxfd3d3xwQ9+MLZt25Z5p/uWgc4tIuJDH/pQzR38/ve/n3GH+661a9fG5z73uXjwwQfjnnvuiddeey3OOuusePnllys17l2jTs4twr1rZtq0aXHdddfFQw89FA899FCcccYZMW/evMpv9Ny31gY6uwh3biDr1q2Lm2++Od7xjnfUtLt3A2t1dhHuXcfSIP3u7/5uuuSSS2ra3v72t6errrpqsFO9qSxatCideOKJw72N/U5EpDvvvLPyvFwup+7u7nTddddV2rZv354mTJiQli1bNgw73DfVn1tKKS1YsCDNmzdvWPazv9m6dWuKiLR27dqUknvXqfpzS8m9G4yDDz44feMb33DfhqDv7FJy5waybdu2dMwxx6R77rknnXrqqemyyy5LKfl1rhOtzi4l924wBvXOx86dO+Phhx+Os846q6b9rLPOigceeGCPBaI3ql/84hcxZcqUmDFjRnz84x+PJ598cri3tN/ZsGFDbNmypeYOdnV1xamnnuoOdmDNmjVx2GGHxcyZM+PTn/50bN26dbi3tE968cUXIyJi4sSJEeHedar+3Pq4d+3t2rUrbrvttnj55Zejp6fHfRuE+rPr48619rnPfS4+8pGPxO/93u/VtLt3A2t1dn3cu86MHEzxr3/969i1a1ccfvjhNe2HH354bNmyZY9u7I3m3e9+d/z93/99zJw5M5577rm49tpr45RTTonHH388Jk2aNNzb22/03bNmd3Djxo3DsaX9xty5c+MP/uAPYvr06bFhw4b4whe+EGeccUY8/PDD/mXWKimluOKKK+J973tfnHDCCRHh3nWi2blFuHftrF+/Pnp6emL79u0xduzYuPPOO+O4446r/EbPfWut1dlFuHPt3HbbbfFv//ZvsW7duoY+v8611+7sIty7wRhU+OhTFEXN85RSQxu15s6dW3k8e/bs6OnpiaOPPjpuvfXWuOKKK4ZxZ/snd3Dw5s+fX3l8wgknxJw5c2L69Onxz//8z3HeeecN4872LZdeemk89thj8ZOf/KShz71rrdW5uXetzZo1Kx599NF44YUX4vbbb48FCxbE2rVrK/3uW2utzu64445z51rYvHlzXHbZZfGjH/0oDjjggJZ17l2jTs7OvevcoL7t6pBDDokRI0Y0vMuxdevWhqRMewceeGDMnj07fvGLXwz3VvYrfT8hzB18/SZPnhzTp093B6v8yZ/8Sdx9992xevXqmDZtWqXdvWuv1bk14971Gz16dLztbW+LOXPmxNKlS+PEE0+Mr3/96+5bB1qdXTPuXK+HH344tm7dGieffHKMHDkyRo4cGWvXro0bbrghRo4cWblb7l2jgc5u165dDWPcu9YGFT5Gjx4dJ598ctxzzz017ffcc0+ccsope3Rjb3Q7duyIn//85zF58uTh3sp+ZcaMGdHd3V1zB3fu3Blr1651Bwfp+eefj82bN7uD0fsne5deemnccccdce+998aMGTNq+t275gY6t2bcu9ZSSrFjxw73bQj6zq4Zd67XmWeeGevXr49HH3208jFnzpz45Cc/GY8++mi89a1vde9aGOjsRowY0TDGvWtjsH9D/bbbbkujRo1Kt9xyS/rP//zPdPnll6cDDzwwPfXUU3vsb8G/EV155ZVpzZo16cknn0wPPvhgOvvss9O4ceOcWxPbtm1LjzzySHrkkUdSRKTrr78+PfLII2njxo0ppZSuu+66NGHChHTHHXek9evXpwsvvDBNnjw5vfTSS8O88+HV7ty2bduWrrzyyvTAAw+kDRs2pNWrV6eenp40derUN/25pZTSH//xH6cJEyakNWvWpGeffbby8corr1Rq3LtGA52be9fa1Vdfne677760YcOG9Nhjj6VrrrkmlUql9KMf/Sil5L610+7s3LnBqf+JTe5d56rPzr0bnEGHj5RS+pu/+Zs0ffr0NHr06PTOd76z5scq0tz8+fPT5MmT06hRo9KUKVPSeeedlx5//PHh3tY+afXq1SkiGj4WLFiQUur9cYCLFi1K3d3dqaurK33gAx9I69evH95N7wPandsrr7ySzjrrrHTooYemUaNGpSOPPDItWLAgbdq0abi3vU9odm4RkVasWFGpce8aDXRu7l1rF198ceX/o4ceemg688wzK8EjJfetnXZn584NTn34cO86V3127t3gFCmllO99FgAA4M1q0P/COQAAwFAIHwAAQBbCBwAAkIXwAQAAZCF8AAAAWQgfAABAFsIHAACQhfABAABkIXwA0NbixYvjpJNOGu5tAPAG4F84B3gTK4qibf+CBQvixhtvjB07dsSkSZMy7QqANyrhA+BNbMuWLZXHq1atii9+8YvxxBNPVNrGjBkTEyZMGI6tAfAG5NuuAN7Euru7Kx8TJkyIoiga2uq/7WrhwoVx7rnnxpe//OU4/PDD46CDDoolS5bEa6+9Fp///Odj4sSJMW3atFi+fHnNWv/93/8d8+fPj4MPPjgmTZoU8+bNi6eeeirvCwZgWAkfAAzavffeG88880zcd999cf3118fixYvj7LPPjoMPPjh+9rOfxSWXXBKXXHJJbN68OSIiXnnllTj99NNj7Nixcd9998VPfvKTGDt2bHzoQx+KnTt3DvOrASAX4QOAQZs4cWLccMMNMWvWrLj44otj1qxZ8corr8Q111wTxxxzTFx99dUxevTo+Nd//deIiLjtttuiVCrFN77xjZg9e3Yce+yxsWLFiti0aVOsWbNmeF8MANmMHO4NALD/Of7446NU6v/zq8MPPzxOOOGEyvMRI0bEpEmTYuvWrRER8fDDD8cvf/nLGDduXM0827dvj1/96ld5Ng3AsBM+ABi0UaNG1TwviqJpW7lcjoiIcrkcJ598cvzDP/xDw1yHHnro3tsoAPsU4QOAve6d73xnrFq1Kg477LAYP378cG8HgGHi73wAsNd98pOfjEMOOSTmzZsX999/f2zYsCHWrl0bl112WTz99NPDvT0AMhE+ANjr3vKWt8R9990XRx55ZJx33nlx7LHHxsUXXxyvvvqqd0IA3kT8I4MAAEAW3vkAAACyED4AAIAshA8AACAL4QMAAMhC+AAAALIQPgAAgCyEDwAAIAvhAwAAyEL4AAAAshA+AACALIQPAAAgi/8H07WNaRGFX0kAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1000x400 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\n",
"def smooth_rows(metrogram, sigma):\n",
" \"\"\"\n",
" Apply a Gaussian filter to each row for better smoothing.\n",
" \n",
" Parameters:\n",
" - metrogram: 2D NumPy array where each row represents a time series.\n",
" - sigma: Standard deviation for the Gaussian kernel. Higher values give more smoothing.\n",
"\n",
" Returns:\n",
" - Smoothed 2D NumPy array.\n",
" \"\"\"\n",
" smoothed_metrogram = np.array([\n",
" gaussian_filter1d(row, sigma=sigma, mode='constant', cval=0) for row in metrogram\n",
" ])\n",
" return smoothed_metrogram\n",
"\n",
"\n",
"metrogram = smooth_rows(metrogram, 450)\n",
"plot_metrogram()\n"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Timestamp: 0, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 3, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 4, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 5, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 6, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 7, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 8, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 9, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 10, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 11, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 12, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 13, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 14, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 15, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 16, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 17, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 18, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 19, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 20, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 21, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 22, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 23, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 24, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 25, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 26, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 27, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 28, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 29, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 30, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 31, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 32, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 33, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 34, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 35, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 36, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 37, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 38, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 39, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 40, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 41, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 42, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 43, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 44, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 45, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 46, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 47, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 48, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 49, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 50, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 51, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 52, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 53, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 54, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 55, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 56, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 57, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 58, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 59, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 60, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 61, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 62, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 63, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 64, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 65, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 66, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 67, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 68, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 69, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 70, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 71, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 72, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 73, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 74, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 75, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 76, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 77, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 78, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 79, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 80, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 81, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 82, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 83, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 84, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 85, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 86, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 87, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 88, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 89, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 90, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 91, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 92, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 93, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 94, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 95, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 96, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 97, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 98, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 99, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 100, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 101, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 102, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 103, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 104, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 105, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 106, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 107, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 108, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 109, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 110, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 111, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 112, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 113, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 114, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 115, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 116, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 117, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 118, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 119, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 120, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 121, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 122, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 123, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 124, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 125, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 126, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 127, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 128, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 129, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 130, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 131, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 132, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 133, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 134, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 135, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 136, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 137, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 138, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 139, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 140, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 141, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 142, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 143, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 144, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 145, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 146, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 147, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 148, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 149, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 150, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 151, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 152, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 153, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 154, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 155, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 156, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 157, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 158, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 159, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 160, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 161, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 162, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 163, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 164, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 165, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 166, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 167, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 168, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 169, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 170, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 171, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 172, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 173, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 174, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 175, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 176, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 177, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 178, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 179, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 180, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 181, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 182, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 183, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 184, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 185, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 186, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 187, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 188, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 189, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 190, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 191, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 192, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 193, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 194, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 195, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 196, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 197, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 198, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 199, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 200, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 201, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 202, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 203, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 204, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 205, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 206, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 207, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 208, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 209, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 210, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 211, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 212, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 213, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 214, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 215, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 216, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 217, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 218, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 219, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 220, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 221, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 222, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 223, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 224, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 225, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 226, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 227, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 228, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 229, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 230, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 231, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 232, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 233, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 234, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 235, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 236, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 237, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 238, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 239, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 240, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 241, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 242, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 243, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 244, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 245, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 246, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 247, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 248, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 249, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 250, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 251, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 252, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 253, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 254, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 255, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 256, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 257, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 258, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 259, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 260, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 261, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 262, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 263, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 264, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 265, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 266, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 267, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 268, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 269, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 270, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 271, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 272, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 273, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 274, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 275, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 276, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 277, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 278, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 279, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 280, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 281, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 282, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 283, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 284, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 285, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 286, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 287, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 288, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 289, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 290, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 291, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 292, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 293, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 294, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 295, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 296, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 297, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 298, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 299, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 300, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 301, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 302, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 303, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 304, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 305, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 306, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 307, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 308, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 309, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 310, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 311, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 312, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 313, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 314, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 315, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 316, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 317, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 318, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 319, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 320, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 321, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 322, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 323, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 324, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 325, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 326, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 327, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 328, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 329, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 330, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 331, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 332, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 333, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 334, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 335, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 336, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 337, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 338, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 339, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 340, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 341, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 342, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 343, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 344, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 345, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 346, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 347, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 348, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 349, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 350, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 351, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 352, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 353, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 354, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 355, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 356, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 357, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 358, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 359, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 360, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 361, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 362, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 363, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 364, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 365, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 366, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 367, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 368, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 369, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 370, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 371, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 372, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 373, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 374, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 375, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 376, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 377, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 378, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 379, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 380, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 381, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 382, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 383, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 384, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 385, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 386, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 387, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 388, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 389, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 390, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 391, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 392, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 393, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 394, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 395, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 396, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 397, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 398, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 399, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 400, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 401, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 402, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 403, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 404, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 405, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 406, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 407, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 408, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 409, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 410, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 411, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 412, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 413, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 414, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 415, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 416, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 417, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 418, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 419, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 420, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 421, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 422, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 423, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 424, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 425, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 426, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 427, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 428, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 429, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 430, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 431, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 432, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 433, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 434, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 435, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 436, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 437, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 438, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 439, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 440, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 441, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 442, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 443, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 444, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 445, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 446, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 447, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 448, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 449, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 450, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 451, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 452, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 453, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 454, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 455, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 456, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 457, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 458, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 459, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 460, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 461, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 462, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 463, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 464, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 465, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 466, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 467, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 468, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 469, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 470, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 471, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 472, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 473, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 474, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 475, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 476, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 477, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 478, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 479, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 480, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 481, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 482, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 483, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 484, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 485, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 486, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 487, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 488, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 489, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 490, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 491, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 492, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 493, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 494, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 495, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 496, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 497, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 498, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 499, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 500, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 501, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 502, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 503, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 504, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 505, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 506, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 507, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 508, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 509, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 510, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 511, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 512, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 513, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 514, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 515, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 516, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 517, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 518, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 519, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 520, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 521, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 522, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 523, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 524, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 525, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 526, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 527, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 528, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 529, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 530, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 531, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 532, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 533, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 534, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 535, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 536, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 537, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 538, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 539, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 540, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 541, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 542, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 543, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 544, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 545, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 546, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 547, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 548, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 549, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 550, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 551, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 552, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 553, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 554, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 555, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 556, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 557, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 558, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 559, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 560, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 561, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 562, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 563, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 564, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 565, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 566, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 567, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 568, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 569, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 570, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 571, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 572, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 573, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 574, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 575, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 576, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 577, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 578, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 579, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 580, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 581, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 582, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 583, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 584, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 585, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 586, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 587, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 588, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 589, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 590, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 591, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 592, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 593, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 594, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 595, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 596, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 597, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 598, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 599, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 600, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 601, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 602, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 603, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 604, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 605, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 606, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 607, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 608, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 609, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 610, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 611, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 612, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 613, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 614, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 615, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 616, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 617, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 618, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 619, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 620, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 621, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 622, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 623, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 624, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 625, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 626, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 627, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 628, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 629, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 630, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 631, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 632, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 633, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 634, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 635, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 636, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 637, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 638, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 639, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 640, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 641, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 642, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 643, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 644, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 645, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 646, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 647, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 648, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 649, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 650, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 651, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 652, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 653, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 654, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 655, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 656, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 657, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 658, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 659, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 660, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 661, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 662, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 663, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 664, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 665, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 666, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 667, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 668, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 669, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 670, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 671, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 672, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 673, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 674, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 675, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 676, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 677, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 678, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 679, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 680, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 681, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 682, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 683, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 684, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 685, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 686, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 687, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 688, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 689, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 690, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 691, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 692, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 693, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 694, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 695, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 696, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 697, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 698, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 699, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 700, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 701, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 702, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 703, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 704, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 705, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 706, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 707, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 708, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 709, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 710, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 711, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 712, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 713, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 714, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 715, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 716, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 717, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 718, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 719, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 720, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 721, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 722, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 723, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 724, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 725, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 726, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 727, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 728, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 729, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 730, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 731, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 732, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 733, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 734, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 735, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 736, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 737, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 738, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 739, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 740, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 741, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 742, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 743, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 744, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 745, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 746, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 747, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 748, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 749, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 750, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 751, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 752, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 753, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 754, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 755, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 756, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 757, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 758, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 759, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 760, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 761, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 762, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 763, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 764, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 765, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 766, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 767, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 768, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 769, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 770, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 771, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 772, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 773, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 774, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 775, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 776, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 777, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 778, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 779, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 780, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 781, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 782, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 783, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 784, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 785, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 786, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 787, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 788, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 789, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 790, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 791, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 792, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 793, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 794, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 795, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 796, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 797, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 798, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 799, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 800, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 801, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 802, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 803, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 804, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 805, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 806, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 807, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 808, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 809, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 810, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 811, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 812, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 813, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 814, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 815, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 816, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 817, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 818, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 819, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 820, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 821, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 822, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 823, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 824, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 825, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 826, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 827, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 828, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 829, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 830, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 831, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 832, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 833, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 834, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 835, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 836, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 837, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 838, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 839, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 840, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 841, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 842, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 843, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 844, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 845, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 846, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 847, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 848, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 849, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 850, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 851, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 852, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 853, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 854, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 855, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 856, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 857, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 858, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 859, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 860, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 861, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 862, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 863, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 864, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 865, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 866, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 867, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 868, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 869, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 870, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 871, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 872, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 873, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 874, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 875, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 876, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 877, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 878, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 879, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 880, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 881, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 882, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 883, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 884, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 885, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 886, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 887, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 888, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 889, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 890, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 891, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 892, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 893, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 894, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 895, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 896, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 897, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 898, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 899, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 900, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 901, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 902, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 903, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 904, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 905, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 906, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 907, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 908, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 909, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 910, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 911, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 912, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 913, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 914, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 915, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 916, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 917, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 918, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 919, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 920, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 921, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 922, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 923, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 924, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 925, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 926, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 927, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 928, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 929, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 930, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 931, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 932, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 933, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 934, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 935, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 936, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 937, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 938, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 939, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 940, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 941, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 942, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 943, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 944, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 945, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 946, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 947, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 948, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 949, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 950, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 951, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 952, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 953, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 954, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 955, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 956, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 957, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 958, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 959, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 960, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 961, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 962, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 963, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 964, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 965, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 966, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 967, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 968, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 969, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 970, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 971, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 972, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 973, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 974, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 975, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 976, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 977, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 978, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 979, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 980, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 981, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 982, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 983, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 984, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 985, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 986, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 987, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 988, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 989, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 990, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 991, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 992, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 993, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 994, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 995, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 996, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 997, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 998, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 999, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1000, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1001, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1002, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1003, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1004, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1005, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1006, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1007, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1008, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1009, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1010, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1011, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1012, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1013, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1014, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1015, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1016, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1017, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1018, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1019, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1020, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1021, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1022, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1023, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1024, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1025, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1026, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1027, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1028, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1029, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1030, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1031, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1032, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1033, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1034, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1035, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1036, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1037, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1038, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1039, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1040, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1041, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1042, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1043, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1044, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1045, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1046, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1047, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1048, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1049, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1050, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1051, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1052, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1053, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1054, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1055, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1056, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1057, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1058, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1059, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1060, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1061, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1062, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1063, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1064, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1065, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1066, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1067, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1068, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1069, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1070, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1071, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1072, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1073, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1074, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1075, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1076, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1077, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1078, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1079, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1080, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1081, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1082, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1083, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1084, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1085, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1086, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1087, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1088, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1089, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1090, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1091, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1092, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1093, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1094, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1095, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1096, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1097, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1098, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1099, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1100, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1101, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1102, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1103, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1104, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1105, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1106, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1107, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1108, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1109, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1110, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1111, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1112, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1113, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1114, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1115, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1116, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1117, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1118, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1119, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1120, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1121, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1122, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1123, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1124, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1125, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1126, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1127, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1128, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1129, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1130, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1131, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1132, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1133, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1134, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1135, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1136, Meter Index: 0, Confidence: 5.0%\n",
"Timestamp: 1137, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1138, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1139, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1140, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1141, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1142, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1143, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1144, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1145, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1146, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1147, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1148, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1149, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1150, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1151, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1152, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1153, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1154, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1155, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1156, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1157, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1158, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1159, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1160, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1161, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1162, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1163, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1164, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1165, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1166, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1167, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1168, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1169, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1170, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1171, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1172, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1173, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1174, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1175, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1176, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1177, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1178, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1179, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1180, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1181, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1182, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1183, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1184, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1185, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1186, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1187, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1188, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1189, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1190, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1191, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1192, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1193, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1194, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1195, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1196, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1197, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1198, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1199, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1200, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1201, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1202, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1203, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1204, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1205, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1206, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1207, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1208, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1209, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1210, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1211, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1212, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1213, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1214, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1215, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1216, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1217, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1218, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1219, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1220, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1221, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1222, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1223, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1224, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1225, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1226, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1227, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1228, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1229, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1230, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1231, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1232, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1233, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1234, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1235, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1236, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1237, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1238, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1239, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1240, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1241, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1242, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1243, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1244, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1245, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1246, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1247, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1248, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1249, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1250, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1251, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1252, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1253, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1254, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1255, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1256, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1257, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1258, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1259, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1260, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1261, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1262, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1263, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1264, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1265, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1266, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1267, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1268, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1269, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1270, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1271, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1272, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1273, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1274, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1275, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1276, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1277, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1278, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1279, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1280, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1281, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1282, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1283, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1284, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1285, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1286, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1287, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1288, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1289, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1290, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1291, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1292, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1293, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1294, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1295, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1296, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1297, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1298, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1299, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1300, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1301, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1302, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1303, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1304, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1305, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1306, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1307, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1308, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1309, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1310, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1311, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1312, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1313, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1314, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1315, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1316, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1317, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1318, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1319, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1320, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1321, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1322, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1323, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1324, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1325, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1326, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1327, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1328, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1329, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1330, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1331, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1332, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1333, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1334, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1335, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1336, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1337, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1338, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1339, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1340, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1341, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1342, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1343, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1344, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1345, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1346, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1347, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1348, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1349, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1350, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1351, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1352, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1353, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1354, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1355, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1356, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1357, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1358, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1359, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1360, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1361, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1362, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1363, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1364, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1365, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1366, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1367, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1368, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1369, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1370, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1371, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1372, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1373, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1374, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1375, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1376, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1377, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1378, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1379, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1380, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1381, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1382, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1383, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1384, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1385, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1386, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1387, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1388, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1389, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1390, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1391, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1392, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1393, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1394, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1395, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1396, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1397, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1398, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1399, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1400, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1401, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1402, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1403, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1404, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1405, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1406, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1407, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1408, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1409, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1410, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1411, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1412, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1413, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1414, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1415, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1416, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1417, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1418, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1419, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1420, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1421, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1422, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1423, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1424, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1425, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1426, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1427, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1428, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1429, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1430, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1431, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1432, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1433, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1434, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1435, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1436, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1437, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1438, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1439, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1440, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1441, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1442, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1443, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1444, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1445, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1446, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1447, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1448, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1449, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1450, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1451, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1452, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1453, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1454, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1455, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1456, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1457, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1458, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1459, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1460, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1461, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1462, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1463, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1464, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1465, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1466, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1467, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1468, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1469, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1470, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1471, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1472, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1473, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1474, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1475, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1476, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1477, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1478, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1479, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1480, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1481, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1482, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1483, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1484, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1485, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1486, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1487, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1488, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1489, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1490, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1491, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1492, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1493, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1494, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1495, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1496, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1497, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1498, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1499, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1500, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1501, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1502, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1503, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1504, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1505, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1506, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1507, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1508, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1509, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1510, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1511, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1512, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1513, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1514, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1515, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1516, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1517, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1518, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1519, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1520, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1521, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1522, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1523, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1524, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1525, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1526, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1527, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1528, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1529, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1530, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1531, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1532, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1533, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1534, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1535, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1536, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1537, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1538, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1539, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1540, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1541, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1542, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1543, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1544, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1545, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1546, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1547, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1548, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1549, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1550, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1551, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1552, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1553, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1554, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1555, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1556, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1557, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1558, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1559, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1560, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1561, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1562, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1563, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1564, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1565, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1566, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1567, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1568, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1569, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1570, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1571, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1572, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1573, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1574, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1575, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1576, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1577, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1578, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1579, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1580, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1581, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1582, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1583, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1584, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1585, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1586, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1587, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1588, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1589, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1590, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1591, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1592, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1593, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1594, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1595, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1596, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1597, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1598, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1599, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1600, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1601, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1602, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1603, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1604, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1605, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1606, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1607, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1608, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1609, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1610, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1611, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1612, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1613, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1614, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1615, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1616, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1617, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1618, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1619, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1620, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1621, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1622, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1623, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1624, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1625, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1626, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1627, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1628, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1629, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1630, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1631, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1632, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1633, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1634, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1635, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1636, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1637, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1638, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1639, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1640, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1641, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1642, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1643, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1644, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1645, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1646, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1647, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1648, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1649, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1650, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1651, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1652, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1653, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1654, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1655, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1656, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1657, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1658, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1659, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1660, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1661, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1662, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1663, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1664, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1665, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1666, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1667, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1668, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1669, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1670, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1671, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1672, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1673, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1674, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1675, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1676, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1677, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1678, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1679, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1680, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1681, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1682, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1683, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1684, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1685, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1686, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1687, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1688, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1689, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1690, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1691, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1692, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1693, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1694, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1695, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1696, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1697, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1698, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1699, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1700, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1701, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1702, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1703, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1704, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1705, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1706, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1707, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1708, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1709, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1710, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1711, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1712, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1713, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1714, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1715, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1716, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1717, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1718, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1719, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1720, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1721, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1722, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1723, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1724, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1725, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1726, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1727, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1728, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1729, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1730, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1731, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1732, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1733, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1734, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1735, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1736, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1737, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1738, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1739, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1740, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1741, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1742, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1743, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1744, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1745, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1746, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1747, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1748, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1749, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1750, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1751, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1752, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1753, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1754, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1755, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1756, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1757, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1758, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1759, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1760, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1761, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1762, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1763, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1764, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1765, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1766, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1767, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1768, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1769, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1770, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1771, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1772, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1773, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1774, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1775, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1776, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1777, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1778, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1779, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1780, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1781, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1782, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1783, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1784, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1785, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1786, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1787, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1788, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1789, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1790, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1791, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1792, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1793, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1794, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1795, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1796, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1797, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1798, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1799, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1800, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1801, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1802, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1803, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1804, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1805, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1806, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1807, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1808, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1809, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1810, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1811, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1812, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1813, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1814, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1815, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1816, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1817, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1818, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1819, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1820, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1821, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1822, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1823, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1824, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1825, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1826, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1827, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1828, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1829, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1830, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1831, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1832, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1833, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1834, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1835, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1836, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1837, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1838, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1839, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1840, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1841, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1842, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1843, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1844, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1845, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1846, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1847, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1848, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1849, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1850, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1851, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1852, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1853, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1854, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1855, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1856, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1857, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1858, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1859, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1860, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1861, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1862, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1863, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1864, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1865, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1866, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1867, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1868, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1869, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1870, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1871, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1872, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1873, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1874, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1875, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1876, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1877, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1878, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1879, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1880, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1881, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1882, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1883, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1884, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1885, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1886, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1887, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1888, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1889, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1890, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1891, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1892, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1893, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1894, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1895, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1896, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1897, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1898, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1899, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1900, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1901, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1902, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1903, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1904, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1905, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1906, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1907, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1908, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1909, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1910, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1911, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1912, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1913, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1914, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1915, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1916, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1917, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1918, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1919, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1920, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1921, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1922, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1923, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1924, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1925, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1926, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1927, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1928, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1929, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1930, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1931, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1932, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1933, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1934, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1935, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1936, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1937, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1938, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1939, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1940, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1941, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1942, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1943, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1944, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1945, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1946, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1947, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1948, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1949, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1950, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1951, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1952, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1953, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1954, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1955, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1956, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1957, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1958, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1959, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1960, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1961, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1962, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1963, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1964, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1965, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1966, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1967, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1968, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1969, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1970, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1971, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1972, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1973, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1974, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1975, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1976, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1977, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1978, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1979, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1980, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1981, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1982, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1983, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1984, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1985, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1986, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1987, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1988, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1989, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1990, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1991, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1992, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1993, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1994, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1995, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1996, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1997, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1998, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 1999, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2000, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2001, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2002, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2003, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2004, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2005, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2006, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2007, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2008, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2009, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2010, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2011, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2012, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2013, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2014, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2015, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2016, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2017, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2018, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2019, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2020, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2021, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2022, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2023, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2024, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2025, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2026, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2027, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2028, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2029, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2030, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2031, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2032, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2033, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2034, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2035, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2036, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2037, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2038, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2039, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2040, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2041, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2042, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2043, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2044, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2045, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2046, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2047, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2048, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2049, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2050, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2051, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2052, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2053, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2054, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2055, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2056, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2057, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2058, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2059, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2060, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2061, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2062, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2063, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2064, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2065, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2066, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2067, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2068, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2069, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2070, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2071, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2072, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2073, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2074, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2075, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2076, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2077, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2078, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2079, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2080, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2081, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2082, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2083, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2084, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2085, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2086, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2087, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2088, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2089, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2090, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2091, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2092, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2093, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2094, Meter Index: 0, Confidence: 6.0%\n",
"Timestamp: 2095, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2096, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2097, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2098, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2099, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2100, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2101, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2102, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2103, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2104, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2105, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2106, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2107, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2108, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2109, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2110, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2111, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2112, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2113, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2114, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2115, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2116, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2117, Meter Index: 0, Confidence: 7.0%\n",
"Timestamp: 2118, Meter Index: 0, Confidence: 7.0%\n"
]
}
],
"source": [
"# print the time signature with confidence\n",
"for i in range(len(metrogram[0])):\n",
" total = np.sum(np.abs(metrogram[:, i]))\n",
" p = np.abs(metrogram[:, i]) / total\n",
" H = -np.sum([p[j] * np.log2(p[j]) for j in range(len(metrogram)) if p[j] > 0])\n",
" H_norm = H / np.log2(len(metrogram))\n",
" C = 1 - H_norm\n",
" max_index = np.argmax(np.abs(metrogram[:, i]))\n",
" print(f\"Timestamp: {i}, Meter Index: {max_index}, Confidence: {np.round(C*100)}%\")\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "audio",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment