Skip to content

Instantly share code, notes, and snippets.

@cldougl
Created October 20, 2015 19:39
Show Gist options
  • Select an option

  • Save cldougl/91321a0d97b1d8f366b2 to your computer and use it in GitHub Desktop.

Select an option

Save cldougl/91321a0d97b1d8f366b2 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Dendrograms in Python"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"'1.8.8'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import plotly\n",
"plotly.__version__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Simple Example"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~chelsea_lyn/7679.embed\" height=\"100%\" width=\"100%\"></iframe>"
],
"text/plain": [
"<plotly.tools.PlotlyDisplay object>"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
" \n",
"import plotly.plotly as py\n",
"from plotly.tools import FigureFactory as FF\n",
"\n",
"X = np.random.rand(5,5)\n",
"dendro = FF.create_dendrogram(X)\n",
"py.iplot(dendro)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\"seamless=\"seamless\" src=\"https://plot.ly/~chelsea_lyn/7685.embed\" height=\"100%\" width=\"100%\"></iframe>"
],
"text/plain": [
"<plotly.tools.PlotlyDisplay object>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X = np.random.rand(10,10)\n",
"names = ['Jack', 'Oxana', 'John', 'Chelsea', 'Mark', 'Jack', 'Oxana', 'John', 'Chelsea', 'Mark']\n",
"dendro = FF.create_dendrogram(X, orientation='bottom', labels=names)\n",
"\n",
"py.iplot(dendro, height=1000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Reference"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Help on function create_dendrogram in module plotly.tools:\n",
"\n",
"create_dendrogram(X, orientation='bottom', labels=None, colorscale=None)\n",
" BETA function that returns a dendrogram Plotly figure object.\n",
" \n",
" :param (ndarray) X: Matrix of observations as array of arrays\n",
" :param (str) orientation: 'top', 'right', 'bottom', or 'left'\n",
" :param (list) labels: List of axis category labels(observation labels)\n",
" :param (list) colorscale: Optional colorscale for dendrogram tree\n",
" clusters\n",
" \n",
" Example 1: Simple bottom oriented dendrogram\n",
" ```\n",
" import numpy as np\n",
" \n",
" import plotly.plotly as py\n",
" from plotly.tools import FigureFactory as FF\n",
" \n",
" X = np.random.rand(5,5)\n",
" dendro = FF.create_dendrogram(X)\n",
" py.iplot(dendro, validate=False, height=300, width=1000)\n",
" \n",
" ```\n",
" \n",
" Example 2: Dendrogram to put on the left of the heatmap\n",
" ```\n",
" X = np.random.rand(5,5)\n",
" names = ['Jack', 'Oxana', 'John', 'Chelsea', 'Mark']\n",
" dendro = FF.create_dendrogram(X, orientation='right', labels=names)\n",
" \n",
" py.iplot(dendro, validate=False, height=1000, width=300)\n",
" ```\n",
"\n"
]
}
],
"source": [
"help(FF.create_dendrogram)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from IPython.display import display, HTML\n",
"\n",
"display(HTML('<link href=\"//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700\" rel=\"stylesheet\" type=\"text/css\" />'))\n",
"display(HTML('<link rel=\"stylesheet\" type=\"text/css\" href=\"http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css\">'))\n",
"\n",
"! pip install publisher --upgrade\n",
"import publisher\n",
"publisher.publish(\n",
" 'candlestick-charts.ipynb', 'python/candlestick-charts', 'Candlestick Charts',\n",
" 'How to make interactive candlestick charts in Python with Plotly. '\n",
" 'Six examples of candlestick charts with Pandas, time series, and yahoo finance data.',\n",
" title = 'Python Candlestick Charts | plotly',\n",
" thumbnail='/images/candlestick.png', language='python',\n",
" page_type='example_index', has_thumbnail='true', display_as='chart_type', order=28)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment