Last active
August 27, 2020 15:16
-
-
Save chychen/ba7221dfe86e9b3c381e566abe936970 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Import Numba CUDA" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "from numba import cuda\n", | |
| "import numpy as np\n", | |
| "import math" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "data = np.load('example_data.npy')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Original (CPU-based)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def ridge_detection(f, thres):\n", | |
| " count = np.zeros(f.shape)\n", | |
| " for i in range(len(f)):\n", | |
| " for j in range(len(f[i])):\n", | |
| " if (\n", | |
| " i > 0\n", | |
| " and j > 0\n", | |
| " and i < (len(f) - 1)\n", | |
| " and j < (len(f[i]) - 1)\n", | |
| " and f[i, j] > thres\n", | |
| " and ~np.isnan(f[i, j])\n", | |
| " ):\n", | |
| " step_i = i\n", | |
| " step_j = j\n", | |
| " for k in range(1000):\n", | |
| " if (\n", | |
| " step_i == 0\n", | |
| " or step_j == 0\n", | |
| " or step_i == (len(f) - 1)\n", | |
| " or step_j == (len(f[i]) - 1)\n", | |
| " ):\n", | |
| " break\n", | |
| " index = np.nanargmax(\n", | |
| " f[step_i - 1 : step_i + 2, step_j - 1 : step_j + 2].data\n", | |
| " )\n", | |
| " vmax = np.nanmax(\n", | |
| " f[step_i - 1 : step_i + 2, step_j - 1 : step_j + 2].data\n", | |
| " )\n", | |
| " if index == 4 or vmax == f[step_i, step_j] or np.isnan(vmax):\n", | |
| " break\n", | |
| " row = int(index / 3)\n", | |
| " col = index % 3\n", | |
| " count[step_i - 1 + row, step_j - 1 + col] += 1\n", | |
| " step_i = step_i - 1 + row\n", | |
| " step_j = step_j - 1 + col\n", | |
| " return count" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "CPU times: user 6min 14s, sys: 15.9 s, total: 6min 30s\n", | |
| "Wall time: 6min 6s\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%%time\n", | |
| "results = ridge_detection(data, 0)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "# %timeit -r 7 -n 1 ridge_detection(data, 0)" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.6.10" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 4 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment